xref: /linux/drivers/clk/clk.c (revision cc8c418b4fc09ed58ddd27b8e90ec797e9ca1e67)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static const struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	if (!core->rpm_enabled)
112 		return 0;
113 
114 	return pm_runtime_resume_and_get(core->dev);
115 }
116 
117 static void clk_pm_runtime_put(struct clk_core *core)
118 {
119 	if (!core->rpm_enabled)
120 		return;
121 
122 	pm_runtime_put_sync(core->dev);
123 }
124 
125 /***           locking             ***/
126 static void clk_prepare_lock(void)
127 {
128 	if (!mutex_trylock(&prepare_lock)) {
129 		if (prepare_owner == current) {
130 			prepare_refcnt++;
131 			return;
132 		}
133 		mutex_lock(&prepare_lock);
134 	}
135 	WARN_ON_ONCE(prepare_owner != NULL);
136 	WARN_ON_ONCE(prepare_refcnt != 0);
137 	prepare_owner = current;
138 	prepare_refcnt = 1;
139 }
140 
141 static void clk_prepare_unlock(void)
142 {
143 	WARN_ON_ONCE(prepare_owner != current);
144 	WARN_ON_ONCE(prepare_refcnt == 0);
145 
146 	if (--prepare_refcnt)
147 		return;
148 	prepare_owner = NULL;
149 	mutex_unlock(&prepare_lock);
150 }
151 
152 static unsigned long clk_enable_lock(void)
153 	__acquires(enable_lock)
154 {
155 	unsigned long flags;
156 
157 	/*
158 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
159 	 * we already hold the lock. So, in that case, we rely only on
160 	 * reference counting.
161 	 */
162 	if (!IS_ENABLED(CONFIG_SMP) ||
163 	    !spin_trylock_irqsave(&enable_lock, flags)) {
164 		if (enable_owner == current) {
165 			enable_refcnt++;
166 			__acquire(enable_lock);
167 			if (!IS_ENABLED(CONFIG_SMP))
168 				local_save_flags(flags);
169 			return flags;
170 		}
171 		spin_lock_irqsave(&enable_lock, flags);
172 	}
173 	WARN_ON_ONCE(enable_owner != NULL);
174 	WARN_ON_ONCE(enable_refcnt != 0);
175 	enable_owner = current;
176 	enable_refcnt = 1;
177 	return flags;
178 }
179 
180 static void clk_enable_unlock(unsigned long flags)
181 	__releases(enable_lock)
182 {
183 	WARN_ON_ONCE(enable_owner != current);
184 	WARN_ON_ONCE(enable_refcnt == 0);
185 
186 	if (--enable_refcnt) {
187 		__release(enable_lock);
188 		return;
189 	}
190 	enable_owner = NULL;
191 	spin_unlock_irqrestore(&enable_lock, flags);
192 }
193 
194 static bool clk_core_rate_is_protected(struct clk_core *core)
195 {
196 	return core->protect_count;
197 }
198 
199 static bool clk_core_is_prepared(struct clk_core *core)
200 {
201 	bool ret = false;
202 
203 	/*
204 	 * .is_prepared is optional for clocks that can prepare
205 	 * fall back to software usage counter if it is missing
206 	 */
207 	if (!core->ops->is_prepared)
208 		return core->prepare_count;
209 
210 	if (!clk_pm_runtime_get(core)) {
211 		ret = core->ops->is_prepared(core->hw);
212 		clk_pm_runtime_put(core);
213 	}
214 
215 	return ret;
216 }
217 
218 static bool clk_core_is_enabled(struct clk_core *core)
219 {
220 	bool ret = false;
221 
222 	/*
223 	 * .is_enabled is only mandatory for clocks that gate
224 	 * fall back to software usage counter if .is_enabled is missing
225 	 */
226 	if (!core->ops->is_enabled)
227 		return core->enable_count;
228 
229 	/*
230 	 * Check if clock controller's device is runtime active before
231 	 * calling .is_enabled callback. If not, assume that clock is
232 	 * disabled, because we might be called from atomic context, from
233 	 * which pm_runtime_get() is not allowed.
234 	 * This function is called mainly from clk_disable_unused_subtree,
235 	 * which ensures proper runtime pm activation of controller before
236 	 * taking enable spinlock, but the below check is needed if one tries
237 	 * to call it from other places.
238 	 */
239 	if (core->rpm_enabled) {
240 		pm_runtime_get_noresume(core->dev);
241 		if (!pm_runtime_active(core->dev)) {
242 			ret = false;
243 			goto done;
244 		}
245 	}
246 
247 	ret = core->ops->is_enabled(core->hw);
248 done:
249 	if (core->rpm_enabled)
250 		pm_runtime_put(core->dev);
251 
252 	return ret;
253 }
254 
255 /***    helper functions   ***/
256 
257 const char *__clk_get_name(const struct clk *clk)
258 {
259 	return !clk ? NULL : clk->core->name;
260 }
261 EXPORT_SYMBOL_GPL(__clk_get_name);
262 
263 const char *clk_hw_get_name(const struct clk_hw *hw)
264 {
265 	return hw->core->name;
266 }
267 EXPORT_SYMBOL_GPL(clk_hw_get_name);
268 
269 struct clk_hw *__clk_get_hw(struct clk *clk)
270 {
271 	return !clk ? NULL : clk->core->hw;
272 }
273 EXPORT_SYMBOL_GPL(__clk_get_hw);
274 
275 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
276 {
277 	return hw->core->num_parents;
278 }
279 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
280 
281 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
282 {
283 	return hw->core->parent ? hw->core->parent->hw : NULL;
284 }
285 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
286 
287 static struct clk_core *__clk_lookup_subtree(const char *name,
288 					     struct clk_core *core)
289 {
290 	struct clk_core *child;
291 	struct clk_core *ret;
292 
293 	if (!strcmp(core->name, name))
294 		return core;
295 
296 	hlist_for_each_entry(child, &core->children, child_node) {
297 		ret = __clk_lookup_subtree(name, child);
298 		if (ret)
299 			return ret;
300 	}
301 
302 	return NULL;
303 }
304 
305 static struct clk_core *clk_core_lookup(const char *name)
306 {
307 	struct clk_core *root_clk;
308 	struct clk_core *ret;
309 
310 	if (!name)
311 		return NULL;
312 
313 	/* search the 'proper' clk tree first */
314 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
315 		ret = __clk_lookup_subtree(name, root_clk);
316 		if (ret)
317 			return ret;
318 	}
319 
320 	/* if not found, then search the orphan tree */
321 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
322 		ret = __clk_lookup_subtree(name, root_clk);
323 		if (ret)
324 			return ret;
325 	}
326 
327 	return NULL;
328 }
329 
330 #ifdef CONFIG_OF
331 static int of_parse_clkspec(const struct device_node *np, int index,
332 			    const char *name, struct of_phandle_args *out_args);
333 static struct clk_hw *
334 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
335 #else
336 static inline int of_parse_clkspec(const struct device_node *np, int index,
337 				   const char *name,
338 				   struct of_phandle_args *out_args)
339 {
340 	return -ENOENT;
341 }
342 static inline struct clk_hw *
343 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
344 {
345 	return ERR_PTR(-ENOENT);
346 }
347 #endif
348 
349 /**
350  * clk_core_get - Find the clk_core parent of a clk
351  * @core: clk to find parent of
352  * @p_index: parent index to search for
353  *
354  * This is the preferred method for clk providers to find the parent of a
355  * clk when that parent is external to the clk controller. The parent_names
356  * array is indexed and treated as a local name matching a string in the device
357  * node's 'clock-names' property or as the 'con_id' matching the device's
358  * dev_name() in a clk_lookup. This allows clk providers to use their own
359  * namespace instead of looking for a globally unique parent string.
360  *
361  * For example the following DT snippet would allow a clock registered by the
362  * clock-controller@c001 that has a clk_init_data::parent_data array
363  * with 'xtal' in the 'name' member to find the clock provided by the
364  * clock-controller@f00abcd without needing to get the globally unique name of
365  * the xtal clk.
366  *
367  *      parent: clock-controller@f00abcd {
368  *              reg = <0xf00abcd 0xabcd>;
369  *              #clock-cells = <0>;
370  *      };
371  *
372  *      clock-controller@c001 {
373  *              reg = <0xc001 0xf00d>;
374  *              clocks = <&parent>;
375  *              clock-names = "xtal";
376  *              #clock-cells = <1>;
377  *      };
378  *
379  * Returns: -ENOENT when the provider can't be found or the clk doesn't
380  * exist in the provider or the name can't be found in the DT node or
381  * in a clkdev lookup. NULL when the provider knows about the clk but it
382  * isn't provided on this system.
383  * A valid clk_core pointer when the clk can be found in the provider.
384  */
385 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
386 {
387 	const char *name = core->parents[p_index].fw_name;
388 	int index = core->parents[p_index].index;
389 	struct clk_hw *hw = ERR_PTR(-ENOENT);
390 	struct device *dev = core->dev;
391 	const char *dev_id = dev ? dev_name(dev) : NULL;
392 	struct device_node *np = core->of_node;
393 	struct of_phandle_args clkspec;
394 
395 	if (np && (name || index >= 0) &&
396 	    !of_parse_clkspec(np, index, name, &clkspec)) {
397 		hw = of_clk_get_hw_from_clkspec(&clkspec);
398 		of_node_put(clkspec.np);
399 	} else if (name) {
400 		/*
401 		 * If the DT search above couldn't find the provider fallback to
402 		 * looking up via clkdev based clk_lookups.
403 		 */
404 		hw = clk_find_hw(dev_id, name);
405 	}
406 
407 	if (IS_ERR(hw))
408 		return ERR_CAST(hw);
409 
410 	return hw->core;
411 }
412 
413 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
414 {
415 	struct clk_parent_map *entry = &core->parents[index];
416 	struct clk_core *parent;
417 
418 	if (entry->hw) {
419 		parent = entry->hw->core;
420 	} else {
421 		parent = clk_core_get(core, index);
422 		if (PTR_ERR(parent) == -ENOENT && entry->name)
423 			parent = clk_core_lookup(entry->name);
424 	}
425 
426 	/*
427 	 * We have a direct reference but it isn't registered yet?
428 	 * Orphan it and let clk_reparent() update the orphan status
429 	 * when the parent is registered.
430 	 */
431 	if (!parent)
432 		parent = ERR_PTR(-EPROBE_DEFER);
433 
434 	/* Only cache it if it's not an error */
435 	if (!IS_ERR(parent))
436 		entry->core = parent;
437 }
438 
439 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
440 							 u8 index)
441 {
442 	if (!core || index >= core->num_parents || !core->parents)
443 		return NULL;
444 
445 	if (!core->parents[index].core)
446 		clk_core_fill_parent_index(core, index);
447 
448 	return core->parents[index].core;
449 }
450 
451 struct clk_hw *
452 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
453 {
454 	struct clk_core *parent;
455 
456 	parent = clk_core_get_parent_by_index(hw->core, index);
457 
458 	return !parent ? NULL : parent->hw;
459 }
460 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
461 
462 unsigned int __clk_get_enable_count(struct clk *clk)
463 {
464 	return !clk ? 0 : clk->core->enable_count;
465 }
466 
467 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
468 {
469 	if (!core)
470 		return 0;
471 
472 	if (!core->num_parents || core->parent)
473 		return core->rate;
474 
475 	/*
476 	 * Clk must have a parent because num_parents > 0 but the parent isn't
477 	 * known yet. Best to return 0 as the rate of this clk until we can
478 	 * properly recalc the rate based on the parent's rate.
479 	 */
480 	return 0;
481 }
482 
483 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
484 {
485 	return clk_core_get_rate_nolock(hw->core);
486 }
487 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
488 
489 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
490 {
491 	if (!core)
492 		return 0;
493 
494 	return core->accuracy;
495 }
496 
497 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
498 {
499 	return hw->core->flags;
500 }
501 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
502 
503 bool clk_hw_is_prepared(const struct clk_hw *hw)
504 {
505 	return clk_core_is_prepared(hw->core);
506 }
507 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
508 
509 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
510 {
511 	return clk_core_rate_is_protected(hw->core);
512 }
513 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
514 
515 bool clk_hw_is_enabled(const struct clk_hw *hw)
516 {
517 	return clk_core_is_enabled(hw->core);
518 }
519 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
520 
521 bool __clk_is_enabled(struct clk *clk)
522 {
523 	if (!clk)
524 		return false;
525 
526 	return clk_core_is_enabled(clk->core);
527 }
528 EXPORT_SYMBOL_GPL(__clk_is_enabled);
529 
530 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
531 			   unsigned long best, unsigned long flags)
532 {
533 	if (flags & CLK_MUX_ROUND_CLOSEST)
534 		return abs(now - rate) < abs(best - rate);
535 
536 	return now <= rate && now > best;
537 }
538 
539 static void clk_core_init_rate_req(struct clk_core * const core,
540 				   struct clk_rate_request *req,
541 				   unsigned long rate);
542 
543 static int clk_core_round_rate_nolock(struct clk_core *core,
544 				      struct clk_rate_request *req);
545 
546 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
547 {
548 	struct clk_core *tmp;
549 	unsigned int i;
550 
551 	/* Optimize for the case where the parent is already the parent. */
552 	if (core->parent == parent)
553 		return true;
554 
555 	for (i = 0; i < core->num_parents; i++) {
556 		tmp = clk_core_get_parent_by_index(core, i);
557 		if (!tmp)
558 			continue;
559 
560 		if (tmp == parent)
561 			return true;
562 	}
563 
564 	return false;
565 }
566 
567 static void
568 clk_core_forward_rate_req(struct clk_core *core,
569 			  const struct clk_rate_request *old_req,
570 			  struct clk_core *parent,
571 			  struct clk_rate_request *req,
572 			  unsigned long parent_rate)
573 {
574 	if (WARN_ON(!clk_core_has_parent(core, parent)))
575 		return;
576 
577 	clk_core_init_rate_req(parent, req, parent_rate);
578 
579 	if (req->min_rate < old_req->min_rate)
580 		req->min_rate = old_req->min_rate;
581 
582 	if (req->max_rate > old_req->max_rate)
583 		req->max_rate = old_req->max_rate;
584 }
585 
586 int clk_mux_determine_rate_flags(struct clk_hw *hw,
587 				 struct clk_rate_request *req,
588 				 unsigned long flags)
589 {
590 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
591 	int i, num_parents, ret;
592 	unsigned long best = 0;
593 
594 	/* if NO_REPARENT flag set, pass through to current parent */
595 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
596 		parent = core->parent;
597 		if (core->flags & CLK_SET_RATE_PARENT) {
598 			struct clk_rate_request parent_req;
599 
600 			if (!parent) {
601 				req->rate = 0;
602 				return 0;
603 			}
604 
605 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
606 			ret = clk_core_round_rate_nolock(parent, &parent_req);
607 			if (ret)
608 				return ret;
609 
610 			best = parent_req.rate;
611 		} else if (parent) {
612 			best = clk_core_get_rate_nolock(parent);
613 		} else {
614 			best = clk_core_get_rate_nolock(core);
615 		}
616 
617 		goto out;
618 	}
619 
620 	/* find the parent that can provide the fastest rate <= rate */
621 	num_parents = core->num_parents;
622 	for (i = 0; i < num_parents; i++) {
623 		unsigned long parent_rate;
624 
625 		parent = clk_core_get_parent_by_index(core, i);
626 		if (!parent)
627 			continue;
628 
629 		if (core->flags & CLK_SET_RATE_PARENT) {
630 			struct clk_rate_request parent_req;
631 
632 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
633 			ret = clk_core_round_rate_nolock(parent, &parent_req);
634 			if (ret)
635 				continue;
636 
637 			parent_rate = parent_req.rate;
638 		} else {
639 			parent_rate = clk_core_get_rate_nolock(parent);
640 		}
641 
642 		if (mux_is_better_rate(req->rate, parent_rate,
643 				       best, flags)) {
644 			best_parent = parent;
645 			best = parent_rate;
646 		}
647 	}
648 
649 	if (!best_parent)
650 		return -EINVAL;
651 
652 out:
653 	if (best_parent)
654 		req->best_parent_hw = best_parent->hw;
655 	req->best_parent_rate = best;
656 	req->rate = best;
657 
658 	return 0;
659 }
660 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
661 
662 struct clk *__clk_lookup(const char *name)
663 {
664 	struct clk_core *core = clk_core_lookup(name);
665 
666 	return !core ? NULL : core->hw->clk;
667 }
668 
669 static void clk_core_get_boundaries(struct clk_core *core,
670 				    unsigned long *min_rate,
671 				    unsigned long *max_rate)
672 {
673 	struct clk *clk_user;
674 
675 	lockdep_assert_held(&prepare_lock);
676 
677 	*min_rate = core->min_rate;
678 	*max_rate = core->max_rate;
679 
680 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
681 		*min_rate = max(*min_rate, clk_user->min_rate);
682 
683 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
684 		*max_rate = min(*max_rate, clk_user->max_rate);
685 }
686 
687 /*
688  * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
689  * @hw: the hw clk we want to get the range from
690  * @min_rate: pointer to the variable that will hold the minimum
691  * @max_rate: pointer to the variable that will hold the maximum
692  *
693  * Fills the @min_rate and @max_rate variables with the minimum and
694  * maximum that clock can reach.
695  */
696 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
697 			   unsigned long *max_rate)
698 {
699 	clk_core_get_boundaries(hw->core, min_rate, max_rate);
700 }
701 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
702 
703 static bool clk_core_check_boundaries(struct clk_core *core,
704 				      unsigned long min_rate,
705 				      unsigned long max_rate)
706 {
707 	struct clk *user;
708 
709 	lockdep_assert_held(&prepare_lock);
710 
711 	if (min_rate > core->max_rate || max_rate < core->min_rate)
712 		return false;
713 
714 	hlist_for_each_entry(user, &core->clks, clks_node)
715 		if (min_rate > user->max_rate || max_rate < user->min_rate)
716 			return false;
717 
718 	return true;
719 }
720 
721 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
722 			   unsigned long max_rate)
723 {
724 	hw->core->min_rate = min_rate;
725 	hw->core->max_rate = max_rate;
726 }
727 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
728 
729 /*
730  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
731  * @hw: mux type clk to determine rate on
732  * @req: rate request, also used to return preferred parent and frequencies
733  *
734  * Helper for finding best parent to provide a given frequency. This can be used
735  * directly as a determine_rate callback (e.g. for a mux), or from a more
736  * complex clock that may combine a mux with other operations.
737  *
738  * Returns: 0 on success, -EERROR value on error
739  */
740 int __clk_mux_determine_rate(struct clk_hw *hw,
741 			     struct clk_rate_request *req)
742 {
743 	return clk_mux_determine_rate_flags(hw, req, 0);
744 }
745 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
746 
747 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
748 				     struct clk_rate_request *req)
749 {
750 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
751 }
752 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
753 
754 /***        clk api        ***/
755 
756 static void clk_core_rate_unprotect(struct clk_core *core)
757 {
758 	lockdep_assert_held(&prepare_lock);
759 
760 	if (!core)
761 		return;
762 
763 	if (WARN(core->protect_count == 0,
764 	    "%s already unprotected\n", core->name))
765 		return;
766 
767 	if (--core->protect_count > 0)
768 		return;
769 
770 	clk_core_rate_unprotect(core->parent);
771 }
772 
773 static int clk_core_rate_nuke_protect(struct clk_core *core)
774 {
775 	int ret;
776 
777 	lockdep_assert_held(&prepare_lock);
778 
779 	if (!core)
780 		return -EINVAL;
781 
782 	if (core->protect_count == 0)
783 		return 0;
784 
785 	ret = core->protect_count;
786 	core->protect_count = 1;
787 	clk_core_rate_unprotect(core);
788 
789 	return ret;
790 }
791 
792 /**
793  * clk_rate_exclusive_put - release exclusivity over clock rate control
794  * @clk: the clk over which the exclusivity is released
795  *
796  * clk_rate_exclusive_put() completes a critical section during which a clock
797  * consumer cannot tolerate any other consumer making any operation on the
798  * clock which could result in a rate change or rate glitch. Exclusive clocks
799  * cannot have their rate changed, either directly or indirectly due to changes
800  * further up the parent chain of clocks. As a result, clocks up parent chain
801  * also get under exclusive control of the calling consumer.
802  *
803  * If exlusivity is claimed more than once on clock, even by the same consumer,
804  * the rate effectively gets locked as exclusivity can't be preempted.
805  *
806  * Calls to clk_rate_exclusive_put() must be balanced with calls to
807  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
808  * error status.
809  */
810 void clk_rate_exclusive_put(struct clk *clk)
811 {
812 	if (!clk)
813 		return;
814 
815 	clk_prepare_lock();
816 
817 	/*
818 	 * if there is something wrong with this consumer protect count, stop
819 	 * here before messing with the provider
820 	 */
821 	if (WARN_ON(clk->exclusive_count <= 0))
822 		goto out;
823 
824 	clk_core_rate_unprotect(clk->core);
825 	clk->exclusive_count--;
826 out:
827 	clk_prepare_unlock();
828 }
829 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
830 
831 static void clk_core_rate_protect(struct clk_core *core)
832 {
833 	lockdep_assert_held(&prepare_lock);
834 
835 	if (!core)
836 		return;
837 
838 	if (core->protect_count == 0)
839 		clk_core_rate_protect(core->parent);
840 
841 	core->protect_count++;
842 }
843 
844 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
845 {
846 	lockdep_assert_held(&prepare_lock);
847 
848 	if (!core)
849 		return;
850 
851 	if (count == 0)
852 		return;
853 
854 	clk_core_rate_protect(core);
855 	core->protect_count = count;
856 }
857 
858 /**
859  * clk_rate_exclusive_get - get exclusivity over the clk rate control
860  * @clk: the clk over which the exclusity of rate control is requested
861  *
862  * clk_rate_exclusive_get() begins a critical section during which a clock
863  * consumer cannot tolerate any other consumer making any operation on the
864  * clock which could result in a rate change or rate glitch. Exclusive clocks
865  * cannot have their rate changed, either directly or indirectly due to changes
866  * further up the parent chain of clocks. As a result, clocks up parent chain
867  * also get under exclusive control of the calling consumer.
868  *
869  * If exlusivity is claimed more than once on clock, even by the same consumer,
870  * the rate effectively gets locked as exclusivity can't be preempted.
871  *
872  * Calls to clk_rate_exclusive_get() should be balanced with calls to
873  * clk_rate_exclusive_put(). Calls to this function may sleep.
874  * Returns 0 on success, -EERROR otherwise
875  */
876 int clk_rate_exclusive_get(struct clk *clk)
877 {
878 	if (!clk)
879 		return 0;
880 
881 	clk_prepare_lock();
882 	clk_core_rate_protect(clk->core);
883 	clk->exclusive_count++;
884 	clk_prepare_unlock();
885 
886 	return 0;
887 }
888 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
889 
890 static void clk_core_unprepare(struct clk_core *core)
891 {
892 	lockdep_assert_held(&prepare_lock);
893 
894 	if (!core)
895 		return;
896 
897 	if (WARN(core->prepare_count == 0,
898 	    "%s already unprepared\n", core->name))
899 		return;
900 
901 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
902 	    "Unpreparing critical %s\n", core->name))
903 		return;
904 
905 	if (core->flags & CLK_SET_RATE_GATE)
906 		clk_core_rate_unprotect(core);
907 
908 	if (--core->prepare_count > 0)
909 		return;
910 
911 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
912 
913 	trace_clk_unprepare(core);
914 
915 	if (core->ops->unprepare)
916 		core->ops->unprepare(core->hw);
917 
918 	trace_clk_unprepare_complete(core);
919 	clk_core_unprepare(core->parent);
920 	clk_pm_runtime_put(core);
921 }
922 
923 static void clk_core_unprepare_lock(struct clk_core *core)
924 {
925 	clk_prepare_lock();
926 	clk_core_unprepare(core);
927 	clk_prepare_unlock();
928 }
929 
930 /**
931  * clk_unprepare - undo preparation of a clock source
932  * @clk: the clk being unprepared
933  *
934  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
935  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
936  * if the operation may sleep.  One example is a clk which is accessed over
937  * I2c.  In the complex case a clk gate operation may require a fast and a slow
938  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
939  * exclusive.  In fact clk_disable must be called before clk_unprepare.
940  */
941 void clk_unprepare(struct clk *clk)
942 {
943 	if (IS_ERR_OR_NULL(clk))
944 		return;
945 
946 	clk_core_unprepare_lock(clk->core);
947 }
948 EXPORT_SYMBOL_GPL(clk_unprepare);
949 
950 static int clk_core_prepare(struct clk_core *core)
951 {
952 	int ret = 0;
953 
954 	lockdep_assert_held(&prepare_lock);
955 
956 	if (!core)
957 		return 0;
958 
959 	if (core->prepare_count == 0) {
960 		ret = clk_pm_runtime_get(core);
961 		if (ret)
962 			return ret;
963 
964 		ret = clk_core_prepare(core->parent);
965 		if (ret)
966 			goto runtime_put;
967 
968 		trace_clk_prepare(core);
969 
970 		if (core->ops->prepare)
971 			ret = core->ops->prepare(core->hw);
972 
973 		trace_clk_prepare_complete(core);
974 
975 		if (ret)
976 			goto unprepare;
977 	}
978 
979 	core->prepare_count++;
980 
981 	/*
982 	 * CLK_SET_RATE_GATE is a special case of clock protection
983 	 * Instead of a consumer claiming exclusive rate control, it is
984 	 * actually the provider which prevents any consumer from making any
985 	 * operation which could result in a rate change or rate glitch while
986 	 * the clock is prepared.
987 	 */
988 	if (core->flags & CLK_SET_RATE_GATE)
989 		clk_core_rate_protect(core);
990 
991 	return 0;
992 unprepare:
993 	clk_core_unprepare(core->parent);
994 runtime_put:
995 	clk_pm_runtime_put(core);
996 	return ret;
997 }
998 
999 static int clk_core_prepare_lock(struct clk_core *core)
1000 {
1001 	int ret;
1002 
1003 	clk_prepare_lock();
1004 	ret = clk_core_prepare(core);
1005 	clk_prepare_unlock();
1006 
1007 	return ret;
1008 }
1009 
1010 /**
1011  * clk_prepare - prepare a clock source
1012  * @clk: the clk being prepared
1013  *
1014  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1015  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1016  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1017  * the complex case a clk ungate operation may require a fast and a slow part.
1018  * It is this reason that clk_prepare and clk_enable are not mutually
1019  * exclusive.  In fact clk_prepare must be called before clk_enable.
1020  * Returns 0 on success, -EERROR otherwise.
1021  */
1022 int clk_prepare(struct clk *clk)
1023 {
1024 	if (!clk)
1025 		return 0;
1026 
1027 	return clk_core_prepare_lock(clk->core);
1028 }
1029 EXPORT_SYMBOL_GPL(clk_prepare);
1030 
1031 static void clk_core_disable(struct clk_core *core)
1032 {
1033 	lockdep_assert_held(&enable_lock);
1034 
1035 	if (!core)
1036 		return;
1037 
1038 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1039 		return;
1040 
1041 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1042 	    "Disabling critical %s\n", core->name))
1043 		return;
1044 
1045 	if (--core->enable_count > 0)
1046 		return;
1047 
1048 	trace_clk_disable_rcuidle(core);
1049 
1050 	if (core->ops->disable)
1051 		core->ops->disable(core->hw);
1052 
1053 	trace_clk_disable_complete_rcuidle(core);
1054 
1055 	clk_core_disable(core->parent);
1056 }
1057 
1058 static void clk_core_disable_lock(struct clk_core *core)
1059 {
1060 	unsigned long flags;
1061 
1062 	flags = clk_enable_lock();
1063 	clk_core_disable(core);
1064 	clk_enable_unlock(flags);
1065 }
1066 
1067 /**
1068  * clk_disable - gate a clock
1069  * @clk: the clk being gated
1070  *
1071  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1072  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1073  * clk if the operation is fast and will never sleep.  One example is a
1074  * SoC-internal clk which is controlled via simple register writes.  In the
1075  * complex case a clk gate operation may require a fast and a slow part.  It is
1076  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1077  * In fact clk_disable must be called before clk_unprepare.
1078  */
1079 void clk_disable(struct clk *clk)
1080 {
1081 	if (IS_ERR_OR_NULL(clk))
1082 		return;
1083 
1084 	clk_core_disable_lock(clk->core);
1085 }
1086 EXPORT_SYMBOL_GPL(clk_disable);
1087 
1088 static int clk_core_enable(struct clk_core *core)
1089 {
1090 	int ret = 0;
1091 
1092 	lockdep_assert_held(&enable_lock);
1093 
1094 	if (!core)
1095 		return 0;
1096 
1097 	if (WARN(core->prepare_count == 0,
1098 	    "Enabling unprepared %s\n", core->name))
1099 		return -ESHUTDOWN;
1100 
1101 	if (core->enable_count == 0) {
1102 		ret = clk_core_enable(core->parent);
1103 
1104 		if (ret)
1105 			return ret;
1106 
1107 		trace_clk_enable_rcuidle(core);
1108 
1109 		if (core->ops->enable)
1110 			ret = core->ops->enable(core->hw);
1111 
1112 		trace_clk_enable_complete_rcuidle(core);
1113 
1114 		if (ret) {
1115 			clk_core_disable(core->parent);
1116 			return ret;
1117 		}
1118 	}
1119 
1120 	core->enable_count++;
1121 	return 0;
1122 }
1123 
1124 static int clk_core_enable_lock(struct clk_core *core)
1125 {
1126 	unsigned long flags;
1127 	int ret;
1128 
1129 	flags = clk_enable_lock();
1130 	ret = clk_core_enable(core);
1131 	clk_enable_unlock(flags);
1132 
1133 	return ret;
1134 }
1135 
1136 /**
1137  * clk_gate_restore_context - restore context for poweroff
1138  * @hw: the clk_hw pointer of clock whose state is to be restored
1139  *
1140  * The clock gate restore context function enables or disables
1141  * the gate clocks based on the enable_count. This is done in cases
1142  * where the clock context is lost and based on the enable_count
1143  * the clock either needs to be enabled/disabled. This
1144  * helps restore the state of gate clocks.
1145  */
1146 void clk_gate_restore_context(struct clk_hw *hw)
1147 {
1148 	struct clk_core *core = hw->core;
1149 
1150 	if (core->enable_count)
1151 		core->ops->enable(hw);
1152 	else
1153 		core->ops->disable(hw);
1154 }
1155 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1156 
1157 static int clk_core_save_context(struct clk_core *core)
1158 {
1159 	struct clk_core *child;
1160 	int ret = 0;
1161 
1162 	hlist_for_each_entry(child, &core->children, child_node) {
1163 		ret = clk_core_save_context(child);
1164 		if (ret < 0)
1165 			return ret;
1166 	}
1167 
1168 	if (core->ops && core->ops->save_context)
1169 		ret = core->ops->save_context(core->hw);
1170 
1171 	return ret;
1172 }
1173 
1174 static void clk_core_restore_context(struct clk_core *core)
1175 {
1176 	struct clk_core *child;
1177 
1178 	if (core->ops && core->ops->restore_context)
1179 		core->ops->restore_context(core->hw);
1180 
1181 	hlist_for_each_entry(child, &core->children, child_node)
1182 		clk_core_restore_context(child);
1183 }
1184 
1185 /**
1186  * clk_save_context - save clock context for poweroff
1187  *
1188  * Saves the context of the clock register for powerstates in which the
1189  * contents of the registers will be lost. Occurs deep within the suspend
1190  * code.  Returns 0 on success.
1191  */
1192 int clk_save_context(void)
1193 {
1194 	struct clk_core *clk;
1195 	int ret;
1196 
1197 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1198 		ret = clk_core_save_context(clk);
1199 		if (ret < 0)
1200 			return ret;
1201 	}
1202 
1203 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1204 		ret = clk_core_save_context(clk);
1205 		if (ret < 0)
1206 			return ret;
1207 	}
1208 
1209 	return 0;
1210 }
1211 EXPORT_SYMBOL_GPL(clk_save_context);
1212 
1213 /**
1214  * clk_restore_context - restore clock context after poweroff
1215  *
1216  * Restore the saved clock context upon resume.
1217  *
1218  */
1219 void clk_restore_context(void)
1220 {
1221 	struct clk_core *core;
1222 
1223 	hlist_for_each_entry(core, &clk_root_list, child_node)
1224 		clk_core_restore_context(core);
1225 
1226 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1227 		clk_core_restore_context(core);
1228 }
1229 EXPORT_SYMBOL_GPL(clk_restore_context);
1230 
1231 /**
1232  * clk_enable - ungate a clock
1233  * @clk: the clk being ungated
1234  *
1235  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1236  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1237  * if the operation will never sleep.  One example is a SoC-internal clk which
1238  * is controlled via simple register writes.  In the complex case a clk ungate
1239  * operation may require a fast and a slow part.  It is this reason that
1240  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1241  * must be called before clk_enable.  Returns 0 on success, -EERROR
1242  * otherwise.
1243  */
1244 int clk_enable(struct clk *clk)
1245 {
1246 	if (!clk)
1247 		return 0;
1248 
1249 	return clk_core_enable_lock(clk->core);
1250 }
1251 EXPORT_SYMBOL_GPL(clk_enable);
1252 
1253 /**
1254  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1255  * @clk: clock source
1256  *
1257  * Returns true if clk_prepare() implicitly enables the clock, effectively
1258  * making clk_enable()/clk_disable() no-ops, false otherwise.
1259  *
1260  * This is of interest mainly to power management code where actually
1261  * disabling the clock also requires unpreparing it to have any material
1262  * effect.
1263  *
1264  * Regardless of the value returned here, the caller must always invoke
1265  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1266  * to be right.
1267  */
1268 bool clk_is_enabled_when_prepared(struct clk *clk)
1269 {
1270 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1271 }
1272 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1273 
1274 static int clk_core_prepare_enable(struct clk_core *core)
1275 {
1276 	int ret;
1277 
1278 	ret = clk_core_prepare_lock(core);
1279 	if (ret)
1280 		return ret;
1281 
1282 	ret = clk_core_enable_lock(core);
1283 	if (ret)
1284 		clk_core_unprepare_lock(core);
1285 
1286 	return ret;
1287 }
1288 
1289 static void clk_core_disable_unprepare(struct clk_core *core)
1290 {
1291 	clk_core_disable_lock(core);
1292 	clk_core_unprepare_lock(core);
1293 }
1294 
1295 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1296 {
1297 	struct clk_core *child;
1298 
1299 	lockdep_assert_held(&prepare_lock);
1300 
1301 	hlist_for_each_entry(child, &core->children, child_node)
1302 		clk_unprepare_unused_subtree(child);
1303 
1304 	if (core->prepare_count)
1305 		return;
1306 
1307 	if (core->flags & CLK_IGNORE_UNUSED)
1308 		return;
1309 
1310 	if (clk_pm_runtime_get(core))
1311 		return;
1312 
1313 	if (clk_core_is_prepared(core)) {
1314 		trace_clk_unprepare(core);
1315 		if (core->ops->unprepare_unused)
1316 			core->ops->unprepare_unused(core->hw);
1317 		else if (core->ops->unprepare)
1318 			core->ops->unprepare(core->hw);
1319 		trace_clk_unprepare_complete(core);
1320 	}
1321 
1322 	clk_pm_runtime_put(core);
1323 }
1324 
1325 static void __init clk_disable_unused_subtree(struct clk_core *core)
1326 {
1327 	struct clk_core *child;
1328 	unsigned long flags;
1329 
1330 	lockdep_assert_held(&prepare_lock);
1331 
1332 	hlist_for_each_entry(child, &core->children, child_node)
1333 		clk_disable_unused_subtree(child);
1334 
1335 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1336 		clk_core_prepare_enable(core->parent);
1337 
1338 	if (clk_pm_runtime_get(core))
1339 		goto unprepare_out;
1340 
1341 	flags = clk_enable_lock();
1342 
1343 	if (core->enable_count)
1344 		goto unlock_out;
1345 
1346 	if (core->flags & CLK_IGNORE_UNUSED)
1347 		goto unlock_out;
1348 
1349 	/*
1350 	 * some gate clocks have special needs during the disable-unused
1351 	 * sequence.  call .disable_unused if available, otherwise fall
1352 	 * back to .disable
1353 	 */
1354 	if (clk_core_is_enabled(core)) {
1355 		trace_clk_disable(core);
1356 		if (core->ops->disable_unused)
1357 			core->ops->disable_unused(core->hw);
1358 		else if (core->ops->disable)
1359 			core->ops->disable(core->hw);
1360 		trace_clk_disable_complete(core);
1361 	}
1362 
1363 unlock_out:
1364 	clk_enable_unlock(flags);
1365 	clk_pm_runtime_put(core);
1366 unprepare_out:
1367 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1368 		clk_core_disable_unprepare(core->parent);
1369 }
1370 
1371 static bool clk_ignore_unused __initdata;
1372 static int __init clk_ignore_unused_setup(char *__unused)
1373 {
1374 	clk_ignore_unused = true;
1375 	return 1;
1376 }
1377 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1378 
1379 static int __init clk_disable_unused(void)
1380 {
1381 	struct clk_core *core;
1382 
1383 	if (clk_ignore_unused) {
1384 		pr_warn("clk: Not disabling unused clocks\n");
1385 		return 0;
1386 	}
1387 
1388 	clk_prepare_lock();
1389 
1390 	hlist_for_each_entry(core, &clk_root_list, child_node)
1391 		clk_disable_unused_subtree(core);
1392 
1393 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1394 		clk_disable_unused_subtree(core);
1395 
1396 	hlist_for_each_entry(core, &clk_root_list, child_node)
1397 		clk_unprepare_unused_subtree(core);
1398 
1399 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1400 		clk_unprepare_unused_subtree(core);
1401 
1402 	clk_prepare_unlock();
1403 
1404 	return 0;
1405 }
1406 late_initcall_sync(clk_disable_unused);
1407 
1408 static int clk_core_determine_round_nolock(struct clk_core *core,
1409 					   struct clk_rate_request *req)
1410 {
1411 	long rate;
1412 
1413 	lockdep_assert_held(&prepare_lock);
1414 
1415 	if (!core)
1416 		return 0;
1417 
1418 	/*
1419 	 * Some clock providers hand-craft their clk_rate_requests and
1420 	 * might not fill min_rate and max_rate.
1421 	 *
1422 	 * If it's the case, clamping the rate is equivalent to setting
1423 	 * the rate to 0 which is bad. Skip the clamping but complain so
1424 	 * that it gets fixed, hopefully.
1425 	 */
1426 	if (!req->min_rate && !req->max_rate)
1427 		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1428 			__func__, core->name);
1429 	else
1430 		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1431 
1432 	/*
1433 	 * At this point, core protection will be disabled
1434 	 * - if the provider is not protected at all
1435 	 * - if the calling consumer is the only one which has exclusivity
1436 	 *   over the provider
1437 	 */
1438 	if (clk_core_rate_is_protected(core)) {
1439 		req->rate = core->rate;
1440 	} else if (core->ops->determine_rate) {
1441 		return core->ops->determine_rate(core->hw, req);
1442 	} else if (core->ops->round_rate) {
1443 		rate = core->ops->round_rate(core->hw, req->rate,
1444 					     &req->best_parent_rate);
1445 		if (rate < 0)
1446 			return rate;
1447 
1448 		req->rate = rate;
1449 	} else {
1450 		return -EINVAL;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 static void clk_core_init_rate_req(struct clk_core * const core,
1457 				   struct clk_rate_request *req,
1458 				   unsigned long rate)
1459 {
1460 	struct clk_core *parent;
1461 
1462 	if (WARN_ON(!core || !req))
1463 		return;
1464 
1465 	memset(req, 0, sizeof(*req));
1466 
1467 	req->rate = rate;
1468 	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1469 
1470 	parent = core->parent;
1471 	if (parent) {
1472 		req->best_parent_hw = parent->hw;
1473 		req->best_parent_rate = parent->rate;
1474 	} else {
1475 		req->best_parent_hw = NULL;
1476 		req->best_parent_rate = 0;
1477 	}
1478 }
1479 
1480 /**
1481  * clk_hw_init_rate_request - Initializes a clk_rate_request
1482  * @hw: the clk for which we want to submit a rate request
1483  * @req: the clk_rate_request structure we want to initialise
1484  * @rate: the rate which is to be requested
1485  *
1486  * Initializes a clk_rate_request structure to submit to
1487  * __clk_determine_rate() or similar functions.
1488  */
1489 void clk_hw_init_rate_request(const struct clk_hw *hw,
1490 			      struct clk_rate_request *req,
1491 			      unsigned long rate)
1492 {
1493 	if (WARN_ON(!hw || !req))
1494 		return;
1495 
1496 	clk_core_init_rate_req(hw->core, req, rate);
1497 }
1498 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1499 
1500 /**
1501  * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1502  * @hw: the original clock that got the rate request
1503  * @old_req: the original clk_rate_request structure we want to forward
1504  * @parent: the clk we want to forward @old_req to
1505  * @req: the clk_rate_request structure we want to initialise
1506  * @parent_rate: The rate which is to be requested to @parent
1507  *
1508  * Initializes a clk_rate_request structure to submit to a clock parent
1509  * in __clk_determine_rate() or similar functions.
1510  */
1511 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1512 				 const struct clk_rate_request *old_req,
1513 				 const struct clk_hw *parent,
1514 				 struct clk_rate_request *req,
1515 				 unsigned long parent_rate)
1516 {
1517 	if (WARN_ON(!hw || !old_req || !parent || !req))
1518 		return;
1519 
1520 	clk_core_forward_rate_req(hw->core, old_req,
1521 				  parent->core, req,
1522 				  parent_rate);
1523 }
1524 
1525 static bool clk_core_can_round(struct clk_core * const core)
1526 {
1527 	return core->ops->determine_rate || core->ops->round_rate;
1528 }
1529 
1530 static int clk_core_round_rate_nolock(struct clk_core *core,
1531 				      struct clk_rate_request *req)
1532 {
1533 	int ret;
1534 
1535 	lockdep_assert_held(&prepare_lock);
1536 
1537 	if (!core) {
1538 		req->rate = 0;
1539 		return 0;
1540 	}
1541 
1542 	if (clk_core_can_round(core))
1543 		return clk_core_determine_round_nolock(core, req);
1544 
1545 	if (core->flags & CLK_SET_RATE_PARENT) {
1546 		struct clk_rate_request parent_req;
1547 
1548 		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1549 		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1550 		if (ret)
1551 			return ret;
1552 
1553 		req->best_parent_rate = parent_req.rate;
1554 		req->rate = parent_req.rate;
1555 
1556 		return 0;
1557 	}
1558 
1559 	req->rate = core->rate;
1560 	return 0;
1561 }
1562 
1563 /**
1564  * __clk_determine_rate - get the closest rate actually supported by a clock
1565  * @hw: determine the rate of this clock
1566  * @req: target rate request
1567  *
1568  * Useful for clk_ops such as .set_rate and .determine_rate.
1569  */
1570 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1571 {
1572 	if (!hw) {
1573 		req->rate = 0;
1574 		return 0;
1575 	}
1576 
1577 	return clk_core_round_rate_nolock(hw->core, req);
1578 }
1579 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1580 
1581 /**
1582  * clk_hw_round_rate() - round the given rate for a hw clk
1583  * @hw: the hw clk for which we are rounding a rate
1584  * @rate: the rate which is to be rounded
1585  *
1586  * Takes in a rate as input and rounds it to a rate that the clk can actually
1587  * use.
1588  *
1589  * Context: prepare_lock must be held.
1590  *          For clk providers to call from within clk_ops such as .round_rate,
1591  *          .determine_rate.
1592  *
1593  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1594  *         else returns the parent rate.
1595  */
1596 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1597 {
1598 	int ret;
1599 	struct clk_rate_request req;
1600 
1601 	clk_core_init_rate_req(hw->core, &req, rate);
1602 
1603 	ret = clk_core_round_rate_nolock(hw->core, &req);
1604 	if (ret)
1605 		return 0;
1606 
1607 	return req.rate;
1608 }
1609 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1610 
1611 /**
1612  * clk_round_rate - round the given rate for a clk
1613  * @clk: the clk for which we are rounding a rate
1614  * @rate: the rate which is to be rounded
1615  *
1616  * Takes in a rate as input and rounds it to a rate that the clk can actually
1617  * use which is then returned.  If clk doesn't support round_rate operation
1618  * then the parent rate is returned.
1619  */
1620 long clk_round_rate(struct clk *clk, unsigned long rate)
1621 {
1622 	struct clk_rate_request req;
1623 	int ret;
1624 
1625 	if (!clk)
1626 		return 0;
1627 
1628 	clk_prepare_lock();
1629 
1630 	if (clk->exclusive_count)
1631 		clk_core_rate_unprotect(clk->core);
1632 
1633 	clk_core_init_rate_req(clk->core, &req, rate);
1634 
1635 	ret = clk_core_round_rate_nolock(clk->core, &req);
1636 
1637 	if (clk->exclusive_count)
1638 		clk_core_rate_protect(clk->core);
1639 
1640 	clk_prepare_unlock();
1641 
1642 	if (ret)
1643 		return ret;
1644 
1645 	return req.rate;
1646 }
1647 EXPORT_SYMBOL_GPL(clk_round_rate);
1648 
1649 /**
1650  * __clk_notify - call clk notifier chain
1651  * @core: clk that is changing rate
1652  * @msg: clk notifier type (see include/linux/clk.h)
1653  * @old_rate: old clk rate
1654  * @new_rate: new clk rate
1655  *
1656  * Triggers a notifier call chain on the clk rate-change notification
1657  * for 'clk'.  Passes a pointer to the struct clk and the previous
1658  * and current rates to the notifier callback.  Intended to be called by
1659  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1660  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1661  * a driver returns that.
1662  */
1663 static int __clk_notify(struct clk_core *core, unsigned long msg,
1664 		unsigned long old_rate, unsigned long new_rate)
1665 {
1666 	struct clk_notifier *cn;
1667 	struct clk_notifier_data cnd;
1668 	int ret = NOTIFY_DONE;
1669 
1670 	cnd.old_rate = old_rate;
1671 	cnd.new_rate = new_rate;
1672 
1673 	list_for_each_entry(cn, &clk_notifier_list, node) {
1674 		if (cn->clk->core == core) {
1675 			cnd.clk = cn->clk;
1676 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1677 					&cnd);
1678 			if (ret & NOTIFY_STOP_MASK)
1679 				return ret;
1680 		}
1681 	}
1682 
1683 	return ret;
1684 }
1685 
1686 /**
1687  * __clk_recalc_accuracies
1688  * @core: first clk in the subtree
1689  *
1690  * Walks the subtree of clks starting with clk and recalculates accuracies as
1691  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1692  * callback then it is assumed that the clock will take on the accuracy of its
1693  * parent.
1694  */
1695 static void __clk_recalc_accuracies(struct clk_core *core)
1696 {
1697 	unsigned long parent_accuracy = 0;
1698 	struct clk_core *child;
1699 
1700 	lockdep_assert_held(&prepare_lock);
1701 
1702 	if (core->parent)
1703 		parent_accuracy = core->parent->accuracy;
1704 
1705 	if (core->ops->recalc_accuracy)
1706 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1707 							  parent_accuracy);
1708 	else
1709 		core->accuracy = parent_accuracy;
1710 
1711 	hlist_for_each_entry(child, &core->children, child_node)
1712 		__clk_recalc_accuracies(child);
1713 }
1714 
1715 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1716 {
1717 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1718 		__clk_recalc_accuracies(core);
1719 
1720 	return clk_core_get_accuracy_no_lock(core);
1721 }
1722 
1723 /**
1724  * clk_get_accuracy - return the accuracy of clk
1725  * @clk: the clk whose accuracy is being returned
1726  *
1727  * Simply returns the cached accuracy of the clk, unless
1728  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1729  * issued.
1730  * If clk is NULL then returns 0.
1731  */
1732 long clk_get_accuracy(struct clk *clk)
1733 {
1734 	long accuracy;
1735 
1736 	if (!clk)
1737 		return 0;
1738 
1739 	clk_prepare_lock();
1740 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1741 	clk_prepare_unlock();
1742 
1743 	return accuracy;
1744 }
1745 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1746 
1747 static unsigned long clk_recalc(struct clk_core *core,
1748 				unsigned long parent_rate)
1749 {
1750 	unsigned long rate = parent_rate;
1751 
1752 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1753 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1754 		clk_pm_runtime_put(core);
1755 	}
1756 	return rate;
1757 }
1758 
1759 /**
1760  * __clk_recalc_rates
1761  * @core: first clk in the subtree
1762  * @update_req: Whether req_rate should be updated with the new rate
1763  * @msg: notification type (see include/linux/clk.h)
1764  *
1765  * Walks the subtree of clks starting with clk and recalculates rates as it
1766  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1767  * it is assumed that the clock will take on the rate of its parent.
1768  *
1769  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1770  * if necessary.
1771  */
1772 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1773 			       unsigned long msg)
1774 {
1775 	unsigned long old_rate;
1776 	unsigned long parent_rate = 0;
1777 	struct clk_core *child;
1778 
1779 	lockdep_assert_held(&prepare_lock);
1780 
1781 	old_rate = core->rate;
1782 
1783 	if (core->parent)
1784 		parent_rate = core->parent->rate;
1785 
1786 	core->rate = clk_recalc(core, parent_rate);
1787 	if (update_req)
1788 		core->req_rate = core->rate;
1789 
1790 	/*
1791 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1792 	 * & ABORT_RATE_CHANGE notifiers
1793 	 */
1794 	if (core->notifier_count && msg)
1795 		__clk_notify(core, msg, old_rate, core->rate);
1796 
1797 	hlist_for_each_entry(child, &core->children, child_node)
1798 		__clk_recalc_rates(child, update_req, msg);
1799 }
1800 
1801 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1802 {
1803 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1804 		__clk_recalc_rates(core, false, 0);
1805 
1806 	return clk_core_get_rate_nolock(core);
1807 }
1808 
1809 /**
1810  * clk_get_rate - return the rate of clk
1811  * @clk: the clk whose rate is being returned
1812  *
1813  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1814  * is set, which means a recalc_rate will be issued. Can be called regardless of
1815  * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1816  * 0.
1817  */
1818 unsigned long clk_get_rate(struct clk *clk)
1819 {
1820 	unsigned long rate;
1821 
1822 	if (!clk)
1823 		return 0;
1824 
1825 	clk_prepare_lock();
1826 	rate = clk_core_get_rate_recalc(clk->core);
1827 	clk_prepare_unlock();
1828 
1829 	return rate;
1830 }
1831 EXPORT_SYMBOL_GPL(clk_get_rate);
1832 
1833 static int clk_fetch_parent_index(struct clk_core *core,
1834 				  struct clk_core *parent)
1835 {
1836 	int i;
1837 
1838 	if (!parent)
1839 		return -EINVAL;
1840 
1841 	for (i = 0; i < core->num_parents; i++) {
1842 		/* Found it first try! */
1843 		if (core->parents[i].core == parent)
1844 			return i;
1845 
1846 		/* Something else is here, so keep looking */
1847 		if (core->parents[i].core)
1848 			continue;
1849 
1850 		/* Maybe core hasn't been cached but the hw is all we know? */
1851 		if (core->parents[i].hw) {
1852 			if (core->parents[i].hw == parent->hw)
1853 				break;
1854 
1855 			/* Didn't match, but we're expecting a clk_hw */
1856 			continue;
1857 		}
1858 
1859 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1860 		if (parent == clk_core_get(core, i))
1861 			break;
1862 
1863 		/* Fallback to comparing globally unique names */
1864 		if (core->parents[i].name &&
1865 		    !strcmp(parent->name, core->parents[i].name))
1866 			break;
1867 	}
1868 
1869 	if (i == core->num_parents)
1870 		return -EINVAL;
1871 
1872 	core->parents[i].core = parent;
1873 	return i;
1874 }
1875 
1876 /**
1877  * clk_hw_get_parent_index - return the index of the parent clock
1878  * @hw: clk_hw associated with the clk being consumed
1879  *
1880  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1881  * clock does not have a current parent.
1882  */
1883 int clk_hw_get_parent_index(struct clk_hw *hw)
1884 {
1885 	struct clk_hw *parent = clk_hw_get_parent(hw);
1886 
1887 	if (WARN_ON(parent == NULL))
1888 		return -EINVAL;
1889 
1890 	return clk_fetch_parent_index(hw->core, parent->core);
1891 }
1892 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1893 
1894 /*
1895  * Update the orphan status of @core and all its children.
1896  */
1897 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1898 {
1899 	struct clk_core *child;
1900 
1901 	core->orphan = is_orphan;
1902 
1903 	hlist_for_each_entry(child, &core->children, child_node)
1904 		clk_core_update_orphan_status(child, is_orphan);
1905 }
1906 
1907 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1908 {
1909 	bool was_orphan = core->orphan;
1910 
1911 	hlist_del(&core->child_node);
1912 
1913 	if (new_parent) {
1914 		bool becomes_orphan = new_parent->orphan;
1915 
1916 		/* avoid duplicate POST_RATE_CHANGE notifications */
1917 		if (new_parent->new_child == core)
1918 			new_parent->new_child = NULL;
1919 
1920 		hlist_add_head(&core->child_node, &new_parent->children);
1921 
1922 		if (was_orphan != becomes_orphan)
1923 			clk_core_update_orphan_status(core, becomes_orphan);
1924 	} else {
1925 		hlist_add_head(&core->child_node, &clk_orphan_list);
1926 		if (!was_orphan)
1927 			clk_core_update_orphan_status(core, true);
1928 	}
1929 
1930 	core->parent = new_parent;
1931 }
1932 
1933 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1934 					   struct clk_core *parent)
1935 {
1936 	unsigned long flags;
1937 	struct clk_core *old_parent = core->parent;
1938 
1939 	/*
1940 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1941 	 *
1942 	 * 2. Migrate prepare state between parents and prevent race with
1943 	 * clk_enable().
1944 	 *
1945 	 * If the clock is not prepared, then a race with
1946 	 * clk_enable/disable() is impossible since we already have the
1947 	 * prepare lock (future calls to clk_enable() need to be preceded by
1948 	 * a clk_prepare()).
1949 	 *
1950 	 * If the clock is prepared, migrate the prepared state to the new
1951 	 * parent and also protect against a race with clk_enable() by
1952 	 * forcing the clock and the new parent on.  This ensures that all
1953 	 * future calls to clk_enable() are practically NOPs with respect to
1954 	 * hardware and software states.
1955 	 *
1956 	 * See also: Comment for clk_set_parent() below.
1957 	 */
1958 
1959 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1960 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1961 		clk_core_prepare_enable(old_parent);
1962 		clk_core_prepare_enable(parent);
1963 	}
1964 
1965 	/* migrate prepare count if > 0 */
1966 	if (core->prepare_count) {
1967 		clk_core_prepare_enable(parent);
1968 		clk_core_enable_lock(core);
1969 	}
1970 
1971 	/* update the clk tree topology */
1972 	flags = clk_enable_lock();
1973 	clk_reparent(core, parent);
1974 	clk_enable_unlock(flags);
1975 
1976 	return old_parent;
1977 }
1978 
1979 static void __clk_set_parent_after(struct clk_core *core,
1980 				   struct clk_core *parent,
1981 				   struct clk_core *old_parent)
1982 {
1983 	/*
1984 	 * Finish the migration of prepare state and undo the changes done
1985 	 * for preventing a race with clk_enable().
1986 	 */
1987 	if (core->prepare_count) {
1988 		clk_core_disable_lock(core);
1989 		clk_core_disable_unprepare(old_parent);
1990 	}
1991 
1992 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1993 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1994 		clk_core_disable_unprepare(parent);
1995 		clk_core_disable_unprepare(old_parent);
1996 	}
1997 }
1998 
1999 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2000 			    u8 p_index)
2001 {
2002 	unsigned long flags;
2003 	int ret = 0;
2004 	struct clk_core *old_parent;
2005 
2006 	old_parent = __clk_set_parent_before(core, parent);
2007 
2008 	trace_clk_set_parent(core, parent);
2009 
2010 	/* change clock input source */
2011 	if (parent && core->ops->set_parent)
2012 		ret = core->ops->set_parent(core->hw, p_index);
2013 
2014 	trace_clk_set_parent_complete(core, parent);
2015 
2016 	if (ret) {
2017 		flags = clk_enable_lock();
2018 		clk_reparent(core, old_parent);
2019 		clk_enable_unlock(flags);
2020 
2021 		__clk_set_parent_after(core, old_parent, parent);
2022 
2023 		return ret;
2024 	}
2025 
2026 	__clk_set_parent_after(core, parent, old_parent);
2027 
2028 	return 0;
2029 }
2030 
2031 /**
2032  * __clk_speculate_rates
2033  * @core: first clk in the subtree
2034  * @parent_rate: the "future" rate of clk's parent
2035  *
2036  * Walks the subtree of clks starting with clk, speculating rates as it
2037  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2038  *
2039  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2040  * pre-rate change notifications and returns early if no clks in the
2041  * subtree have subscribed to the notifications.  Note that if a clk does not
2042  * implement the .recalc_rate callback then it is assumed that the clock will
2043  * take on the rate of its parent.
2044  */
2045 static int __clk_speculate_rates(struct clk_core *core,
2046 				 unsigned long parent_rate)
2047 {
2048 	struct clk_core *child;
2049 	unsigned long new_rate;
2050 	int ret = NOTIFY_DONE;
2051 
2052 	lockdep_assert_held(&prepare_lock);
2053 
2054 	new_rate = clk_recalc(core, parent_rate);
2055 
2056 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2057 	if (core->notifier_count)
2058 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2059 
2060 	if (ret & NOTIFY_STOP_MASK) {
2061 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2062 				__func__, core->name, ret);
2063 		goto out;
2064 	}
2065 
2066 	hlist_for_each_entry(child, &core->children, child_node) {
2067 		ret = __clk_speculate_rates(child, new_rate);
2068 		if (ret & NOTIFY_STOP_MASK)
2069 			break;
2070 	}
2071 
2072 out:
2073 	return ret;
2074 }
2075 
2076 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2077 			     struct clk_core *new_parent, u8 p_index)
2078 {
2079 	struct clk_core *child;
2080 
2081 	core->new_rate = new_rate;
2082 	core->new_parent = new_parent;
2083 	core->new_parent_index = p_index;
2084 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2085 	core->new_child = NULL;
2086 	if (new_parent && new_parent != core->parent)
2087 		new_parent->new_child = core;
2088 
2089 	hlist_for_each_entry(child, &core->children, child_node) {
2090 		child->new_rate = clk_recalc(child, new_rate);
2091 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2092 	}
2093 }
2094 
2095 /*
2096  * calculate the new rates returning the topmost clock that has to be
2097  * changed.
2098  */
2099 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2100 					   unsigned long rate)
2101 {
2102 	struct clk_core *top = core;
2103 	struct clk_core *old_parent, *parent;
2104 	unsigned long best_parent_rate = 0;
2105 	unsigned long new_rate;
2106 	unsigned long min_rate;
2107 	unsigned long max_rate;
2108 	int p_index = 0;
2109 	long ret;
2110 
2111 	/* sanity */
2112 	if (IS_ERR_OR_NULL(core))
2113 		return NULL;
2114 
2115 	/* save parent rate, if it exists */
2116 	parent = old_parent = core->parent;
2117 	if (parent)
2118 		best_parent_rate = parent->rate;
2119 
2120 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2121 
2122 	/* find the closest rate and parent clk/rate */
2123 	if (clk_core_can_round(core)) {
2124 		struct clk_rate_request req;
2125 
2126 		clk_core_init_rate_req(core, &req, rate);
2127 
2128 		ret = clk_core_determine_round_nolock(core, &req);
2129 		if (ret < 0)
2130 			return NULL;
2131 
2132 		best_parent_rate = req.best_parent_rate;
2133 		new_rate = req.rate;
2134 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2135 
2136 		if (new_rate < min_rate || new_rate > max_rate)
2137 			return NULL;
2138 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2139 		/* pass-through clock without adjustable parent */
2140 		core->new_rate = core->rate;
2141 		return NULL;
2142 	} else {
2143 		/* pass-through clock with adjustable parent */
2144 		top = clk_calc_new_rates(parent, rate);
2145 		new_rate = parent->new_rate;
2146 		goto out;
2147 	}
2148 
2149 	/* some clocks must be gated to change parent */
2150 	if (parent != old_parent &&
2151 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2152 		pr_debug("%s: %s not gated but wants to reparent\n",
2153 			 __func__, core->name);
2154 		return NULL;
2155 	}
2156 
2157 	/* try finding the new parent index */
2158 	if (parent && core->num_parents > 1) {
2159 		p_index = clk_fetch_parent_index(core, parent);
2160 		if (p_index < 0) {
2161 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2162 				 __func__, parent->name, core->name);
2163 			return NULL;
2164 		}
2165 	}
2166 
2167 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2168 	    best_parent_rate != parent->rate)
2169 		top = clk_calc_new_rates(parent, best_parent_rate);
2170 
2171 out:
2172 	clk_calc_subtree(core, new_rate, parent, p_index);
2173 
2174 	return top;
2175 }
2176 
2177 /*
2178  * Notify about rate changes in a subtree. Always walk down the whole tree
2179  * so that in case of an error we can walk down the whole tree again and
2180  * abort the change.
2181  */
2182 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2183 						  unsigned long event)
2184 {
2185 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2186 	int ret = NOTIFY_DONE;
2187 
2188 	if (core->rate == core->new_rate)
2189 		return NULL;
2190 
2191 	if (core->notifier_count) {
2192 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2193 		if (ret & NOTIFY_STOP_MASK)
2194 			fail_clk = core;
2195 	}
2196 
2197 	hlist_for_each_entry(child, &core->children, child_node) {
2198 		/* Skip children who will be reparented to another clock */
2199 		if (child->new_parent && child->new_parent != core)
2200 			continue;
2201 		tmp_clk = clk_propagate_rate_change(child, event);
2202 		if (tmp_clk)
2203 			fail_clk = tmp_clk;
2204 	}
2205 
2206 	/* handle the new child who might not be in core->children yet */
2207 	if (core->new_child) {
2208 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2209 		if (tmp_clk)
2210 			fail_clk = tmp_clk;
2211 	}
2212 
2213 	return fail_clk;
2214 }
2215 
2216 /*
2217  * walk down a subtree and set the new rates notifying the rate
2218  * change on the way
2219  */
2220 static void clk_change_rate(struct clk_core *core)
2221 {
2222 	struct clk_core *child;
2223 	struct hlist_node *tmp;
2224 	unsigned long old_rate;
2225 	unsigned long best_parent_rate = 0;
2226 	bool skip_set_rate = false;
2227 	struct clk_core *old_parent;
2228 	struct clk_core *parent = NULL;
2229 
2230 	old_rate = core->rate;
2231 
2232 	if (core->new_parent) {
2233 		parent = core->new_parent;
2234 		best_parent_rate = core->new_parent->rate;
2235 	} else if (core->parent) {
2236 		parent = core->parent;
2237 		best_parent_rate = core->parent->rate;
2238 	}
2239 
2240 	if (clk_pm_runtime_get(core))
2241 		return;
2242 
2243 	if (core->flags & CLK_SET_RATE_UNGATE) {
2244 		clk_core_prepare(core);
2245 		clk_core_enable_lock(core);
2246 	}
2247 
2248 	if (core->new_parent && core->new_parent != core->parent) {
2249 		old_parent = __clk_set_parent_before(core, core->new_parent);
2250 		trace_clk_set_parent(core, core->new_parent);
2251 
2252 		if (core->ops->set_rate_and_parent) {
2253 			skip_set_rate = true;
2254 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2255 					best_parent_rate,
2256 					core->new_parent_index);
2257 		} else if (core->ops->set_parent) {
2258 			core->ops->set_parent(core->hw, core->new_parent_index);
2259 		}
2260 
2261 		trace_clk_set_parent_complete(core, core->new_parent);
2262 		__clk_set_parent_after(core, core->new_parent, old_parent);
2263 	}
2264 
2265 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2266 		clk_core_prepare_enable(parent);
2267 
2268 	trace_clk_set_rate(core, core->new_rate);
2269 
2270 	if (!skip_set_rate && core->ops->set_rate)
2271 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2272 
2273 	trace_clk_set_rate_complete(core, core->new_rate);
2274 
2275 	core->rate = clk_recalc(core, best_parent_rate);
2276 
2277 	if (core->flags & CLK_SET_RATE_UNGATE) {
2278 		clk_core_disable_lock(core);
2279 		clk_core_unprepare(core);
2280 	}
2281 
2282 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2283 		clk_core_disable_unprepare(parent);
2284 
2285 	if (core->notifier_count && old_rate != core->rate)
2286 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2287 
2288 	if (core->flags & CLK_RECALC_NEW_RATES)
2289 		(void)clk_calc_new_rates(core, core->new_rate);
2290 
2291 	/*
2292 	 * Use safe iteration, as change_rate can actually swap parents
2293 	 * for certain clock types.
2294 	 */
2295 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2296 		/* Skip children who will be reparented to another clock */
2297 		if (child->new_parent && child->new_parent != core)
2298 			continue;
2299 		clk_change_rate(child);
2300 	}
2301 
2302 	/* handle the new child who might not be in core->children yet */
2303 	if (core->new_child)
2304 		clk_change_rate(core->new_child);
2305 
2306 	clk_pm_runtime_put(core);
2307 }
2308 
2309 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2310 						     unsigned long req_rate)
2311 {
2312 	int ret, cnt;
2313 	struct clk_rate_request req;
2314 
2315 	lockdep_assert_held(&prepare_lock);
2316 
2317 	if (!core)
2318 		return 0;
2319 
2320 	/* simulate what the rate would be if it could be freely set */
2321 	cnt = clk_core_rate_nuke_protect(core);
2322 	if (cnt < 0)
2323 		return cnt;
2324 
2325 	clk_core_init_rate_req(core, &req, req_rate);
2326 
2327 	ret = clk_core_round_rate_nolock(core, &req);
2328 
2329 	/* restore the protection */
2330 	clk_core_rate_restore_protect(core, cnt);
2331 
2332 	return ret ? 0 : req.rate;
2333 }
2334 
2335 static int clk_core_set_rate_nolock(struct clk_core *core,
2336 				    unsigned long req_rate)
2337 {
2338 	struct clk_core *top, *fail_clk;
2339 	unsigned long rate;
2340 	int ret;
2341 
2342 	if (!core)
2343 		return 0;
2344 
2345 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2346 
2347 	/* bail early if nothing to do */
2348 	if (rate == clk_core_get_rate_nolock(core))
2349 		return 0;
2350 
2351 	/* fail on a direct rate set of a protected provider */
2352 	if (clk_core_rate_is_protected(core))
2353 		return -EBUSY;
2354 
2355 	/* calculate new rates and get the topmost changed clock */
2356 	top = clk_calc_new_rates(core, req_rate);
2357 	if (!top)
2358 		return -EINVAL;
2359 
2360 	ret = clk_pm_runtime_get(core);
2361 	if (ret)
2362 		return ret;
2363 
2364 	/* notify that we are about to change rates */
2365 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2366 	if (fail_clk) {
2367 		pr_debug("%s: failed to set %s rate\n", __func__,
2368 				fail_clk->name);
2369 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2370 		ret = -EBUSY;
2371 		goto err;
2372 	}
2373 
2374 	/* change the rates */
2375 	clk_change_rate(top);
2376 
2377 	core->req_rate = req_rate;
2378 err:
2379 	clk_pm_runtime_put(core);
2380 
2381 	return ret;
2382 }
2383 
2384 /**
2385  * clk_set_rate - specify a new rate for clk
2386  * @clk: the clk whose rate is being changed
2387  * @rate: the new rate for clk
2388  *
2389  * In the simplest case clk_set_rate will only adjust the rate of clk.
2390  *
2391  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2392  * propagate up to clk's parent; whether or not this happens depends on the
2393  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2394  * after calling .round_rate then upstream parent propagation is ignored.  If
2395  * *parent_rate comes back with a new rate for clk's parent then we propagate
2396  * up to clk's parent and set its rate.  Upward propagation will continue
2397  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2398  * .round_rate stops requesting changes to clk's parent_rate.
2399  *
2400  * Rate changes are accomplished via tree traversal that also recalculates the
2401  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2402  *
2403  * Returns 0 on success, -EERROR otherwise.
2404  */
2405 int clk_set_rate(struct clk *clk, unsigned long rate)
2406 {
2407 	int ret;
2408 
2409 	if (!clk)
2410 		return 0;
2411 
2412 	/* prevent racing with updates to the clock topology */
2413 	clk_prepare_lock();
2414 
2415 	if (clk->exclusive_count)
2416 		clk_core_rate_unprotect(clk->core);
2417 
2418 	ret = clk_core_set_rate_nolock(clk->core, rate);
2419 
2420 	if (clk->exclusive_count)
2421 		clk_core_rate_protect(clk->core);
2422 
2423 	clk_prepare_unlock();
2424 
2425 	return ret;
2426 }
2427 EXPORT_SYMBOL_GPL(clk_set_rate);
2428 
2429 /**
2430  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2431  * @clk: the clk whose rate is being changed
2432  * @rate: the new rate for clk
2433  *
2434  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2435  * within a critical section
2436  *
2437  * This can be used initially to ensure that at least 1 consumer is
2438  * satisfied when several consumers are competing for exclusivity over the
2439  * same clock provider.
2440  *
2441  * The exclusivity is not applied if setting the rate failed.
2442  *
2443  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2444  * clk_rate_exclusive_put().
2445  *
2446  * Returns 0 on success, -EERROR otherwise.
2447  */
2448 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2449 {
2450 	int ret;
2451 
2452 	if (!clk)
2453 		return 0;
2454 
2455 	/* prevent racing with updates to the clock topology */
2456 	clk_prepare_lock();
2457 
2458 	/*
2459 	 * The temporary protection removal is not here, on purpose
2460 	 * This function is meant to be used instead of clk_rate_protect,
2461 	 * so before the consumer code path protect the clock provider
2462 	 */
2463 
2464 	ret = clk_core_set_rate_nolock(clk->core, rate);
2465 	if (!ret) {
2466 		clk_core_rate_protect(clk->core);
2467 		clk->exclusive_count++;
2468 	}
2469 
2470 	clk_prepare_unlock();
2471 
2472 	return ret;
2473 }
2474 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2475 
2476 static int clk_set_rate_range_nolock(struct clk *clk,
2477 				     unsigned long min,
2478 				     unsigned long max)
2479 {
2480 	int ret = 0;
2481 	unsigned long old_min, old_max, rate;
2482 
2483 	lockdep_assert_held(&prepare_lock);
2484 
2485 	if (!clk)
2486 		return 0;
2487 
2488 	trace_clk_set_rate_range(clk->core, min, max);
2489 
2490 	if (min > max) {
2491 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2492 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2493 		       min, max);
2494 		return -EINVAL;
2495 	}
2496 
2497 	if (clk->exclusive_count)
2498 		clk_core_rate_unprotect(clk->core);
2499 
2500 	/* Save the current values in case we need to rollback the change */
2501 	old_min = clk->min_rate;
2502 	old_max = clk->max_rate;
2503 	clk->min_rate = min;
2504 	clk->max_rate = max;
2505 
2506 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2507 		ret = -EINVAL;
2508 		goto out;
2509 	}
2510 
2511 	rate = clk->core->req_rate;
2512 	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2513 		rate = clk_core_get_rate_recalc(clk->core);
2514 
2515 	/*
2516 	 * Since the boundaries have been changed, let's give the
2517 	 * opportunity to the provider to adjust the clock rate based on
2518 	 * the new boundaries.
2519 	 *
2520 	 * We also need to handle the case where the clock is currently
2521 	 * outside of the boundaries. Clamping the last requested rate
2522 	 * to the current minimum and maximum will also handle this.
2523 	 *
2524 	 * FIXME:
2525 	 * There is a catch. It may fail for the usual reason (clock
2526 	 * broken, clock protected, etc) but also because:
2527 	 * - round_rate() was not favorable and fell on the wrong
2528 	 *   side of the boundary
2529 	 * - the determine_rate() callback does not really check for
2530 	 *   this corner case when determining the rate
2531 	 */
2532 	rate = clamp(rate, min, max);
2533 	ret = clk_core_set_rate_nolock(clk->core, rate);
2534 	if (ret) {
2535 		/* rollback the changes */
2536 		clk->min_rate = old_min;
2537 		clk->max_rate = old_max;
2538 	}
2539 
2540 out:
2541 	if (clk->exclusive_count)
2542 		clk_core_rate_protect(clk->core);
2543 
2544 	return ret;
2545 }
2546 
2547 /**
2548  * clk_set_rate_range - set a rate range for a clock source
2549  * @clk: clock source
2550  * @min: desired minimum clock rate in Hz, inclusive
2551  * @max: desired maximum clock rate in Hz, inclusive
2552  *
2553  * Return: 0 for success or negative errno on failure.
2554  */
2555 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2556 {
2557 	int ret;
2558 
2559 	if (!clk)
2560 		return 0;
2561 
2562 	clk_prepare_lock();
2563 
2564 	ret = clk_set_rate_range_nolock(clk, min, max);
2565 
2566 	clk_prepare_unlock();
2567 
2568 	return ret;
2569 }
2570 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2571 
2572 /**
2573  * clk_set_min_rate - set a minimum clock rate for a clock source
2574  * @clk: clock source
2575  * @rate: desired minimum clock rate in Hz, inclusive
2576  *
2577  * Returns success (0) or negative errno.
2578  */
2579 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2580 {
2581 	if (!clk)
2582 		return 0;
2583 
2584 	trace_clk_set_min_rate(clk->core, rate);
2585 
2586 	return clk_set_rate_range(clk, rate, clk->max_rate);
2587 }
2588 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2589 
2590 /**
2591  * clk_set_max_rate - set a maximum clock rate for a clock source
2592  * @clk: clock source
2593  * @rate: desired maximum clock rate in Hz, inclusive
2594  *
2595  * Returns success (0) or negative errno.
2596  */
2597 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2598 {
2599 	if (!clk)
2600 		return 0;
2601 
2602 	trace_clk_set_max_rate(clk->core, rate);
2603 
2604 	return clk_set_rate_range(clk, clk->min_rate, rate);
2605 }
2606 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2607 
2608 /**
2609  * clk_get_parent - return the parent of a clk
2610  * @clk: the clk whose parent gets returned
2611  *
2612  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2613  */
2614 struct clk *clk_get_parent(struct clk *clk)
2615 {
2616 	struct clk *parent;
2617 
2618 	if (!clk)
2619 		return NULL;
2620 
2621 	clk_prepare_lock();
2622 	/* TODO: Create a per-user clk and change callers to call clk_put */
2623 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2624 	clk_prepare_unlock();
2625 
2626 	return parent;
2627 }
2628 EXPORT_SYMBOL_GPL(clk_get_parent);
2629 
2630 static struct clk_core *__clk_init_parent(struct clk_core *core)
2631 {
2632 	u8 index = 0;
2633 
2634 	if (core->num_parents > 1 && core->ops->get_parent)
2635 		index = core->ops->get_parent(core->hw);
2636 
2637 	return clk_core_get_parent_by_index(core, index);
2638 }
2639 
2640 static void clk_core_reparent(struct clk_core *core,
2641 				  struct clk_core *new_parent)
2642 {
2643 	clk_reparent(core, new_parent);
2644 	__clk_recalc_accuracies(core);
2645 	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2646 }
2647 
2648 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2649 {
2650 	if (!hw)
2651 		return;
2652 
2653 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2654 }
2655 
2656 /**
2657  * clk_has_parent - check if a clock is a possible parent for another
2658  * @clk: clock source
2659  * @parent: parent clock source
2660  *
2661  * This function can be used in drivers that need to check that a clock can be
2662  * the parent of another without actually changing the parent.
2663  *
2664  * Returns true if @parent is a possible parent for @clk, false otherwise.
2665  */
2666 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2667 {
2668 	/* NULL clocks should be nops, so return success if either is NULL. */
2669 	if (!clk || !parent)
2670 		return true;
2671 
2672 	return clk_core_has_parent(clk->core, parent->core);
2673 }
2674 EXPORT_SYMBOL_GPL(clk_has_parent);
2675 
2676 static int clk_core_set_parent_nolock(struct clk_core *core,
2677 				      struct clk_core *parent)
2678 {
2679 	int ret = 0;
2680 	int p_index = 0;
2681 	unsigned long p_rate = 0;
2682 
2683 	lockdep_assert_held(&prepare_lock);
2684 
2685 	if (!core)
2686 		return 0;
2687 
2688 	if (core->parent == parent)
2689 		return 0;
2690 
2691 	/* verify ops for multi-parent clks */
2692 	if (core->num_parents > 1 && !core->ops->set_parent)
2693 		return -EPERM;
2694 
2695 	/* check that we are allowed to re-parent if the clock is in use */
2696 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2697 		return -EBUSY;
2698 
2699 	if (clk_core_rate_is_protected(core))
2700 		return -EBUSY;
2701 
2702 	/* try finding the new parent index */
2703 	if (parent) {
2704 		p_index = clk_fetch_parent_index(core, parent);
2705 		if (p_index < 0) {
2706 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2707 					__func__, parent->name, core->name);
2708 			return p_index;
2709 		}
2710 		p_rate = parent->rate;
2711 	}
2712 
2713 	ret = clk_pm_runtime_get(core);
2714 	if (ret)
2715 		return ret;
2716 
2717 	/* propagate PRE_RATE_CHANGE notifications */
2718 	ret = __clk_speculate_rates(core, p_rate);
2719 
2720 	/* abort if a driver objects */
2721 	if (ret & NOTIFY_STOP_MASK)
2722 		goto runtime_put;
2723 
2724 	/* do the re-parent */
2725 	ret = __clk_set_parent(core, parent, p_index);
2726 
2727 	/* propagate rate an accuracy recalculation accordingly */
2728 	if (ret) {
2729 		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2730 	} else {
2731 		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2732 		__clk_recalc_accuracies(core);
2733 	}
2734 
2735 runtime_put:
2736 	clk_pm_runtime_put(core);
2737 
2738 	return ret;
2739 }
2740 
2741 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2742 {
2743 	return clk_core_set_parent_nolock(hw->core, parent->core);
2744 }
2745 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2746 
2747 /**
2748  * clk_set_parent - switch the parent of a mux clk
2749  * @clk: the mux clk whose input we are switching
2750  * @parent: the new input to clk
2751  *
2752  * Re-parent clk to use parent as its new input source.  If clk is in
2753  * prepared state, the clk will get enabled for the duration of this call. If
2754  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2755  * that, the reparenting is glitchy in hardware, etc), use the
2756  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2757  *
2758  * After successfully changing clk's parent clk_set_parent will update the
2759  * clk topology, sysfs topology and propagate rate recalculation via
2760  * __clk_recalc_rates.
2761  *
2762  * Returns 0 on success, -EERROR otherwise.
2763  */
2764 int clk_set_parent(struct clk *clk, struct clk *parent)
2765 {
2766 	int ret;
2767 
2768 	if (!clk)
2769 		return 0;
2770 
2771 	clk_prepare_lock();
2772 
2773 	if (clk->exclusive_count)
2774 		clk_core_rate_unprotect(clk->core);
2775 
2776 	ret = clk_core_set_parent_nolock(clk->core,
2777 					 parent ? parent->core : NULL);
2778 
2779 	if (clk->exclusive_count)
2780 		clk_core_rate_protect(clk->core);
2781 
2782 	clk_prepare_unlock();
2783 
2784 	return ret;
2785 }
2786 EXPORT_SYMBOL_GPL(clk_set_parent);
2787 
2788 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2789 {
2790 	int ret = -EINVAL;
2791 
2792 	lockdep_assert_held(&prepare_lock);
2793 
2794 	if (!core)
2795 		return 0;
2796 
2797 	if (clk_core_rate_is_protected(core))
2798 		return -EBUSY;
2799 
2800 	trace_clk_set_phase(core, degrees);
2801 
2802 	if (core->ops->set_phase) {
2803 		ret = core->ops->set_phase(core->hw, degrees);
2804 		if (!ret)
2805 			core->phase = degrees;
2806 	}
2807 
2808 	trace_clk_set_phase_complete(core, degrees);
2809 
2810 	return ret;
2811 }
2812 
2813 /**
2814  * clk_set_phase - adjust the phase shift of a clock signal
2815  * @clk: clock signal source
2816  * @degrees: number of degrees the signal is shifted
2817  *
2818  * Shifts the phase of a clock signal by the specified
2819  * degrees. Returns 0 on success, -EERROR otherwise.
2820  *
2821  * This function makes no distinction about the input or reference
2822  * signal that we adjust the clock signal phase against. For example
2823  * phase locked-loop clock signal generators we may shift phase with
2824  * respect to feedback clock signal input, but for other cases the
2825  * clock phase may be shifted with respect to some other, unspecified
2826  * signal.
2827  *
2828  * Additionally the concept of phase shift does not propagate through
2829  * the clock tree hierarchy, which sets it apart from clock rates and
2830  * clock accuracy. A parent clock phase attribute does not have an
2831  * impact on the phase attribute of a child clock.
2832  */
2833 int clk_set_phase(struct clk *clk, int degrees)
2834 {
2835 	int ret;
2836 
2837 	if (!clk)
2838 		return 0;
2839 
2840 	/* sanity check degrees */
2841 	degrees %= 360;
2842 	if (degrees < 0)
2843 		degrees += 360;
2844 
2845 	clk_prepare_lock();
2846 
2847 	if (clk->exclusive_count)
2848 		clk_core_rate_unprotect(clk->core);
2849 
2850 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2851 
2852 	if (clk->exclusive_count)
2853 		clk_core_rate_protect(clk->core);
2854 
2855 	clk_prepare_unlock();
2856 
2857 	return ret;
2858 }
2859 EXPORT_SYMBOL_GPL(clk_set_phase);
2860 
2861 static int clk_core_get_phase(struct clk_core *core)
2862 {
2863 	int ret;
2864 
2865 	lockdep_assert_held(&prepare_lock);
2866 	if (!core->ops->get_phase)
2867 		return 0;
2868 
2869 	/* Always try to update cached phase if possible */
2870 	ret = core->ops->get_phase(core->hw);
2871 	if (ret >= 0)
2872 		core->phase = ret;
2873 
2874 	return ret;
2875 }
2876 
2877 /**
2878  * clk_get_phase - return the phase shift of a clock signal
2879  * @clk: clock signal source
2880  *
2881  * Returns the phase shift of a clock node in degrees, otherwise returns
2882  * -EERROR.
2883  */
2884 int clk_get_phase(struct clk *clk)
2885 {
2886 	int ret;
2887 
2888 	if (!clk)
2889 		return 0;
2890 
2891 	clk_prepare_lock();
2892 	ret = clk_core_get_phase(clk->core);
2893 	clk_prepare_unlock();
2894 
2895 	return ret;
2896 }
2897 EXPORT_SYMBOL_GPL(clk_get_phase);
2898 
2899 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2900 {
2901 	/* Assume a default value of 50% */
2902 	core->duty.num = 1;
2903 	core->duty.den = 2;
2904 }
2905 
2906 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2907 
2908 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2909 {
2910 	struct clk_duty *duty = &core->duty;
2911 	int ret = 0;
2912 
2913 	if (!core->ops->get_duty_cycle)
2914 		return clk_core_update_duty_cycle_parent_nolock(core);
2915 
2916 	ret = core->ops->get_duty_cycle(core->hw, duty);
2917 	if (ret)
2918 		goto reset;
2919 
2920 	/* Don't trust the clock provider too much */
2921 	if (duty->den == 0 || duty->num > duty->den) {
2922 		ret = -EINVAL;
2923 		goto reset;
2924 	}
2925 
2926 	return 0;
2927 
2928 reset:
2929 	clk_core_reset_duty_cycle_nolock(core);
2930 	return ret;
2931 }
2932 
2933 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2934 {
2935 	int ret = 0;
2936 
2937 	if (core->parent &&
2938 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2939 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2940 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2941 	} else {
2942 		clk_core_reset_duty_cycle_nolock(core);
2943 	}
2944 
2945 	return ret;
2946 }
2947 
2948 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2949 						 struct clk_duty *duty);
2950 
2951 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2952 					  struct clk_duty *duty)
2953 {
2954 	int ret;
2955 
2956 	lockdep_assert_held(&prepare_lock);
2957 
2958 	if (clk_core_rate_is_protected(core))
2959 		return -EBUSY;
2960 
2961 	trace_clk_set_duty_cycle(core, duty);
2962 
2963 	if (!core->ops->set_duty_cycle)
2964 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2965 
2966 	ret = core->ops->set_duty_cycle(core->hw, duty);
2967 	if (!ret)
2968 		memcpy(&core->duty, duty, sizeof(*duty));
2969 
2970 	trace_clk_set_duty_cycle_complete(core, duty);
2971 
2972 	return ret;
2973 }
2974 
2975 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2976 						 struct clk_duty *duty)
2977 {
2978 	int ret = 0;
2979 
2980 	if (core->parent &&
2981 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2982 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2983 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2984 	}
2985 
2986 	return ret;
2987 }
2988 
2989 /**
2990  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2991  * @clk: clock signal source
2992  * @num: numerator of the duty cycle ratio to be applied
2993  * @den: denominator of the duty cycle ratio to be applied
2994  *
2995  * Apply the duty cycle ratio if the ratio is valid and the clock can
2996  * perform this operation
2997  *
2998  * Returns (0) on success, a negative errno otherwise.
2999  */
3000 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3001 {
3002 	int ret;
3003 	struct clk_duty duty;
3004 
3005 	if (!clk)
3006 		return 0;
3007 
3008 	/* sanity check the ratio */
3009 	if (den == 0 || num > den)
3010 		return -EINVAL;
3011 
3012 	duty.num = num;
3013 	duty.den = den;
3014 
3015 	clk_prepare_lock();
3016 
3017 	if (clk->exclusive_count)
3018 		clk_core_rate_unprotect(clk->core);
3019 
3020 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3021 
3022 	if (clk->exclusive_count)
3023 		clk_core_rate_protect(clk->core);
3024 
3025 	clk_prepare_unlock();
3026 
3027 	return ret;
3028 }
3029 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3030 
3031 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3032 					  unsigned int scale)
3033 {
3034 	struct clk_duty *duty = &core->duty;
3035 	int ret;
3036 
3037 	clk_prepare_lock();
3038 
3039 	ret = clk_core_update_duty_cycle_nolock(core);
3040 	if (!ret)
3041 		ret = mult_frac(scale, duty->num, duty->den);
3042 
3043 	clk_prepare_unlock();
3044 
3045 	return ret;
3046 }
3047 
3048 /**
3049  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3050  * @clk: clock signal source
3051  * @scale: scaling factor to be applied to represent the ratio as an integer
3052  *
3053  * Returns the duty cycle ratio of a clock node multiplied by the provided
3054  * scaling factor, or negative errno on error.
3055  */
3056 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3057 {
3058 	if (!clk)
3059 		return 0;
3060 
3061 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3062 }
3063 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3064 
3065 /**
3066  * clk_is_match - check if two clk's point to the same hardware clock
3067  * @p: clk compared against q
3068  * @q: clk compared against p
3069  *
3070  * Returns true if the two struct clk pointers both point to the same hardware
3071  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3072  * share the same struct clk_core object.
3073  *
3074  * Returns false otherwise. Note that two NULL clks are treated as matching.
3075  */
3076 bool clk_is_match(const struct clk *p, const struct clk *q)
3077 {
3078 	/* trivial case: identical struct clk's or both NULL */
3079 	if (p == q)
3080 		return true;
3081 
3082 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3083 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3084 		if (p->core == q->core)
3085 			return true;
3086 
3087 	return false;
3088 }
3089 EXPORT_SYMBOL_GPL(clk_is_match);
3090 
3091 /***        debugfs support        ***/
3092 
3093 #ifdef CONFIG_DEBUG_FS
3094 #include <linux/debugfs.h>
3095 
3096 static struct dentry *rootdir;
3097 static int inited = 0;
3098 static DEFINE_MUTEX(clk_debug_lock);
3099 static HLIST_HEAD(clk_debug_list);
3100 
3101 static struct hlist_head *orphan_list[] = {
3102 	&clk_orphan_list,
3103 	NULL,
3104 };
3105 
3106 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3107 				 int level)
3108 {
3109 	int phase;
3110 
3111 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3112 		   level * 3 + 1, "",
3113 		   30 - level * 3, c->name,
3114 		   c->enable_count, c->prepare_count, c->protect_count,
3115 		   clk_core_get_rate_recalc(c),
3116 		   clk_core_get_accuracy_recalc(c));
3117 
3118 	phase = clk_core_get_phase(c);
3119 	if (phase >= 0)
3120 		seq_printf(s, "%5d", phase);
3121 	else
3122 		seq_puts(s, "-----");
3123 
3124 	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
3125 
3126 	if (c->ops->is_enabled)
3127 		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
3128 	else if (!c->ops->enable)
3129 		seq_printf(s, " %9c\n", 'Y');
3130 	else
3131 		seq_printf(s, " %9c\n", '?');
3132 }
3133 
3134 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3135 				     int level)
3136 {
3137 	struct clk_core *child;
3138 
3139 	clk_pm_runtime_get(c);
3140 	clk_summary_show_one(s, c, level);
3141 	clk_pm_runtime_put(c);
3142 
3143 	hlist_for_each_entry(child, &c->children, child_node)
3144 		clk_summary_show_subtree(s, child, level + 1);
3145 }
3146 
3147 static int clk_summary_show(struct seq_file *s, void *data)
3148 {
3149 	struct clk_core *c;
3150 	struct hlist_head **lists = (struct hlist_head **)s->private;
3151 
3152 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
3153 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
3154 	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3155 
3156 	clk_prepare_lock();
3157 
3158 	for (; *lists; lists++)
3159 		hlist_for_each_entry(c, *lists, child_node)
3160 			clk_summary_show_subtree(s, c, 0);
3161 
3162 	clk_prepare_unlock();
3163 
3164 	return 0;
3165 }
3166 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3167 
3168 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3169 {
3170 	int phase;
3171 	unsigned long min_rate, max_rate;
3172 
3173 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3174 
3175 	/* This should be JSON format, i.e. elements separated with a comma */
3176 	seq_printf(s, "\"%s\": { ", c->name);
3177 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3178 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3179 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3180 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3181 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3182 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3183 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3184 	phase = clk_core_get_phase(c);
3185 	if (phase >= 0)
3186 		seq_printf(s, "\"phase\": %d,", phase);
3187 	seq_printf(s, "\"duty_cycle\": %u",
3188 		   clk_core_get_scaled_duty_cycle(c, 100000));
3189 }
3190 
3191 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3192 {
3193 	struct clk_core *child;
3194 
3195 	clk_dump_one(s, c, level);
3196 
3197 	hlist_for_each_entry(child, &c->children, child_node) {
3198 		seq_putc(s, ',');
3199 		clk_dump_subtree(s, child, level + 1);
3200 	}
3201 
3202 	seq_putc(s, '}');
3203 }
3204 
3205 static int clk_dump_show(struct seq_file *s, void *data)
3206 {
3207 	struct clk_core *c;
3208 	bool first_node = true;
3209 	struct hlist_head **lists = (struct hlist_head **)s->private;
3210 
3211 	seq_putc(s, '{');
3212 	clk_prepare_lock();
3213 
3214 	for (; *lists; lists++) {
3215 		hlist_for_each_entry(c, *lists, child_node) {
3216 			if (!first_node)
3217 				seq_putc(s, ',');
3218 			first_node = false;
3219 			clk_dump_subtree(s, c, 0);
3220 		}
3221 	}
3222 
3223 	clk_prepare_unlock();
3224 
3225 	seq_puts(s, "}\n");
3226 	return 0;
3227 }
3228 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3229 
3230 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3231 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3232 /*
3233  * This can be dangerous, therefore don't provide any real compile time
3234  * configuration option for this feature.
3235  * People who want to use this will need to modify the source code directly.
3236  */
3237 static int clk_rate_set(void *data, u64 val)
3238 {
3239 	struct clk_core *core = data;
3240 	int ret;
3241 
3242 	clk_prepare_lock();
3243 	ret = clk_core_set_rate_nolock(core, val);
3244 	clk_prepare_unlock();
3245 
3246 	return ret;
3247 }
3248 
3249 #define clk_rate_mode	0644
3250 
3251 static int clk_prepare_enable_set(void *data, u64 val)
3252 {
3253 	struct clk_core *core = data;
3254 	int ret = 0;
3255 
3256 	if (val)
3257 		ret = clk_prepare_enable(core->hw->clk);
3258 	else
3259 		clk_disable_unprepare(core->hw->clk);
3260 
3261 	return ret;
3262 }
3263 
3264 static int clk_prepare_enable_get(void *data, u64 *val)
3265 {
3266 	struct clk_core *core = data;
3267 
3268 	*val = core->enable_count && core->prepare_count;
3269 	return 0;
3270 }
3271 
3272 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3273 			 clk_prepare_enable_set, "%llu\n");
3274 
3275 #else
3276 #define clk_rate_set	NULL
3277 #define clk_rate_mode	0444
3278 #endif
3279 
3280 static int clk_rate_get(void *data, u64 *val)
3281 {
3282 	struct clk_core *core = data;
3283 
3284 	clk_prepare_lock();
3285 	*val = clk_core_get_rate_recalc(core);
3286 	clk_prepare_unlock();
3287 
3288 	return 0;
3289 }
3290 
3291 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3292 
3293 static const struct {
3294 	unsigned long flag;
3295 	const char *name;
3296 } clk_flags[] = {
3297 #define ENTRY(f) { f, #f }
3298 	ENTRY(CLK_SET_RATE_GATE),
3299 	ENTRY(CLK_SET_PARENT_GATE),
3300 	ENTRY(CLK_SET_RATE_PARENT),
3301 	ENTRY(CLK_IGNORE_UNUSED),
3302 	ENTRY(CLK_GET_RATE_NOCACHE),
3303 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3304 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3305 	ENTRY(CLK_RECALC_NEW_RATES),
3306 	ENTRY(CLK_SET_RATE_UNGATE),
3307 	ENTRY(CLK_IS_CRITICAL),
3308 	ENTRY(CLK_OPS_PARENT_ENABLE),
3309 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3310 #undef ENTRY
3311 };
3312 
3313 static int clk_flags_show(struct seq_file *s, void *data)
3314 {
3315 	struct clk_core *core = s->private;
3316 	unsigned long flags = core->flags;
3317 	unsigned int i;
3318 
3319 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3320 		if (flags & clk_flags[i].flag) {
3321 			seq_printf(s, "%s\n", clk_flags[i].name);
3322 			flags &= ~clk_flags[i].flag;
3323 		}
3324 	}
3325 	if (flags) {
3326 		/* Unknown flags */
3327 		seq_printf(s, "0x%lx\n", flags);
3328 	}
3329 
3330 	return 0;
3331 }
3332 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3333 
3334 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3335 				 unsigned int i, char terminator)
3336 {
3337 	struct clk_core *parent;
3338 
3339 	/*
3340 	 * Go through the following options to fetch a parent's name.
3341 	 *
3342 	 * 1. Fetch the registered parent clock and use its name
3343 	 * 2. Use the global (fallback) name if specified
3344 	 * 3. Use the local fw_name if provided
3345 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3346 	 *
3347 	 * This may still fail in some cases, such as when the parent is
3348 	 * specified directly via a struct clk_hw pointer, but it isn't
3349 	 * registered (yet).
3350 	 */
3351 	parent = clk_core_get_parent_by_index(core, i);
3352 	if (parent)
3353 		seq_puts(s, parent->name);
3354 	else if (core->parents[i].name)
3355 		seq_puts(s, core->parents[i].name);
3356 	else if (core->parents[i].fw_name)
3357 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3358 	else if (core->parents[i].index >= 0)
3359 		seq_puts(s,
3360 			 of_clk_get_parent_name(core->of_node,
3361 						core->parents[i].index));
3362 	else
3363 		seq_puts(s, "(missing)");
3364 
3365 	seq_putc(s, terminator);
3366 }
3367 
3368 static int possible_parents_show(struct seq_file *s, void *data)
3369 {
3370 	struct clk_core *core = s->private;
3371 	int i;
3372 
3373 	for (i = 0; i < core->num_parents - 1; i++)
3374 		possible_parent_show(s, core, i, ' ');
3375 
3376 	possible_parent_show(s, core, i, '\n');
3377 
3378 	return 0;
3379 }
3380 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3381 
3382 static int current_parent_show(struct seq_file *s, void *data)
3383 {
3384 	struct clk_core *core = s->private;
3385 
3386 	if (core->parent)
3387 		seq_printf(s, "%s\n", core->parent->name);
3388 
3389 	return 0;
3390 }
3391 DEFINE_SHOW_ATTRIBUTE(current_parent);
3392 
3393 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3394 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3395 				    size_t count, loff_t *ppos)
3396 {
3397 	struct seq_file *s = file->private_data;
3398 	struct clk_core *core = s->private;
3399 	struct clk_core *parent;
3400 	u8 idx;
3401 	int err;
3402 
3403 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3404 	if (err < 0)
3405 		return err;
3406 
3407 	parent = clk_core_get_parent_by_index(core, idx);
3408 	if (!parent)
3409 		return -ENOENT;
3410 
3411 	clk_prepare_lock();
3412 	err = clk_core_set_parent_nolock(core, parent);
3413 	clk_prepare_unlock();
3414 	if (err)
3415 		return err;
3416 
3417 	return count;
3418 }
3419 
3420 static const struct file_operations current_parent_rw_fops = {
3421 	.open		= current_parent_open,
3422 	.write		= current_parent_write,
3423 	.read		= seq_read,
3424 	.llseek		= seq_lseek,
3425 	.release	= single_release,
3426 };
3427 #endif
3428 
3429 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3430 {
3431 	struct clk_core *core = s->private;
3432 	struct clk_duty *duty = &core->duty;
3433 
3434 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3435 
3436 	return 0;
3437 }
3438 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3439 
3440 static int clk_min_rate_show(struct seq_file *s, void *data)
3441 {
3442 	struct clk_core *core = s->private;
3443 	unsigned long min_rate, max_rate;
3444 
3445 	clk_prepare_lock();
3446 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3447 	clk_prepare_unlock();
3448 	seq_printf(s, "%lu\n", min_rate);
3449 
3450 	return 0;
3451 }
3452 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3453 
3454 static int clk_max_rate_show(struct seq_file *s, void *data)
3455 {
3456 	struct clk_core *core = s->private;
3457 	unsigned long min_rate, max_rate;
3458 
3459 	clk_prepare_lock();
3460 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3461 	clk_prepare_unlock();
3462 	seq_printf(s, "%lu\n", max_rate);
3463 
3464 	return 0;
3465 }
3466 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3467 
3468 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3469 {
3470 	struct dentry *root;
3471 
3472 	if (!core || !pdentry)
3473 		return;
3474 
3475 	root = debugfs_create_dir(core->name, pdentry);
3476 	core->dentry = root;
3477 
3478 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3479 			    &clk_rate_fops);
3480 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3481 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3482 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3483 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3484 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3485 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3486 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3487 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3488 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3489 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3490 			    &clk_duty_cycle_fops);
3491 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3492 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3493 			    &clk_prepare_enable_fops);
3494 
3495 	if (core->num_parents > 1)
3496 		debugfs_create_file("clk_parent", 0644, root, core,
3497 				    &current_parent_rw_fops);
3498 	else
3499 #endif
3500 	if (core->num_parents > 0)
3501 		debugfs_create_file("clk_parent", 0444, root, core,
3502 				    &current_parent_fops);
3503 
3504 	if (core->num_parents > 1)
3505 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3506 				    &possible_parents_fops);
3507 
3508 	if (core->ops->debug_init)
3509 		core->ops->debug_init(core->hw, core->dentry);
3510 }
3511 
3512 /**
3513  * clk_debug_register - add a clk node to the debugfs clk directory
3514  * @core: the clk being added to the debugfs clk directory
3515  *
3516  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3517  * initialized.  Otherwise it bails out early since the debugfs clk directory
3518  * will be created lazily by clk_debug_init as part of a late_initcall.
3519  */
3520 static void clk_debug_register(struct clk_core *core)
3521 {
3522 	mutex_lock(&clk_debug_lock);
3523 	hlist_add_head(&core->debug_node, &clk_debug_list);
3524 	if (inited)
3525 		clk_debug_create_one(core, rootdir);
3526 	mutex_unlock(&clk_debug_lock);
3527 }
3528 
3529  /**
3530  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3531  * @core: the clk being removed from the debugfs clk directory
3532  *
3533  * Dynamically removes a clk and all its child nodes from the
3534  * debugfs clk directory if clk->dentry points to debugfs created by
3535  * clk_debug_register in __clk_core_init.
3536  */
3537 static void clk_debug_unregister(struct clk_core *core)
3538 {
3539 	mutex_lock(&clk_debug_lock);
3540 	hlist_del_init(&core->debug_node);
3541 	debugfs_remove_recursive(core->dentry);
3542 	core->dentry = NULL;
3543 	mutex_unlock(&clk_debug_lock);
3544 }
3545 
3546 /**
3547  * clk_debug_init - lazily populate the debugfs clk directory
3548  *
3549  * clks are often initialized very early during boot before memory can be
3550  * dynamically allocated and well before debugfs is setup. This function
3551  * populates the debugfs clk directory once at boot-time when we know that
3552  * debugfs is setup. It should only be called once at boot-time, all other clks
3553  * added dynamically will be done so with clk_debug_register.
3554  */
3555 static int __init clk_debug_init(void)
3556 {
3557 	struct clk_core *core;
3558 
3559 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3560 	pr_warn("\n");
3561 	pr_warn("********************************************************************\n");
3562 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3563 	pr_warn("**                                                                **\n");
3564 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3565 	pr_warn("**                                                                **\n");
3566 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3567 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3568 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3569 	pr_warn("**                                                                **\n");
3570 	pr_warn("** If you see this message and you are not debugging the          **\n");
3571 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3572 	pr_warn("**                                                                **\n");
3573 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3574 	pr_warn("********************************************************************\n");
3575 #endif
3576 
3577 	rootdir = debugfs_create_dir("clk", NULL);
3578 
3579 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3580 			    &clk_summary_fops);
3581 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3582 			    &clk_dump_fops);
3583 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3584 			    &clk_summary_fops);
3585 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3586 			    &clk_dump_fops);
3587 
3588 	mutex_lock(&clk_debug_lock);
3589 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3590 		clk_debug_create_one(core, rootdir);
3591 
3592 	inited = 1;
3593 	mutex_unlock(&clk_debug_lock);
3594 
3595 	return 0;
3596 }
3597 late_initcall(clk_debug_init);
3598 #else
3599 static inline void clk_debug_register(struct clk_core *core) { }
3600 static inline void clk_debug_unregister(struct clk_core *core)
3601 {
3602 }
3603 #endif
3604 
3605 static void clk_core_reparent_orphans_nolock(void)
3606 {
3607 	struct clk_core *orphan;
3608 	struct hlist_node *tmp2;
3609 
3610 	/*
3611 	 * walk the list of orphan clocks and reparent any that newly finds a
3612 	 * parent.
3613 	 */
3614 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3615 		struct clk_core *parent = __clk_init_parent(orphan);
3616 
3617 		/*
3618 		 * We need to use __clk_set_parent_before() and _after() to
3619 		 * properly migrate any prepare/enable count of the orphan
3620 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3621 		 * are enabled during init but might not have a parent yet.
3622 		 */
3623 		if (parent) {
3624 			/* update the clk tree topology */
3625 			__clk_set_parent_before(orphan, parent);
3626 			__clk_set_parent_after(orphan, parent, NULL);
3627 			__clk_recalc_accuracies(orphan);
3628 			__clk_recalc_rates(orphan, true, 0);
3629 
3630 			/*
3631 			 * __clk_init_parent() will set the initial req_rate to
3632 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3633 			 * is an orphan when it's registered.
3634 			 *
3635 			 * 'req_rate' is used by clk_set_rate_range() and
3636 			 * clk_put() to trigger a clk_set_rate() call whenever
3637 			 * the boundaries are modified. Let's make sure
3638 			 * 'req_rate' is set to something non-zero so that
3639 			 * clk_set_rate_range() doesn't drop the frequency.
3640 			 */
3641 			orphan->req_rate = orphan->rate;
3642 		}
3643 	}
3644 }
3645 
3646 /**
3647  * __clk_core_init - initialize the data structures in a struct clk_core
3648  * @core:	clk_core being initialized
3649  *
3650  * Initializes the lists in struct clk_core, queries the hardware for the
3651  * parent and rate and sets them both.
3652  */
3653 static int __clk_core_init(struct clk_core *core)
3654 {
3655 	int ret;
3656 	struct clk_core *parent;
3657 	unsigned long rate;
3658 	int phase;
3659 
3660 	clk_prepare_lock();
3661 
3662 	/*
3663 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3664 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3665 	 * being NULL as the clk not being registered yet. This is crucial so
3666 	 * that clks aren't parented until their parent is fully registered.
3667 	 */
3668 	core->hw->core = core;
3669 
3670 	ret = clk_pm_runtime_get(core);
3671 	if (ret)
3672 		goto unlock;
3673 
3674 	/* check to see if a clock with this name is already registered */
3675 	if (clk_core_lookup(core->name)) {
3676 		pr_debug("%s: clk %s already initialized\n",
3677 				__func__, core->name);
3678 		ret = -EEXIST;
3679 		goto out;
3680 	}
3681 
3682 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3683 	if (core->ops->set_rate &&
3684 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3685 	      core->ops->recalc_rate)) {
3686 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3687 		       __func__, core->name);
3688 		ret = -EINVAL;
3689 		goto out;
3690 	}
3691 
3692 	if (core->ops->set_parent && !core->ops->get_parent) {
3693 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3694 		       __func__, core->name);
3695 		ret = -EINVAL;
3696 		goto out;
3697 	}
3698 
3699 	if (core->num_parents > 1 && !core->ops->get_parent) {
3700 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3701 		       __func__, core->name);
3702 		ret = -EINVAL;
3703 		goto out;
3704 	}
3705 
3706 	if (core->ops->set_rate_and_parent &&
3707 			!(core->ops->set_parent && core->ops->set_rate)) {
3708 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3709 				__func__, core->name);
3710 		ret = -EINVAL;
3711 		goto out;
3712 	}
3713 
3714 	/*
3715 	 * optional platform-specific magic
3716 	 *
3717 	 * The .init callback is not used by any of the basic clock types, but
3718 	 * exists for weird hardware that must perform initialization magic for
3719 	 * CCF to get an accurate view of clock for any other callbacks. It may
3720 	 * also be used needs to perform dynamic allocations. Such allocation
3721 	 * must be freed in the terminate() callback.
3722 	 * This callback shall not be used to initialize the parameters state,
3723 	 * such as rate, parent, etc ...
3724 	 *
3725 	 * If it exist, this callback should called before any other callback of
3726 	 * the clock
3727 	 */
3728 	if (core->ops->init) {
3729 		ret = core->ops->init(core->hw);
3730 		if (ret)
3731 			goto out;
3732 	}
3733 
3734 	parent = core->parent = __clk_init_parent(core);
3735 
3736 	/*
3737 	 * Populate core->parent if parent has already been clk_core_init'd. If
3738 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3739 	 * list.  If clk doesn't have any parents then place it in the root
3740 	 * clk list.
3741 	 *
3742 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3743 	 * clocks and re-parent any that are children of the clock currently
3744 	 * being clk_init'd.
3745 	 */
3746 	if (parent) {
3747 		hlist_add_head(&core->child_node, &parent->children);
3748 		core->orphan = parent->orphan;
3749 	} else if (!core->num_parents) {
3750 		hlist_add_head(&core->child_node, &clk_root_list);
3751 		core->orphan = false;
3752 	} else {
3753 		hlist_add_head(&core->child_node, &clk_orphan_list);
3754 		core->orphan = true;
3755 	}
3756 
3757 	/*
3758 	 * Set clk's accuracy.  The preferred method is to use
3759 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3760 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3761 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3762 	 * clock).
3763 	 */
3764 	if (core->ops->recalc_accuracy)
3765 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3766 					clk_core_get_accuracy_no_lock(parent));
3767 	else if (parent)
3768 		core->accuracy = parent->accuracy;
3769 	else
3770 		core->accuracy = 0;
3771 
3772 	/*
3773 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3774 	 * Since a phase is by definition relative to its parent, just
3775 	 * query the current clock phase, or just assume it's in phase.
3776 	 */
3777 	phase = clk_core_get_phase(core);
3778 	if (phase < 0) {
3779 		ret = phase;
3780 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3781 			core->name);
3782 		goto out;
3783 	}
3784 
3785 	/*
3786 	 * Set clk's duty cycle.
3787 	 */
3788 	clk_core_update_duty_cycle_nolock(core);
3789 
3790 	/*
3791 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3792 	 * simple clocks and lazy developers the default fallback is to use the
3793 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3794 	 * then rate is set to zero.
3795 	 */
3796 	if (core->ops->recalc_rate)
3797 		rate = core->ops->recalc_rate(core->hw,
3798 				clk_core_get_rate_nolock(parent));
3799 	else if (parent)
3800 		rate = parent->rate;
3801 	else
3802 		rate = 0;
3803 	core->rate = core->req_rate = rate;
3804 
3805 	/*
3806 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3807 	 * don't get accidentally disabled when walking the orphan tree and
3808 	 * reparenting clocks
3809 	 */
3810 	if (core->flags & CLK_IS_CRITICAL) {
3811 		ret = clk_core_prepare(core);
3812 		if (ret) {
3813 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3814 			       __func__, core->name);
3815 			goto out;
3816 		}
3817 
3818 		ret = clk_core_enable_lock(core);
3819 		if (ret) {
3820 			pr_warn("%s: critical clk '%s' failed to enable\n",
3821 			       __func__, core->name);
3822 			clk_core_unprepare(core);
3823 			goto out;
3824 		}
3825 	}
3826 
3827 	clk_core_reparent_orphans_nolock();
3828 
3829 	kref_init(&core->ref);
3830 out:
3831 	clk_pm_runtime_put(core);
3832 unlock:
3833 	if (ret) {
3834 		hlist_del_init(&core->child_node);
3835 		core->hw->core = NULL;
3836 	}
3837 
3838 	clk_prepare_unlock();
3839 
3840 	if (!ret)
3841 		clk_debug_register(core);
3842 
3843 	return ret;
3844 }
3845 
3846 /**
3847  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3848  * @core: clk to add consumer to
3849  * @clk: consumer to link to a clk
3850  */
3851 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3852 {
3853 	clk_prepare_lock();
3854 	hlist_add_head(&clk->clks_node, &core->clks);
3855 	clk_prepare_unlock();
3856 }
3857 
3858 /**
3859  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3860  * @clk: consumer to unlink
3861  */
3862 static void clk_core_unlink_consumer(struct clk *clk)
3863 {
3864 	lockdep_assert_held(&prepare_lock);
3865 	hlist_del(&clk->clks_node);
3866 }
3867 
3868 /**
3869  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3870  * @core: clk to allocate a consumer for
3871  * @dev_id: string describing device name
3872  * @con_id: connection ID string on device
3873  *
3874  * Returns: clk consumer left unlinked from the consumer list
3875  */
3876 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3877 			     const char *con_id)
3878 {
3879 	struct clk *clk;
3880 
3881 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3882 	if (!clk)
3883 		return ERR_PTR(-ENOMEM);
3884 
3885 	clk->core = core;
3886 	clk->dev_id = dev_id;
3887 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3888 	clk->max_rate = ULONG_MAX;
3889 
3890 	return clk;
3891 }
3892 
3893 /**
3894  * free_clk - Free a clk consumer
3895  * @clk: clk consumer to free
3896  *
3897  * Note, this assumes the clk has been unlinked from the clk_core consumer
3898  * list.
3899  */
3900 static void free_clk(struct clk *clk)
3901 {
3902 	kfree_const(clk->con_id);
3903 	kfree(clk);
3904 }
3905 
3906 /**
3907  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3908  * a clk_hw
3909  * @dev: clk consumer device
3910  * @hw: clk_hw associated with the clk being consumed
3911  * @dev_id: string describing device name
3912  * @con_id: connection ID string on device
3913  *
3914  * This is the main function used to create a clk pointer for use by clk
3915  * consumers. It connects a consumer to the clk_core and clk_hw structures
3916  * used by the framework and clk provider respectively.
3917  */
3918 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3919 			      const char *dev_id, const char *con_id)
3920 {
3921 	struct clk *clk;
3922 	struct clk_core *core;
3923 
3924 	/* This is to allow this function to be chained to others */
3925 	if (IS_ERR_OR_NULL(hw))
3926 		return ERR_CAST(hw);
3927 
3928 	core = hw->core;
3929 	clk = alloc_clk(core, dev_id, con_id);
3930 	if (IS_ERR(clk))
3931 		return clk;
3932 	clk->dev = dev;
3933 
3934 	if (!try_module_get(core->owner)) {
3935 		free_clk(clk);
3936 		return ERR_PTR(-ENOENT);
3937 	}
3938 
3939 	kref_get(&core->ref);
3940 	clk_core_link_consumer(core, clk);
3941 
3942 	return clk;
3943 }
3944 
3945 /**
3946  * clk_hw_get_clk - get clk consumer given an clk_hw
3947  * @hw: clk_hw associated with the clk being consumed
3948  * @con_id: connection ID string on device
3949  *
3950  * Returns: new clk consumer
3951  * This is the function to be used by providers which need
3952  * to get a consumer clk and act on the clock element
3953  * Calls to this function must be balanced with calls clk_put()
3954  */
3955 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3956 {
3957 	struct device *dev = hw->core->dev;
3958 	const char *name = dev ? dev_name(dev) : NULL;
3959 
3960 	return clk_hw_create_clk(dev, hw, name, con_id);
3961 }
3962 EXPORT_SYMBOL(clk_hw_get_clk);
3963 
3964 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3965 {
3966 	const char *dst;
3967 
3968 	if (!src) {
3969 		if (must_exist)
3970 			return -EINVAL;
3971 		return 0;
3972 	}
3973 
3974 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3975 	if (!dst)
3976 		return -ENOMEM;
3977 
3978 	return 0;
3979 }
3980 
3981 static int clk_core_populate_parent_map(struct clk_core *core,
3982 					const struct clk_init_data *init)
3983 {
3984 	u8 num_parents = init->num_parents;
3985 	const char * const *parent_names = init->parent_names;
3986 	const struct clk_hw **parent_hws = init->parent_hws;
3987 	const struct clk_parent_data *parent_data = init->parent_data;
3988 	int i, ret = 0;
3989 	struct clk_parent_map *parents, *parent;
3990 
3991 	if (!num_parents)
3992 		return 0;
3993 
3994 	/*
3995 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3996 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3997 	 */
3998 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3999 	core->parents = parents;
4000 	if (!parents)
4001 		return -ENOMEM;
4002 
4003 	/* Copy everything over because it might be __initdata */
4004 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4005 		parent->index = -1;
4006 		if (parent_names) {
4007 			/* throw a WARN if any entries are NULL */
4008 			WARN(!parent_names[i],
4009 				"%s: invalid NULL in %s's .parent_names\n",
4010 				__func__, core->name);
4011 			ret = clk_cpy_name(&parent->name, parent_names[i],
4012 					   true);
4013 		} else if (parent_data) {
4014 			parent->hw = parent_data[i].hw;
4015 			parent->index = parent_data[i].index;
4016 			ret = clk_cpy_name(&parent->fw_name,
4017 					   parent_data[i].fw_name, false);
4018 			if (!ret)
4019 				ret = clk_cpy_name(&parent->name,
4020 						   parent_data[i].name,
4021 						   false);
4022 		} else if (parent_hws) {
4023 			parent->hw = parent_hws[i];
4024 		} else {
4025 			ret = -EINVAL;
4026 			WARN(1, "Must specify parents if num_parents > 0\n");
4027 		}
4028 
4029 		if (ret) {
4030 			do {
4031 				kfree_const(parents[i].name);
4032 				kfree_const(parents[i].fw_name);
4033 			} while (--i >= 0);
4034 			kfree(parents);
4035 
4036 			return ret;
4037 		}
4038 	}
4039 
4040 	return 0;
4041 }
4042 
4043 static void clk_core_free_parent_map(struct clk_core *core)
4044 {
4045 	int i = core->num_parents;
4046 
4047 	if (!core->num_parents)
4048 		return;
4049 
4050 	while (--i >= 0) {
4051 		kfree_const(core->parents[i].name);
4052 		kfree_const(core->parents[i].fw_name);
4053 	}
4054 
4055 	kfree(core->parents);
4056 }
4057 
4058 static struct clk *
4059 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4060 {
4061 	int ret;
4062 	struct clk_core *core;
4063 	const struct clk_init_data *init = hw->init;
4064 
4065 	/*
4066 	 * The init data is not supposed to be used outside of registration path.
4067 	 * Set it to NULL so that provider drivers can't use it either and so that
4068 	 * we catch use of hw->init early on in the core.
4069 	 */
4070 	hw->init = NULL;
4071 
4072 	core = kzalloc(sizeof(*core), GFP_KERNEL);
4073 	if (!core) {
4074 		ret = -ENOMEM;
4075 		goto fail_out;
4076 	}
4077 
4078 	core->name = kstrdup_const(init->name, GFP_KERNEL);
4079 	if (!core->name) {
4080 		ret = -ENOMEM;
4081 		goto fail_name;
4082 	}
4083 
4084 	if (WARN_ON(!init->ops)) {
4085 		ret = -EINVAL;
4086 		goto fail_ops;
4087 	}
4088 	core->ops = init->ops;
4089 
4090 	if (dev && pm_runtime_enabled(dev))
4091 		core->rpm_enabled = true;
4092 	core->dev = dev;
4093 	core->of_node = np;
4094 	if (dev && dev->driver)
4095 		core->owner = dev->driver->owner;
4096 	core->hw = hw;
4097 	core->flags = init->flags;
4098 	core->num_parents = init->num_parents;
4099 	core->min_rate = 0;
4100 	core->max_rate = ULONG_MAX;
4101 
4102 	ret = clk_core_populate_parent_map(core, init);
4103 	if (ret)
4104 		goto fail_parents;
4105 
4106 	INIT_HLIST_HEAD(&core->clks);
4107 
4108 	/*
4109 	 * Don't call clk_hw_create_clk() here because that would pin the
4110 	 * provider module to itself and prevent it from ever being removed.
4111 	 */
4112 	hw->clk = alloc_clk(core, NULL, NULL);
4113 	if (IS_ERR(hw->clk)) {
4114 		ret = PTR_ERR(hw->clk);
4115 		goto fail_create_clk;
4116 	}
4117 
4118 	clk_core_link_consumer(core, hw->clk);
4119 
4120 	ret = __clk_core_init(core);
4121 	if (!ret)
4122 		return hw->clk;
4123 
4124 	clk_prepare_lock();
4125 	clk_core_unlink_consumer(hw->clk);
4126 	clk_prepare_unlock();
4127 
4128 	free_clk(hw->clk);
4129 	hw->clk = NULL;
4130 
4131 fail_create_clk:
4132 	clk_core_free_parent_map(core);
4133 fail_parents:
4134 fail_ops:
4135 	kfree_const(core->name);
4136 fail_name:
4137 	kfree(core);
4138 fail_out:
4139 	return ERR_PTR(ret);
4140 }
4141 
4142 /**
4143  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4144  * @dev: Device to get device node of
4145  *
4146  * Return: device node pointer of @dev, or the device node pointer of
4147  * @dev->parent if dev doesn't have a device node, or NULL if neither
4148  * @dev or @dev->parent have a device node.
4149  */
4150 static struct device_node *dev_or_parent_of_node(struct device *dev)
4151 {
4152 	struct device_node *np;
4153 
4154 	if (!dev)
4155 		return NULL;
4156 
4157 	np = dev_of_node(dev);
4158 	if (!np)
4159 		np = dev_of_node(dev->parent);
4160 
4161 	return np;
4162 }
4163 
4164 /**
4165  * clk_register - allocate a new clock, register it and return an opaque cookie
4166  * @dev: device that is registering this clock
4167  * @hw: link to hardware-specific clock data
4168  *
4169  * clk_register is the *deprecated* interface for populating the clock tree with
4170  * new clock nodes. Use clk_hw_register() instead.
4171  *
4172  * Returns: a pointer to the newly allocated struct clk which
4173  * cannot be dereferenced by driver code but may be used in conjunction with the
4174  * rest of the clock API.  In the event of an error clk_register will return an
4175  * error code; drivers must test for an error code after calling clk_register.
4176  */
4177 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4178 {
4179 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4180 }
4181 EXPORT_SYMBOL_GPL(clk_register);
4182 
4183 /**
4184  * clk_hw_register - register a clk_hw and return an error code
4185  * @dev: device that is registering this clock
4186  * @hw: link to hardware-specific clock data
4187  *
4188  * clk_hw_register is the primary interface for populating the clock tree with
4189  * new clock nodes. It returns an integer equal to zero indicating success or
4190  * less than zero indicating failure. Drivers must test for an error code after
4191  * calling clk_hw_register().
4192  */
4193 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4194 {
4195 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4196 			       hw));
4197 }
4198 EXPORT_SYMBOL_GPL(clk_hw_register);
4199 
4200 /*
4201  * of_clk_hw_register - register a clk_hw and return an error code
4202  * @node: device_node of device that is registering this clock
4203  * @hw: link to hardware-specific clock data
4204  *
4205  * of_clk_hw_register() is the primary interface for populating the clock tree
4206  * with new clock nodes when a struct device is not available, but a struct
4207  * device_node is. It returns an integer equal to zero indicating success or
4208  * less than zero indicating failure. Drivers must test for an error code after
4209  * calling of_clk_hw_register().
4210  */
4211 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4212 {
4213 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4214 }
4215 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4216 
4217 /* Free memory allocated for a clock. */
4218 static void __clk_release(struct kref *ref)
4219 {
4220 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4221 
4222 	lockdep_assert_held(&prepare_lock);
4223 
4224 	clk_core_free_parent_map(core);
4225 	kfree_const(core->name);
4226 	kfree(core);
4227 }
4228 
4229 /*
4230  * Empty clk_ops for unregistered clocks. These are used temporarily
4231  * after clk_unregister() was called on a clock and until last clock
4232  * consumer calls clk_put() and the struct clk object is freed.
4233  */
4234 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4235 {
4236 	return -ENXIO;
4237 }
4238 
4239 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4240 {
4241 	WARN_ON_ONCE(1);
4242 }
4243 
4244 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4245 					unsigned long parent_rate)
4246 {
4247 	return -ENXIO;
4248 }
4249 
4250 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4251 {
4252 	return -ENXIO;
4253 }
4254 
4255 static const struct clk_ops clk_nodrv_ops = {
4256 	.enable		= clk_nodrv_prepare_enable,
4257 	.disable	= clk_nodrv_disable_unprepare,
4258 	.prepare	= clk_nodrv_prepare_enable,
4259 	.unprepare	= clk_nodrv_disable_unprepare,
4260 	.set_rate	= clk_nodrv_set_rate,
4261 	.set_parent	= clk_nodrv_set_parent,
4262 };
4263 
4264 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4265 						const struct clk_core *target)
4266 {
4267 	int i;
4268 	struct clk_core *child;
4269 
4270 	for (i = 0; i < root->num_parents; i++)
4271 		if (root->parents[i].core == target)
4272 			root->parents[i].core = NULL;
4273 
4274 	hlist_for_each_entry(child, &root->children, child_node)
4275 		clk_core_evict_parent_cache_subtree(child, target);
4276 }
4277 
4278 /* Remove this clk from all parent caches */
4279 static void clk_core_evict_parent_cache(struct clk_core *core)
4280 {
4281 	const struct hlist_head **lists;
4282 	struct clk_core *root;
4283 
4284 	lockdep_assert_held(&prepare_lock);
4285 
4286 	for (lists = all_lists; *lists; lists++)
4287 		hlist_for_each_entry(root, *lists, child_node)
4288 			clk_core_evict_parent_cache_subtree(root, core);
4289 
4290 }
4291 
4292 /**
4293  * clk_unregister - unregister a currently registered clock
4294  * @clk: clock to unregister
4295  */
4296 void clk_unregister(struct clk *clk)
4297 {
4298 	unsigned long flags;
4299 	const struct clk_ops *ops;
4300 
4301 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4302 		return;
4303 
4304 	clk_debug_unregister(clk->core);
4305 
4306 	clk_prepare_lock();
4307 
4308 	ops = clk->core->ops;
4309 	if (ops == &clk_nodrv_ops) {
4310 		pr_err("%s: unregistered clock: %s\n", __func__,
4311 		       clk->core->name);
4312 		goto unlock;
4313 	}
4314 	/*
4315 	 * Assign empty clock ops for consumers that might still hold
4316 	 * a reference to this clock.
4317 	 */
4318 	flags = clk_enable_lock();
4319 	clk->core->ops = &clk_nodrv_ops;
4320 	clk_enable_unlock(flags);
4321 
4322 	if (ops->terminate)
4323 		ops->terminate(clk->core->hw);
4324 
4325 	if (!hlist_empty(&clk->core->children)) {
4326 		struct clk_core *child;
4327 		struct hlist_node *t;
4328 
4329 		/* Reparent all children to the orphan list. */
4330 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4331 					  child_node)
4332 			clk_core_set_parent_nolock(child, NULL);
4333 	}
4334 
4335 	clk_core_evict_parent_cache(clk->core);
4336 
4337 	hlist_del_init(&clk->core->child_node);
4338 
4339 	if (clk->core->prepare_count)
4340 		pr_warn("%s: unregistering prepared clock: %s\n",
4341 					__func__, clk->core->name);
4342 
4343 	if (clk->core->protect_count)
4344 		pr_warn("%s: unregistering protected clock: %s\n",
4345 					__func__, clk->core->name);
4346 
4347 	kref_put(&clk->core->ref, __clk_release);
4348 	free_clk(clk);
4349 unlock:
4350 	clk_prepare_unlock();
4351 }
4352 EXPORT_SYMBOL_GPL(clk_unregister);
4353 
4354 /**
4355  * clk_hw_unregister - unregister a currently registered clk_hw
4356  * @hw: hardware-specific clock data to unregister
4357  */
4358 void clk_hw_unregister(struct clk_hw *hw)
4359 {
4360 	clk_unregister(hw->clk);
4361 }
4362 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4363 
4364 static void devm_clk_unregister_cb(struct device *dev, void *res)
4365 {
4366 	clk_unregister(*(struct clk **)res);
4367 }
4368 
4369 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4370 {
4371 	clk_hw_unregister(*(struct clk_hw **)res);
4372 }
4373 
4374 /**
4375  * devm_clk_register - resource managed clk_register()
4376  * @dev: device that is registering this clock
4377  * @hw: link to hardware-specific clock data
4378  *
4379  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4380  *
4381  * Clocks returned from this function are automatically clk_unregister()ed on
4382  * driver detach. See clk_register() for more information.
4383  */
4384 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4385 {
4386 	struct clk *clk;
4387 	struct clk **clkp;
4388 
4389 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4390 	if (!clkp)
4391 		return ERR_PTR(-ENOMEM);
4392 
4393 	clk = clk_register(dev, hw);
4394 	if (!IS_ERR(clk)) {
4395 		*clkp = clk;
4396 		devres_add(dev, clkp);
4397 	} else {
4398 		devres_free(clkp);
4399 	}
4400 
4401 	return clk;
4402 }
4403 EXPORT_SYMBOL_GPL(devm_clk_register);
4404 
4405 /**
4406  * devm_clk_hw_register - resource managed clk_hw_register()
4407  * @dev: device that is registering this clock
4408  * @hw: link to hardware-specific clock data
4409  *
4410  * Managed clk_hw_register(). Clocks registered by this function are
4411  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4412  * for more information.
4413  */
4414 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4415 {
4416 	struct clk_hw **hwp;
4417 	int ret;
4418 
4419 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4420 	if (!hwp)
4421 		return -ENOMEM;
4422 
4423 	ret = clk_hw_register(dev, hw);
4424 	if (!ret) {
4425 		*hwp = hw;
4426 		devres_add(dev, hwp);
4427 	} else {
4428 		devres_free(hwp);
4429 	}
4430 
4431 	return ret;
4432 }
4433 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4434 
4435 static void devm_clk_release(struct device *dev, void *res)
4436 {
4437 	clk_put(*(struct clk **)res);
4438 }
4439 
4440 /**
4441  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4442  * @dev: device that is registering this clock
4443  * @hw: clk_hw associated with the clk being consumed
4444  * @con_id: connection ID string on device
4445  *
4446  * Managed clk_hw_get_clk(). Clocks got with this function are
4447  * automatically clk_put() on driver detach. See clk_put()
4448  * for more information.
4449  */
4450 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4451 				const char *con_id)
4452 {
4453 	struct clk *clk;
4454 	struct clk **clkp;
4455 
4456 	/* This should not happen because it would mean we have drivers
4457 	 * passing around clk_hw pointers instead of having the caller use
4458 	 * proper clk_get() style APIs
4459 	 */
4460 	WARN_ON_ONCE(dev != hw->core->dev);
4461 
4462 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4463 	if (!clkp)
4464 		return ERR_PTR(-ENOMEM);
4465 
4466 	clk = clk_hw_get_clk(hw, con_id);
4467 	if (!IS_ERR(clk)) {
4468 		*clkp = clk;
4469 		devres_add(dev, clkp);
4470 	} else {
4471 		devres_free(clkp);
4472 	}
4473 
4474 	return clk;
4475 }
4476 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4477 
4478 /*
4479  * clkdev helpers
4480  */
4481 
4482 void __clk_put(struct clk *clk)
4483 {
4484 	struct module *owner;
4485 
4486 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4487 		return;
4488 
4489 	clk_prepare_lock();
4490 
4491 	/*
4492 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4493 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4494 	 * and by that same consumer
4495 	 */
4496 	if (WARN_ON(clk->exclusive_count)) {
4497 		/* We voiced our concern, let's sanitize the situation */
4498 		clk->core->protect_count -= (clk->exclusive_count - 1);
4499 		clk_core_rate_unprotect(clk->core);
4500 		clk->exclusive_count = 0;
4501 	}
4502 
4503 	hlist_del(&clk->clks_node);
4504 
4505 	/* If we had any boundaries on that clock, let's drop them. */
4506 	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4507 		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4508 
4509 	owner = clk->core->owner;
4510 	kref_put(&clk->core->ref, __clk_release);
4511 
4512 	clk_prepare_unlock();
4513 
4514 	module_put(owner);
4515 
4516 	free_clk(clk);
4517 }
4518 
4519 /***        clk rate change notifiers        ***/
4520 
4521 /**
4522  * clk_notifier_register - add a clk rate change notifier
4523  * @clk: struct clk * to watch
4524  * @nb: struct notifier_block * with callback info
4525  *
4526  * Request notification when clk's rate changes.  This uses an SRCU
4527  * notifier because we want it to block and notifier unregistrations are
4528  * uncommon.  The callbacks associated with the notifier must not
4529  * re-enter into the clk framework by calling any top-level clk APIs;
4530  * this will cause a nested prepare_lock mutex.
4531  *
4532  * In all notification cases (pre, post and abort rate change) the original
4533  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4534  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4535  *
4536  * clk_notifier_register() must be called from non-atomic context.
4537  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4538  * allocation failure; otherwise, passes along the return value of
4539  * srcu_notifier_chain_register().
4540  */
4541 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4542 {
4543 	struct clk_notifier *cn;
4544 	int ret = -ENOMEM;
4545 
4546 	if (!clk || !nb)
4547 		return -EINVAL;
4548 
4549 	clk_prepare_lock();
4550 
4551 	/* search the list of notifiers for this clk */
4552 	list_for_each_entry(cn, &clk_notifier_list, node)
4553 		if (cn->clk == clk)
4554 			goto found;
4555 
4556 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4557 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4558 	if (!cn)
4559 		goto out;
4560 
4561 	cn->clk = clk;
4562 	srcu_init_notifier_head(&cn->notifier_head);
4563 
4564 	list_add(&cn->node, &clk_notifier_list);
4565 
4566 found:
4567 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4568 
4569 	clk->core->notifier_count++;
4570 
4571 out:
4572 	clk_prepare_unlock();
4573 
4574 	return ret;
4575 }
4576 EXPORT_SYMBOL_GPL(clk_notifier_register);
4577 
4578 /**
4579  * clk_notifier_unregister - remove a clk rate change notifier
4580  * @clk: struct clk *
4581  * @nb: struct notifier_block * with callback info
4582  *
4583  * Request no further notification for changes to 'clk' and frees memory
4584  * allocated in clk_notifier_register.
4585  *
4586  * Returns -EINVAL if called with null arguments; otherwise, passes
4587  * along the return value of srcu_notifier_chain_unregister().
4588  */
4589 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4590 {
4591 	struct clk_notifier *cn;
4592 	int ret = -ENOENT;
4593 
4594 	if (!clk || !nb)
4595 		return -EINVAL;
4596 
4597 	clk_prepare_lock();
4598 
4599 	list_for_each_entry(cn, &clk_notifier_list, node) {
4600 		if (cn->clk == clk) {
4601 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4602 
4603 			clk->core->notifier_count--;
4604 
4605 			/* XXX the notifier code should handle this better */
4606 			if (!cn->notifier_head.head) {
4607 				srcu_cleanup_notifier_head(&cn->notifier_head);
4608 				list_del(&cn->node);
4609 				kfree(cn);
4610 			}
4611 			break;
4612 		}
4613 	}
4614 
4615 	clk_prepare_unlock();
4616 
4617 	return ret;
4618 }
4619 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4620 
4621 struct clk_notifier_devres {
4622 	struct clk *clk;
4623 	struct notifier_block *nb;
4624 };
4625 
4626 static void devm_clk_notifier_release(struct device *dev, void *res)
4627 {
4628 	struct clk_notifier_devres *devres = res;
4629 
4630 	clk_notifier_unregister(devres->clk, devres->nb);
4631 }
4632 
4633 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4634 			       struct notifier_block *nb)
4635 {
4636 	struct clk_notifier_devres *devres;
4637 	int ret;
4638 
4639 	devres = devres_alloc(devm_clk_notifier_release,
4640 			      sizeof(*devres), GFP_KERNEL);
4641 
4642 	if (!devres)
4643 		return -ENOMEM;
4644 
4645 	ret = clk_notifier_register(clk, nb);
4646 	if (!ret) {
4647 		devres->clk = clk;
4648 		devres->nb = nb;
4649 	} else {
4650 		devres_free(devres);
4651 	}
4652 
4653 	return ret;
4654 }
4655 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4656 
4657 #ifdef CONFIG_OF
4658 static void clk_core_reparent_orphans(void)
4659 {
4660 	clk_prepare_lock();
4661 	clk_core_reparent_orphans_nolock();
4662 	clk_prepare_unlock();
4663 }
4664 
4665 /**
4666  * struct of_clk_provider - Clock provider registration structure
4667  * @link: Entry in global list of clock providers
4668  * @node: Pointer to device tree node of clock provider
4669  * @get: Get clock callback.  Returns NULL or a struct clk for the
4670  *       given clock specifier
4671  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4672  *       struct clk_hw for the given clock specifier
4673  * @data: context pointer to be passed into @get callback
4674  */
4675 struct of_clk_provider {
4676 	struct list_head link;
4677 
4678 	struct device_node *node;
4679 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4680 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4681 	void *data;
4682 };
4683 
4684 extern struct of_device_id __clk_of_table;
4685 static const struct of_device_id __clk_of_table_sentinel
4686 	__used __section("__clk_of_table_end");
4687 
4688 static LIST_HEAD(of_clk_providers);
4689 static DEFINE_MUTEX(of_clk_mutex);
4690 
4691 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4692 				     void *data)
4693 {
4694 	return data;
4695 }
4696 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4697 
4698 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4699 {
4700 	return data;
4701 }
4702 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4703 
4704 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4705 {
4706 	struct clk_onecell_data *clk_data = data;
4707 	unsigned int idx = clkspec->args[0];
4708 
4709 	if (idx >= clk_data->clk_num) {
4710 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4711 		return ERR_PTR(-EINVAL);
4712 	}
4713 
4714 	return clk_data->clks[idx];
4715 }
4716 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4717 
4718 struct clk_hw *
4719 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4720 {
4721 	struct clk_hw_onecell_data *hw_data = data;
4722 	unsigned int idx = clkspec->args[0];
4723 
4724 	if (idx >= hw_data->num) {
4725 		pr_err("%s: invalid index %u\n", __func__, idx);
4726 		return ERR_PTR(-EINVAL);
4727 	}
4728 
4729 	return hw_data->hws[idx];
4730 }
4731 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4732 
4733 /**
4734  * of_clk_add_provider() - Register a clock provider for a node
4735  * @np: Device node pointer associated with clock provider
4736  * @clk_src_get: callback for decoding clock
4737  * @data: context pointer for @clk_src_get callback.
4738  *
4739  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4740  */
4741 int of_clk_add_provider(struct device_node *np,
4742 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4743 						   void *data),
4744 			void *data)
4745 {
4746 	struct of_clk_provider *cp;
4747 	int ret;
4748 
4749 	if (!np)
4750 		return 0;
4751 
4752 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4753 	if (!cp)
4754 		return -ENOMEM;
4755 
4756 	cp->node = of_node_get(np);
4757 	cp->data = data;
4758 	cp->get = clk_src_get;
4759 
4760 	mutex_lock(&of_clk_mutex);
4761 	list_add(&cp->link, &of_clk_providers);
4762 	mutex_unlock(&of_clk_mutex);
4763 	pr_debug("Added clock from %pOF\n", np);
4764 
4765 	clk_core_reparent_orphans();
4766 
4767 	ret = of_clk_set_defaults(np, true);
4768 	if (ret < 0)
4769 		of_clk_del_provider(np);
4770 
4771 	fwnode_dev_initialized(&np->fwnode, true);
4772 
4773 	return ret;
4774 }
4775 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4776 
4777 /**
4778  * of_clk_add_hw_provider() - Register a clock provider for a node
4779  * @np: Device node pointer associated with clock provider
4780  * @get: callback for decoding clk_hw
4781  * @data: context pointer for @get callback.
4782  */
4783 int of_clk_add_hw_provider(struct device_node *np,
4784 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4785 						 void *data),
4786 			   void *data)
4787 {
4788 	struct of_clk_provider *cp;
4789 	int ret;
4790 
4791 	if (!np)
4792 		return 0;
4793 
4794 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4795 	if (!cp)
4796 		return -ENOMEM;
4797 
4798 	cp->node = of_node_get(np);
4799 	cp->data = data;
4800 	cp->get_hw = get;
4801 
4802 	mutex_lock(&of_clk_mutex);
4803 	list_add(&cp->link, &of_clk_providers);
4804 	mutex_unlock(&of_clk_mutex);
4805 	pr_debug("Added clk_hw provider from %pOF\n", np);
4806 
4807 	clk_core_reparent_orphans();
4808 
4809 	ret = of_clk_set_defaults(np, true);
4810 	if (ret < 0)
4811 		of_clk_del_provider(np);
4812 
4813 	fwnode_dev_initialized(&np->fwnode, true);
4814 
4815 	return ret;
4816 }
4817 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4818 
4819 static void devm_of_clk_release_provider(struct device *dev, void *res)
4820 {
4821 	of_clk_del_provider(*(struct device_node **)res);
4822 }
4823 
4824 /*
4825  * We allow a child device to use its parent device as the clock provider node
4826  * for cases like MFD sub-devices where the child device driver wants to use
4827  * devm_*() APIs but not list the device in DT as a sub-node.
4828  */
4829 static struct device_node *get_clk_provider_node(struct device *dev)
4830 {
4831 	struct device_node *np, *parent_np;
4832 
4833 	np = dev->of_node;
4834 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4835 
4836 	if (!of_find_property(np, "#clock-cells", NULL))
4837 		if (of_find_property(parent_np, "#clock-cells", NULL))
4838 			np = parent_np;
4839 
4840 	return np;
4841 }
4842 
4843 /**
4844  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4845  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4846  * @get: callback for decoding clk_hw
4847  * @data: context pointer for @get callback
4848  *
4849  * Registers clock provider for given device's node. If the device has no DT
4850  * node or if the device node lacks of clock provider information (#clock-cells)
4851  * then the parent device's node is scanned for this information. If parent node
4852  * has the #clock-cells then it is used in registration. Provider is
4853  * automatically released at device exit.
4854  *
4855  * Return: 0 on success or an errno on failure.
4856  */
4857 int devm_of_clk_add_hw_provider(struct device *dev,
4858 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4859 					      void *data),
4860 			void *data)
4861 {
4862 	struct device_node **ptr, *np;
4863 	int ret;
4864 
4865 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4866 			   GFP_KERNEL);
4867 	if (!ptr)
4868 		return -ENOMEM;
4869 
4870 	np = get_clk_provider_node(dev);
4871 	ret = of_clk_add_hw_provider(np, get, data);
4872 	if (!ret) {
4873 		*ptr = np;
4874 		devres_add(dev, ptr);
4875 	} else {
4876 		devres_free(ptr);
4877 	}
4878 
4879 	return ret;
4880 }
4881 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4882 
4883 /**
4884  * of_clk_del_provider() - Remove a previously registered clock provider
4885  * @np: Device node pointer associated with clock provider
4886  */
4887 void of_clk_del_provider(struct device_node *np)
4888 {
4889 	struct of_clk_provider *cp;
4890 
4891 	if (!np)
4892 		return;
4893 
4894 	mutex_lock(&of_clk_mutex);
4895 	list_for_each_entry(cp, &of_clk_providers, link) {
4896 		if (cp->node == np) {
4897 			list_del(&cp->link);
4898 			fwnode_dev_initialized(&np->fwnode, false);
4899 			of_node_put(cp->node);
4900 			kfree(cp);
4901 			break;
4902 		}
4903 	}
4904 	mutex_unlock(&of_clk_mutex);
4905 }
4906 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4907 
4908 /**
4909  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4910  * @np: device node to parse clock specifier from
4911  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4912  * @name: clock name to find and parse. If name is NULL, the index is used
4913  * @out_args: Result of parsing the clock specifier
4914  *
4915  * Parses a device node's "clocks" and "clock-names" properties to find the
4916  * phandle and cells for the index or name that is desired. The resulting clock
4917  * specifier is placed into @out_args, or an errno is returned when there's a
4918  * parsing error. The @index argument is ignored if @name is non-NULL.
4919  *
4920  * Example:
4921  *
4922  * phandle1: clock-controller@1 {
4923  *	#clock-cells = <2>;
4924  * }
4925  *
4926  * phandle2: clock-controller@2 {
4927  *	#clock-cells = <1>;
4928  * }
4929  *
4930  * clock-consumer@3 {
4931  *	clocks = <&phandle1 1 2 &phandle2 3>;
4932  *	clock-names = "name1", "name2";
4933  * }
4934  *
4935  * To get a device_node for `clock-controller@2' node you may call this
4936  * function a few different ways:
4937  *
4938  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4939  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4940  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4941  *
4942  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4943  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4944  * the "clock-names" property of @np.
4945  */
4946 static int of_parse_clkspec(const struct device_node *np, int index,
4947 			    const char *name, struct of_phandle_args *out_args)
4948 {
4949 	int ret = -ENOENT;
4950 
4951 	/* Walk up the tree of devices looking for a clock property that matches */
4952 	while (np) {
4953 		/*
4954 		 * For named clocks, first look up the name in the
4955 		 * "clock-names" property.  If it cannot be found, then index
4956 		 * will be an error code and of_parse_phandle_with_args() will
4957 		 * return -EINVAL.
4958 		 */
4959 		if (name)
4960 			index = of_property_match_string(np, "clock-names", name);
4961 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4962 						 index, out_args);
4963 		if (!ret)
4964 			break;
4965 		if (name && index >= 0)
4966 			break;
4967 
4968 		/*
4969 		 * No matching clock found on this node.  If the parent node
4970 		 * has a "clock-ranges" property, then we can try one of its
4971 		 * clocks.
4972 		 */
4973 		np = np->parent;
4974 		if (np && !of_get_property(np, "clock-ranges", NULL))
4975 			break;
4976 		index = 0;
4977 	}
4978 
4979 	return ret;
4980 }
4981 
4982 static struct clk_hw *
4983 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4984 			      struct of_phandle_args *clkspec)
4985 {
4986 	struct clk *clk;
4987 
4988 	if (provider->get_hw)
4989 		return provider->get_hw(clkspec, provider->data);
4990 
4991 	clk = provider->get(clkspec, provider->data);
4992 	if (IS_ERR(clk))
4993 		return ERR_CAST(clk);
4994 	return __clk_get_hw(clk);
4995 }
4996 
4997 static struct clk_hw *
4998 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4999 {
5000 	struct of_clk_provider *provider;
5001 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5002 
5003 	if (!clkspec)
5004 		return ERR_PTR(-EINVAL);
5005 
5006 	mutex_lock(&of_clk_mutex);
5007 	list_for_each_entry(provider, &of_clk_providers, link) {
5008 		if (provider->node == clkspec->np) {
5009 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5010 			if (!IS_ERR(hw))
5011 				break;
5012 		}
5013 	}
5014 	mutex_unlock(&of_clk_mutex);
5015 
5016 	return hw;
5017 }
5018 
5019 /**
5020  * of_clk_get_from_provider() - Lookup a clock from a clock provider
5021  * @clkspec: pointer to a clock specifier data structure
5022  *
5023  * This function looks up a struct clk from the registered list of clock
5024  * providers, an input is a clock specifier data structure as returned
5025  * from the of_parse_phandle_with_args() function call.
5026  */
5027 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5028 {
5029 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5030 
5031 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5032 }
5033 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5034 
5035 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5036 			     const char *con_id)
5037 {
5038 	int ret;
5039 	struct clk_hw *hw;
5040 	struct of_phandle_args clkspec;
5041 
5042 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5043 	if (ret)
5044 		return ERR_PTR(ret);
5045 
5046 	hw = of_clk_get_hw_from_clkspec(&clkspec);
5047 	of_node_put(clkspec.np);
5048 
5049 	return hw;
5050 }
5051 
5052 static struct clk *__of_clk_get(struct device_node *np,
5053 				int index, const char *dev_id,
5054 				const char *con_id)
5055 {
5056 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5057 
5058 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5059 }
5060 
5061 struct clk *of_clk_get(struct device_node *np, int index)
5062 {
5063 	return __of_clk_get(np, index, np->full_name, NULL);
5064 }
5065 EXPORT_SYMBOL(of_clk_get);
5066 
5067 /**
5068  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5069  * @np: pointer to clock consumer node
5070  * @name: name of consumer's clock input, or NULL for the first clock reference
5071  *
5072  * This function parses the clocks and clock-names properties,
5073  * and uses them to look up the struct clk from the registered list of clock
5074  * providers.
5075  */
5076 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5077 {
5078 	if (!np)
5079 		return ERR_PTR(-ENOENT);
5080 
5081 	return __of_clk_get(np, 0, np->full_name, name);
5082 }
5083 EXPORT_SYMBOL(of_clk_get_by_name);
5084 
5085 /**
5086  * of_clk_get_parent_count() - Count the number of clocks a device node has
5087  * @np: device node to count
5088  *
5089  * Returns: The number of clocks that are possible parents of this node
5090  */
5091 unsigned int of_clk_get_parent_count(const struct device_node *np)
5092 {
5093 	int count;
5094 
5095 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5096 	if (count < 0)
5097 		return 0;
5098 
5099 	return count;
5100 }
5101 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5102 
5103 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5104 {
5105 	struct of_phandle_args clkspec;
5106 	struct property *prop;
5107 	const char *clk_name;
5108 	const __be32 *vp;
5109 	u32 pv;
5110 	int rc;
5111 	int count;
5112 	struct clk *clk;
5113 
5114 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5115 					&clkspec);
5116 	if (rc)
5117 		return NULL;
5118 
5119 	index = clkspec.args_count ? clkspec.args[0] : 0;
5120 	count = 0;
5121 
5122 	/* if there is an indices property, use it to transfer the index
5123 	 * specified into an array offset for the clock-output-names property.
5124 	 */
5125 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5126 		if (index == pv) {
5127 			index = count;
5128 			break;
5129 		}
5130 		count++;
5131 	}
5132 	/* We went off the end of 'clock-indices' without finding it */
5133 	if (prop && !vp)
5134 		return NULL;
5135 
5136 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5137 					  index,
5138 					  &clk_name) < 0) {
5139 		/*
5140 		 * Best effort to get the name if the clock has been
5141 		 * registered with the framework. If the clock isn't
5142 		 * registered, we return the node name as the name of
5143 		 * the clock as long as #clock-cells = 0.
5144 		 */
5145 		clk = of_clk_get_from_provider(&clkspec);
5146 		if (IS_ERR(clk)) {
5147 			if (clkspec.args_count == 0)
5148 				clk_name = clkspec.np->name;
5149 			else
5150 				clk_name = NULL;
5151 		} else {
5152 			clk_name = __clk_get_name(clk);
5153 			clk_put(clk);
5154 		}
5155 	}
5156 
5157 
5158 	of_node_put(clkspec.np);
5159 	return clk_name;
5160 }
5161 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5162 
5163 /**
5164  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5165  * number of parents
5166  * @np: Device node pointer associated with clock provider
5167  * @parents: pointer to char array that hold the parents' names
5168  * @size: size of the @parents array
5169  *
5170  * Return: number of parents for the clock node.
5171  */
5172 int of_clk_parent_fill(struct device_node *np, const char **parents,
5173 		       unsigned int size)
5174 {
5175 	unsigned int i = 0;
5176 
5177 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5178 		i++;
5179 
5180 	return i;
5181 }
5182 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5183 
5184 struct clock_provider {
5185 	void (*clk_init_cb)(struct device_node *);
5186 	struct device_node *np;
5187 	struct list_head node;
5188 };
5189 
5190 /*
5191  * This function looks for a parent clock. If there is one, then it
5192  * checks that the provider for this parent clock was initialized, in
5193  * this case the parent clock will be ready.
5194  */
5195 static int parent_ready(struct device_node *np)
5196 {
5197 	int i = 0;
5198 
5199 	while (true) {
5200 		struct clk *clk = of_clk_get(np, i);
5201 
5202 		/* this parent is ready we can check the next one */
5203 		if (!IS_ERR(clk)) {
5204 			clk_put(clk);
5205 			i++;
5206 			continue;
5207 		}
5208 
5209 		/* at least one parent is not ready, we exit now */
5210 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5211 			return 0;
5212 
5213 		/*
5214 		 * Here we make assumption that the device tree is
5215 		 * written correctly. So an error means that there is
5216 		 * no more parent. As we didn't exit yet, then the
5217 		 * previous parent are ready. If there is no clock
5218 		 * parent, no need to wait for them, then we can
5219 		 * consider their absence as being ready
5220 		 */
5221 		return 1;
5222 	}
5223 }
5224 
5225 /**
5226  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5227  * @np: Device node pointer associated with clock provider
5228  * @index: clock index
5229  * @flags: pointer to top-level framework flags
5230  *
5231  * Detects if the clock-critical property exists and, if so, sets the
5232  * corresponding CLK_IS_CRITICAL flag.
5233  *
5234  * Do not use this function. It exists only for legacy Device Tree
5235  * bindings, such as the one-clock-per-node style that are outdated.
5236  * Those bindings typically put all clock data into .dts and the Linux
5237  * driver has no clock data, thus making it impossible to set this flag
5238  * correctly from the driver. Only those drivers may call
5239  * of_clk_detect_critical from their setup functions.
5240  *
5241  * Return: error code or zero on success
5242  */
5243 int of_clk_detect_critical(struct device_node *np, int index,
5244 			   unsigned long *flags)
5245 {
5246 	struct property *prop;
5247 	const __be32 *cur;
5248 	uint32_t idx;
5249 
5250 	if (!np || !flags)
5251 		return -EINVAL;
5252 
5253 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5254 		if (index == idx)
5255 			*flags |= CLK_IS_CRITICAL;
5256 
5257 	return 0;
5258 }
5259 
5260 /**
5261  * of_clk_init() - Scan and init clock providers from the DT
5262  * @matches: array of compatible values and init functions for providers.
5263  *
5264  * This function scans the device tree for matching clock providers
5265  * and calls their initialization functions. It also does it by trying
5266  * to follow the dependencies.
5267  */
5268 void __init of_clk_init(const struct of_device_id *matches)
5269 {
5270 	const struct of_device_id *match;
5271 	struct device_node *np;
5272 	struct clock_provider *clk_provider, *next;
5273 	bool is_init_done;
5274 	bool force = false;
5275 	LIST_HEAD(clk_provider_list);
5276 
5277 	if (!matches)
5278 		matches = &__clk_of_table;
5279 
5280 	/* First prepare the list of the clocks providers */
5281 	for_each_matching_node_and_match(np, matches, &match) {
5282 		struct clock_provider *parent;
5283 
5284 		if (!of_device_is_available(np))
5285 			continue;
5286 
5287 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5288 		if (!parent) {
5289 			list_for_each_entry_safe(clk_provider, next,
5290 						 &clk_provider_list, node) {
5291 				list_del(&clk_provider->node);
5292 				of_node_put(clk_provider->np);
5293 				kfree(clk_provider);
5294 			}
5295 			of_node_put(np);
5296 			return;
5297 		}
5298 
5299 		parent->clk_init_cb = match->data;
5300 		parent->np = of_node_get(np);
5301 		list_add_tail(&parent->node, &clk_provider_list);
5302 	}
5303 
5304 	while (!list_empty(&clk_provider_list)) {
5305 		is_init_done = false;
5306 		list_for_each_entry_safe(clk_provider, next,
5307 					&clk_provider_list, node) {
5308 			if (force || parent_ready(clk_provider->np)) {
5309 
5310 				/* Don't populate platform devices */
5311 				of_node_set_flag(clk_provider->np,
5312 						 OF_POPULATED);
5313 
5314 				clk_provider->clk_init_cb(clk_provider->np);
5315 				of_clk_set_defaults(clk_provider->np, true);
5316 
5317 				list_del(&clk_provider->node);
5318 				of_node_put(clk_provider->np);
5319 				kfree(clk_provider);
5320 				is_init_done = true;
5321 			}
5322 		}
5323 
5324 		/*
5325 		 * We didn't manage to initialize any of the
5326 		 * remaining providers during the last loop, so now we
5327 		 * initialize all the remaining ones unconditionally
5328 		 * in case the clock parent was not mandatory
5329 		 */
5330 		if (!is_init_done)
5331 			force = true;
5332 	}
5333 }
5334 #endif
5335