xref: /linux/drivers/clk/clk.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sched.h>
26 #include <linux/clkdev.h>
27 
28 #include "clk.h"
29 
30 static DEFINE_SPINLOCK(enable_lock);
31 static DEFINE_MUTEX(prepare_lock);
32 
33 static struct task_struct *prepare_owner;
34 static struct task_struct *enable_owner;
35 
36 static int prepare_refcnt;
37 static int enable_refcnt;
38 
39 static HLIST_HEAD(clk_root_list);
40 static HLIST_HEAD(clk_orphan_list);
41 static LIST_HEAD(clk_notifier_list);
42 
43 /***    private data structures    ***/
44 
45 struct clk_core {
46 	const char		*name;
47 	const struct clk_ops	*ops;
48 	struct clk_hw		*hw;
49 	struct module		*owner;
50 	struct device		*dev;
51 	struct clk_core		*parent;
52 	const char		**parent_names;
53 	struct clk_core		**parents;
54 	u8			num_parents;
55 	u8			new_parent_index;
56 	unsigned long		rate;
57 	unsigned long		req_rate;
58 	unsigned long		new_rate;
59 	struct clk_core		*new_parent;
60 	struct clk_core		*new_child;
61 	unsigned long		flags;
62 	bool			orphan;
63 	unsigned int		enable_count;
64 	unsigned int		prepare_count;
65 	unsigned int		protect_count;
66 	unsigned long		min_rate;
67 	unsigned long		max_rate;
68 	unsigned long		accuracy;
69 	int			phase;
70 	struct hlist_head	children;
71 	struct hlist_node	child_node;
72 	struct hlist_head	clks;
73 	unsigned int		notifier_count;
74 #ifdef CONFIG_DEBUG_FS
75 	struct dentry		*dentry;
76 	struct hlist_node	debug_node;
77 #endif
78 	struct kref		ref;
79 };
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/clk.h>
83 
84 struct clk {
85 	struct clk_core	*core;
86 	const char *dev_id;
87 	const char *con_id;
88 	unsigned long min_rate;
89 	unsigned long max_rate;
90 	unsigned int exclusive_count;
91 	struct hlist_node clks_node;
92 };
93 
94 /***           runtime pm          ***/
95 static int clk_pm_runtime_get(struct clk_core *core)
96 {
97 	int ret = 0;
98 
99 	if (!core->dev)
100 		return 0;
101 
102 	ret = pm_runtime_get_sync(core->dev);
103 	return ret < 0 ? ret : 0;
104 }
105 
106 static void clk_pm_runtime_put(struct clk_core *core)
107 {
108 	if (!core->dev)
109 		return;
110 
111 	pm_runtime_put_sync(core->dev);
112 }
113 
114 /***           locking             ***/
115 static void clk_prepare_lock(void)
116 {
117 	if (!mutex_trylock(&prepare_lock)) {
118 		if (prepare_owner == current) {
119 			prepare_refcnt++;
120 			return;
121 		}
122 		mutex_lock(&prepare_lock);
123 	}
124 	WARN_ON_ONCE(prepare_owner != NULL);
125 	WARN_ON_ONCE(prepare_refcnt != 0);
126 	prepare_owner = current;
127 	prepare_refcnt = 1;
128 }
129 
130 static void clk_prepare_unlock(void)
131 {
132 	WARN_ON_ONCE(prepare_owner != current);
133 	WARN_ON_ONCE(prepare_refcnt == 0);
134 
135 	if (--prepare_refcnt)
136 		return;
137 	prepare_owner = NULL;
138 	mutex_unlock(&prepare_lock);
139 }
140 
141 static unsigned long clk_enable_lock(void)
142 	__acquires(enable_lock)
143 {
144 	unsigned long flags;
145 
146 	/*
147 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
148 	 * we already hold the lock. So, in that case, we rely only on
149 	 * reference counting.
150 	 */
151 	if (!IS_ENABLED(CONFIG_SMP) ||
152 	    !spin_trylock_irqsave(&enable_lock, flags)) {
153 		if (enable_owner == current) {
154 			enable_refcnt++;
155 			__acquire(enable_lock);
156 			if (!IS_ENABLED(CONFIG_SMP))
157 				local_save_flags(flags);
158 			return flags;
159 		}
160 		spin_lock_irqsave(&enable_lock, flags);
161 	}
162 	WARN_ON_ONCE(enable_owner != NULL);
163 	WARN_ON_ONCE(enable_refcnt != 0);
164 	enable_owner = current;
165 	enable_refcnt = 1;
166 	return flags;
167 }
168 
169 static void clk_enable_unlock(unsigned long flags)
170 	__releases(enable_lock)
171 {
172 	WARN_ON_ONCE(enable_owner != current);
173 	WARN_ON_ONCE(enable_refcnt == 0);
174 
175 	if (--enable_refcnt) {
176 		__release(enable_lock);
177 		return;
178 	}
179 	enable_owner = NULL;
180 	spin_unlock_irqrestore(&enable_lock, flags);
181 }
182 
183 static bool clk_core_rate_is_protected(struct clk_core *core)
184 {
185 	return core->protect_count;
186 }
187 
188 static bool clk_core_is_prepared(struct clk_core *core)
189 {
190 	bool ret = false;
191 
192 	/*
193 	 * .is_prepared is optional for clocks that can prepare
194 	 * fall back to software usage counter if it is missing
195 	 */
196 	if (!core->ops->is_prepared)
197 		return core->prepare_count;
198 
199 	if (!clk_pm_runtime_get(core)) {
200 		ret = core->ops->is_prepared(core->hw);
201 		clk_pm_runtime_put(core);
202 	}
203 
204 	return ret;
205 }
206 
207 static bool clk_core_is_enabled(struct clk_core *core)
208 {
209 	bool ret = false;
210 
211 	/*
212 	 * .is_enabled is only mandatory for clocks that gate
213 	 * fall back to software usage counter if .is_enabled is missing
214 	 */
215 	if (!core->ops->is_enabled)
216 		return core->enable_count;
217 
218 	/*
219 	 * Check if clock controller's device is runtime active before
220 	 * calling .is_enabled callback. If not, assume that clock is
221 	 * disabled, because we might be called from atomic context, from
222 	 * which pm_runtime_get() is not allowed.
223 	 * This function is called mainly from clk_disable_unused_subtree,
224 	 * which ensures proper runtime pm activation of controller before
225 	 * taking enable spinlock, but the below check is needed if one tries
226 	 * to call it from other places.
227 	 */
228 	if (core->dev) {
229 		pm_runtime_get_noresume(core->dev);
230 		if (!pm_runtime_active(core->dev)) {
231 			ret = false;
232 			goto done;
233 		}
234 	}
235 
236 	ret = core->ops->is_enabled(core->hw);
237 done:
238 	if (core->dev)
239 		pm_runtime_put(core->dev);
240 
241 	return ret;
242 }
243 
244 /***    helper functions   ***/
245 
246 const char *__clk_get_name(const struct clk *clk)
247 {
248 	return !clk ? NULL : clk->core->name;
249 }
250 EXPORT_SYMBOL_GPL(__clk_get_name);
251 
252 const char *clk_hw_get_name(const struct clk_hw *hw)
253 {
254 	return hw->core->name;
255 }
256 EXPORT_SYMBOL_GPL(clk_hw_get_name);
257 
258 struct clk_hw *__clk_get_hw(struct clk *clk)
259 {
260 	return !clk ? NULL : clk->core->hw;
261 }
262 EXPORT_SYMBOL_GPL(__clk_get_hw);
263 
264 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
265 {
266 	return hw->core->num_parents;
267 }
268 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
269 
270 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
271 {
272 	return hw->core->parent ? hw->core->parent->hw : NULL;
273 }
274 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
275 
276 static struct clk_core *__clk_lookup_subtree(const char *name,
277 					     struct clk_core *core)
278 {
279 	struct clk_core *child;
280 	struct clk_core *ret;
281 
282 	if (!strcmp(core->name, name))
283 		return core;
284 
285 	hlist_for_each_entry(child, &core->children, child_node) {
286 		ret = __clk_lookup_subtree(name, child);
287 		if (ret)
288 			return ret;
289 	}
290 
291 	return NULL;
292 }
293 
294 static struct clk_core *clk_core_lookup(const char *name)
295 {
296 	struct clk_core *root_clk;
297 	struct clk_core *ret;
298 
299 	if (!name)
300 		return NULL;
301 
302 	/* search the 'proper' clk tree first */
303 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
304 		ret = __clk_lookup_subtree(name, root_clk);
305 		if (ret)
306 			return ret;
307 	}
308 
309 	/* if not found, then search the orphan tree */
310 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
311 		ret = __clk_lookup_subtree(name, root_clk);
312 		if (ret)
313 			return ret;
314 	}
315 
316 	return NULL;
317 }
318 
319 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
320 							 u8 index)
321 {
322 	if (!core || index >= core->num_parents)
323 		return NULL;
324 
325 	if (!core->parents[index])
326 		core->parents[index] =
327 				clk_core_lookup(core->parent_names[index]);
328 
329 	return core->parents[index];
330 }
331 
332 struct clk_hw *
333 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
334 {
335 	struct clk_core *parent;
336 
337 	parent = clk_core_get_parent_by_index(hw->core, index);
338 
339 	return !parent ? NULL : parent->hw;
340 }
341 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
342 
343 unsigned int __clk_get_enable_count(struct clk *clk)
344 {
345 	return !clk ? 0 : clk->core->enable_count;
346 }
347 
348 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
349 {
350 	unsigned long ret;
351 
352 	if (!core) {
353 		ret = 0;
354 		goto out;
355 	}
356 
357 	ret = core->rate;
358 
359 	if (!core->num_parents)
360 		goto out;
361 
362 	if (!core->parent)
363 		ret = 0;
364 
365 out:
366 	return ret;
367 }
368 
369 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
370 {
371 	return clk_core_get_rate_nolock(hw->core);
372 }
373 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
374 
375 static unsigned long __clk_get_accuracy(struct clk_core *core)
376 {
377 	if (!core)
378 		return 0;
379 
380 	return core->accuracy;
381 }
382 
383 unsigned long __clk_get_flags(struct clk *clk)
384 {
385 	return !clk ? 0 : clk->core->flags;
386 }
387 EXPORT_SYMBOL_GPL(__clk_get_flags);
388 
389 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
390 {
391 	return hw->core->flags;
392 }
393 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
394 
395 bool clk_hw_is_prepared(const struct clk_hw *hw)
396 {
397 	return clk_core_is_prepared(hw->core);
398 }
399 
400 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
401 {
402 	return clk_core_rate_is_protected(hw->core);
403 }
404 
405 bool clk_hw_is_enabled(const struct clk_hw *hw)
406 {
407 	return clk_core_is_enabled(hw->core);
408 }
409 
410 bool __clk_is_enabled(struct clk *clk)
411 {
412 	if (!clk)
413 		return false;
414 
415 	return clk_core_is_enabled(clk->core);
416 }
417 EXPORT_SYMBOL_GPL(__clk_is_enabled);
418 
419 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
420 			   unsigned long best, unsigned long flags)
421 {
422 	if (flags & CLK_MUX_ROUND_CLOSEST)
423 		return abs(now - rate) < abs(best - rate);
424 
425 	return now <= rate && now > best;
426 }
427 
428 int clk_mux_determine_rate_flags(struct clk_hw *hw,
429 				 struct clk_rate_request *req,
430 				 unsigned long flags)
431 {
432 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
433 	int i, num_parents, ret;
434 	unsigned long best = 0;
435 	struct clk_rate_request parent_req = *req;
436 
437 	/* if NO_REPARENT flag set, pass through to current parent */
438 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
439 		parent = core->parent;
440 		if (core->flags & CLK_SET_RATE_PARENT) {
441 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
442 						   &parent_req);
443 			if (ret)
444 				return ret;
445 
446 			best = parent_req.rate;
447 		} else if (parent) {
448 			best = clk_core_get_rate_nolock(parent);
449 		} else {
450 			best = clk_core_get_rate_nolock(core);
451 		}
452 
453 		goto out;
454 	}
455 
456 	/* find the parent that can provide the fastest rate <= rate */
457 	num_parents = core->num_parents;
458 	for (i = 0; i < num_parents; i++) {
459 		parent = clk_core_get_parent_by_index(core, i);
460 		if (!parent)
461 			continue;
462 
463 		if (core->flags & CLK_SET_RATE_PARENT) {
464 			parent_req = *req;
465 			ret = __clk_determine_rate(parent->hw, &parent_req);
466 			if (ret)
467 				continue;
468 		} else {
469 			parent_req.rate = clk_core_get_rate_nolock(parent);
470 		}
471 
472 		if (mux_is_better_rate(req->rate, parent_req.rate,
473 				       best, flags)) {
474 			best_parent = parent;
475 			best = parent_req.rate;
476 		}
477 	}
478 
479 	if (!best_parent)
480 		return -EINVAL;
481 
482 out:
483 	if (best_parent)
484 		req->best_parent_hw = best_parent->hw;
485 	req->best_parent_rate = best;
486 	req->rate = best;
487 
488 	return 0;
489 }
490 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
491 
492 struct clk *__clk_lookup(const char *name)
493 {
494 	struct clk_core *core = clk_core_lookup(name);
495 
496 	return !core ? NULL : core->hw->clk;
497 }
498 
499 static void clk_core_get_boundaries(struct clk_core *core,
500 				    unsigned long *min_rate,
501 				    unsigned long *max_rate)
502 {
503 	struct clk *clk_user;
504 
505 	*min_rate = core->min_rate;
506 	*max_rate = core->max_rate;
507 
508 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
509 		*min_rate = max(*min_rate, clk_user->min_rate);
510 
511 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
512 		*max_rate = min(*max_rate, clk_user->max_rate);
513 }
514 
515 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
516 			   unsigned long max_rate)
517 {
518 	hw->core->min_rate = min_rate;
519 	hw->core->max_rate = max_rate;
520 }
521 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
522 
523 /*
524  * Helper for finding best parent to provide a given frequency. This can be used
525  * directly as a determine_rate callback (e.g. for a mux), or from a more
526  * complex clock that may combine a mux with other operations.
527  */
528 int __clk_mux_determine_rate(struct clk_hw *hw,
529 			     struct clk_rate_request *req)
530 {
531 	return clk_mux_determine_rate_flags(hw, req, 0);
532 }
533 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
534 
535 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
536 				     struct clk_rate_request *req)
537 {
538 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
539 }
540 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
541 
542 /***        clk api        ***/
543 
544 static void clk_core_rate_unprotect(struct clk_core *core)
545 {
546 	lockdep_assert_held(&prepare_lock);
547 
548 	if (!core)
549 		return;
550 
551 	if (WARN(core->protect_count == 0,
552 	    "%s already unprotected\n", core->name))
553 		return;
554 
555 	if (--core->protect_count > 0)
556 		return;
557 
558 	clk_core_rate_unprotect(core->parent);
559 }
560 
561 static int clk_core_rate_nuke_protect(struct clk_core *core)
562 {
563 	int ret;
564 
565 	lockdep_assert_held(&prepare_lock);
566 
567 	if (!core)
568 		return -EINVAL;
569 
570 	if (core->protect_count == 0)
571 		return 0;
572 
573 	ret = core->protect_count;
574 	core->protect_count = 1;
575 	clk_core_rate_unprotect(core);
576 
577 	return ret;
578 }
579 
580 /**
581  * clk_rate_exclusive_put - release exclusivity over clock rate control
582  * @clk: the clk over which the exclusivity is released
583  *
584  * clk_rate_exclusive_put() completes a critical section during which a clock
585  * consumer cannot tolerate any other consumer making any operation on the
586  * clock which could result in a rate change or rate glitch. Exclusive clocks
587  * cannot have their rate changed, either directly or indirectly due to changes
588  * further up the parent chain of clocks. As a result, clocks up parent chain
589  * also get under exclusive control of the calling consumer.
590  *
591  * If exlusivity is claimed more than once on clock, even by the same consumer,
592  * the rate effectively gets locked as exclusivity can't be preempted.
593  *
594  * Calls to clk_rate_exclusive_put() must be balanced with calls to
595  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
596  * error status.
597  */
598 void clk_rate_exclusive_put(struct clk *clk)
599 {
600 	if (!clk)
601 		return;
602 
603 	clk_prepare_lock();
604 
605 	/*
606 	 * if there is something wrong with this consumer protect count, stop
607 	 * here before messing with the provider
608 	 */
609 	if (WARN_ON(clk->exclusive_count <= 0))
610 		goto out;
611 
612 	clk_core_rate_unprotect(clk->core);
613 	clk->exclusive_count--;
614 out:
615 	clk_prepare_unlock();
616 }
617 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
618 
619 static void clk_core_rate_protect(struct clk_core *core)
620 {
621 	lockdep_assert_held(&prepare_lock);
622 
623 	if (!core)
624 		return;
625 
626 	if (core->protect_count == 0)
627 		clk_core_rate_protect(core->parent);
628 
629 	core->protect_count++;
630 }
631 
632 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
633 {
634 	lockdep_assert_held(&prepare_lock);
635 
636 	if (!core)
637 		return;
638 
639 	if (count == 0)
640 		return;
641 
642 	clk_core_rate_protect(core);
643 	core->protect_count = count;
644 }
645 
646 /**
647  * clk_rate_exclusive_get - get exclusivity over the clk rate control
648  * @clk: the clk over which the exclusity of rate control is requested
649  *
650  * clk_rate_exlusive_get() begins a critical section during which a clock
651  * consumer cannot tolerate any other consumer making any operation on the
652  * clock which could result in a rate change or rate glitch. Exclusive clocks
653  * cannot have their rate changed, either directly or indirectly due to changes
654  * further up the parent chain of clocks. As a result, clocks up parent chain
655  * also get under exclusive control of the calling consumer.
656  *
657  * If exlusivity is claimed more than once on clock, even by the same consumer,
658  * the rate effectively gets locked as exclusivity can't be preempted.
659  *
660  * Calls to clk_rate_exclusive_get() should be balanced with calls to
661  * clk_rate_exclusive_put(). Calls to this function may sleep.
662  * Returns 0 on success, -EERROR otherwise
663  */
664 int clk_rate_exclusive_get(struct clk *clk)
665 {
666 	if (!clk)
667 		return 0;
668 
669 	clk_prepare_lock();
670 	clk_core_rate_protect(clk->core);
671 	clk->exclusive_count++;
672 	clk_prepare_unlock();
673 
674 	return 0;
675 }
676 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
677 
678 static void clk_core_unprepare(struct clk_core *core)
679 {
680 	lockdep_assert_held(&prepare_lock);
681 
682 	if (!core)
683 		return;
684 
685 	if (WARN(core->prepare_count == 0,
686 	    "%s already unprepared\n", core->name))
687 		return;
688 
689 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
690 	    "Unpreparing critical %s\n", core->name))
691 		return;
692 
693 	if (--core->prepare_count > 0)
694 		return;
695 
696 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
697 
698 	trace_clk_unprepare(core);
699 
700 	if (core->ops->unprepare)
701 		core->ops->unprepare(core->hw);
702 
703 	clk_pm_runtime_put(core);
704 
705 	trace_clk_unprepare_complete(core);
706 	clk_core_unprepare(core->parent);
707 }
708 
709 static void clk_core_unprepare_lock(struct clk_core *core)
710 {
711 	clk_prepare_lock();
712 	clk_core_unprepare(core);
713 	clk_prepare_unlock();
714 }
715 
716 /**
717  * clk_unprepare - undo preparation of a clock source
718  * @clk: the clk being unprepared
719  *
720  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
721  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
722  * if the operation may sleep.  One example is a clk which is accessed over
723  * I2c.  In the complex case a clk gate operation may require a fast and a slow
724  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
725  * exclusive.  In fact clk_disable must be called before clk_unprepare.
726  */
727 void clk_unprepare(struct clk *clk)
728 {
729 	if (IS_ERR_OR_NULL(clk))
730 		return;
731 
732 	clk_core_unprepare_lock(clk->core);
733 }
734 EXPORT_SYMBOL_GPL(clk_unprepare);
735 
736 static int clk_core_prepare(struct clk_core *core)
737 {
738 	int ret = 0;
739 
740 	lockdep_assert_held(&prepare_lock);
741 
742 	if (!core)
743 		return 0;
744 
745 	if (core->prepare_count == 0) {
746 		ret = clk_pm_runtime_get(core);
747 		if (ret)
748 			return ret;
749 
750 		ret = clk_core_prepare(core->parent);
751 		if (ret)
752 			goto runtime_put;
753 
754 		trace_clk_prepare(core);
755 
756 		if (core->ops->prepare)
757 			ret = core->ops->prepare(core->hw);
758 
759 		trace_clk_prepare_complete(core);
760 
761 		if (ret)
762 			goto unprepare;
763 	}
764 
765 	core->prepare_count++;
766 
767 	return 0;
768 unprepare:
769 	clk_core_unprepare(core->parent);
770 runtime_put:
771 	clk_pm_runtime_put(core);
772 	return ret;
773 }
774 
775 static int clk_core_prepare_lock(struct clk_core *core)
776 {
777 	int ret;
778 
779 	clk_prepare_lock();
780 	ret = clk_core_prepare(core);
781 	clk_prepare_unlock();
782 
783 	return ret;
784 }
785 
786 /**
787  * clk_prepare - prepare a clock source
788  * @clk: the clk being prepared
789  *
790  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
791  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
792  * operation may sleep.  One example is a clk which is accessed over I2c.  In
793  * the complex case a clk ungate operation may require a fast and a slow part.
794  * It is this reason that clk_prepare and clk_enable are not mutually
795  * exclusive.  In fact clk_prepare must be called before clk_enable.
796  * Returns 0 on success, -EERROR otherwise.
797  */
798 int clk_prepare(struct clk *clk)
799 {
800 	if (!clk)
801 		return 0;
802 
803 	return clk_core_prepare_lock(clk->core);
804 }
805 EXPORT_SYMBOL_GPL(clk_prepare);
806 
807 static void clk_core_disable(struct clk_core *core)
808 {
809 	lockdep_assert_held(&enable_lock);
810 
811 	if (!core)
812 		return;
813 
814 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
815 		return;
816 
817 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
818 	    "Disabling critical %s\n", core->name))
819 		return;
820 
821 	if (--core->enable_count > 0)
822 		return;
823 
824 	trace_clk_disable_rcuidle(core);
825 
826 	if (core->ops->disable)
827 		core->ops->disable(core->hw);
828 
829 	trace_clk_disable_complete_rcuidle(core);
830 
831 	clk_core_disable(core->parent);
832 }
833 
834 static void clk_core_disable_lock(struct clk_core *core)
835 {
836 	unsigned long flags;
837 
838 	flags = clk_enable_lock();
839 	clk_core_disable(core);
840 	clk_enable_unlock(flags);
841 }
842 
843 /**
844  * clk_disable - gate a clock
845  * @clk: the clk being gated
846  *
847  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
848  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
849  * clk if the operation is fast and will never sleep.  One example is a
850  * SoC-internal clk which is controlled via simple register writes.  In the
851  * complex case a clk gate operation may require a fast and a slow part.  It is
852  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
853  * In fact clk_disable must be called before clk_unprepare.
854  */
855 void clk_disable(struct clk *clk)
856 {
857 	if (IS_ERR_OR_NULL(clk))
858 		return;
859 
860 	clk_core_disable_lock(clk->core);
861 }
862 EXPORT_SYMBOL_GPL(clk_disable);
863 
864 static int clk_core_enable(struct clk_core *core)
865 {
866 	int ret = 0;
867 
868 	lockdep_assert_held(&enable_lock);
869 
870 	if (!core)
871 		return 0;
872 
873 	if (WARN(core->prepare_count == 0,
874 	    "Enabling unprepared %s\n", core->name))
875 		return -ESHUTDOWN;
876 
877 	if (core->enable_count == 0) {
878 		ret = clk_core_enable(core->parent);
879 
880 		if (ret)
881 			return ret;
882 
883 		trace_clk_enable_rcuidle(core);
884 
885 		if (core->ops->enable)
886 			ret = core->ops->enable(core->hw);
887 
888 		trace_clk_enable_complete_rcuidle(core);
889 
890 		if (ret) {
891 			clk_core_disable(core->parent);
892 			return ret;
893 		}
894 	}
895 
896 	core->enable_count++;
897 	return 0;
898 }
899 
900 static int clk_core_enable_lock(struct clk_core *core)
901 {
902 	unsigned long flags;
903 	int ret;
904 
905 	flags = clk_enable_lock();
906 	ret = clk_core_enable(core);
907 	clk_enable_unlock(flags);
908 
909 	return ret;
910 }
911 
912 /**
913  * clk_enable - ungate a clock
914  * @clk: the clk being ungated
915  *
916  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
917  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
918  * if the operation will never sleep.  One example is a SoC-internal clk which
919  * is controlled via simple register writes.  In the complex case a clk ungate
920  * operation may require a fast and a slow part.  It is this reason that
921  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
922  * must be called before clk_enable.  Returns 0 on success, -EERROR
923  * otherwise.
924  */
925 int clk_enable(struct clk *clk)
926 {
927 	if (!clk)
928 		return 0;
929 
930 	return clk_core_enable_lock(clk->core);
931 }
932 EXPORT_SYMBOL_GPL(clk_enable);
933 
934 static int clk_core_prepare_enable(struct clk_core *core)
935 {
936 	int ret;
937 
938 	ret = clk_core_prepare_lock(core);
939 	if (ret)
940 		return ret;
941 
942 	ret = clk_core_enable_lock(core);
943 	if (ret)
944 		clk_core_unprepare_lock(core);
945 
946 	return ret;
947 }
948 
949 static void clk_core_disable_unprepare(struct clk_core *core)
950 {
951 	clk_core_disable_lock(core);
952 	clk_core_unprepare_lock(core);
953 }
954 
955 static void clk_unprepare_unused_subtree(struct clk_core *core)
956 {
957 	struct clk_core *child;
958 
959 	lockdep_assert_held(&prepare_lock);
960 
961 	hlist_for_each_entry(child, &core->children, child_node)
962 		clk_unprepare_unused_subtree(child);
963 
964 	if (core->prepare_count)
965 		return;
966 
967 	if (core->flags & CLK_IGNORE_UNUSED)
968 		return;
969 
970 	if (clk_pm_runtime_get(core))
971 		return;
972 
973 	if (clk_core_is_prepared(core)) {
974 		trace_clk_unprepare(core);
975 		if (core->ops->unprepare_unused)
976 			core->ops->unprepare_unused(core->hw);
977 		else if (core->ops->unprepare)
978 			core->ops->unprepare(core->hw);
979 		trace_clk_unprepare_complete(core);
980 	}
981 
982 	clk_pm_runtime_put(core);
983 }
984 
985 static void clk_disable_unused_subtree(struct clk_core *core)
986 {
987 	struct clk_core *child;
988 	unsigned long flags;
989 
990 	lockdep_assert_held(&prepare_lock);
991 
992 	hlist_for_each_entry(child, &core->children, child_node)
993 		clk_disable_unused_subtree(child);
994 
995 	if (core->flags & CLK_OPS_PARENT_ENABLE)
996 		clk_core_prepare_enable(core->parent);
997 
998 	if (clk_pm_runtime_get(core))
999 		goto unprepare_out;
1000 
1001 	flags = clk_enable_lock();
1002 
1003 	if (core->enable_count)
1004 		goto unlock_out;
1005 
1006 	if (core->flags & CLK_IGNORE_UNUSED)
1007 		goto unlock_out;
1008 
1009 	/*
1010 	 * some gate clocks have special needs during the disable-unused
1011 	 * sequence.  call .disable_unused if available, otherwise fall
1012 	 * back to .disable
1013 	 */
1014 	if (clk_core_is_enabled(core)) {
1015 		trace_clk_disable(core);
1016 		if (core->ops->disable_unused)
1017 			core->ops->disable_unused(core->hw);
1018 		else if (core->ops->disable)
1019 			core->ops->disable(core->hw);
1020 		trace_clk_disable_complete(core);
1021 	}
1022 
1023 unlock_out:
1024 	clk_enable_unlock(flags);
1025 	clk_pm_runtime_put(core);
1026 unprepare_out:
1027 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1028 		clk_core_disable_unprepare(core->parent);
1029 }
1030 
1031 static bool clk_ignore_unused;
1032 static int __init clk_ignore_unused_setup(char *__unused)
1033 {
1034 	clk_ignore_unused = true;
1035 	return 1;
1036 }
1037 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1038 
1039 static int clk_disable_unused(void)
1040 {
1041 	struct clk_core *core;
1042 
1043 	if (clk_ignore_unused) {
1044 		pr_warn("clk: Not disabling unused clocks\n");
1045 		return 0;
1046 	}
1047 
1048 	clk_prepare_lock();
1049 
1050 	hlist_for_each_entry(core, &clk_root_list, child_node)
1051 		clk_disable_unused_subtree(core);
1052 
1053 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1054 		clk_disable_unused_subtree(core);
1055 
1056 	hlist_for_each_entry(core, &clk_root_list, child_node)
1057 		clk_unprepare_unused_subtree(core);
1058 
1059 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1060 		clk_unprepare_unused_subtree(core);
1061 
1062 	clk_prepare_unlock();
1063 
1064 	return 0;
1065 }
1066 late_initcall_sync(clk_disable_unused);
1067 
1068 static int clk_core_determine_round_nolock(struct clk_core *core,
1069 					   struct clk_rate_request *req)
1070 {
1071 	long rate;
1072 
1073 	lockdep_assert_held(&prepare_lock);
1074 
1075 	if (!core)
1076 		return 0;
1077 
1078 	/*
1079 	 * At this point, core protection will be disabled if
1080 	 * - if the provider is not protected at all
1081 	 * - if the calling consumer is the only one which has exclusivity
1082 	 *   over the provider
1083 	 */
1084 	if (clk_core_rate_is_protected(core)) {
1085 		req->rate = core->rate;
1086 	} else if (core->ops->determine_rate) {
1087 		return core->ops->determine_rate(core->hw, req);
1088 	} else if (core->ops->round_rate) {
1089 		rate = core->ops->round_rate(core->hw, req->rate,
1090 					     &req->best_parent_rate);
1091 		if (rate < 0)
1092 			return rate;
1093 
1094 		req->rate = rate;
1095 	} else {
1096 		return -EINVAL;
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 static void clk_core_init_rate_req(struct clk_core * const core,
1103 				   struct clk_rate_request *req)
1104 {
1105 	struct clk_core *parent;
1106 
1107 	if (WARN_ON(!core || !req))
1108 		return;
1109 
1110 	parent = core->parent;
1111 	if (parent) {
1112 		req->best_parent_hw = parent->hw;
1113 		req->best_parent_rate = parent->rate;
1114 	} else {
1115 		req->best_parent_hw = NULL;
1116 		req->best_parent_rate = 0;
1117 	}
1118 }
1119 
1120 static bool clk_core_can_round(struct clk_core * const core)
1121 {
1122 	if (core->ops->determine_rate || core->ops->round_rate)
1123 		return true;
1124 
1125 	return false;
1126 }
1127 
1128 static int clk_core_round_rate_nolock(struct clk_core *core,
1129 				      struct clk_rate_request *req)
1130 {
1131 	lockdep_assert_held(&prepare_lock);
1132 
1133 	if (!core) {
1134 		req->rate = 0;
1135 		return 0;
1136 	}
1137 
1138 	clk_core_init_rate_req(core, req);
1139 
1140 	if (clk_core_can_round(core))
1141 		return clk_core_determine_round_nolock(core, req);
1142 	else if (core->flags & CLK_SET_RATE_PARENT)
1143 		return clk_core_round_rate_nolock(core->parent, req);
1144 
1145 	req->rate = core->rate;
1146 	return 0;
1147 }
1148 
1149 /**
1150  * __clk_determine_rate - get the closest rate actually supported by a clock
1151  * @hw: determine the rate of this clock
1152  * @req: target rate request
1153  *
1154  * Useful for clk_ops such as .set_rate and .determine_rate.
1155  */
1156 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1157 {
1158 	if (!hw) {
1159 		req->rate = 0;
1160 		return 0;
1161 	}
1162 
1163 	return clk_core_round_rate_nolock(hw->core, req);
1164 }
1165 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1166 
1167 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1168 {
1169 	int ret;
1170 	struct clk_rate_request req;
1171 
1172 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1173 	req.rate = rate;
1174 
1175 	ret = clk_core_round_rate_nolock(hw->core, &req);
1176 	if (ret)
1177 		return 0;
1178 
1179 	return req.rate;
1180 }
1181 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1182 
1183 /**
1184  * clk_round_rate - round the given rate for a clk
1185  * @clk: the clk for which we are rounding a rate
1186  * @rate: the rate which is to be rounded
1187  *
1188  * Takes in a rate as input and rounds it to a rate that the clk can actually
1189  * use which is then returned.  If clk doesn't support round_rate operation
1190  * then the parent rate is returned.
1191  */
1192 long clk_round_rate(struct clk *clk, unsigned long rate)
1193 {
1194 	struct clk_rate_request req;
1195 	int ret;
1196 
1197 	if (!clk)
1198 		return 0;
1199 
1200 	clk_prepare_lock();
1201 
1202 	if (clk->exclusive_count)
1203 		clk_core_rate_unprotect(clk->core);
1204 
1205 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1206 	req.rate = rate;
1207 
1208 	ret = clk_core_round_rate_nolock(clk->core, &req);
1209 
1210 	if (clk->exclusive_count)
1211 		clk_core_rate_protect(clk->core);
1212 
1213 	clk_prepare_unlock();
1214 
1215 	if (ret)
1216 		return ret;
1217 
1218 	return req.rate;
1219 }
1220 EXPORT_SYMBOL_GPL(clk_round_rate);
1221 
1222 /**
1223  * __clk_notify - call clk notifier chain
1224  * @core: clk that is changing rate
1225  * @msg: clk notifier type (see include/linux/clk.h)
1226  * @old_rate: old clk rate
1227  * @new_rate: new clk rate
1228  *
1229  * Triggers a notifier call chain on the clk rate-change notification
1230  * for 'clk'.  Passes a pointer to the struct clk and the previous
1231  * and current rates to the notifier callback.  Intended to be called by
1232  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1233  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1234  * a driver returns that.
1235  */
1236 static int __clk_notify(struct clk_core *core, unsigned long msg,
1237 		unsigned long old_rate, unsigned long new_rate)
1238 {
1239 	struct clk_notifier *cn;
1240 	struct clk_notifier_data cnd;
1241 	int ret = NOTIFY_DONE;
1242 
1243 	cnd.old_rate = old_rate;
1244 	cnd.new_rate = new_rate;
1245 
1246 	list_for_each_entry(cn, &clk_notifier_list, node) {
1247 		if (cn->clk->core == core) {
1248 			cnd.clk = cn->clk;
1249 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1250 					&cnd);
1251 			if (ret & NOTIFY_STOP_MASK)
1252 				return ret;
1253 		}
1254 	}
1255 
1256 	return ret;
1257 }
1258 
1259 /**
1260  * __clk_recalc_accuracies
1261  * @core: first clk in the subtree
1262  *
1263  * Walks the subtree of clks starting with clk and recalculates accuracies as
1264  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1265  * callback then it is assumed that the clock will take on the accuracy of its
1266  * parent.
1267  */
1268 static void __clk_recalc_accuracies(struct clk_core *core)
1269 {
1270 	unsigned long parent_accuracy = 0;
1271 	struct clk_core *child;
1272 
1273 	lockdep_assert_held(&prepare_lock);
1274 
1275 	if (core->parent)
1276 		parent_accuracy = core->parent->accuracy;
1277 
1278 	if (core->ops->recalc_accuracy)
1279 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1280 							  parent_accuracy);
1281 	else
1282 		core->accuracy = parent_accuracy;
1283 
1284 	hlist_for_each_entry(child, &core->children, child_node)
1285 		__clk_recalc_accuracies(child);
1286 }
1287 
1288 static long clk_core_get_accuracy(struct clk_core *core)
1289 {
1290 	unsigned long accuracy;
1291 
1292 	clk_prepare_lock();
1293 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1294 		__clk_recalc_accuracies(core);
1295 
1296 	accuracy = __clk_get_accuracy(core);
1297 	clk_prepare_unlock();
1298 
1299 	return accuracy;
1300 }
1301 
1302 /**
1303  * clk_get_accuracy - return the accuracy of clk
1304  * @clk: the clk whose accuracy is being returned
1305  *
1306  * Simply returns the cached accuracy of the clk, unless
1307  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1308  * issued.
1309  * If clk is NULL then returns 0.
1310  */
1311 long clk_get_accuracy(struct clk *clk)
1312 {
1313 	if (!clk)
1314 		return 0;
1315 
1316 	return clk_core_get_accuracy(clk->core);
1317 }
1318 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1319 
1320 static unsigned long clk_recalc(struct clk_core *core,
1321 				unsigned long parent_rate)
1322 {
1323 	unsigned long rate = parent_rate;
1324 
1325 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1326 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1327 		clk_pm_runtime_put(core);
1328 	}
1329 	return rate;
1330 }
1331 
1332 /**
1333  * __clk_recalc_rates
1334  * @core: first clk in the subtree
1335  * @msg: notification type (see include/linux/clk.h)
1336  *
1337  * Walks the subtree of clks starting with clk and recalculates rates as it
1338  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1339  * it is assumed that the clock will take on the rate of its parent.
1340  *
1341  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1342  * if necessary.
1343  */
1344 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1345 {
1346 	unsigned long old_rate;
1347 	unsigned long parent_rate = 0;
1348 	struct clk_core *child;
1349 
1350 	lockdep_assert_held(&prepare_lock);
1351 
1352 	old_rate = core->rate;
1353 
1354 	if (core->parent)
1355 		parent_rate = core->parent->rate;
1356 
1357 	core->rate = clk_recalc(core, parent_rate);
1358 
1359 	/*
1360 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1361 	 * & ABORT_RATE_CHANGE notifiers
1362 	 */
1363 	if (core->notifier_count && msg)
1364 		__clk_notify(core, msg, old_rate, core->rate);
1365 
1366 	hlist_for_each_entry(child, &core->children, child_node)
1367 		__clk_recalc_rates(child, msg);
1368 }
1369 
1370 static unsigned long clk_core_get_rate(struct clk_core *core)
1371 {
1372 	unsigned long rate;
1373 
1374 	clk_prepare_lock();
1375 
1376 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1377 		__clk_recalc_rates(core, 0);
1378 
1379 	rate = clk_core_get_rate_nolock(core);
1380 	clk_prepare_unlock();
1381 
1382 	return rate;
1383 }
1384 
1385 /**
1386  * clk_get_rate - return the rate of clk
1387  * @clk: the clk whose rate is being returned
1388  *
1389  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1390  * is set, which means a recalc_rate will be issued.
1391  * If clk is NULL then returns 0.
1392  */
1393 unsigned long clk_get_rate(struct clk *clk)
1394 {
1395 	if (!clk)
1396 		return 0;
1397 
1398 	return clk_core_get_rate(clk->core);
1399 }
1400 EXPORT_SYMBOL_GPL(clk_get_rate);
1401 
1402 static int clk_fetch_parent_index(struct clk_core *core,
1403 				  struct clk_core *parent)
1404 {
1405 	int i;
1406 
1407 	if (!parent)
1408 		return -EINVAL;
1409 
1410 	for (i = 0; i < core->num_parents; i++)
1411 		if (clk_core_get_parent_by_index(core, i) == parent)
1412 			return i;
1413 
1414 	return -EINVAL;
1415 }
1416 
1417 /*
1418  * Update the orphan status of @core and all its children.
1419  */
1420 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1421 {
1422 	struct clk_core *child;
1423 
1424 	core->orphan = is_orphan;
1425 
1426 	hlist_for_each_entry(child, &core->children, child_node)
1427 		clk_core_update_orphan_status(child, is_orphan);
1428 }
1429 
1430 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1431 {
1432 	bool was_orphan = core->orphan;
1433 
1434 	hlist_del(&core->child_node);
1435 
1436 	if (new_parent) {
1437 		bool becomes_orphan = new_parent->orphan;
1438 
1439 		/* avoid duplicate POST_RATE_CHANGE notifications */
1440 		if (new_parent->new_child == core)
1441 			new_parent->new_child = NULL;
1442 
1443 		hlist_add_head(&core->child_node, &new_parent->children);
1444 
1445 		if (was_orphan != becomes_orphan)
1446 			clk_core_update_orphan_status(core, becomes_orphan);
1447 	} else {
1448 		hlist_add_head(&core->child_node, &clk_orphan_list);
1449 		if (!was_orphan)
1450 			clk_core_update_orphan_status(core, true);
1451 	}
1452 
1453 	core->parent = new_parent;
1454 }
1455 
1456 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1457 					   struct clk_core *parent)
1458 {
1459 	unsigned long flags;
1460 	struct clk_core *old_parent = core->parent;
1461 
1462 	/*
1463 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1464 	 *
1465 	 * 2. Migrate prepare state between parents and prevent race with
1466 	 * clk_enable().
1467 	 *
1468 	 * If the clock is not prepared, then a race with
1469 	 * clk_enable/disable() is impossible since we already have the
1470 	 * prepare lock (future calls to clk_enable() need to be preceded by
1471 	 * a clk_prepare()).
1472 	 *
1473 	 * If the clock is prepared, migrate the prepared state to the new
1474 	 * parent and also protect against a race with clk_enable() by
1475 	 * forcing the clock and the new parent on.  This ensures that all
1476 	 * future calls to clk_enable() are practically NOPs with respect to
1477 	 * hardware and software states.
1478 	 *
1479 	 * See also: Comment for clk_set_parent() below.
1480 	 */
1481 
1482 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1483 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1484 		clk_core_prepare_enable(old_parent);
1485 		clk_core_prepare_enable(parent);
1486 	}
1487 
1488 	/* migrate prepare count if > 0 */
1489 	if (core->prepare_count) {
1490 		clk_core_prepare_enable(parent);
1491 		clk_core_enable_lock(core);
1492 	}
1493 
1494 	/* update the clk tree topology */
1495 	flags = clk_enable_lock();
1496 	clk_reparent(core, parent);
1497 	clk_enable_unlock(flags);
1498 
1499 	return old_parent;
1500 }
1501 
1502 static void __clk_set_parent_after(struct clk_core *core,
1503 				   struct clk_core *parent,
1504 				   struct clk_core *old_parent)
1505 {
1506 	/*
1507 	 * Finish the migration of prepare state and undo the changes done
1508 	 * for preventing a race with clk_enable().
1509 	 */
1510 	if (core->prepare_count) {
1511 		clk_core_disable_lock(core);
1512 		clk_core_disable_unprepare(old_parent);
1513 	}
1514 
1515 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1516 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1517 		clk_core_disable_unprepare(parent);
1518 		clk_core_disable_unprepare(old_parent);
1519 	}
1520 }
1521 
1522 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1523 			    u8 p_index)
1524 {
1525 	unsigned long flags;
1526 	int ret = 0;
1527 	struct clk_core *old_parent;
1528 
1529 	old_parent = __clk_set_parent_before(core, parent);
1530 
1531 	trace_clk_set_parent(core, parent);
1532 
1533 	/* change clock input source */
1534 	if (parent && core->ops->set_parent)
1535 		ret = core->ops->set_parent(core->hw, p_index);
1536 
1537 	trace_clk_set_parent_complete(core, parent);
1538 
1539 	if (ret) {
1540 		flags = clk_enable_lock();
1541 		clk_reparent(core, old_parent);
1542 		clk_enable_unlock(flags);
1543 		__clk_set_parent_after(core, old_parent, parent);
1544 
1545 		return ret;
1546 	}
1547 
1548 	__clk_set_parent_after(core, parent, old_parent);
1549 
1550 	return 0;
1551 }
1552 
1553 /**
1554  * __clk_speculate_rates
1555  * @core: first clk in the subtree
1556  * @parent_rate: the "future" rate of clk's parent
1557  *
1558  * Walks the subtree of clks starting with clk, speculating rates as it
1559  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1560  *
1561  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1562  * pre-rate change notifications and returns early if no clks in the
1563  * subtree have subscribed to the notifications.  Note that if a clk does not
1564  * implement the .recalc_rate callback then it is assumed that the clock will
1565  * take on the rate of its parent.
1566  */
1567 static int __clk_speculate_rates(struct clk_core *core,
1568 				 unsigned long parent_rate)
1569 {
1570 	struct clk_core *child;
1571 	unsigned long new_rate;
1572 	int ret = NOTIFY_DONE;
1573 
1574 	lockdep_assert_held(&prepare_lock);
1575 
1576 	new_rate = clk_recalc(core, parent_rate);
1577 
1578 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1579 	if (core->notifier_count)
1580 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1581 
1582 	if (ret & NOTIFY_STOP_MASK) {
1583 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1584 				__func__, core->name, ret);
1585 		goto out;
1586 	}
1587 
1588 	hlist_for_each_entry(child, &core->children, child_node) {
1589 		ret = __clk_speculate_rates(child, new_rate);
1590 		if (ret & NOTIFY_STOP_MASK)
1591 			break;
1592 	}
1593 
1594 out:
1595 	return ret;
1596 }
1597 
1598 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1599 			     struct clk_core *new_parent, u8 p_index)
1600 {
1601 	struct clk_core *child;
1602 
1603 	core->new_rate = new_rate;
1604 	core->new_parent = new_parent;
1605 	core->new_parent_index = p_index;
1606 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1607 	core->new_child = NULL;
1608 	if (new_parent && new_parent != core->parent)
1609 		new_parent->new_child = core;
1610 
1611 	hlist_for_each_entry(child, &core->children, child_node) {
1612 		child->new_rate = clk_recalc(child, new_rate);
1613 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1614 	}
1615 }
1616 
1617 /*
1618  * calculate the new rates returning the topmost clock that has to be
1619  * changed.
1620  */
1621 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1622 					   unsigned long rate)
1623 {
1624 	struct clk_core *top = core;
1625 	struct clk_core *old_parent, *parent;
1626 	unsigned long best_parent_rate = 0;
1627 	unsigned long new_rate;
1628 	unsigned long min_rate;
1629 	unsigned long max_rate;
1630 	int p_index = 0;
1631 	long ret;
1632 
1633 	/* sanity */
1634 	if (IS_ERR_OR_NULL(core))
1635 		return NULL;
1636 
1637 	/* save parent rate, if it exists */
1638 	parent = old_parent = core->parent;
1639 	if (parent)
1640 		best_parent_rate = parent->rate;
1641 
1642 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1643 
1644 	/* find the closest rate and parent clk/rate */
1645 	if (clk_core_can_round(core)) {
1646 		struct clk_rate_request req;
1647 
1648 		req.rate = rate;
1649 		req.min_rate = min_rate;
1650 		req.max_rate = max_rate;
1651 
1652 		clk_core_init_rate_req(core, &req);
1653 
1654 		ret = clk_core_determine_round_nolock(core, &req);
1655 		if (ret < 0)
1656 			return NULL;
1657 
1658 		best_parent_rate = req.best_parent_rate;
1659 		new_rate = req.rate;
1660 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1661 
1662 		if (new_rate < min_rate || new_rate > max_rate)
1663 			return NULL;
1664 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1665 		/* pass-through clock without adjustable parent */
1666 		core->new_rate = core->rate;
1667 		return NULL;
1668 	} else {
1669 		/* pass-through clock with adjustable parent */
1670 		top = clk_calc_new_rates(parent, rate);
1671 		new_rate = parent->new_rate;
1672 		goto out;
1673 	}
1674 
1675 	/* some clocks must be gated to change parent */
1676 	if (parent != old_parent &&
1677 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1678 		pr_debug("%s: %s not gated but wants to reparent\n",
1679 			 __func__, core->name);
1680 		return NULL;
1681 	}
1682 
1683 	/* try finding the new parent index */
1684 	if (parent && core->num_parents > 1) {
1685 		p_index = clk_fetch_parent_index(core, parent);
1686 		if (p_index < 0) {
1687 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1688 				 __func__, parent->name, core->name);
1689 			return NULL;
1690 		}
1691 	}
1692 
1693 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1694 	    best_parent_rate != parent->rate)
1695 		top = clk_calc_new_rates(parent, best_parent_rate);
1696 
1697 out:
1698 	clk_calc_subtree(core, new_rate, parent, p_index);
1699 
1700 	return top;
1701 }
1702 
1703 /*
1704  * Notify about rate changes in a subtree. Always walk down the whole tree
1705  * so that in case of an error we can walk down the whole tree again and
1706  * abort the change.
1707  */
1708 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1709 						  unsigned long event)
1710 {
1711 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1712 	int ret = NOTIFY_DONE;
1713 
1714 	if (core->rate == core->new_rate)
1715 		return NULL;
1716 
1717 	if (core->notifier_count) {
1718 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1719 		if (ret & NOTIFY_STOP_MASK)
1720 			fail_clk = core;
1721 	}
1722 
1723 	hlist_for_each_entry(child, &core->children, child_node) {
1724 		/* Skip children who will be reparented to another clock */
1725 		if (child->new_parent && child->new_parent != core)
1726 			continue;
1727 		tmp_clk = clk_propagate_rate_change(child, event);
1728 		if (tmp_clk)
1729 			fail_clk = tmp_clk;
1730 	}
1731 
1732 	/* handle the new child who might not be in core->children yet */
1733 	if (core->new_child) {
1734 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1735 		if (tmp_clk)
1736 			fail_clk = tmp_clk;
1737 	}
1738 
1739 	return fail_clk;
1740 }
1741 
1742 /*
1743  * walk down a subtree and set the new rates notifying the rate
1744  * change on the way
1745  */
1746 static void clk_change_rate(struct clk_core *core)
1747 {
1748 	struct clk_core *child;
1749 	struct hlist_node *tmp;
1750 	unsigned long old_rate;
1751 	unsigned long best_parent_rate = 0;
1752 	bool skip_set_rate = false;
1753 	struct clk_core *old_parent;
1754 	struct clk_core *parent = NULL;
1755 
1756 	old_rate = core->rate;
1757 
1758 	if (core->new_parent) {
1759 		parent = core->new_parent;
1760 		best_parent_rate = core->new_parent->rate;
1761 	} else if (core->parent) {
1762 		parent = core->parent;
1763 		best_parent_rate = core->parent->rate;
1764 	}
1765 
1766 	if (clk_pm_runtime_get(core))
1767 		return;
1768 
1769 	if (core->flags & CLK_SET_RATE_UNGATE) {
1770 		unsigned long flags;
1771 
1772 		clk_core_prepare(core);
1773 		flags = clk_enable_lock();
1774 		clk_core_enable(core);
1775 		clk_enable_unlock(flags);
1776 	}
1777 
1778 	if (core->new_parent && core->new_parent != core->parent) {
1779 		old_parent = __clk_set_parent_before(core, core->new_parent);
1780 		trace_clk_set_parent(core, core->new_parent);
1781 
1782 		if (core->ops->set_rate_and_parent) {
1783 			skip_set_rate = true;
1784 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1785 					best_parent_rate,
1786 					core->new_parent_index);
1787 		} else if (core->ops->set_parent) {
1788 			core->ops->set_parent(core->hw, core->new_parent_index);
1789 		}
1790 
1791 		trace_clk_set_parent_complete(core, core->new_parent);
1792 		__clk_set_parent_after(core, core->new_parent, old_parent);
1793 	}
1794 
1795 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1796 		clk_core_prepare_enable(parent);
1797 
1798 	trace_clk_set_rate(core, core->new_rate);
1799 
1800 	if (!skip_set_rate && core->ops->set_rate)
1801 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1802 
1803 	trace_clk_set_rate_complete(core, core->new_rate);
1804 
1805 	core->rate = clk_recalc(core, best_parent_rate);
1806 
1807 	if (core->flags & CLK_SET_RATE_UNGATE) {
1808 		unsigned long flags;
1809 
1810 		flags = clk_enable_lock();
1811 		clk_core_disable(core);
1812 		clk_enable_unlock(flags);
1813 		clk_core_unprepare(core);
1814 	}
1815 
1816 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1817 		clk_core_disable_unprepare(parent);
1818 
1819 	if (core->notifier_count && old_rate != core->rate)
1820 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1821 
1822 	if (core->flags & CLK_RECALC_NEW_RATES)
1823 		(void)clk_calc_new_rates(core, core->new_rate);
1824 
1825 	/*
1826 	 * Use safe iteration, as change_rate can actually swap parents
1827 	 * for certain clock types.
1828 	 */
1829 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1830 		/* Skip children who will be reparented to another clock */
1831 		if (child->new_parent && child->new_parent != core)
1832 			continue;
1833 		clk_change_rate(child);
1834 	}
1835 
1836 	/* handle the new child who might not be in core->children yet */
1837 	if (core->new_child)
1838 		clk_change_rate(core->new_child);
1839 
1840 	clk_pm_runtime_put(core);
1841 }
1842 
1843 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
1844 						     unsigned long req_rate)
1845 {
1846 	int ret, cnt;
1847 	struct clk_rate_request req;
1848 
1849 	lockdep_assert_held(&prepare_lock);
1850 
1851 	if (!core)
1852 		return 0;
1853 
1854 	/* simulate what the rate would be if it could be freely set */
1855 	cnt = clk_core_rate_nuke_protect(core);
1856 	if (cnt < 0)
1857 		return cnt;
1858 
1859 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
1860 	req.rate = req_rate;
1861 
1862 	ret = clk_core_round_rate_nolock(core, &req);
1863 
1864 	/* restore the protection */
1865 	clk_core_rate_restore_protect(core, cnt);
1866 
1867 	return ret ? 0 : req.rate;
1868 }
1869 
1870 static int clk_core_set_rate_nolock(struct clk_core *core,
1871 				    unsigned long req_rate)
1872 {
1873 	struct clk_core *top, *fail_clk;
1874 	unsigned long rate;
1875 	int ret = 0;
1876 
1877 	if (!core)
1878 		return 0;
1879 
1880 	rate = clk_core_req_round_rate_nolock(core, req_rate);
1881 
1882 	/* bail early if nothing to do */
1883 	if (rate == clk_core_get_rate_nolock(core))
1884 		return 0;
1885 
1886 	/* fail on a direct rate set of a protected provider */
1887 	if (clk_core_rate_is_protected(core))
1888 		return -EBUSY;
1889 
1890 	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1891 		return -EBUSY;
1892 
1893 	/* calculate new rates and get the topmost changed clock */
1894 	top = clk_calc_new_rates(core, req_rate);
1895 	if (!top)
1896 		return -EINVAL;
1897 
1898 	ret = clk_pm_runtime_get(core);
1899 	if (ret)
1900 		return ret;
1901 
1902 	/* notify that we are about to change rates */
1903 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1904 	if (fail_clk) {
1905 		pr_debug("%s: failed to set %s rate\n", __func__,
1906 				fail_clk->name);
1907 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1908 		ret = -EBUSY;
1909 		goto err;
1910 	}
1911 
1912 	/* change the rates */
1913 	clk_change_rate(top);
1914 
1915 	core->req_rate = req_rate;
1916 err:
1917 	clk_pm_runtime_put(core);
1918 
1919 	return ret;
1920 }
1921 
1922 /**
1923  * clk_set_rate - specify a new rate for clk
1924  * @clk: the clk whose rate is being changed
1925  * @rate: the new rate for clk
1926  *
1927  * In the simplest case clk_set_rate will only adjust the rate of clk.
1928  *
1929  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1930  * propagate up to clk's parent; whether or not this happens depends on the
1931  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1932  * after calling .round_rate then upstream parent propagation is ignored.  If
1933  * *parent_rate comes back with a new rate for clk's parent then we propagate
1934  * up to clk's parent and set its rate.  Upward propagation will continue
1935  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1936  * .round_rate stops requesting changes to clk's parent_rate.
1937  *
1938  * Rate changes are accomplished via tree traversal that also recalculates the
1939  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1940  *
1941  * Returns 0 on success, -EERROR otherwise.
1942  */
1943 int clk_set_rate(struct clk *clk, unsigned long rate)
1944 {
1945 	int ret;
1946 
1947 	if (!clk)
1948 		return 0;
1949 
1950 	/* prevent racing with updates to the clock topology */
1951 	clk_prepare_lock();
1952 
1953 	if (clk->exclusive_count)
1954 		clk_core_rate_unprotect(clk->core);
1955 
1956 	ret = clk_core_set_rate_nolock(clk->core, rate);
1957 
1958 	if (clk->exclusive_count)
1959 		clk_core_rate_protect(clk->core);
1960 
1961 	clk_prepare_unlock();
1962 
1963 	return ret;
1964 }
1965 EXPORT_SYMBOL_GPL(clk_set_rate);
1966 
1967 /**
1968  * clk_set_rate_exclusive - specify a new rate get exclusive control
1969  * @clk: the clk whose rate is being changed
1970  * @rate: the new rate for clk
1971  *
1972  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
1973  * within a critical section
1974  *
1975  * This can be used initially to ensure that at least 1 consumer is
1976  * statisfied when several consumers are competing for exclusivity over the
1977  * same clock provider.
1978  *
1979  * The exclusivity is not applied if setting the rate failed.
1980  *
1981  * Calls to clk_rate_exclusive_get() should be balanced with calls to
1982  * clk_rate_exclusive_put().
1983  *
1984  * Returns 0 on success, -EERROR otherwise.
1985  */
1986 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
1987 {
1988 	int ret;
1989 
1990 	if (!clk)
1991 		return 0;
1992 
1993 	/* prevent racing with updates to the clock topology */
1994 	clk_prepare_lock();
1995 
1996 	/*
1997 	 * The temporary protection removal is not here, on purpose
1998 	 * This function is meant to be used instead of clk_rate_protect,
1999 	 * so before the consumer code path protect the clock provider
2000 	 */
2001 
2002 	ret = clk_core_set_rate_nolock(clk->core, rate);
2003 	if (!ret) {
2004 		clk_core_rate_protect(clk->core);
2005 		clk->exclusive_count++;
2006 	}
2007 
2008 	clk_prepare_unlock();
2009 
2010 	return ret;
2011 }
2012 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2013 
2014 /**
2015  * clk_set_rate_range - set a rate range for a clock source
2016  * @clk: clock source
2017  * @min: desired minimum clock rate in Hz, inclusive
2018  * @max: desired maximum clock rate in Hz, inclusive
2019  *
2020  * Returns success (0) or negative errno.
2021  */
2022 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2023 {
2024 	int ret = 0;
2025 	unsigned long old_min, old_max, rate;
2026 
2027 	if (!clk)
2028 		return 0;
2029 
2030 	if (min > max) {
2031 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2032 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2033 		       min, max);
2034 		return -EINVAL;
2035 	}
2036 
2037 	clk_prepare_lock();
2038 
2039 	if (clk->exclusive_count)
2040 		clk_core_rate_unprotect(clk->core);
2041 
2042 	/* Save the current values in case we need to rollback the change */
2043 	old_min = clk->min_rate;
2044 	old_max = clk->max_rate;
2045 	clk->min_rate = min;
2046 	clk->max_rate = max;
2047 
2048 	rate = clk_core_get_rate_nolock(clk->core);
2049 	if (rate < min || rate > max) {
2050 		/*
2051 		 * FIXME:
2052 		 * We are in bit of trouble here, current rate is outside the
2053 		 * the requested range. We are going try to request appropriate
2054 		 * range boundary but there is a catch. It may fail for the
2055 		 * usual reason (clock broken, clock protected, etc) but also
2056 		 * because:
2057 		 * - round_rate() was not favorable and fell on the wrong
2058 		 *   side of the boundary
2059 		 * - the determine_rate() callback does not really check for
2060 		 *   this corner case when determining the rate
2061 		 */
2062 
2063 		if (rate < min)
2064 			rate = min;
2065 		else
2066 			rate = max;
2067 
2068 		ret = clk_core_set_rate_nolock(clk->core, rate);
2069 		if (ret) {
2070 			/* rollback the changes */
2071 			clk->min_rate = old_min;
2072 			clk->max_rate = old_max;
2073 		}
2074 	}
2075 
2076 	if (clk->exclusive_count)
2077 		clk_core_rate_protect(clk->core);
2078 
2079 	clk_prepare_unlock();
2080 
2081 	return ret;
2082 }
2083 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2084 
2085 /**
2086  * clk_set_min_rate - set a minimum clock rate for a clock source
2087  * @clk: clock source
2088  * @rate: desired minimum clock rate in Hz, inclusive
2089  *
2090  * Returns success (0) or negative errno.
2091  */
2092 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2093 {
2094 	if (!clk)
2095 		return 0;
2096 
2097 	return clk_set_rate_range(clk, rate, clk->max_rate);
2098 }
2099 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2100 
2101 /**
2102  * clk_set_max_rate - set a maximum clock rate for a clock source
2103  * @clk: clock source
2104  * @rate: desired maximum clock rate in Hz, inclusive
2105  *
2106  * Returns success (0) or negative errno.
2107  */
2108 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2109 {
2110 	if (!clk)
2111 		return 0;
2112 
2113 	return clk_set_rate_range(clk, clk->min_rate, rate);
2114 }
2115 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2116 
2117 /**
2118  * clk_get_parent - return the parent of a clk
2119  * @clk: the clk whose parent gets returned
2120  *
2121  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2122  */
2123 struct clk *clk_get_parent(struct clk *clk)
2124 {
2125 	struct clk *parent;
2126 
2127 	if (!clk)
2128 		return NULL;
2129 
2130 	clk_prepare_lock();
2131 	/* TODO: Create a per-user clk and change callers to call clk_put */
2132 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2133 	clk_prepare_unlock();
2134 
2135 	return parent;
2136 }
2137 EXPORT_SYMBOL_GPL(clk_get_parent);
2138 
2139 static struct clk_core *__clk_init_parent(struct clk_core *core)
2140 {
2141 	u8 index = 0;
2142 
2143 	if (core->num_parents > 1 && core->ops->get_parent)
2144 		index = core->ops->get_parent(core->hw);
2145 
2146 	return clk_core_get_parent_by_index(core, index);
2147 }
2148 
2149 static void clk_core_reparent(struct clk_core *core,
2150 				  struct clk_core *new_parent)
2151 {
2152 	clk_reparent(core, new_parent);
2153 	__clk_recalc_accuracies(core);
2154 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2155 }
2156 
2157 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2158 {
2159 	if (!hw)
2160 		return;
2161 
2162 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2163 }
2164 
2165 /**
2166  * clk_has_parent - check if a clock is a possible parent for another
2167  * @clk: clock source
2168  * @parent: parent clock source
2169  *
2170  * This function can be used in drivers that need to check that a clock can be
2171  * the parent of another without actually changing the parent.
2172  *
2173  * Returns true if @parent is a possible parent for @clk, false otherwise.
2174  */
2175 bool clk_has_parent(struct clk *clk, struct clk *parent)
2176 {
2177 	struct clk_core *core, *parent_core;
2178 
2179 	/* NULL clocks should be nops, so return success if either is NULL. */
2180 	if (!clk || !parent)
2181 		return true;
2182 
2183 	core = clk->core;
2184 	parent_core = parent->core;
2185 
2186 	/* Optimize for the case where the parent is already the parent. */
2187 	if (core->parent == parent_core)
2188 		return true;
2189 
2190 	return match_string(core->parent_names, core->num_parents,
2191 			    parent_core->name) >= 0;
2192 }
2193 EXPORT_SYMBOL_GPL(clk_has_parent);
2194 
2195 static int clk_core_set_parent_nolock(struct clk_core *core,
2196 				      struct clk_core *parent)
2197 {
2198 	int ret = 0;
2199 	int p_index = 0;
2200 	unsigned long p_rate = 0;
2201 
2202 	lockdep_assert_held(&prepare_lock);
2203 
2204 	if (!core)
2205 		return 0;
2206 
2207 	if (core->parent == parent)
2208 		return 0;
2209 
2210 	/* verify ops for for multi-parent clks */
2211 	if (core->num_parents > 1 && !core->ops->set_parent)
2212 		return -EPERM;
2213 
2214 	/* check that we are allowed to re-parent if the clock is in use */
2215 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2216 		return -EBUSY;
2217 
2218 	if (clk_core_rate_is_protected(core))
2219 		return -EBUSY;
2220 
2221 	/* try finding the new parent index */
2222 	if (parent) {
2223 		p_index = clk_fetch_parent_index(core, parent);
2224 		if (p_index < 0) {
2225 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2226 					__func__, parent->name, core->name);
2227 			return p_index;
2228 		}
2229 		p_rate = parent->rate;
2230 	}
2231 
2232 	ret = clk_pm_runtime_get(core);
2233 	if (ret)
2234 		return ret;
2235 
2236 	/* propagate PRE_RATE_CHANGE notifications */
2237 	ret = __clk_speculate_rates(core, p_rate);
2238 
2239 	/* abort if a driver objects */
2240 	if (ret & NOTIFY_STOP_MASK)
2241 		goto runtime_put;
2242 
2243 	/* do the re-parent */
2244 	ret = __clk_set_parent(core, parent, p_index);
2245 
2246 	/* propagate rate an accuracy recalculation accordingly */
2247 	if (ret) {
2248 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2249 	} else {
2250 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2251 		__clk_recalc_accuracies(core);
2252 	}
2253 
2254 runtime_put:
2255 	clk_pm_runtime_put(core);
2256 
2257 	return ret;
2258 }
2259 
2260 /**
2261  * clk_set_parent - switch the parent of a mux clk
2262  * @clk: the mux clk whose input we are switching
2263  * @parent: the new input to clk
2264  *
2265  * Re-parent clk to use parent as its new input source.  If clk is in
2266  * prepared state, the clk will get enabled for the duration of this call. If
2267  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2268  * that, the reparenting is glitchy in hardware, etc), use the
2269  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2270  *
2271  * After successfully changing clk's parent clk_set_parent will update the
2272  * clk topology, sysfs topology and propagate rate recalculation via
2273  * __clk_recalc_rates.
2274  *
2275  * Returns 0 on success, -EERROR otherwise.
2276  */
2277 int clk_set_parent(struct clk *clk, struct clk *parent)
2278 {
2279 	int ret;
2280 
2281 	if (!clk)
2282 		return 0;
2283 
2284 	clk_prepare_lock();
2285 
2286 	if (clk->exclusive_count)
2287 		clk_core_rate_unprotect(clk->core);
2288 
2289 	ret = clk_core_set_parent_nolock(clk->core,
2290 					 parent ? parent->core : NULL);
2291 
2292 	if (clk->exclusive_count)
2293 		clk_core_rate_protect(clk->core);
2294 
2295 	clk_prepare_unlock();
2296 
2297 	return ret;
2298 }
2299 EXPORT_SYMBOL_GPL(clk_set_parent);
2300 
2301 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2302 {
2303 	int ret = -EINVAL;
2304 
2305 	lockdep_assert_held(&prepare_lock);
2306 
2307 	if (!core)
2308 		return 0;
2309 
2310 	if (clk_core_rate_is_protected(core))
2311 		return -EBUSY;
2312 
2313 	trace_clk_set_phase(core, degrees);
2314 
2315 	if (core->ops->set_phase) {
2316 		ret = core->ops->set_phase(core->hw, degrees);
2317 		if (!ret)
2318 			core->phase = degrees;
2319 	}
2320 
2321 	trace_clk_set_phase_complete(core, degrees);
2322 
2323 	return ret;
2324 }
2325 
2326 /**
2327  * clk_set_phase - adjust the phase shift of a clock signal
2328  * @clk: clock signal source
2329  * @degrees: number of degrees the signal is shifted
2330  *
2331  * Shifts the phase of a clock signal by the specified
2332  * degrees. Returns 0 on success, -EERROR otherwise.
2333  *
2334  * This function makes no distinction about the input or reference
2335  * signal that we adjust the clock signal phase against. For example
2336  * phase locked-loop clock signal generators we may shift phase with
2337  * respect to feedback clock signal input, but for other cases the
2338  * clock phase may be shifted with respect to some other, unspecified
2339  * signal.
2340  *
2341  * Additionally the concept of phase shift does not propagate through
2342  * the clock tree hierarchy, which sets it apart from clock rates and
2343  * clock accuracy. A parent clock phase attribute does not have an
2344  * impact on the phase attribute of a child clock.
2345  */
2346 int clk_set_phase(struct clk *clk, int degrees)
2347 {
2348 	int ret;
2349 
2350 	if (!clk)
2351 		return 0;
2352 
2353 	/* sanity check degrees */
2354 	degrees %= 360;
2355 	if (degrees < 0)
2356 		degrees += 360;
2357 
2358 	clk_prepare_lock();
2359 
2360 	if (clk->exclusive_count)
2361 		clk_core_rate_unprotect(clk->core);
2362 
2363 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2364 
2365 	if (clk->exclusive_count)
2366 		clk_core_rate_protect(clk->core);
2367 
2368 	clk_prepare_unlock();
2369 
2370 	return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(clk_set_phase);
2373 
2374 static int clk_core_get_phase(struct clk_core *core)
2375 {
2376 	int ret;
2377 
2378 	clk_prepare_lock();
2379 	/* Always try to update cached phase if possible */
2380 	if (core->ops->get_phase)
2381 		core->phase = core->ops->get_phase(core->hw);
2382 	ret = core->phase;
2383 	clk_prepare_unlock();
2384 
2385 	return ret;
2386 }
2387 
2388 /**
2389  * clk_get_phase - return the phase shift of a clock signal
2390  * @clk: clock signal source
2391  *
2392  * Returns the phase shift of a clock node in degrees, otherwise returns
2393  * -EERROR.
2394  */
2395 int clk_get_phase(struct clk *clk)
2396 {
2397 	if (!clk)
2398 		return 0;
2399 
2400 	return clk_core_get_phase(clk->core);
2401 }
2402 EXPORT_SYMBOL_GPL(clk_get_phase);
2403 
2404 /**
2405  * clk_is_match - check if two clk's point to the same hardware clock
2406  * @p: clk compared against q
2407  * @q: clk compared against p
2408  *
2409  * Returns true if the two struct clk pointers both point to the same hardware
2410  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2411  * share the same struct clk_core object.
2412  *
2413  * Returns false otherwise. Note that two NULL clks are treated as matching.
2414  */
2415 bool clk_is_match(const struct clk *p, const struct clk *q)
2416 {
2417 	/* trivial case: identical struct clk's or both NULL */
2418 	if (p == q)
2419 		return true;
2420 
2421 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2422 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2423 		if (p->core == q->core)
2424 			return true;
2425 
2426 	return false;
2427 }
2428 EXPORT_SYMBOL_GPL(clk_is_match);
2429 
2430 /***        debugfs support        ***/
2431 
2432 #ifdef CONFIG_DEBUG_FS
2433 #include <linux/debugfs.h>
2434 
2435 static struct dentry *rootdir;
2436 static int inited = 0;
2437 static DEFINE_MUTEX(clk_debug_lock);
2438 static HLIST_HEAD(clk_debug_list);
2439 
2440 static struct hlist_head *all_lists[] = {
2441 	&clk_root_list,
2442 	&clk_orphan_list,
2443 	NULL,
2444 };
2445 
2446 static struct hlist_head *orphan_list[] = {
2447 	&clk_orphan_list,
2448 	NULL,
2449 };
2450 
2451 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2452 				 int level)
2453 {
2454 	if (!c)
2455 		return;
2456 
2457 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %-3d\n",
2458 		   level * 3 + 1, "",
2459 		   30 - level * 3, c->name,
2460 		   c->enable_count, c->prepare_count, c->protect_count,
2461 		   clk_core_get_rate(c), clk_core_get_accuracy(c),
2462 		   clk_core_get_phase(c));
2463 }
2464 
2465 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2466 				     int level)
2467 {
2468 	struct clk_core *child;
2469 
2470 	if (!c)
2471 		return;
2472 
2473 	clk_summary_show_one(s, c, level);
2474 
2475 	hlist_for_each_entry(child, &c->children, child_node)
2476 		clk_summary_show_subtree(s, child, level + 1);
2477 }
2478 
2479 static int clk_summary_show(struct seq_file *s, void *data)
2480 {
2481 	struct clk_core *c;
2482 	struct hlist_head **lists = (struct hlist_head **)s->private;
2483 
2484 	seq_puts(s, "                                 enable  prepare  protect                               \n");
2485 	seq_puts(s, "   clock                          count    count    count        rate   accuracy   phase\n");
2486 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
2487 
2488 	clk_prepare_lock();
2489 
2490 	for (; *lists; lists++)
2491 		hlist_for_each_entry(c, *lists, child_node)
2492 			clk_summary_show_subtree(s, c, 0);
2493 
2494 	clk_prepare_unlock();
2495 
2496 	return 0;
2497 }
2498 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2499 
2500 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2501 {
2502 	if (!c)
2503 		return;
2504 
2505 	/* This should be JSON format, i.e. elements separated with a comma */
2506 	seq_printf(s, "\"%s\": { ", c->name);
2507 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2508 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2509 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2510 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2511 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2512 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2513 }
2514 
2515 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2516 {
2517 	struct clk_core *child;
2518 
2519 	if (!c)
2520 		return;
2521 
2522 	clk_dump_one(s, c, level);
2523 
2524 	hlist_for_each_entry(child, &c->children, child_node) {
2525 		seq_putc(s, ',');
2526 		clk_dump_subtree(s, child, level + 1);
2527 	}
2528 
2529 	seq_putc(s, '}');
2530 }
2531 
2532 static int clk_dump_show(struct seq_file *s, void *data)
2533 {
2534 	struct clk_core *c;
2535 	bool first_node = true;
2536 	struct hlist_head **lists = (struct hlist_head **)s->private;
2537 
2538 	seq_putc(s, '{');
2539 	clk_prepare_lock();
2540 
2541 	for (; *lists; lists++) {
2542 		hlist_for_each_entry(c, *lists, child_node) {
2543 			if (!first_node)
2544 				seq_putc(s, ',');
2545 			first_node = false;
2546 			clk_dump_subtree(s, c, 0);
2547 		}
2548 	}
2549 
2550 	clk_prepare_unlock();
2551 
2552 	seq_puts(s, "}\n");
2553 	return 0;
2554 }
2555 DEFINE_SHOW_ATTRIBUTE(clk_dump);
2556 
2557 static const struct {
2558 	unsigned long flag;
2559 	const char *name;
2560 } clk_flags[] = {
2561 #define ENTRY(f) { f, #f }
2562 	ENTRY(CLK_SET_RATE_GATE),
2563 	ENTRY(CLK_SET_PARENT_GATE),
2564 	ENTRY(CLK_SET_RATE_PARENT),
2565 	ENTRY(CLK_IGNORE_UNUSED),
2566 	ENTRY(CLK_IS_BASIC),
2567 	ENTRY(CLK_GET_RATE_NOCACHE),
2568 	ENTRY(CLK_SET_RATE_NO_REPARENT),
2569 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
2570 	ENTRY(CLK_RECALC_NEW_RATES),
2571 	ENTRY(CLK_SET_RATE_UNGATE),
2572 	ENTRY(CLK_IS_CRITICAL),
2573 	ENTRY(CLK_OPS_PARENT_ENABLE),
2574 #undef ENTRY
2575 };
2576 
2577 static int clk_flags_show(struct seq_file *s, void *data)
2578 {
2579 	struct clk_core *core = s->private;
2580 	unsigned long flags = core->flags;
2581 	unsigned int i;
2582 
2583 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
2584 		if (flags & clk_flags[i].flag) {
2585 			seq_printf(s, "%s\n", clk_flags[i].name);
2586 			flags &= ~clk_flags[i].flag;
2587 		}
2588 	}
2589 	if (flags) {
2590 		/* Unknown flags */
2591 		seq_printf(s, "0x%lx\n", flags);
2592 	}
2593 
2594 	return 0;
2595 }
2596 DEFINE_SHOW_ATTRIBUTE(clk_flags);
2597 
2598 static int possible_parents_show(struct seq_file *s, void *data)
2599 {
2600 	struct clk_core *core = s->private;
2601 	int i;
2602 
2603 	for (i = 0; i < core->num_parents - 1; i++)
2604 		seq_printf(s, "%s ", core->parent_names[i]);
2605 
2606 	seq_printf(s, "%s\n", core->parent_names[i]);
2607 
2608 	return 0;
2609 }
2610 DEFINE_SHOW_ATTRIBUTE(possible_parents);
2611 
2612 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2613 {
2614 	struct dentry *root;
2615 
2616 	if (!core || !pdentry)
2617 		return;
2618 
2619 	root = debugfs_create_dir(core->name, pdentry);
2620 	core->dentry = root;
2621 
2622 	debugfs_create_ulong("clk_rate", 0444, root, &core->rate);
2623 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
2624 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
2625 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
2626 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
2627 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
2628 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
2629 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
2630 
2631 	if (core->num_parents > 1)
2632 		debugfs_create_file("clk_possible_parents", 0444, root, core,
2633 				    &possible_parents_fops);
2634 
2635 	if (core->ops->debug_init)
2636 		core->ops->debug_init(core->hw, core->dentry);
2637 }
2638 
2639 /**
2640  * clk_debug_register - add a clk node to the debugfs clk directory
2641  * @core: the clk being added to the debugfs clk directory
2642  *
2643  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2644  * initialized.  Otherwise it bails out early since the debugfs clk directory
2645  * will be created lazily by clk_debug_init as part of a late_initcall.
2646  */
2647 static void clk_debug_register(struct clk_core *core)
2648 {
2649 	mutex_lock(&clk_debug_lock);
2650 	hlist_add_head(&core->debug_node, &clk_debug_list);
2651 	if (inited)
2652 		clk_debug_create_one(core, rootdir);
2653 	mutex_unlock(&clk_debug_lock);
2654 }
2655 
2656  /**
2657  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2658  * @core: the clk being removed from the debugfs clk directory
2659  *
2660  * Dynamically removes a clk and all its child nodes from the
2661  * debugfs clk directory if clk->dentry points to debugfs created by
2662  * clk_debug_register in __clk_core_init.
2663  */
2664 static void clk_debug_unregister(struct clk_core *core)
2665 {
2666 	mutex_lock(&clk_debug_lock);
2667 	hlist_del_init(&core->debug_node);
2668 	debugfs_remove_recursive(core->dentry);
2669 	core->dentry = NULL;
2670 	mutex_unlock(&clk_debug_lock);
2671 }
2672 
2673 /**
2674  * clk_debug_init - lazily populate the debugfs clk directory
2675  *
2676  * clks are often initialized very early during boot before memory can be
2677  * dynamically allocated and well before debugfs is setup. This function
2678  * populates the debugfs clk directory once at boot-time when we know that
2679  * debugfs is setup. It should only be called once at boot-time, all other clks
2680  * added dynamically will be done so with clk_debug_register.
2681  */
2682 static int __init clk_debug_init(void)
2683 {
2684 	struct clk_core *core;
2685 
2686 	rootdir = debugfs_create_dir("clk", NULL);
2687 
2688 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
2689 			    &clk_summary_fops);
2690 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
2691 			    &clk_dump_fops);
2692 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
2693 			    &clk_summary_fops);
2694 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
2695 			    &clk_dump_fops);
2696 
2697 	mutex_lock(&clk_debug_lock);
2698 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2699 		clk_debug_create_one(core, rootdir);
2700 
2701 	inited = 1;
2702 	mutex_unlock(&clk_debug_lock);
2703 
2704 	return 0;
2705 }
2706 late_initcall(clk_debug_init);
2707 #else
2708 static inline void clk_debug_register(struct clk_core *core) { }
2709 static inline void clk_debug_reparent(struct clk_core *core,
2710 				      struct clk_core *new_parent)
2711 {
2712 }
2713 static inline void clk_debug_unregister(struct clk_core *core)
2714 {
2715 }
2716 #endif
2717 
2718 /**
2719  * __clk_core_init - initialize the data structures in a struct clk_core
2720  * @core:	clk_core being initialized
2721  *
2722  * Initializes the lists in struct clk_core, queries the hardware for the
2723  * parent and rate and sets them both.
2724  */
2725 static int __clk_core_init(struct clk_core *core)
2726 {
2727 	int i, ret;
2728 	struct clk_core *orphan;
2729 	struct hlist_node *tmp2;
2730 	unsigned long rate;
2731 
2732 	if (!core)
2733 		return -EINVAL;
2734 
2735 	clk_prepare_lock();
2736 
2737 	ret = clk_pm_runtime_get(core);
2738 	if (ret)
2739 		goto unlock;
2740 
2741 	/* check to see if a clock with this name is already registered */
2742 	if (clk_core_lookup(core->name)) {
2743 		pr_debug("%s: clk %s already initialized\n",
2744 				__func__, core->name);
2745 		ret = -EEXIST;
2746 		goto out;
2747 	}
2748 
2749 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
2750 	if (core->ops->set_rate &&
2751 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2752 	      core->ops->recalc_rate)) {
2753 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2754 		       __func__, core->name);
2755 		ret = -EINVAL;
2756 		goto out;
2757 	}
2758 
2759 	if (core->ops->set_parent && !core->ops->get_parent) {
2760 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2761 		       __func__, core->name);
2762 		ret = -EINVAL;
2763 		goto out;
2764 	}
2765 
2766 	if (core->num_parents > 1 && !core->ops->get_parent) {
2767 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2768 		       __func__, core->name);
2769 		ret = -EINVAL;
2770 		goto out;
2771 	}
2772 
2773 	if (core->ops->set_rate_and_parent &&
2774 			!(core->ops->set_parent && core->ops->set_rate)) {
2775 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2776 				__func__, core->name);
2777 		ret = -EINVAL;
2778 		goto out;
2779 	}
2780 
2781 	/* throw a WARN if any entries in parent_names are NULL */
2782 	for (i = 0; i < core->num_parents; i++)
2783 		WARN(!core->parent_names[i],
2784 				"%s: invalid NULL in %s's .parent_names\n",
2785 				__func__, core->name);
2786 
2787 	core->parent = __clk_init_parent(core);
2788 
2789 	/*
2790 	 * Populate core->parent if parent has already been clk_core_init'd. If
2791 	 * parent has not yet been clk_core_init'd then place clk in the orphan
2792 	 * list.  If clk doesn't have any parents then place it in the root
2793 	 * clk list.
2794 	 *
2795 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2796 	 * clocks and re-parent any that are children of the clock currently
2797 	 * being clk_init'd.
2798 	 */
2799 	if (core->parent) {
2800 		hlist_add_head(&core->child_node,
2801 				&core->parent->children);
2802 		core->orphan = core->parent->orphan;
2803 	} else if (!core->num_parents) {
2804 		hlist_add_head(&core->child_node, &clk_root_list);
2805 		core->orphan = false;
2806 	} else {
2807 		hlist_add_head(&core->child_node, &clk_orphan_list);
2808 		core->orphan = true;
2809 	}
2810 
2811 	/*
2812 	 * optional platform-specific magic
2813 	 *
2814 	 * The .init callback is not used by any of the basic clock types, but
2815 	 * exists for weird hardware that must perform initialization magic.
2816 	 * Please consider other ways of solving initialization problems before
2817 	 * using this callback, as its use is discouraged.
2818 	 */
2819 	if (core->ops->init)
2820 		core->ops->init(core->hw);
2821 
2822 	/*
2823 	 * Set clk's accuracy.  The preferred method is to use
2824 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2825 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2826 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2827 	 * clock).
2828 	 */
2829 	if (core->ops->recalc_accuracy)
2830 		core->accuracy = core->ops->recalc_accuracy(core->hw,
2831 					__clk_get_accuracy(core->parent));
2832 	else if (core->parent)
2833 		core->accuracy = core->parent->accuracy;
2834 	else
2835 		core->accuracy = 0;
2836 
2837 	/*
2838 	 * Set clk's phase.
2839 	 * Since a phase is by definition relative to its parent, just
2840 	 * query the current clock phase, or just assume it's in phase.
2841 	 */
2842 	if (core->ops->get_phase)
2843 		core->phase = core->ops->get_phase(core->hw);
2844 	else
2845 		core->phase = 0;
2846 
2847 	/*
2848 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2849 	 * simple clocks and lazy developers the default fallback is to use the
2850 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2851 	 * then rate is set to zero.
2852 	 */
2853 	if (core->ops->recalc_rate)
2854 		rate = core->ops->recalc_rate(core->hw,
2855 				clk_core_get_rate_nolock(core->parent));
2856 	else if (core->parent)
2857 		rate = core->parent->rate;
2858 	else
2859 		rate = 0;
2860 	core->rate = core->req_rate = rate;
2861 
2862 	/*
2863 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
2864 	 * don't get accidentally disabled when walking the orphan tree and
2865 	 * reparenting clocks
2866 	 */
2867 	if (core->flags & CLK_IS_CRITICAL) {
2868 		unsigned long flags;
2869 
2870 		clk_core_prepare(core);
2871 
2872 		flags = clk_enable_lock();
2873 		clk_core_enable(core);
2874 		clk_enable_unlock(flags);
2875 	}
2876 
2877 	/*
2878 	 * walk the list of orphan clocks and reparent any that newly finds a
2879 	 * parent.
2880 	 */
2881 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2882 		struct clk_core *parent = __clk_init_parent(orphan);
2883 
2884 		/*
2885 		 * We need to use __clk_set_parent_before() and _after() to
2886 		 * to properly migrate any prepare/enable count of the orphan
2887 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
2888 		 * are enabled during init but might not have a parent yet.
2889 		 */
2890 		if (parent) {
2891 			/* update the clk tree topology */
2892 			__clk_set_parent_before(orphan, parent);
2893 			__clk_set_parent_after(orphan, parent, NULL);
2894 			__clk_recalc_accuracies(orphan);
2895 			__clk_recalc_rates(orphan, 0);
2896 		}
2897 	}
2898 
2899 	kref_init(&core->ref);
2900 out:
2901 	clk_pm_runtime_put(core);
2902 unlock:
2903 	clk_prepare_unlock();
2904 
2905 	if (!ret)
2906 		clk_debug_register(core);
2907 
2908 	return ret;
2909 }
2910 
2911 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2912 			     const char *con_id)
2913 {
2914 	struct clk *clk;
2915 
2916 	/* This is to allow this function to be chained to others */
2917 	if (IS_ERR_OR_NULL(hw))
2918 		return ERR_CAST(hw);
2919 
2920 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2921 	if (!clk)
2922 		return ERR_PTR(-ENOMEM);
2923 
2924 	clk->core = hw->core;
2925 	clk->dev_id = dev_id;
2926 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
2927 	clk->max_rate = ULONG_MAX;
2928 
2929 	clk_prepare_lock();
2930 	hlist_add_head(&clk->clks_node, &hw->core->clks);
2931 	clk_prepare_unlock();
2932 
2933 	return clk;
2934 }
2935 
2936 void __clk_free_clk(struct clk *clk)
2937 {
2938 	clk_prepare_lock();
2939 	hlist_del(&clk->clks_node);
2940 	clk_prepare_unlock();
2941 
2942 	kfree_const(clk->con_id);
2943 	kfree(clk);
2944 }
2945 
2946 /**
2947  * clk_register - allocate a new clock, register it and return an opaque cookie
2948  * @dev: device that is registering this clock
2949  * @hw: link to hardware-specific clock data
2950  *
2951  * clk_register is the primary interface for populating the clock tree with new
2952  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2953  * cannot be dereferenced by driver code but may be used in conjunction with the
2954  * rest of the clock API.  In the event of an error clk_register will return an
2955  * error code; drivers must test for an error code after calling clk_register.
2956  */
2957 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2958 {
2959 	int i, ret;
2960 	struct clk_core *core;
2961 
2962 	core = kzalloc(sizeof(*core), GFP_KERNEL);
2963 	if (!core) {
2964 		ret = -ENOMEM;
2965 		goto fail_out;
2966 	}
2967 
2968 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2969 	if (!core->name) {
2970 		ret = -ENOMEM;
2971 		goto fail_name;
2972 	}
2973 
2974 	if (WARN_ON(!hw->init->ops)) {
2975 		ret = -EINVAL;
2976 		goto fail_ops;
2977 	}
2978 	core->ops = hw->init->ops;
2979 
2980 	if (dev && pm_runtime_enabled(dev))
2981 		core->dev = dev;
2982 	if (dev && dev->driver)
2983 		core->owner = dev->driver->owner;
2984 	core->hw = hw;
2985 	core->flags = hw->init->flags;
2986 	core->num_parents = hw->init->num_parents;
2987 	core->min_rate = 0;
2988 	core->max_rate = ULONG_MAX;
2989 	hw->core = core;
2990 
2991 	/* allocate local copy in case parent_names is __initdata */
2992 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2993 					GFP_KERNEL);
2994 
2995 	if (!core->parent_names) {
2996 		ret = -ENOMEM;
2997 		goto fail_parent_names;
2998 	}
2999 
3000 
3001 	/* copy each string name in case parent_names is __initdata */
3002 	for (i = 0; i < core->num_parents; i++) {
3003 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
3004 						GFP_KERNEL);
3005 		if (!core->parent_names[i]) {
3006 			ret = -ENOMEM;
3007 			goto fail_parent_names_copy;
3008 		}
3009 	}
3010 
3011 	/* avoid unnecessary string look-ups of clk_core's possible parents. */
3012 	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
3013 				GFP_KERNEL);
3014 	if (!core->parents) {
3015 		ret = -ENOMEM;
3016 		goto fail_parents;
3017 	};
3018 
3019 	INIT_HLIST_HEAD(&core->clks);
3020 
3021 	hw->clk = __clk_create_clk(hw, NULL, NULL);
3022 	if (IS_ERR(hw->clk)) {
3023 		ret = PTR_ERR(hw->clk);
3024 		goto fail_parents;
3025 	}
3026 
3027 	ret = __clk_core_init(core);
3028 	if (!ret)
3029 		return hw->clk;
3030 
3031 	__clk_free_clk(hw->clk);
3032 	hw->clk = NULL;
3033 
3034 fail_parents:
3035 	kfree(core->parents);
3036 fail_parent_names_copy:
3037 	while (--i >= 0)
3038 		kfree_const(core->parent_names[i]);
3039 	kfree(core->parent_names);
3040 fail_parent_names:
3041 fail_ops:
3042 	kfree_const(core->name);
3043 fail_name:
3044 	kfree(core);
3045 fail_out:
3046 	return ERR_PTR(ret);
3047 }
3048 EXPORT_SYMBOL_GPL(clk_register);
3049 
3050 /**
3051  * clk_hw_register - register a clk_hw and return an error code
3052  * @dev: device that is registering this clock
3053  * @hw: link to hardware-specific clock data
3054  *
3055  * clk_hw_register is the primary interface for populating the clock tree with
3056  * new clock nodes. It returns an integer equal to zero indicating success or
3057  * less than zero indicating failure. Drivers must test for an error code after
3058  * calling clk_hw_register().
3059  */
3060 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3061 {
3062 	return PTR_ERR_OR_ZERO(clk_register(dev, hw));
3063 }
3064 EXPORT_SYMBOL_GPL(clk_hw_register);
3065 
3066 /* Free memory allocated for a clock. */
3067 static void __clk_release(struct kref *ref)
3068 {
3069 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3070 	int i = core->num_parents;
3071 
3072 	lockdep_assert_held(&prepare_lock);
3073 
3074 	kfree(core->parents);
3075 	while (--i >= 0)
3076 		kfree_const(core->parent_names[i]);
3077 
3078 	kfree(core->parent_names);
3079 	kfree_const(core->name);
3080 	kfree(core);
3081 }
3082 
3083 /*
3084  * Empty clk_ops for unregistered clocks. These are used temporarily
3085  * after clk_unregister() was called on a clock and until last clock
3086  * consumer calls clk_put() and the struct clk object is freed.
3087  */
3088 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3089 {
3090 	return -ENXIO;
3091 }
3092 
3093 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3094 {
3095 	WARN_ON_ONCE(1);
3096 }
3097 
3098 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3099 					unsigned long parent_rate)
3100 {
3101 	return -ENXIO;
3102 }
3103 
3104 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3105 {
3106 	return -ENXIO;
3107 }
3108 
3109 static const struct clk_ops clk_nodrv_ops = {
3110 	.enable		= clk_nodrv_prepare_enable,
3111 	.disable	= clk_nodrv_disable_unprepare,
3112 	.prepare	= clk_nodrv_prepare_enable,
3113 	.unprepare	= clk_nodrv_disable_unprepare,
3114 	.set_rate	= clk_nodrv_set_rate,
3115 	.set_parent	= clk_nodrv_set_parent,
3116 };
3117 
3118 /**
3119  * clk_unregister - unregister a currently registered clock
3120  * @clk: clock to unregister
3121  */
3122 void clk_unregister(struct clk *clk)
3123 {
3124 	unsigned long flags;
3125 
3126 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3127 		return;
3128 
3129 	clk_debug_unregister(clk->core);
3130 
3131 	clk_prepare_lock();
3132 
3133 	if (clk->core->ops == &clk_nodrv_ops) {
3134 		pr_err("%s: unregistered clock: %s\n", __func__,
3135 		       clk->core->name);
3136 		goto unlock;
3137 	}
3138 	/*
3139 	 * Assign empty clock ops for consumers that might still hold
3140 	 * a reference to this clock.
3141 	 */
3142 	flags = clk_enable_lock();
3143 	clk->core->ops = &clk_nodrv_ops;
3144 	clk_enable_unlock(flags);
3145 
3146 	if (!hlist_empty(&clk->core->children)) {
3147 		struct clk_core *child;
3148 		struct hlist_node *t;
3149 
3150 		/* Reparent all children to the orphan list. */
3151 		hlist_for_each_entry_safe(child, t, &clk->core->children,
3152 					  child_node)
3153 			clk_core_set_parent_nolock(child, NULL);
3154 	}
3155 
3156 	hlist_del_init(&clk->core->child_node);
3157 
3158 	if (clk->core->prepare_count)
3159 		pr_warn("%s: unregistering prepared clock: %s\n",
3160 					__func__, clk->core->name);
3161 
3162 	if (clk->core->protect_count)
3163 		pr_warn("%s: unregistering protected clock: %s\n",
3164 					__func__, clk->core->name);
3165 
3166 	kref_put(&clk->core->ref, __clk_release);
3167 unlock:
3168 	clk_prepare_unlock();
3169 }
3170 EXPORT_SYMBOL_GPL(clk_unregister);
3171 
3172 /**
3173  * clk_hw_unregister - unregister a currently registered clk_hw
3174  * @hw: hardware-specific clock data to unregister
3175  */
3176 void clk_hw_unregister(struct clk_hw *hw)
3177 {
3178 	clk_unregister(hw->clk);
3179 }
3180 EXPORT_SYMBOL_GPL(clk_hw_unregister);
3181 
3182 static void devm_clk_release(struct device *dev, void *res)
3183 {
3184 	clk_unregister(*(struct clk **)res);
3185 }
3186 
3187 static void devm_clk_hw_release(struct device *dev, void *res)
3188 {
3189 	clk_hw_unregister(*(struct clk_hw **)res);
3190 }
3191 
3192 /**
3193  * devm_clk_register - resource managed clk_register()
3194  * @dev: device that is registering this clock
3195  * @hw: link to hardware-specific clock data
3196  *
3197  * Managed clk_register(). Clocks returned from this function are
3198  * automatically clk_unregister()ed on driver detach. See clk_register() for
3199  * more information.
3200  */
3201 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3202 {
3203 	struct clk *clk;
3204 	struct clk **clkp;
3205 
3206 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3207 	if (!clkp)
3208 		return ERR_PTR(-ENOMEM);
3209 
3210 	clk = clk_register(dev, hw);
3211 	if (!IS_ERR(clk)) {
3212 		*clkp = clk;
3213 		devres_add(dev, clkp);
3214 	} else {
3215 		devres_free(clkp);
3216 	}
3217 
3218 	return clk;
3219 }
3220 EXPORT_SYMBOL_GPL(devm_clk_register);
3221 
3222 /**
3223  * devm_clk_hw_register - resource managed clk_hw_register()
3224  * @dev: device that is registering this clock
3225  * @hw: link to hardware-specific clock data
3226  *
3227  * Managed clk_hw_register(). Clocks registered by this function are
3228  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3229  * for more information.
3230  */
3231 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3232 {
3233 	struct clk_hw **hwp;
3234 	int ret;
3235 
3236 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3237 	if (!hwp)
3238 		return -ENOMEM;
3239 
3240 	ret = clk_hw_register(dev, hw);
3241 	if (!ret) {
3242 		*hwp = hw;
3243 		devres_add(dev, hwp);
3244 	} else {
3245 		devres_free(hwp);
3246 	}
3247 
3248 	return ret;
3249 }
3250 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3251 
3252 static int devm_clk_match(struct device *dev, void *res, void *data)
3253 {
3254 	struct clk *c = res;
3255 	if (WARN_ON(!c))
3256 		return 0;
3257 	return c == data;
3258 }
3259 
3260 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3261 {
3262 	struct clk_hw *hw = res;
3263 
3264 	if (WARN_ON(!hw))
3265 		return 0;
3266 	return hw == data;
3267 }
3268 
3269 /**
3270  * devm_clk_unregister - resource managed clk_unregister()
3271  * @clk: clock to unregister
3272  *
3273  * Deallocate a clock allocated with devm_clk_register(). Normally
3274  * this function will not need to be called and the resource management
3275  * code will ensure that the resource is freed.
3276  */
3277 void devm_clk_unregister(struct device *dev, struct clk *clk)
3278 {
3279 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3280 }
3281 EXPORT_SYMBOL_GPL(devm_clk_unregister);
3282 
3283 /**
3284  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
3285  * @dev: device that is unregistering the hardware-specific clock data
3286  * @hw: link to hardware-specific clock data
3287  *
3288  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
3289  * this function will not need to be called and the resource management
3290  * code will ensure that the resource is freed.
3291  */
3292 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
3293 {
3294 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
3295 				hw));
3296 }
3297 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3298 
3299 /*
3300  * clkdev helpers
3301  */
3302 int __clk_get(struct clk *clk)
3303 {
3304 	struct clk_core *core = !clk ? NULL : clk->core;
3305 
3306 	if (core) {
3307 		if (!try_module_get(core->owner))
3308 			return 0;
3309 
3310 		kref_get(&core->ref);
3311 	}
3312 	return 1;
3313 }
3314 
3315 void __clk_put(struct clk *clk)
3316 {
3317 	struct module *owner;
3318 
3319 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3320 		return;
3321 
3322 	clk_prepare_lock();
3323 
3324 	/*
3325 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
3326 	 * given user should be balanced with calls to clk_rate_exclusive_put()
3327 	 * and by that same consumer
3328 	 */
3329 	if (WARN_ON(clk->exclusive_count)) {
3330 		/* We voiced our concern, let's sanitize the situation */
3331 		clk->core->protect_count -= (clk->exclusive_count - 1);
3332 		clk_core_rate_unprotect(clk->core);
3333 		clk->exclusive_count = 0;
3334 	}
3335 
3336 	hlist_del(&clk->clks_node);
3337 	if (clk->min_rate > clk->core->req_rate ||
3338 	    clk->max_rate < clk->core->req_rate)
3339 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3340 
3341 	owner = clk->core->owner;
3342 	kref_put(&clk->core->ref, __clk_release);
3343 
3344 	clk_prepare_unlock();
3345 
3346 	module_put(owner);
3347 
3348 	kfree(clk);
3349 }
3350 
3351 /***        clk rate change notifiers        ***/
3352 
3353 /**
3354  * clk_notifier_register - add a clk rate change notifier
3355  * @clk: struct clk * to watch
3356  * @nb: struct notifier_block * with callback info
3357  *
3358  * Request notification when clk's rate changes.  This uses an SRCU
3359  * notifier because we want it to block and notifier unregistrations are
3360  * uncommon.  The callbacks associated with the notifier must not
3361  * re-enter into the clk framework by calling any top-level clk APIs;
3362  * this will cause a nested prepare_lock mutex.
3363  *
3364  * In all notification cases (pre, post and abort rate change) the original
3365  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3366  * and the new frequency is passed via struct clk_notifier_data.new_rate.
3367  *
3368  * clk_notifier_register() must be called from non-atomic context.
3369  * Returns -EINVAL if called with null arguments, -ENOMEM upon
3370  * allocation failure; otherwise, passes along the return value of
3371  * srcu_notifier_chain_register().
3372  */
3373 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3374 {
3375 	struct clk_notifier *cn;
3376 	int ret = -ENOMEM;
3377 
3378 	if (!clk || !nb)
3379 		return -EINVAL;
3380 
3381 	clk_prepare_lock();
3382 
3383 	/* search the list of notifiers for this clk */
3384 	list_for_each_entry(cn, &clk_notifier_list, node)
3385 		if (cn->clk == clk)
3386 			break;
3387 
3388 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
3389 	if (cn->clk != clk) {
3390 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3391 		if (!cn)
3392 			goto out;
3393 
3394 		cn->clk = clk;
3395 		srcu_init_notifier_head(&cn->notifier_head);
3396 
3397 		list_add(&cn->node, &clk_notifier_list);
3398 	}
3399 
3400 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3401 
3402 	clk->core->notifier_count++;
3403 
3404 out:
3405 	clk_prepare_unlock();
3406 
3407 	return ret;
3408 }
3409 EXPORT_SYMBOL_GPL(clk_notifier_register);
3410 
3411 /**
3412  * clk_notifier_unregister - remove a clk rate change notifier
3413  * @clk: struct clk *
3414  * @nb: struct notifier_block * with callback info
3415  *
3416  * Request no further notification for changes to 'clk' and frees memory
3417  * allocated in clk_notifier_register.
3418  *
3419  * Returns -EINVAL if called with null arguments; otherwise, passes
3420  * along the return value of srcu_notifier_chain_unregister().
3421  */
3422 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3423 {
3424 	struct clk_notifier *cn = NULL;
3425 	int ret = -EINVAL;
3426 
3427 	if (!clk || !nb)
3428 		return -EINVAL;
3429 
3430 	clk_prepare_lock();
3431 
3432 	list_for_each_entry(cn, &clk_notifier_list, node)
3433 		if (cn->clk == clk)
3434 			break;
3435 
3436 	if (cn->clk == clk) {
3437 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3438 
3439 		clk->core->notifier_count--;
3440 
3441 		/* XXX the notifier code should handle this better */
3442 		if (!cn->notifier_head.head) {
3443 			srcu_cleanup_notifier_head(&cn->notifier_head);
3444 			list_del(&cn->node);
3445 			kfree(cn);
3446 		}
3447 
3448 	} else {
3449 		ret = -ENOENT;
3450 	}
3451 
3452 	clk_prepare_unlock();
3453 
3454 	return ret;
3455 }
3456 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3457 
3458 #ifdef CONFIG_OF
3459 /**
3460  * struct of_clk_provider - Clock provider registration structure
3461  * @link: Entry in global list of clock providers
3462  * @node: Pointer to device tree node of clock provider
3463  * @get: Get clock callback.  Returns NULL or a struct clk for the
3464  *       given clock specifier
3465  * @data: context pointer to be passed into @get callback
3466  */
3467 struct of_clk_provider {
3468 	struct list_head link;
3469 
3470 	struct device_node *node;
3471 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3472 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3473 	void *data;
3474 };
3475 
3476 static const struct of_device_id __clk_of_table_sentinel
3477 	__used __section(__clk_of_table_end);
3478 
3479 static LIST_HEAD(of_clk_providers);
3480 static DEFINE_MUTEX(of_clk_mutex);
3481 
3482 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3483 				     void *data)
3484 {
3485 	return data;
3486 }
3487 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3488 
3489 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3490 {
3491 	return data;
3492 }
3493 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3494 
3495 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3496 {
3497 	struct clk_onecell_data *clk_data = data;
3498 	unsigned int idx = clkspec->args[0];
3499 
3500 	if (idx >= clk_data->clk_num) {
3501 		pr_err("%s: invalid clock index %u\n", __func__, idx);
3502 		return ERR_PTR(-EINVAL);
3503 	}
3504 
3505 	return clk_data->clks[idx];
3506 }
3507 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3508 
3509 struct clk_hw *
3510 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3511 {
3512 	struct clk_hw_onecell_data *hw_data = data;
3513 	unsigned int idx = clkspec->args[0];
3514 
3515 	if (idx >= hw_data->num) {
3516 		pr_err("%s: invalid index %u\n", __func__, idx);
3517 		return ERR_PTR(-EINVAL);
3518 	}
3519 
3520 	return hw_data->hws[idx];
3521 }
3522 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3523 
3524 /**
3525  * of_clk_add_provider() - Register a clock provider for a node
3526  * @np: Device node pointer associated with clock provider
3527  * @clk_src_get: callback for decoding clock
3528  * @data: context pointer for @clk_src_get callback.
3529  */
3530 int of_clk_add_provider(struct device_node *np,
3531 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3532 						   void *data),
3533 			void *data)
3534 {
3535 	struct of_clk_provider *cp;
3536 	int ret;
3537 
3538 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3539 	if (!cp)
3540 		return -ENOMEM;
3541 
3542 	cp->node = of_node_get(np);
3543 	cp->data = data;
3544 	cp->get = clk_src_get;
3545 
3546 	mutex_lock(&of_clk_mutex);
3547 	list_add(&cp->link, &of_clk_providers);
3548 	mutex_unlock(&of_clk_mutex);
3549 	pr_debug("Added clock from %pOF\n", np);
3550 
3551 	ret = of_clk_set_defaults(np, true);
3552 	if (ret < 0)
3553 		of_clk_del_provider(np);
3554 
3555 	return ret;
3556 }
3557 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3558 
3559 /**
3560  * of_clk_add_hw_provider() - Register a clock provider for a node
3561  * @np: Device node pointer associated with clock provider
3562  * @get: callback for decoding clk_hw
3563  * @data: context pointer for @get callback.
3564  */
3565 int of_clk_add_hw_provider(struct device_node *np,
3566 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3567 						 void *data),
3568 			   void *data)
3569 {
3570 	struct of_clk_provider *cp;
3571 	int ret;
3572 
3573 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3574 	if (!cp)
3575 		return -ENOMEM;
3576 
3577 	cp->node = of_node_get(np);
3578 	cp->data = data;
3579 	cp->get_hw = get;
3580 
3581 	mutex_lock(&of_clk_mutex);
3582 	list_add(&cp->link, &of_clk_providers);
3583 	mutex_unlock(&of_clk_mutex);
3584 	pr_debug("Added clk_hw provider from %pOF\n", np);
3585 
3586 	ret = of_clk_set_defaults(np, true);
3587 	if (ret < 0)
3588 		of_clk_del_provider(np);
3589 
3590 	return ret;
3591 }
3592 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3593 
3594 static void devm_of_clk_release_provider(struct device *dev, void *res)
3595 {
3596 	of_clk_del_provider(*(struct device_node **)res);
3597 }
3598 
3599 int devm_of_clk_add_hw_provider(struct device *dev,
3600 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3601 					      void *data),
3602 			void *data)
3603 {
3604 	struct device_node **ptr, *np;
3605 	int ret;
3606 
3607 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3608 			   GFP_KERNEL);
3609 	if (!ptr)
3610 		return -ENOMEM;
3611 
3612 	np = dev->of_node;
3613 	ret = of_clk_add_hw_provider(np, get, data);
3614 	if (!ret) {
3615 		*ptr = np;
3616 		devres_add(dev, ptr);
3617 	} else {
3618 		devres_free(ptr);
3619 	}
3620 
3621 	return ret;
3622 }
3623 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3624 
3625 /**
3626  * of_clk_del_provider() - Remove a previously registered clock provider
3627  * @np: Device node pointer associated with clock provider
3628  */
3629 void of_clk_del_provider(struct device_node *np)
3630 {
3631 	struct of_clk_provider *cp;
3632 
3633 	mutex_lock(&of_clk_mutex);
3634 	list_for_each_entry(cp, &of_clk_providers, link) {
3635 		if (cp->node == np) {
3636 			list_del(&cp->link);
3637 			of_node_put(cp->node);
3638 			kfree(cp);
3639 			break;
3640 		}
3641 	}
3642 	mutex_unlock(&of_clk_mutex);
3643 }
3644 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3645 
3646 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3647 {
3648 	struct device_node **np = res;
3649 
3650 	if (WARN_ON(!np || !*np))
3651 		return 0;
3652 
3653 	return *np == data;
3654 }
3655 
3656 void devm_of_clk_del_provider(struct device *dev)
3657 {
3658 	int ret;
3659 
3660 	ret = devres_release(dev, devm_of_clk_release_provider,
3661 			     devm_clk_provider_match, dev->of_node);
3662 
3663 	WARN_ON(ret);
3664 }
3665 EXPORT_SYMBOL(devm_of_clk_del_provider);
3666 
3667 static struct clk_hw *
3668 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3669 			      struct of_phandle_args *clkspec)
3670 {
3671 	struct clk *clk;
3672 
3673 	if (provider->get_hw)
3674 		return provider->get_hw(clkspec, provider->data);
3675 
3676 	clk = provider->get(clkspec, provider->data);
3677 	if (IS_ERR(clk))
3678 		return ERR_CAST(clk);
3679 	return __clk_get_hw(clk);
3680 }
3681 
3682 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3683 				       const char *dev_id, const char *con_id)
3684 {
3685 	struct of_clk_provider *provider;
3686 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3687 	struct clk_hw *hw;
3688 
3689 	if (!clkspec)
3690 		return ERR_PTR(-EINVAL);
3691 
3692 	/* Check if we have such a provider in our array */
3693 	mutex_lock(&of_clk_mutex);
3694 	list_for_each_entry(provider, &of_clk_providers, link) {
3695 		if (provider->node == clkspec->np) {
3696 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
3697 			clk = __clk_create_clk(hw, dev_id, con_id);
3698 		}
3699 
3700 		if (!IS_ERR(clk)) {
3701 			if (!__clk_get(clk)) {
3702 				__clk_free_clk(clk);
3703 				clk = ERR_PTR(-ENOENT);
3704 			}
3705 
3706 			break;
3707 		}
3708 	}
3709 	mutex_unlock(&of_clk_mutex);
3710 
3711 	return clk;
3712 }
3713 
3714 /**
3715  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3716  * @clkspec: pointer to a clock specifier data structure
3717  *
3718  * This function looks up a struct clk from the registered list of clock
3719  * providers, an input is a clock specifier data structure as returned
3720  * from the of_parse_phandle_with_args() function call.
3721  */
3722 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3723 {
3724 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3725 }
3726 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3727 
3728 /**
3729  * of_clk_get_parent_count() - Count the number of clocks a device node has
3730  * @np: device node to count
3731  *
3732  * Returns: The number of clocks that are possible parents of this node
3733  */
3734 unsigned int of_clk_get_parent_count(struct device_node *np)
3735 {
3736 	int count;
3737 
3738 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3739 	if (count < 0)
3740 		return 0;
3741 
3742 	return count;
3743 }
3744 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3745 
3746 const char *of_clk_get_parent_name(struct device_node *np, int index)
3747 {
3748 	struct of_phandle_args clkspec;
3749 	struct property *prop;
3750 	const char *clk_name;
3751 	const __be32 *vp;
3752 	u32 pv;
3753 	int rc;
3754 	int count;
3755 	struct clk *clk;
3756 
3757 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3758 					&clkspec);
3759 	if (rc)
3760 		return NULL;
3761 
3762 	index = clkspec.args_count ? clkspec.args[0] : 0;
3763 	count = 0;
3764 
3765 	/* if there is an indices property, use it to transfer the index
3766 	 * specified into an array offset for the clock-output-names property.
3767 	 */
3768 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3769 		if (index == pv) {
3770 			index = count;
3771 			break;
3772 		}
3773 		count++;
3774 	}
3775 	/* We went off the end of 'clock-indices' without finding it */
3776 	if (prop && !vp)
3777 		return NULL;
3778 
3779 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3780 					  index,
3781 					  &clk_name) < 0) {
3782 		/*
3783 		 * Best effort to get the name if the clock has been
3784 		 * registered with the framework. If the clock isn't
3785 		 * registered, we return the node name as the name of
3786 		 * the clock as long as #clock-cells = 0.
3787 		 */
3788 		clk = of_clk_get_from_provider(&clkspec);
3789 		if (IS_ERR(clk)) {
3790 			if (clkspec.args_count == 0)
3791 				clk_name = clkspec.np->name;
3792 			else
3793 				clk_name = NULL;
3794 		} else {
3795 			clk_name = __clk_get_name(clk);
3796 			clk_put(clk);
3797 		}
3798 	}
3799 
3800 
3801 	of_node_put(clkspec.np);
3802 	return clk_name;
3803 }
3804 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3805 
3806 /**
3807  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3808  * number of parents
3809  * @np: Device node pointer associated with clock provider
3810  * @parents: pointer to char array that hold the parents' names
3811  * @size: size of the @parents array
3812  *
3813  * Return: number of parents for the clock node.
3814  */
3815 int of_clk_parent_fill(struct device_node *np, const char **parents,
3816 		       unsigned int size)
3817 {
3818 	unsigned int i = 0;
3819 
3820 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3821 		i++;
3822 
3823 	return i;
3824 }
3825 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3826 
3827 struct clock_provider {
3828 	void (*clk_init_cb)(struct device_node *);
3829 	struct device_node *np;
3830 	struct list_head node;
3831 };
3832 
3833 /*
3834  * This function looks for a parent clock. If there is one, then it
3835  * checks that the provider for this parent clock was initialized, in
3836  * this case the parent clock will be ready.
3837  */
3838 static int parent_ready(struct device_node *np)
3839 {
3840 	int i = 0;
3841 
3842 	while (true) {
3843 		struct clk *clk = of_clk_get(np, i);
3844 
3845 		/* this parent is ready we can check the next one */
3846 		if (!IS_ERR(clk)) {
3847 			clk_put(clk);
3848 			i++;
3849 			continue;
3850 		}
3851 
3852 		/* at least one parent is not ready, we exit now */
3853 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3854 			return 0;
3855 
3856 		/*
3857 		 * Here we make assumption that the device tree is
3858 		 * written correctly. So an error means that there is
3859 		 * no more parent. As we didn't exit yet, then the
3860 		 * previous parent are ready. If there is no clock
3861 		 * parent, no need to wait for them, then we can
3862 		 * consider their absence as being ready
3863 		 */
3864 		return 1;
3865 	}
3866 }
3867 
3868 /**
3869  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3870  * @np: Device node pointer associated with clock provider
3871  * @index: clock index
3872  * @flags: pointer to top-level framework flags
3873  *
3874  * Detects if the clock-critical property exists and, if so, sets the
3875  * corresponding CLK_IS_CRITICAL flag.
3876  *
3877  * Do not use this function. It exists only for legacy Device Tree
3878  * bindings, such as the one-clock-per-node style that are outdated.
3879  * Those bindings typically put all clock data into .dts and the Linux
3880  * driver has no clock data, thus making it impossible to set this flag
3881  * correctly from the driver. Only those drivers may call
3882  * of_clk_detect_critical from their setup functions.
3883  *
3884  * Return: error code or zero on success
3885  */
3886 int of_clk_detect_critical(struct device_node *np,
3887 					  int index, unsigned long *flags)
3888 {
3889 	struct property *prop;
3890 	const __be32 *cur;
3891 	uint32_t idx;
3892 
3893 	if (!np || !flags)
3894 		return -EINVAL;
3895 
3896 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3897 		if (index == idx)
3898 			*flags |= CLK_IS_CRITICAL;
3899 
3900 	return 0;
3901 }
3902 
3903 /**
3904  * of_clk_init() - Scan and init clock providers from the DT
3905  * @matches: array of compatible values and init functions for providers.
3906  *
3907  * This function scans the device tree for matching clock providers
3908  * and calls their initialization functions. It also does it by trying
3909  * to follow the dependencies.
3910  */
3911 void __init of_clk_init(const struct of_device_id *matches)
3912 {
3913 	const struct of_device_id *match;
3914 	struct device_node *np;
3915 	struct clock_provider *clk_provider, *next;
3916 	bool is_init_done;
3917 	bool force = false;
3918 	LIST_HEAD(clk_provider_list);
3919 
3920 	if (!matches)
3921 		matches = &__clk_of_table;
3922 
3923 	/* First prepare the list of the clocks providers */
3924 	for_each_matching_node_and_match(np, matches, &match) {
3925 		struct clock_provider *parent;
3926 
3927 		if (!of_device_is_available(np))
3928 			continue;
3929 
3930 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3931 		if (!parent) {
3932 			list_for_each_entry_safe(clk_provider, next,
3933 						 &clk_provider_list, node) {
3934 				list_del(&clk_provider->node);
3935 				of_node_put(clk_provider->np);
3936 				kfree(clk_provider);
3937 			}
3938 			of_node_put(np);
3939 			return;
3940 		}
3941 
3942 		parent->clk_init_cb = match->data;
3943 		parent->np = of_node_get(np);
3944 		list_add_tail(&parent->node, &clk_provider_list);
3945 	}
3946 
3947 	while (!list_empty(&clk_provider_list)) {
3948 		is_init_done = false;
3949 		list_for_each_entry_safe(clk_provider, next,
3950 					&clk_provider_list, node) {
3951 			if (force || parent_ready(clk_provider->np)) {
3952 
3953 				/* Don't populate platform devices */
3954 				of_node_set_flag(clk_provider->np,
3955 						 OF_POPULATED);
3956 
3957 				clk_provider->clk_init_cb(clk_provider->np);
3958 				of_clk_set_defaults(clk_provider->np, true);
3959 
3960 				list_del(&clk_provider->node);
3961 				of_node_put(clk_provider->np);
3962 				kfree(clk_provider);
3963 				is_init_done = true;
3964 			}
3965 		}
3966 
3967 		/*
3968 		 * We didn't manage to initialize any of the
3969 		 * remaining providers during the last loop, so now we
3970 		 * initialize all the remaining ones unconditionally
3971 		 * in case the clock parent was not mandatory
3972 		 */
3973 		if (!is_init_done)
3974 			force = true;
3975 	}
3976 }
3977 #endif
3978