xref: /linux/drivers/clk/clk.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/clkdev.h>
26 
27 #include "clk.h"
28 
29 static DEFINE_SPINLOCK(enable_lock);
30 static DEFINE_MUTEX(prepare_lock);
31 
32 static struct task_struct *prepare_owner;
33 static struct task_struct *enable_owner;
34 
35 static int prepare_refcnt;
36 static int enable_refcnt;
37 
38 static HLIST_HEAD(clk_root_list);
39 static HLIST_HEAD(clk_orphan_list);
40 static LIST_HEAD(clk_notifier_list);
41 
42 /***    private data structures    ***/
43 
44 struct clk_core {
45 	const char		*name;
46 	const struct clk_ops	*ops;
47 	struct clk_hw		*hw;
48 	struct module		*owner;
49 	struct clk_core		*parent;
50 	const char		**parent_names;
51 	struct clk_core		**parents;
52 	u8			num_parents;
53 	u8			new_parent_index;
54 	unsigned long		rate;
55 	unsigned long		req_rate;
56 	unsigned long		new_rate;
57 	struct clk_core		*new_parent;
58 	struct clk_core		*new_child;
59 	unsigned long		flags;
60 	bool			orphan;
61 	unsigned int		enable_count;
62 	unsigned int		prepare_count;
63 	unsigned long		min_rate;
64 	unsigned long		max_rate;
65 	unsigned long		accuracy;
66 	int			phase;
67 	struct hlist_head	children;
68 	struct hlist_node	child_node;
69 	struct hlist_head	clks;
70 	unsigned int		notifier_count;
71 #ifdef CONFIG_DEBUG_FS
72 	struct dentry		*dentry;
73 	struct hlist_node	debug_node;
74 #endif
75 	struct kref		ref;
76 };
77 
78 #define CREATE_TRACE_POINTS
79 #include <trace/events/clk.h>
80 
81 struct clk {
82 	struct clk_core	*core;
83 	const char *dev_id;
84 	const char *con_id;
85 	unsigned long min_rate;
86 	unsigned long max_rate;
87 	struct hlist_node clks_node;
88 };
89 
90 /***           locking             ***/
91 static void clk_prepare_lock(void)
92 {
93 	if (!mutex_trylock(&prepare_lock)) {
94 		if (prepare_owner == current) {
95 			prepare_refcnt++;
96 			return;
97 		}
98 		mutex_lock(&prepare_lock);
99 	}
100 	WARN_ON_ONCE(prepare_owner != NULL);
101 	WARN_ON_ONCE(prepare_refcnt != 0);
102 	prepare_owner = current;
103 	prepare_refcnt = 1;
104 }
105 
106 static void clk_prepare_unlock(void)
107 {
108 	WARN_ON_ONCE(prepare_owner != current);
109 	WARN_ON_ONCE(prepare_refcnt == 0);
110 
111 	if (--prepare_refcnt)
112 		return;
113 	prepare_owner = NULL;
114 	mutex_unlock(&prepare_lock);
115 }
116 
117 static unsigned long clk_enable_lock(void)
118 	__acquires(enable_lock)
119 {
120 	unsigned long flags;
121 
122 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
123 		if (enable_owner == current) {
124 			enable_refcnt++;
125 			__acquire(enable_lock);
126 			return flags;
127 		}
128 		spin_lock_irqsave(&enable_lock, flags);
129 	}
130 	WARN_ON_ONCE(enable_owner != NULL);
131 	WARN_ON_ONCE(enable_refcnt != 0);
132 	enable_owner = current;
133 	enable_refcnt = 1;
134 	return flags;
135 }
136 
137 static void clk_enable_unlock(unsigned long flags)
138 	__releases(enable_lock)
139 {
140 	WARN_ON_ONCE(enable_owner != current);
141 	WARN_ON_ONCE(enable_refcnt == 0);
142 
143 	if (--enable_refcnt) {
144 		__release(enable_lock);
145 		return;
146 	}
147 	enable_owner = NULL;
148 	spin_unlock_irqrestore(&enable_lock, flags);
149 }
150 
151 static bool clk_core_is_prepared(struct clk_core *core)
152 {
153 	/*
154 	 * .is_prepared is optional for clocks that can prepare
155 	 * fall back to software usage counter if it is missing
156 	 */
157 	if (!core->ops->is_prepared)
158 		return core->prepare_count;
159 
160 	return core->ops->is_prepared(core->hw);
161 }
162 
163 static bool clk_core_is_enabled(struct clk_core *core)
164 {
165 	/*
166 	 * .is_enabled is only mandatory for clocks that gate
167 	 * fall back to software usage counter if .is_enabled is missing
168 	 */
169 	if (!core->ops->is_enabled)
170 		return core->enable_count;
171 
172 	return core->ops->is_enabled(core->hw);
173 }
174 
175 /***    helper functions   ***/
176 
177 const char *__clk_get_name(const struct clk *clk)
178 {
179 	return !clk ? NULL : clk->core->name;
180 }
181 EXPORT_SYMBOL_GPL(__clk_get_name);
182 
183 const char *clk_hw_get_name(const struct clk_hw *hw)
184 {
185 	return hw->core->name;
186 }
187 EXPORT_SYMBOL_GPL(clk_hw_get_name);
188 
189 struct clk_hw *__clk_get_hw(struct clk *clk)
190 {
191 	return !clk ? NULL : clk->core->hw;
192 }
193 EXPORT_SYMBOL_GPL(__clk_get_hw);
194 
195 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
196 {
197 	return hw->core->num_parents;
198 }
199 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
200 
201 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
202 {
203 	return hw->core->parent ? hw->core->parent->hw : NULL;
204 }
205 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
206 
207 static struct clk_core *__clk_lookup_subtree(const char *name,
208 					     struct clk_core *core)
209 {
210 	struct clk_core *child;
211 	struct clk_core *ret;
212 
213 	if (!strcmp(core->name, name))
214 		return core;
215 
216 	hlist_for_each_entry(child, &core->children, child_node) {
217 		ret = __clk_lookup_subtree(name, child);
218 		if (ret)
219 			return ret;
220 	}
221 
222 	return NULL;
223 }
224 
225 static struct clk_core *clk_core_lookup(const char *name)
226 {
227 	struct clk_core *root_clk;
228 	struct clk_core *ret;
229 
230 	if (!name)
231 		return NULL;
232 
233 	/* search the 'proper' clk tree first */
234 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
235 		ret = __clk_lookup_subtree(name, root_clk);
236 		if (ret)
237 			return ret;
238 	}
239 
240 	/* if not found, then search the orphan tree */
241 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
242 		ret = __clk_lookup_subtree(name, root_clk);
243 		if (ret)
244 			return ret;
245 	}
246 
247 	return NULL;
248 }
249 
250 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
251 							 u8 index)
252 {
253 	if (!core || index >= core->num_parents)
254 		return NULL;
255 
256 	if (!core->parents[index])
257 		core->parents[index] =
258 				clk_core_lookup(core->parent_names[index]);
259 
260 	return core->parents[index];
261 }
262 
263 struct clk_hw *
264 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
265 {
266 	struct clk_core *parent;
267 
268 	parent = clk_core_get_parent_by_index(hw->core, index);
269 
270 	return !parent ? NULL : parent->hw;
271 }
272 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
273 
274 unsigned int __clk_get_enable_count(struct clk *clk)
275 {
276 	return !clk ? 0 : clk->core->enable_count;
277 }
278 
279 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
280 {
281 	unsigned long ret;
282 
283 	if (!core) {
284 		ret = 0;
285 		goto out;
286 	}
287 
288 	ret = core->rate;
289 
290 	if (!core->num_parents)
291 		goto out;
292 
293 	if (!core->parent)
294 		ret = 0;
295 
296 out:
297 	return ret;
298 }
299 
300 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
301 {
302 	return clk_core_get_rate_nolock(hw->core);
303 }
304 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
305 
306 static unsigned long __clk_get_accuracy(struct clk_core *core)
307 {
308 	if (!core)
309 		return 0;
310 
311 	return core->accuracy;
312 }
313 
314 unsigned long __clk_get_flags(struct clk *clk)
315 {
316 	return !clk ? 0 : clk->core->flags;
317 }
318 EXPORT_SYMBOL_GPL(__clk_get_flags);
319 
320 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
321 {
322 	return hw->core->flags;
323 }
324 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
325 
326 bool clk_hw_is_prepared(const struct clk_hw *hw)
327 {
328 	return clk_core_is_prepared(hw->core);
329 }
330 
331 bool clk_hw_is_enabled(const struct clk_hw *hw)
332 {
333 	return clk_core_is_enabled(hw->core);
334 }
335 
336 bool __clk_is_enabled(struct clk *clk)
337 {
338 	if (!clk)
339 		return false;
340 
341 	return clk_core_is_enabled(clk->core);
342 }
343 EXPORT_SYMBOL_GPL(__clk_is_enabled);
344 
345 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
346 			   unsigned long best, unsigned long flags)
347 {
348 	if (flags & CLK_MUX_ROUND_CLOSEST)
349 		return abs(now - rate) < abs(best - rate);
350 
351 	return now <= rate && now > best;
352 }
353 
354 static int
355 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
356 			     unsigned long flags)
357 {
358 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
359 	int i, num_parents, ret;
360 	unsigned long best = 0;
361 	struct clk_rate_request parent_req = *req;
362 
363 	/* if NO_REPARENT flag set, pass through to current parent */
364 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
365 		parent = core->parent;
366 		if (core->flags & CLK_SET_RATE_PARENT) {
367 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
368 						   &parent_req);
369 			if (ret)
370 				return ret;
371 
372 			best = parent_req.rate;
373 		} else if (parent) {
374 			best = clk_core_get_rate_nolock(parent);
375 		} else {
376 			best = clk_core_get_rate_nolock(core);
377 		}
378 
379 		goto out;
380 	}
381 
382 	/* find the parent that can provide the fastest rate <= rate */
383 	num_parents = core->num_parents;
384 	for (i = 0; i < num_parents; i++) {
385 		parent = clk_core_get_parent_by_index(core, i);
386 		if (!parent)
387 			continue;
388 
389 		if (core->flags & CLK_SET_RATE_PARENT) {
390 			parent_req = *req;
391 			ret = __clk_determine_rate(parent->hw, &parent_req);
392 			if (ret)
393 				continue;
394 		} else {
395 			parent_req.rate = clk_core_get_rate_nolock(parent);
396 		}
397 
398 		if (mux_is_better_rate(req->rate, parent_req.rate,
399 				       best, flags)) {
400 			best_parent = parent;
401 			best = parent_req.rate;
402 		}
403 	}
404 
405 	if (!best_parent)
406 		return -EINVAL;
407 
408 out:
409 	if (best_parent)
410 		req->best_parent_hw = best_parent->hw;
411 	req->best_parent_rate = best;
412 	req->rate = best;
413 
414 	return 0;
415 }
416 
417 struct clk *__clk_lookup(const char *name)
418 {
419 	struct clk_core *core = clk_core_lookup(name);
420 
421 	return !core ? NULL : core->hw->clk;
422 }
423 
424 static void clk_core_get_boundaries(struct clk_core *core,
425 				    unsigned long *min_rate,
426 				    unsigned long *max_rate)
427 {
428 	struct clk *clk_user;
429 
430 	*min_rate = core->min_rate;
431 	*max_rate = core->max_rate;
432 
433 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
434 		*min_rate = max(*min_rate, clk_user->min_rate);
435 
436 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
437 		*max_rate = min(*max_rate, clk_user->max_rate);
438 }
439 
440 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
441 			   unsigned long max_rate)
442 {
443 	hw->core->min_rate = min_rate;
444 	hw->core->max_rate = max_rate;
445 }
446 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
447 
448 /*
449  * Helper for finding best parent to provide a given frequency. This can be used
450  * directly as a determine_rate callback (e.g. for a mux), or from a more
451  * complex clock that may combine a mux with other operations.
452  */
453 int __clk_mux_determine_rate(struct clk_hw *hw,
454 			     struct clk_rate_request *req)
455 {
456 	return clk_mux_determine_rate_flags(hw, req, 0);
457 }
458 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
459 
460 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
461 				     struct clk_rate_request *req)
462 {
463 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
464 }
465 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
466 
467 /***        clk api        ***/
468 
469 static void clk_core_unprepare(struct clk_core *core)
470 {
471 	lockdep_assert_held(&prepare_lock);
472 
473 	if (!core)
474 		return;
475 
476 	if (WARN_ON(core->prepare_count == 0))
477 		return;
478 
479 	if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL))
480 		return;
481 
482 	if (--core->prepare_count > 0)
483 		return;
484 
485 	WARN_ON(core->enable_count > 0);
486 
487 	trace_clk_unprepare(core);
488 
489 	if (core->ops->unprepare)
490 		core->ops->unprepare(core->hw);
491 
492 	trace_clk_unprepare_complete(core);
493 	clk_core_unprepare(core->parent);
494 }
495 
496 static void clk_core_unprepare_lock(struct clk_core *core)
497 {
498 	clk_prepare_lock();
499 	clk_core_unprepare(core);
500 	clk_prepare_unlock();
501 }
502 
503 /**
504  * clk_unprepare - undo preparation of a clock source
505  * @clk: the clk being unprepared
506  *
507  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
508  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
509  * if the operation may sleep.  One example is a clk which is accessed over
510  * I2c.  In the complex case a clk gate operation may require a fast and a slow
511  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
512  * exclusive.  In fact clk_disable must be called before clk_unprepare.
513  */
514 void clk_unprepare(struct clk *clk)
515 {
516 	if (IS_ERR_OR_NULL(clk))
517 		return;
518 
519 	clk_core_unprepare_lock(clk->core);
520 }
521 EXPORT_SYMBOL_GPL(clk_unprepare);
522 
523 static int clk_core_prepare(struct clk_core *core)
524 {
525 	int ret = 0;
526 
527 	lockdep_assert_held(&prepare_lock);
528 
529 	if (!core)
530 		return 0;
531 
532 	if (core->prepare_count == 0) {
533 		ret = clk_core_prepare(core->parent);
534 		if (ret)
535 			return ret;
536 
537 		trace_clk_prepare(core);
538 
539 		if (core->ops->prepare)
540 			ret = core->ops->prepare(core->hw);
541 
542 		trace_clk_prepare_complete(core);
543 
544 		if (ret) {
545 			clk_core_unprepare(core->parent);
546 			return ret;
547 		}
548 	}
549 
550 	core->prepare_count++;
551 
552 	return 0;
553 }
554 
555 static int clk_core_prepare_lock(struct clk_core *core)
556 {
557 	int ret;
558 
559 	clk_prepare_lock();
560 	ret = clk_core_prepare(core);
561 	clk_prepare_unlock();
562 
563 	return ret;
564 }
565 
566 /**
567  * clk_prepare - prepare a clock source
568  * @clk: the clk being prepared
569  *
570  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
571  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
572  * operation may sleep.  One example is a clk which is accessed over I2c.  In
573  * the complex case a clk ungate operation may require a fast and a slow part.
574  * It is this reason that clk_prepare and clk_enable are not mutually
575  * exclusive.  In fact clk_prepare must be called before clk_enable.
576  * Returns 0 on success, -EERROR otherwise.
577  */
578 int clk_prepare(struct clk *clk)
579 {
580 	if (!clk)
581 		return 0;
582 
583 	return clk_core_prepare_lock(clk->core);
584 }
585 EXPORT_SYMBOL_GPL(clk_prepare);
586 
587 static void clk_core_disable(struct clk_core *core)
588 {
589 	lockdep_assert_held(&enable_lock);
590 
591 	if (!core)
592 		return;
593 
594 	if (WARN_ON(core->enable_count == 0))
595 		return;
596 
597 	if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL))
598 		return;
599 
600 	if (--core->enable_count > 0)
601 		return;
602 
603 	trace_clk_disable_rcuidle(core);
604 
605 	if (core->ops->disable)
606 		core->ops->disable(core->hw);
607 
608 	trace_clk_disable_complete_rcuidle(core);
609 
610 	clk_core_disable(core->parent);
611 }
612 
613 static void clk_core_disable_lock(struct clk_core *core)
614 {
615 	unsigned long flags;
616 
617 	flags = clk_enable_lock();
618 	clk_core_disable(core);
619 	clk_enable_unlock(flags);
620 }
621 
622 /**
623  * clk_disable - gate a clock
624  * @clk: the clk being gated
625  *
626  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
627  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
628  * clk if the operation is fast and will never sleep.  One example is a
629  * SoC-internal clk which is controlled via simple register writes.  In the
630  * complex case a clk gate operation may require a fast and a slow part.  It is
631  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
632  * In fact clk_disable must be called before clk_unprepare.
633  */
634 void clk_disable(struct clk *clk)
635 {
636 	if (IS_ERR_OR_NULL(clk))
637 		return;
638 
639 	clk_core_disable_lock(clk->core);
640 }
641 EXPORT_SYMBOL_GPL(clk_disable);
642 
643 static int clk_core_enable(struct clk_core *core)
644 {
645 	int ret = 0;
646 
647 	lockdep_assert_held(&enable_lock);
648 
649 	if (!core)
650 		return 0;
651 
652 	if (WARN_ON(core->prepare_count == 0))
653 		return -ESHUTDOWN;
654 
655 	if (core->enable_count == 0) {
656 		ret = clk_core_enable(core->parent);
657 
658 		if (ret)
659 			return ret;
660 
661 		trace_clk_enable_rcuidle(core);
662 
663 		if (core->ops->enable)
664 			ret = core->ops->enable(core->hw);
665 
666 		trace_clk_enable_complete_rcuidle(core);
667 
668 		if (ret) {
669 			clk_core_disable(core->parent);
670 			return ret;
671 		}
672 	}
673 
674 	core->enable_count++;
675 	return 0;
676 }
677 
678 static int clk_core_enable_lock(struct clk_core *core)
679 {
680 	unsigned long flags;
681 	int ret;
682 
683 	flags = clk_enable_lock();
684 	ret = clk_core_enable(core);
685 	clk_enable_unlock(flags);
686 
687 	return ret;
688 }
689 
690 /**
691  * clk_enable - ungate a clock
692  * @clk: the clk being ungated
693  *
694  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
695  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
696  * if the operation will never sleep.  One example is a SoC-internal clk which
697  * is controlled via simple register writes.  In the complex case a clk ungate
698  * operation may require a fast and a slow part.  It is this reason that
699  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
700  * must be called before clk_enable.  Returns 0 on success, -EERROR
701  * otherwise.
702  */
703 int clk_enable(struct clk *clk)
704 {
705 	if (!clk)
706 		return 0;
707 
708 	return clk_core_enable_lock(clk->core);
709 }
710 EXPORT_SYMBOL_GPL(clk_enable);
711 
712 static int clk_core_prepare_enable(struct clk_core *core)
713 {
714 	int ret;
715 
716 	ret = clk_core_prepare_lock(core);
717 	if (ret)
718 		return ret;
719 
720 	ret = clk_core_enable_lock(core);
721 	if (ret)
722 		clk_core_unprepare_lock(core);
723 
724 	return ret;
725 }
726 
727 static void clk_core_disable_unprepare(struct clk_core *core)
728 {
729 	clk_core_disable_lock(core);
730 	clk_core_unprepare_lock(core);
731 }
732 
733 static void clk_unprepare_unused_subtree(struct clk_core *core)
734 {
735 	struct clk_core *child;
736 
737 	lockdep_assert_held(&prepare_lock);
738 
739 	hlist_for_each_entry(child, &core->children, child_node)
740 		clk_unprepare_unused_subtree(child);
741 
742 	if (core->prepare_count)
743 		return;
744 
745 	if (core->flags & CLK_IGNORE_UNUSED)
746 		return;
747 
748 	if (clk_core_is_prepared(core)) {
749 		trace_clk_unprepare(core);
750 		if (core->ops->unprepare_unused)
751 			core->ops->unprepare_unused(core->hw);
752 		else if (core->ops->unprepare)
753 			core->ops->unprepare(core->hw);
754 		trace_clk_unprepare_complete(core);
755 	}
756 }
757 
758 static void clk_disable_unused_subtree(struct clk_core *core)
759 {
760 	struct clk_core *child;
761 	unsigned long flags;
762 
763 	lockdep_assert_held(&prepare_lock);
764 
765 	hlist_for_each_entry(child, &core->children, child_node)
766 		clk_disable_unused_subtree(child);
767 
768 	if (core->flags & CLK_OPS_PARENT_ENABLE)
769 		clk_core_prepare_enable(core->parent);
770 
771 	flags = clk_enable_lock();
772 
773 	if (core->enable_count)
774 		goto unlock_out;
775 
776 	if (core->flags & CLK_IGNORE_UNUSED)
777 		goto unlock_out;
778 
779 	/*
780 	 * some gate clocks have special needs during the disable-unused
781 	 * sequence.  call .disable_unused if available, otherwise fall
782 	 * back to .disable
783 	 */
784 	if (clk_core_is_enabled(core)) {
785 		trace_clk_disable(core);
786 		if (core->ops->disable_unused)
787 			core->ops->disable_unused(core->hw);
788 		else if (core->ops->disable)
789 			core->ops->disable(core->hw);
790 		trace_clk_disable_complete(core);
791 	}
792 
793 unlock_out:
794 	clk_enable_unlock(flags);
795 	if (core->flags & CLK_OPS_PARENT_ENABLE)
796 		clk_core_disable_unprepare(core->parent);
797 }
798 
799 static bool clk_ignore_unused;
800 static int __init clk_ignore_unused_setup(char *__unused)
801 {
802 	clk_ignore_unused = true;
803 	return 1;
804 }
805 __setup("clk_ignore_unused", clk_ignore_unused_setup);
806 
807 static int clk_disable_unused(void)
808 {
809 	struct clk_core *core;
810 
811 	if (clk_ignore_unused) {
812 		pr_warn("clk: Not disabling unused clocks\n");
813 		return 0;
814 	}
815 
816 	clk_prepare_lock();
817 
818 	hlist_for_each_entry(core, &clk_root_list, child_node)
819 		clk_disable_unused_subtree(core);
820 
821 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
822 		clk_disable_unused_subtree(core);
823 
824 	hlist_for_each_entry(core, &clk_root_list, child_node)
825 		clk_unprepare_unused_subtree(core);
826 
827 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
828 		clk_unprepare_unused_subtree(core);
829 
830 	clk_prepare_unlock();
831 
832 	return 0;
833 }
834 late_initcall_sync(clk_disable_unused);
835 
836 static int clk_core_round_rate_nolock(struct clk_core *core,
837 				      struct clk_rate_request *req)
838 {
839 	struct clk_core *parent;
840 	long rate;
841 
842 	lockdep_assert_held(&prepare_lock);
843 
844 	if (!core)
845 		return 0;
846 
847 	parent = core->parent;
848 	if (parent) {
849 		req->best_parent_hw = parent->hw;
850 		req->best_parent_rate = parent->rate;
851 	} else {
852 		req->best_parent_hw = NULL;
853 		req->best_parent_rate = 0;
854 	}
855 
856 	if (core->ops->determine_rate) {
857 		return core->ops->determine_rate(core->hw, req);
858 	} else if (core->ops->round_rate) {
859 		rate = core->ops->round_rate(core->hw, req->rate,
860 					     &req->best_parent_rate);
861 		if (rate < 0)
862 			return rate;
863 
864 		req->rate = rate;
865 	} else if (core->flags & CLK_SET_RATE_PARENT) {
866 		return clk_core_round_rate_nolock(parent, req);
867 	} else {
868 		req->rate = core->rate;
869 	}
870 
871 	return 0;
872 }
873 
874 /**
875  * __clk_determine_rate - get the closest rate actually supported by a clock
876  * @hw: determine the rate of this clock
877  * @req: target rate request
878  *
879  * Useful for clk_ops such as .set_rate and .determine_rate.
880  */
881 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
882 {
883 	if (!hw) {
884 		req->rate = 0;
885 		return 0;
886 	}
887 
888 	return clk_core_round_rate_nolock(hw->core, req);
889 }
890 EXPORT_SYMBOL_GPL(__clk_determine_rate);
891 
892 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
893 {
894 	int ret;
895 	struct clk_rate_request req;
896 
897 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
898 	req.rate = rate;
899 
900 	ret = clk_core_round_rate_nolock(hw->core, &req);
901 	if (ret)
902 		return 0;
903 
904 	return req.rate;
905 }
906 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
907 
908 /**
909  * clk_round_rate - round the given rate for a clk
910  * @clk: the clk for which we are rounding a rate
911  * @rate: the rate which is to be rounded
912  *
913  * Takes in a rate as input and rounds it to a rate that the clk can actually
914  * use which is then returned.  If clk doesn't support round_rate operation
915  * then the parent rate is returned.
916  */
917 long clk_round_rate(struct clk *clk, unsigned long rate)
918 {
919 	struct clk_rate_request req;
920 	int ret;
921 
922 	if (!clk)
923 		return 0;
924 
925 	clk_prepare_lock();
926 
927 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
928 	req.rate = rate;
929 
930 	ret = clk_core_round_rate_nolock(clk->core, &req);
931 	clk_prepare_unlock();
932 
933 	if (ret)
934 		return ret;
935 
936 	return req.rate;
937 }
938 EXPORT_SYMBOL_GPL(clk_round_rate);
939 
940 /**
941  * __clk_notify - call clk notifier chain
942  * @core: clk that is changing rate
943  * @msg: clk notifier type (see include/linux/clk.h)
944  * @old_rate: old clk rate
945  * @new_rate: new clk rate
946  *
947  * Triggers a notifier call chain on the clk rate-change notification
948  * for 'clk'.  Passes a pointer to the struct clk and the previous
949  * and current rates to the notifier callback.  Intended to be called by
950  * internal clock code only.  Returns NOTIFY_DONE from the last driver
951  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
952  * a driver returns that.
953  */
954 static int __clk_notify(struct clk_core *core, unsigned long msg,
955 		unsigned long old_rate, unsigned long new_rate)
956 {
957 	struct clk_notifier *cn;
958 	struct clk_notifier_data cnd;
959 	int ret = NOTIFY_DONE;
960 
961 	cnd.old_rate = old_rate;
962 	cnd.new_rate = new_rate;
963 
964 	list_for_each_entry(cn, &clk_notifier_list, node) {
965 		if (cn->clk->core == core) {
966 			cnd.clk = cn->clk;
967 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
968 					&cnd);
969 		}
970 	}
971 
972 	return ret;
973 }
974 
975 /**
976  * __clk_recalc_accuracies
977  * @core: first clk in the subtree
978  *
979  * Walks the subtree of clks starting with clk and recalculates accuracies as
980  * it goes.  Note that if a clk does not implement the .recalc_accuracy
981  * callback then it is assumed that the clock will take on the accuracy of its
982  * parent.
983  */
984 static void __clk_recalc_accuracies(struct clk_core *core)
985 {
986 	unsigned long parent_accuracy = 0;
987 	struct clk_core *child;
988 
989 	lockdep_assert_held(&prepare_lock);
990 
991 	if (core->parent)
992 		parent_accuracy = core->parent->accuracy;
993 
994 	if (core->ops->recalc_accuracy)
995 		core->accuracy = core->ops->recalc_accuracy(core->hw,
996 							  parent_accuracy);
997 	else
998 		core->accuracy = parent_accuracy;
999 
1000 	hlist_for_each_entry(child, &core->children, child_node)
1001 		__clk_recalc_accuracies(child);
1002 }
1003 
1004 static long clk_core_get_accuracy(struct clk_core *core)
1005 {
1006 	unsigned long accuracy;
1007 
1008 	clk_prepare_lock();
1009 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1010 		__clk_recalc_accuracies(core);
1011 
1012 	accuracy = __clk_get_accuracy(core);
1013 	clk_prepare_unlock();
1014 
1015 	return accuracy;
1016 }
1017 
1018 /**
1019  * clk_get_accuracy - return the accuracy of clk
1020  * @clk: the clk whose accuracy is being returned
1021  *
1022  * Simply returns the cached accuracy of the clk, unless
1023  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1024  * issued.
1025  * If clk is NULL then returns 0.
1026  */
1027 long clk_get_accuracy(struct clk *clk)
1028 {
1029 	if (!clk)
1030 		return 0;
1031 
1032 	return clk_core_get_accuracy(clk->core);
1033 }
1034 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1035 
1036 static unsigned long clk_recalc(struct clk_core *core,
1037 				unsigned long parent_rate)
1038 {
1039 	if (core->ops->recalc_rate)
1040 		return core->ops->recalc_rate(core->hw, parent_rate);
1041 	return parent_rate;
1042 }
1043 
1044 /**
1045  * __clk_recalc_rates
1046  * @core: first clk in the subtree
1047  * @msg: notification type (see include/linux/clk.h)
1048  *
1049  * Walks the subtree of clks starting with clk and recalculates rates as it
1050  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1051  * it is assumed that the clock will take on the rate of its parent.
1052  *
1053  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1054  * if necessary.
1055  */
1056 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1057 {
1058 	unsigned long old_rate;
1059 	unsigned long parent_rate = 0;
1060 	struct clk_core *child;
1061 
1062 	lockdep_assert_held(&prepare_lock);
1063 
1064 	old_rate = core->rate;
1065 
1066 	if (core->parent)
1067 		parent_rate = core->parent->rate;
1068 
1069 	core->rate = clk_recalc(core, parent_rate);
1070 
1071 	/*
1072 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1073 	 * & ABORT_RATE_CHANGE notifiers
1074 	 */
1075 	if (core->notifier_count && msg)
1076 		__clk_notify(core, msg, old_rate, core->rate);
1077 
1078 	hlist_for_each_entry(child, &core->children, child_node)
1079 		__clk_recalc_rates(child, msg);
1080 }
1081 
1082 static unsigned long clk_core_get_rate(struct clk_core *core)
1083 {
1084 	unsigned long rate;
1085 
1086 	clk_prepare_lock();
1087 
1088 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1089 		__clk_recalc_rates(core, 0);
1090 
1091 	rate = clk_core_get_rate_nolock(core);
1092 	clk_prepare_unlock();
1093 
1094 	return rate;
1095 }
1096 
1097 /**
1098  * clk_get_rate - return the rate of clk
1099  * @clk: the clk whose rate is being returned
1100  *
1101  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1102  * is set, which means a recalc_rate will be issued.
1103  * If clk is NULL then returns 0.
1104  */
1105 unsigned long clk_get_rate(struct clk *clk)
1106 {
1107 	if (!clk)
1108 		return 0;
1109 
1110 	return clk_core_get_rate(clk->core);
1111 }
1112 EXPORT_SYMBOL_GPL(clk_get_rate);
1113 
1114 static int clk_fetch_parent_index(struct clk_core *core,
1115 				  struct clk_core *parent)
1116 {
1117 	int i;
1118 
1119 	if (!parent)
1120 		return -EINVAL;
1121 
1122 	for (i = 0; i < core->num_parents; i++)
1123 		if (clk_core_get_parent_by_index(core, i) == parent)
1124 			return i;
1125 
1126 	return -EINVAL;
1127 }
1128 
1129 /*
1130  * Update the orphan status of @core and all its children.
1131  */
1132 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1133 {
1134 	struct clk_core *child;
1135 
1136 	core->orphan = is_orphan;
1137 
1138 	hlist_for_each_entry(child, &core->children, child_node)
1139 		clk_core_update_orphan_status(child, is_orphan);
1140 }
1141 
1142 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1143 {
1144 	bool was_orphan = core->orphan;
1145 
1146 	hlist_del(&core->child_node);
1147 
1148 	if (new_parent) {
1149 		bool becomes_orphan = new_parent->orphan;
1150 
1151 		/* avoid duplicate POST_RATE_CHANGE notifications */
1152 		if (new_parent->new_child == core)
1153 			new_parent->new_child = NULL;
1154 
1155 		hlist_add_head(&core->child_node, &new_parent->children);
1156 
1157 		if (was_orphan != becomes_orphan)
1158 			clk_core_update_orphan_status(core, becomes_orphan);
1159 	} else {
1160 		hlist_add_head(&core->child_node, &clk_orphan_list);
1161 		if (!was_orphan)
1162 			clk_core_update_orphan_status(core, true);
1163 	}
1164 
1165 	core->parent = new_parent;
1166 }
1167 
1168 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1169 					   struct clk_core *parent)
1170 {
1171 	unsigned long flags;
1172 	struct clk_core *old_parent = core->parent;
1173 
1174 	/*
1175 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1176 	 *
1177 	 * 2. Migrate prepare state between parents and prevent race with
1178 	 * clk_enable().
1179 	 *
1180 	 * If the clock is not prepared, then a race with
1181 	 * clk_enable/disable() is impossible since we already have the
1182 	 * prepare lock (future calls to clk_enable() need to be preceded by
1183 	 * a clk_prepare()).
1184 	 *
1185 	 * If the clock is prepared, migrate the prepared state to the new
1186 	 * parent and also protect against a race with clk_enable() by
1187 	 * forcing the clock and the new parent on.  This ensures that all
1188 	 * future calls to clk_enable() are practically NOPs with respect to
1189 	 * hardware and software states.
1190 	 *
1191 	 * See also: Comment for clk_set_parent() below.
1192 	 */
1193 
1194 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1195 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1196 		clk_core_prepare_enable(old_parent);
1197 		clk_core_prepare_enable(parent);
1198 	}
1199 
1200 	/* migrate prepare count if > 0 */
1201 	if (core->prepare_count) {
1202 		clk_core_prepare_enable(parent);
1203 		clk_core_enable_lock(core);
1204 	}
1205 
1206 	/* update the clk tree topology */
1207 	flags = clk_enable_lock();
1208 	clk_reparent(core, parent);
1209 	clk_enable_unlock(flags);
1210 
1211 	return old_parent;
1212 }
1213 
1214 static void __clk_set_parent_after(struct clk_core *core,
1215 				   struct clk_core *parent,
1216 				   struct clk_core *old_parent)
1217 {
1218 	/*
1219 	 * Finish the migration of prepare state and undo the changes done
1220 	 * for preventing a race with clk_enable().
1221 	 */
1222 	if (core->prepare_count) {
1223 		clk_core_disable_lock(core);
1224 		clk_core_disable_unprepare(old_parent);
1225 	}
1226 
1227 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1228 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1229 		clk_core_disable_unprepare(parent);
1230 		clk_core_disable_unprepare(old_parent);
1231 	}
1232 }
1233 
1234 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1235 			    u8 p_index)
1236 {
1237 	unsigned long flags;
1238 	int ret = 0;
1239 	struct clk_core *old_parent;
1240 
1241 	old_parent = __clk_set_parent_before(core, parent);
1242 
1243 	trace_clk_set_parent(core, parent);
1244 
1245 	/* change clock input source */
1246 	if (parent && core->ops->set_parent)
1247 		ret = core->ops->set_parent(core->hw, p_index);
1248 
1249 	trace_clk_set_parent_complete(core, parent);
1250 
1251 	if (ret) {
1252 		flags = clk_enable_lock();
1253 		clk_reparent(core, old_parent);
1254 		clk_enable_unlock(flags);
1255 		__clk_set_parent_after(core, old_parent, parent);
1256 
1257 		return ret;
1258 	}
1259 
1260 	__clk_set_parent_after(core, parent, old_parent);
1261 
1262 	return 0;
1263 }
1264 
1265 /**
1266  * __clk_speculate_rates
1267  * @core: first clk in the subtree
1268  * @parent_rate: the "future" rate of clk's parent
1269  *
1270  * Walks the subtree of clks starting with clk, speculating rates as it
1271  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1272  *
1273  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1274  * pre-rate change notifications and returns early if no clks in the
1275  * subtree have subscribed to the notifications.  Note that if a clk does not
1276  * implement the .recalc_rate callback then it is assumed that the clock will
1277  * take on the rate of its parent.
1278  */
1279 static int __clk_speculate_rates(struct clk_core *core,
1280 				 unsigned long parent_rate)
1281 {
1282 	struct clk_core *child;
1283 	unsigned long new_rate;
1284 	int ret = NOTIFY_DONE;
1285 
1286 	lockdep_assert_held(&prepare_lock);
1287 
1288 	new_rate = clk_recalc(core, parent_rate);
1289 
1290 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1291 	if (core->notifier_count)
1292 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1293 
1294 	if (ret & NOTIFY_STOP_MASK) {
1295 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1296 				__func__, core->name, ret);
1297 		goto out;
1298 	}
1299 
1300 	hlist_for_each_entry(child, &core->children, child_node) {
1301 		ret = __clk_speculate_rates(child, new_rate);
1302 		if (ret & NOTIFY_STOP_MASK)
1303 			break;
1304 	}
1305 
1306 out:
1307 	return ret;
1308 }
1309 
1310 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1311 			     struct clk_core *new_parent, u8 p_index)
1312 {
1313 	struct clk_core *child;
1314 
1315 	core->new_rate = new_rate;
1316 	core->new_parent = new_parent;
1317 	core->new_parent_index = p_index;
1318 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1319 	core->new_child = NULL;
1320 	if (new_parent && new_parent != core->parent)
1321 		new_parent->new_child = core;
1322 
1323 	hlist_for_each_entry(child, &core->children, child_node) {
1324 		child->new_rate = clk_recalc(child, new_rate);
1325 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1326 	}
1327 }
1328 
1329 /*
1330  * calculate the new rates returning the topmost clock that has to be
1331  * changed.
1332  */
1333 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1334 					   unsigned long rate)
1335 {
1336 	struct clk_core *top = core;
1337 	struct clk_core *old_parent, *parent;
1338 	unsigned long best_parent_rate = 0;
1339 	unsigned long new_rate;
1340 	unsigned long min_rate;
1341 	unsigned long max_rate;
1342 	int p_index = 0;
1343 	long ret;
1344 
1345 	/* sanity */
1346 	if (IS_ERR_OR_NULL(core))
1347 		return NULL;
1348 
1349 	/* save parent rate, if it exists */
1350 	parent = old_parent = core->parent;
1351 	if (parent)
1352 		best_parent_rate = parent->rate;
1353 
1354 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1355 
1356 	/* find the closest rate and parent clk/rate */
1357 	if (core->ops->determine_rate) {
1358 		struct clk_rate_request req;
1359 
1360 		req.rate = rate;
1361 		req.min_rate = min_rate;
1362 		req.max_rate = max_rate;
1363 		if (parent) {
1364 			req.best_parent_hw = parent->hw;
1365 			req.best_parent_rate = parent->rate;
1366 		} else {
1367 			req.best_parent_hw = NULL;
1368 			req.best_parent_rate = 0;
1369 		}
1370 
1371 		ret = core->ops->determine_rate(core->hw, &req);
1372 		if (ret < 0)
1373 			return NULL;
1374 
1375 		best_parent_rate = req.best_parent_rate;
1376 		new_rate = req.rate;
1377 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1378 	} else if (core->ops->round_rate) {
1379 		ret = core->ops->round_rate(core->hw, rate,
1380 					    &best_parent_rate);
1381 		if (ret < 0)
1382 			return NULL;
1383 
1384 		new_rate = ret;
1385 		if (new_rate < min_rate || new_rate > max_rate)
1386 			return NULL;
1387 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1388 		/* pass-through clock without adjustable parent */
1389 		core->new_rate = core->rate;
1390 		return NULL;
1391 	} else {
1392 		/* pass-through clock with adjustable parent */
1393 		top = clk_calc_new_rates(parent, rate);
1394 		new_rate = parent->new_rate;
1395 		goto out;
1396 	}
1397 
1398 	/* some clocks must be gated to change parent */
1399 	if (parent != old_parent &&
1400 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1401 		pr_debug("%s: %s not gated but wants to reparent\n",
1402 			 __func__, core->name);
1403 		return NULL;
1404 	}
1405 
1406 	/* try finding the new parent index */
1407 	if (parent && core->num_parents > 1) {
1408 		p_index = clk_fetch_parent_index(core, parent);
1409 		if (p_index < 0) {
1410 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1411 				 __func__, parent->name, core->name);
1412 			return NULL;
1413 		}
1414 	}
1415 
1416 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1417 	    best_parent_rate != parent->rate)
1418 		top = clk_calc_new_rates(parent, best_parent_rate);
1419 
1420 out:
1421 	clk_calc_subtree(core, new_rate, parent, p_index);
1422 
1423 	return top;
1424 }
1425 
1426 /*
1427  * Notify about rate changes in a subtree. Always walk down the whole tree
1428  * so that in case of an error we can walk down the whole tree again and
1429  * abort the change.
1430  */
1431 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1432 						  unsigned long event)
1433 {
1434 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1435 	int ret = NOTIFY_DONE;
1436 
1437 	if (core->rate == core->new_rate)
1438 		return NULL;
1439 
1440 	if (core->notifier_count) {
1441 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1442 		if (ret & NOTIFY_STOP_MASK)
1443 			fail_clk = core;
1444 	}
1445 
1446 	hlist_for_each_entry(child, &core->children, child_node) {
1447 		/* Skip children who will be reparented to another clock */
1448 		if (child->new_parent && child->new_parent != core)
1449 			continue;
1450 		tmp_clk = clk_propagate_rate_change(child, event);
1451 		if (tmp_clk)
1452 			fail_clk = tmp_clk;
1453 	}
1454 
1455 	/* handle the new child who might not be in core->children yet */
1456 	if (core->new_child) {
1457 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1458 		if (tmp_clk)
1459 			fail_clk = tmp_clk;
1460 	}
1461 
1462 	return fail_clk;
1463 }
1464 
1465 /*
1466  * walk down a subtree and set the new rates notifying the rate
1467  * change on the way
1468  */
1469 static void clk_change_rate(struct clk_core *core)
1470 {
1471 	struct clk_core *child;
1472 	struct hlist_node *tmp;
1473 	unsigned long old_rate;
1474 	unsigned long best_parent_rate = 0;
1475 	bool skip_set_rate = false;
1476 	struct clk_core *old_parent;
1477 	struct clk_core *parent = NULL;
1478 
1479 	old_rate = core->rate;
1480 
1481 	if (core->new_parent) {
1482 		parent = core->new_parent;
1483 		best_parent_rate = core->new_parent->rate;
1484 	} else if (core->parent) {
1485 		parent = core->parent;
1486 		best_parent_rate = core->parent->rate;
1487 	}
1488 
1489 	if (core->flags & CLK_SET_RATE_UNGATE) {
1490 		unsigned long flags;
1491 
1492 		clk_core_prepare(core);
1493 		flags = clk_enable_lock();
1494 		clk_core_enable(core);
1495 		clk_enable_unlock(flags);
1496 	}
1497 
1498 	if (core->new_parent && core->new_parent != core->parent) {
1499 		old_parent = __clk_set_parent_before(core, core->new_parent);
1500 		trace_clk_set_parent(core, core->new_parent);
1501 
1502 		if (core->ops->set_rate_and_parent) {
1503 			skip_set_rate = true;
1504 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1505 					best_parent_rate,
1506 					core->new_parent_index);
1507 		} else if (core->ops->set_parent) {
1508 			core->ops->set_parent(core->hw, core->new_parent_index);
1509 		}
1510 
1511 		trace_clk_set_parent_complete(core, core->new_parent);
1512 		__clk_set_parent_after(core, core->new_parent, old_parent);
1513 	}
1514 
1515 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1516 		clk_core_prepare_enable(parent);
1517 
1518 	trace_clk_set_rate(core, core->new_rate);
1519 
1520 	if (!skip_set_rate && core->ops->set_rate)
1521 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1522 
1523 	trace_clk_set_rate_complete(core, core->new_rate);
1524 
1525 	core->rate = clk_recalc(core, best_parent_rate);
1526 
1527 	if (core->flags & CLK_SET_RATE_UNGATE) {
1528 		unsigned long flags;
1529 
1530 		flags = clk_enable_lock();
1531 		clk_core_disable(core);
1532 		clk_enable_unlock(flags);
1533 		clk_core_unprepare(core);
1534 	}
1535 
1536 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1537 		clk_core_disable_unprepare(parent);
1538 
1539 	if (core->notifier_count && old_rate != core->rate)
1540 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1541 
1542 	if (core->flags & CLK_RECALC_NEW_RATES)
1543 		(void)clk_calc_new_rates(core, core->new_rate);
1544 
1545 	/*
1546 	 * Use safe iteration, as change_rate can actually swap parents
1547 	 * for certain clock types.
1548 	 */
1549 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1550 		/* Skip children who will be reparented to another clock */
1551 		if (child->new_parent && child->new_parent != core)
1552 			continue;
1553 		clk_change_rate(child);
1554 	}
1555 
1556 	/* handle the new child who might not be in core->children yet */
1557 	if (core->new_child)
1558 		clk_change_rate(core->new_child);
1559 }
1560 
1561 static int clk_core_set_rate_nolock(struct clk_core *core,
1562 				    unsigned long req_rate)
1563 {
1564 	struct clk_core *top, *fail_clk;
1565 	unsigned long rate = req_rate;
1566 
1567 	if (!core)
1568 		return 0;
1569 
1570 	/* bail early if nothing to do */
1571 	if (rate == clk_core_get_rate_nolock(core))
1572 		return 0;
1573 
1574 	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1575 		return -EBUSY;
1576 
1577 	/* calculate new rates and get the topmost changed clock */
1578 	top = clk_calc_new_rates(core, rate);
1579 	if (!top)
1580 		return -EINVAL;
1581 
1582 	/* notify that we are about to change rates */
1583 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1584 	if (fail_clk) {
1585 		pr_debug("%s: failed to set %s rate\n", __func__,
1586 				fail_clk->name);
1587 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1588 		return -EBUSY;
1589 	}
1590 
1591 	/* change the rates */
1592 	clk_change_rate(top);
1593 
1594 	core->req_rate = req_rate;
1595 
1596 	return 0;
1597 }
1598 
1599 /**
1600  * clk_set_rate - specify a new rate for clk
1601  * @clk: the clk whose rate is being changed
1602  * @rate: the new rate for clk
1603  *
1604  * In the simplest case clk_set_rate will only adjust the rate of clk.
1605  *
1606  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1607  * propagate up to clk's parent; whether or not this happens depends on the
1608  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1609  * after calling .round_rate then upstream parent propagation is ignored.  If
1610  * *parent_rate comes back with a new rate for clk's parent then we propagate
1611  * up to clk's parent and set its rate.  Upward propagation will continue
1612  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1613  * .round_rate stops requesting changes to clk's parent_rate.
1614  *
1615  * Rate changes are accomplished via tree traversal that also recalculates the
1616  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1617  *
1618  * Returns 0 on success, -EERROR otherwise.
1619  */
1620 int clk_set_rate(struct clk *clk, unsigned long rate)
1621 {
1622 	int ret;
1623 
1624 	if (!clk)
1625 		return 0;
1626 
1627 	/* prevent racing with updates to the clock topology */
1628 	clk_prepare_lock();
1629 
1630 	ret = clk_core_set_rate_nolock(clk->core, rate);
1631 
1632 	clk_prepare_unlock();
1633 
1634 	return ret;
1635 }
1636 EXPORT_SYMBOL_GPL(clk_set_rate);
1637 
1638 /**
1639  * clk_set_rate_range - set a rate range for a clock source
1640  * @clk: clock source
1641  * @min: desired minimum clock rate in Hz, inclusive
1642  * @max: desired maximum clock rate in Hz, inclusive
1643  *
1644  * Returns success (0) or negative errno.
1645  */
1646 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1647 {
1648 	int ret = 0;
1649 
1650 	if (!clk)
1651 		return 0;
1652 
1653 	if (min > max) {
1654 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1655 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1656 		       min, max);
1657 		return -EINVAL;
1658 	}
1659 
1660 	clk_prepare_lock();
1661 
1662 	if (min != clk->min_rate || max != clk->max_rate) {
1663 		clk->min_rate = min;
1664 		clk->max_rate = max;
1665 		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1666 	}
1667 
1668 	clk_prepare_unlock();
1669 
1670 	return ret;
1671 }
1672 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1673 
1674 /**
1675  * clk_set_min_rate - set a minimum clock rate for a clock source
1676  * @clk: clock source
1677  * @rate: desired minimum clock rate in Hz, inclusive
1678  *
1679  * Returns success (0) or negative errno.
1680  */
1681 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1682 {
1683 	if (!clk)
1684 		return 0;
1685 
1686 	return clk_set_rate_range(clk, rate, clk->max_rate);
1687 }
1688 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1689 
1690 /**
1691  * clk_set_max_rate - set a maximum clock rate for a clock source
1692  * @clk: clock source
1693  * @rate: desired maximum clock rate in Hz, inclusive
1694  *
1695  * Returns success (0) or negative errno.
1696  */
1697 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1698 {
1699 	if (!clk)
1700 		return 0;
1701 
1702 	return clk_set_rate_range(clk, clk->min_rate, rate);
1703 }
1704 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1705 
1706 /**
1707  * clk_get_parent - return the parent of a clk
1708  * @clk: the clk whose parent gets returned
1709  *
1710  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1711  */
1712 struct clk *clk_get_parent(struct clk *clk)
1713 {
1714 	struct clk *parent;
1715 
1716 	if (!clk)
1717 		return NULL;
1718 
1719 	clk_prepare_lock();
1720 	/* TODO: Create a per-user clk and change callers to call clk_put */
1721 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1722 	clk_prepare_unlock();
1723 
1724 	return parent;
1725 }
1726 EXPORT_SYMBOL_GPL(clk_get_parent);
1727 
1728 static struct clk_core *__clk_init_parent(struct clk_core *core)
1729 {
1730 	u8 index = 0;
1731 
1732 	if (core->num_parents > 1 && core->ops->get_parent)
1733 		index = core->ops->get_parent(core->hw);
1734 
1735 	return clk_core_get_parent_by_index(core, index);
1736 }
1737 
1738 static void clk_core_reparent(struct clk_core *core,
1739 				  struct clk_core *new_parent)
1740 {
1741 	clk_reparent(core, new_parent);
1742 	__clk_recalc_accuracies(core);
1743 	__clk_recalc_rates(core, POST_RATE_CHANGE);
1744 }
1745 
1746 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1747 {
1748 	if (!hw)
1749 		return;
1750 
1751 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1752 }
1753 
1754 /**
1755  * clk_has_parent - check if a clock is a possible parent for another
1756  * @clk: clock source
1757  * @parent: parent clock source
1758  *
1759  * This function can be used in drivers that need to check that a clock can be
1760  * the parent of another without actually changing the parent.
1761  *
1762  * Returns true if @parent is a possible parent for @clk, false otherwise.
1763  */
1764 bool clk_has_parent(struct clk *clk, struct clk *parent)
1765 {
1766 	struct clk_core *core, *parent_core;
1767 	unsigned int i;
1768 
1769 	/* NULL clocks should be nops, so return success if either is NULL. */
1770 	if (!clk || !parent)
1771 		return true;
1772 
1773 	core = clk->core;
1774 	parent_core = parent->core;
1775 
1776 	/* Optimize for the case where the parent is already the parent. */
1777 	if (core->parent == parent_core)
1778 		return true;
1779 
1780 	for (i = 0; i < core->num_parents; i++)
1781 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1782 			return true;
1783 
1784 	return false;
1785 }
1786 EXPORT_SYMBOL_GPL(clk_has_parent);
1787 
1788 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1789 {
1790 	int ret = 0;
1791 	int p_index = 0;
1792 	unsigned long p_rate = 0;
1793 
1794 	if (!core)
1795 		return 0;
1796 
1797 	/* prevent racing with updates to the clock topology */
1798 	clk_prepare_lock();
1799 
1800 	if (core->parent == parent)
1801 		goto out;
1802 
1803 	/* verify ops for for multi-parent clks */
1804 	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1805 		ret = -ENOSYS;
1806 		goto out;
1807 	}
1808 
1809 	/* check that we are allowed to re-parent if the clock is in use */
1810 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1811 		ret = -EBUSY;
1812 		goto out;
1813 	}
1814 
1815 	/* try finding the new parent index */
1816 	if (parent) {
1817 		p_index = clk_fetch_parent_index(core, parent);
1818 		if (p_index < 0) {
1819 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1820 					__func__, parent->name, core->name);
1821 			ret = p_index;
1822 			goto out;
1823 		}
1824 		p_rate = parent->rate;
1825 	}
1826 
1827 	/* propagate PRE_RATE_CHANGE notifications */
1828 	ret = __clk_speculate_rates(core, p_rate);
1829 
1830 	/* abort if a driver objects */
1831 	if (ret & NOTIFY_STOP_MASK)
1832 		goto out;
1833 
1834 	/* do the re-parent */
1835 	ret = __clk_set_parent(core, parent, p_index);
1836 
1837 	/* propagate rate an accuracy recalculation accordingly */
1838 	if (ret) {
1839 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
1840 	} else {
1841 		__clk_recalc_rates(core, POST_RATE_CHANGE);
1842 		__clk_recalc_accuracies(core);
1843 	}
1844 
1845 out:
1846 	clk_prepare_unlock();
1847 
1848 	return ret;
1849 }
1850 
1851 /**
1852  * clk_set_parent - switch the parent of a mux clk
1853  * @clk: the mux clk whose input we are switching
1854  * @parent: the new input to clk
1855  *
1856  * Re-parent clk to use parent as its new input source.  If clk is in
1857  * prepared state, the clk will get enabled for the duration of this call. If
1858  * that's not acceptable for a specific clk (Eg: the consumer can't handle
1859  * that, the reparenting is glitchy in hardware, etc), use the
1860  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1861  *
1862  * After successfully changing clk's parent clk_set_parent will update the
1863  * clk topology, sysfs topology and propagate rate recalculation via
1864  * __clk_recalc_rates.
1865  *
1866  * Returns 0 on success, -EERROR otherwise.
1867  */
1868 int clk_set_parent(struct clk *clk, struct clk *parent)
1869 {
1870 	if (!clk)
1871 		return 0;
1872 
1873 	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1874 }
1875 EXPORT_SYMBOL_GPL(clk_set_parent);
1876 
1877 /**
1878  * clk_set_phase - adjust the phase shift of a clock signal
1879  * @clk: clock signal source
1880  * @degrees: number of degrees the signal is shifted
1881  *
1882  * Shifts the phase of a clock signal by the specified
1883  * degrees. Returns 0 on success, -EERROR otherwise.
1884  *
1885  * This function makes no distinction about the input or reference
1886  * signal that we adjust the clock signal phase against. For example
1887  * phase locked-loop clock signal generators we may shift phase with
1888  * respect to feedback clock signal input, but for other cases the
1889  * clock phase may be shifted with respect to some other, unspecified
1890  * signal.
1891  *
1892  * Additionally the concept of phase shift does not propagate through
1893  * the clock tree hierarchy, which sets it apart from clock rates and
1894  * clock accuracy. A parent clock phase attribute does not have an
1895  * impact on the phase attribute of a child clock.
1896  */
1897 int clk_set_phase(struct clk *clk, int degrees)
1898 {
1899 	int ret = -EINVAL;
1900 
1901 	if (!clk)
1902 		return 0;
1903 
1904 	/* sanity check degrees */
1905 	degrees %= 360;
1906 	if (degrees < 0)
1907 		degrees += 360;
1908 
1909 	clk_prepare_lock();
1910 
1911 	trace_clk_set_phase(clk->core, degrees);
1912 
1913 	if (clk->core->ops->set_phase)
1914 		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1915 
1916 	trace_clk_set_phase_complete(clk->core, degrees);
1917 
1918 	if (!ret)
1919 		clk->core->phase = degrees;
1920 
1921 	clk_prepare_unlock();
1922 
1923 	return ret;
1924 }
1925 EXPORT_SYMBOL_GPL(clk_set_phase);
1926 
1927 static int clk_core_get_phase(struct clk_core *core)
1928 {
1929 	int ret;
1930 
1931 	clk_prepare_lock();
1932 	ret = core->phase;
1933 	clk_prepare_unlock();
1934 
1935 	return ret;
1936 }
1937 
1938 /**
1939  * clk_get_phase - return the phase shift of a clock signal
1940  * @clk: clock signal source
1941  *
1942  * Returns the phase shift of a clock node in degrees, otherwise returns
1943  * -EERROR.
1944  */
1945 int clk_get_phase(struct clk *clk)
1946 {
1947 	if (!clk)
1948 		return 0;
1949 
1950 	return clk_core_get_phase(clk->core);
1951 }
1952 EXPORT_SYMBOL_GPL(clk_get_phase);
1953 
1954 /**
1955  * clk_is_match - check if two clk's point to the same hardware clock
1956  * @p: clk compared against q
1957  * @q: clk compared against p
1958  *
1959  * Returns true if the two struct clk pointers both point to the same hardware
1960  * clock node. Put differently, returns true if struct clk *p and struct clk *q
1961  * share the same struct clk_core object.
1962  *
1963  * Returns false otherwise. Note that two NULL clks are treated as matching.
1964  */
1965 bool clk_is_match(const struct clk *p, const struct clk *q)
1966 {
1967 	/* trivial case: identical struct clk's or both NULL */
1968 	if (p == q)
1969 		return true;
1970 
1971 	/* true if clk->core pointers match. Avoid dereferencing garbage */
1972 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1973 		if (p->core == q->core)
1974 			return true;
1975 
1976 	return false;
1977 }
1978 EXPORT_SYMBOL_GPL(clk_is_match);
1979 
1980 /***        debugfs support        ***/
1981 
1982 #ifdef CONFIG_DEBUG_FS
1983 #include <linux/debugfs.h>
1984 
1985 static struct dentry *rootdir;
1986 static int inited = 0;
1987 static DEFINE_MUTEX(clk_debug_lock);
1988 static HLIST_HEAD(clk_debug_list);
1989 
1990 static struct hlist_head *all_lists[] = {
1991 	&clk_root_list,
1992 	&clk_orphan_list,
1993 	NULL,
1994 };
1995 
1996 static struct hlist_head *orphan_list[] = {
1997 	&clk_orphan_list,
1998 	NULL,
1999 };
2000 
2001 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2002 				 int level)
2003 {
2004 	if (!c)
2005 		return;
2006 
2007 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
2008 		   level * 3 + 1, "",
2009 		   30 - level * 3, c->name,
2010 		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
2011 		   clk_core_get_accuracy(c), clk_core_get_phase(c));
2012 }
2013 
2014 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2015 				     int level)
2016 {
2017 	struct clk_core *child;
2018 
2019 	if (!c)
2020 		return;
2021 
2022 	clk_summary_show_one(s, c, level);
2023 
2024 	hlist_for_each_entry(child, &c->children, child_node)
2025 		clk_summary_show_subtree(s, child, level + 1);
2026 }
2027 
2028 static int clk_summary_show(struct seq_file *s, void *data)
2029 {
2030 	struct clk_core *c;
2031 	struct hlist_head **lists = (struct hlist_head **)s->private;
2032 
2033 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
2034 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
2035 
2036 	clk_prepare_lock();
2037 
2038 	for (; *lists; lists++)
2039 		hlist_for_each_entry(c, *lists, child_node)
2040 			clk_summary_show_subtree(s, c, 0);
2041 
2042 	clk_prepare_unlock();
2043 
2044 	return 0;
2045 }
2046 
2047 
2048 static int clk_summary_open(struct inode *inode, struct file *file)
2049 {
2050 	return single_open(file, clk_summary_show, inode->i_private);
2051 }
2052 
2053 static const struct file_operations clk_summary_fops = {
2054 	.open		= clk_summary_open,
2055 	.read		= seq_read,
2056 	.llseek		= seq_lseek,
2057 	.release	= single_release,
2058 };
2059 
2060 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2061 {
2062 	if (!c)
2063 		return;
2064 
2065 	/* This should be JSON format, i.e. elements separated with a comma */
2066 	seq_printf(s, "\"%s\": { ", c->name);
2067 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2068 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2069 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2070 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2071 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2072 }
2073 
2074 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2075 {
2076 	struct clk_core *child;
2077 
2078 	if (!c)
2079 		return;
2080 
2081 	clk_dump_one(s, c, level);
2082 
2083 	hlist_for_each_entry(child, &c->children, child_node) {
2084 		seq_printf(s, ",");
2085 		clk_dump_subtree(s, child, level + 1);
2086 	}
2087 
2088 	seq_printf(s, "}");
2089 }
2090 
2091 static int clk_dump(struct seq_file *s, void *data)
2092 {
2093 	struct clk_core *c;
2094 	bool first_node = true;
2095 	struct hlist_head **lists = (struct hlist_head **)s->private;
2096 
2097 	seq_printf(s, "{");
2098 
2099 	clk_prepare_lock();
2100 
2101 	for (; *lists; lists++) {
2102 		hlist_for_each_entry(c, *lists, child_node) {
2103 			if (!first_node)
2104 				seq_puts(s, ",");
2105 			first_node = false;
2106 			clk_dump_subtree(s, c, 0);
2107 		}
2108 	}
2109 
2110 	clk_prepare_unlock();
2111 
2112 	seq_puts(s, "}\n");
2113 	return 0;
2114 }
2115 
2116 
2117 static int clk_dump_open(struct inode *inode, struct file *file)
2118 {
2119 	return single_open(file, clk_dump, inode->i_private);
2120 }
2121 
2122 static const struct file_operations clk_dump_fops = {
2123 	.open		= clk_dump_open,
2124 	.read		= seq_read,
2125 	.llseek		= seq_lseek,
2126 	.release	= single_release,
2127 };
2128 
2129 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2130 {
2131 	struct dentry *d;
2132 	int ret = -ENOMEM;
2133 
2134 	if (!core || !pdentry) {
2135 		ret = -EINVAL;
2136 		goto out;
2137 	}
2138 
2139 	d = debugfs_create_dir(core->name, pdentry);
2140 	if (!d)
2141 		goto out;
2142 
2143 	core->dentry = d;
2144 
2145 	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2146 			(u32 *)&core->rate);
2147 	if (!d)
2148 		goto err_out;
2149 
2150 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2151 			(u32 *)&core->accuracy);
2152 	if (!d)
2153 		goto err_out;
2154 
2155 	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2156 			(u32 *)&core->phase);
2157 	if (!d)
2158 		goto err_out;
2159 
2160 	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2161 			(u32 *)&core->flags);
2162 	if (!d)
2163 		goto err_out;
2164 
2165 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2166 			(u32 *)&core->prepare_count);
2167 	if (!d)
2168 		goto err_out;
2169 
2170 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2171 			(u32 *)&core->enable_count);
2172 	if (!d)
2173 		goto err_out;
2174 
2175 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2176 			(u32 *)&core->notifier_count);
2177 	if (!d)
2178 		goto err_out;
2179 
2180 	if (core->ops->debug_init) {
2181 		ret = core->ops->debug_init(core->hw, core->dentry);
2182 		if (ret)
2183 			goto err_out;
2184 	}
2185 
2186 	ret = 0;
2187 	goto out;
2188 
2189 err_out:
2190 	debugfs_remove_recursive(core->dentry);
2191 	core->dentry = NULL;
2192 out:
2193 	return ret;
2194 }
2195 
2196 /**
2197  * clk_debug_register - add a clk node to the debugfs clk directory
2198  * @core: the clk being added to the debugfs clk directory
2199  *
2200  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2201  * initialized.  Otherwise it bails out early since the debugfs clk directory
2202  * will be created lazily by clk_debug_init as part of a late_initcall.
2203  */
2204 static int clk_debug_register(struct clk_core *core)
2205 {
2206 	int ret = 0;
2207 
2208 	mutex_lock(&clk_debug_lock);
2209 	hlist_add_head(&core->debug_node, &clk_debug_list);
2210 
2211 	if (!inited)
2212 		goto unlock;
2213 
2214 	ret = clk_debug_create_one(core, rootdir);
2215 unlock:
2216 	mutex_unlock(&clk_debug_lock);
2217 
2218 	return ret;
2219 }
2220 
2221  /**
2222  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2223  * @core: the clk being removed from the debugfs clk directory
2224  *
2225  * Dynamically removes a clk and all its child nodes from the
2226  * debugfs clk directory if clk->dentry points to debugfs created by
2227  * clk_debug_register in __clk_core_init.
2228  */
2229 static void clk_debug_unregister(struct clk_core *core)
2230 {
2231 	mutex_lock(&clk_debug_lock);
2232 	hlist_del_init(&core->debug_node);
2233 	debugfs_remove_recursive(core->dentry);
2234 	core->dentry = NULL;
2235 	mutex_unlock(&clk_debug_lock);
2236 }
2237 
2238 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2239 				void *data, const struct file_operations *fops)
2240 {
2241 	struct dentry *d = NULL;
2242 
2243 	if (hw->core->dentry)
2244 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2245 					fops);
2246 
2247 	return d;
2248 }
2249 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2250 
2251 /**
2252  * clk_debug_init - lazily populate the debugfs clk directory
2253  *
2254  * clks are often initialized very early during boot before memory can be
2255  * dynamically allocated and well before debugfs is setup. This function
2256  * populates the debugfs clk directory once at boot-time when we know that
2257  * debugfs is setup. It should only be called once at boot-time, all other clks
2258  * added dynamically will be done so with clk_debug_register.
2259  */
2260 static int __init clk_debug_init(void)
2261 {
2262 	struct clk_core *core;
2263 	struct dentry *d;
2264 
2265 	rootdir = debugfs_create_dir("clk", NULL);
2266 
2267 	if (!rootdir)
2268 		return -ENOMEM;
2269 
2270 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2271 				&clk_summary_fops);
2272 	if (!d)
2273 		return -ENOMEM;
2274 
2275 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2276 				&clk_dump_fops);
2277 	if (!d)
2278 		return -ENOMEM;
2279 
2280 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2281 				&orphan_list, &clk_summary_fops);
2282 	if (!d)
2283 		return -ENOMEM;
2284 
2285 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2286 				&orphan_list, &clk_dump_fops);
2287 	if (!d)
2288 		return -ENOMEM;
2289 
2290 	mutex_lock(&clk_debug_lock);
2291 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2292 		clk_debug_create_one(core, rootdir);
2293 
2294 	inited = 1;
2295 	mutex_unlock(&clk_debug_lock);
2296 
2297 	return 0;
2298 }
2299 late_initcall(clk_debug_init);
2300 #else
2301 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2302 static inline void clk_debug_reparent(struct clk_core *core,
2303 				      struct clk_core *new_parent)
2304 {
2305 }
2306 static inline void clk_debug_unregister(struct clk_core *core)
2307 {
2308 }
2309 #endif
2310 
2311 /**
2312  * __clk_core_init - initialize the data structures in a struct clk_core
2313  * @core:	clk_core being initialized
2314  *
2315  * Initializes the lists in struct clk_core, queries the hardware for the
2316  * parent and rate and sets them both.
2317  */
2318 static int __clk_core_init(struct clk_core *core)
2319 {
2320 	int i, ret = 0;
2321 	struct clk_core *orphan;
2322 	struct hlist_node *tmp2;
2323 	unsigned long rate;
2324 
2325 	if (!core)
2326 		return -EINVAL;
2327 
2328 	clk_prepare_lock();
2329 
2330 	/* check to see if a clock with this name is already registered */
2331 	if (clk_core_lookup(core->name)) {
2332 		pr_debug("%s: clk %s already initialized\n",
2333 				__func__, core->name);
2334 		ret = -EEXIST;
2335 		goto out;
2336 	}
2337 
2338 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2339 	if (core->ops->set_rate &&
2340 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2341 	      core->ops->recalc_rate)) {
2342 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2343 		       __func__, core->name);
2344 		ret = -EINVAL;
2345 		goto out;
2346 	}
2347 
2348 	if (core->ops->set_parent && !core->ops->get_parent) {
2349 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2350 		       __func__, core->name);
2351 		ret = -EINVAL;
2352 		goto out;
2353 	}
2354 
2355 	if (core->num_parents > 1 && !core->ops->get_parent) {
2356 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2357 		       __func__, core->name);
2358 		ret = -EINVAL;
2359 		goto out;
2360 	}
2361 
2362 	if (core->ops->set_rate_and_parent &&
2363 			!(core->ops->set_parent && core->ops->set_rate)) {
2364 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2365 				__func__, core->name);
2366 		ret = -EINVAL;
2367 		goto out;
2368 	}
2369 
2370 	/* throw a WARN if any entries in parent_names are NULL */
2371 	for (i = 0; i < core->num_parents; i++)
2372 		WARN(!core->parent_names[i],
2373 				"%s: invalid NULL in %s's .parent_names\n",
2374 				__func__, core->name);
2375 
2376 	core->parent = __clk_init_parent(core);
2377 
2378 	/*
2379 	 * Populate core->parent if parent has already been clk_core_init'd. If
2380 	 * parent has not yet been clk_core_init'd then place clk in the orphan
2381 	 * list.  If clk doesn't have any parents then place it in the root
2382 	 * clk list.
2383 	 *
2384 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2385 	 * clocks and re-parent any that are children of the clock currently
2386 	 * being clk_init'd.
2387 	 */
2388 	if (core->parent) {
2389 		hlist_add_head(&core->child_node,
2390 				&core->parent->children);
2391 		core->orphan = core->parent->orphan;
2392 	} else if (!core->num_parents) {
2393 		hlist_add_head(&core->child_node, &clk_root_list);
2394 		core->orphan = false;
2395 	} else {
2396 		hlist_add_head(&core->child_node, &clk_orphan_list);
2397 		core->orphan = true;
2398 	}
2399 
2400 	/*
2401 	 * Set clk's accuracy.  The preferred method is to use
2402 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2403 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2404 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2405 	 * clock).
2406 	 */
2407 	if (core->ops->recalc_accuracy)
2408 		core->accuracy = core->ops->recalc_accuracy(core->hw,
2409 					__clk_get_accuracy(core->parent));
2410 	else if (core->parent)
2411 		core->accuracy = core->parent->accuracy;
2412 	else
2413 		core->accuracy = 0;
2414 
2415 	/*
2416 	 * Set clk's phase.
2417 	 * Since a phase is by definition relative to its parent, just
2418 	 * query the current clock phase, or just assume it's in phase.
2419 	 */
2420 	if (core->ops->get_phase)
2421 		core->phase = core->ops->get_phase(core->hw);
2422 	else
2423 		core->phase = 0;
2424 
2425 	/*
2426 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2427 	 * simple clocks and lazy developers the default fallback is to use the
2428 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2429 	 * then rate is set to zero.
2430 	 */
2431 	if (core->ops->recalc_rate)
2432 		rate = core->ops->recalc_rate(core->hw,
2433 				clk_core_get_rate_nolock(core->parent));
2434 	else if (core->parent)
2435 		rate = core->parent->rate;
2436 	else
2437 		rate = 0;
2438 	core->rate = core->req_rate = rate;
2439 
2440 	/*
2441 	 * walk the list of orphan clocks and reparent any that newly finds a
2442 	 * parent.
2443 	 */
2444 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2445 		struct clk_core *parent = __clk_init_parent(orphan);
2446 
2447 		/*
2448 		 * we could call __clk_set_parent, but that would result in a
2449 		 * redundant call to the .set_rate op, if it exists
2450 		 */
2451 		if (parent) {
2452 			__clk_set_parent_before(orphan, parent);
2453 			__clk_set_parent_after(orphan, parent, NULL);
2454 			__clk_recalc_accuracies(orphan);
2455 			__clk_recalc_rates(orphan, 0);
2456 		}
2457 	}
2458 
2459 	/*
2460 	 * optional platform-specific magic
2461 	 *
2462 	 * The .init callback is not used by any of the basic clock types, but
2463 	 * exists for weird hardware that must perform initialization magic.
2464 	 * Please consider other ways of solving initialization problems before
2465 	 * using this callback, as its use is discouraged.
2466 	 */
2467 	if (core->ops->init)
2468 		core->ops->init(core->hw);
2469 
2470 	if (core->flags & CLK_IS_CRITICAL) {
2471 		unsigned long flags;
2472 
2473 		clk_core_prepare(core);
2474 
2475 		flags = clk_enable_lock();
2476 		clk_core_enable(core);
2477 		clk_enable_unlock(flags);
2478 	}
2479 
2480 	kref_init(&core->ref);
2481 out:
2482 	clk_prepare_unlock();
2483 
2484 	if (!ret)
2485 		clk_debug_register(core);
2486 
2487 	return ret;
2488 }
2489 
2490 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2491 			     const char *con_id)
2492 {
2493 	struct clk *clk;
2494 
2495 	/* This is to allow this function to be chained to others */
2496 	if (IS_ERR_OR_NULL(hw))
2497 		return ERR_CAST(hw);
2498 
2499 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2500 	if (!clk)
2501 		return ERR_PTR(-ENOMEM);
2502 
2503 	clk->core = hw->core;
2504 	clk->dev_id = dev_id;
2505 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
2506 	clk->max_rate = ULONG_MAX;
2507 
2508 	clk_prepare_lock();
2509 	hlist_add_head(&clk->clks_node, &hw->core->clks);
2510 	clk_prepare_unlock();
2511 
2512 	return clk;
2513 }
2514 
2515 void __clk_free_clk(struct clk *clk)
2516 {
2517 	clk_prepare_lock();
2518 	hlist_del(&clk->clks_node);
2519 	clk_prepare_unlock();
2520 
2521 	kfree_const(clk->con_id);
2522 	kfree(clk);
2523 }
2524 
2525 /**
2526  * clk_register - allocate a new clock, register it and return an opaque cookie
2527  * @dev: device that is registering this clock
2528  * @hw: link to hardware-specific clock data
2529  *
2530  * clk_register is the primary interface for populating the clock tree with new
2531  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2532  * cannot be dereferenced by driver code but may be used in conjunction with the
2533  * rest of the clock API.  In the event of an error clk_register will return an
2534  * error code; drivers must test for an error code after calling clk_register.
2535  */
2536 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2537 {
2538 	int i, ret;
2539 	struct clk_core *core;
2540 
2541 	core = kzalloc(sizeof(*core), GFP_KERNEL);
2542 	if (!core) {
2543 		ret = -ENOMEM;
2544 		goto fail_out;
2545 	}
2546 
2547 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2548 	if (!core->name) {
2549 		ret = -ENOMEM;
2550 		goto fail_name;
2551 	}
2552 	core->ops = hw->init->ops;
2553 	if (dev && dev->driver)
2554 		core->owner = dev->driver->owner;
2555 	core->hw = hw;
2556 	core->flags = hw->init->flags;
2557 	core->num_parents = hw->init->num_parents;
2558 	core->min_rate = 0;
2559 	core->max_rate = ULONG_MAX;
2560 	hw->core = core;
2561 
2562 	/* allocate local copy in case parent_names is __initdata */
2563 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2564 					GFP_KERNEL);
2565 
2566 	if (!core->parent_names) {
2567 		ret = -ENOMEM;
2568 		goto fail_parent_names;
2569 	}
2570 
2571 
2572 	/* copy each string name in case parent_names is __initdata */
2573 	for (i = 0; i < core->num_parents; i++) {
2574 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2575 						GFP_KERNEL);
2576 		if (!core->parent_names[i]) {
2577 			ret = -ENOMEM;
2578 			goto fail_parent_names_copy;
2579 		}
2580 	}
2581 
2582 	/* avoid unnecessary string look-ups of clk_core's possible parents. */
2583 	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
2584 				GFP_KERNEL);
2585 	if (!core->parents) {
2586 		ret = -ENOMEM;
2587 		goto fail_parents;
2588 	};
2589 
2590 	INIT_HLIST_HEAD(&core->clks);
2591 
2592 	hw->clk = __clk_create_clk(hw, NULL, NULL);
2593 	if (IS_ERR(hw->clk)) {
2594 		ret = PTR_ERR(hw->clk);
2595 		goto fail_parents;
2596 	}
2597 
2598 	ret = __clk_core_init(core);
2599 	if (!ret)
2600 		return hw->clk;
2601 
2602 	__clk_free_clk(hw->clk);
2603 	hw->clk = NULL;
2604 
2605 fail_parents:
2606 	kfree(core->parents);
2607 fail_parent_names_copy:
2608 	while (--i >= 0)
2609 		kfree_const(core->parent_names[i]);
2610 	kfree(core->parent_names);
2611 fail_parent_names:
2612 	kfree_const(core->name);
2613 fail_name:
2614 	kfree(core);
2615 fail_out:
2616 	return ERR_PTR(ret);
2617 }
2618 EXPORT_SYMBOL_GPL(clk_register);
2619 
2620 /**
2621  * clk_hw_register - register a clk_hw and return an error code
2622  * @dev: device that is registering this clock
2623  * @hw: link to hardware-specific clock data
2624  *
2625  * clk_hw_register is the primary interface for populating the clock tree with
2626  * new clock nodes. It returns an integer equal to zero indicating success or
2627  * less than zero indicating failure. Drivers must test for an error code after
2628  * calling clk_hw_register().
2629  */
2630 int clk_hw_register(struct device *dev, struct clk_hw *hw)
2631 {
2632 	return PTR_ERR_OR_ZERO(clk_register(dev, hw));
2633 }
2634 EXPORT_SYMBOL_GPL(clk_hw_register);
2635 
2636 /* Free memory allocated for a clock. */
2637 static void __clk_release(struct kref *ref)
2638 {
2639 	struct clk_core *core = container_of(ref, struct clk_core, ref);
2640 	int i = core->num_parents;
2641 
2642 	lockdep_assert_held(&prepare_lock);
2643 
2644 	kfree(core->parents);
2645 	while (--i >= 0)
2646 		kfree_const(core->parent_names[i]);
2647 
2648 	kfree(core->parent_names);
2649 	kfree_const(core->name);
2650 	kfree(core);
2651 }
2652 
2653 /*
2654  * Empty clk_ops for unregistered clocks. These are used temporarily
2655  * after clk_unregister() was called on a clock and until last clock
2656  * consumer calls clk_put() and the struct clk object is freed.
2657  */
2658 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2659 {
2660 	return -ENXIO;
2661 }
2662 
2663 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2664 {
2665 	WARN_ON_ONCE(1);
2666 }
2667 
2668 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2669 					unsigned long parent_rate)
2670 {
2671 	return -ENXIO;
2672 }
2673 
2674 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2675 {
2676 	return -ENXIO;
2677 }
2678 
2679 static const struct clk_ops clk_nodrv_ops = {
2680 	.enable		= clk_nodrv_prepare_enable,
2681 	.disable	= clk_nodrv_disable_unprepare,
2682 	.prepare	= clk_nodrv_prepare_enable,
2683 	.unprepare	= clk_nodrv_disable_unprepare,
2684 	.set_rate	= clk_nodrv_set_rate,
2685 	.set_parent	= clk_nodrv_set_parent,
2686 };
2687 
2688 /**
2689  * clk_unregister - unregister a currently registered clock
2690  * @clk: clock to unregister
2691  */
2692 void clk_unregister(struct clk *clk)
2693 {
2694 	unsigned long flags;
2695 
2696 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2697 		return;
2698 
2699 	clk_debug_unregister(clk->core);
2700 
2701 	clk_prepare_lock();
2702 
2703 	if (clk->core->ops == &clk_nodrv_ops) {
2704 		pr_err("%s: unregistered clock: %s\n", __func__,
2705 		       clk->core->name);
2706 		goto unlock;
2707 	}
2708 	/*
2709 	 * Assign empty clock ops for consumers that might still hold
2710 	 * a reference to this clock.
2711 	 */
2712 	flags = clk_enable_lock();
2713 	clk->core->ops = &clk_nodrv_ops;
2714 	clk_enable_unlock(flags);
2715 
2716 	if (!hlist_empty(&clk->core->children)) {
2717 		struct clk_core *child;
2718 		struct hlist_node *t;
2719 
2720 		/* Reparent all children to the orphan list. */
2721 		hlist_for_each_entry_safe(child, t, &clk->core->children,
2722 					  child_node)
2723 			clk_core_set_parent(child, NULL);
2724 	}
2725 
2726 	hlist_del_init(&clk->core->child_node);
2727 
2728 	if (clk->core->prepare_count)
2729 		pr_warn("%s: unregistering prepared clock: %s\n",
2730 					__func__, clk->core->name);
2731 	kref_put(&clk->core->ref, __clk_release);
2732 unlock:
2733 	clk_prepare_unlock();
2734 }
2735 EXPORT_SYMBOL_GPL(clk_unregister);
2736 
2737 /**
2738  * clk_hw_unregister - unregister a currently registered clk_hw
2739  * @hw: hardware-specific clock data to unregister
2740  */
2741 void clk_hw_unregister(struct clk_hw *hw)
2742 {
2743 	clk_unregister(hw->clk);
2744 }
2745 EXPORT_SYMBOL_GPL(clk_hw_unregister);
2746 
2747 static void devm_clk_release(struct device *dev, void *res)
2748 {
2749 	clk_unregister(*(struct clk **)res);
2750 }
2751 
2752 static void devm_clk_hw_release(struct device *dev, void *res)
2753 {
2754 	clk_hw_unregister(*(struct clk_hw **)res);
2755 }
2756 
2757 /**
2758  * devm_clk_register - resource managed clk_register()
2759  * @dev: device that is registering this clock
2760  * @hw: link to hardware-specific clock data
2761  *
2762  * Managed clk_register(). Clocks returned from this function are
2763  * automatically clk_unregister()ed on driver detach. See clk_register() for
2764  * more information.
2765  */
2766 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2767 {
2768 	struct clk *clk;
2769 	struct clk **clkp;
2770 
2771 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2772 	if (!clkp)
2773 		return ERR_PTR(-ENOMEM);
2774 
2775 	clk = clk_register(dev, hw);
2776 	if (!IS_ERR(clk)) {
2777 		*clkp = clk;
2778 		devres_add(dev, clkp);
2779 	} else {
2780 		devres_free(clkp);
2781 	}
2782 
2783 	return clk;
2784 }
2785 EXPORT_SYMBOL_GPL(devm_clk_register);
2786 
2787 /**
2788  * devm_clk_hw_register - resource managed clk_hw_register()
2789  * @dev: device that is registering this clock
2790  * @hw: link to hardware-specific clock data
2791  *
2792  * Managed clk_hw_register(). Clocks registered by this function are
2793  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
2794  * for more information.
2795  */
2796 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
2797 {
2798 	struct clk_hw **hwp;
2799 	int ret;
2800 
2801 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
2802 	if (!hwp)
2803 		return -ENOMEM;
2804 
2805 	ret = clk_hw_register(dev, hw);
2806 	if (!ret) {
2807 		*hwp = hw;
2808 		devres_add(dev, hwp);
2809 	} else {
2810 		devres_free(hwp);
2811 	}
2812 
2813 	return ret;
2814 }
2815 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
2816 
2817 static int devm_clk_match(struct device *dev, void *res, void *data)
2818 {
2819 	struct clk *c = res;
2820 	if (WARN_ON(!c))
2821 		return 0;
2822 	return c == data;
2823 }
2824 
2825 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
2826 {
2827 	struct clk_hw *hw = res;
2828 
2829 	if (WARN_ON(!hw))
2830 		return 0;
2831 	return hw == data;
2832 }
2833 
2834 /**
2835  * devm_clk_unregister - resource managed clk_unregister()
2836  * @clk: clock to unregister
2837  *
2838  * Deallocate a clock allocated with devm_clk_register(). Normally
2839  * this function will not need to be called and the resource management
2840  * code will ensure that the resource is freed.
2841  */
2842 void devm_clk_unregister(struct device *dev, struct clk *clk)
2843 {
2844 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2845 }
2846 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2847 
2848 /**
2849  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
2850  * @dev: device that is unregistering the hardware-specific clock data
2851  * @hw: link to hardware-specific clock data
2852  *
2853  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
2854  * this function will not need to be called and the resource management
2855  * code will ensure that the resource is freed.
2856  */
2857 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
2858 {
2859 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
2860 				hw));
2861 }
2862 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
2863 
2864 /*
2865  * clkdev helpers
2866  */
2867 int __clk_get(struct clk *clk)
2868 {
2869 	struct clk_core *core = !clk ? NULL : clk->core;
2870 
2871 	if (core) {
2872 		if (!try_module_get(core->owner))
2873 			return 0;
2874 
2875 		kref_get(&core->ref);
2876 	}
2877 	return 1;
2878 }
2879 
2880 void __clk_put(struct clk *clk)
2881 {
2882 	struct module *owner;
2883 
2884 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2885 		return;
2886 
2887 	clk_prepare_lock();
2888 
2889 	hlist_del(&clk->clks_node);
2890 	if (clk->min_rate > clk->core->req_rate ||
2891 	    clk->max_rate < clk->core->req_rate)
2892 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2893 
2894 	owner = clk->core->owner;
2895 	kref_put(&clk->core->ref, __clk_release);
2896 
2897 	clk_prepare_unlock();
2898 
2899 	module_put(owner);
2900 
2901 	kfree(clk);
2902 }
2903 
2904 /***        clk rate change notifiers        ***/
2905 
2906 /**
2907  * clk_notifier_register - add a clk rate change notifier
2908  * @clk: struct clk * to watch
2909  * @nb: struct notifier_block * with callback info
2910  *
2911  * Request notification when clk's rate changes.  This uses an SRCU
2912  * notifier because we want it to block and notifier unregistrations are
2913  * uncommon.  The callbacks associated with the notifier must not
2914  * re-enter into the clk framework by calling any top-level clk APIs;
2915  * this will cause a nested prepare_lock mutex.
2916  *
2917  * In all notification cases (pre, post and abort rate change) the original
2918  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
2919  * and the new frequency is passed via struct clk_notifier_data.new_rate.
2920  *
2921  * clk_notifier_register() must be called from non-atomic context.
2922  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2923  * allocation failure; otherwise, passes along the return value of
2924  * srcu_notifier_chain_register().
2925  */
2926 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2927 {
2928 	struct clk_notifier *cn;
2929 	int ret = -ENOMEM;
2930 
2931 	if (!clk || !nb)
2932 		return -EINVAL;
2933 
2934 	clk_prepare_lock();
2935 
2936 	/* search the list of notifiers for this clk */
2937 	list_for_each_entry(cn, &clk_notifier_list, node)
2938 		if (cn->clk == clk)
2939 			break;
2940 
2941 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2942 	if (cn->clk != clk) {
2943 		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2944 		if (!cn)
2945 			goto out;
2946 
2947 		cn->clk = clk;
2948 		srcu_init_notifier_head(&cn->notifier_head);
2949 
2950 		list_add(&cn->node, &clk_notifier_list);
2951 	}
2952 
2953 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2954 
2955 	clk->core->notifier_count++;
2956 
2957 out:
2958 	clk_prepare_unlock();
2959 
2960 	return ret;
2961 }
2962 EXPORT_SYMBOL_GPL(clk_notifier_register);
2963 
2964 /**
2965  * clk_notifier_unregister - remove a clk rate change notifier
2966  * @clk: struct clk *
2967  * @nb: struct notifier_block * with callback info
2968  *
2969  * Request no further notification for changes to 'clk' and frees memory
2970  * allocated in clk_notifier_register.
2971  *
2972  * Returns -EINVAL if called with null arguments; otherwise, passes
2973  * along the return value of srcu_notifier_chain_unregister().
2974  */
2975 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2976 {
2977 	struct clk_notifier *cn = NULL;
2978 	int ret = -EINVAL;
2979 
2980 	if (!clk || !nb)
2981 		return -EINVAL;
2982 
2983 	clk_prepare_lock();
2984 
2985 	list_for_each_entry(cn, &clk_notifier_list, node)
2986 		if (cn->clk == clk)
2987 			break;
2988 
2989 	if (cn->clk == clk) {
2990 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2991 
2992 		clk->core->notifier_count--;
2993 
2994 		/* XXX the notifier code should handle this better */
2995 		if (!cn->notifier_head.head) {
2996 			srcu_cleanup_notifier_head(&cn->notifier_head);
2997 			list_del(&cn->node);
2998 			kfree(cn);
2999 		}
3000 
3001 	} else {
3002 		ret = -ENOENT;
3003 	}
3004 
3005 	clk_prepare_unlock();
3006 
3007 	return ret;
3008 }
3009 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3010 
3011 #ifdef CONFIG_OF
3012 /**
3013  * struct of_clk_provider - Clock provider registration structure
3014  * @link: Entry in global list of clock providers
3015  * @node: Pointer to device tree node of clock provider
3016  * @get: Get clock callback.  Returns NULL or a struct clk for the
3017  *       given clock specifier
3018  * @data: context pointer to be passed into @get callback
3019  */
3020 struct of_clk_provider {
3021 	struct list_head link;
3022 
3023 	struct device_node *node;
3024 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3025 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3026 	void *data;
3027 };
3028 
3029 static const struct of_device_id __clk_of_table_sentinel
3030 	__used __section(__clk_of_table_end);
3031 
3032 static LIST_HEAD(of_clk_providers);
3033 static DEFINE_MUTEX(of_clk_mutex);
3034 
3035 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3036 				     void *data)
3037 {
3038 	return data;
3039 }
3040 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3041 
3042 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3043 {
3044 	return data;
3045 }
3046 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3047 
3048 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3049 {
3050 	struct clk_onecell_data *clk_data = data;
3051 	unsigned int idx = clkspec->args[0];
3052 
3053 	if (idx >= clk_data->clk_num) {
3054 		pr_err("%s: invalid clock index %u\n", __func__, idx);
3055 		return ERR_PTR(-EINVAL);
3056 	}
3057 
3058 	return clk_data->clks[idx];
3059 }
3060 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3061 
3062 struct clk_hw *
3063 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3064 {
3065 	struct clk_hw_onecell_data *hw_data = data;
3066 	unsigned int idx = clkspec->args[0];
3067 
3068 	if (idx >= hw_data->num) {
3069 		pr_err("%s: invalid index %u\n", __func__, idx);
3070 		return ERR_PTR(-EINVAL);
3071 	}
3072 
3073 	return hw_data->hws[idx];
3074 }
3075 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3076 
3077 /**
3078  * of_clk_add_provider() - Register a clock provider for a node
3079  * @np: Device node pointer associated with clock provider
3080  * @clk_src_get: callback for decoding clock
3081  * @data: context pointer for @clk_src_get callback.
3082  */
3083 int of_clk_add_provider(struct device_node *np,
3084 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3085 						   void *data),
3086 			void *data)
3087 {
3088 	struct of_clk_provider *cp;
3089 	int ret;
3090 
3091 	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
3092 	if (!cp)
3093 		return -ENOMEM;
3094 
3095 	cp->node = of_node_get(np);
3096 	cp->data = data;
3097 	cp->get = clk_src_get;
3098 
3099 	mutex_lock(&of_clk_mutex);
3100 	list_add(&cp->link, &of_clk_providers);
3101 	mutex_unlock(&of_clk_mutex);
3102 	pr_debug("Added clock from %s\n", np->full_name);
3103 
3104 	ret = of_clk_set_defaults(np, true);
3105 	if (ret < 0)
3106 		of_clk_del_provider(np);
3107 
3108 	return ret;
3109 }
3110 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3111 
3112 /**
3113  * of_clk_add_hw_provider() - Register a clock provider for a node
3114  * @np: Device node pointer associated with clock provider
3115  * @get: callback for decoding clk_hw
3116  * @data: context pointer for @get callback.
3117  */
3118 int of_clk_add_hw_provider(struct device_node *np,
3119 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3120 						 void *data),
3121 			   void *data)
3122 {
3123 	struct of_clk_provider *cp;
3124 	int ret;
3125 
3126 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3127 	if (!cp)
3128 		return -ENOMEM;
3129 
3130 	cp->node = of_node_get(np);
3131 	cp->data = data;
3132 	cp->get_hw = get;
3133 
3134 	mutex_lock(&of_clk_mutex);
3135 	list_add(&cp->link, &of_clk_providers);
3136 	mutex_unlock(&of_clk_mutex);
3137 	pr_debug("Added clk_hw provider from %s\n", np->full_name);
3138 
3139 	ret = of_clk_set_defaults(np, true);
3140 	if (ret < 0)
3141 		of_clk_del_provider(np);
3142 
3143 	return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3146 
3147 /**
3148  * of_clk_del_provider() - Remove a previously registered clock provider
3149  * @np: Device node pointer associated with clock provider
3150  */
3151 void of_clk_del_provider(struct device_node *np)
3152 {
3153 	struct of_clk_provider *cp;
3154 
3155 	mutex_lock(&of_clk_mutex);
3156 	list_for_each_entry(cp, &of_clk_providers, link) {
3157 		if (cp->node == np) {
3158 			list_del(&cp->link);
3159 			of_node_put(cp->node);
3160 			kfree(cp);
3161 			break;
3162 		}
3163 	}
3164 	mutex_unlock(&of_clk_mutex);
3165 }
3166 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3167 
3168 static struct clk_hw *
3169 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3170 			      struct of_phandle_args *clkspec)
3171 {
3172 	struct clk *clk;
3173 
3174 	if (provider->get_hw)
3175 		return provider->get_hw(clkspec, provider->data);
3176 
3177 	clk = provider->get(clkspec, provider->data);
3178 	if (IS_ERR(clk))
3179 		return ERR_CAST(clk);
3180 	return __clk_get_hw(clk);
3181 }
3182 
3183 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3184 				       const char *dev_id, const char *con_id)
3185 {
3186 	struct of_clk_provider *provider;
3187 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3188 	struct clk_hw *hw;
3189 
3190 	if (!clkspec)
3191 		return ERR_PTR(-EINVAL);
3192 
3193 	/* Check if we have such a provider in our array */
3194 	mutex_lock(&of_clk_mutex);
3195 	list_for_each_entry(provider, &of_clk_providers, link) {
3196 		if (provider->node == clkspec->np) {
3197 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
3198 			clk = __clk_create_clk(hw, dev_id, con_id);
3199 		}
3200 
3201 		if (!IS_ERR(clk)) {
3202 			if (!__clk_get(clk)) {
3203 				__clk_free_clk(clk);
3204 				clk = ERR_PTR(-ENOENT);
3205 			}
3206 
3207 			break;
3208 		}
3209 	}
3210 	mutex_unlock(&of_clk_mutex);
3211 
3212 	return clk;
3213 }
3214 
3215 /**
3216  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3217  * @clkspec: pointer to a clock specifier data structure
3218  *
3219  * This function looks up a struct clk from the registered list of clock
3220  * providers, an input is a clock specifier data structure as returned
3221  * from the of_parse_phandle_with_args() function call.
3222  */
3223 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3224 {
3225 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3226 }
3227 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3228 
3229 /**
3230  * of_clk_get_parent_count() - Count the number of clocks a device node has
3231  * @np: device node to count
3232  *
3233  * Returns: The number of clocks that are possible parents of this node
3234  */
3235 unsigned int of_clk_get_parent_count(struct device_node *np)
3236 {
3237 	int count;
3238 
3239 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3240 	if (count < 0)
3241 		return 0;
3242 
3243 	return count;
3244 }
3245 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3246 
3247 const char *of_clk_get_parent_name(struct device_node *np, int index)
3248 {
3249 	struct of_phandle_args clkspec;
3250 	struct property *prop;
3251 	const char *clk_name;
3252 	const __be32 *vp;
3253 	u32 pv;
3254 	int rc;
3255 	int count;
3256 	struct clk *clk;
3257 
3258 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3259 					&clkspec);
3260 	if (rc)
3261 		return NULL;
3262 
3263 	index = clkspec.args_count ? clkspec.args[0] : 0;
3264 	count = 0;
3265 
3266 	/* if there is an indices property, use it to transfer the index
3267 	 * specified into an array offset for the clock-output-names property.
3268 	 */
3269 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3270 		if (index == pv) {
3271 			index = count;
3272 			break;
3273 		}
3274 		count++;
3275 	}
3276 	/* We went off the end of 'clock-indices' without finding it */
3277 	if (prop && !vp)
3278 		return NULL;
3279 
3280 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3281 					  index,
3282 					  &clk_name) < 0) {
3283 		/*
3284 		 * Best effort to get the name if the clock has been
3285 		 * registered with the framework. If the clock isn't
3286 		 * registered, we return the node name as the name of
3287 		 * the clock as long as #clock-cells = 0.
3288 		 */
3289 		clk = of_clk_get_from_provider(&clkspec);
3290 		if (IS_ERR(clk)) {
3291 			if (clkspec.args_count == 0)
3292 				clk_name = clkspec.np->name;
3293 			else
3294 				clk_name = NULL;
3295 		} else {
3296 			clk_name = __clk_get_name(clk);
3297 			clk_put(clk);
3298 		}
3299 	}
3300 
3301 
3302 	of_node_put(clkspec.np);
3303 	return clk_name;
3304 }
3305 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3306 
3307 /**
3308  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3309  * number of parents
3310  * @np: Device node pointer associated with clock provider
3311  * @parents: pointer to char array that hold the parents' names
3312  * @size: size of the @parents array
3313  *
3314  * Return: number of parents for the clock node.
3315  */
3316 int of_clk_parent_fill(struct device_node *np, const char **parents,
3317 		       unsigned int size)
3318 {
3319 	unsigned int i = 0;
3320 
3321 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3322 		i++;
3323 
3324 	return i;
3325 }
3326 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3327 
3328 struct clock_provider {
3329 	of_clk_init_cb_t clk_init_cb;
3330 	struct device_node *np;
3331 	struct list_head node;
3332 };
3333 
3334 /*
3335  * This function looks for a parent clock. If there is one, then it
3336  * checks that the provider for this parent clock was initialized, in
3337  * this case the parent clock will be ready.
3338  */
3339 static int parent_ready(struct device_node *np)
3340 {
3341 	int i = 0;
3342 
3343 	while (true) {
3344 		struct clk *clk = of_clk_get(np, i);
3345 
3346 		/* this parent is ready we can check the next one */
3347 		if (!IS_ERR(clk)) {
3348 			clk_put(clk);
3349 			i++;
3350 			continue;
3351 		}
3352 
3353 		/* at least one parent is not ready, we exit now */
3354 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3355 			return 0;
3356 
3357 		/*
3358 		 * Here we make assumption that the device tree is
3359 		 * written correctly. So an error means that there is
3360 		 * no more parent. As we didn't exit yet, then the
3361 		 * previous parent are ready. If there is no clock
3362 		 * parent, no need to wait for them, then we can
3363 		 * consider their absence as being ready
3364 		 */
3365 		return 1;
3366 	}
3367 }
3368 
3369 /**
3370  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3371  * @np: Device node pointer associated with clock provider
3372  * @index: clock index
3373  * @flags: pointer to clk_core->flags
3374  *
3375  * Detects if the clock-critical property exists and, if so, sets the
3376  * corresponding CLK_IS_CRITICAL flag.
3377  *
3378  * Do not use this function. It exists only for legacy Device Tree
3379  * bindings, such as the one-clock-per-node style that are outdated.
3380  * Those bindings typically put all clock data into .dts and the Linux
3381  * driver has no clock data, thus making it impossible to set this flag
3382  * correctly from the driver. Only those drivers may call
3383  * of_clk_detect_critical from their setup functions.
3384  *
3385  * Return: error code or zero on success
3386  */
3387 int of_clk_detect_critical(struct device_node *np,
3388 					  int index, unsigned long *flags)
3389 {
3390 	struct property *prop;
3391 	const __be32 *cur;
3392 	uint32_t idx;
3393 
3394 	if (!np || !flags)
3395 		return -EINVAL;
3396 
3397 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3398 		if (index == idx)
3399 			*flags |= CLK_IS_CRITICAL;
3400 
3401 	return 0;
3402 }
3403 
3404 /**
3405  * of_clk_init() - Scan and init clock providers from the DT
3406  * @matches: array of compatible values and init functions for providers.
3407  *
3408  * This function scans the device tree for matching clock providers
3409  * and calls their initialization functions. It also does it by trying
3410  * to follow the dependencies.
3411  */
3412 void __init of_clk_init(const struct of_device_id *matches)
3413 {
3414 	const struct of_device_id *match;
3415 	struct device_node *np;
3416 	struct clock_provider *clk_provider, *next;
3417 	bool is_init_done;
3418 	bool force = false;
3419 	LIST_HEAD(clk_provider_list);
3420 
3421 	if (!matches)
3422 		matches = &__clk_of_table;
3423 
3424 	/* First prepare the list of the clocks providers */
3425 	for_each_matching_node_and_match(np, matches, &match) {
3426 		struct clock_provider *parent;
3427 
3428 		if (!of_device_is_available(np))
3429 			continue;
3430 
3431 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3432 		if (!parent) {
3433 			list_for_each_entry_safe(clk_provider, next,
3434 						 &clk_provider_list, node) {
3435 				list_del(&clk_provider->node);
3436 				of_node_put(clk_provider->np);
3437 				kfree(clk_provider);
3438 			}
3439 			of_node_put(np);
3440 			return;
3441 		}
3442 
3443 		parent->clk_init_cb = match->data;
3444 		parent->np = of_node_get(np);
3445 		list_add_tail(&parent->node, &clk_provider_list);
3446 	}
3447 
3448 	while (!list_empty(&clk_provider_list)) {
3449 		is_init_done = false;
3450 		list_for_each_entry_safe(clk_provider, next,
3451 					&clk_provider_list, node) {
3452 			if (force || parent_ready(clk_provider->np)) {
3453 
3454 				/* Don't populate platform devices */
3455 				of_node_set_flag(clk_provider->np,
3456 						 OF_POPULATED);
3457 
3458 				clk_provider->clk_init_cb(clk_provider->np);
3459 				of_clk_set_defaults(clk_provider->np, true);
3460 
3461 				list_del(&clk_provider->node);
3462 				of_node_put(clk_provider->np);
3463 				kfree(clk_provider);
3464 				is_init_done = true;
3465 			}
3466 		}
3467 
3468 		/*
3469 		 * We didn't manage to initialize any of the
3470 		 * remaining providers during the last loop, so now we
3471 		 * initialize all the remaining ones unconditionally
3472 		 * in case the clock parent was not mandatory
3473 		 */
3474 		if (!is_init_done)
3475 			force = true;
3476 	}
3477 }
3478 #endif
3479