xref: /linux/drivers/clk/clk.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sched.h>
26 #include <linux/clkdev.h>
27 
28 #include "clk.h"
29 
30 static DEFINE_SPINLOCK(enable_lock);
31 static DEFINE_MUTEX(prepare_lock);
32 
33 static struct task_struct *prepare_owner;
34 static struct task_struct *enable_owner;
35 
36 static int prepare_refcnt;
37 static int enable_refcnt;
38 
39 static HLIST_HEAD(clk_root_list);
40 static HLIST_HEAD(clk_orphan_list);
41 static LIST_HEAD(clk_notifier_list);
42 
43 /***    private data structures    ***/
44 
45 struct clk_core {
46 	const char		*name;
47 	const struct clk_ops	*ops;
48 	struct clk_hw		*hw;
49 	struct module		*owner;
50 	struct device		*dev;
51 	struct clk_core		*parent;
52 	const char		**parent_names;
53 	struct clk_core		**parents;
54 	u8			num_parents;
55 	u8			new_parent_index;
56 	unsigned long		rate;
57 	unsigned long		req_rate;
58 	unsigned long		new_rate;
59 	struct clk_core		*new_parent;
60 	struct clk_core		*new_child;
61 	unsigned long		flags;
62 	bool			orphan;
63 	unsigned int		enable_count;
64 	unsigned int		prepare_count;
65 	unsigned int		protect_count;
66 	unsigned long		min_rate;
67 	unsigned long		max_rate;
68 	unsigned long		accuracy;
69 	int			phase;
70 	struct clk_duty		duty;
71 	struct hlist_head	children;
72 	struct hlist_node	child_node;
73 	struct hlist_head	clks;
74 	unsigned int		notifier_count;
75 #ifdef CONFIG_DEBUG_FS
76 	struct dentry		*dentry;
77 	struct hlist_node	debug_node;
78 #endif
79 	struct kref		ref;
80 };
81 
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/clk.h>
84 
85 struct clk {
86 	struct clk_core	*core;
87 	const char *dev_id;
88 	const char *con_id;
89 	unsigned long min_rate;
90 	unsigned long max_rate;
91 	unsigned int exclusive_count;
92 	struct hlist_node clks_node;
93 };
94 
95 /***           runtime pm          ***/
96 static int clk_pm_runtime_get(struct clk_core *core)
97 {
98 	int ret = 0;
99 
100 	if (!core->dev)
101 		return 0;
102 
103 	ret = pm_runtime_get_sync(core->dev);
104 	return ret < 0 ? ret : 0;
105 }
106 
107 static void clk_pm_runtime_put(struct clk_core *core)
108 {
109 	if (!core->dev)
110 		return;
111 
112 	pm_runtime_put_sync(core->dev);
113 }
114 
115 /***           locking             ***/
116 static void clk_prepare_lock(void)
117 {
118 	if (!mutex_trylock(&prepare_lock)) {
119 		if (prepare_owner == current) {
120 			prepare_refcnt++;
121 			return;
122 		}
123 		mutex_lock(&prepare_lock);
124 	}
125 	WARN_ON_ONCE(prepare_owner != NULL);
126 	WARN_ON_ONCE(prepare_refcnt != 0);
127 	prepare_owner = current;
128 	prepare_refcnt = 1;
129 }
130 
131 static void clk_prepare_unlock(void)
132 {
133 	WARN_ON_ONCE(prepare_owner != current);
134 	WARN_ON_ONCE(prepare_refcnt == 0);
135 
136 	if (--prepare_refcnt)
137 		return;
138 	prepare_owner = NULL;
139 	mutex_unlock(&prepare_lock);
140 }
141 
142 static unsigned long clk_enable_lock(void)
143 	__acquires(enable_lock)
144 {
145 	unsigned long flags;
146 
147 	/*
148 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
149 	 * we already hold the lock. So, in that case, we rely only on
150 	 * reference counting.
151 	 */
152 	if (!IS_ENABLED(CONFIG_SMP) ||
153 	    !spin_trylock_irqsave(&enable_lock, flags)) {
154 		if (enable_owner == current) {
155 			enable_refcnt++;
156 			__acquire(enable_lock);
157 			if (!IS_ENABLED(CONFIG_SMP))
158 				local_save_flags(flags);
159 			return flags;
160 		}
161 		spin_lock_irqsave(&enable_lock, flags);
162 	}
163 	WARN_ON_ONCE(enable_owner != NULL);
164 	WARN_ON_ONCE(enable_refcnt != 0);
165 	enable_owner = current;
166 	enable_refcnt = 1;
167 	return flags;
168 }
169 
170 static void clk_enable_unlock(unsigned long flags)
171 	__releases(enable_lock)
172 {
173 	WARN_ON_ONCE(enable_owner != current);
174 	WARN_ON_ONCE(enable_refcnt == 0);
175 
176 	if (--enable_refcnt) {
177 		__release(enable_lock);
178 		return;
179 	}
180 	enable_owner = NULL;
181 	spin_unlock_irqrestore(&enable_lock, flags);
182 }
183 
184 static bool clk_core_rate_is_protected(struct clk_core *core)
185 {
186 	return core->protect_count;
187 }
188 
189 static bool clk_core_is_prepared(struct clk_core *core)
190 {
191 	bool ret = false;
192 
193 	/*
194 	 * .is_prepared is optional for clocks that can prepare
195 	 * fall back to software usage counter if it is missing
196 	 */
197 	if (!core->ops->is_prepared)
198 		return core->prepare_count;
199 
200 	if (!clk_pm_runtime_get(core)) {
201 		ret = core->ops->is_prepared(core->hw);
202 		clk_pm_runtime_put(core);
203 	}
204 
205 	return ret;
206 }
207 
208 static bool clk_core_is_enabled(struct clk_core *core)
209 {
210 	bool ret = false;
211 
212 	/*
213 	 * .is_enabled is only mandatory for clocks that gate
214 	 * fall back to software usage counter if .is_enabled is missing
215 	 */
216 	if (!core->ops->is_enabled)
217 		return core->enable_count;
218 
219 	/*
220 	 * Check if clock controller's device is runtime active before
221 	 * calling .is_enabled callback. If not, assume that clock is
222 	 * disabled, because we might be called from atomic context, from
223 	 * which pm_runtime_get() is not allowed.
224 	 * This function is called mainly from clk_disable_unused_subtree,
225 	 * which ensures proper runtime pm activation of controller before
226 	 * taking enable spinlock, but the below check is needed if one tries
227 	 * to call it from other places.
228 	 */
229 	if (core->dev) {
230 		pm_runtime_get_noresume(core->dev);
231 		if (!pm_runtime_active(core->dev)) {
232 			ret = false;
233 			goto done;
234 		}
235 	}
236 
237 	ret = core->ops->is_enabled(core->hw);
238 done:
239 	if (core->dev)
240 		pm_runtime_put(core->dev);
241 
242 	return ret;
243 }
244 
245 /***    helper functions   ***/
246 
247 const char *__clk_get_name(const struct clk *clk)
248 {
249 	return !clk ? NULL : clk->core->name;
250 }
251 EXPORT_SYMBOL_GPL(__clk_get_name);
252 
253 const char *clk_hw_get_name(const struct clk_hw *hw)
254 {
255 	return hw->core->name;
256 }
257 EXPORT_SYMBOL_GPL(clk_hw_get_name);
258 
259 struct clk_hw *__clk_get_hw(struct clk *clk)
260 {
261 	return !clk ? NULL : clk->core->hw;
262 }
263 EXPORT_SYMBOL_GPL(__clk_get_hw);
264 
265 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
266 {
267 	return hw->core->num_parents;
268 }
269 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
270 
271 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
272 {
273 	return hw->core->parent ? hw->core->parent->hw : NULL;
274 }
275 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
276 
277 static struct clk_core *__clk_lookup_subtree(const char *name,
278 					     struct clk_core *core)
279 {
280 	struct clk_core *child;
281 	struct clk_core *ret;
282 
283 	if (!strcmp(core->name, name))
284 		return core;
285 
286 	hlist_for_each_entry(child, &core->children, child_node) {
287 		ret = __clk_lookup_subtree(name, child);
288 		if (ret)
289 			return ret;
290 	}
291 
292 	return NULL;
293 }
294 
295 static struct clk_core *clk_core_lookup(const char *name)
296 {
297 	struct clk_core *root_clk;
298 	struct clk_core *ret;
299 
300 	if (!name)
301 		return NULL;
302 
303 	/* search the 'proper' clk tree first */
304 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
305 		ret = __clk_lookup_subtree(name, root_clk);
306 		if (ret)
307 			return ret;
308 	}
309 
310 	/* if not found, then search the orphan tree */
311 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
312 		ret = __clk_lookup_subtree(name, root_clk);
313 		if (ret)
314 			return ret;
315 	}
316 
317 	return NULL;
318 }
319 
320 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
321 							 u8 index)
322 {
323 	if (!core || index >= core->num_parents)
324 		return NULL;
325 
326 	if (!core->parents[index])
327 		core->parents[index] =
328 				clk_core_lookup(core->parent_names[index]);
329 
330 	return core->parents[index];
331 }
332 
333 struct clk_hw *
334 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
335 {
336 	struct clk_core *parent;
337 
338 	parent = clk_core_get_parent_by_index(hw->core, index);
339 
340 	return !parent ? NULL : parent->hw;
341 }
342 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
343 
344 unsigned int __clk_get_enable_count(struct clk *clk)
345 {
346 	return !clk ? 0 : clk->core->enable_count;
347 }
348 
349 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
350 {
351 	unsigned long ret;
352 
353 	if (!core) {
354 		ret = 0;
355 		goto out;
356 	}
357 
358 	ret = core->rate;
359 
360 	if (!core->num_parents)
361 		goto out;
362 
363 	if (!core->parent)
364 		ret = 0;
365 
366 out:
367 	return ret;
368 }
369 
370 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
371 {
372 	return clk_core_get_rate_nolock(hw->core);
373 }
374 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
375 
376 static unsigned long __clk_get_accuracy(struct clk_core *core)
377 {
378 	if (!core)
379 		return 0;
380 
381 	return core->accuracy;
382 }
383 
384 unsigned long __clk_get_flags(struct clk *clk)
385 {
386 	return !clk ? 0 : clk->core->flags;
387 }
388 EXPORT_SYMBOL_GPL(__clk_get_flags);
389 
390 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
391 {
392 	return hw->core->flags;
393 }
394 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
395 
396 bool clk_hw_is_prepared(const struct clk_hw *hw)
397 {
398 	return clk_core_is_prepared(hw->core);
399 }
400 
401 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
402 {
403 	return clk_core_rate_is_protected(hw->core);
404 }
405 
406 bool clk_hw_is_enabled(const struct clk_hw *hw)
407 {
408 	return clk_core_is_enabled(hw->core);
409 }
410 
411 bool __clk_is_enabled(struct clk *clk)
412 {
413 	if (!clk)
414 		return false;
415 
416 	return clk_core_is_enabled(clk->core);
417 }
418 EXPORT_SYMBOL_GPL(__clk_is_enabled);
419 
420 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
421 			   unsigned long best, unsigned long flags)
422 {
423 	if (flags & CLK_MUX_ROUND_CLOSEST)
424 		return abs(now - rate) < abs(best - rate);
425 
426 	return now <= rate && now > best;
427 }
428 
429 int clk_mux_determine_rate_flags(struct clk_hw *hw,
430 				 struct clk_rate_request *req,
431 				 unsigned long flags)
432 {
433 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
434 	int i, num_parents, ret;
435 	unsigned long best = 0;
436 	struct clk_rate_request parent_req = *req;
437 
438 	/* if NO_REPARENT flag set, pass through to current parent */
439 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
440 		parent = core->parent;
441 		if (core->flags & CLK_SET_RATE_PARENT) {
442 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
443 						   &parent_req);
444 			if (ret)
445 				return ret;
446 
447 			best = parent_req.rate;
448 		} else if (parent) {
449 			best = clk_core_get_rate_nolock(parent);
450 		} else {
451 			best = clk_core_get_rate_nolock(core);
452 		}
453 
454 		goto out;
455 	}
456 
457 	/* find the parent that can provide the fastest rate <= rate */
458 	num_parents = core->num_parents;
459 	for (i = 0; i < num_parents; i++) {
460 		parent = clk_core_get_parent_by_index(core, i);
461 		if (!parent)
462 			continue;
463 
464 		if (core->flags & CLK_SET_RATE_PARENT) {
465 			parent_req = *req;
466 			ret = __clk_determine_rate(parent->hw, &parent_req);
467 			if (ret)
468 				continue;
469 		} else {
470 			parent_req.rate = clk_core_get_rate_nolock(parent);
471 		}
472 
473 		if (mux_is_better_rate(req->rate, parent_req.rate,
474 				       best, flags)) {
475 			best_parent = parent;
476 			best = parent_req.rate;
477 		}
478 	}
479 
480 	if (!best_parent)
481 		return -EINVAL;
482 
483 out:
484 	if (best_parent)
485 		req->best_parent_hw = best_parent->hw;
486 	req->best_parent_rate = best;
487 	req->rate = best;
488 
489 	return 0;
490 }
491 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
492 
493 struct clk *__clk_lookup(const char *name)
494 {
495 	struct clk_core *core = clk_core_lookup(name);
496 
497 	return !core ? NULL : core->hw->clk;
498 }
499 
500 static void clk_core_get_boundaries(struct clk_core *core,
501 				    unsigned long *min_rate,
502 				    unsigned long *max_rate)
503 {
504 	struct clk *clk_user;
505 
506 	*min_rate = core->min_rate;
507 	*max_rate = core->max_rate;
508 
509 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
510 		*min_rate = max(*min_rate, clk_user->min_rate);
511 
512 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
513 		*max_rate = min(*max_rate, clk_user->max_rate);
514 }
515 
516 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
517 			   unsigned long max_rate)
518 {
519 	hw->core->min_rate = min_rate;
520 	hw->core->max_rate = max_rate;
521 }
522 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
523 
524 /*
525  * Helper for finding best parent to provide a given frequency. This can be used
526  * directly as a determine_rate callback (e.g. for a mux), or from a more
527  * complex clock that may combine a mux with other operations.
528  */
529 int __clk_mux_determine_rate(struct clk_hw *hw,
530 			     struct clk_rate_request *req)
531 {
532 	return clk_mux_determine_rate_flags(hw, req, 0);
533 }
534 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
535 
536 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
537 				     struct clk_rate_request *req)
538 {
539 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
540 }
541 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
542 
543 /***        clk api        ***/
544 
545 static void clk_core_rate_unprotect(struct clk_core *core)
546 {
547 	lockdep_assert_held(&prepare_lock);
548 
549 	if (!core)
550 		return;
551 
552 	if (WARN(core->protect_count == 0,
553 	    "%s already unprotected\n", core->name))
554 		return;
555 
556 	if (--core->protect_count > 0)
557 		return;
558 
559 	clk_core_rate_unprotect(core->parent);
560 }
561 
562 static int clk_core_rate_nuke_protect(struct clk_core *core)
563 {
564 	int ret;
565 
566 	lockdep_assert_held(&prepare_lock);
567 
568 	if (!core)
569 		return -EINVAL;
570 
571 	if (core->protect_count == 0)
572 		return 0;
573 
574 	ret = core->protect_count;
575 	core->protect_count = 1;
576 	clk_core_rate_unprotect(core);
577 
578 	return ret;
579 }
580 
581 /**
582  * clk_rate_exclusive_put - release exclusivity over clock rate control
583  * @clk: the clk over which the exclusivity is released
584  *
585  * clk_rate_exclusive_put() completes a critical section during which a clock
586  * consumer cannot tolerate any other consumer making any operation on the
587  * clock which could result in a rate change or rate glitch. Exclusive clocks
588  * cannot have their rate changed, either directly or indirectly due to changes
589  * further up the parent chain of clocks. As a result, clocks up parent chain
590  * also get under exclusive control of the calling consumer.
591  *
592  * If exlusivity is claimed more than once on clock, even by the same consumer,
593  * the rate effectively gets locked as exclusivity can't be preempted.
594  *
595  * Calls to clk_rate_exclusive_put() must be balanced with calls to
596  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
597  * error status.
598  */
599 void clk_rate_exclusive_put(struct clk *clk)
600 {
601 	if (!clk)
602 		return;
603 
604 	clk_prepare_lock();
605 
606 	/*
607 	 * if there is something wrong with this consumer protect count, stop
608 	 * here before messing with the provider
609 	 */
610 	if (WARN_ON(clk->exclusive_count <= 0))
611 		goto out;
612 
613 	clk_core_rate_unprotect(clk->core);
614 	clk->exclusive_count--;
615 out:
616 	clk_prepare_unlock();
617 }
618 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
619 
620 static void clk_core_rate_protect(struct clk_core *core)
621 {
622 	lockdep_assert_held(&prepare_lock);
623 
624 	if (!core)
625 		return;
626 
627 	if (core->protect_count == 0)
628 		clk_core_rate_protect(core->parent);
629 
630 	core->protect_count++;
631 }
632 
633 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
634 {
635 	lockdep_assert_held(&prepare_lock);
636 
637 	if (!core)
638 		return;
639 
640 	if (count == 0)
641 		return;
642 
643 	clk_core_rate_protect(core);
644 	core->protect_count = count;
645 }
646 
647 /**
648  * clk_rate_exclusive_get - get exclusivity over the clk rate control
649  * @clk: the clk over which the exclusity of rate control is requested
650  *
651  * clk_rate_exlusive_get() begins a critical section during which a clock
652  * consumer cannot tolerate any other consumer making any operation on the
653  * clock which could result in a rate change or rate glitch. Exclusive clocks
654  * cannot have their rate changed, either directly or indirectly due to changes
655  * further up the parent chain of clocks. As a result, clocks up parent chain
656  * also get under exclusive control of the calling consumer.
657  *
658  * If exlusivity is claimed more than once on clock, even by the same consumer,
659  * the rate effectively gets locked as exclusivity can't be preempted.
660  *
661  * Calls to clk_rate_exclusive_get() should be balanced with calls to
662  * clk_rate_exclusive_put(). Calls to this function may sleep.
663  * Returns 0 on success, -EERROR otherwise
664  */
665 int clk_rate_exclusive_get(struct clk *clk)
666 {
667 	if (!clk)
668 		return 0;
669 
670 	clk_prepare_lock();
671 	clk_core_rate_protect(clk->core);
672 	clk->exclusive_count++;
673 	clk_prepare_unlock();
674 
675 	return 0;
676 }
677 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
678 
679 static void clk_core_unprepare(struct clk_core *core)
680 {
681 	lockdep_assert_held(&prepare_lock);
682 
683 	if (!core)
684 		return;
685 
686 	if (WARN(core->prepare_count == 0,
687 	    "%s already unprepared\n", core->name))
688 		return;
689 
690 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
691 	    "Unpreparing critical %s\n", core->name))
692 		return;
693 
694 	if (core->flags & CLK_SET_RATE_GATE)
695 		clk_core_rate_unprotect(core);
696 
697 	if (--core->prepare_count > 0)
698 		return;
699 
700 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
701 
702 	trace_clk_unprepare(core);
703 
704 	if (core->ops->unprepare)
705 		core->ops->unprepare(core->hw);
706 
707 	clk_pm_runtime_put(core);
708 
709 	trace_clk_unprepare_complete(core);
710 	clk_core_unprepare(core->parent);
711 }
712 
713 static void clk_core_unprepare_lock(struct clk_core *core)
714 {
715 	clk_prepare_lock();
716 	clk_core_unprepare(core);
717 	clk_prepare_unlock();
718 }
719 
720 /**
721  * clk_unprepare - undo preparation of a clock source
722  * @clk: the clk being unprepared
723  *
724  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
725  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
726  * if the operation may sleep.  One example is a clk which is accessed over
727  * I2c.  In the complex case a clk gate operation may require a fast and a slow
728  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
729  * exclusive.  In fact clk_disable must be called before clk_unprepare.
730  */
731 void clk_unprepare(struct clk *clk)
732 {
733 	if (IS_ERR_OR_NULL(clk))
734 		return;
735 
736 	clk_core_unprepare_lock(clk->core);
737 }
738 EXPORT_SYMBOL_GPL(clk_unprepare);
739 
740 static int clk_core_prepare(struct clk_core *core)
741 {
742 	int ret = 0;
743 
744 	lockdep_assert_held(&prepare_lock);
745 
746 	if (!core)
747 		return 0;
748 
749 	if (core->prepare_count == 0) {
750 		ret = clk_pm_runtime_get(core);
751 		if (ret)
752 			return ret;
753 
754 		ret = clk_core_prepare(core->parent);
755 		if (ret)
756 			goto runtime_put;
757 
758 		trace_clk_prepare(core);
759 
760 		if (core->ops->prepare)
761 			ret = core->ops->prepare(core->hw);
762 
763 		trace_clk_prepare_complete(core);
764 
765 		if (ret)
766 			goto unprepare;
767 	}
768 
769 	core->prepare_count++;
770 
771 	/*
772 	 * CLK_SET_RATE_GATE is a special case of clock protection
773 	 * Instead of a consumer claiming exclusive rate control, it is
774 	 * actually the provider which prevents any consumer from making any
775 	 * operation which could result in a rate change or rate glitch while
776 	 * the clock is prepared.
777 	 */
778 	if (core->flags & CLK_SET_RATE_GATE)
779 		clk_core_rate_protect(core);
780 
781 	return 0;
782 unprepare:
783 	clk_core_unprepare(core->parent);
784 runtime_put:
785 	clk_pm_runtime_put(core);
786 	return ret;
787 }
788 
789 static int clk_core_prepare_lock(struct clk_core *core)
790 {
791 	int ret;
792 
793 	clk_prepare_lock();
794 	ret = clk_core_prepare(core);
795 	clk_prepare_unlock();
796 
797 	return ret;
798 }
799 
800 /**
801  * clk_prepare - prepare a clock source
802  * @clk: the clk being prepared
803  *
804  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
805  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
806  * operation may sleep.  One example is a clk which is accessed over I2c.  In
807  * the complex case a clk ungate operation may require a fast and a slow part.
808  * It is this reason that clk_prepare and clk_enable are not mutually
809  * exclusive.  In fact clk_prepare must be called before clk_enable.
810  * Returns 0 on success, -EERROR otherwise.
811  */
812 int clk_prepare(struct clk *clk)
813 {
814 	if (!clk)
815 		return 0;
816 
817 	return clk_core_prepare_lock(clk->core);
818 }
819 EXPORT_SYMBOL_GPL(clk_prepare);
820 
821 static void clk_core_disable(struct clk_core *core)
822 {
823 	lockdep_assert_held(&enable_lock);
824 
825 	if (!core)
826 		return;
827 
828 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
829 		return;
830 
831 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
832 	    "Disabling critical %s\n", core->name))
833 		return;
834 
835 	if (--core->enable_count > 0)
836 		return;
837 
838 	trace_clk_disable_rcuidle(core);
839 
840 	if (core->ops->disable)
841 		core->ops->disable(core->hw);
842 
843 	trace_clk_disable_complete_rcuidle(core);
844 
845 	clk_core_disable(core->parent);
846 }
847 
848 static void clk_core_disable_lock(struct clk_core *core)
849 {
850 	unsigned long flags;
851 
852 	flags = clk_enable_lock();
853 	clk_core_disable(core);
854 	clk_enable_unlock(flags);
855 }
856 
857 /**
858  * clk_disable - gate a clock
859  * @clk: the clk being gated
860  *
861  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
862  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
863  * clk if the operation is fast and will never sleep.  One example is a
864  * SoC-internal clk which is controlled via simple register writes.  In the
865  * complex case a clk gate operation may require a fast and a slow part.  It is
866  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
867  * In fact clk_disable must be called before clk_unprepare.
868  */
869 void clk_disable(struct clk *clk)
870 {
871 	if (IS_ERR_OR_NULL(clk))
872 		return;
873 
874 	clk_core_disable_lock(clk->core);
875 }
876 EXPORT_SYMBOL_GPL(clk_disable);
877 
878 static int clk_core_enable(struct clk_core *core)
879 {
880 	int ret = 0;
881 
882 	lockdep_assert_held(&enable_lock);
883 
884 	if (!core)
885 		return 0;
886 
887 	if (WARN(core->prepare_count == 0,
888 	    "Enabling unprepared %s\n", core->name))
889 		return -ESHUTDOWN;
890 
891 	if (core->enable_count == 0) {
892 		ret = clk_core_enable(core->parent);
893 
894 		if (ret)
895 			return ret;
896 
897 		trace_clk_enable_rcuidle(core);
898 
899 		if (core->ops->enable)
900 			ret = core->ops->enable(core->hw);
901 
902 		trace_clk_enable_complete_rcuidle(core);
903 
904 		if (ret) {
905 			clk_core_disable(core->parent);
906 			return ret;
907 		}
908 	}
909 
910 	core->enable_count++;
911 	return 0;
912 }
913 
914 static int clk_core_enable_lock(struct clk_core *core)
915 {
916 	unsigned long flags;
917 	int ret;
918 
919 	flags = clk_enable_lock();
920 	ret = clk_core_enable(core);
921 	clk_enable_unlock(flags);
922 
923 	return ret;
924 }
925 
926 /**
927  * clk_enable - ungate a clock
928  * @clk: the clk being ungated
929  *
930  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
931  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
932  * if the operation will never sleep.  One example is a SoC-internal clk which
933  * is controlled via simple register writes.  In the complex case a clk ungate
934  * operation may require a fast and a slow part.  It is this reason that
935  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
936  * must be called before clk_enable.  Returns 0 on success, -EERROR
937  * otherwise.
938  */
939 int clk_enable(struct clk *clk)
940 {
941 	if (!clk)
942 		return 0;
943 
944 	return clk_core_enable_lock(clk->core);
945 }
946 EXPORT_SYMBOL_GPL(clk_enable);
947 
948 static int clk_core_prepare_enable(struct clk_core *core)
949 {
950 	int ret;
951 
952 	ret = clk_core_prepare_lock(core);
953 	if (ret)
954 		return ret;
955 
956 	ret = clk_core_enable_lock(core);
957 	if (ret)
958 		clk_core_unprepare_lock(core);
959 
960 	return ret;
961 }
962 
963 static void clk_core_disable_unprepare(struct clk_core *core)
964 {
965 	clk_core_disable_lock(core);
966 	clk_core_unprepare_lock(core);
967 }
968 
969 static void clk_unprepare_unused_subtree(struct clk_core *core)
970 {
971 	struct clk_core *child;
972 
973 	lockdep_assert_held(&prepare_lock);
974 
975 	hlist_for_each_entry(child, &core->children, child_node)
976 		clk_unprepare_unused_subtree(child);
977 
978 	if (core->prepare_count)
979 		return;
980 
981 	if (core->flags & CLK_IGNORE_UNUSED)
982 		return;
983 
984 	if (clk_pm_runtime_get(core))
985 		return;
986 
987 	if (clk_core_is_prepared(core)) {
988 		trace_clk_unprepare(core);
989 		if (core->ops->unprepare_unused)
990 			core->ops->unprepare_unused(core->hw);
991 		else if (core->ops->unprepare)
992 			core->ops->unprepare(core->hw);
993 		trace_clk_unprepare_complete(core);
994 	}
995 
996 	clk_pm_runtime_put(core);
997 }
998 
999 static void clk_disable_unused_subtree(struct clk_core *core)
1000 {
1001 	struct clk_core *child;
1002 	unsigned long flags;
1003 
1004 	lockdep_assert_held(&prepare_lock);
1005 
1006 	hlist_for_each_entry(child, &core->children, child_node)
1007 		clk_disable_unused_subtree(child);
1008 
1009 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1010 		clk_core_prepare_enable(core->parent);
1011 
1012 	if (clk_pm_runtime_get(core))
1013 		goto unprepare_out;
1014 
1015 	flags = clk_enable_lock();
1016 
1017 	if (core->enable_count)
1018 		goto unlock_out;
1019 
1020 	if (core->flags & CLK_IGNORE_UNUSED)
1021 		goto unlock_out;
1022 
1023 	/*
1024 	 * some gate clocks have special needs during the disable-unused
1025 	 * sequence.  call .disable_unused if available, otherwise fall
1026 	 * back to .disable
1027 	 */
1028 	if (clk_core_is_enabled(core)) {
1029 		trace_clk_disable(core);
1030 		if (core->ops->disable_unused)
1031 			core->ops->disable_unused(core->hw);
1032 		else if (core->ops->disable)
1033 			core->ops->disable(core->hw);
1034 		trace_clk_disable_complete(core);
1035 	}
1036 
1037 unlock_out:
1038 	clk_enable_unlock(flags);
1039 	clk_pm_runtime_put(core);
1040 unprepare_out:
1041 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1042 		clk_core_disable_unprepare(core->parent);
1043 }
1044 
1045 static bool clk_ignore_unused;
1046 static int __init clk_ignore_unused_setup(char *__unused)
1047 {
1048 	clk_ignore_unused = true;
1049 	return 1;
1050 }
1051 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1052 
1053 static int clk_disable_unused(void)
1054 {
1055 	struct clk_core *core;
1056 
1057 	if (clk_ignore_unused) {
1058 		pr_warn("clk: Not disabling unused clocks\n");
1059 		return 0;
1060 	}
1061 
1062 	clk_prepare_lock();
1063 
1064 	hlist_for_each_entry(core, &clk_root_list, child_node)
1065 		clk_disable_unused_subtree(core);
1066 
1067 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1068 		clk_disable_unused_subtree(core);
1069 
1070 	hlist_for_each_entry(core, &clk_root_list, child_node)
1071 		clk_unprepare_unused_subtree(core);
1072 
1073 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1074 		clk_unprepare_unused_subtree(core);
1075 
1076 	clk_prepare_unlock();
1077 
1078 	return 0;
1079 }
1080 late_initcall_sync(clk_disable_unused);
1081 
1082 static int clk_core_determine_round_nolock(struct clk_core *core,
1083 					   struct clk_rate_request *req)
1084 {
1085 	long rate;
1086 
1087 	lockdep_assert_held(&prepare_lock);
1088 
1089 	if (!core)
1090 		return 0;
1091 
1092 	/*
1093 	 * At this point, core protection will be disabled if
1094 	 * - if the provider is not protected at all
1095 	 * - if the calling consumer is the only one which has exclusivity
1096 	 *   over the provider
1097 	 */
1098 	if (clk_core_rate_is_protected(core)) {
1099 		req->rate = core->rate;
1100 	} else if (core->ops->determine_rate) {
1101 		return core->ops->determine_rate(core->hw, req);
1102 	} else if (core->ops->round_rate) {
1103 		rate = core->ops->round_rate(core->hw, req->rate,
1104 					     &req->best_parent_rate);
1105 		if (rate < 0)
1106 			return rate;
1107 
1108 		req->rate = rate;
1109 	} else {
1110 		return -EINVAL;
1111 	}
1112 
1113 	return 0;
1114 }
1115 
1116 static void clk_core_init_rate_req(struct clk_core * const core,
1117 				   struct clk_rate_request *req)
1118 {
1119 	struct clk_core *parent;
1120 
1121 	if (WARN_ON(!core || !req))
1122 		return;
1123 
1124 	parent = core->parent;
1125 	if (parent) {
1126 		req->best_parent_hw = parent->hw;
1127 		req->best_parent_rate = parent->rate;
1128 	} else {
1129 		req->best_parent_hw = NULL;
1130 		req->best_parent_rate = 0;
1131 	}
1132 }
1133 
1134 static bool clk_core_can_round(struct clk_core * const core)
1135 {
1136 	if (core->ops->determine_rate || core->ops->round_rate)
1137 		return true;
1138 
1139 	return false;
1140 }
1141 
1142 static int clk_core_round_rate_nolock(struct clk_core *core,
1143 				      struct clk_rate_request *req)
1144 {
1145 	lockdep_assert_held(&prepare_lock);
1146 
1147 	if (!core) {
1148 		req->rate = 0;
1149 		return 0;
1150 	}
1151 
1152 	clk_core_init_rate_req(core, req);
1153 
1154 	if (clk_core_can_round(core))
1155 		return clk_core_determine_round_nolock(core, req);
1156 	else if (core->flags & CLK_SET_RATE_PARENT)
1157 		return clk_core_round_rate_nolock(core->parent, req);
1158 
1159 	req->rate = core->rate;
1160 	return 0;
1161 }
1162 
1163 /**
1164  * __clk_determine_rate - get the closest rate actually supported by a clock
1165  * @hw: determine the rate of this clock
1166  * @req: target rate request
1167  *
1168  * Useful for clk_ops such as .set_rate and .determine_rate.
1169  */
1170 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1171 {
1172 	if (!hw) {
1173 		req->rate = 0;
1174 		return 0;
1175 	}
1176 
1177 	return clk_core_round_rate_nolock(hw->core, req);
1178 }
1179 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1180 
1181 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1182 {
1183 	int ret;
1184 	struct clk_rate_request req;
1185 
1186 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1187 	req.rate = rate;
1188 
1189 	ret = clk_core_round_rate_nolock(hw->core, &req);
1190 	if (ret)
1191 		return 0;
1192 
1193 	return req.rate;
1194 }
1195 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1196 
1197 /**
1198  * clk_round_rate - round the given rate for a clk
1199  * @clk: the clk for which we are rounding a rate
1200  * @rate: the rate which is to be rounded
1201  *
1202  * Takes in a rate as input and rounds it to a rate that the clk can actually
1203  * use which is then returned.  If clk doesn't support round_rate operation
1204  * then the parent rate is returned.
1205  */
1206 long clk_round_rate(struct clk *clk, unsigned long rate)
1207 {
1208 	struct clk_rate_request req;
1209 	int ret;
1210 
1211 	if (!clk)
1212 		return 0;
1213 
1214 	clk_prepare_lock();
1215 
1216 	if (clk->exclusive_count)
1217 		clk_core_rate_unprotect(clk->core);
1218 
1219 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1220 	req.rate = rate;
1221 
1222 	ret = clk_core_round_rate_nolock(clk->core, &req);
1223 
1224 	if (clk->exclusive_count)
1225 		clk_core_rate_protect(clk->core);
1226 
1227 	clk_prepare_unlock();
1228 
1229 	if (ret)
1230 		return ret;
1231 
1232 	return req.rate;
1233 }
1234 EXPORT_SYMBOL_GPL(clk_round_rate);
1235 
1236 /**
1237  * __clk_notify - call clk notifier chain
1238  * @core: clk that is changing rate
1239  * @msg: clk notifier type (see include/linux/clk.h)
1240  * @old_rate: old clk rate
1241  * @new_rate: new clk rate
1242  *
1243  * Triggers a notifier call chain on the clk rate-change notification
1244  * for 'clk'.  Passes a pointer to the struct clk and the previous
1245  * and current rates to the notifier callback.  Intended to be called by
1246  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1247  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1248  * a driver returns that.
1249  */
1250 static int __clk_notify(struct clk_core *core, unsigned long msg,
1251 		unsigned long old_rate, unsigned long new_rate)
1252 {
1253 	struct clk_notifier *cn;
1254 	struct clk_notifier_data cnd;
1255 	int ret = NOTIFY_DONE;
1256 
1257 	cnd.old_rate = old_rate;
1258 	cnd.new_rate = new_rate;
1259 
1260 	list_for_each_entry(cn, &clk_notifier_list, node) {
1261 		if (cn->clk->core == core) {
1262 			cnd.clk = cn->clk;
1263 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1264 					&cnd);
1265 			if (ret & NOTIFY_STOP_MASK)
1266 				return ret;
1267 		}
1268 	}
1269 
1270 	return ret;
1271 }
1272 
1273 /**
1274  * __clk_recalc_accuracies
1275  * @core: first clk in the subtree
1276  *
1277  * Walks the subtree of clks starting with clk and recalculates accuracies as
1278  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1279  * callback then it is assumed that the clock will take on the accuracy of its
1280  * parent.
1281  */
1282 static void __clk_recalc_accuracies(struct clk_core *core)
1283 {
1284 	unsigned long parent_accuracy = 0;
1285 	struct clk_core *child;
1286 
1287 	lockdep_assert_held(&prepare_lock);
1288 
1289 	if (core->parent)
1290 		parent_accuracy = core->parent->accuracy;
1291 
1292 	if (core->ops->recalc_accuracy)
1293 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1294 							  parent_accuracy);
1295 	else
1296 		core->accuracy = parent_accuracy;
1297 
1298 	hlist_for_each_entry(child, &core->children, child_node)
1299 		__clk_recalc_accuracies(child);
1300 }
1301 
1302 static long clk_core_get_accuracy(struct clk_core *core)
1303 {
1304 	unsigned long accuracy;
1305 
1306 	clk_prepare_lock();
1307 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1308 		__clk_recalc_accuracies(core);
1309 
1310 	accuracy = __clk_get_accuracy(core);
1311 	clk_prepare_unlock();
1312 
1313 	return accuracy;
1314 }
1315 
1316 /**
1317  * clk_get_accuracy - return the accuracy of clk
1318  * @clk: the clk whose accuracy is being returned
1319  *
1320  * Simply returns the cached accuracy of the clk, unless
1321  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1322  * issued.
1323  * If clk is NULL then returns 0.
1324  */
1325 long clk_get_accuracy(struct clk *clk)
1326 {
1327 	if (!clk)
1328 		return 0;
1329 
1330 	return clk_core_get_accuracy(clk->core);
1331 }
1332 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1333 
1334 static unsigned long clk_recalc(struct clk_core *core,
1335 				unsigned long parent_rate)
1336 {
1337 	unsigned long rate = parent_rate;
1338 
1339 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1340 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1341 		clk_pm_runtime_put(core);
1342 	}
1343 	return rate;
1344 }
1345 
1346 /**
1347  * __clk_recalc_rates
1348  * @core: first clk in the subtree
1349  * @msg: notification type (see include/linux/clk.h)
1350  *
1351  * Walks the subtree of clks starting with clk and recalculates rates as it
1352  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1353  * it is assumed that the clock will take on the rate of its parent.
1354  *
1355  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1356  * if necessary.
1357  */
1358 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1359 {
1360 	unsigned long old_rate;
1361 	unsigned long parent_rate = 0;
1362 	struct clk_core *child;
1363 
1364 	lockdep_assert_held(&prepare_lock);
1365 
1366 	old_rate = core->rate;
1367 
1368 	if (core->parent)
1369 		parent_rate = core->parent->rate;
1370 
1371 	core->rate = clk_recalc(core, parent_rate);
1372 
1373 	/*
1374 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1375 	 * & ABORT_RATE_CHANGE notifiers
1376 	 */
1377 	if (core->notifier_count && msg)
1378 		__clk_notify(core, msg, old_rate, core->rate);
1379 
1380 	hlist_for_each_entry(child, &core->children, child_node)
1381 		__clk_recalc_rates(child, msg);
1382 }
1383 
1384 static unsigned long clk_core_get_rate(struct clk_core *core)
1385 {
1386 	unsigned long rate;
1387 
1388 	clk_prepare_lock();
1389 
1390 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1391 		__clk_recalc_rates(core, 0);
1392 
1393 	rate = clk_core_get_rate_nolock(core);
1394 	clk_prepare_unlock();
1395 
1396 	return rate;
1397 }
1398 
1399 /**
1400  * clk_get_rate - return the rate of clk
1401  * @clk: the clk whose rate is being returned
1402  *
1403  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1404  * is set, which means a recalc_rate will be issued.
1405  * If clk is NULL then returns 0.
1406  */
1407 unsigned long clk_get_rate(struct clk *clk)
1408 {
1409 	if (!clk)
1410 		return 0;
1411 
1412 	return clk_core_get_rate(clk->core);
1413 }
1414 EXPORT_SYMBOL_GPL(clk_get_rate);
1415 
1416 static int clk_fetch_parent_index(struct clk_core *core,
1417 				  struct clk_core *parent)
1418 {
1419 	int i;
1420 
1421 	if (!parent)
1422 		return -EINVAL;
1423 
1424 	for (i = 0; i < core->num_parents; i++)
1425 		if (clk_core_get_parent_by_index(core, i) == parent)
1426 			return i;
1427 
1428 	return -EINVAL;
1429 }
1430 
1431 /*
1432  * Update the orphan status of @core and all its children.
1433  */
1434 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1435 {
1436 	struct clk_core *child;
1437 
1438 	core->orphan = is_orphan;
1439 
1440 	hlist_for_each_entry(child, &core->children, child_node)
1441 		clk_core_update_orphan_status(child, is_orphan);
1442 }
1443 
1444 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1445 {
1446 	bool was_orphan = core->orphan;
1447 
1448 	hlist_del(&core->child_node);
1449 
1450 	if (new_parent) {
1451 		bool becomes_orphan = new_parent->orphan;
1452 
1453 		/* avoid duplicate POST_RATE_CHANGE notifications */
1454 		if (new_parent->new_child == core)
1455 			new_parent->new_child = NULL;
1456 
1457 		hlist_add_head(&core->child_node, &new_parent->children);
1458 
1459 		if (was_orphan != becomes_orphan)
1460 			clk_core_update_orphan_status(core, becomes_orphan);
1461 	} else {
1462 		hlist_add_head(&core->child_node, &clk_orphan_list);
1463 		if (!was_orphan)
1464 			clk_core_update_orphan_status(core, true);
1465 	}
1466 
1467 	core->parent = new_parent;
1468 }
1469 
1470 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1471 					   struct clk_core *parent)
1472 {
1473 	unsigned long flags;
1474 	struct clk_core *old_parent = core->parent;
1475 
1476 	/*
1477 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1478 	 *
1479 	 * 2. Migrate prepare state between parents and prevent race with
1480 	 * clk_enable().
1481 	 *
1482 	 * If the clock is not prepared, then a race with
1483 	 * clk_enable/disable() is impossible since we already have the
1484 	 * prepare lock (future calls to clk_enable() need to be preceded by
1485 	 * a clk_prepare()).
1486 	 *
1487 	 * If the clock is prepared, migrate the prepared state to the new
1488 	 * parent and also protect against a race with clk_enable() by
1489 	 * forcing the clock and the new parent on.  This ensures that all
1490 	 * future calls to clk_enable() are practically NOPs with respect to
1491 	 * hardware and software states.
1492 	 *
1493 	 * See also: Comment for clk_set_parent() below.
1494 	 */
1495 
1496 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1497 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1498 		clk_core_prepare_enable(old_parent);
1499 		clk_core_prepare_enable(parent);
1500 	}
1501 
1502 	/* migrate prepare count if > 0 */
1503 	if (core->prepare_count) {
1504 		clk_core_prepare_enable(parent);
1505 		clk_core_enable_lock(core);
1506 	}
1507 
1508 	/* update the clk tree topology */
1509 	flags = clk_enable_lock();
1510 	clk_reparent(core, parent);
1511 	clk_enable_unlock(flags);
1512 
1513 	return old_parent;
1514 }
1515 
1516 static void __clk_set_parent_after(struct clk_core *core,
1517 				   struct clk_core *parent,
1518 				   struct clk_core *old_parent)
1519 {
1520 	/*
1521 	 * Finish the migration of prepare state and undo the changes done
1522 	 * for preventing a race with clk_enable().
1523 	 */
1524 	if (core->prepare_count) {
1525 		clk_core_disable_lock(core);
1526 		clk_core_disable_unprepare(old_parent);
1527 	}
1528 
1529 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1530 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1531 		clk_core_disable_unprepare(parent);
1532 		clk_core_disable_unprepare(old_parent);
1533 	}
1534 }
1535 
1536 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1537 			    u8 p_index)
1538 {
1539 	unsigned long flags;
1540 	int ret = 0;
1541 	struct clk_core *old_parent;
1542 
1543 	old_parent = __clk_set_parent_before(core, parent);
1544 
1545 	trace_clk_set_parent(core, parent);
1546 
1547 	/* change clock input source */
1548 	if (parent && core->ops->set_parent)
1549 		ret = core->ops->set_parent(core->hw, p_index);
1550 
1551 	trace_clk_set_parent_complete(core, parent);
1552 
1553 	if (ret) {
1554 		flags = clk_enable_lock();
1555 		clk_reparent(core, old_parent);
1556 		clk_enable_unlock(flags);
1557 		__clk_set_parent_after(core, old_parent, parent);
1558 
1559 		return ret;
1560 	}
1561 
1562 	__clk_set_parent_after(core, parent, old_parent);
1563 
1564 	return 0;
1565 }
1566 
1567 /**
1568  * __clk_speculate_rates
1569  * @core: first clk in the subtree
1570  * @parent_rate: the "future" rate of clk's parent
1571  *
1572  * Walks the subtree of clks starting with clk, speculating rates as it
1573  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1574  *
1575  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1576  * pre-rate change notifications and returns early if no clks in the
1577  * subtree have subscribed to the notifications.  Note that if a clk does not
1578  * implement the .recalc_rate callback then it is assumed that the clock will
1579  * take on the rate of its parent.
1580  */
1581 static int __clk_speculate_rates(struct clk_core *core,
1582 				 unsigned long parent_rate)
1583 {
1584 	struct clk_core *child;
1585 	unsigned long new_rate;
1586 	int ret = NOTIFY_DONE;
1587 
1588 	lockdep_assert_held(&prepare_lock);
1589 
1590 	new_rate = clk_recalc(core, parent_rate);
1591 
1592 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1593 	if (core->notifier_count)
1594 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1595 
1596 	if (ret & NOTIFY_STOP_MASK) {
1597 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1598 				__func__, core->name, ret);
1599 		goto out;
1600 	}
1601 
1602 	hlist_for_each_entry(child, &core->children, child_node) {
1603 		ret = __clk_speculate_rates(child, new_rate);
1604 		if (ret & NOTIFY_STOP_MASK)
1605 			break;
1606 	}
1607 
1608 out:
1609 	return ret;
1610 }
1611 
1612 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1613 			     struct clk_core *new_parent, u8 p_index)
1614 {
1615 	struct clk_core *child;
1616 
1617 	core->new_rate = new_rate;
1618 	core->new_parent = new_parent;
1619 	core->new_parent_index = p_index;
1620 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1621 	core->new_child = NULL;
1622 	if (new_parent && new_parent != core->parent)
1623 		new_parent->new_child = core;
1624 
1625 	hlist_for_each_entry(child, &core->children, child_node) {
1626 		child->new_rate = clk_recalc(child, new_rate);
1627 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1628 	}
1629 }
1630 
1631 /*
1632  * calculate the new rates returning the topmost clock that has to be
1633  * changed.
1634  */
1635 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1636 					   unsigned long rate)
1637 {
1638 	struct clk_core *top = core;
1639 	struct clk_core *old_parent, *parent;
1640 	unsigned long best_parent_rate = 0;
1641 	unsigned long new_rate;
1642 	unsigned long min_rate;
1643 	unsigned long max_rate;
1644 	int p_index = 0;
1645 	long ret;
1646 
1647 	/* sanity */
1648 	if (IS_ERR_OR_NULL(core))
1649 		return NULL;
1650 
1651 	/* save parent rate, if it exists */
1652 	parent = old_parent = core->parent;
1653 	if (parent)
1654 		best_parent_rate = parent->rate;
1655 
1656 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1657 
1658 	/* find the closest rate and parent clk/rate */
1659 	if (clk_core_can_round(core)) {
1660 		struct clk_rate_request req;
1661 
1662 		req.rate = rate;
1663 		req.min_rate = min_rate;
1664 		req.max_rate = max_rate;
1665 
1666 		clk_core_init_rate_req(core, &req);
1667 
1668 		ret = clk_core_determine_round_nolock(core, &req);
1669 		if (ret < 0)
1670 			return NULL;
1671 
1672 		best_parent_rate = req.best_parent_rate;
1673 		new_rate = req.rate;
1674 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1675 
1676 		if (new_rate < min_rate || new_rate > max_rate)
1677 			return NULL;
1678 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1679 		/* pass-through clock without adjustable parent */
1680 		core->new_rate = core->rate;
1681 		return NULL;
1682 	} else {
1683 		/* pass-through clock with adjustable parent */
1684 		top = clk_calc_new_rates(parent, rate);
1685 		new_rate = parent->new_rate;
1686 		goto out;
1687 	}
1688 
1689 	/* some clocks must be gated to change parent */
1690 	if (parent != old_parent &&
1691 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1692 		pr_debug("%s: %s not gated but wants to reparent\n",
1693 			 __func__, core->name);
1694 		return NULL;
1695 	}
1696 
1697 	/* try finding the new parent index */
1698 	if (parent && core->num_parents > 1) {
1699 		p_index = clk_fetch_parent_index(core, parent);
1700 		if (p_index < 0) {
1701 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1702 				 __func__, parent->name, core->name);
1703 			return NULL;
1704 		}
1705 	}
1706 
1707 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1708 	    best_parent_rate != parent->rate)
1709 		top = clk_calc_new_rates(parent, best_parent_rate);
1710 
1711 out:
1712 	clk_calc_subtree(core, new_rate, parent, p_index);
1713 
1714 	return top;
1715 }
1716 
1717 /*
1718  * Notify about rate changes in a subtree. Always walk down the whole tree
1719  * so that in case of an error we can walk down the whole tree again and
1720  * abort the change.
1721  */
1722 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1723 						  unsigned long event)
1724 {
1725 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1726 	int ret = NOTIFY_DONE;
1727 
1728 	if (core->rate == core->new_rate)
1729 		return NULL;
1730 
1731 	if (core->notifier_count) {
1732 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1733 		if (ret & NOTIFY_STOP_MASK)
1734 			fail_clk = core;
1735 	}
1736 
1737 	hlist_for_each_entry(child, &core->children, child_node) {
1738 		/* Skip children who will be reparented to another clock */
1739 		if (child->new_parent && child->new_parent != core)
1740 			continue;
1741 		tmp_clk = clk_propagate_rate_change(child, event);
1742 		if (tmp_clk)
1743 			fail_clk = tmp_clk;
1744 	}
1745 
1746 	/* handle the new child who might not be in core->children yet */
1747 	if (core->new_child) {
1748 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1749 		if (tmp_clk)
1750 			fail_clk = tmp_clk;
1751 	}
1752 
1753 	return fail_clk;
1754 }
1755 
1756 /*
1757  * walk down a subtree and set the new rates notifying the rate
1758  * change on the way
1759  */
1760 static void clk_change_rate(struct clk_core *core)
1761 {
1762 	struct clk_core *child;
1763 	struct hlist_node *tmp;
1764 	unsigned long old_rate;
1765 	unsigned long best_parent_rate = 0;
1766 	bool skip_set_rate = false;
1767 	struct clk_core *old_parent;
1768 	struct clk_core *parent = NULL;
1769 
1770 	old_rate = core->rate;
1771 
1772 	if (core->new_parent) {
1773 		parent = core->new_parent;
1774 		best_parent_rate = core->new_parent->rate;
1775 	} else if (core->parent) {
1776 		parent = core->parent;
1777 		best_parent_rate = core->parent->rate;
1778 	}
1779 
1780 	if (clk_pm_runtime_get(core))
1781 		return;
1782 
1783 	if (core->flags & CLK_SET_RATE_UNGATE) {
1784 		unsigned long flags;
1785 
1786 		clk_core_prepare(core);
1787 		flags = clk_enable_lock();
1788 		clk_core_enable(core);
1789 		clk_enable_unlock(flags);
1790 	}
1791 
1792 	if (core->new_parent && core->new_parent != core->parent) {
1793 		old_parent = __clk_set_parent_before(core, core->new_parent);
1794 		trace_clk_set_parent(core, core->new_parent);
1795 
1796 		if (core->ops->set_rate_and_parent) {
1797 			skip_set_rate = true;
1798 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1799 					best_parent_rate,
1800 					core->new_parent_index);
1801 		} else if (core->ops->set_parent) {
1802 			core->ops->set_parent(core->hw, core->new_parent_index);
1803 		}
1804 
1805 		trace_clk_set_parent_complete(core, core->new_parent);
1806 		__clk_set_parent_after(core, core->new_parent, old_parent);
1807 	}
1808 
1809 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1810 		clk_core_prepare_enable(parent);
1811 
1812 	trace_clk_set_rate(core, core->new_rate);
1813 
1814 	if (!skip_set_rate && core->ops->set_rate)
1815 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1816 
1817 	trace_clk_set_rate_complete(core, core->new_rate);
1818 
1819 	core->rate = clk_recalc(core, best_parent_rate);
1820 
1821 	if (core->flags & CLK_SET_RATE_UNGATE) {
1822 		unsigned long flags;
1823 
1824 		flags = clk_enable_lock();
1825 		clk_core_disable(core);
1826 		clk_enable_unlock(flags);
1827 		clk_core_unprepare(core);
1828 	}
1829 
1830 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1831 		clk_core_disable_unprepare(parent);
1832 
1833 	if (core->notifier_count && old_rate != core->rate)
1834 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1835 
1836 	if (core->flags & CLK_RECALC_NEW_RATES)
1837 		(void)clk_calc_new_rates(core, core->new_rate);
1838 
1839 	/*
1840 	 * Use safe iteration, as change_rate can actually swap parents
1841 	 * for certain clock types.
1842 	 */
1843 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1844 		/* Skip children who will be reparented to another clock */
1845 		if (child->new_parent && child->new_parent != core)
1846 			continue;
1847 		clk_change_rate(child);
1848 	}
1849 
1850 	/* handle the new child who might not be in core->children yet */
1851 	if (core->new_child)
1852 		clk_change_rate(core->new_child);
1853 
1854 	clk_pm_runtime_put(core);
1855 }
1856 
1857 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
1858 						     unsigned long req_rate)
1859 {
1860 	int ret, cnt;
1861 	struct clk_rate_request req;
1862 
1863 	lockdep_assert_held(&prepare_lock);
1864 
1865 	if (!core)
1866 		return 0;
1867 
1868 	/* simulate what the rate would be if it could be freely set */
1869 	cnt = clk_core_rate_nuke_protect(core);
1870 	if (cnt < 0)
1871 		return cnt;
1872 
1873 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
1874 	req.rate = req_rate;
1875 
1876 	ret = clk_core_round_rate_nolock(core, &req);
1877 
1878 	/* restore the protection */
1879 	clk_core_rate_restore_protect(core, cnt);
1880 
1881 	return ret ? 0 : req.rate;
1882 }
1883 
1884 static int clk_core_set_rate_nolock(struct clk_core *core,
1885 				    unsigned long req_rate)
1886 {
1887 	struct clk_core *top, *fail_clk;
1888 	unsigned long rate;
1889 	int ret = 0;
1890 
1891 	if (!core)
1892 		return 0;
1893 
1894 	rate = clk_core_req_round_rate_nolock(core, req_rate);
1895 
1896 	/* bail early if nothing to do */
1897 	if (rate == clk_core_get_rate_nolock(core))
1898 		return 0;
1899 
1900 	/* fail on a direct rate set of a protected provider */
1901 	if (clk_core_rate_is_protected(core))
1902 		return -EBUSY;
1903 
1904 	/* calculate new rates and get the topmost changed clock */
1905 	top = clk_calc_new_rates(core, req_rate);
1906 	if (!top)
1907 		return -EINVAL;
1908 
1909 	ret = clk_pm_runtime_get(core);
1910 	if (ret)
1911 		return ret;
1912 
1913 	/* notify that we are about to change rates */
1914 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1915 	if (fail_clk) {
1916 		pr_debug("%s: failed to set %s rate\n", __func__,
1917 				fail_clk->name);
1918 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1919 		ret = -EBUSY;
1920 		goto err;
1921 	}
1922 
1923 	/* change the rates */
1924 	clk_change_rate(top);
1925 
1926 	core->req_rate = req_rate;
1927 err:
1928 	clk_pm_runtime_put(core);
1929 
1930 	return ret;
1931 }
1932 
1933 /**
1934  * clk_set_rate - specify a new rate for clk
1935  * @clk: the clk whose rate is being changed
1936  * @rate: the new rate for clk
1937  *
1938  * In the simplest case clk_set_rate will only adjust the rate of clk.
1939  *
1940  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1941  * propagate up to clk's parent; whether or not this happens depends on the
1942  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1943  * after calling .round_rate then upstream parent propagation is ignored.  If
1944  * *parent_rate comes back with a new rate for clk's parent then we propagate
1945  * up to clk's parent and set its rate.  Upward propagation will continue
1946  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1947  * .round_rate stops requesting changes to clk's parent_rate.
1948  *
1949  * Rate changes are accomplished via tree traversal that also recalculates the
1950  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1951  *
1952  * Returns 0 on success, -EERROR otherwise.
1953  */
1954 int clk_set_rate(struct clk *clk, unsigned long rate)
1955 {
1956 	int ret;
1957 
1958 	if (!clk)
1959 		return 0;
1960 
1961 	/* prevent racing with updates to the clock topology */
1962 	clk_prepare_lock();
1963 
1964 	if (clk->exclusive_count)
1965 		clk_core_rate_unprotect(clk->core);
1966 
1967 	ret = clk_core_set_rate_nolock(clk->core, rate);
1968 
1969 	if (clk->exclusive_count)
1970 		clk_core_rate_protect(clk->core);
1971 
1972 	clk_prepare_unlock();
1973 
1974 	return ret;
1975 }
1976 EXPORT_SYMBOL_GPL(clk_set_rate);
1977 
1978 /**
1979  * clk_set_rate_exclusive - specify a new rate get exclusive control
1980  * @clk: the clk whose rate is being changed
1981  * @rate: the new rate for clk
1982  *
1983  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
1984  * within a critical section
1985  *
1986  * This can be used initially to ensure that at least 1 consumer is
1987  * statisfied when several consumers are competing for exclusivity over the
1988  * same clock provider.
1989  *
1990  * The exclusivity is not applied if setting the rate failed.
1991  *
1992  * Calls to clk_rate_exclusive_get() should be balanced with calls to
1993  * clk_rate_exclusive_put().
1994  *
1995  * Returns 0 on success, -EERROR otherwise.
1996  */
1997 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
1998 {
1999 	int ret;
2000 
2001 	if (!clk)
2002 		return 0;
2003 
2004 	/* prevent racing with updates to the clock topology */
2005 	clk_prepare_lock();
2006 
2007 	/*
2008 	 * The temporary protection removal is not here, on purpose
2009 	 * This function is meant to be used instead of clk_rate_protect,
2010 	 * so before the consumer code path protect the clock provider
2011 	 */
2012 
2013 	ret = clk_core_set_rate_nolock(clk->core, rate);
2014 	if (!ret) {
2015 		clk_core_rate_protect(clk->core);
2016 		clk->exclusive_count++;
2017 	}
2018 
2019 	clk_prepare_unlock();
2020 
2021 	return ret;
2022 }
2023 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2024 
2025 /**
2026  * clk_set_rate_range - set a rate range for a clock source
2027  * @clk: clock source
2028  * @min: desired minimum clock rate in Hz, inclusive
2029  * @max: desired maximum clock rate in Hz, inclusive
2030  *
2031  * Returns success (0) or negative errno.
2032  */
2033 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2034 {
2035 	int ret = 0;
2036 	unsigned long old_min, old_max, rate;
2037 
2038 	if (!clk)
2039 		return 0;
2040 
2041 	if (min > max) {
2042 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2043 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2044 		       min, max);
2045 		return -EINVAL;
2046 	}
2047 
2048 	clk_prepare_lock();
2049 
2050 	if (clk->exclusive_count)
2051 		clk_core_rate_unprotect(clk->core);
2052 
2053 	/* Save the current values in case we need to rollback the change */
2054 	old_min = clk->min_rate;
2055 	old_max = clk->max_rate;
2056 	clk->min_rate = min;
2057 	clk->max_rate = max;
2058 
2059 	rate = clk_core_get_rate_nolock(clk->core);
2060 	if (rate < min || rate > max) {
2061 		/*
2062 		 * FIXME:
2063 		 * We are in bit of trouble here, current rate is outside the
2064 		 * the requested range. We are going try to request appropriate
2065 		 * range boundary but there is a catch. It may fail for the
2066 		 * usual reason (clock broken, clock protected, etc) but also
2067 		 * because:
2068 		 * - round_rate() was not favorable and fell on the wrong
2069 		 *   side of the boundary
2070 		 * - the determine_rate() callback does not really check for
2071 		 *   this corner case when determining the rate
2072 		 */
2073 
2074 		if (rate < min)
2075 			rate = min;
2076 		else
2077 			rate = max;
2078 
2079 		ret = clk_core_set_rate_nolock(clk->core, rate);
2080 		if (ret) {
2081 			/* rollback the changes */
2082 			clk->min_rate = old_min;
2083 			clk->max_rate = old_max;
2084 		}
2085 	}
2086 
2087 	if (clk->exclusive_count)
2088 		clk_core_rate_protect(clk->core);
2089 
2090 	clk_prepare_unlock();
2091 
2092 	return ret;
2093 }
2094 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2095 
2096 /**
2097  * clk_set_min_rate - set a minimum clock rate for a clock source
2098  * @clk: clock source
2099  * @rate: desired minimum clock rate in Hz, inclusive
2100  *
2101  * Returns success (0) or negative errno.
2102  */
2103 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2104 {
2105 	if (!clk)
2106 		return 0;
2107 
2108 	return clk_set_rate_range(clk, rate, clk->max_rate);
2109 }
2110 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2111 
2112 /**
2113  * clk_set_max_rate - set a maximum clock rate for a clock source
2114  * @clk: clock source
2115  * @rate: desired maximum clock rate in Hz, inclusive
2116  *
2117  * Returns success (0) or negative errno.
2118  */
2119 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2120 {
2121 	if (!clk)
2122 		return 0;
2123 
2124 	return clk_set_rate_range(clk, clk->min_rate, rate);
2125 }
2126 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2127 
2128 /**
2129  * clk_get_parent - return the parent of a clk
2130  * @clk: the clk whose parent gets returned
2131  *
2132  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2133  */
2134 struct clk *clk_get_parent(struct clk *clk)
2135 {
2136 	struct clk *parent;
2137 
2138 	if (!clk)
2139 		return NULL;
2140 
2141 	clk_prepare_lock();
2142 	/* TODO: Create a per-user clk and change callers to call clk_put */
2143 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2144 	clk_prepare_unlock();
2145 
2146 	return parent;
2147 }
2148 EXPORT_SYMBOL_GPL(clk_get_parent);
2149 
2150 static struct clk_core *__clk_init_parent(struct clk_core *core)
2151 {
2152 	u8 index = 0;
2153 
2154 	if (core->num_parents > 1 && core->ops->get_parent)
2155 		index = core->ops->get_parent(core->hw);
2156 
2157 	return clk_core_get_parent_by_index(core, index);
2158 }
2159 
2160 static void clk_core_reparent(struct clk_core *core,
2161 				  struct clk_core *new_parent)
2162 {
2163 	clk_reparent(core, new_parent);
2164 	__clk_recalc_accuracies(core);
2165 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2166 }
2167 
2168 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2169 {
2170 	if (!hw)
2171 		return;
2172 
2173 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2174 }
2175 
2176 /**
2177  * clk_has_parent - check if a clock is a possible parent for another
2178  * @clk: clock source
2179  * @parent: parent clock source
2180  *
2181  * This function can be used in drivers that need to check that a clock can be
2182  * the parent of another without actually changing the parent.
2183  *
2184  * Returns true if @parent is a possible parent for @clk, false otherwise.
2185  */
2186 bool clk_has_parent(struct clk *clk, struct clk *parent)
2187 {
2188 	struct clk_core *core, *parent_core;
2189 
2190 	/* NULL clocks should be nops, so return success if either is NULL. */
2191 	if (!clk || !parent)
2192 		return true;
2193 
2194 	core = clk->core;
2195 	parent_core = parent->core;
2196 
2197 	/* Optimize for the case where the parent is already the parent. */
2198 	if (core->parent == parent_core)
2199 		return true;
2200 
2201 	return match_string(core->parent_names, core->num_parents,
2202 			    parent_core->name) >= 0;
2203 }
2204 EXPORT_SYMBOL_GPL(clk_has_parent);
2205 
2206 static int clk_core_set_parent_nolock(struct clk_core *core,
2207 				      struct clk_core *parent)
2208 {
2209 	int ret = 0;
2210 	int p_index = 0;
2211 	unsigned long p_rate = 0;
2212 
2213 	lockdep_assert_held(&prepare_lock);
2214 
2215 	if (!core)
2216 		return 0;
2217 
2218 	if (core->parent == parent)
2219 		return 0;
2220 
2221 	/* verify ops for for multi-parent clks */
2222 	if (core->num_parents > 1 && !core->ops->set_parent)
2223 		return -EPERM;
2224 
2225 	/* check that we are allowed to re-parent if the clock is in use */
2226 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2227 		return -EBUSY;
2228 
2229 	if (clk_core_rate_is_protected(core))
2230 		return -EBUSY;
2231 
2232 	/* try finding the new parent index */
2233 	if (parent) {
2234 		p_index = clk_fetch_parent_index(core, parent);
2235 		if (p_index < 0) {
2236 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2237 					__func__, parent->name, core->name);
2238 			return p_index;
2239 		}
2240 		p_rate = parent->rate;
2241 	}
2242 
2243 	ret = clk_pm_runtime_get(core);
2244 	if (ret)
2245 		return ret;
2246 
2247 	/* propagate PRE_RATE_CHANGE notifications */
2248 	ret = __clk_speculate_rates(core, p_rate);
2249 
2250 	/* abort if a driver objects */
2251 	if (ret & NOTIFY_STOP_MASK)
2252 		goto runtime_put;
2253 
2254 	/* do the re-parent */
2255 	ret = __clk_set_parent(core, parent, p_index);
2256 
2257 	/* propagate rate an accuracy recalculation accordingly */
2258 	if (ret) {
2259 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2260 	} else {
2261 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2262 		__clk_recalc_accuracies(core);
2263 	}
2264 
2265 runtime_put:
2266 	clk_pm_runtime_put(core);
2267 
2268 	return ret;
2269 }
2270 
2271 /**
2272  * clk_set_parent - switch the parent of a mux clk
2273  * @clk: the mux clk whose input we are switching
2274  * @parent: the new input to clk
2275  *
2276  * Re-parent clk to use parent as its new input source.  If clk is in
2277  * prepared state, the clk will get enabled for the duration of this call. If
2278  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2279  * that, the reparenting is glitchy in hardware, etc), use the
2280  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2281  *
2282  * After successfully changing clk's parent clk_set_parent will update the
2283  * clk topology, sysfs topology and propagate rate recalculation via
2284  * __clk_recalc_rates.
2285  *
2286  * Returns 0 on success, -EERROR otherwise.
2287  */
2288 int clk_set_parent(struct clk *clk, struct clk *parent)
2289 {
2290 	int ret;
2291 
2292 	if (!clk)
2293 		return 0;
2294 
2295 	clk_prepare_lock();
2296 
2297 	if (clk->exclusive_count)
2298 		clk_core_rate_unprotect(clk->core);
2299 
2300 	ret = clk_core_set_parent_nolock(clk->core,
2301 					 parent ? parent->core : NULL);
2302 
2303 	if (clk->exclusive_count)
2304 		clk_core_rate_protect(clk->core);
2305 
2306 	clk_prepare_unlock();
2307 
2308 	return ret;
2309 }
2310 EXPORT_SYMBOL_GPL(clk_set_parent);
2311 
2312 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2313 {
2314 	int ret = -EINVAL;
2315 
2316 	lockdep_assert_held(&prepare_lock);
2317 
2318 	if (!core)
2319 		return 0;
2320 
2321 	if (clk_core_rate_is_protected(core))
2322 		return -EBUSY;
2323 
2324 	trace_clk_set_phase(core, degrees);
2325 
2326 	if (core->ops->set_phase) {
2327 		ret = core->ops->set_phase(core->hw, degrees);
2328 		if (!ret)
2329 			core->phase = degrees;
2330 	}
2331 
2332 	trace_clk_set_phase_complete(core, degrees);
2333 
2334 	return ret;
2335 }
2336 
2337 /**
2338  * clk_set_phase - adjust the phase shift of a clock signal
2339  * @clk: clock signal source
2340  * @degrees: number of degrees the signal is shifted
2341  *
2342  * Shifts the phase of a clock signal by the specified
2343  * degrees. Returns 0 on success, -EERROR otherwise.
2344  *
2345  * This function makes no distinction about the input or reference
2346  * signal that we adjust the clock signal phase against. For example
2347  * phase locked-loop clock signal generators we may shift phase with
2348  * respect to feedback clock signal input, but for other cases the
2349  * clock phase may be shifted with respect to some other, unspecified
2350  * signal.
2351  *
2352  * Additionally the concept of phase shift does not propagate through
2353  * the clock tree hierarchy, which sets it apart from clock rates and
2354  * clock accuracy. A parent clock phase attribute does not have an
2355  * impact on the phase attribute of a child clock.
2356  */
2357 int clk_set_phase(struct clk *clk, int degrees)
2358 {
2359 	int ret;
2360 
2361 	if (!clk)
2362 		return 0;
2363 
2364 	/* sanity check degrees */
2365 	degrees %= 360;
2366 	if (degrees < 0)
2367 		degrees += 360;
2368 
2369 	clk_prepare_lock();
2370 
2371 	if (clk->exclusive_count)
2372 		clk_core_rate_unprotect(clk->core);
2373 
2374 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2375 
2376 	if (clk->exclusive_count)
2377 		clk_core_rate_protect(clk->core);
2378 
2379 	clk_prepare_unlock();
2380 
2381 	return ret;
2382 }
2383 EXPORT_SYMBOL_GPL(clk_set_phase);
2384 
2385 static int clk_core_get_phase(struct clk_core *core)
2386 {
2387 	int ret;
2388 
2389 	clk_prepare_lock();
2390 	/* Always try to update cached phase if possible */
2391 	if (core->ops->get_phase)
2392 		core->phase = core->ops->get_phase(core->hw);
2393 	ret = core->phase;
2394 	clk_prepare_unlock();
2395 
2396 	return ret;
2397 }
2398 
2399 /**
2400  * clk_get_phase - return the phase shift of a clock signal
2401  * @clk: clock signal source
2402  *
2403  * Returns the phase shift of a clock node in degrees, otherwise returns
2404  * -EERROR.
2405  */
2406 int clk_get_phase(struct clk *clk)
2407 {
2408 	if (!clk)
2409 		return 0;
2410 
2411 	return clk_core_get_phase(clk->core);
2412 }
2413 EXPORT_SYMBOL_GPL(clk_get_phase);
2414 
2415 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2416 {
2417 	/* Assume a default value of 50% */
2418 	core->duty.num = 1;
2419 	core->duty.den = 2;
2420 }
2421 
2422 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2423 
2424 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2425 {
2426 	struct clk_duty *duty = &core->duty;
2427 	int ret = 0;
2428 
2429 	if (!core->ops->get_duty_cycle)
2430 		return clk_core_update_duty_cycle_parent_nolock(core);
2431 
2432 	ret = core->ops->get_duty_cycle(core->hw, duty);
2433 	if (ret)
2434 		goto reset;
2435 
2436 	/* Don't trust the clock provider too much */
2437 	if (duty->den == 0 || duty->num > duty->den) {
2438 		ret = -EINVAL;
2439 		goto reset;
2440 	}
2441 
2442 	return 0;
2443 
2444 reset:
2445 	clk_core_reset_duty_cycle_nolock(core);
2446 	return ret;
2447 }
2448 
2449 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2450 {
2451 	int ret = 0;
2452 
2453 	if (core->parent &&
2454 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2455 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2456 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2457 	} else {
2458 		clk_core_reset_duty_cycle_nolock(core);
2459 	}
2460 
2461 	return ret;
2462 }
2463 
2464 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2465 						 struct clk_duty *duty);
2466 
2467 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2468 					  struct clk_duty *duty)
2469 {
2470 	int ret;
2471 
2472 	lockdep_assert_held(&prepare_lock);
2473 
2474 	if (clk_core_rate_is_protected(core))
2475 		return -EBUSY;
2476 
2477 	trace_clk_set_duty_cycle(core, duty);
2478 
2479 	if (!core->ops->set_duty_cycle)
2480 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2481 
2482 	ret = core->ops->set_duty_cycle(core->hw, duty);
2483 	if (!ret)
2484 		memcpy(&core->duty, duty, sizeof(*duty));
2485 
2486 	trace_clk_set_duty_cycle_complete(core, duty);
2487 
2488 	return ret;
2489 }
2490 
2491 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2492 						 struct clk_duty *duty)
2493 {
2494 	int ret = 0;
2495 
2496 	if (core->parent &&
2497 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2498 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2499 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2500 	}
2501 
2502 	return ret;
2503 }
2504 
2505 /**
2506  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2507  * @clk: clock signal source
2508  * @num: numerator of the duty cycle ratio to be applied
2509  * @den: denominator of the duty cycle ratio to be applied
2510  *
2511  * Apply the duty cycle ratio if the ratio is valid and the clock can
2512  * perform this operation
2513  *
2514  * Returns (0) on success, a negative errno otherwise.
2515  */
2516 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2517 {
2518 	int ret;
2519 	struct clk_duty duty;
2520 
2521 	if (!clk)
2522 		return 0;
2523 
2524 	/* sanity check the ratio */
2525 	if (den == 0 || num > den)
2526 		return -EINVAL;
2527 
2528 	duty.num = num;
2529 	duty.den = den;
2530 
2531 	clk_prepare_lock();
2532 
2533 	if (clk->exclusive_count)
2534 		clk_core_rate_unprotect(clk->core);
2535 
2536 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2537 
2538 	if (clk->exclusive_count)
2539 		clk_core_rate_protect(clk->core);
2540 
2541 	clk_prepare_unlock();
2542 
2543 	return ret;
2544 }
2545 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2546 
2547 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2548 					  unsigned int scale)
2549 {
2550 	struct clk_duty *duty = &core->duty;
2551 	int ret;
2552 
2553 	clk_prepare_lock();
2554 
2555 	ret = clk_core_update_duty_cycle_nolock(core);
2556 	if (!ret)
2557 		ret = mult_frac(scale, duty->num, duty->den);
2558 
2559 	clk_prepare_unlock();
2560 
2561 	return ret;
2562 }
2563 
2564 /**
2565  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2566  * @clk: clock signal source
2567  * @scale: scaling factor to be applied to represent the ratio as an integer
2568  *
2569  * Returns the duty cycle ratio of a clock node multiplied by the provided
2570  * scaling factor, or negative errno on error.
2571  */
2572 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2573 {
2574 	if (!clk)
2575 		return 0;
2576 
2577 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2578 }
2579 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2580 
2581 /**
2582  * clk_is_match - check if two clk's point to the same hardware clock
2583  * @p: clk compared against q
2584  * @q: clk compared against p
2585  *
2586  * Returns true if the two struct clk pointers both point to the same hardware
2587  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2588  * share the same struct clk_core object.
2589  *
2590  * Returns false otherwise. Note that two NULL clks are treated as matching.
2591  */
2592 bool clk_is_match(const struct clk *p, const struct clk *q)
2593 {
2594 	/* trivial case: identical struct clk's or both NULL */
2595 	if (p == q)
2596 		return true;
2597 
2598 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2599 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2600 		if (p->core == q->core)
2601 			return true;
2602 
2603 	return false;
2604 }
2605 EXPORT_SYMBOL_GPL(clk_is_match);
2606 
2607 /***        debugfs support        ***/
2608 
2609 #ifdef CONFIG_DEBUG_FS
2610 #include <linux/debugfs.h>
2611 
2612 static struct dentry *rootdir;
2613 static int inited = 0;
2614 static DEFINE_MUTEX(clk_debug_lock);
2615 static HLIST_HEAD(clk_debug_list);
2616 
2617 static struct hlist_head *all_lists[] = {
2618 	&clk_root_list,
2619 	&clk_orphan_list,
2620 	NULL,
2621 };
2622 
2623 static struct hlist_head *orphan_list[] = {
2624 	&clk_orphan_list,
2625 	NULL,
2626 };
2627 
2628 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2629 				 int level)
2630 {
2631 	if (!c)
2632 		return;
2633 
2634 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n",
2635 		   level * 3 + 1, "",
2636 		   30 - level * 3, c->name,
2637 		   c->enable_count, c->prepare_count, c->protect_count,
2638 		   clk_core_get_rate(c), clk_core_get_accuracy(c),
2639 		   clk_core_get_phase(c),
2640 		   clk_core_get_scaled_duty_cycle(c, 100000));
2641 }
2642 
2643 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2644 				     int level)
2645 {
2646 	struct clk_core *child;
2647 
2648 	if (!c)
2649 		return;
2650 
2651 	clk_summary_show_one(s, c, level);
2652 
2653 	hlist_for_each_entry(child, &c->children, child_node)
2654 		clk_summary_show_subtree(s, child, level + 1);
2655 }
2656 
2657 static int clk_summary_show(struct seq_file *s, void *data)
2658 {
2659 	struct clk_core *c;
2660 	struct hlist_head **lists = (struct hlist_head **)s->private;
2661 
2662 	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
2663 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
2664 	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2665 
2666 	clk_prepare_lock();
2667 
2668 	for (; *lists; lists++)
2669 		hlist_for_each_entry(c, *lists, child_node)
2670 			clk_summary_show_subtree(s, c, 0);
2671 
2672 	clk_prepare_unlock();
2673 
2674 	return 0;
2675 }
2676 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2677 
2678 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2679 {
2680 	if (!c)
2681 		return;
2682 
2683 	/* This should be JSON format, i.e. elements separated with a comma */
2684 	seq_printf(s, "\"%s\": { ", c->name);
2685 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2686 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2687 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2688 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2689 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2690 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2691 	seq_printf(s, "\"duty_cycle\": %u",
2692 		   clk_core_get_scaled_duty_cycle(c, 100000));
2693 }
2694 
2695 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2696 {
2697 	struct clk_core *child;
2698 
2699 	if (!c)
2700 		return;
2701 
2702 	clk_dump_one(s, c, level);
2703 
2704 	hlist_for_each_entry(child, &c->children, child_node) {
2705 		seq_putc(s, ',');
2706 		clk_dump_subtree(s, child, level + 1);
2707 	}
2708 
2709 	seq_putc(s, '}');
2710 }
2711 
2712 static int clk_dump_show(struct seq_file *s, void *data)
2713 {
2714 	struct clk_core *c;
2715 	bool first_node = true;
2716 	struct hlist_head **lists = (struct hlist_head **)s->private;
2717 
2718 	seq_putc(s, '{');
2719 	clk_prepare_lock();
2720 
2721 	for (; *lists; lists++) {
2722 		hlist_for_each_entry(c, *lists, child_node) {
2723 			if (!first_node)
2724 				seq_putc(s, ',');
2725 			first_node = false;
2726 			clk_dump_subtree(s, c, 0);
2727 		}
2728 	}
2729 
2730 	clk_prepare_unlock();
2731 
2732 	seq_puts(s, "}\n");
2733 	return 0;
2734 }
2735 DEFINE_SHOW_ATTRIBUTE(clk_dump);
2736 
2737 static const struct {
2738 	unsigned long flag;
2739 	const char *name;
2740 } clk_flags[] = {
2741 #define ENTRY(f) { f, #f }
2742 	ENTRY(CLK_SET_RATE_GATE),
2743 	ENTRY(CLK_SET_PARENT_GATE),
2744 	ENTRY(CLK_SET_RATE_PARENT),
2745 	ENTRY(CLK_IGNORE_UNUSED),
2746 	ENTRY(CLK_IS_BASIC),
2747 	ENTRY(CLK_GET_RATE_NOCACHE),
2748 	ENTRY(CLK_SET_RATE_NO_REPARENT),
2749 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
2750 	ENTRY(CLK_RECALC_NEW_RATES),
2751 	ENTRY(CLK_SET_RATE_UNGATE),
2752 	ENTRY(CLK_IS_CRITICAL),
2753 	ENTRY(CLK_OPS_PARENT_ENABLE),
2754 	ENTRY(CLK_DUTY_CYCLE_PARENT),
2755 #undef ENTRY
2756 };
2757 
2758 static int clk_flags_show(struct seq_file *s, void *data)
2759 {
2760 	struct clk_core *core = s->private;
2761 	unsigned long flags = core->flags;
2762 	unsigned int i;
2763 
2764 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
2765 		if (flags & clk_flags[i].flag) {
2766 			seq_printf(s, "%s\n", clk_flags[i].name);
2767 			flags &= ~clk_flags[i].flag;
2768 		}
2769 	}
2770 	if (flags) {
2771 		/* Unknown flags */
2772 		seq_printf(s, "0x%lx\n", flags);
2773 	}
2774 
2775 	return 0;
2776 }
2777 DEFINE_SHOW_ATTRIBUTE(clk_flags);
2778 
2779 static int possible_parents_show(struct seq_file *s, void *data)
2780 {
2781 	struct clk_core *core = s->private;
2782 	int i;
2783 
2784 	for (i = 0; i < core->num_parents - 1; i++)
2785 		seq_printf(s, "%s ", core->parent_names[i]);
2786 
2787 	seq_printf(s, "%s\n", core->parent_names[i]);
2788 
2789 	return 0;
2790 }
2791 DEFINE_SHOW_ATTRIBUTE(possible_parents);
2792 
2793 static int clk_duty_cycle_show(struct seq_file *s, void *data)
2794 {
2795 	struct clk_core *core = s->private;
2796 	struct clk_duty *duty = &core->duty;
2797 
2798 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
2799 
2800 	return 0;
2801 }
2802 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
2803 
2804 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2805 {
2806 	struct dentry *root;
2807 
2808 	if (!core || !pdentry)
2809 		return;
2810 
2811 	root = debugfs_create_dir(core->name, pdentry);
2812 	core->dentry = root;
2813 
2814 	debugfs_create_ulong("clk_rate", 0444, root, &core->rate);
2815 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
2816 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
2817 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
2818 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
2819 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
2820 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
2821 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
2822 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
2823 			    &clk_duty_cycle_fops);
2824 
2825 	if (core->num_parents > 1)
2826 		debugfs_create_file("clk_possible_parents", 0444, root, core,
2827 				    &possible_parents_fops);
2828 
2829 	if (core->ops->debug_init)
2830 		core->ops->debug_init(core->hw, core->dentry);
2831 }
2832 
2833 /**
2834  * clk_debug_register - add a clk node to the debugfs clk directory
2835  * @core: the clk being added to the debugfs clk directory
2836  *
2837  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2838  * initialized.  Otherwise it bails out early since the debugfs clk directory
2839  * will be created lazily by clk_debug_init as part of a late_initcall.
2840  */
2841 static void clk_debug_register(struct clk_core *core)
2842 {
2843 	mutex_lock(&clk_debug_lock);
2844 	hlist_add_head(&core->debug_node, &clk_debug_list);
2845 	if (inited)
2846 		clk_debug_create_one(core, rootdir);
2847 	mutex_unlock(&clk_debug_lock);
2848 }
2849 
2850  /**
2851  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2852  * @core: the clk being removed from the debugfs clk directory
2853  *
2854  * Dynamically removes a clk and all its child nodes from the
2855  * debugfs clk directory if clk->dentry points to debugfs created by
2856  * clk_debug_register in __clk_core_init.
2857  */
2858 static void clk_debug_unregister(struct clk_core *core)
2859 {
2860 	mutex_lock(&clk_debug_lock);
2861 	hlist_del_init(&core->debug_node);
2862 	debugfs_remove_recursive(core->dentry);
2863 	core->dentry = NULL;
2864 	mutex_unlock(&clk_debug_lock);
2865 }
2866 
2867 /**
2868  * clk_debug_init - lazily populate the debugfs clk directory
2869  *
2870  * clks are often initialized very early during boot before memory can be
2871  * dynamically allocated and well before debugfs is setup. This function
2872  * populates the debugfs clk directory once at boot-time when we know that
2873  * debugfs is setup. It should only be called once at boot-time, all other clks
2874  * added dynamically will be done so with clk_debug_register.
2875  */
2876 static int __init clk_debug_init(void)
2877 {
2878 	struct clk_core *core;
2879 
2880 	rootdir = debugfs_create_dir("clk", NULL);
2881 
2882 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
2883 			    &clk_summary_fops);
2884 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
2885 			    &clk_dump_fops);
2886 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
2887 			    &clk_summary_fops);
2888 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
2889 			    &clk_dump_fops);
2890 
2891 	mutex_lock(&clk_debug_lock);
2892 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2893 		clk_debug_create_one(core, rootdir);
2894 
2895 	inited = 1;
2896 	mutex_unlock(&clk_debug_lock);
2897 
2898 	return 0;
2899 }
2900 late_initcall(clk_debug_init);
2901 #else
2902 static inline void clk_debug_register(struct clk_core *core) { }
2903 static inline void clk_debug_reparent(struct clk_core *core,
2904 				      struct clk_core *new_parent)
2905 {
2906 }
2907 static inline void clk_debug_unregister(struct clk_core *core)
2908 {
2909 }
2910 #endif
2911 
2912 /**
2913  * __clk_core_init - initialize the data structures in a struct clk_core
2914  * @core:	clk_core being initialized
2915  *
2916  * Initializes the lists in struct clk_core, queries the hardware for the
2917  * parent and rate and sets them both.
2918  */
2919 static int __clk_core_init(struct clk_core *core)
2920 {
2921 	int i, ret;
2922 	struct clk_core *orphan;
2923 	struct hlist_node *tmp2;
2924 	unsigned long rate;
2925 
2926 	if (!core)
2927 		return -EINVAL;
2928 
2929 	clk_prepare_lock();
2930 
2931 	ret = clk_pm_runtime_get(core);
2932 	if (ret)
2933 		goto unlock;
2934 
2935 	/* check to see if a clock with this name is already registered */
2936 	if (clk_core_lookup(core->name)) {
2937 		pr_debug("%s: clk %s already initialized\n",
2938 				__func__, core->name);
2939 		ret = -EEXIST;
2940 		goto out;
2941 	}
2942 
2943 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
2944 	if (core->ops->set_rate &&
2945 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2946 	      core->ops->recalc_rate)) {
2947 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2948 		       __func__, core->name);
2949 		ret = -EINVAL;
2950 		goto out;
2951 	}
2952 
2953 	if (core->ops->set_parent && !core->ops->get_parent) {
2954 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2955 		       __func__, core->name);
2956 		ret = -EINVAL;
2957 		goto out;
2958 	}
2959 
2960 	if (core->num_parents > 1 && !core->ops->get_parent) {
2961 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2962 		       __func__, core->name);
2963 		ret = -EINVAL;
2964 		goto out;
2965 	}
2966 
2967 	if (core->ops->set_rate_and_parent &&
2968 			!(core->ops->set_parent && core->ops->set_rate)) {
2969 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2970 				__func__, core->name);
2971 		ret = -EINVAL;
2972 		goto out;
2973 	}
2974 
2975 	/* throw a WARN if any entries in parent_names are NULL */
2976 	for (i = 0; i < core->num_parents; i++)
2977 		WARN(!core->parent_names[i],
2978 				"%s: invalid NULL in %s's .parent_names\n",
2979 				__func__, core->name);
2980 
2981 	core->parent = __clk_init_parent(core);
2982 
2983 	/*
2984 	 * Populate core->parent if parent has already been clk_core_init'd. If
2985 	 * parent has not yet been clk_core_init'd then place clk in the orphan
2986 	 * list.  If clk doesn't have any parents then place it in the root
2987 	 * clk list.
2988 	 *
2989 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2990 	 * clocks and re-parent any that are children of the clock currently
2991 	 * being clk_init'd.
2992 	 */
2993 	if (core->parent) {
2994 		hlist_add_head(&core->child_node,
2995 				&core->parent->children);
2996 		core->orphan = core->parent->orphan;
2997 	} else if (!core->num_parents) {
2998 		hlist_add_head(&core->child_node, &clk_root_list);
2999 		core->orphan = false;
3000 	} else {
3001 		hlist_add_head(&core->child_node, &clk_orphan_list);
3002 		core->orphan = true;
3003 	}
3004 
3005 	/*
3006 	 * optional platform-specific magic
3007 	 *
3008 	 * The .init callback is not used by any of the basic clock types, but
3009 	 * exists for weird hardware that must perform initialization magic.
3010 	 * Please consider other ways of solving initialization problems before
3011 	 * using this callback, as its use is discouraged.
3012 	 */
3013 	if (core->ops->init)
3014 		core->ops->init(core->hw);
3015 
3016 	/*
3017 	 * Set clk's accuracy.  The preferred method is to use
3018 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3019 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3020 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3021 	 * clock).
3022 	 */
3023 	if (core->ops->recalc_accuracy)
3024 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3025 					__clk_get_accuracy(core->parent));
3026 	else if (core->parent)
3027 		core->accuracy = core->parent->accuracy;
3028 	else
3029 		core->accuracy = 0;
3030 
3031 	/*
3032 	 * Set clk's phase.
3033 	 * Since a phase is by definition relative to its parent, just
3034 	 * query the current clock phase, or just assume it's in phase.
3035 	 */
3036 	if (core->ops->get_phase)
3037 		core->phase = core->ops->get_phase(core->hw);
3038 	else
3039 		core->phase = 0;
3040 
3041 	/*
3042 	 * Set clk's duty cycle.
3043 	 */
3044 	clk_core_update_duty_cycle_nolock(core);
3045 
3046 	/*
3047 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3048 	 * simple clocks and lazy developers the default fallback is to use the
3049 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3050 	 * then rate is set to zero.
3051 	 */
3052 	if (core->ops->recalc_rate)
3053 		rate = core->ops->recalc_rate(core->hw,
3054 				clk_core_get_rate_nolock(core->parent));
3055 	else if (core->parent)
3056 		rate = core->parent->rate;
3057 	else
3058 		rate = 0;
3059 	core->rate = core->req_rate = rate;
3060 
3061 	/*
3062 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3063 	 * don't get accidentally disabled when walking the orphan tree and
3064 	 * reparenting clocks
3065 	 */
3066 	if (core->flags & CLK_IS_CRITICAL) {
3067 		unsigned long flags;
3068 
3069 		clk_core_prepare(core);
3070 
3071 		flags = clk_enable_lock();
3072 		clk_core_enable(core);
3073 		clk_enable_unlock(flags);
3074 	}
3075 
3076 	/*
3077 	 * walk the list of orphan clocks and reparent any that newly finds a
3078 	 * parent.
3079 	 */
3080 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3081 		struct clk_core *parent = __clk_init_parent(orphan);
3082 
3083 		/*
3084 		 * We need to use __clk_set_parent_before() and _after() to
3085 		 * to properly migrate any prepare/enable count of the orphan
3086 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3087 		 * are enabled during init but might not have a parent yet.
3088 		 */
3089 		if (parent) {
3090 			/* update the clk tree topology */
3091 			__clk_set_parent_before(orphan, parent);
3092 			__clk_set_parent_after(orphan, parent, NULL);
3093 			__clk_recalc_accuracies(orphan);
3094 			__clk_recalc_rates(orphan, 0);
3095 		}
3096 	}
3097 
3098 	kref_init(&core->ref);
3099 out:
3100 	clk_pm_runtime_put(core);
3101 unlock:
3102 	clk_prepare_unlock();
3103 
3104 	if (!ret)
3105 		clk_debug_register(core);
3106 
3107 	return ret;
3108 }
3109 
3110 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
3111 			     const char *con_id)
3112 {
3113 	struct clk *clk;
3114 
3115 	/* This is to allow this function to be chained to others */
3116 	if (IS_ERR_OR_NULL(hw))
3117 		return ERR_CAST(hw);
3118 
3119 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3120 	if (!clk)
3121 		return ERR_PTR(-ENOMEM);
3122 
3123 	clk->core = hw->core;
3124 	clk->dev_id = dev_id;
3125 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3126 	clk->max_rate = ULONG_MAX;
3127 
3128 	clk_prepare_lock();
3129 	hlist_add_head(&clk->clks_node, &hw->core->clks);
3130 	clk_prepare_unlock();
3131 
3132 	return clk;
3133 }
3134 
3135 /* keep in sync with __clk_put */
3136 void __clk_free_clk(struct clk *clk)
3137 {
3138 	clk_prepare_lock();
3139 	hlist_del(&clk->clks_node);
3140 	clk_prepare_unlock();
3141 
3142 	kfree_const(clk->con_id);
3143 	kfree(clk);
3144 }
3145 
3146 /**
3147  * clk_register - allocate a new clock, register it and return an opaque cookie
3148  * @dev: device that is registering this clock
3149  * @hw: link to hardware-specific clock data
3150  *
3151  * clk_register is the primary interface for populating the clock tree with new
3152  * clock nodes.  It returns a pointer to the newly allocated struct clk which
3153  * cannot be dereferenced by driver code but may be used in conjunction with the
3154  * rest of the clock API.  In the event of an error clk_register will return an
3155  * error code; drivers must test for an error code after calling clk_register.
3156  */
3157 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3158 {
3159 	int i, ret;
3160 	struct clk_core *core;
3161 
3162 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3163 	if (!core) {
3164 		ret = -ENOMEM;
3165 		goto fail_out;
3166 	}
3167 
3168 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
3169 	if (!core->name) {
3170 		ret = -ENOMEM;
3171 		goto fail_name;
3172 	}
3173 
3174 	if (WARN_ON(!hw->init->ops)) {
3175 		ret = -EINVAL;
3176 		goto fail_ops;
3177 	}
3178 	core->ops = hw->init->ops;
3179 
3180 	if (dev && pm_runtime_enabled(dev))
3181 		core->dev = dev;
3182 	if (dev && dev->driver)
3183 		core->owner = dev->driver->owner;
3184 	core->hw = hw;
3185 	core->flags = hw->init->flags;
3186 	core->num_parents = hw->init->num_parents;
3187 	core->min_rate = 0;
3188 	core->max_rate = ULONG_MAX;
3189 	hw->core = core;
3190 
3191 	/* allocate local copy in case parent_names is __initdata */
3192 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
3193 					GFP_KERNEL);
3194 
3195 	if (!core->parent_names) {
3196 		ret = -ENOMEM;
3197 		goto fail_parent_names;
3198 	}
3199 
3200 
3201 	/* copy each string name in case parent_names is __initdata */
3202 	for (i = 0; i < core->num_parents; i++) {
3203 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
3204 						GFP_KERNEL);
3205 		if (!core->parent_names[i]) {
3206 			ret = -ENOMEM;
3207 			goto fail_parent_names_copy;
3208 		}
3209 	}
3210 
3211 	/* avoid unnecessary string look-ups of clk_core's possible parents. */
3212 	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
3213 				GFP_KERNEL);
3214 	if (!core->parents) {
3215 		ret = -ENOMEM;
3216 		goto fail_parents;
3217 	};
3218 
3219 	INIT_HLIST_HEAD(&core->clks);
3220 
3221 	hw->clk = __clk_create_clk(hw, NULL, NULL);
3222 	if (IS_ERR(hw->clk)) {
3223 		ret = PTR_ERR(hw->clk);
3224 		goto fail_parents;
3225 	}
3226 
3227 	ret = __clk_core_init(core);
3228 	if (!ret)
3229 		return hw->clk;
3230 
3231 	__clk_free_clk(hw->clk);
3232 	hw->clk = NULL;
3233 
3234 fail_parents:
3235 	kfree(core->parents);
3236 fail_parent_names_copy:
3237 	while (--i >= 0)
3238 		kfree_const(core->parent_names[i]);
3239 	kfree(core->parent_names);
3240 fail_parent_names:
3241 fail_ops:
3242 	kfree_const(core->name);
3243 fail_name:
3244 	kfree(core);
3245 fail_out:
3246 	return ERR_PTR(ret);
3247 }
3248 EXPORT_SYMBOL_GPL(clk_register);
3249 
3250 /**
3251  * clk_hw_register - register a clk_hw and return an error code
3252  * @dev: device that is registering this clock
3253  * @hw: link to hardware-specific clock data
3254  *
3255  * clk_hw_register is the primary interface for populating the clock tree with
3256  * new clock nodes. It returns an integer equal to zero indicating success or
3257  * less than zero indicating failure. Drivers must test for an error code after
3258  * calling clk_hw_register().
3259  */
3260 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3261 {
3262 	return PTR_ERR_OR_ZERO(clk_register(dev, hw));
3263 }
3264 EXPORT_SYMBOL_GPL(clk_hw_register);
3265 
3266 /* Free memory allocated for a clock. */
3267 static void __clk_release(struct kref *ref)
3268 {
3269 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3270 	int i = core->num_parents;
3271 
3272 	lockdep_assert_held(&prepare_lock);
3273 
3274 	kfree(core->parents);
3275 	while (--i >= 0)
3276 		kfree_const(core->parent_names[i]);
3277 
3278 	kfree(core->parent_names);
3279 	kfree_const(core->name);
3280 	kfree(core);
3281 }
3282 
3283 /*
3284  * Empty clk_ops for unregistered clocks. These are used temporarily
3285  * after clk_unregister() was called on a clock and until last clock
3286  * consumer calls clk_put() and the struct clk object is freed.
3287  */
3288 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3289 {
3290 	return -ENXIO;
3291 }
3292 
3293 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3294 {
3295 	WARN_ON_ONCE(1);
3296 }
3297 
3298 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3299 					unsigned long parent_rate)
3300 {
3301 	return -ENXIO;
3302 }
3303 
3304 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3305 {
3306 	return -ENXIO;
3307 }
3308 
3309 static const struct clk_ops clk_nodrv_ops = {
3310 	.enable		= clk_nodrv_prepare_enable,
3311 	.disable	= clk_nodrv_disable_unprepare,
3312 	.prepare	= clk_nodrv_prepare_enable,
3313 	.unprepare	= clk_nodrv_disable_unprepare,
3314 	.set_rate	= clk_nodrv_set_rate,
3315 	.set_parent	= clk_nodrv_set_parent,
3316 };
3317 
3318 /**
3319  * clk_unregister - unregister a currently registered clock
3320  * @clk: clock to unregister
3321  */
3322 void clk_unregister(struct clk *clk)
3323 {
3324 	unsigned long flags;
3325 
3326 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3327 		return;
3328 
3329 	clk_debug_unregister(clk->core);
3330 
3331 	clk_prepare_lock();
3332 
3333 	if (clk->core->ops == &clk_nodrv_ops) {
3334 		pr_err("%s: unregistered clock: %s\n", __func__,
3335 		       clk->core->name);
3336 		goto unlock;
3337 	}
3338 	/*
3339 	 * Assign empty clock ops for consumers that might still hold
3340 	 * a reference to this clock.
3341 	 */
3342 	flags = clk_enable_lock();
3343 	clk->core->ops = &clk_nodrv_ops;
3344 	clk_enable_unlock(flags);
3345 
3346 	if (!hlist_empty(&clk->core->children)) {
3347 		struct clk_core *child;
3348 		struct hlist_node *t;
3349 
3350 		/* Reparent all children to the orphan list. */
3351 		hlist_for_each_entry_safe(child, t, &clk->core->children,
3352 					  child_node)
3353 			clk_core_set_parent_nolock(child, NULL);
3354 	}
3355 
3356 	hlist_del_init(&clk->core->child_node);
3357 
3358 	if (clk->core->prepare_count)
3359 		pr_warn("%s: unregistering prepared clock: %s\n",
3360 					__func__, clk->core->name);
3361 
3362 	if (clk->core->protect_count)
3363 		pr_warn("%s: unregistering protected clock: %s\n",
3364 					__func__, clk->core->name);
3365 
3366 	kref_put(&clk->core->ref, __clk_release);
3367 unlock:
3368 	clk_prepare_unlock();
3369 }
3370 EXPORT_SYMBOL_GPL(clk_unregister);
3371 
3372 /**
3373  * clk_hw_unregister - unregister a currently registered clk_hw
3374  * @hw: hardware-specific clock data to unregister
3375  */
3376 void clk_hw_unregister(struct clk_hw *hw)
3377 {
3378 	clk_unregister(hw->clk);
3379 }
3380 EXPORT_SYMBOL_GPL(clk_hw_unregister);
3381 
3382 static void devm_clk_release(struct device *dev, void *res)
3383 {
3384 	clk_unregister(*(struct clk **)res);
3385 }
3386 
3387 static void devm_clk_hw_release(struct device *dev, void *res)
3388 {
3389 	clk_hw_unregister(*(struct clk_hw **)res);
3390 }
3391 
3392 /**
3393  * devm_clk_register - resource managed clk_register()
3394  * @dev: device that is registering this clock
3395  * @hw: link to hardware-specific clock data
3396  *
3397  * Managed clk_register(). Clocks returned from this function are
3398  * automatically clk_unregister()ed on driver detach. See clk_register() for
3399  * more information.
3400  */
3401 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3402 {
3403 	struct clk *clk;
3404 	struct clk **clkp;
3405 
3406 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3407 	if (!clkp)
3408 		return ERR_PTR(-ENOMEM);
3409 
3410 	clk = clk_register(dev, hw);
3411 	if (!IS_ERR(clk)) {
3412 		*clkp = clk;
3413 		devres_add(dev, clkp);
3414 	} else {
3415 		devres_free(clkp);
3416 	}
3417 
3418 	return clk;
3419 }
3420 EXPORT_SYMBOL_GPL(devm_clk_register);
3421 
3422 /**
3423  * devm_clk_hw_register - resource managed clk_hw_register()
3424  * @dev: device that is registering this clock
3425  * @hw: link to hardware-specific clock data
3426  *
3427  * Managed clk_hw_register(). Clocks registered by this function are
3428  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3429  * for more information.
3430  */
3431 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3432 {
3433 	struct clk_hw **hwp;
3434 	int ret;
3435 
3436 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3437 	if (!hwp)
3438 		return -ENOMEM;
3439 
3440 	ret = clk_hw_register(dev, hw);
3441 	if (!ret) {
3442 		*hwp = hw;
3443 		devres_add(dev, hwp);
3444 	} else {
3445 		devres_free(hwp);
3446 	}
3447 
3448 	return ret;
3449 }
3450 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3451 
3452 static int devm_clk_match(struct device *dev, void *res, void *data)
3453 {
3454 	struct clk *c = res;
3455 	if (WARN_ON(!c))
3456 		return 0;
3457 	return c == data;
3458 }
3459 
3460 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3461 {
3462 	struct clk_hw *hw = res;
3463 
3464 	if (WARN_ON(!hw))
3465 		return 0;
3466 	return hw == data;
3467 }
3468 
3469 /**
3470  * devm_clk_unregister - resource managed clk_unregister()
3471  * @clk: clock to unregister
3472  *
3473  * Deallocate a clock allocated with devm_clk_register(). Normally
3474  * this function will not need to be called and the resource management
3475  * code will ensure that the resource is freed.
3476  */
3477 void devm_clk_unregister(struct device *dev, struct clk *clk)
3478 {
3479 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3480 }
3481 EXPORT_SYMBOL_GPL(devm_clk_unregister);
3482 
3483 /**
3484  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
3485  * @dev: device that is unregistering the hardware-specific clock data
3486  * @hw: link to hardware-specific clock data
3487  *
3488  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
3489  * this function will not need to be called and the resource management
3490  * code will ensure that the resource is freed.
3491  */
3492 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
3493 {
3494 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
3495 				hw));
3496 }
3497 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3498 
3499 /*
3500  * clkdev helpers
3501  */
3502 int __clk_get(struct clk *clk)
3503 {
3504 	struct clk_core *core = !clk ? NULL : clk->core;
3505 
3506 	if (core) {
3507 		if (!try_module_get(core->owner))
3508 			return 0;
3509 
3510 		kref_get(&core->ref);
3511 	}
3512 	return 1;
3513 }
3514 
3515 /* keep in sync with __clk_free_clk */
3516 void __clk_put(struct clk *clk)
3517 {
3518 	struct module *owner;
3519 
3520 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3521 		return;
3522 
3523 	clk_prepare_lock();
3524 
3525 	/*
3526 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
3527 	 * given user should be balanced with calls to clk_rate_exclusive_put()
3528 	 * and by that same consumer
3529 	 */
3530 	if (WARN_ON(clk->exclusive_count)) {
3531 		/* We voiced our concern, let's sanitize the situation */
3532 		clk->core->protect_count -= (clk->exclusive_count - 1);
3533 		clk_core_rate_unprotect(clk->core);
3534 		clk->exclusive_count = 0;
3535 	}
3536 
3537 	hlist_del(&clk->clks_node);
3538 	if (clk->min_rate > clk->core->req_rate ||
3539 	    clk->max_rate < clk->core->req_rate)
3540 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3541 
3542 	owner = clk->core->owner;
3543 	kref_put(&clk->core->ref, __clk_release);
3544 
3545 	clk_prepare_unlock();
3546 
3547 	module_put(owner);
3548 
3549 	kfree_const(clk->con_id);
3550 	kfree(clk);
3551 }
3552 
3553 /***        clk rate change notifiers        ***/
3554 
3555 /**
3556  * clk_notifier_register - add a clk rate change notifier
3557  * @clk: struct clk * to watch
3558  * @nb: struct notifier_block * with callback info
3559  *
3560  * Request notification when clk's rate changes.  This uses an SRCU
3561  * notifier because we want it to block and notifier unregistrations are
3562  * uncommon.  The callbacks associated with the notifier must not
3563  * re-enter into the clk framework by calling any top-level clk APIs;
3564  * this will cause a nested prepare_lock mutex.
3565  *
3566  * In all notification cases (pre, post and abort rate change) the original
3567  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3568  * and the new frequency is passed via struct clk_notifier_data.new_rate.
3569  *
3570  * clk_notifier_register() must be called from non-atomic context.
3571  * Returns -EINVAL if called with null arguments, -ENOMEM upon
3572  * allocation failure; otherwise, passes along the return value of
3573  * srcu_notifier_chain_register().
3574  */
3575 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3576 {
3577 	struct clk_notifier *cn;
3578 	int ret = -ENOMEM;
3579 
3580 	if (!clk || !nb)
3581 		return -EINVAL;
3582 
3583 	clk_prepare_lock();
3584 
3585 	/* search the list of notifiers for this clk */
3586 	list_for_each_entry(cn, &clk_notifier_list, node)
3587 		if (cn->clk == clk)
3588 			break;
3589 
3590 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
3591 	if (cn->clk != clk) {
3592 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3593 		if (!cn)
3594 			goto out;
3595 
3596 		cn->clk = clk;
3597 		srcu_init_notifier_head(&cn->notifier_head);
3598 
3599 		list_add(&cn->node, &clk_notifier_list);
3600 	}
3601 
3602 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3603 
3604 	clk->core->notifier_count++;
3605 
3606 out:
3607 	clk_prepare_unlock();
3608 
3609 	return ret;
3610 }
3611 EXPORT_SYMBOL_GPL(clk_notifier_register);
3612 
3613 /**
3614  * clk_notifier_unregister - remove a clk rate change notifier
3615  * @clk: struct clk *
3616  * @nb: struct notifier_block * with callback info
3617  *
3618  * Request no further notification for changes to 'clk' and frees memory
3619  * allocated in clk_notifier_register.
3620  *
3621  * Returns -EINVAL if called with null arguments; otherwise, passes
3622  * along the return value of srcu_notifier_chain_unregister().
3623  */
3624 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3625 {
3626 	struct clk_notifier *cn = NULL;
3627 	int ret = -EINVAL;
3628 
3629 	if (!clk || !nb)
3630 		return -EINVAL;
3631 
3632 	clk_prepare_lock();
3633 
3634 	list_for_each_entry(cn, &clk_notifier_list, node)
3635 		if (cn->clk == clk)
3636 			break;
3637 
3638 	if (cn->clk == clk) {
3639 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3640 
3641 		clk->core->notifier_count--;
3642 
3643 		/* XXX the notifier code should handle this better */
3644 		if (!cn->notifier_head.head) {
3645 			srcu_cleanup_notifier_head(&cn->notifier_head);
3646 			list_del(&cn->node);
3647 			kfree(cn);
3648 		}
3649 
3650 	} else {
3651 		ret = -ENOENT;
3652 	}
3653 
3654 	clk_prepare_unlock();
3655 
3656 	return ret;
3657 }
3658 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3659 
3660 #ifdef CONFIG_OF
3661 /**
3662  * struct of_clk_provider - Clock provider registration structure
3663  * @link: Entry in global list of clock providers
3664  * @node: Pointer to device tree node of clock provider
3665  * @get: Get clock callback.  Returns NULL or a struct clk for the
3666  *       given clock specifier
3667  * @data: context pointer to be passed into @get callback
3668  */
3669 struct of_clk_provider {
3670 	struct list_head link;
3671 
3672 	struct device_node *node;
3673 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3674 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3675 	void *data;
3676 };
3677 
3678 static const struct of_device_id __clk_of_table_sentinel
3679 	__used __section(__clk_of_table_end);
3680 
3681 static LIST_HEAD(of_clk_providers);
3682 static DEFINE_MUTEX(of_clk_mutex);
3683 
3684 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3685 				     void *data)
3686 {
3687 	return data;
3688 }
3689 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3690 
3691 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3692 {
3693 	return data;
3694 }
3695 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3696 
3697 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3698 {
3699 	struct clk_onecell_data *clk_data = data;
3700 	unsigned int idx = clkspec->args[0];
3701 
3702 	if (idx >= clk_data->clk_num) {
3703 		pr_err("%s: invalid clock index %u\n", __func__, idx);
3704 		return ERR_PTR(-EINVAL);
3705 	}
3706 
3707 	return clk_data->clks[idx];
3708 }
3709 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3710 
3711 struct clk_hw *
3712 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3713 {
3714 	struct clk_hw_onecell_data *hw_data = data;
3715 	unsigned int idx = clkspec->args[0];
3716 
3717 	if (idx >= hw_data->num) {
3718 		pr_err("%s: invalid index %u\n", __func__, idx);
3719 		return ERR_PTR(-EINVAL);
3720 	}
3721 
3722 	return hw_data->hws[idx];
3723 }
3724 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3725 
3726 /**
3727  * of_clk_add_provider() - Register a clock provider for a node
3728  * @np: Device node pointer associated with clock provider
3729  * @clk_src_get: callback for decoding clock
3730  * @data: context pointer for @clk_src_get callback.
3731  */
3732 int of_clk_add_provider(struct device_node *np,
3733 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3734 						   void *data),
3735 			void *data)
3736 {
3737 	struct of_clk_provider *cp;
3738 	int ret;
3739 
3740 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3741 	if (!cp)
3742 		return -ENOMEM;
3743 
3744 	cp->node = of_node_get(np);
3745 	cp->data = data;
3746 	cp->get = clk_src_get;
3747 
3748 	mutex_lock(&of_clk_mutex);
3749 	list_add(&cp->link, &of_clk_providers);
3750 	mutex_unlock(&of_clk_mutex);
3751 	pr_debug("Added clock from %pOF\n", np);
3752 
3753 	ret = of_clk_set_defaults(np, true);
3754 	if (ret < 0)
3755 		of_clk_del_provider(np);
3756 
3757 	return ret;
3758 }
3759 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3760 
3761 /**
3762  * of_clk_add_hw_provider() - Register a clock provider for a node
3763  * @np: Device node pointer associated with clock provider
3764  * @get: callback for decoding clk_hw
3765  * @data: context pointer for @get callback.
3766  */
3767 int of_clk_add_hw_provider(struct device_node *np,
3768 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3769 						 void *data),
3770 			   void *data)
3771 {
3772 	struct of_clk_provider *cp;
3773 	int ret;
3774 
3775 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3776 	if (!cp)
3777 		return -ENOMEM;
3778 
3779 	cp->node = of_node_get(np);
3780 	cp->data = data;
3781 	cp->get_hw = get;
3782 
3783 	mutex_lock(&of_clk_mutex);
3784 	list_add(&cp->link, &of_clk_providers);
3785 	mutex_unlock(&of_clk_mutex);
3786 	pr_debug("Added clk_hw provider from %pOF\n", np);
3787 
3788 	ret = of_clk_set_defaults(np, true);
3789 	if (ret < 0)
3790 		of_clk_del_provider(np);
3791 
3792 	return ret;
3793 }
3794 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3795 
3796 static void devm_of_clk_release_provider(struct device *dev, void *res)
3797 {
3798 	of_clk_del_provider(*(struct device_node **)res);
3799 }
3800 
3801 int devm_of_clk_add_hw_provider(struct device *dev,
3802 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3803 					      void *data),
3804 			void *data)
3805 {
3806 	struct device_node **ptr, *np;
3807 	int ret;
3808 
3809 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3810 			   GFP_KERNEL);
3811 	if (!ptr)
3812 		return -ENOMEM;
3813 
3814 	np = dev->of_node;
3815 	ret = of_clk_add_hw_provider(np, get, data);
3816 	if (!ret) {
3817 		*ptr = np;
3818 		devres_add(dev, ptr);
3819 	} else {
3820 		devres_free(ptr);
3821 	}
3822 
3823 	return ret;
3824 }
3825 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3826 
3827 /**
3828  * of_clk_del_provider() - Remove a previously registered clock provider
3829  * @np: Device node pointer associated with clock provider
3830  */
3831 void of_clk_del_provider(struct device_node *np)
3832 {
3833 	struct of_clk_provider *cp;
3834 
3835 	mutex_lock(&of_clk_mutex);
3836 	list_for_each_entry(cp, &of_clk_providers, link) {
3837 		if (cp->node == np) {
3838 			list_del(&cp->link);
3839 			of_node_put(cp->node);
3840 			kfree(cp);
3841 			break;
3842 		}
3843 	}
3844 	mutex_unlock(&of_clk_mutex);
3845 }
3846 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3847 
3848 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3849 {
3850 	struct device_node **np = res;
3851 
3852 	if (WARN_ON(!np || !*np))
3853 		return 0;
3854 
3855 	return *np == data;
3856 }
3857 
3858 void devm_of_clk_del_provider(struct device *dev)
3859 {
3860 	int ret;
3861 
3862 	ret = devres_release(dev, devm_of_clk_release_provider,
3863 			     devm_clk_provider_match, dev->of_node);
3864 
3865 	WARN_ON(ret);
3866 }
3867 EXPORT_SYMBOL(devm_of_clk_del_provider);
3868 
3869 static struct clk_hw *
3870 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3871 			      struct of_phandle_args *clkspec)
3872 {
3873 	struct clk *clk;
3874 
3875 	if (provider->get_hw)
3876 		return provider->get_hw(clkspec, provider->data);
3877 
3878 	clk = provider->get(clkspec, provider->data);
3879 	if (IS_ERR(clk))
3880 		return ERR_CAST(clk);
3881 	return __clk_get_hw(clk);
3882 }
3883 
3884 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3885 				       const char *dev_id, const char *con_id)
3886 {
3887 	struct of_clk_provider *provider;
3888 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3889 	struct clk_hw *hw;
3890 
3891 	if (!clkspec)
3892 		return ERR_PTR(-EINVAL);
3893 
3894 	/* Check if we have such a provider in our array */
3895 	mutex_lock(&of_clk_mutex);
3896 	list_for_each_entry(provider, &of_clk_providers, link) {
3897 		if (provider->node == clkspec->np) {
3898 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
3899 			clk = __clk_create_clk(hw, dev_id, con_id);
3900 		}
3901 
3902 		if (!IS_ERR(clk)) {
3903 			if (!__clk_get(clk)) {
3904 				__clk_free_clk(clk);
3905 				clk = ERR_PTR(-ENOENT);
3906 			}
3907 
3908 			break;
3909 		}
3910 	}
3911 	mutex_unlock(&of_clk_mutex);
3912 
3913 	return clk;
3914 }
3915 
3916 /**
3917  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3918  * @clkspec: pointer to a clock specifier data structure
3919  *
3920  * This function looks up a struct clk from the registered list of clock
3921  * providers, an input is a clock specifier data structure as returned
3922  * from the of_parse_phandle_with_args() function call.
3923  */
3924 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3925 {
3926 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3927 }
3928 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3929 
3930 /**
3931  * of_clk_get_parent_count() - Count the number of clocks a device node has
3932  * @np: device node to count
3933  *
3934  * Returns: The number of clocks that are possible parents of this node
3935  */
3936 unsigned int of_clk_get_parent_count(struct device_node *np)
3937 {
3938 	int count;
3939 
3940 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3941 	if (count < 0)
3942 		return 0;
3943 
3944 	return count;
3945 }
3946 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3947 
3948 const char *of_clk_get_parent_name(struct device_node *np, int index)
3949 {
3950 	struct of_phandle_args clkspec;
3951 	struct property *prop;
3952 	const char *clk_name;
3953 	const __be32 *vp;
3954 	u32 pv;
3955 	int rc;
3956 	int count;
3957 	struct clk *clk;
3958 
3959 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3960 					&clkspec);
3961 	if (rc)
3962 		return NULL;
3963 
3964 	index = clkspec.args_count ? clkspec.args[0] : 0;
3965 	count = 0;
3966 
3967 	/* if there is an indices property, use it to transfer the index
3968 	 * specified into an array offset for the clock-output-names property.
3969 	 */
3970 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3971 		if (index == pv) {
3972 			index = count;
3973 			break;
3974 		}
3975 		count++;
3976 	}
3977 	/* We went off the end of 'clock-indices' without finding it */
3978 	if (prop && !vp)
3979 		return NULL;
3980 
3981 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3982 					  index,
3983 					  &clk_name) < 0) {
3984 		/*
3985 		 * Best effort to get the name if the clock has been
3986 		 * registered with the framework. If the clock isn't
3987 		 * registered, we return the node name as the name of
3988 		 * the clock as long as #clock-cells = 0.
3989 		 */
3990 		clk = of_clk_get_from_provider(&clkspec);
3991 		if (IS_ERR(clk)) {
3992 			if (clkspec.args_count == 0)
3993 				clk_name = clkspec.np->name;
3994 			else
3995 				clk_name = NULL;
3996 		} else {
3997 			clk_name = __clk_get_name(clk);
3998 			clk_put(clk);
3999 		}
4000 	}
4001 
4002 
4003 	of_node_put(clkspec.np);
4004 	return clk_name;
4005 }
4006 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4007 
4008 /**
4009  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4010  * number of parents
4011  * @np: Device node pointer associated with clock provider
4012  * @parents: pointer to char array that hold the parents' names
4013  * @size: size of the @parents array
4014  *
4015  * Return: number of parents for the clock node.
4016  */
4017 int of_clk_parent_fill(struct device_node *np, const char **parents,
4018 		       unsigned int size)
4019 {
4020 	unsigned int i = 0;
4021 
4022 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4023 		i++;
4024 
4025 	return i;
4026 }
4027 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4028 
4029 struct clock_provider {
4030 	void (*clk_init_cb)(struct device_node *);
4031 	struct device_node *np;
4032 	struct list_head node;
4033 };
4034 
4035 /*
4036  * This function looks for a parent clock. If there is one, then it
4037  * checks that the provider for this parent clock was initialized, in
4038  * this case the parent clock will be ready.
4039  */
4040 static int parent_ready(struct device_node *np)
4041 {
4042 	int i = 0;
4043 
4044 	while (true) {
4045 		struct clk *clk = of_clk_get(np, i);
4046 
4047 		/* this parent is ready we can check the next one */
4048 		if (!IS_ERR(clk)) {
4049 			clk_put(clk);
4050 			i++;
4051 			continue;
4052 		}
4053 
4054 		/* at least one parent is not ready, we exit now */
4055 		if (PTR_ERR(clk) == -EPROBE_DEFER)
4056 			return 0;
4057 
4058 		/*
4059 		 * Here we make assumption that the device tree is
4060 		 * written correctly. So an error means that there is
4061 		 * no more parent. As we didn't exit yet, then the
4062 		 * previous parent are ready. If there is no clock
4063 		 * parent, no need to wait for them, then we can
4064 		 * consider their absence as being ready
4065 		 */
4066 		return 1;
4067 	}
4068 }
4069 
4070 /**
4071  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4072  * @np: Device node pointer associated with clock provider
4073  * @index: clock index
4074  * @flags: pointer to top-level framework flags
4075  *
4076  * Detects if the clock-critical property exists and, if so, sets the
4077  * corresponding CLK_IS_CRITICAL flag.
4078  *
4079  * Do not use this function. It exists only for legacy Device Tree
4080  * bindings, such as the one-clock-per-node style that are outdated.
4081  * Those bindings typically put all clock data into .dts and the Linux
4082  * driver has no clock data, thus making it impossible to set this flag
4083  * correctly from the driver. Only those drivers may call
4084  * of_clk_detect_critical from their setup functions.
4085  *
4086  * Return: error code or zero on success
4087  */
4088 int of_clk_detect_critical(struct device_node *np,
4089 					  int index, unsigned long *flags)
4090 {
4091 	struct property *prop;
4092 	const __be32 *cur;
4093 	uint32_t idx;
4094 
4095 	if (!np || !flags)
4096 		return -EINVAL;
4097 
4098 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4099 		if (index == idx)
4100 			*flags |= CLK_IS_CRITICAL;
4101 
4102 	return 0;
4103 }
4104 
4105 /**
4106  * of_clk_init() - Scan and init clock providers from the DT
4107  * @matches: array of compatible values and init functions for providers.
4108  *
4109  * This function scans the device tree for matching clock providers
4110  * and calls their initialization functions. It also does it by trying
4111  * to follow the dependencies.
4112  */
4113 void __init of_clk_init(const struct of_device_id *matches)
4114 {
4115 	const struct of_device_id *match;
4116 	struct device_node *np;
4117 	struct clock_provider *clk_provider, *next;
4118 	bool is_init_done;
4119 	bool force = false;
4120 	LIST_HEAD(clk_provider_list);
4121 
4122 	if (!matches)
4123 		matches = &__clk_of_table;
4124 
4125 	/* First prepare the list of the clocks providers */
4126 	for_each_matching_node_and_match(np, matches, &match) {
4127 		struct clock_provider *parent;
4128 
4129 		if (!of_device_is_available(np))
4130 			continue;
4131 
4132 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4133 		if (!parent) {
4134 			list_for_each_entry_safe(clk_provider, next,
4135 						 &clk_provider_list, node) {
4136 				list_del(&clk_provider->node);
4137 				of_node_put(clk_provider->np);
4138 				kfree(clk_provider);
4139 			}
4140 			of_node_put(np);
4141 			return;
4142 		}
4143 
4144 		parent->clk_init_cb = match->data;
4145 		parent->np = of_node_get(np);
4146 		list_add_tail(&parent->node, &clk_provider_list);
4147 	}
4148 
4149 	while (!list_empty(&clk_provider_list)) {
4150 		is_init_done = false;
4151 		list_for_each_entry_safe(clk_provider, next,
4152 					&clk_provider_list, node) {
4153 			if (force || parent_ready(clk_provider->np)) {
4154 
4155 				/* Don't populate platform devices */
4156 				of_node_set_flag(clk_provider->np,
4157 						 OF_POPULATED);
4158 
4159 				clk_provider->clk_init_cb(clk_provider->np);
4160 				of_clk_set_defaults(clk_provider->np, true);
4161 
4162 				list_del(&clk_provider->node);
4163 				of_node_put(clk_provider->np);
4164 				kfree(clk_provider);
4165 				is_init_done = true;
4166 			}
4167 		}
4168 
4169 		/*
4170 		 * We didn't manage to initialize any of the
4171 		 * remaining providers during the last loop, so now we
4172 		 * initialize all the remaining ones unconditionally
4173 		 * in case the clock parent was not mandatory
4174 		 */
4175 		if (!is_init_done)
4176 			force = true;
4177 	}
4178 }
4179 #endif
4180