xref: /linux/drivers/clk/clk.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static const struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	if (!core->rpm_enabled)
112 		return 0;
113 
114 	return pm_runtime_resume_and_get(core->dev);
115 }
116 
117 static void clk_pm_runtime_put(struct clk_core *core)
118 {
119 	if (!core->rpm_enabled)
120 		return;
121 
122 	pm_runtime_put_sync(core->dev);
123 }
124 
125 /***           locking             ***/
126 static void clk_prepare_lock(void)
127 {
128 	if (!mutex_trylock(&prepare_lock)) {
129 		if (prepare_owner == current) {
130 			prepare_refcnt++;
131 			return;
132 		}
133 		mutex_lock(&prepare_lock);
134 	}
135 	WARN_ON_ONCE(prepare_owner != NULL);
136 	WARN_ON_ONCE(prepare_refcnt != 0);
137 	prepare_owner = current;
138 	prepare_refcnt = 1;
139 }
140 
141 static void clk_prepare_unlock(void)
142 {
143 	WARN_ON_ONCE(prepare_owner != current);
144 	WARN_ON_ONCE(prepare_refcnt == 0);
145 
146 	if (--prepare_refcnt)
147 		return;
148 	prepare_owner = NULL;
149 	mutex_unlock(&prepare_lock);
150 }
151 
152 static unsigned long clk_enable_lock(void)
153 	__acquires(enable_lock)
154 {
155 	unsigned long flags;
156 
157 	/*
158 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
159 	 * we already hold the lock. So, in that case, we rely only on
160 	 * reference counting.
161 	 */
162 	if (!IS_ENABLED(CONFIG_SMP) ||
163 	    !spin_trylock_irqsave(&enable_lock, flags)) {
164 		if (enable_owner == current) {
165 			enable_refcnt++;
166 			__acquire(enable_lock);
167 			if (!IS_ENABLED(CONFIG_SMP))
168 				local_save_flags(flags);
169 			return flags;
170 		}
171 		spin_lock_irqsave(&enable_lock, flags);
172 	}
173 	WARN_ON_ONCE(enable_owner != NULL);
174 	WARN_ON_ONCE(enable_refcnt != 0);
175 	enable_owner = current;
176 	enable_refcnt = 1;
177 	return flags;
178 }
179 
180 static void clk_enable_unlock(unsigned long flags)
181 	__releases(enable_lock)
182 {
183 	WARN_ON_ONCE(enable_owner != current);
184 	WARN_ON_ONCE(enable_refcnt == 0);
185 
186 	if (--enable_refcnt) {
187 		__release(enable_lock);
188 		return;
189 	}
190 	enable_owner = NULL;
191 	spin_unlock_irqrestore(&enable_lock, flags);
192 }
193 
194 static bool clk_core_rate_is_protected(struct clk_core *core)
195 {
196 	return core->protect_count;
197 }
198 
199 static bool clk_core_is_prepared(struct clk_core *core)
200 {
201 	bool ret = false;
202 
203 	/*
204 	 * .is_prepared is optional for clocks that can prepare
205 	 * fall back to software usage counter if it is missing
206 	 */
207 	if (!core->ops->is_prepared)
208 		return core->prepare_count;
209 
210 	if (!clk_pm_runtime_get(core)) {
211 		ret = core->ops->is_prepared(core->hw);
212 		clk_pm_runtime_put(core);
213 	}
214 
215 	return ret;
216 }
217 
218 static bool clk_core_is_enabled(struct clk_core *core)
219 {
220 	bool ret = false;
221 
222 	/*
223 	 * .is_enabled is only mandatory for clocks that gate
224 	 * fall back to software usage counter if .is_enabled is missing
225 	 */
226 	if (!core->ops->is_enabled)
227 		return core->enable_count;
228 
229 	/*
230 	 * Check if clock controller's device is runtime active before
231 	 * calling .is_enabled callback. If not, assume that clock is
232 	 * disabled, because we might be called from atomic context, from
233 	 * which pm_runtime_get() is not allowed.
234 	 * This function is called mainly from clk_disable_unused_subtree,
235 	 * which ensures proper runtime pm activation of controller before
236 	 * taking enable spinlock, but the below check is needed if one tries
237 	 * to call it from other places.
238 	 */
239 	if (core->rpm_enabled) {
240 		pm_runtime_get_noresume(core->dev);
241 		if (!pm_runtime_active(core->dev)) {
242 			ret = false;
243 			goto done;
244 		}
245 	}
246 
247 	/*
248 	 * This could be called with the enable lock held, or from atomic
249 	 * context. If the parent isn't enabled already, we can't do
250 	 * anything here. We can also assume this clock isn't enabled.
251 	 */
252 	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
253 		if (!clk_core_is_enabled(core->parent)) {
254 			ret = false;
255 			goto done;
256 		}
257 
258 	ret = core->ops->is_enabled(core->hw);
259 done:
260 	if (core->rpm_enabled)
261 		pm_runtime_put(core->dev);
262 
263 	return ret;
264 }
265 
266 /***    helper functions   ***/
267 
268 const char *__clk_get_name(const struct clk *clk)
269 {
270 	return !clk ? NULL : clk->core->name;
271 }
272 EXPORT_SYMBOL_GPL(__clk_get_name);
273 
274 const char *clk_hw_get_name(const struct clk_hw *hw)
275 {
276 	return hw->core->name;
277 }
278 EXPORT_SYMBOL_GPL(clk_hw_get_name);
279 
280 struct clk_hw *__clk_get_hw(struct clk *clk)
281 {
282 	return !clk ? NULL : clk->core->hw;
283 }
284 EXPORT_SYMBOL_GPL(__clk_get_hw);
285 
286 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
287 {
288 	return hw->core->num_parents;
289 }
290 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
291 
292 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
293 {
294 	return hw->core->parent ? hw->core->parent->hw : NULL;
295 }
296 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
297 
298 static struct clk_core *__clk_lookup_subtree(const char *name,
299 					     struct clk_core *core)
300 {
301 	struct clk_core *child;
302 	struct clk_core *ret;
303 
304 	if (!strcmp(core->name, name))
305 		return core;
306 
307 	hlist_for_each_entry(child, &core->children, child_node) {
308 		ret = __clk_lookup_subtree(name, child);
309 		if (ret)
310 			return ret;
311 	}
312 
313 	return NULL;
314 }
315 
316 static struct clk_core *clk_core_lookup(const char *name)
317 {
318 	struct clk_core *root_clk;
319 	struct clk_core *ret;
320 
321 	if (!name)
322 		return NULL;
323 
324 	/* search the 'proper' clk tree first */
325 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
326 		ret = __clk_lookup_subtree(name, root_clk);
327 		if (ret)
328 			return ret;
329 	}
330 
331 	/* if not found, then search the orphan tree */
332 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
333 		ret = __clk_lookup_subtree(name, root_clk);
334 		if (ret)
335 			return ret;
336 	}
337 
338 	return NULL;
339 }
340 
341 #ifdef CONFIG_OF
342 static int of_parse_clkspec(const struct device_node *np, int index,
343 			    const char *name, struct of_phandle_args *out_args);
344 static struct clk_hw *
345 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
346 #else
347 static inline int of_parse_clkspec(const struct device_node *np, int index,
348 				   const char *name,
349 				   struct of_phandle_args *out_args)
350 {
351 	return -ENOENT;
352 }
353 static inline struct clk_hw *
354 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
355 {
356 	return ERR_PTR(-ENOENT);
357 }
358 #endif
359 
360 /**
361  * clk_core_get - Find the clk_core parent of a clk
362  * @core: clk to find parent of
363  * @p_index: parent index to search for
364  *
365  * This is the preferred method for clk providers to find the parent of a
366  * clk when that parent is external to the clk controller. The parent_names
367  * array is indexed and treated as a local name matching a string in the device
368  * node's 'clock-names' property or as the 'con_id' matching the device's
369  * dev_name() in a clk_lookup. This allows clk providers to use their own
370  * namespace instead of looking for a globally unique parent string.
371  *
372  * For example the following DT snippet would allow a clock registered by the
373  * clock-controller@c001 that has a clk_init_data::parent_data array
374  * with 'xtal' in the 'name' member to find the clock provided by the
375  * clock-controller@f00abcd without needing to get the globally unique name of
376  * the xtal clk.
377  *
378  *      parent: clock-controller@f00abcd {
379  *              reg = <0xf00abcd 0xabcd>;
380  *              #clock-cells = <0>;
381  *      };
382  *
383  *      clock-controller@c001 {
384  *              reg = <0xc001 0xf00d>;
385  *              clocks = <&parent>;
386  *              clock-names = "xtal";
387  *              #clock-cells = <1>;
388  *      };
389  *
390  * Returns: -ENOENT when the provider can't be found or the clk doesn't
391  * exist in the provider or the name can't be found in the DT node or
392  * in a clkdev lookup. NULL when the provider knows about the clk but it
393  * isn't provided on this system.
394  * A valid clk_core pointer when the clk can be found in the provider.
395  */
396 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
397 {
398 	const char *name = core->parents[p_index].fw_name;
399 	int index = core->parents[p_index].index;
400 	struct clk_hw *hw = ERR_PTR(-ENOENT);
401 	struct device *dev = core->dev;
402 	const char *dev_id = dev ? dev_name(dev) : NULL;
403 	struct device_node *np = core->of_node;
404 	struct of_phandle_args clkspec;
405 
406 	if (np && (name || index >= 0) &&
407 	    !of_parse_clkspec(np, index, name, &clkspec)) {
408 		hw = of_clk_get_hw_from_clkspec(&clkspec);
409 		of_node_put(clkspec.np);
410 	} else if (name) {
411 		/*
412 		 * If the DT search above couldn't find the provider fallback to
413 		 * looking up via clkdev based clk_lookups.
414 		 */
415 		hw = clk_find_hw(dev_id, name);
416 	}
417 
418 	if (IS_ERR(hw))
419 		return ERR_CAST(hw);
420 
421 	if (!hw)
422 		return NULL;
423 
424 	return hw->core;
425 }
426 
427 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
428 {
429 	struct clk_parent_map *entry = &core->parents[index];
430 	struct clk_core *parent;
431 
432 	if (entry->hw) {
433 		parent = entry->hw->core;
434 	} else {
435 		parent = clk_core_get(core, index);
436 		if (PTR_ERR(parent) == -ENOENT && entry->name)
437 			parent = clk_core_lookup(entry->name);
438 	}
439 
440 	/*
441 	 * We have a direct reference but it isn't registered yet?
442 	 * Orphan it and let clk_reparent() update the orphan status
443 	 * when the parent is registered.
444 	 */
445 	if (!parent)
446 		parent = ERR_PTR(-EPROBE_DEFER);
447 
448 	/* Only cache it if it's not an error */
449 	if (!IS_ERR(parent))
450 		entry->core = parent;
451 }
452 
453 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
454 							 u8 index)
455 {
456 	if (!core || index >= core->num_parents || !core->parents)
457 		return NULL;
458 
459 	if (!core->parents[index].core)
460 		clk_core_fill_parent_index(core, index);
461 
462 	return core->parents[index].core;
463 }
464 
465 struct clk_hw *
466 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
467 {
468 	struct clk_core *parent;
469 
470 	parent = clk_core_get_parent_by_index(hw->core, index);
471 
472 	return !parent ? NULL : parent->hw;
473 }
474 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
475 
476 unsigned int __clk_get_enable_count(struct clk *clk)
477 {
478 	return !clk ? 0 : clk->core->enable_count;
479 }
480 
481 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
482 {
483 	if (!core)
484 		return 0;
485 
486 	if (!core->num_parents || core->parent)
487 		return core->rate;
488 
489 	/*
490 	 * Clk must have a parent because num_parents > 0 but the parent isn't
491 	 * known yet. Best to return 0 as the rate of this clk until we can
492 	 * properly recalc the rate based on the parent's rate.
493 	 */
494 	return 0;
495 }
496 
497 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
498 {
499 	return clk_core_get_rate_nolock(hw->core);
500 }
501 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
502 
503 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
504 {
505 	if (!core)
506 		return 0;
507 
508 	return core->accuracy;
509 }
510 
511 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
512 {
513 	return hw->core->flags;
514 }
515 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
516 
517 bool clk_hw_is_prepared(const struct clk_hw *hw)
518 {
519 	return clk_core_is_prepared(hw->core);
520 }
521 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
522 
523 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
524 {
525 	return clk_core_rate_is_protected(hw->core);
526 }
527 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
528 
529 bool clk_hw_is_enabled(const struct clk_hw *hw)
530 {
531 	return clk_core_is_enabled(hw->core);
532 }
533 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
534 
535 bool __clk_is_enabled(struct clk *clk)
536 {
537 	if (!clk)
538 		return false;
539 
540 	return clk_core_is_enabled(clk->core);
541 }
542 EXPORT_SYMBOL_GPL(__clk_is_enabled);
543 
544 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
545 			   unsigned long best, unsigned long flags)
546 {
547 	if (flags & CLK_MUX_ROUND_CLOSEST)
548 		return abs(now - rate) < abs(best - rate);
549 
550 	return now <= rate && now > best;
551 }
552 
553 static void clk_core_init_rate_req(struct clk_core * const core,
554 				   struct clk_rate_request *req,
555 				   unsigned long rate);
556 
557 static int clk_core_round_rate_nolock(struct clk_core *core,
558 				      struct clk_rate_request *req);
559 
560 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
561 {
562 	struct clk_core *tmp;
563 	unsigned int i;
564 
565 	/* Optimize for the case where the parent is already the parent. */
566 	if (core->parent == parent)
567 		return true;
568 
569 	for (i = 0; i < core->num_parents; i++) {
570 		tmp = clk_core_get_parent_by_index(core, i);
571 		if (!tmp)
572 			continue;
573 
574 		if (tmp == parent)
575 			return true;
576 	}
577 
578 	return false;
579 }
580 
581 static void
582 clk_core_forward_rate_req(struct clk_core *core,
583 			  const struct clk_rate_request *old_req,
584 			  struct clk_core *parent,
585 			  struct clk_rate_request *req,
586 			  unsigned long parent_rate)
587 {
588 	if (WARN_ON(!clk_core_has_parent(core, parent)))
589 		return;
590 
591 	clk_core_init_rate_req(parent, req, parent_rate);
592 
593 	if (req->min_rate < old_req->min_rate)
594 		req->min_rate = old_req->min_rate;
595 
596 	if (req->max_rate > old_req->max_rate)
597 		req->max_rate = old_req->max_rate;
598 }
599 
600 static int
601 clk_core_determine_rate_no_reparent(struct clk_hw *hw,
602 				    struct clk_rate_request *req)
603 {
604 	struct clk_core *core = hw->core;
605 	struct clk_core *parent = core->parent;
606 	unsigned long best;
607 	int ret;
608 
609 	if (core->flags & CLK_SET_RATE_PARENT) {
610 		struct clk_rate_request parent_req;
611 
612 		if (!parent) {
613 			req->rate = 0;
614 			return 0;
615 		}
616 
617 		clk_core_forward_rate_req(core, req, parent, &parent_req,
618 					  req->rate);
619 
620 		trace_clk_rate_request_start(&parent_req);
621 
622 		ret = clk_core_round_rate_nolock(parent, &parent_req);
623 		if (ret)
624 			return ret;
625 
626 		trace_clk_rate_request_done(&parent_req);
627 
628 		best = parent_req.rate;
629 	} else if (parent) {
630 		best = clk_core_get_rate_nolock(parent);
631 	} else {
632 		best = clk_core_get_rate_nolock(core);
633 	}
634 
635 	req->best_parent_rate = best;
636 	req->rate = best;
637 
638 	return 0;
639 }
640 
641 int clk_mux_determine_rate_flags(struct clk_hw *hw,
642 				 struct clk_rate_request *req,
643 				 unsigned long flags)
644 {
645 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
646 	int i, num_parents, ret;
647 	unsigned long best = 0;
648 
649 	/* if NO_REPARENT flag set, pass through to current parent */
650 	if (core->flags & CLK_SET_RATE_NO_REPARENT)
651 		return clk_core_determine_rate_no_reparent(hw, req);
652 
653 	/* find the parent that can provide the fastest rate <= rate */
654 	num_parents = core->num_parents;
655 	for (i = 0; i < num_parents; i++) {
656 		unsigned long parent_rate;
657 
658 		parent = clk_core_get_parent_by_index(core, i);
659 		if (!parent)
660 			continue;
661 
662 		if (core->flags & CLK_SET_RATE_PARENT) {
663 			struct clk_rate_request parent_req;
664 
665 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
666 
667 			trace_clk_rate_request_start(&parent_req);
668 
669 			ret = clk_core_round_rate_nolock(parent, &parent_req);
670 			if (ret)
671 				continue;
672 
673 			trace_clk_rate_request_done(&parent_req);
674 
675 			parent_rate = parent_req.rate;
676 		} else {
677 			parent_rate = clk_core_get_rate_nolock(parent);
678 		}
679 
680 		if (mux_is_better_rate(req->rate, parent_rate,
681 				       best, flags)) {
682 			best_parent = parent;
683 			best = parent_rate;
684 		}
685 	}
686 
687 	if (!best_parent)
688 		return -EINVAL;
689 
690 	req->best_parent_hw = best_parent->hw;
691 	req->best_parent_rate = best;
692 	req->rate = best;
693 
694 	return 0;
695 }
696 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
697 
698 struct clk *__clk_lookup(const char *name)
699 {
700 	struct clk_core *core = clk_core_lookup(name);
701 
702 	return !core ? NULL : core->hw->clk;
703 }
704 
705 static void clk_core_get_boundaries(struct clk_core *core,
706 				    unsigned long *min_rate,
707 				    unsigned long *max_rate)
708 {
709 	struct clk *clk_user;
710 
711 	lockdep_assert_held(&prepare_lock);
712 
713 	*min_rate = core->min_rate;
714 	*max_rate = core->max_rate;
715 
716 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
717 		*min_rate = max(*min_rate, clk_user->min_rate);
718 
719 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
720 		*max_rate = min(*max_rate, clk_user->max_rate);
721 }
722 
723 /*
724  * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
725  * @hw: the hw clk we want to get the range from
726  * @min_rate: pointer to the variable that will hold the minimum
727  * @max_rate: pointer to the variable that will hold the maximum
728  *
729  * Fills the @min_rate and @max_rate variables with the minimum and
730  * maximum that clock can reach.
731  */
732 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
733 			   unsigned long *max_rate)
734 {
735 	clk_core_get_boundaries(hw->core, min_rate, max_rate);
736 }
737 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
738 
739 static bool clk_core_check_boundaries(struct clk_core *core,
740 				      unsigned long min_rate,
741 				      unsigned long max_rate)
742 {
743 	struct clk *user;
744 
745 	lockdep_assert_held(&prepare_lock);
746 
747 	if (min_rate > core->max_rate || max_rate < core->min_rate)
748 		return false;
749 
750 	hlist_for_each_entry(user, &core->clks, clks_node)
751 		if (min_rate > user->max_rate || max_rate < user->min_rate)
752 			return false;
753 
754 	return true;
755 }
756 
757 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
758 			   unsigned long max_rate)
759 {
760 	hw->core->min_rate = min_rate;
761 	hw->core->max_rate = max_rate;
762 }
763 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
764 
765 /*
766  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
767  * @hw: mux type clk to determine rate on
768  * @req: rate request, also used to return preferred parent and frequencies
769  *
770  * Helper for finding best parent to provide a given frequency. This can be used
771  * directly as a determine_rate callback (e.g. for a mux), or from a more
772  * complex clock that may combine a mux with other operations.
773  *
774  * Returns: 0 on success, -EERROR value on error
775  */
776 int __clk_mux_determine_rate(struct clk_hw *hw,
777 			     struct clk_rate_request *req)
778 {
779 	return clk_mux_determine_rate_flags(hw, req, 0);
780 }
781 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
782 
783 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
784 				     struct clk_rate_request *req)
785 {
786 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
787 }
788 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
789 
790 /*
791  * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
792  * @hw: mux type clk to determine rate on
793  * @req: rate request, also used to return preferred frequency
794  *
795  * Helper for finding best parent rate to provide a given frequency.
796  * This can be used directly as a determine_rate callback (e.g. for a
797  * mux), or from a more complex clock that may combine a mux with other
798  * operations.
799  *
800  * Returns: 0 on success, -EERROR value on error
801  */
802 int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
803 				      struct clk_rate_request *req)
804 {
805 	return clk_core_determine_rate_no_reparent(hw, req);
806 }
807 EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
808 
809 /***        clk api        ***/
810 
811 static void clk_core_rate_unprotect(struct clk_core *core)
812 {
813 	lockdep_assert_held(&prepare_lock);
814 
815 	if (!core)
816 		return;
817 
818 	if (WARN(core->protect_count == 0,
819 	    "%s already unprotected\n", core->name))
820 		return;
821 
822 	if (--core->protect_count > 0)
823 		return;
824 
825 	clk_core_rate_unprotect(core->parent);
826 }
827 
828 static int clk_core_rate_nuke_protect(struct clk_core *core)
829 {
830 	int ret;
831 
832 	lockdep_assert_held(&prepare_lock);
833 
834 	if (!core)
835 		return -EINVAL;
836 
837 	if (core->protect_count == 0)
838 		return 0;
839 
840 	ret = core->protect_count;
841 	core->protect_count = 1;
842 	clk_core_rate_unprotect(core);
843 
844 	return ret;
845 }
846 
847 /**
848  * clk_rate_exclusive_put - release exclusivity over clock rate control
849  * @clk: the clk over which the exclusivity is released
850  *
851  * clk_rate_exclusive_put() completes a critical section during which a clock
852  * consumer cannot tolerate any other consumer making any operation on the
853  * clock which could result in a rate change or rate glitch. Exclusive clocks
854  * cannot have their rate changed, either directly or indirectly due to changes
855  * further up the parent chain of clocks. As a result, clocks up parent chain
856  * also get under exclusive control of the calling consumer.
857  *
858  * If exlusivity is claimed more than once on clock, even by the same consumer,
859  * the rate effectively gets locked as exclusivity can't be preempted.
860  *
861  * Calls to clk_rate_exclusive_put() must be balanced with calls to
862  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
863  * error status.
864  */
865 void clk_rate_exclusive_put(struct clk *clk)
866 {
867 	if (!clk)
868 		return;
869 
870 	clk_prepare_lock();
871 
872 	/*
873 	 * if there is something wrong with this consumer protect count, stop
874 	 * here before messing with the provider
875 	 */
876 	if (WARN_ON(clk->exclusive_count <= 0))
877 		goto out;
878 
879 	clk_core_rate_unprotect(clk->core);
880 	clk->exclusive_count--;
881 out:
882 	clk_prepare_unlock();
883 }
884 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
885 
886 static void clk_core_rate_protect(struct clk_core *core)
887 {
888 	lockdep_assert_held(&prepare_lock);
889 
890 	if (!core)
891 		return;
892 
893 	if (core->protect_count == 0)
894 		clk_core_rate_protect(core->parent);
895 
896 	core->protect_count++;
897 }
898 
899 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
900 {
901 	lockdep_assert_held(&prepare_lock);
902 
903 	if (!core)
904 		return;
905 
906 	if (count == 0)
907 		return;
908 
909 	clk_core_rate_protect(core);
910 	core->protect_count = count;
911 }
912 
913 /**
914  * clk_rate_exclusive_get - get exclusivity over the clk rate control
915  * @clk: the clk over which the exclusity of rate control is requested
916  *
917  * clk_rate_exclusive_get() begins a critical section during which a clock
918  * consumer cannot tolerate any other consumer making any operation on the
919  * clock which could result in a rate change or rate glitch. Exclusive clocks
920  * cannot have their rate changed, either directly or indirectly due to changes
921  * further up the parent chain of clocks. As a result, clocks up parent chain
922  * also get under exclusive control of the calling consumer.
923  *
924  * If exlusivity is claimed more than once on clock, even by the same consumer,
925  * the rate effectively gets locked as exclusivity can't be preempted.
926  *
927  * Calls to clk_rate_exclusive_get() should be balanced with calls to
928  * clk_rate_exclusive_put(). Calls to this function may sleep.
929  * Returns 0 on success, -EERROR otherwise
930  */
931 int clk_rate_exclusive_get(struct clk *clk)
932 {
933 	if (!clk)
934 		return 0;
935 
936 	clk_prepare_lock();
937 	clk_core_rate_protect(clk->core);
938 	clk->exclusive_count++;
939 	clk_prepare_unlock();
940 
941 	return 0;
942 }
943 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
944 
945 static void devm_clk_rate_exclusive_put(void *data)
946 {
947 	struct clk *clk = data;
948 
949 	clk_rate_exclusive_put(clk);
950 }
951 
952 int devm_clk_rate_exclusive_get(struct device *dev, struct clk *clk)
953 {
954 	int ret;
955 
956 	ret = clk_rate_exclusive_get(clk);
957 	if (ret)
958 		return ret;
959 
960 	return devm_add_action_or_reset(dev, devm_clk_rate_exclusive_put, clk);
961 }
962 EXPORT_SYMBOL_GPL(devm_clk_rate_exclusive_get);
963 
964 static void clk_core_unprepare(struct clk_core *core)
965 {
966 	lockdep_assert_held(&prepare_lock);
967 
968 	if (!core)
969 		return;
970 
971 	if (WARN(core->prepare_count == 0,
972 	    "%s already unprepared\n", core->name))
973 		return;
974 
975 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
976 	    "Unpreparing critical %s\n", core->name))
977 		return;
978 
979 	if (core->flags & CLK_SET_RATE_GATE)
980 		clk_core_rate_unprotect(core);
981 
982 	if (--core->prepare_count > 0)
983 		return;
984 
985 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
986 
987 	trace_clk_unprepare(core);
988 
989 	if (core->ops->unprepare)
990 		core->ops->unprepare(core->hw);
991 
992 	trace_clk_unprepare_complete(core);
993 	clk_core_unprepare(core->parent);
994 	clk_pm_runtime_put(core);
995 }
996 
997 static void clk_core_unprepare_lock(struct clk_core *core)
998 {
999 	clk_prepare_lock();
1000 	clk_core_unprepare(core);
1001 	clk_prepare_unlock();
1002 }
1003 
1004 /**
1005  * clk_unprepare - undo preparation of a clock source
1006  * @clk: the clk being unprepared
1007  *
1008  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
1009  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
1010  * if the operation may sleep.  One example is a clk which is accessed over
1011  * I2c.  In the complex case a clk gate operation may require a fast and a slow
1012  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
1013  * exclusive.  In fact clk_disable must be called before clk_unprepare.
1014  */
1015 void clk_unprepare(struct clk *clk)
1016 {
1017 	if (IS_ERR_OR_NULL(clk))
1018 		return;
1019 
1020 	clk_core_unprepare_lock(clk->core);
1021 }
1022 EXPORT_SYMBOL_GPL(clk_unprepare);
1023 
1024 static int clk_core_prepare(struct clk_core *core)
1025 {
1026 	int ret = 0;
1027 
1028 	lockdep_assert_held(&prepare_lock);
1029 
1030 	if (!core)
1031 		return 0;
1032 
1033 	if (core->prepare_count == 0) {
1034 		ret = clk_pm_runtime_get(core);
1035 		if (ret)
1036 			return ret;
1037 
1038 		ret = clk_core_prepare(core->parent);
1039 		if (ret)
1040 			goto runtime_put;
1041 
1042 		trace_clk_prepare(core);
1043 
1044 		if (core->ops->prepare)
1045 			ret = core->ops->prepare(core->hw);
1046 
1047 		trace_clk_prepare_complete(core);
1048 
1049 		if (ret)
1050 			goto unprepare;
1051 	}
1052 
1053 	core->prepare_count++;
1054 
1055 	/*
1056 	 * CLK_SET_RATE_GATE is a special case of clock protection
1057 	 * Instead of a consumer claiming exclusive rate control, it is
1058 	 * actually the provider which prevents any consumer from making any
1059 	 * operation which could result in a rate change or rate glitch while
1060 	 * the clock is prepared.
1061 	 */
1062 	if (core->flags & CLK_SET_RATE_GATE)
1063 		clk_core_rate_protect(core);
1064 
1065 	return 0;
1066 unprepare:
1067 	clk_core_unprepare(core->parent);
1068 runtime_put:
1069 	clk_pm_runtime_put(core);
1070 	return ret;
1071 }
1072 
1073 static int clk_core_prepare_lock(struct clk_core *core)
1074 {
1075 	int ret;
1076 
1077 	clk_prepare_lock();
1078 	ret = clk_core_prepare(core);
1079 	clk_prepare_unlock();
1080 
1081 	return ret;
1082 }
1083 
1084 /**
1085  * clk_prepare - prepare a clock source
1086  * @clk: the clk being prepared
1087  *
1088  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1089  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1090  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1091  * the complex case a clk ungate operation may require a fast and a slow part.
1092  * It is this reason that clk_prepare and clk_enable are not mutually
1093  * exclusive.  In fact clk_prepare must be called before clk_enable.
1094  * Returns 0 on success, -EERROR otherwise.
1095  */
1096 int clk_prepare(struct clk *clk)
1097 {
1098 	if (!clk)
1099 		return 0;
1100 
1101 	return clk_core_prepare_lock(clk->core);
1102 }
1103 EXPORT_SYMBOL_GPL(clk_prepare);
1104 
1105 static void clk_core_disable(struct clk_core *core)
1106 {
1107 	lockdep_assert_held(&enable_lock);
1108 
1109 	if (!core)
1110 		return;
1111 
1112 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1113 		return;
1114 
1115 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1116 	    "Disabling critical %s\n", core->name))
1117 		return;
1118 
1119 	if (--core->enable_count > 0)
1120 		return;
1121 
1122 	trace_clk_disable(core);
1123 
1124 	if (core->ops->disable)
1125 		core->ops->disable(core->hw);
1126 
1127 	trace_clk_disable_complete(core);
1128 
1129 	clk_core_disable(core->parent);
1130 }
1131 
1132 static void clk_core_disable_lock(struct clk_core *core)
1133 {
1134 	unsigned long flags;
1135 
1136 	flags = clk_enable_lock();
1137 	clk_core_disable(core);
1138 	clk_enable_unlock(flags);
1139 }
1140 
1141 /**
1142  * clk_disable - gate a clock
1143  * @clk: the clk being gated
1144  *
1145  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1146  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1147  * clk if the operation is fast and will never sleep.  One example is a
1148  * SoC-internal clk which is controlled via simple register writes.  In the
1149  * complex case a clk gate operation may require a fast and a slow part.  It is
1150  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1151  * In fact clk_disable must be called before clk_unprepare.
1152  */
1153 void clk_disable(struct clk *clk)
1154 {
1155 	if (IS_ERR_OR_NULL(clk))
1156 		return;
1157 
1158 	clk_core_disable_lock(clk->core);
1159 }
1160 EXPORT_SYMBOL_GPL(clk_disable);
1161 
1162 static int clk_core_enable(struct clk_core *core)
1163 {
1164 	int ret = 0;
1165 
1166 	lockdep_assert_held(&enable_lock);
1167 
1168 	if (!core)
1169 		return 0;
1170 
1171 	if (WARN(core->prepare_count == 0,
1172 	    "Enabling unprepared %s\n", core->name))
1173 		return -ESHUTDOWN;
1174 
1175 	if (core->enable_count == 0) {
1176 		ret = clk_core_enable(core->parent);
1177 
1178 		if (ret)
1179 			return ret;
1180 
1181 		trace_clk_enable(core);
1182 
1183 		if (core->ops->enable)
1184 			ret = core->ops->enable(core->hw);
1185 
1186 		trace_clk_enable_complete(core);
1187 
1188 		if (ret) {
1189 			clk_core_disable(core->parent);
1190 			return ret;
1191 		}
1192 	}
1193 
1194 	core->enable_count++;
1195 	return 0;
1196 }
1197 
1198 static int clk_core_enable_lock(struct clk_core *core)
1199 {
1200 	unsigned long flags;
1201 	int ret;
1202 
1203 	flags = clk_enable_lock();
1204 	ret = clk_core_enable(core);
1205 	clk_enable_unlock(flags);
1206 
1207 	return ret;
1208 }
1209 
1210 /**
1211  * clk_gate_restore_context - restore context for poweroff
1212  * @hw: the clk_hw pointer of clock whose state is to be restored
1213  *
1214  * The clock gate restore context function enables or disables
1215  * the gate clocks based on the enable_count. This is done in cases
1216  * where the clock context is lost and based on the enable_count
1217  * the clock either needs to be enabled/disabled. This
1218  * helps restore the state of gate clocks.
1219  */
1220 void clk_gate_restore_context(struct clk_hw *hw)
1221 {
1222 	struct clk_core *core = hw->core;
1223 
1224 	if (core->enable_count)
1225 		core->ops->enable(hw);
1226 	else
1227 		core->ops->disable(hw);
1228 }
1229 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1230 
1231 static int clk_core_save_context(struct clk_core *core)
1232 {
1233 	struct clk_core *child;
1234 	int ret = 0;
1235 
1236 	hlist_for_each_entry(child, &core->children, child_node) {
1237 		ret = clk_core_save_context(child);
1238 		if (ret < 0)
1239 			return ret;
1240 	}
1241 
1242 	if (core->ops && core->ops->save_context)
1243 		ret = core->ops->save_context(core->hw);
1244 
1245 	return ret;
1246 }
1247 
1248 static void clk_core_restore_context(struct clk_core *core)
1249 {
1250 	struct clk_core *child;
1251 
1252 	if (core->ops && core->ops->restore_context)
1253 		core->ops->restore_context(core->hw);
1254 
1255 	hlist_for_each_entry(child, &core->children, child_node)
1256 		clk_core_restore_context(child);
1257 }
1258 
1259 /**
1260  * clk_save_context - save clock context for poweroff
1261  *
1262  * Saves the context of the clock register for powerstates in which the
1263  * contents of the registers will be lost. Occurs deep within the suspend
1264  * code.  Returns 0 on success.
1265  */
1266 int clk_save_context(void)
1267 {
1268 	struct clk_core *clk;
1269 	int ret;
1270 
1271 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1272 		ret = clk_core_save_context(clk);
1273 		if (ret < 0)
1274 			return ret;
1275 	}
1276 
1277 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1278 		ret = clk_core_save_context(clk);
1279 		if (ret < 0)
1280 			return ret;
1281 	}
1282 
1283 	return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(clk_save_context);
1286 
1287 /**
1288  * clk_restore_context - restore clock context after poweroff
1289  *
1290  * Restore the saved clock context upon resume.
1291  *
1292  */
1293 void clk_restore_context(void)
1294 {
1295 	struct clk_core *core;
1296 
1297 	hlist_for_each_entry(core, &clk_root_list, child_node)
1298 		clk_core_restore_context(core);
1299 
1300 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1301 		clk_core_restore_context(core);
1302 }
1303 EXPORT_SYMBOL_GPL(clk_restore_context);
1304 
1305 /**
1306  * clk_enable - ungate a clock
1307  * @clk: the clk being ungated
1308  *
1309  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1310  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1311  * if the operation will never sleep.  One example is a SoC-internal clk which
1312  * is controlled via simple register writes.  In the complex case a clk ungate
1313  * operation may require a fast and a slow part.  It is this reason that
1314  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1315  * must be called before clk_enable.  Returns 0 on success, -EERROR
1316  * otherwise.
1317  */
1318 int clk_enable(struct clk *clk)
1319 {
1320 	if (!clk)
1321 		return 0;
1322 
1323 	return clk_core_enable_lock(clk->core);
1324 }
1325 EXPORT_SYMBOL_GPL(clk_enable);
1326 
1327 /**
1328  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1329  * @clk: clock source
1330  *
1331  * Returns true if clk_prepare() implicitly enables the clock, effectively
1332  * making clk_enable()/clk_disable() no-ops, false otherwise.
1333  *
1334  * This is of interest mainly to power management code where actually
1335  * disabling the clock also requires unpreparing it to have any material
1336  * effect.
1337  *
1338  * Regardless of the value returned here, the caller must always invoke
1339  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1340  * to be right.
1341  */
1342 bool clk_is_enabled_when_prepared(struct clk *clk)
1343 {
1344 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1345 }
1346 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1347 
1348 static int clk_core_prepare_enable(struct clk_core *core)
1349 {
1350 	int ret;
1351 
1352 	ret = clk_core_prepare_lock(core);
1353 	if (ret)
1354 		return ret;
1355 
1356 	ret = clk_core_enable_lock(core);
1357 	if (ret)
1358 		clk_core_unprepare_lock(core);
1359 
1360 	return ret;
1361 }
1362 
1363 static void clk_core_disable_unprepare(struct clk_core *core)
1364 {
1365 	clk_core_disable_lock(core);
1366 	clk_core_unprepare_lock(core);
1367 }
1368 
1369 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1370 {
1371 	struct clk_core *child;
1372 
1373 	lockdep_assert_held(&prepare_lock);
1374 
1375 	hlist_for_each_entry(child, &core->children, child_node)
1376 		clk_unprepare_unused_subtree(child);
1377 
1378 	if (core->prepare_count)
1379 		return;
1380 
1381 	if (core->flags & CLK_IGNORE_UNUSED)
1382 		return;
1383 
1384 	if (clk_pm_runtime_get(core))
1385 		return;
1386 
1387 	if (clk_core_is_prepared(core)) {
1388 		trace_clk_unprepare(core);
1389 		if (core->ops->unprepare_unused)
1390 			core->ops->unprepare_unused(core->hw);
1391 		else if (core->ops->unprepare)
1392 			core->ops->unprepare(core->hw);
1393 		trace_clk_unprepare_complete(core);
1394 	}
1395 
1396 	clk_pm_runtime_put(core);
1397 }
1398 
1399 static void __init clk_disable_unused_subtree(struct clk_core *core)
1400 {
1401 	struct clk_core *child;
1402 	unsigned long flags;
1403 
1404 	lockdep_assert_held(&prepare_lock);
1405 
1406 	hlist_for_each_entry(child, &core->children, child_node)
1407 		clk_disable_unused_subtree(child);
1408 
1409 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1410 		clk_core_prepare_enable(core->parent);
1411 
1412 	if (clk_pm_runtime_get(core))
1413 		goto unprepare_out;
1414 
1415 	flags = clk_enable_lock();
1416 
1417 	if (core->enable_count)
1418 		goto unlock_out;
1419 
1420 	if (core->flags & CLK_IGNORE_UNUSED)
1421 		goto unlock_out;
1422 
1423 	/*
1424 	 * some gate clocks have special needs during the disable-unused
1425 	 * sequence.  call .disable_unused if available, otherwise fall
1426 	 * back to .disable
1427 	 */
1428 	if (clk_core_is_enabled(core)) {
1429 		trace_clk_disable(core);
1430 		if (core->ops->disable_unused)
1431 			core->ops->disable_unused(core->hw);
1432 		else if (core->ops->disable)
1433 			core->ops->disable(core->hw);
1434 		trace_clk_disable_complete(core);
1435 	}
1436 
1437 unlock_out:
1438 	clk_enable_unlock(flags);
1439 	clk_pm_runtime_put(core);
1440 unprepare_out:
1441 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1442 		clk_core_disable_unprepare(core->parent);
1443 }
1444 
1445 static bool clk_ignore_unused __initdata;
1446 static int __init clk_ignore_unused_setup(char *__unused)
1447 {
1448 	clk_ignore_unused = true;
1449 	return 1;
1450 }
1451 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1452 
1453 static int __init clk_disable_unused(void)
1454 {
1455 	struct clk_core *core;
1456 
1457 	if (clk_ignore_unused) {
1458 		pr_warn("clk: Not disabling unused clocks\n");
1459 		return 0;
1460 	}
1461 
1462 	pr_info("clk: Disabling unused clocks\n");
1463 
1464 	clk_prepare_lock();
1465 
1466 	hlist_for_each_entry(core, &clk_root_list, child_node)
1467 		clk_disable_unused_subtree(core);
1468 
1469 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1470 		clk_disable_unused_subtree(core);
1471 
1472 	hlist_for_each_entry(core, &clk_root_list, child_node)
1473 		clk_unprepare_unused_subtree(core);
1474 
1475 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1476 		clk_unprepare_unused_subtree(core);
1477 
1478 	clk_prepare_unlock();
1479 
1480 	return 0;
1481 }
1482 late_initcall_sync(clk_disable_unused);
1483 
1484 static int clk_core_determine_round_nolock(struct clk_core *core,
1485 					   struct clk_rate_request *req)
1486 {
1487 	long rate;
1488 
1489 	lockdep_assert_held(&prepare_lock);
1490 
1491 	if (!core)
1492 		return 0;
1493 
1494 	/*
1495 	 * Some clock providers hand-craft their clk_rate_requests and
1496 	 * might not fill min_rate and max_rate.
1497 	 *
1498 	 * If it's the case, clamping the rate is equivalent to setting
1499 	 * the rate to 0 which is bad. Skip the clamping but complain so
1500 	 * that it gets fixed, hopefully.
1501 	 */
1502 	if (!req->min_rate && !req->max_rate)
1503 		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1504 			__func__, core->name);
1505 	else
1506 		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1507 
1508 	/*
1509 	 * At this point, core protection will be disabled
1510 	 * - if the provider is not protected at all
1511 	 * - if the calling consumer is the only one which has exclusivity
1512 	 *   over the provider
1513 	 */
1514 	if (clk_core_rate_is_protected(core)) {
1515 		req->rate = core->rate;
1516 	} else if (core->ops->determine_rate) {
1517 		return core->ops->determine_rate(core->hw, req);
1518 	} else if (core->ops->round_rate) {
1519 		rate = core->ops->round_rate(core->hw, req->rate,
1520 					     &req->best_parent_rate);
1521 		if (rate < 0)
1522 			return rate;
1523 
1524 		req->rate = rate;
1525 	} else {
1526 		return -EINVAL;
1527 	}
1528 
1529 	return 0;
1530 }
1531 
1532 static void clk_core_init_rate_req(struct clk_core * const core,
1533 				   struct clk_rate_request *req,
1534 				   unsigned long rate)
1535 {
1536 	struct clk_core *parent;
1537 
1538 	if (WARN_ON(!req))
1539 		return;
1540 
1541 	memset(req, 0, sizeof(*req));
1542 	req->max_rate = ULONG_MAX;
1543 
1544 	if (!core)
1545 		return;
1546 
1547 	req->core = core;
1548 	req->rate = rate;
1549 	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1550 
1551 	parent = core->parent;
1552 	if (parent) {
1553 		req->best_parent_hw = parent->hw;
1554 		req->best_parent_rate = parent->rate;
1555 	} else {
1556 		req->best_parent_hw = NULL;
1557 		req->best_parent_rate = 0;
1558 	}
1559 }
1560 
1561 /**
1562  * clk_hw_init_rate_request - Initializes a clk_rate_request
1563  * @hw: the clk for which we want to submit a rate request
1564  * @req: the clk_rate_request structure we want to initialise
1565  * @rate: the rate which is to be requested
1566  *
1567  * Initializes a clk_rate_request structure to submit to
1568  * __clk_determine_rate() or similar functions.
1569  */
1570 void clk_hw_init_rate_request(const struct clk_hw *hw,
1571 			      struct clk_rate_request *req,
1572 			      unsigned long rate)
1573 {
1574 	if (WARN_ON(!hw || !req))
1575 		return;
1576 
1577 	clk_core_init_rate_req(hw->core, req, rate);
1578 }
1579 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1580 
1581 /**
1582  * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1583  * @hw: the original clock that got the rate request
1584  * @old_req: the original clk_rate_request structure we want to forward
1585  * @parent: the clk we want to forward @old_req to
1586  * @req: the clk_rate_request structure we want to initialise
1587  * @parent_rate: The rate which is to be requested to @parent
1588  *
1589  * Initializes a clk_rate_request structure to submit to a clock parent
1590  * in __clk_determine_rate() or similar functions.
1591  */
1592 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1593 				 const struct clk_rate_request *old_req,
1594 				 const struct clk_hw *parent,
1595 				 struct clk_rate_request *req,
1596 				 unsigned long parent_rate)
1597 {
1598 	if (WARN_ON(!hw || !old_req || !parent || !req))
1599 		return;
1600 
1601 	clk_core_forward_rate_req(hw->core, old_req,
1602 				  parent->core, req,
1603 				  parent_rate);
1604 }
1605 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1606 
1607 static bool clk_core_can_round(struct clk_core * const core)
1608 {
1609 	return core->ops->determine_rate || core->ops->round_rate;
1610 }
1611 
1612 static int clk_core_round_rate_nolock(struct clk_core *core,
1613 				      struct clk_rate_request *req)
1614 {
1615 	int ret;
1616 
1617 	lockdep_assert_held(&prepare_lock);
1618 
1619 	if (!core) {
1620 		req->rate = 0;
1621 		return 0;
1622 	}
1623 
1624 	if (clk_core_can_round(core))
1625 		return clk_core_determine_round_nolock(core, req);
1626 
1627 	if (core->flags & CLK_SET_RATE_PARENT) {
1628 		struct clk_rate_request parent_req;
1629 
1630 		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1631 
1632 		trace_clk_rate_request_start(&parent_req);
1633 
1634 		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1635 		if (ret)
1636 			return ret;
1637 
1638 		trace_clk_rate_request_done(&parent_req);
1639 
1640 		req->best_parent_rate = parent_req.rate;
1641 		req->rate = parent_req.rate;
1642 
1643 		return 0;
1644 	}
1645 
1646 	req->rate = core->rate;
1647 	return 0;
1648 }
1649 
1650 /**
1651  * __clk_determine_rate - get the closest rate actually supported by a clock
1652  * @hw: determine the rate of this clock
1653  * @req: target rate request
1654  *
1655  * Useful for clk_ops such as .set_rate and .determine_rate.
1656  */
1657 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1658 {
1659 	if (!hw) {
1660 		req->rate = 0;
1661 		return 0;
1662 	}
1663 
1664 	return clk_core_round_rate_nolock(hw->core, req);
1665 }
1666 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1667 
1668 /**
1669  * clk_hw_round_rate() - round the given rate for a hw clk
1670  * @hw: the hw clk for which we are rounding a rate
1671  * @rate: the rate which is to be rounded
1672  *
1673  * Takes in a rate as input and rounds it to a rate that the clk can actually
1674  * use.
1675  *
1676  * Context: prepare_lock must be held.
1677  *          For clk providers to call from within clk_ops such as .round_rate,
1678  *          .determine_rate.
1679  *
1680  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1681  *         else returns the parent rate.
1682  */
1683 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1684 {
1685 	int ret;
1686 	struct clk_rate_request req;
1687 
1688 	clk_core_init_rate_req(hw->core, &req, rate);
1689 
1690 	trace_clk_rate_request_start(&req);
1691 
1692 	ret = clk_core_round_rate_nolock(hw->core, &req);
1693 	if (ret)
1694 		return 0;
1695 
1696 	trace_clk_rate_request_done(&req);
1697 
1698 	return req.rate;
1699 }
1700 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1701 
1702 /**
1703  * clk_round_rate - round the given rate for a clk
1704  * @clk: the clk for which we are rounding a rate
1705  * @rate: the rate which is to be rounded
1706  *
1707  * Takes in a rate as input and rounds it to a rate that the clk can actually
1708  * use which is then returned.  If clk doesn't support round_rate operation
1709  * then the parent rate is returned.
1710  */
1711 long clk_round_rate(struct clk *clk, unsigned long rate)
1712 {
1713 	struct clk_rate_request req;
1714 	int ret;
1715 
1716 	if (!clk)
1717 		return 0;
1718 
1719 	clk_prepare_lock();
1720 
1721 	if (clk->exclusive_count)
1722 		clk_core_rate_unprotect(clk->core);
1723 
1724 	clk_core_init_rate_req(clk->core, &req, rate);
1725 
1726 	trace_clk_rate_request_start(&req);
1727 
1728 	ret = clk_core_round_rate_nolock(clk->core, &req);
1729 
1730 	trace_clk_rate_request_done(&req);
1731 
1732 	if (clk->exclusive_count)
1733 		clk_core_rate_protect(clk->core);
1734 
1735 	clk_prepare_unlock();
1736 
1737 	if (ret)
1738 		return ret;
1739 
1740 	return req.rate;
1741 }
1742 EXPORT_SYMBOL_GPL(clk_round_rate);
1743 
1744 /**
1745  * __clk_notify - call clk notifier chain
1746  * @core: clk that is changing rate
1747  * @msg: clk notifier type (see include/linux/clk.h)
1748  * @old_rate: old clk rate
1749  * @new_rate: new clk rate
1750  *
1751  * Triggers a notifier call chain on the clk rate-change notification
1752  * for 'clk'.  Passes a pointer to the struct clk and the previous
1753  * and current rates to the notifier callback.  Intended to be called by
1754  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1755  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1756  * a driver returns that.
1757  */
1758 static int __clk_notify(struct clk_core *core, unsigned long msg,
1759 		unsigned long old_rate, unsigned long new_rate)
1760 {
1761 	struct clk_notifier *cn;
1762 	struct clk_notifier_data cnd;
1763 	int ret = NOTIFY_DONE;
1764 
1765 	cnd.old_rate = old_rate;
1766 	cnd.new_rate = new_rate;
1767 
1768 	list_for_each_entry(cn, &clk_notifier_list, node) {
1769 		if (cn->clk->core == core) {
1770 			cnd.clk = cn->clk;
1771 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1772 					&cnd);
1773 			if (ret & NOTIFY_STOP_MASK)
1774 				return ret;
1775 		}
1776 	}
1777 
1778 	return ret;
1779 }
1780 
1781 /**
1782  * __clk_recalc_accuracies
1783  * @core: first clk in the subtree
1784  *
1785  * Walks the subtree of clks starting with clk and recalculates accuracies as
1786  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1787  * callback then it is assumed that the clock will take on the accuracy of its
1788  * parent.
1789  */
1790 static void __clk_recalc_accuracies(struct clk_core *core)
1791 {
1792 	unsigned long parent_accuracy = 0;
1793 	struct clk_core *child;
1794 
1795 	lockdep_assert_held(&prepare_lock);
1796 
1797 	if (core->parent)
1798 		parent_accuracy = core->parent->accuracy;
1799 
1800 	if (core->ops->recalc_accuracy)
1801 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1802 							  parent_accuracy);
1803 	else
1804 		core->accuracy = parent_accuracy;
1805 
1806 	hlist_for_each_entry(child, &core->children, child_node)
1807 		__clk_recalc_accuracies(child);
1808 }
1809 
1810 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1811 {
1812 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1813 		__clk_recalc_accuracies(core);
1814 
1815 	return clk_core_get_accuracy_no_lock(core);
1816 }
1817 
1818 /**
1819  * clk_get_accuracy - return the accuracy of clk
1820  * @clk: the clk whose accuracy is being returned
1821  *
1822  * Simply returns the cached accuracy of the clk, unless
1823  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1824  * issued.
1825  * If clk is NULL then returns 0.
1826  */
1827 long clk_get_accuracy(struct clk *clk)
1828 {
1829 	long accuracy;
1830 
1831 	if (!clk)
1832 		return 0;
1833 
1834 	clk_prepare_lock();
1835 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1836 	clk_prepare_unlock();
1837 
1838 	return accuracy;
1839 }
1840 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1841 
1842 static unsigned long clk_recalc(struct clk_core *core,
1843 				unsigned long parent_rate)
1844 {
1845 	unsigned long rate = parent_rate;
1846 
1847 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1848 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1849 		clk_pm_runtime_put(core);
1850 	}
1851 	return rate;
1852 }
1853 
1854 /**
1855  * __clk_recalc_rates
1856  * @core: first clk in the subtree
1857  * @update_req: Whether req_rate should be updated with the new rate
1858  * @msg: notification type (see include/linux/clk.h)
1859  *
1860  * Walks the subtree of clks starting with clk and recalculates rates as it
1861  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1862  * it is assumed that the clock will take on the rate of its parent.
1863  *
1864  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1865  * if necessary.
1866  */
1867 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1868 			       unsigned long msg)
1869 {
1870 	unsigned long old_rate;
1871 	unsigned long parent_rate = 0;
1872 	struct clk_core *child;
1873 
1874 	lockdep_assert_held(&prepare_lock);
1875 
1876 	old_rate = core->rate;
1877 
1878 	if (core->parent)
1879 		parent_rate = core->parent->rate;
1880 
1881 	core->rate = clk_recalc(core, parent_rate);
1882 	if (update_req)
1883 		core->req_rate = core->rate;
1884 
1885 	/*
1886 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1887 	 * & ABORT_RATE_CHANGE notifiers
1888 	 */
1889 	if (core->notifier_count && msg)
1890 		__clk_notify(core, msg, old_rate, core->rate);
1891 
1892 	hlist_for_each_entry(child, &core->children, child_node)
1893 		__clk_recalc_rates(child, update_req, msg);
1894 }
1895 
1896 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1897 {
1898 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1899 		__clk_recalc_rates(core, false, 0);
1900 
1901 	return clk_core_get_rate_nolock(core);
1902 }
1903 
1904 /**
1905  * clk_get_rate - return the rate of clk
1906  * @clk: the clk whose rate is being returned
1907  *
1908  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1909  * is set, which means a recalc_rate will be issued. Can be called regardless of
1910  * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1911  * 0.
1912  */
1913 unsigned long clk_get_rate(struct clk *clk)
1914 {
1915 	unsigned long rate;
1916 
1917 	if (!clk)
1918 		return 0;
1919 
1920 	clk_prepare_lock();
1921 	rate = clk_core_get_rate_recalc(clk->core);
1922 	clk_prepare_unlock();
1923 
1924 	return rate;
1925 }
1926 EXPORT_SYMBOL_GPL(clk_get_rate);
1927 
1928 static int clk_fetch_parent_index(struct clk_core *core,
1929 				  struct clk_core *parent)
1930 {
1931 	int i;
1932 
1933 	if (!parent)
1934 		return -EINVAL;
1935 
1936 	for (i = 0; i < core->num_parents; i++) {
1937 		/* Found it first try! */
1938 		if (core->parents[i].core == parent)
1939 			return i;
1940 
1941 		/* Something else is here, so keep looking */
1942 		if (core->parents[i].core)
1943 			continue;
1944 
1945 		/* Maybe core hasn't been cached but the hw is all we know? */
1946 		if (core->parents[i].hw) {
1947 			if (core->parents[i].hw == parent->hw)
1948 				break;
1949 
1950 			/* Didn't match, but we're expecting a clk_hw */
1951 			continue;
1952 		}
1953 
1954 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1955 		if (parent == clk_core_get(core, i))
1956 			break;
1957 
1958 		/* Fallback to comparing globally unique names */
1959 		if (core->parents[i].name &&
1960 		    !strcmp(parent->name, core->parents[i].name))
1961 			break;
1962 	}
1963 
1964 	if (i == core->num_parents)
1965 		return -EINVAL;
1966 
1967 	core->parents[i].core = parent;
1968 	return i;
1969 }
1970 
1971 /**
1972  * clk_hw_get_parent_index - return the index of the parent clock
1973  * @hw: clk_hw associated with the clk being consumed
1974  *
1975  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1976  * clock does not have a current parent.
1977  */
1978 int clk_hw_get_parent_index(struct clk_hw *hw)
1979 {
1980 	struct clk_hw *parent = clk_hw_get_parent(hw);
1981 
1982 	if (WARN_ON(parent == NULL))
1983 		return -EINVAL;
1984 
1985 	return clk_fetch_parent_index(hw->core, parent->core);
1986 }
1987 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1988 
1989 /*
1990  * Update the orphan status of @core and all its children.
1991  */
1992 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1993 {
1994 	struct clk_core *child;
1995 
1996 	core->orphan = is_orphan;
1997 
1998 	hlist_for_each_entry(child, &core->children, child_node)
1999 		clk_core_update_orphan_status(child, is_orphan);
2000 }
2001 
2002 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
2003 {
2004 	bool was_orphan = core->orphan;
2005 
2006 	hlist_del(&core->child_node);
2007 
2008 	if (new_parent) {
2009 		bool becomes_orphan = new_parent->orphan;
2010 
2011 		/* avoid duplicate POST_RATE_CHANGE notifications */
2012 		if (new_parent->new_child == core)
2013 			new_parent->new_child = NULL;
2014 
2015 		hlist_add_head(&core->child_node, &new_parent->children);
2016 
2017 		if (was_orphan != becomes_orphan)
2018 			clk_core_update_orphan_status(core, becomes_orphan);
2019 	} else {
2020 		hlist_add_head(&core->child_node, &clk_orphan_list);
2021 		if (!was_orphan)
2022 			clk_core_update_orphan_status(core, true);
2023 	}
2024 
2025 	core->parent = new_parent;
2026 }
2027 
2028 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2029 					   struct clk_core *parent)
2030 {
2031 	unsigned long flags;
2032 	struct clk_core *old_parent = core->parent;
2033 
2034 	/*
2035 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2036 	 *
2037 	 * 2. Migrate prepare state between parents and prevent race with
2038 	 * clk_enable().
2039 	 *
2040 	 * If the clock is not prepared, then a race with
2041 	 * clk_enable/disable() is impossible since we already have the
2042 	 * prepare lock (future calls to clk_enable() need to be preceded by
2043 	 * a clk_prepare()).
2044 	 *
2045 	 * If the clock is prepared, migrate the prepared state to the new
2046 	 * parent and also protect against a race with clk_enable() by
2047 	 * forcing the clock and the new parent on.  This ensures that all
2048 	 * future calls to clk_enable() are practically NOPs with respect to
2049 	 * hardware and software states.
2050 	 *
2051 	 * See also: Comment for clk_set_parent() below.
2052 	 */
2053 
2054 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2055 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2056 		clk_core_prepare_enable(old_parent);
2057 		clk_core_prepare_enable(parent);
2058 	}
2059 
2060 	/* migrate prepare count if > 0 */
2061 	if (core->prepare_count) {
2062 		clk_core_prepare_enable(parent);
2063 		clk_core_enable_lock(core);
2064 	}
2065 
2066 	/* update the clk tree topology */
2067 	flags = clk_enable_lock();
2068 	clk_reparent(core, parent);
2069 	clk_enable_unlock(flags);
2070 
2071 	return old_parent;
2072 }
2073 
2074 static void __clk_set_parent_after(struct clk_core *core,
2075 				   struct clk_core *parent,
2076 				   struct clk_core *old_parent)
2077 {
2078 	/*
2079 	 * Finish the migration of prepare state and undo the changes done
2080 	 * for preventing a race with clk_enable().
2081 	 */
2082 	if (core->prepare_count) {
2083 		clk_core_disable_lock(core);
2084 		clk_core_disable_unprepare(old_parent);
2085 	}
2086 
2087 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2088 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2089 		clk_core_disable_unprepare(parent);
2090 		clk_core_disable_unprepare(old_parent);
2091 	}
2092 }
2093 
2094 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2095 			    u8 p_index)
2096 {
2097 	unsigned long flags;
2098 	int ret = 0;
2099 	struct clk_core *old_parent;
2100 
2101 	old_parent = __clk_set_parent_before(core, parent);
2102 
2103 	trace_clk_set_parent(core, parent);
2104 
2105 	/* change clock input source */
2106 	if (parent && core->ops->set_parent)
2107 		ret = core->ops->set_parent(core->hw, p_index);
2108 
2109 	trace_clk_set_parent_complete(core, parent);
2110 
2111 	if (ret) {
2112 		flags = clk_enable_lock();
2113 		clk_reparent(core, old_parent);
2114 		clk_enable_unlock(flags);
2115 
2116 		__clk_set_parent_after(core, old_parent, parent);
2117 
2118 		return ret;
2119 	}
2120 
2121 	__clk_set_parent_after(core, parent, old_parent);
2122 
2123 	return 0;
2124 }
2125 
2126 /**
2127  * __clk_speculate_rates
2128  * @core: first clk in the subtree
2129  * @parent_rate: the "future" rate of clk's parent
2130  *
2131  * Walks the subtree of clks starting with clk, speculating rates as it
2132  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2133  *
2134  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2135  * pre-rate change notifications and returns early if no clks in the
2136  * subtree have subscribed to the notifications.  Note that if a clk does not
2137  * implement the .recalc_rate callback then it is assumed that the clock will
2138  * take on the rate of its parent.
2139  */
2140 static int __clk_speculate_rates(struct clk_core *core,
2141 				 unsigned long parent_rate)
2142 {
2143 	struct clk_core *child;
2144 	unsigned long new_rate;
2145 	int ret = NOTIFY_DONE;
2146 
2147 	lockdep_assert_held(&prepare_lock);
2148 
2149 	new_rate = clk_recalc(core, parent_rate);
2150 
2151 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2152 	if (core->notifier_count)
2153 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2154 
2155 	if (ret & NOTIFY_STOP_MASK) {
2156 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2157 				__func__, core->name, ret);
2158 		goto out;
2159 	}
2160 
2161 	hlist_for_each_entry(child, &core->children, child_node) {
2162 		ret = __clk_speculate_rates(child, new_rate);
2163 		if (ret & NOTIFY_STOP_MASK)
2164 			break;
2165 	}
2166 
2167 out:
2168 	return ret;
2169 }
2170 
2171 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2172 			     struct clk_core *new_parent, u8 p_index)
2173 {
2174 	struct clk_core *child;
2175 
2176 	core->new_rate = new_rate;
2177 	core->new_parent = new_parent;
2178 	core->new_parent_index = p_index;
2179 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2180 	core->new_child = NULL;
2181 	if (new_parent && new_parent != core->parent)
2182 		new_parent->new_child = core;
2183 
2184 	hlist_for_each_entry(child, &core->children, child_node) {
2185 		child->new_rate = clk_recalc(child, new_rate);
2186 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2187 	}
2188 }
2189 
2190 /*
2191  * calculate the new rates returning the topmost clock that has to be
2192  * changed.
2193  */
2194 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2195 					   unsigned long rate)
2196 {
2197 	struct clk_core *top = core;
2198 	struct clk_core *old_parent, *parent;
2199 	unsigned long best_parent_rate = 0;
2200 	unsigned long new_rate;
2201 	unsigned long min_rate;
2202 	unsigned long max_rate;
2203 	int p_index = 0;
2204 	long ret;
2205 
2206 	/* sanity */
2207 	if (IS_ERR_OR_NULL(core))
2208 		return NULL;
2209 
2210 	/* save parent rate, if it exists */
2211 	parent = old_parent = core->parent;
2212 	if (parent)
2213 		best_parent_rate = parent->rate;
2214 
2215 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2216 
2217 	/* find the closest rate and parent clk/rate */
2218 	if (clk_core_can_round(core)) {
2219 		struct clk_rate_request req;
2220 
2221 		clk_core_init_rate_req(core, &req, rate);
2222 
2223 		trace_clk_rate_request_start(&req);
2224 
2225 		ret = clk_core_determine_round_nolock(core, &req);
2226 		if (ret < 0)
2227 			return NULL;
2228 
2229 		trace_clk_rate_request_done(&req);
2230 
2231 		best_parent_rate = req.best_parent_rate;
2232 		new_rate = req.rate;
2233 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2234 
2235 		if (new_rate < min_rate || new_rate > max_rate)
2236 			return NULL;
2237 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2238 		/* pass-through clock without adjustable parent */
2239 		core->new_rate = core->rate;
2240 		return NULL;
2241 	} else {
2242 		/* pass-through clock with adjustable parent */
2243 		top = clk_calc_new_rates(parent, rate);
2244 		new_rate = parent->new_rate;
2245 		goto out;
2246 	}
2247 
2248 	/* some clocks must be gated to change parent */
2249 	if (parent != old_parent &&
2250 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2251 		pr_debug("%s: %s not gated but wants to reparent\n",
2252 			 __func__, core->name);
2253 		return NULL;
2254 	}
2255 
2256 	/* try finding the new parent index */
2257 	if (parent && core->num_parents > 1) {
2258 		p_index = clk_fetch_parent_index(core, parent);
2259 		if (p_index < 0) {
2260 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2261 				 __func__, parent->name, core->name);
2262 			return NULL;
2263 		}
2264 	}
2265 
2266 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2267 	    best_parent_rate != parent->rate)
2268 		top = clk_calc_new_rates(parent, best_parent_rate);
2269 
2270 out:
2271 	clk_calc_subtree(core, new_rate, parent, p_index);
2272 
2273 	return top;
2274 }
2275 
2276 /*
2277  * Notify about rate changes in a subtree. Always walk down the whole tree
2278  * so that in case of an error we can walk down the whole tree again and
2279  * abort the change.
2280  */
2281 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2282 						  unsigned long event)
2283 {
2284 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2285 	int ret = NOTIFY_DONE;
2286 
2287 	if (core->rate == core->new_rate)
2288 		return NULL;
2289 
2290 	if (core->notifier_count) {
2291 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2292 		if (ret & NOTIFY_STOP_MASK)
2293 			fail_clk = core;
2294 	}
2295 
2296 	hlist_for_each_entry(child, &core->children, child_node) {
2297 		/* Skip children who will be reparented to another clock */
2298 		if (child->new_parent && child->new_parent != core)
2299 			continue;
2300 		tmp_clk = clk_propagate_rate_change(child, event);
2301 		if (tmp_clk)
2302 			fail_clk = tmp_clk;
2303 	}
2304 
2305 	/* handle the new child who might not be in core->children yet */
2306 	if (core->new_child) {
2307 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2308 		if (tmp_clk)
2309 			fail_clk = tmp_clk;
2310 	}
2311 
2312 	return fail_clk;
2313 }
2314 
2315 /*
2316  * walk down a subtree and set the new rates notifying the rate
2317  * change on the way
2318  */
2319 static void clk_change_rate(struct clk_core *core)
2320 {
2321 	struct clk_core *child;
2322 	struct hlist_node *tmp;
2323 	unsigned long old_rate;
2324 	unsigned long best_parent_rate = 0;
2325 	bool skip_set_rate = false;
2326 	struct clk_core *old_parent;
2327 	struct clk_core *parent = NULL;
2328 
2329 	old_rate = core->rate;
2330 
2331 	if (core->new_parent) {
2332 		parent = core->new_parent;
2333 		best_parent_rate = core->new_parent->rate;
2334 	} else if (core->parent) {
2335 		parent = core->parent;
2336 		best_parent_rate = core->parent->rate;
2337 	}
2338 
2339 	if (clk_pm_runtime_get(core))
2340 		return;
2341 
2342 	if (core->flags & CLK_SET_RATE_UNGATE) {
2343 		clk_core_prepare(core);
2344 		clk_core_enable_lock(core);
2345 	}
2346 
2347 	if (core->new_parent && core->new_parent != core->parent) {
2348 		old_parent = __clk_set_parent_before(core, core->new_parent);
2349 		trace_clk_set_parent(core, core->new_parent);
2350 
2351 		if (core->ops->set_rate_and_parent) {
2352 			skip_set_rate = true;
2353 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2354 					best_parent_rate,
2355 					core->new_parent_index);
2356 		} else if (core->ops->set_parent) {
2357 			core->ops->set_parent(core->hw, core->new_parent_index);
2358 		}
2359 
2360 		trace_clk_set_parent_complete(core, core->new_parent);
2361 		__clk_set_parent_after(core, core->new_parent, old_parent);
2362 	}
2363 
2364 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2365 		clk_core_prepare_enable(parent);
2366 
2367 	trace_clk_set_rate(core, core->new_rate);
2368 
2369 	if (!skip_set_rate && core->ops->set_rate)
2370 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2371 
2372 	trace_clk_set_rate_complete(core, core->new_rate);
2373 
2374 	core->rate = clk_recalc(core, best_parent_rate);
2375 
2376 	if (core->flags & CLK_SET_RATE_UNGATE) {
2377 		clk_core_disable_lock(core);
2378 		clk_core_unprepare(core);
2379 	}
2380 
2381 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2382 		clk_core_disable_unprepare(parent);
2383 
2384 	if (core->notifier_count && old_rate != core->rate)
2385 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2386 
2387 	if (core->flags & CLK_RECALC_NEW_RATES)
2388 		(void)clk_calc_new_rates(core, core->new_rate);
2389 
2390 	/*
2391 	 * Use safe iteration, as change_rate can actually swap parents
2392 	 * for certain clock types.
2393 	 */
2394 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2395 		/* Skip children who will be reparented to another clock */
2396 		if (child->new_parent && child->new_parent != core)
2397 			continue;
2398 		clk_change_rate(child);
2399 	}
2400 
2401 	/* handle the new child who might not be in core->children yet */
2402 	if (core->new_child)
2403 		clk_change_rate(core->new_child);
2404 
2405 	clk_pm_runtime_put(core);
2406 }
2407 
2408 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2409 						     unsigned long req_rate)
2410 {
2411 	int ret, cnt;
2412 	struct clk_rate_request req;
2413 
2414 	lockdep_assert_held(&prepare_lock);
2415 
2416 	if (!core)
2417 		return 0;
2418 
2419 	/* simulate what the rate would be if it could be freely set */
2420 	cnt = clk_core_rate_nuke_protect(core);
2421 	if (cnt < 0)
2422 		return cnt;
2423 
2424 	clk_core_init_rate_req(core, &req, req_rate);
2425 
2426 	trace_clk_rate_request_start(&req);
2427 
2428 	ret = clk_core_round_rate_nolock(core, &req);
2429 
2430 	trace_clk_rate_request_done(&req);
2431 
2432 	/* restore the protection */
2433 	clk_core_rate_restore_protect(core, cnt);
2434 
2435 	return ret ? 0 : req.rate;
2436 }
2437 
2438 static int clk_core_set_rate_nolock(struct clk_core *core,
2439 				    unsigned long req_rate)
2440 {
2441 	struct clk_core *top, *fail_clk;
2442 	unsigned long rate;
2443 	int ret;
2444 
2445 	if (!core)
2446 		return 0;
2447 
2448 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2449 
2450 	/* bail early if nothing to do */
2451 	if (rate == clk_core_get_rate_nolock(core))
2452 		return 0;
2453 
2454 	/* fail on a direct rate set of a protected provider */
2455 	if (clk_core_rate_is_protected(core))
2456 		return -EBUSY;
2457 
2458 	/* calculate new rates and get the topmost changed clock */
2459 	top = clk_calc_new_rates(core, req_rate);
2460 	if (!top)
2461 		return -EINVAL;
2462 
2463 	ret = clk_pm_runtime_get(core);
2464 	if (ret)
2465 		return ret;
2466 
2467 	/* notify that we are about to change rates */
2468 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2469 	if (fail_clk) {
2470 		pr_debug("%s: failed to set %s rate\n", __func__,
2471 				fail_clk->name);
2472 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2473 		ret = -EBUSY;
2474 		goto err;
2475 	}
2476 
2477 	/* change the rates */
2478 	clk_change_rate(top);
2479 
2480 	core->req_rate = req_rate;
2481 err:
2482 	clk_pm_runtime_put(core);
2483 
2484 	return ret;
2485 }
2486 
2487 /**
2488  * clk_set_rate - specify a new rate for clk
2489  * @clk: the clk whose rate is being changed
2490  * @rate: the new rate for clk
2491  *
2492  * In the simplest case clk_set_rate will only adjust the rate of clk.
2493  *
2494  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2495  * propagate up to clk's parent; whether or not this happens depends on the
2496  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2497  * after calling .round_rate then upstream parent propagation is ignored.  If
2498  * *parent_rate comes back with a new rate for clk's parent then we propagate
2499  * up to clk's parent and set its rate.  Upward propagation will continue
2500  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2501  * .round_rate stops requesting changes to clk's parent_rate.
2502  *
2503  * Rate changes are accomplished via tree traversal that also recalculates the
2504  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2505  *
2506  * Returns 0 on success, -EERROR otherwise.
2507  */
2508 int clk_set_rate(struct clk *clk, unsigned long rate)
2509 {
2510 	int ret;
2511 
2512 	if (!clk)
2513 		return 0;
2514 
2515 	/* prevent racing with updates to the clock topology */
2516 	clk_prepare_lock();
2517 
2518 	if (clk->exclusive_count)
2519 		clk_core_rate_unprotect(clk->core);
2520 
2521 	ret = clk_core_set_rate_nolock(clk->core, rate);
2522 
2523 	if (clk->exclusive_count)
2524 		clk_core_rate_protect(clk->core);
2525 
2526 	clk_prepare_unlock();
2527 
2528 	return ret;
2529 }
2530 EXPORT_SYMBOL_GPL(clk_set_rate);
2531 
2532 /**
2533  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2534  * @clk: the clk whose rate is being changed
2535  * @rate: the new rate for clk
2536  *
2537  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2538  * within a critical section
2539  *
2540  * This can be used initially to ensure that at least 1 consumer is
2541  * satisfied when several consumers are competing for exclusivity over the
2542  * same clock provider.
2543  *
2544  * The exclusivity is not applied if setting the rate failed.
2545  *
2546  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2547  * clk_rate_exclusive_put().
2548  *
2549  * Returns 0 on success, -EERROR otherwise.
2550  */
2551 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2552 {
2553 	int ret;
2554 
2555 	if (!clk)
2556 		return 0;
2557 
2558 	/* prevent racing with updates to the clock topology */
2559 	clk_prepare_lock();
2560 
2561 	/*
2562 	 * The temporary protection removal is not here, on purpose
2563 	 * This function is meant to be used instead of clk_rate_protect,
2564 	 * so before the consumer code path protect the clock provider
2565 	 */
2566 
2567 	ret = clk_core_set_rate_nolock(clk->core, rate);
2568 	if (!ret) {
2569 		clk_core_rate_protect(clk->core);
2570 		clk->exclusive_count++;
2571 	}
2572 
2573 	clk_prepare_unlock();
2574 
2575 	return ret;
2576 }
2577 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2578 
2579 static int clk_set_rate_range_nolock(struct clk *clk,
2580 				     unsigned long min,
2581 				     unsigned long max)
2582 {
2583 	int ret = 0;
2584 	unsigned long old_min, old_max, rate;
2585 
2586 	lockdep_assert_held(&prepare_lock);
2587 
2588 	if (!clk)
2589 		return 0;
2590 
2591 	trace_clk_set_rate_range(clk->core, min, max);
2592 
2593 	if (min > max) {
2594 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2595 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2596 		       min, max);
2597 		return -EINVAL;
2598 	}
2599 
2600 	if (clk->exclusive_count)
2601 		clk_core_rate_unprotect(clk->core);
2602 
2603 	/* Save the current values in case we need to rollback the change */
2604 	old_min = clk->min_rate;
2605 	old_max = clk->max_rate;
2606 	clk->min_rate = min;
2607 	clk->max_rate = max;
2608 
2609 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2610 		ret = -EINVAL;
2611 		goto out;
2612 	}
2613 
2614 	rate = clk->core->req_rate;
2615 	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2616 		rate = clk_core_get_rate_recalc(clk->core);
2617 
2618 	/*
2619 	 * Since the boundaries have been changed, let's give the
2620 	 * opportunity to the provider to adjust the clock rate based on
2621 	 * the new boundaries.
2622 	 *
2623 	 * We also need to handle the case where the clock is currently
2624 	 * outside of the boundaries. Clamping the last requested rate
2625 	 * to the current minimum and maximum will also handle this.
2626 	 *
2627 	 * FIXME:
2628 	 * There is a catch. It may fail for the usual reason (clock
2629 	 * broken, clock protected, etc) but also because:
2630 	 * - round_rate() was not favorable and fell on the wrong
2631 	 *   side of the boundary
2632 	 * - the determine_rate() callback does not really check for
2633 	 *   this corner case when determining the rate
2634 	 */
2635 	rate = clamp(rate, min, max);
2636 	ret = clk_core_set_rate_nolock(clk->core, rate);
2637 	if (ret) {
2638 		/* rollback the changes */
2639 		clk->min_rate = old_min;
2640 		clk->max_rate = old_max;
2641 	}
2642 
2643 out:
2644 	if (clk->exclusive_count)
2645 		clk_core_rate_protect(clk->core);
2646 
2647 	return ret;
2648 }
2649 
2650 /**
2651  * clk_set_rate_range - set a rate range for a clock source
2652  * @clk: clock source
2653  * @min: desired minimum clock rate in Hz, inclusive
2654  * @max: desired maximum clock rate in Hz, inclusive
2655  *
2656  * Return: 0 for success or negative errno on failure.
2657  */
2658 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2659 {
2660 	int ret;
2661 
2662 	if (!clk)
2663 		return 0;
2664 
2665 	clk_prepare_lock();
2666 
2667 	ret = clk_set_rate_range_nolock(clk, min, max);
2668 
2669 	clk_prepare_unlock();
2670 
2671 	return ret;
2672 }
2673 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2674 
2675 /**
2676  * clk_set_min_rate - set a minimum clock rate for a clock source
2677  * @clk: clock source
2678  * @rate: desired minimum clock rate in Hz, inclusive
2679  *
2680  * Returns success (0) or negative errno.
2681  */
2682 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2683 {
2684 	if (!clk)
2685 		return 0;
2686 
2687 	trace_clk_set_min_rate(clk->core, rate);
2688 
2689 	return clk_set_rate_range(clk, rate, clk->max_rate);
2690 }
2691 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2692 
2693 /**
2694  * clk_set_max_rate - set a maximum clock rate for a clock source
2695  * @clk: clock source
2696  * @rate: desired maximum clock rate in Hz, inclusive
2697  *
2698  * Returns success (0) or negative errno.
2699  */
2700 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2701 {
2702 	if (!clk)
2703 		return 0;
2704 
2705 	trace_clk_set_max_rate(clk->core, rate);
2706 
2707 	return clk_set_rate_range(clk, clk->min_rate, rate);
2708 }
2709 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2710 
2711 /**
2712  * clk_get_parent - return the parent of a clk
2713  * @clk: the clk whose parent gets returned
2714  *
2715  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2716  */
2717 struct clk *clk_get_parent(struct clk *clk)
2718 {
2719 	struct clk *parent;
2720 
2721 	if (!clk)
2722 		return NULL;
2723 
2724 	clk_prepare_lock();
2725 	/* TODO: Create a per-user clk and change callers to call clk_put */
2726 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2727 	clk_prepare_unlock();
2728 
2729 	return parent;
2730 }
2731 EXPORT_SYMBOL_GPL(clk_get_parent);
2732 
2733 static struct clk_core *__clk_init_parent(struct clk_core *core)
2734 {
2735 	u8 index = 0;
2736 
2737 	if (core->num_parents > 1 && core->ops->get_parent)
2738 		index = core->ops->get_parent(core->hw);
2739 
2740 	return clk_core_get_parent_by_index(core, index);
2741 }
2742 
2743 static void clk_core_reparent(struct clk_core *core,
2744 				  struct clk_core *new_parent)
2745 {
2746 	clk_reparent(core, new_parent);
2747 	__clk_recalc_accuracies(core);
2748 	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2749 }
2750 
2751 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2752 {
2753 	if (!hw)
2754 		return;
2755 
2756 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2757 }
2758 
2759 /**
2760  * clk_has_parent - check if a clock is a possible parent for another
2761  * @clk: clock source
2762  * @parent: parent clock source
2763  *
2764  * This function can be used in drivers that need to check that a clock can be
2765  * the parent of another without actually changing the parent.
2766  *
2767  * Returns true if @parent is a possible parent for @clk, false otherwise.
2768  */
2769 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2770 {
2771 	/* NULL clocks should be nops, so return success if either is NULL. */
2772 	if (!clk || !parent)
2773 		return true;
2774 
2775 	return clk_core_has_parent(clk->core, parent->core);
2776 }
2777 EXPORT_SYMBOL_GPL(clk_has_parent);
2778 
2779 static int clk_core_set_parent_nolock(struct clk_core *core,
2780 				      struct clk_core *parent)
2781 {
2782 	int ret = 0;
2783 	int p_index = 0;
2784 	unsigned long p_rate = 0;
2785 
2786 	lockdep_assert_held(&prepare_lock);
2787 
2788 	if (!core)
2789 		return 0;
2790 
2791 	if (core->parent == parent)
2792 		return 0;
2793 
2794 	/* verify ops for multi-parent clks */
2795 	if (core->num_parents > 1 && !core->ops->set_parent)
2796 		return -EPERM;
2797 
2798 	/* check that we are allowed to re-parent if the clock is in use */
2799 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2800 		return -EBUSY;
2801 
2802 	if (clk_core_rate_is_protected(core))
2803 		return -EBUSY;
2804 
2805 	/* try finding the new parent index */
2806 	if (parent) {
2807 		p_index = clk_fetch_parent_index(core, parent);
2808 		if (p_index < 0) {
2809 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2810 					__func__, parent->name, core->name);
2811 			return p_index;
2812 		}
2813 		p_rate = parent->rate;
2814 	}
2815 
2816 	ret = clk_pm_runtime_get(core);
2817 	if (ret)
2818 		return ret;
2819 
2820 	/* propagate PRE_RATE_CHANGE notifications */
2821 	ret = __clk_speculate_rates(core, p_rate);
2822 
2823 	/* abort if a driver objects */
2824 	if (ret & NOTIFY_STOP_MASK)
2825 		goto runtime_put;
2826 
2827 	/* do the re-parent */
2828 	ret = __clk_set_parent(core, parent, p_index);
2829 
2830 	/* propagate rate an accuracy recalculation accordingly */
2831 	if (ret) {
2832 		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2833 	} else {
2834 		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2835 		__clk_recalc_accuracies(core);
2836 	}
2837 
2838 runtime_put:
2839 	clk_pm_runtime_put(core);
2840 
2841 	return ret;
2842 }
2843 
2844 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2845 {
2846 	return clk_core_set_parent_nolock(hw->core, parent->core);
2847 }
2848 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2849 
2850 /**
2851  * clk_set_parent - switch the parent of a mux clk
2852  * @clk: the mux clk whose input we are switching
2853  * @parent: the new input to clk
2854  *
2855  * Re-parent clk to use parent as its new input source.  If clk is in
2856  * prepared state, the clk will get enabled for the duration of this call. If
2857  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2858  * that, the reparenting is glitchy in hardware, etc), use the
2859  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2860  *
2861  * After successfully changing clk's parent clk_set_parent will update the
2862  * clk topology, sysfs topology and propagate rate recalculation via
2863  * __clk_recalc_rates.
2864  *
2865  * Returns 0 on success, -EERROR otherwise.
2866  */
2867 int clk_set_parent(struct clk *clk, struct clk *parent)
2868 {
2869 	int ret;
2870 
2871 	if (!clk)
2872 		return 0;
2873 
2874 	clk_prepare_lock();
2875 
2876 	if (clk->exclusive_count)
2877 		clk_core_rate_unprotect(clk->core);
2878 
2879 	ret = clk_core_set_parent_nolock(clk->core,
2880 					 parent ? parent->core : NULL);
2881 
2882 	if (clk->exclusive_count)
2883 		clk_core_rate_protect(clk->core);
2884 
2885 	clk_prepare_unlock();
2886 
2887 	return ret;
2888 }
2889 EXPORT_SYMBOL_GPL(clk_set_parent);
2890 
2891 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2892 {
2893 	int ret = -EINVAL;
2894 
2895 	lockdep_assert_held(&prepare_lock);
2896 
2897 	if (!core)
2898 		return 0;
2899 
2900 	if (clk_core_rate_is_protected(core))
2901 		return -EBUSY;
2902 
2903 	trace_clk_set_phase(core, degrees);
2904 
2905 	if (core->ops->set_phase) {
2906 		ret = core->ops->set_phase(core->hw, degrees);
2907 		if (!ret)
2908 			core->phase = degrees;
2909 	}
2910 
2911 	trace_clk_set_phase_complete(core, degrees);
2912 
2913 	return ret;
2914 }
2915 
2916 /**
2917  * clk_set_phase - adjust the phase shift of a clock signal
2918  * @clk: clock signal source
2919  * @degrees: number of degrees the signal is shifted
2920  *
2921  * Shifts the phase of a clock signal by the specified
2922  * degrees. Returns 0 on success, -EERROR otherwise.
2923  *
2924  * This function makes no distinction about the input or reference
2925  * signal that we adjust the clock signal phase against. For example
2926  * phase locked-loop clock signal generators we may shift phase with
2927  * respect to feedback clock signal input, but for other cases the
2928  * clock phase may be shifted with respect to some other, unspecified
2929  * signal.
2930  *
2931  * Additionally the concept of phase shift does not propagate through
2932  * the clock tree hierarchy, which sets it apart from clock rates and
2933  * clock accuracy. A parent clock phase attribute does not have an
2934  * impact on the phase attribute of a child clock.
2935  */
2936 int clk_set_phase(struct clk *clk, int degrees)
2937 {
2938 	int ret;
2939 
2940 	if (!clk)
2941 		return 0;
2942 
2943 	/* sanity check degrees */
2944 	degrees %= 360;
2945 	if (degrees < 0)
2946 		degrees += 360;
2947 
2948 	clk_prepare_lock();
2949 
2950 	if (clk->exclusive_count)
2951 		clk_core_rate_unprotect(clk->core);
2952 
2953 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2954 
2955 	if (clk->exclusive_count)
2956 		clk_core_rate_protect(clk->core);
2957 
2958 	clk_prepare_unlock();
2959 
2960 	return ret;
2961 }
2962 EXPORT_SYMBOL_GPL(clk_set_phase);
2963 
2964 static int clk_core_get_phase(struct clk_core *core)
2965 {
2966 	int ret;
2967 
2968 	lockdep_assert_held(&prepare_lock);
2969 	if (!core->ops->get_phase)
2970 		return 0;
2971 
2972 	/* Always try to update cached phase if possible */
2973 	ret = core->ops->get_phase(core->hw);
2974 	if (ret >= 0)
2975 		core->phase = ret;
2976 
2977 	return ret;
2978 }
2979 
2980 /**
2981  * clk_get_phase - return the phase shift of a clock signal
2982  * @clk: clock signal source
2983  *
2984  * Returns the phase shift of a clock node in degrees, otherwise returns
2985  * -EERROR.
2986  */
2987 int clk_get_phase(struct clk *clk)
2988 {
2989 	int ret;
2990 
2991 	if (!clk)
2992 		return 0;
2993 
2994 	clk_prepare_lock();
2995 	ret = clk_core_get_phase(clk->core);
2996 	clk_prepare_unlock();
2997 
2998 	return ret;
2999 }
3000 EXPORT_SYMBOL_GPL(clk_get_phase);
3001 
3002 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
3003 {
3004 	/* Assume a default value of 50% */
3005 	core->duty.num = 1;
3006 	core->duty.den = 2;
3007 }
3008 
3009 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
3010 
3011 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
3012 {
3013 	struct clk_duty *duty = &core->duty;
3014 	int ret = 0;
3015 
3016 	if (!core->ops->get_duty_cycle)
3017 		return clk_core_update_duty_cycle_parent_nolock(core);
3018 
3019 	ret = core->ops->get_duty_cycle(core->hw, duty);
3020 	if (ret)
3021 		goto reset;
3022 
3023 	/* Don't trust the clock provider too much */
3024 	if (duty->den == 0 || duty->num > duty->den) {
3025 		ret = -EINVAL;
3026 		goto reset;
3027 	}
3028 
3029 	return 0;
3030 
3031 reset:
3032 	clk_core_reset_duty_cycle_nolock(core);
3033 	return ret;
3034 }
3035 
3036 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3037 {
3038 	int ret = 0;
3039 
3040 	if (core->parent &&
3041 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
3042 		ret = clk_core_update_duty_cycle_nolock(core->parent);
3043 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3044 	} else {
3045 		clk_core_reset_duty_cycle_nolock(core);
3046 	}
3047 
3048 	return ret;
3049 }
3050 
3051 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3052 						 struct clk_duty *duty);
3053 
3054 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3055 					  struct clk_duty *duty)
3056 {
3057 	int ret;
3058 
3059 	lockdep_assert_held(&prepare_lock);
3060 
3061 	if (clk_core_rate_is_protected(core))
3062 		return -EBUSY;
3063 
3064 	trace_clk_set_duty_cycle(core, duty);
3065 
3066 	if (!core->ops->set_duty_cycle)
3067 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3068 
3069 	ret = core->ops->set_duty_cycle(core->hw, duty);
3070 	if (!ret)
3071 		memcpy(&core->duty, duty, sizeof(*duty));
3072 
3073 	trace_clk_set_duty_cycle_complete(core, duty);
3074 
3075 	return ret;
3076 }
3077 
3078 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3079 						 struct clk_duty *duty)
3080 {
3081 	int ret = 0;
3082 
3083 	if (core->parent &&
3084 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3085 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3086 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3087 	}
3088 
3089 	return ret;
3090 }
3091 
3092 /**
3093  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3094  * @clk: clock signal source
3095  * @num: numerator of the duty cycle ratio to be applied
3096  * @den: denominator of the duty cycle ratio to be applied
3097  *
3098  * Apply the duty cycle ratio if the ratio is valid and the clock can
3099  * perform this operation
3100  *
3101  * Returns (0) on success, a negative errno otherwise.
3102  */
3103 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3104 {
3105 	int ret;
3106 	struct clk_duty duty;
3107 
3108 	if (!clk)
3109 		return 0;
3110 
3111 	/* sanity check the ratio */
3112 	if (den == 0 || num > den)
3113 		return -EINVAL;
3114 
3115 	duty.num = num;
3116 	duty.den = den;
3117 
3118 	clk_prepare_lock();
3119 
3120 	if (clk->exclusive_count)
3121 		clk_core_rate_unprotect(clk->core);
3122 
3123 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3124 
3125 	if (clk->exclusive_count)
3126 		clk_core_rate_protect(clk->core);
3127 
3128 	clk_prepare_unlock();
3129 
3130 	return ret;
3131 }
3132 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3133 
3134 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3135 					  unsigned int scale)
3136 {
3137 	struct clk_duty *duty = &core->duty;
3138 	int ret;
3139 
3140 	clk_prepare_lock();
3141 
3142 	ret = clk_core_update_duty_cycle_nolock(core);
3143 	if (!ret)
3144 		ret = mult_frac(scale, duty->num, duty->den);
3145 
3146 	clk_prepare_unlock();
3147 
3148 	return ret;
3149 }
3150 
3151 /**
3152  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3153  * @clk: clock signal source
3154  * @scale: scaling factor to be applied to represent the ratio as an integer
3155  *
3156  * Returns the duty cycle ratio of a clock node multiplied by the provided
3157  * scaling factor, or negative errno on error.
3158  */
3159 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3160 {
3161 	if (!clk)
3162 		return 0;
3163 
3164 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3165 }
3166 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3167 
3168 /**
3169  * clk_is_match - check if two clk's point to the same hardware clock
3170  * @p: clk compared against q
3171  * @q: clk compared against p
3172  *
3173  * Returns true if the two struct clk pointers both point to the same hardware
3174  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3175  * share the same struct clk_core object.
3176  *
3177  * Returns false otherwise. Note that two NULL clks are treated as matching.
3178  */
3179 bool clk_is_match(const struct clk *p, const struct clk *q)
3180 {
3181 	/* trivial case: identical struct clk's or both NULL */
3182 	if (p == q)
3183 		return true;
3184 
3185 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3186 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3187 		if (p->core == q->core)
3188 			return true;
3189 
3190 	return false;
3191 }
3192 EXPORT_SYMBOL_GPL(clk_is_match);
3193 
3194 /***        debugfs support        ***/
3195 
3196 #ifdef CONFIG_DEBUG_FS
3197 #include <linux/debugfs.h>
3198 
3199 static struct dentry *rootdir;
3200 static int inited = 0;
3201 static DEFINE_MUTEX(clk_debug_lock);
3202 static HLIST_HEAD(clk_debug_list);
3203 
3204 static struct hlist_head *orphan_list[] = {
3205 	&clk_orphan_list,
3206 	NULL,
3207 };
3208 
3209 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3210 				 int level)
3211 {
3212 	int phase;
3213 	struct clk *clk_user;
3214 	int multi_node = 0;
3215 
3216 	seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ",
3217 		   level * 3 + 1, "",
3218 		   35 - level * 3, c->name,
3219 		   c->enable_count, c->prepare_count, c->protect_count,
3220 		   clk_core_get_rate_recalc(c),
3221 		   clk_core_get_accuracy_recalc(c));
3222 
3223 	phase = clk_core_get_phase(c);
3224 	if (phase >= 0)
3225 		seq_printf(s, "%-5d", phase);
3226 	else
3227 		seq_puts(s, "-----");
3228 
3229 	seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000));
3230 
3231 	if (c->ops->is_enabled)
3232 		seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N');
3233 	else if (!c->ops->enable)
3234 		seq_printf(s, " %5c ", 'Y');
3235 	else
3236 		seq_printf(s, " %5c ", '?');
3237 
3238 	hlist_for_each_entry(clk_user, &c->clks, clks_node) {
3239 		seq_printf(s, "%*s%-*s  %-25s\n",
3240 			   level * 3 + 2 + 105 * multi_node, "",
3241 			   30,
3242 			   clk_user->dev_id ? clk_user->dev_id : "deviceless",
3243 			   clk_user->con_id ? clk_user->con_id : "no_connection_id");
3244 
3245 		multi_node = 1;
3246 	}
3247 
3248 }
3249 
3250 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3251 				     int level)
3252 {
3253 	struct clk_core *child;
3254 
3255 	clk_pm_runtime_get(c);
3256 	clk_summary_show_one(s, c, level);
3257 	clk_pm_runtime_put(c);
3258 
3259 	hlist_for_each_entry(child, &c->children, child_node)
3260 		clk_summary_show_subtree(s, child, level + 1);
3261 }
3262 
3263 static int clk_summary_show(struct seq_file *s, void *data)
3264 {
3265 	struct clk_core *c;
3266 	struct hlist_head **lists = s->private;
3267 
3268 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware                            connection\n");
3269 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable   consumer                         id\n");
3270 	seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n");
3271 
3272 
3273 	clk_prepare_lock();
3274 
3275 	for (; *lists; lists++)
3276 		hlist_for_each_entry(c, *lists, child_node)
3277 			clk_summary_show_subtree(s, c, 0);
3278 
3279 	clk_prepare_unlock();
3280 
3281 	return 0;
3282 }
3283 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3284 
3285 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3286 {
3287 	int phase;
3288 	unsigned long min_rate, max_rate;
3289 
3290 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3291 
3292 	/* This should be JSON format, i.e. elements separated with a comma */
3293 	seq_printf(s, "\"%s\": { ", c->name);
3294 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3295 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3296 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3297 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3298 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3299 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3300 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3301 	phase = clk_core_get_phase(c);
3302 	if (phase >= 0)
3303 		seq_printf(s, "\"phase\": %d,", phase);
3304 	seq_printf(s, "\"duty_cycle\": %u",
3305 		   clk_core_get_scaled_duty_cycle(c, 100000));
3306 }
3307 
3308 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3309 {
3310 	struct clk_core *child;
3311 
3312 	clk_dump_one(s, c, level);
3313 
3314 	hlist_for_each_entry(child, &c->children, child_node) {
3315 		seq_putc(s, ',');
3316 		clk_dump_subtree(s, child, level + 1);
3317 	}
3318 
3319 	seq_putc(s, '}');
3320 }
3321 
3322 static int clk_dump_show(struct seq_file *s, void *data)
3323 {
3324 	struct clk_core *c;
3325 	bool first_node = true;
3326 	struct hlist_head **lists = s->private;
3327 
3328 	seq_putc(s, '{');
3329 	clk_prepare_lock();
3330 
3331 	for (; *lists; lists++) {
3332 		hlist_for_each_entry(c, *lists, child_node) {
3333 			if (!first_node)
3334 				seq_putc(s, ',');
3335 			first_node = false;
3336 			clk_dump_subtree(s, c, 0);
3337 		}
3338 	}
3339 
3340 	clk_prepare_unlock();
3341 
3342 	seq_puts(s, "}\n");
3343 	return 0;
3344 }
3345 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3346 
3347 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3348 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3349 /*
3350  * This can be dangerous, therefore don't provide any real compile time
3351  * configuration option for this feature.
3352  * People who want to use this will need to modify the source code directly.
3353  */
3354 static int clk_rate_set(void *data, u64 val)
3355 {
3356 	struct clk_core *core = data;
3357 	int ret;
3358 
3359 	clk_prepare_lock();
3360 	ret = clk_core_set_rate_nolock(core, val);
3361 	clk_prepare_unlock();
3362 
3363 	return ret;
3364 }
3365 
3366 #define clk_rate_mode	0644
3367 
3368 static int clk_phase_set(void *data, u64 val)
3369 {
3370 	struct clk_core *core = data;
3371 	int degrees = do_div(val, 360);
3372 	int ret;
3373 
3374 	clk_prepare_lock();
3375 	ret = clk_core_set_phase_nolock(core, degrees);
3376 	clk_prepare_unlock();
3377 
3378 	return ret;
3379 }
3380 
3381 #define clk_phase_mode	0644
3382 
3383 static int clk_prepare_enable_set(void *data, u64 val)
3384 {
3385 	struct clk_core *core = data;
3386 	int ret = 0;
3387 
3388 	if (val)
3389 		ret = clk_prepare_enable(core->hw->clk);
3390 	else
3391 		clk_disable_unprepare(core->hw->clk);
3392 
3393 	return ret;
3394 }
3395 
3396 static int clk_prepare_enable_get(void *data, u64 *val)
3397 {
3398 	struct clk_core *core = data;
3399 
3400 	*val = core->enable_count && core->prepare_count;
3401 	return 0;
3402 }
3403 
3404 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3405 			 clk_prepare_enable_set, "%llu\n");
3406 
3407 #else
3408 #define clk_rate_set	NULL
3409 #define clk_rate_mode	0444
3410 
3411 #define clk_phase_set	NULL
3412 #define clk_phase_mode	0644
3413 #endif
3414 
3415 static int clk_rate_get(void *data, u64 *val)
3416 {
3417 	struct clk_core *core = data;
3418 
3419 	clk_prepare_lock();
3420 	*val = clk_core_get_rate_recalc(core);
3421 	clk_prepare_unlock();
3422 
3423 	return 0;
3424 }
3425 
3426 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3427 
3428 static int clk_phase_get(void *data, u64 *val)
3429 {
3430 	struct clk_core *core = data;
3431 
3432 	*val = core->phase;
3433 	return 0;
3434 }
3435 
3436 DEFINE_DEBUGFS_ATTRIBUTE(clk_phase_fops, clk_phase_get, clk_phase_set, "%llu\n");
3437 
3438 static const struct {
3439 	unsigned long flag;
3440 	const char *name;
3441 } clk_flags[] = {
3442 #define ENTRY(f) { f, #f }
3443 	ENTRY(CLK_SET_RATE_GATE),
3444 	ENTRY(CLK_SET_PARENT_GATE),
3445 	ENTRY(CLK_SET_RATE_PARENT),
3446 	ENTRY(CLK_IGNORE_UNUSED),
3447 	ENTRY(CLK_GET_RATE_NOCACHE),
3448 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3449 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3450 	ENTRY(CLK_RECALC_NEW_RATES),
3451 	ENTRY(CLK_SET_RATE_UNGATE),
3452 	ENTRY(CLK_IS_CRITICAL),
3453 	ENTRY(CLK_OPS_PARENT_ENABLE),
3454 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3455 #undef ENTRY
3456 };
3457 
3458 static int clk_flags_show(struct seq_file *s, void *data)
3459 {
3460 	struct clk_core *core = s->private;
3461 	unsigned long flags = core->flags;
3462 	unsigned int i;
3463 
3464 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3465 		if (flags & clk_flags[i].flag) {
3466 			seq_printf(s, "%s\n", clk_flags[i].name);
3467 			flags &= ~clk_flags[i].flag;
3468 		}
3469 	}
3470 	if (flags) {
3471 		/* Unknown flags */
3472 		seq_printf(s, "0x%lx\n", flags);
3473 	}
3474 
3475 	return 0;
3476 }
3477 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3478 
3479 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3480 				 unsigned int i, char terminator)
3481 {
3482 	struct clk_core *parent;
3483 	const char *name = NULL;
3484 
3485 	/*
3486 	 * Go through the following options to fetch a parent's name.
3487 	 *
3488 	 * 1. Fetch the registered parent clock and use its name
3489 	 * 2. Use the global (fallback) name if specified
3490 	 * 3. Use the local fw_name if provided
3491 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3492 	 *
3493 	 * This may still fail in some cases, such as when the parent is
3494 	 * specified directly via a struct clk_hw pointer, but it isn't
3495 	 * registered (yet).
3496 	 */
3497 	parent = clk_core_get_parent_by_index(core, i);
3498 	if (parent) {
3499 		seq_puts(s, parent->name);
3500 	} else if (core->parents[i].name) {
3501 		seq_puts(s, core->parents[i].name);
3502 	} else if (core->parents[i].fw_name) {
3503 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3504 	} else {
3505 		if (core->parents[i].index >= 0)
3506 			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3507 		if (!name)
3508 			name = "(missing)";
3509 
3510 		seq_puts(s, name);
3511 	}
3512 
3513 	seq_putc(s, terminator);
3514 }
3515 
3516 static int possible_parents_show(struct seq_file *s, void *data)
3517 {
3518 	struct clk_core *core = s->private;
3519 	int i;
3520 
3521 	for (i = 0; i < core->num_parents - 1; i++)
3522 		possible_parent_show(s, core, i, ' ');
3523 
3524 	possible_parent_show(s, core, i, '\n');
3525 
3526 	return 0;
3527 }
3528 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3529 
3530 static int current_parent_show(struct seq_file *s, void *data)
3531 {
3532 	struct clk_core *core = s->private;
3533 
3534 	if (core->parent)
3535 		seq_printf(s, "%s\n", core->parent->name);
3536 
3537 	return 0;
3538 }
3539 DEFINE_SHOW_ATTRIBUTE(current_parent);
3540 
3541 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3542 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3543 				    size_t count, loff_t *ppos)
3544 {
3545 	struct seq_file *s = file->private_data;
3546 	struct clk_core *core = s->private;
3547 	struct clk_core *parent;
3548 	u8 idx;
3549 	int err;
3550 
3551 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3552 	if (err < 0)
3553 		return err;
3554 
3555 	parent = clk_core_get_parent_by_index(core, idx);
3556 	if (!parent)
3557 		return -ENOENT;
3558 
3559 	clk_prepare_lock();
3560 	err = clk_core_set_parent_nolock(core, parent);
3561 	clk_prepare_unlock();
3562 	if (err)
3563 		return err;
3564 
3565 	return count;
3566 }
3567 
3568 static const struct file_operations current_parent_rw_fops = {
3569 	.open		= current_parent_open,
3570 	.write		= current_parent_write,
3571 	.read		= seq_read,
3572 	.llseek		= seq_lseek,
3573 	.release	= single_release,
3574 };
3575 #endif
3576 
3577 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3578 {
3579 	struct clk_core *core = s->private;
3580 	struct clk_duty *duty = &core->duty;
3581 
3582 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3583 
3584 	return 0;
3585 }
3586 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3587 
3588 static int clk_min_rate_show(struct seq_file *s, void *data)
3589 {
3590 	struct clk_core *core = s->private;
3591 	unsigned long min_rate, max_rate;
3592 
3593 	clk_prepare_lock();
3594 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3595 	clk_prepare_unlock();
3596 	seq_printf(s, "%lu\n", min_rate);
3597 
3598 	return 0;
3599 }
3600 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3601 
3602 static int clk_max_rate_show(struct seq_file *s, void *data)
3603 {
3604 	struct clk_core *core = s->private;
3605 	unsigned long min_rate, max_rate;
3606 
3607 	clk_prepare_lock();
3608 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3609 	clk_prepare_unlock();
3610 	seq_printf(s, "%lu\n", max_rate);
3611 
3612 	return 0;
3613 }
3614 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3615 
3616 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3617 {
3618 	struct dentry *root;
3619 
3620 	if (!core || !pdentry)
3621 		return;
3622 
3623 	root = debugfs_create_dir(core->name, pdentry);
3624 	core->dentry = root;
3625 
3626 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3627 			    &clk_rate_fops);
3628 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3629 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3630 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3631 	debugfs_create_file("clk_phase", clk_phase_mode, root, core,
3632 			    &clk_phase_fops);
3633 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3634 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3635 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3636 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3637 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3638 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3639 			    &clk_duty_cycle_fops);
3640 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3641 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3642 			    &clk_prepare_enable_fops);
3643 
3644 	if (core->num_parents > 1)
3645 		debugfs_create_file("clk_parent", 0644, root, core,
3646 				    &current_parent_rw_fops);
3647 	else
3648 #endif
3649 	if (core->num_parents > 0)
3650 		debugfs_create_file("clk_parent", 0444, root, core,
3651 				    &current_parent_fops);
3652 
3653 	if (core->num_parents > 1)
3654 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3655 				    &possible_parents_fops);
3656 
3657 	if (core->ops->debug_init)
3658 		core->ops->debug_init(core->hw, core->dentry);
3659 }
3660 
3661 /**
3662  * clk_debug_register - add a clk node to the debugfs clk directory
3663  * @core: the clk being added to the debugfs clk directory
3664  *
3665  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3666  * initialized.  Otherwise it bails out early since the debugfs clk directory
3667  * will be created lazily by clk_debug_init as part of a late_initcall.
3668  */
3669 static void clk_debug_register(struct clk_core *core)
3670 {
3671 	mutex_lock(&clk_debug_lock);
3672 	hlist_add_head(&core->debug_node, &clk_debug_list);
3673 	if (inited)
3674 		clk_debug_create_one(core, rootdir);
3675 	mutex_unlock(&clk_debug_lock);
3676 }
3677 
3678  /**
3679  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3680  * @core: the clk being removed from the debugfs clk directory
3681  *
3682  * Dynamically removes a clk and all its child nodes from the
3683  * debugfs clk directory if clk->dentry points to debugfs created by
3684  * clk_debug_register in __clk_core_init.
3685  */
3686 static void clk_debug_unregister(struct clk_core *core)
3687 {
3688 	mutex_lock(&clk_debug_lock);
3689 	hlist_del_init(&core->debug_node);
3690 	debugfs_remove_recursive(core->dentry);
3691 	core->dentry = NULL;
3692 	mutex_unlock(&clk_debug_lock);
3693 }
3694 
3695 /**
3696  * clk_debug_init - lazily populate the debugfs clk directory
3697  *
3698  * clks are often initialized very early during boot before memory can be
3699  * dynamically allocated and well before debugfs is setup. This function
3700  * populates the debugfs clk directory once at boot-time when we know that
3701  * debugfs is setup. It should only be called once at boot-time, all other clks
3702  * added dynamically will be done so with clk_debug_register.
3703  */
3704 static int __init clk_debug_init(void)
3705 {
3706 	struct clk_core *core;
3707 
3708 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3709 	pr_warn("\n");
3710 	pr_warn("********************************************************************\n");
3711 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3712 	pr_warn("**                                                                **\n");
3713 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3714 	pr_warn("**                                                                **\n");
3715 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3716 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3717 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3718 	pr_warn("**                                                                **\n");
3719 	pr_warn("** If you see this message and you are not debugging the          **\n");
3720 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3721 	pr_warn("**                                                                **\n");
3722 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3723 	pr_warn("********************************************************************\n");
3724 #endif
3725 
3726 	rootdir = debugfs_create_dir("clk", NULL);
3727 
3728 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3729 			    &clk_summary_fops);
3730 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3731 			    &clk_dump_fops);
3732 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3733 			    &clk_summary_fops);
3734 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3735 			    &clk_dump_fops);
3736 
3737 	mutex_lock(&clk_debug_lock);
3738 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3739 		clk_debug_create_one(core, rootdir);
3740 
3741 	inited = 1;
3742 	mutex_unlock(&clk_debug_lock);
3743 
3744 	return 0;
3745 }
3746 late_initcall(clk_debug_init);
3747 #else
3748 static inline void clk_debug_register(struct clk_core *core) { }
3749 static inline void clk_debug_unregister(struct clk_core *core)
3750 {
3751 }
3752 #endif
3753 
3754 static void clk_core_reparent_orphans_nolock(void)
3755 {
3756 	struct clk_core *orphan;
3757 	struct hlist_node *tmp2;
3758 
3759 	/*
3760 	 * walk the list of orphan clocks and reparent any that newly finds a
3761 	 * parent.
3762 	 */
3763 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3764 		struct clk_core *parent = __clk_init_parent(orphan);
3765 
3766 		/*
3767 		 * We need to use __clk_set_parent_before() and _after() to
3768 		 * properly migrate any prepare/enable count of the orphan
3769 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3770 		 * are enabled during init but might not have a parent yet.
3771 		 */
3772 		if (parent) {
3773 			/* update the clk tree topology */
3774 			__clk_set_parent_before(orphan, parent);
3775 			__clk_set_parent_after(orphan, parent, NULL);
3776 			__clk_recalc_accuracies(orphan);
3777 			__clk_recalc_rates(orphan, true, 0);
3778 
3779 			/*
3780 			 * __clk_init_parent() will set the initial req_rate to
3781 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3782 			 * is an orphan when it's registered.
3783 			 *
3784 			 * 'req_rate' is used by clk_set_rate_range() and
3785 			 * clk_put() to trigger a clk_set_rate() call whenever
3786 			 * the boundaries are modified. Let's make sure
3787 			 * 'req_rate' is set to something non-zero so that
3788 			 * clk_set_rate_range() doesn't drop the frequency.
3789 			 */
3790 			orphan->req_rate = orphan->rate;
3791 		}
3792 	}
3793 }
3794 
3795 /**
3796  * __clk_core_init - initialize the data structures in a struct clk_core
3797  * @core:	clk_core being initialized
3798  *
3799  * Initializes the lists in struct clk_core, queries the hardware for the
3800  * parent and rate and sets them both.
3801  */
3802 static int __clk_core_init(struct clk_core *core)
3803 {
3804 	int ret;
3805 	struct clk_core *parent;
3806 	unsigned long rate;
3807 	int phase;
3808 
3809 	clk_prepare_lock();
3810 
3811 	/*
3812 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3813 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3814 	 * being NULL as the clk not being registered yet. This is crucial so
3815 	 * that clks aren't parented until their parent is fully registered.
3816 	 */
3817 	core->hw->core = core;
3818 
3819 	ret = clk_pm_runtime_get(core);
3820 	if (ret)
3821 		goto unlock;
3822 
3823 	/* check to see if a clock with this name is already registered */
3824 	if (clk_core_lookup(core->name)) {
3825 		pr_debug("%s: clk %s already initialized\n",
3826 				__func__, core->name);
3827 		ret = -EEXIST;
3828 		goto out;
3829 	}
3830 
3831 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3832 	if (core->ops->set_rate &&
3833 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3834 	      core->ops->recalc_rate)) {
3835 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3836 		       __func__, core->name);
3837 		ret = -EINVAL;
3838 		goto out;
3839 	}
3840 
3841 	if (core->ops->set_parent && !core->ops->get_parent) {
3842 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3843 		       __func__, core->name);
3844 		ret = -EINVAL;
3845 		goto out;
3846 	}
3847 
3848 	if (core->ops->set_parent && !core->ops->determine_rate) {
3849 		pr_err("%s: %s must implement .set_parent & .determine_rate\n",
3850 			__func__, core->name);
3851 		ret = -EINVAL;
3852 		goto out;
3853 	}
3854 
3855 	if (core->num_parents > 1 && !core->ops->get_parent) {
3856 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3857 		       __func__, core->name);
3858 		ret = -EINVAL;
3859 		goto out;
3860 	}
3861 
3862 	if (core->ops->set_rate_and_parent &&
3863 			!(core->ops->set_parent && core->ops->set_rate)) {
3864 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3865 				__func__, core->name);
3866 		ret = -EINVAL;
3867 		goto out;
3868 	}
3869 
3870 	/*
3871 	 * optional platform-specific magic
3872 	 *
3873 	 * The .init callback is not used by any of the basic clock types, but
3874 	 * exists for weird hardware that must perform initialization magic for
3875 	 * CCF to get an accurate view of clock for any other callbacks. It may
3876 	 * also be used needs to perform dynamic allocations. Such allocation
3877 	 * must be freed in the terminate() callback.
3878 	 * This callback shall not be used to initialize the parameters state,
3879 	 * such as rate, parent, etc ...
3880 	 *
3881 	 * If it exist, this callback should called before any other callback of
3882 	 * the clock
3883 	 */
3884 	if (core->ops->init) {
3885 		ret = core->ops->init(core->hw);
3886 		if (ret)
3887 			goto out;
3888 	}
3889 
3890 	parent = core->parent = __clk_init_parent(core);
3891 
3892 	/*
3893 	 * Populate core->parent if parent has already been clk_core_init'd. If
3894 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3895 	 * list.  If clk doesn't have any parents then place it in the root
3896 	 * clk list.
3897 	 *
3898 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3899 	 * clocks and re-parent any that are children of the clock currently
3900 	 * being clk_init'd.
3901 	 */
3902 	if (parent) {
3903 		hlist_add_head(&core->child_node, &parent->children);
3904 		core->orphan = parent->orphan;
3905 	} else if (!core->num_parents) {
3906 		hlist_add_head(&core->child_node, &clk_root_list);
3907 		core->orphan = false;
3908 	} else {
3909 		hlist_add_head(&core->child_node, &clk_orphan_list);
3910 		core->orphan = true;
3911 	}
3912 
3913 	/*
3914 	 * Set clk's accuracy.  The preferred method is to use
3915 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3916 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3917 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3918 	 * clock).
3919 	 */
3920 	if (core->ops->recalc_accuracy)
3921 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3922 					clk_core_get_accuracy_no_lock(parent));
3923 	else if (parent)
3924 		core->accuracy = parent->accuracy;
3925 	else
3926 		core->accuracy = 0;
3927 
3928 	/*
3929 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3930 	 * Since a phase is by definition relative to its parent, just
3931 	 * query the current clock phase, or just assume it's in phase.
3932 	 */
3933 	phase = clk_core_get_phase(core);
3934 	if (phase < 0) {
3935 		ret = phase;
3936 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3937 			core->name);
3938 		goto out;
3939 	}
3940 
3941 	/*
3942 	 * Set clk's duty cycle.
3943 	 */
3944 	clk_core_update_duty_cycle_nolock(core);
3945 
3946 	/*
3947 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3948 	 * simple clocks and lazy developers the default fallback is to use the
3949 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3950 	 * then rate is set to zero.
3951 	 */
3952 	if (core->ops->recalc_rate)
3953 		rate = core->ops->recalc_rate(core->hw,
3954 				clk_core_get_rate_nolock(parent));
3955 	else if (parent)
3956 		rate = parent->rate;
3957 	else
3958 		rate = 0;
3959 	core->rate = core->req_rate = rate;
3960 
3961 	/*
3962 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3963 	 * don't get accidentally disabled when walking the orphan tree and
3964 	 * reparenting clocks
3965 	 */
3966 	if (core->flags & CLK_IS_CRITICAL) {
3967 		ret = clk_core_prepare(core);
3968 		if (ret) {
3969 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3970 			       __func__, core->name);
3971 			goto out;
3972 		}
3973 
3974 		ret = clk_core_enable_lock(core);
3975 		if (ret) {
3976 			pr_warn("%s: critical clk '%s' failed to enable\n",
3977 			       __func__, core->name);
3978 			clk_core_unprepare(core);
3979 			goto out;
3980 		}
3981 	}
3982 
3983 	clk_core_reparent_orphans_nolock();
3984 
3985 	kref_init(&core->ref);
3986 out:
3987 	clk_pm_runtime_put(core);
3988 unlock:
3989 	if (ret) {
3990 		hlist_del_init(&core->child_node);
3991 		core->hw->core = NULL;
3992 	}
3993 
3994 	clk_prepare_unlock();
3995 
3996 	if (!ret)
3997 		clk_debug_register(core);
3998 
3999 	return ret;
4000 }
4001 
4002 /**
4003  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
4004  * @core: clk to add consumer to
4005  * @clk: consumer to link to a clk
4006  */
4007 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
4008 {
4009 	clk_prepare_lock();
4010 	hlist_add_head(&clk->clks_node, &core->clks);
4011 	clk_prepare_unlock();
4012 }
4013 
4014 /**
4015  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
4016  * @clk: consumer to unlink
4017  */
4018 static void clk_core_unlink_consumer(struct clk *clk)
4019 {
4020 	lockdep_assert_held(&prepare_lock);
4021 	hlist_del(&clk->clks_node);
4022 }
4023 
4024 /**
4025  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
4026  * @core: clk to allocate a consumer for
4027  * @dev_id: string describing device name
4028  * @con_id: connection ID string on device
4029  *
4030  * Returns: clk consumer left unlinked from the consumer list
4031  */
4032 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
4033 			     const char *con_id)
4034 {
4035 	struct clk *clk;
4036 
4037 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
4038 	if (!clk)
4039 		return ERR_PTR(-ENOMEM);
4040 
4041 	clk->core = core;
4042 	clk->dev_id = dev_id;
4043 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
4044 	clk->max_rate = ULONG_MAX;
4045 
4046 	return clk;
4047 }
4048 
4049 /**
4050  * free_clk - Free a clk consumer
4051  * @clk: clk consumer to free
4052  *
4053  * Note, this assumes the clk has been unlinked from the clk_core consumer
4054  * list.
4055  */
4056 static void free_clk(struct clk *clk)
4057 {
4058 	kfree_const(clk->con_id);
4059 	kfree(clk);
4060 }
4061 
4062 /**
4063  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4064  * a clk_hw
4065  * @dev: clk consumer device
4066  * @hw: clk_hw associated with the clk being consumed
4067  * @dev_id: string describing device name
4068  * @con_id: connection ID string on device
4069  *
4070  * This is the main function used to create a clk pointer for use by clk
4071  * consumers. It connects a consumer to the clk_core and clk_hw structures
4072  * used by the framework and clk provider respectively.
4073  */
4074 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4075 			      const char *dev_id, const char *con_id)
4076 {
4077 	struct clk *clk;
4078 	struct clk_core *core;
4079 
4080 	/* This is to allow this function to be chained to others */
4081 	if (IS_ERR_OR_NULL(hw))
4082 		return ERR_CAST(hw);
4083 
4084 	core = hw->core;
4085 	clk = alloc_clk(core, dev_id, con_id);
4086 	if (IS_ERR(clk))
4087 		return clk;
4088 	clk->dev = dev;
4089 
4090 	if (!try_module_get(core->owner)) {
4091 		free_clk(clk);
4092 		return ERR_PTR(-ENOENT);
4093 	}
4094 
4095 	kref_get(&core->ref);
4096 	clk_core_link_consumer(core, clk);
4097 
4098 	return clk;
4099 }
4100 
4101 /**
4102  * clk_hw_get_clk - get clk consumer given an clk_hw
4103  * @hw: clk_hw associated with the clk being consumed
4104  * @con_id: connection ID string on device
4105  *
4106  * Returns: new clk consumer
4107  * This is the function to be used by providers which need
4108  * to get a consumer clk and act on the clock element
4109  * Calls to this function must be balanced with calls clk_put()
4110  */
4111 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4112 {
4113 	struct device *dev = hw->core->dev;
4114 	const char *name = dev ? dev_name(dev) : NULL;
4115 
4116 	return clk_hw_create_clk(dev, hw, name, con_id);
4117 }
4118 EXPORT_SYMBOL(clk_hw_get_clk);
4119 
4120 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4121 {
4122 	const char *dst;
4123 
4124 	if (!src) {
4125 		if (must_exist)
4126 			return -EINVAL;
4127 		return 0;
4128 	}
4129 
4130 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4131 	if (!dst)
4132 		return -ENOMEM;
4133 
4134 	return 0;
4135 }
4136 
4137 static int clk_core_populate_parent_map(struct clk_core *core,
4138 					const struct clk_init_data *init)
4139 {
4140 	u8 num_parents = init->num_parents;
4141 	const char * const *parent_names = init->parent_names;
4142 	const struct clk_hw **parent_hws = init->parent_hws;
4143 	const struct clk_parent_data *parent_data = init->parent_data;
4144 	int i, ret = 0;
4145 	struct clk_parent_map *parents, *parent;
4146 
4147 	if (!num_parents)
4148 		return 0;
4149 
4150 	/*
4151 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4152 	 * having a cache of names/clk_hw pointers to clk_core pointers.
4153 	 */
4154 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4155 	core->parents = parents;
4156 	if (!parents)
4157 		return -ENOMEM;
4158 
4159 	/* Copy everything over because it might be __initdata */
4160 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4161 		parent->index = -1;
4162 		if (parent_names) {
4163 			/* throw a WARN if any entries are NULL */
4164 			WARN(!parent_names[i],
4165 				"%s: invalid NULL in %s's .parent_names\n",
4166 				__func__, core->name);
4167 			ret = clk_cpy_name(&parent->name, parent_names[i],
4168 					   true);
4169 		} else if (parent_data) {
4170 			parent->hw = parent_data[i].hw;
4171 			parent->index = parent_data[i].index;
4172 			ret = clk_cpy_name(&parent->fw_name,
4173 					   parent_data[i].fw_name, false);
4174 			if (!ret)
4175 				ret = clk_cpy_name(&parent->name,
4176 						   parent_data[i].name,
4177 						   false);
4178 		} else if (parent_hws) {
4179 			parent->hw = parent_hws[i];
4180 		} else {
4181 			ret = -EINVAL;
4182 			WARN(1, "Must specify parents if num_parents > 0\n");
4183 		}
4184 
4185 		if (ret) {
4186 			do {
4187 				kfree_const(parents[i].name);
4188 				kfree_const(parents[i].fw_name);
4189 			} while (--i >= 0);
4190 			kfree(parents);
4191 
4192 			return ret;
4193 		}
4194 	}
4195 
4196 	return 0;
4197 }
4198 
4199 static void clk_core_free_parent_map(struct clk_core *core)
4200 {
4201 	int i = core->num_parents;
4202 
4203 	if (!core->num_parents)
4204 		return;
4205 
4206 	while (--i >= 0) {
4207 		kfree_const(core->parents[i].name);
4208 		kfree_const(core->parents[i].fw_name);
4209 	}
4210 
4211 	kfree(core->parents);
4212 }
4213 
4214 static struct clk *
4215 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4216 {
4217 	int ret;
4218 	struct clk_core *core;
4219 	const struct clk_init_data *init = hw->init;
4220 
4221 	/*
4222 	 * The init data is not supposed to be used outside of registration path.
4223 	 * Set it to NULL so that provider drivers can't use it either and so that
4224 	 * we catch use of hw->init early on in the core.
4225 	 */
4226 	hw->init = NULL;
4227 
4228 	core = kzalloc(sizeof(*core), GFP_KERNEL);
4229 	if (!core) {
4230 		ret = -ENOMEM;
4231 		goto fail_out;
4232 	}
4233 
4234 	core->name = kstrdup_const(init->name, GFP_KERNEL);
4235 	if (!core->name) {
4236 		ret = -ENOMEM;
4237 		goto fail_name;
4238 	}
4239 
4240 	if (WARN_ON(!init->ops)) {
4241 		ret = -EINVAL;
4242 		goto fail_ops;
4243 	}
4244 	core->ops = init->ops;
4245 
4246 	if (dev && pm_runtime_enabled(dev))
4247 		core->rpm_enabled = true;
4248 	core->dev = dev;
4249 	core->of_node = np;
4250 	if (dev && dev->driver)
4251 		core->owner = dev->driver->owner;
4252 	core->hw = hw;
4253 	core->flags = init->flags;
4254 	core->num_parents = init->num_parents;
4255 	core->min_rate = 0;
4256 	core->max_rate = ULONG_MAX;
4257 
4258 	ret = clk_core_populate_parent_map(core, init);
4259 	if (ret)
4260 		goto fail_parents;
4261 
4262 	INIT_HLIST_HEAD(&core->clks);
4263 
4264 	/*
4265 	 * Don't call clk_hw_create_clk() here because that would pin the
4266 	 * provider module to itself and prevent it from ever being removed.
4267 	 */
4268 	hw->clk = alloc_clk(core, NULL, NULL);
4269 	if (IS_ERR(hw->clk)) {
4270 		ret = PTR_ERR(hw->clk);
4271 		goto fail_create_clk;
4272 	}
4273 
4274 	clk_core_link_consumer(core, hw->clk);
4275 
4276 	ret = __clk_core_init(core);
4277 	if (!ret)
4278 		return hw->clk;
4279 
4280 	clk_prepare_lock();
4281 	clk_core_unlink_consumer(hw->clk);
4282 	clk_prepare_unlock();
4283 
4284 	free_clk(hw->clk);
4285 	hw->clk = NULL;
4286 
4287 fail_create_clk:
4288 	clk_core_free_parent_map(core);
4289 fail_parents:
4290 fail_ops:
4291 	kfree_const(core->name);
4292 fail_name:
4293 	kfree(core);
4294 fail_out:
4295 	return ERR_PTR(ret);
4296 }
4297 
4298 /**
4299  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4300  * @dev: Device to get device node of
4301  *
4302  * Return: device node pointer of @dev, or the device node pointer of
4303  * @dev->parent if dev doesn't have a device node, or NULL if neither
4304  * @dev or @dev->parent have a device node.
4305  */
4306 static struct device_node *dev_or_parent_of_node(struct device *dev)
4307 {
4308 	struct device_node *np;
4309 
4310 	if (!dev)
4311 		return NULL;
4312 
4313 	np = dev_of_node(dev);
4314 	if (!np)
4315 		np = dev_of_node(dev->parent);
4316 
4317 	return np;
4318 }
4319 
4320 /**
4321  * clk_register - allocate a new clock, register it and return an opaque cookie
4322  * @dev: device that is registering this clock
4323  * @hw: link to hardware-specific clock data
4324  *
4325  * clk_register is the *deprecated* interface for populating the clock tree with
4326  * new clock nodes. Use clk_hw_register() instead.
4327  *
4328  * Returns: a pointer to the newly allocated struct clk which
4329  * cannot be dereferenced by driver code but may be used in conjunction with the
4330  * rest of the clock API.  In the event of an error clk_register will return an
4331  * error code; drivers must test for an error code after calling clk_register.
4332  */
4333 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4334 {
4335 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4336 }
4337 EXPORT_SYMBOL_GPL(clk_register);
4338 
4339 /**
4340  * clk_hw_register - register a clk_hw and return an error code
4341  * @dev: device that is registering this clock
4342  * @hw: link to hardware-specific clock data
4343  *
4344  * clk_hw_register is the primary interface for populating the clock tree with
4345  * new clock nodes. It returns an integer equal to zero indicating success or
4346  * less than zero indicating failure. Drivers must test for an error code after
4347  * calling clk_hw_register().
4348  */
4349 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4350 {
4351 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4352 			       hw));
4353 }
4354 EXPORT_SYMBOL_GPL(clk_hw_register);
4355 
4356 /*
4357  * of_clk_hw_register - register a clk_hw and return an error code
4358  * @node: device_node of device that is registering this clock
4359  * @hw: link to hardware-specific clock data
4360  *
4361  * of_clk_hw_register() is the primary interface for populating the clock tree
4362  * with new clock nodes when a struct device is not available, but a struct
4363  * device_node is. It returns an integer equal to zero indicating success or
4364  * less than zero indicating failure. Drivers must test for an error code after
4365  * calling of_clk_hw_register().
4366  */
4367 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4368 {
4369 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4370 }
4371 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4372 
4373 /* Free memory allocated for a clock. */
4374 static void __clk_release(struct kref *ref)
4375 {
4376 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4377 
4378 	lockdep_assert_held(&prepare_lock);
4379 
4380 	clk_core_free_parent_map(core);
4381 	kfree_const(core->name);
4382 	kfree(core);
4383 }
4384 
4385 /*
4386  * Empty clk_ops for unregistered clocks. These are used temporarily
4387  * after clk_unregister() was called on a clock and until last clock
4388  * consumer calls clk_put() and the struct clk object is freed.
4389  */
4390 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4391 {
4392 	return -ENXIO;
4393 }
4394 
4395 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4396 {
4397 	WARN_ON_ONCE(1);
4398 }
4399 
4400 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4401 					unsigned long parent_rate)
4402 {
4403 	return -ENXIO;
4404 }
4405 
4406 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4407 {
4408 	return -ENXIO;
4409 }
4410 
4411 static int clk_nodrv_determine_rate(struct clk_hw *hw,
4412 				    struct clk_rate_request *req)
4413 {
4414 	return -ENXIO;
4415 }
4416 
4417 static const struct clk_ops clk_nodrv_ops = {
4418 	.enable		= clk_nodrv_prepare_enable,
4419 	.disable	= clk_nodrv_disable_unprepare,
4420 	.prepare	= clk_nodrv_prepare_enable,
4421 	.unprepare	= clk_nodrv_disable_unprepare,
4422 	.determine_rate	= clk_nodrv_determine_rate,
4423 	.set_rate	= clk_nodrv_set_rate,
4424 	.set_parent	= clk_nodrv_set_parent,
4425 };
4426 
4427 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4428 						const struct clk_core *target)
4429 {
4430 	int i;
4431 	struct clk_core *child;
4432 
4433 	for (i = 0; i < root->num_parents; i++)
4434 		if (root->parents[i].core == target)
4435 			root->parents[i].core = NULL;
4436 
4437 	hlist_for_each_entry(child, &root->children, child_node)
4438 		clk_core_evict_parent_cache_subtree(child, target);
4439 }
4440 
4441 /* Remove this clk from all parent caches */
4442 static void clk_core_evict_parent_cache(struct clk_core *core)
4443 {
4444 	const struct hlist_head **lists;
4445 	struct clk_core *root;
4446 
4447 	lockdep_assert_held(&prepare_lock);
4448 
4449 	for (lists = all_lists; *lists; lists++)
4450 		hlist_for_each_entry(root, *lists, child_node)
4451 			clk_core_evict_parent_cache_subtree(root, core);
4452 
4453 }
4454 
4455 /**
4456  * clk_unregister - unregister a currently registered clock
4457  * @clk: clock to unregister
4458  */
4459 void clk_unregister(struct clk *clk)
4460 {
4461 	unsigned long flags;
4462 	const struct clk_ops *ops;
4463 
4464 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4465 		return;
4466 
4467 	clk_debug_unregister(clk->core);
4468 
4469 	clk_prepare_lock();
4470 
4471 	ops = clk->core->ops;
4472 	if (ops == &clk_nodrv_ops) {
4473 		pr_err("%s: unregistered clock: %s\n", __func__,
4474 		       clk->core->name);
4475 		goto unlock;
4476 	}
4477 	/*
4478 	 * Assign empty clock ops for consumers that might still hold
4479 	 * a reference to this clock.
4480 	 */
4481 	flags = clk_enable_lock();
4482 	clk->core->ops = &clk_nodrv_ops;
4483 	clk_enable_unlock(flags);
4484 
4485 	if (ops->terminate)
4486 		ops->terminate(clk->core->hw);
4487 
4488 	if (!hlist_empty(&clk->core->children)) {
4489 		struct clk_core *child;
4490 		struct hlist_node *t;
4491 
4492 		/* Reparent all children to the orphan list. */
4493 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4494 					  child_node)
4495 			clk_core_set_parent_nolock(child, NULL);
4496 	}
4497 
4498 	clk_core_evict_parent_cache(clk->core);
4499 
4500 	hlist_del_init(&clk->core->child_node);
4501 
4502 	if (clk->core->prepare_count)
4503 		pr_warn("%s: unregistering prepared clock: %s\n",
4504 					__func__, clk->core->name);
4505 
4506 	if (clk->core->protect_count)
4507 		pr_warn("%s: unregistering protected clock: %s\n",
4508 					__func__, clk->core->name);
4509 
4510 	kref_put(&clk->core->ref, __clk_release);
4511 	free_clk(clk);
4512 unlock:
4513 	clk_prepare_unlock();
4514 }
4515 EXPORT_SYMBOL_GPL(clk_unregister);
4516 
4517 /**
4518  * clk_hw_unregister - unregister a currently registered clk_hw
4519  * @hw: hardware-specific clock data to unregister
4520  */
4521 void clk_hw_unregister(struct clk_hw *hw)
4522 {
4523 	clk_unregister(hw->clk);
4524 }
4525 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4526 
4527 static void devm_clk_unregister_cb(struct device *dev, void *res)
4528 {
4529 	clk_unregister(*(struct clk **)res);
4530 }
4531 
4532 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4533 {
4534 	clk_hw_unregister(*(struct clk_hw **)res);
4535 }
4536 
4537 /**
4538  * devm_clk_register - resource managed clk_register()
4539  * @dev: device that is registering this clock
4540  * @hw: link to hardware-specific clock data
4541  *
4542  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4543  *
4544  * Clocks returned from this function are automatically clk_unregister()ed on
4545  * driver detach. See clk_register() for more information.
4546  */
4547 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4548 {
4549 	struct clk *clk;
4550 	struct clk **clkp;
4551 
4552 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4553 	if (!clkp)
4554 		return ERR_PTR(-ENOMEM);
4555 
4556 	clk = clk_register(dev, hw);
4557 	if (!IS_ERR(clk)) {
4558 		*clkp = clk;
4559 		devres_add(dev, clkp);
4560 	} else {
4561 		devres_free(clkp);
4562 	}
4563 
4564 	return clk;
4565 }
4566 EXPORT_SYMBOL_GPL(devm_clk_register);
4567 
4568 /**
4569  * devm_clk_hw_register - resource managed clk_hw_register()
4570  * @dev: device that is registering this clock
4571  * @hw: link to hardware-specific clock data
4572  *
4573  * Managed clk_hw_register(). Clocks registered by this function are
4574  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4575  * for more information.
4576  */
4577 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4578 {
4579 	struct clk_hw **hwp;
4580 	int ret;
4581 
4582 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4583 	if (!hwp)
4584 		return -ENOMEM;
4585 
4586 	ret = clk_hw_register(dev, hw);
4587 	if (!ret) {
4588 		*hwp = hw;
4589 		devres_add(dev, hwp);
4590 	} else {
4591 		devres_free(hwp);
4592 	}
4593 
4594 	return ret;
4595 }
4596 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4597 
4598 static void devm_clk_release(struct device *dev, void *res)
4599 {
4600 	clk_put(*(struct clk **)res);
4601 }
4602 
4603 /**
4604  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4605  * @dev: device that is registering this clock
4606  * @hw: clk_hw associated with the clk being consumed
4607  * @con_id: connection ID string on device
4608  *
4609  * Managed clk_hw_get_clk(). Clocks got with this function are
4610  * automatically clk_put() on driver detach. See clk_put()
4611  * for more information.
4612  */
4613 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4614 				const char *con_id)
4615 {
4616 	struct clk *clk;
4617 	struct clk **clkp;
4618 
4619 	/* This should not happen because it would mean we have drivers
4620 	 * passing around clk_hw pointers instead of having the caller use
4621 	 * proper clk_get() style APIs
4622 	 */
4623 	WARN_ON_ONCE(dev != hw->core->dev);
4624 
4625 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4626 	if (!clkp)
4627 		return ERR_PTR(-ENOMEM);
4628 
4629 	clk = clk_hw_get_clk(hw, con_id);
4630 	if (!IS_ERR(clk)) {
4631 		*clkp = clk;
4632 		devres_add(dev, clkp);
4633 	} else {
4634 		devres_free(clkp);
4635 	}
4636 
4637 	return clk;
4638 }
4639 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4640 
4641 /*
4642  * clkdev helpers
4643  */
4644 
4645 void __clk_put(struct clk *clk)
4646 {
4647 	struct module *owner;
4648 
4649 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4650 		return;
4651 
4652 	clk_prepare_lock();
4653 
4654 	/*
4655 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4656 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4657 	 * and by that same consumer
4658 	 */
4659 	if (WARN_ON(clk->exclusive_count)) {
4660 		/* We voiced our concern, let's sanitize the situation */
4661 		clk->core->protect_count -= (clk->exclusive_count - 1);
4662 		clk_core_rate_unprotect(clk->core);
4663 		clk->exclusive_count = 0;
4664 	}
4665 
4666 	hlist_del(&clk->clks_node);
4667 
4668 	/* If we had any boundaries on that clock, let's drop them. */
4669 	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4670 		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4671 
4672 	owner = clk->core->owner;
4673 	kref_put(&clk->core->ref, __clk_release);
4674 
4675 	clk_prepare_unlock();
4676 
4677 	module_put(owner);
4678 
4679 	free_clk(clk);
4680 }
4681 
4682 /***        clk rate change notifiers        ***/
4683 
4684 /**
4685  * clk_notifier_register - add a clk rate change notifier
4686  * @clk: struct clk * to watch
4687  * @nb: struct notifier_block * with callback info
4688  *
4689  * Request notification when clk's rate changes.  This uses an SRCU
4690  * notifier because we want it to block and notifier unregistrations are
4691  * uncommon.  The callbacks associated with the notifier must not
4692  * re-enter into the clk framework by calling any top-level clk APIs;
4693  * this will cause a nested prepare_lock mutex.
4694  *
4695  * In all notification cases (pre, post and abort rate change) the original
4696  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4697  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4698  *
4699  * clk_notifier_register() must be called from non-atomic context.
4700  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4701  * allocation failure; otherwise, passes along the return value of
4702  * srcu_notifier_chain_register().
4703  */
4704 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4705 {
4706 	struct clk_notifier *cn;
4707 	int ret = -ENOMEM;
4708 
4709 	if (!clk || !nb)
4710 		return -EINVAL;
4711 
4712 	clk_prepare_lock();
4713 
4714 	/* search the list of notifiers for this clk */
4715 	list_for_each_entry(cn, &clk_notifier_list, node)
4716 		if (cn->clk == clk)
4717 			goto found;
4718 
4719 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4720 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4721 	if (!cn)
4722 		goto out;
4723 
4724 	cn->clk = clk;
4725 	srcu_init_notifier_head(&cn->notifier_head);
4726 
4727 	list_add(&cn->node, &clk_notifier_list);
4728 
4729 found:
4730 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4731 
4732 	clk->core->notifier_count++;
4733 
4734 out:
4735 	clk_prepare_unlock();
4736 
4737 	return ret;
4738 }
4739 EXPORT_SYMBOL_GPL(clk_notifier_register);
4740 
4741 /**
4742  * clk_notifier_unregister - remove a clk rate change notifier
4743  * @clk: struct clk *
4744  * @nb: struct notifier_block * with callback info
4745  *
4746  * Request no further notification for changes to 'clk' and frees memory
4747  * allocated in clk_notifier_register.
4748  *
4749  * Returns -EINVAL if called with null arguments; otherwise, passes
4750  * along the return value of srcu_notifier_chain_unregister().
4751  */
4752 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4753 {
4754 	struct clk_notifier *cn;
4755 	int ret = -ENOENT;
4756 
4757 	if (!clk || !nb)
4758 		return -EINVAL;
4759 
4760 	clk_prepare_lock();
4761 
4762 	list_for_each_entry(cn, &clk_notifier_list, node) {
4763 		if (cn->clk == clk) {
4764 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4765 
4766 			clk->core->notifier_count--;
4767 
4768 			/* XXX the notifier code should handle this better */
4769 			if (!cn->notifier_head.head) {
4770 				srcu_cleanup_notifier_head(&cn->notifier_head);
4771 				list_del(&cn->node);
4772 				kfree(cn);
4773 			}
4774 			break;
4775 		}
4776 	}
4777 
4778 	clk_prepare_unlock();
4779 
4780 	return ret;
4781 }
4782 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4783 
4784 struct clk_notifier_devres {
4785 	struct clk *clk;
4786 	struct notifier_block *nb;
4787 };
4788 
4789 static void devm_clk_notifier_release(struct device *dev, void *res)
4790 {
4791 	struct clk_notifier_devres *devres = res;
4792 
4793 	clk_notifier_unregister(devres->clk, devres->nb);
4794 }
4795 
4796 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4797 			       struct notifier_block *nb)
4798 {
4799 	struct clk_notifier_devres *devres;
4800 	int ret;
4801 
4802 	devres = devres_alloc(devm_clk_notifier_release,
4803 			      sizeof(*devres), GFP_KERNEL);
4804 
4805 	if (!devres)
4806 		return -ENOMEM;
4807 
4808 	ret = clk_notifier_register(clk, nb);
4809 	if (!ret) {
4810 		devres->clk = clk;
4811 		devres->nb = nb;
4812 		devres_add(dev, devres);
4813 	} else {
4814 		devres_free(devres);
4815 	}
4816 
4817 	return ret;
4818 }
4819 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4820 
4821 #ifdef CONFIG_OF
4822 static void clk_core_reparent_orphans(void)
4823 {
4824 	clk_prepare_lock();
4825 	clk_core_reparent_orphans_nolock();
4826 	clk_prepare_unlock();
4827 }
4828 
4829 /**
4830  * struct of_clk_provider - Clock provider registration structure
4831  * @link: Entry in global list of clock providers
4832  * @node: Pointer to device tree node of clock provider
4833  * @get: Get clock callback.  Returns NULL or a struct clk for the
4834  *       given clock specifier
4835  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4836  *       struct clk_hw for the given clock specifier
4837  * @data: context pointer to be passed into @get callback
4838  */
4839 struct of_clk_provider {
4840 	struct list_head link;
4841 
4842 	struct device_node *node;
4843 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4844 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4845 	void *data;
4846 };
4847 
4848 extern struct of_device_id __clk_of_table;
4849 static const struct of_device_id __clk_of_table_sentinel
4850 	__used __section("__clk_of_table_end");
4851 
4852 static LIST_HEAD(of_clk_providers);
4853 static DEFINE_MUTEX(of_clk_mutex);
4854 
4855 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4856 				     void *data)
4857 {
4858 	return data;
4859 }
4860 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4861 
4862 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4863 {
4864 	return data;
4865 }
4866 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4867 
4868 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4869 {
4870 	struct clk_onecell_data *clk_data = data;
4871 	unsigned int idx = clkspec->args[0];
4872 
4873 	if (idx >= clk_data->clk_num) {
4874 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4875 		return ERR_PTR(-EINVAL);
4876 	}
4877 
4878 	return clk_data->clks[idx];
4879 }
4880 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4881 
4882 struct clk_hw *
4883 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4884 {
4885 	struct clk_hw_onecell_data *hw_data = data;
4886 	unsigned int idx = clkspec->args[0];
4887 
4888 	if (idx >= hw_data->num) {
4889 		pr_err("%s: invalid index %u\n", __func__, idx);
4890 		return ERR_PTR(-EINVAL);
4891 	}
4892 
4893 	return hw_data->hws[idx];
4894 }
4895 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4896 
4897 /**
4898  * of_clk_add_provider() - Register a clock provider for a node
4899  * @np: Device node pointer associated with clock provider
4900  * @clk_src_get: callback for decoding clock
4901  * @data: context pointer for @clk_src_get callback.
4902  *
4903  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4904  */
4905 int of_clk_add_provider(struct device_node *np,
4906 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4907 						   void *data),
4908 			void *data)
4909 {
4910 	struct of_clk_provider *cp;
4911 	int ret;
4912 
4913 	if (!np)
4914 		return 0;
4915 
4916 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4917 	if (!cp)
4918 		return -ENOMEM;
4919 
4920 	cp->node = of_node_get(np);
4921 	cp->data = data;
4922 	cp->get = clk_src_get;
4923 
4924 	mutex_lock(&of_clk_mutex);
4925 	list_add(&cp->link, &of_clk_providers);
4926 	mutex_unlock(&of_clk_mutex);
4927 	pr_debug("Added clock from %pOF\n", np);
4928 
4929 	clk_core_reparent_orphans();
4930 
4931 	ret = of_clk_set_defaults(np, true);
4932 	if (ret < 0)
4933 		of_clk_del_provider(np);
4934 
4935 	fwnode_dev_initialized(&np->fwnode, true);
4936 
4937 	return ret;
4938 }
4939 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4940 
4941 /**
4942  * of_clk_add_hw_provider() - Register a clock provider for a node
4943  * @np: Device node pointer associated with clock provider
4944  * @get: callback for decoding clk_hw
4945  * @data: context pointer for @get callback.
4946  */
4947 int of_clk_add_hw_provider(struct device_node *np,
4948 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4949 						 void *data),
4950 			   void *data)
4951 {
4952 	struct of_clk_provider *cp;
4953 	int ret;
4954 
4955 	if (!np)
4956 		return 0;
4957 
4958 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4959 	if (!cp)
4960 		return -ENOMEM;
4961 
4962 	cp->node = of_node_get(np);
4963 	cp->data = data;
4964 	cp->get_hw = get;
4965 
4966 	mutex_lock(&of_clk_mutex);
4967 	list_add(&cp->link, &of_clk_providers);
4968 	mutex_unlock(&of_clk_mutex);
4969 	pr_debug("Added clk_hw provider from %pOF\n", np);
4970 
4971 	clk_core_reparent_orphans();
4972 
4973 	ret = of_clk_set_defaults(np, true);
4974 	if (ret < 0)
4975 		of_clk_del_provider(np);
4976 
4977 	fwnode_dev_initialized(&np->fwnode, true);
4978 
4979 	return ret;
4980 }
4981 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4982 
4983 static void devm_of_clk_release_provider(struct device *dev, void *res)
4984 {
4985 	of_clk_del_provider(*(struct device_node **)res);
4986 }
4987 
4988 /*
4989  * We allow a child device to use its parent device as the clock provider node
4990  * for cases like MFD sub-devices where the child device driver wants to use
4991  * devm_*() APIs but not list the device in DT as a sub-node.
4992  */
4993 static struct device_node *get_clk_provider_node(struct device *dev)
4994 {
4995 	struct device_node *np, *parent_np;
4996 
4997 	np = dev->of_node;
4998 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4999 
5000 	if (!of_property_present(np, "#clock-cells"))
5001 		if (of_property_present(parent_np, "#clock-cells"))
5002 			np = parent_np;
5003 
5004 	return np;
5005 }
5006 
5007 /**
5008  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
5009  * @dev: Device acting as the clock provider (used for DT node and lifetime)
5010  * @get: callback for decoding clk_hw
5011  * @data: context pointer for @get callback
5012  *
5013  * Registers clock provider for given device's node. If the device has no DT
5014  * node or if the device node lacks of clock provider information (#clock-cells)
5015  * then the parent device's node is scanned for this information. If parent node
5016  * has the #clock-cells then it is used in registration. Provider is
5017  * automatically released at device exit.
5018  *
5019  * Return: 0 on success or an errno on failure.
5020  */
5021 int devm_of_clk_add_hw_provider(struct device *dev,
5022 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5023 					      void *data),
5024 			void *data)
5025 {
5026 	struct device_node **ptr, *np;
5027 	int ret;
5028 
5029 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
5030 			   GFP_KERNEL);
5031 	if (!ptr)
5032 		return -ENOMEM;
5033 
5034 	np = get_clk_provider_node(dev);
5035 	ret = of_clk_add_hw_provider(np, get, data);
5036 	if (!ret) {
5037 		*ptr = np;
5038 		devres_add(dev, ptr);
5039 	} else {
5040 		devres_free(ptr);
5041 	}
5042 
5043 	return ret;
5044 }
5045 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
5046 
5047 /**
5048  * of_clk_del_provider() - Remove a previously registered clock provider
5049  * @np: Device node pointer associated with clock provider
5050  */
5051 void of_clk_del_provider(struct device_node *np)
5052 {
5053 	struct of_clk_provider *cp;
5054 
5055 	if (!np)
5056 		return;
5057 
5058 	mutex_lock(&of_clk_mutex);
5059 	list_for_each_entry(cp, &of_clk_providers, link) {
5060 		if (cp->node == np) {
5061 			list_del(&cp->link);
5062 			fwnode_dev_initialized(&np->fwnode, false);
5063 			of_node_put(cp->node);
5064 			kfree(cp);
5065 			break;
5066 		}
5067 	}
5068 	mutex_unlock(&of_clk_mutex);
5069 }
5070 EXPORT_SYMBOL_GPL(of_clk_del_provider);
5071 
5072 /**
5073  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5074  * @np: device node to parse clock specifier from
5075  * @index: index of phandle to parse clock out of. If index < 0, @name is used
5076  * @name: clock name to find and parse. If name is NULL, the index is used
5077  * @out_args: Result of parsing the clock specifier
5078  *
5079  * Parses a device node's "clocks" and "clock-names" properties to find the
5080  * phandle and cells for the index or name that is desired. The resulting clock
5081  * specifier is placed into @out_args, or an errno is returned when there's a
5082  * parsing error. The @index argument is ignored if @name is non-NULL.
5083  *
5084  * Example:
5085  *
5086  * phandle1: clock-controller@1 {
5087  *	#clock-cells = <2>;
5088  * }
5089  *
5090  * phandle2: clock-controller@2 {
5091  *	#clock-cells = <1>;
5092  * }
5093  *
5094  * clock-consumer@3 {
5095  *	clocks = <&phandle1 1 2 &phandle2 3>;
5096  *	clock-names = "name1", "name2";
5097  * }
5098  *
5099  * To get a device_node for `clock-controller@2' node you may call this
5100  * function a few different ways:
5101  *
5102  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5103  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5104  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5105  *
5106  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5107  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5108  * the "clock-names" property of @np.
5109  */
5110 static int of_parse_clkspec(const struct device_node *np, int index,
5111 			    const char *name, struct of_phandle_args *out_args)
5112 {
5113 	int ret = -ENOENT;
5114 
5115 	/* Walk up the tree of devices looking for a clock property that matches */
5116 	while (np) {
5117 		/*
5118 		 * For named clocks, first look up the name in the
5119 		 * "clock-names" property.  If it cannot be found, then index
5120 		 * will be an error code and of_parse_phandle_with_args() will
5121 		 * return -EINVAL.
5122 		 */
5123 		if (name)
5124 			index = of_property_match_string(np, "clock-names", name);
5125 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5126 						 index, out_args);
5127 		if (!ret)
5128 			break;
5129 		if (name && index >= 0)
5130 			break;
5131 
5132 		/*
5133 		 * No matching clock found on this node.  If the parent node
5134 		 * has a "clock-ranges" property, then we can try one of its
5135 		 * clocks.
5136 		 */
5137 		np = np->parent;
5138 		if (np && !of_get_property(np, "clock-ranges", NULL))
5139 			break;
5140 		index = 0;
5141 	}
5142 
5143 	return ret;
5144 }
5145 
5146 static struct clk_hw *
5147 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5148 			      struct of_phandle_args *clkspec)
5149 {
5150 	struct clk *clk;
5151 
5152 	if (provider->get_hw)
5153 		return provider->get_hw(clkspec, provider->data);
5154 
5155 	clk = provider->get(clkspec, provider->data);
5156 	if (IS_ERR(clk))
5157 		return ERR_CAST(clk);
5158 	return __clk_get_hw(clk);
5159 }
5160 
5161 static struct clk_hw *
5162 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5163 {
5164 	struct of_clk_provider *provider;
5165 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5166 
5167 	if (!clkspec)
5168 		return ERR_PTR(-EINVAL);
5169 
5170 	mutex_lock(&of_clk_mutex);
5171 	list_for_each_entry(provider, &of_clk_providers, link) {
5172 		if (provider->node == clkspec->np) {
5173 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5174 			if (!IS_ERR(hw))
5175 				break;
5176 		}
5177 	}
5178 	mutex_unlock(&of_clk_mutex);
5179 
5180 	return hw;
5181 }
5182 
5183 /**
5184  * of_clk_get_from_provider() - Lookup a clock from a clock provider
5185  * @clkspec: pointer to a clock specifier data structure
5186  *
5187  * This function looks up a struct clk from the registered list of clock
5188  * providers, an input is a clock specifier data structure as returned
5189  * from the of_parse_phandle_with_args() function call.
5190  */
5191 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5192 {
5193 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5194 
5195 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5196 }
5197 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5198 
5199 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5200 			     const char *con_id)
5201 {
5202 	int ret;
5203 	struct clk_hw *hw;
5204 	struct of_phandle_args clkspec;
5205 
5206 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5207 	if (ret)
5208 		return ERR_PTR(ret);
5209 
5210 	hw = of_clk_get_hw_from_clkspec(&clkspec);
5211 	of_node_put(clkspec.np);
5212 
5213 	return hw;
5214 }
5215 
5216 static struct clk *__of_clk_get(struct device_node *np,
5217 				int index, const char *dev_id,
5218 				const char *con_id)
5219 {
5220 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5221 
5222 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5223 }
5224 
5225 struct clk *of_clk_get(struct device_node *np, int index)
5226 {
5227 	return __of_clk_get(np, index, np->full_name, NULL);
5228 }
5229 EXPORT_SYMBOL(of_clk_get);
5230 
5231 /**
5232  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5233  * @np: pointer to clock consumer node
5234  * @name: name of consumer's clock input, or NULL for the first clock reference
5235  *
5236  * This function parses the clocks and clock-names properties,
5237  * and uses them to look up the struct clk from the registered list of clock
5238  * providers.
5239  */
5240 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5241 {
5242 	if (!np)
5243 		return ERR_PTR(-ENOENT);
5244 
5245 	return __of_clk_get(np, 0, np->full_name, name);
5246 }
5247 EXPORT_SYMBOL(of_clk_get_by_name);
5248 
5249 /**
5250  * of_clk_get_parent_count() - Count the number of clocks a device node has
5251  * @np: device node to count
5252  *
5253  * Returns: The number of clocks that are possible parents of this node
5254  */
5255 unsigned int of_clk_get_parent_count(const struct device_node *np)
5256 {
5257 	int count;
5258 
5259 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5260 	if (count < 0)
5261 		return 0;
5262 
5263 	return count;
5264 }
5265 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5266 
5267 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5268 {
5269 	struct of_phandle_args clkspec;
5270 	struct property *prop;
5271 	const char *clk_name;
5272 	const __be32 *vp;
5273 	u32 pv;
5274 	int rc;
5275 	int count;
5276 	struct clk *clk;
5277 
5278 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5279 					&clkspec);
5280 	if (rc)
5281 		return NULL;
5282 
5283 	index = clkspec.args_count ? clkspec.args[0] : 0;
5284 	count = 0;
5285 
5286 	/* if there is an indices property, use it to transfer the index
5287 	 * specified into an array offset for the clock-output-names property.
5288 	 */
5289 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5290 		if (index == pv) {
5291 			index = count;
5292 			break;
5293 		}
5294 		count++;
5295 	}
5296 	/* We went off the end of 'clock-indices' without finding it */
5297 	if (prop && !vp)
5298 		return NULL;
5299 
5300 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5301 					  index,
5302 					  &clk_name) < 0) {
5303 		/*
5304 		 * Best effort to get the name if the clock has been
5305 		 * registered with the framework. If the clock isn't
5306 		 * registered, we return the node name as the name of
5307 		 * the clock as long as #clock-cells = 0.
5308 		 */
5309 		clk = of_clk_get_from_provider(&clkspec);
5310 		if (IS_ERR(clk)) {
5311 			if (clkspec.args_count == 0)
5312 				clk_name = clkspec.np->name;
5313 			else
5314 				clk_name = NULL;
5315 		} else {
5316 			clk_name = __clk_get_name(clk);
5317 			clk_put(clk);
5318 		}
5319 	}
5320 
5321 
5322 	of_node_put(clkspec.np);
5323 	return clk_name;
5324 }
5325 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5326 
5327 /**
5328  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5329  * number of parents
5330  * @np: Device node pointer associated with clock provider
5331  * @parents: pointer to char array that hold the parents' names
5332  * @size: size of the @parents array
5333  *
5334  * Return: number of parents for the clock node.
5335  */
5336 int of_clk_parent_fill(struct device_node *np, const char **parents,
5337 		       unsigned int size)
5338 {
5339 	unsigned int i = 0;
5340 
5341 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5342 		i++;
5343 
5344 	return i;
5345 }
5346 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5347 
5348 struct clock_provider {
5349 	void (*clk_init_cb)(struct device_node *);
5350 	struct device_node *np;
5351 	struct list_head node;
5352 };
5353 
5354 /*
5355  * This function looks for a parent clock. If there is one, then it
5356  * checks that the provider for this parent clock was initialized, in
5357  * this case the parent clock will be ready.
5358  */
5359 static int parent_ready(struct device_node *np)
5360 {
5361 	int i = 0;
5362 
5363 	while (true) {
5364 		struct clk *clk = of_clk_get(np, i);
5365 
5366 		/* this parent is ready we can check the next one */
5367 		if (!IS_ERR(clk)) {
5368 			clk_put(clk);
5369 			i++;
5370 			continue;
5371 		}
5372 
5373 		/* at least one parent is not ready, we exit now */
5374 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5375 			return 0;
5376 
5377 		/*
5378 		 * Here we make assumption that the device tree is
5379 		 * written correctly. So an error means that there is
5380 		 * no more parent. As we didn't exit yet, then the
5381 		 * previous parent are ready. If there is no clock
5382 		 * parent, no need to wait for them, then we can
5383 		 * consider their absence as being ready
5384 		 */
5385 		return 1;
5386 	}
5387 }
5388 
5389 /**
5390  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5391  * @np: Device node pointer associated with clock provider
5392  * @index: clock index
5393  * @flags: pointer to top-level framework flags
5394  *
5395  * Detects if the clock-critical property exists and, if so, sets the
5396  * corresponding CLK_IS_CRITICAL flag.
5397  *
5398  * Do not use this function. It exists only for legacy Device Tree
5399  * bindings, such as the one-clock-per-node style that are outdated.
5400  * Those bindings typically put all clock data into .dts and the Linux
5401  * driver has no clock data, thus making it impossible to set this flag
5402  * correctly from the driver. Only those drivers may call
5403  * of_clk_detect_critical from their setup functions.
5404  *
5405  * Return: error code or zero on success
5406  */
5407 int of_clk_detect_critical(struct device_node *np, int index,
5408 			   unsigned long *flags)
5409 {
5410 	struct property *prop;
5411 	const __be32 *cur;
5412 	uint32_t idx;
5413 
5414 	if (!np || !flags)
5415 		return -EINVAL;
5416 
5417 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5418 		if (index == idx)
5419 			*flags |= CLK_IS_CRITICAL;
5420 
5421 	return 0;
5422 }
5423 
5424 /**
5425  * of_clk_init() - Scan and init clock providers from the DT
5426  * @matches: array of compatible values and init functions for providers.
5427  *
5428  * This function scans the device tree for matching clock providers
5429  * and calls their initialization functions. It also does it by trying
5430  * to follow the dependencies.
5431  */
5432 void __init of_clk_init(const struct of_device_id *matches)
5433 {
5434 	const struct of_device_id *match;
5435 	struct device_node *np;
5436 	struct clock_provider *clk_provider, *next;
5437 	bool is_init_done;
5438 	bool force = false;
5439 	LIST_HEAD(clk_provider_list);
5440 
5441 	if (!matches)
5442 		matches = &__clk_of_table;
5443 
5444 	/* First prepare the list of the clocks providers */
5445 	for_each_matching_node_and_match(np, matches, &match) {
5446 		struct clock_provider *parent;
5447 
5448 		if (!of_device_is_available(np))
5449 			continue;
5450 
5451 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5452 		if (!parent) {
5453 			list_for_each_entry_safe(clk_provider, next,
5454 						 &clk_provider_list, node) {
5455 				list_del(&clk_provider->node);
5456 				of_node_put(clk_provider->np);
5457 				kfree(clk_provider);
5458 			}
5459 			of_node_put(np);
5460 			return;
5461 		}
5462 
5463 		parent->clk_init_cb = match->data;
5464 		parent->np = of_node_get(np);
5465 		list_add_tail(&parent->node, &clk_provider_list);
5466 	}
5467 
5468 	while (!list_empty(&clk_provider_list)) {
5469 		is_init_done = false;
5470 		list_for_each_entry_safe(clk_provider, next,
5471 					&clk_provider_list, node) {
5472 			if (force || parent_ready(clk_provider->np)) {
5473 
5474 				/* Don't populate platform devices */
5475 				of_node_set_flag(clk_provider->np,
5476 						 OF_POPULATED);
5477 
5478 				clk_provider->clk_init_cb(clk_provider->np);
5479 				of_clk_set_defaults(clk_provider->np, true);
5480 
5481 				list_del(&clk_provider->node);
5482 				of_node_put(clk_provider->np);
5483 				kfree(clk_provider);
5484 				is_init_done = true;
5485 			}
5486 		}
5487 
5488 		/*
5489 		 * We didn't manage to initialize any of the
5490 		 * remaining providers during the last loop, so now we
5491 		 * initialize all the remaining ones unconditionally
5492 		 * in case the clock parent was not mandatory
5493 		 */
5494 		if (!is_init_done)
5495 			force = true;
5496 	}
5497 }
5498 #endif
5499