1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static const struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44 }; 45 46 /*** private data structures ***/ 47 48 struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54 }; 55 56 struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87 #ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90 #endif 91 struct kref ref; 92 }; 93 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/clk.h> 96 97 struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106 }; 107 108 /*** runtime pm ***/ 109 static int clk_pm_runtime_get(struct clk_core *core) 110 { 111 int ret; 112 113 if (!core->rpm_enabled) 114 return 0; 115 116 ret = pm_runtime_get_sync(core->dev); 117 if (ret < 0) { 118 pm_runtime_put_noidle(core->dev); 119 return ret; 120 } 121 return 0; 122 } 123 124 static void clk_pm_runtime_put(struct clk_core *core) 125 { 126 if (!core->rpm_enabled) 127 return; 128 129 pm_runtime_put_sync(core->dev); 130 } 131 132 /*** locking ***/ 133 static void clk_prepare_lock(void) 134 { 135 if (!mutex_trylock(&prepare_lock)) { 136 if (prepare_owner == current) { 137 prepare_refcnt++; 138 return; 139 } 140 mutex_lock(&prepare_lock); 141 } 142 WARN_ON_ONCE(prepare_owner != NULL); 143 WARN_ON_ONCE(prepare_refcnt != 0); 144 prepare_owner = current; 145 prepare_refcnt = 1; 146 } 147 148 static void clk_prepare_unlock(void) 149 { 150 WARN_ON_ONCE(prepare_owner != current); 151 WARN_ON_ONCE(prepare_refcnt == 0); 152 153 if (--prepare_refcnt) 154 return; 155 prepare_owner = NULL; 156 mutex_unlock(&prepare_lock); 157 } 158 159 static unsigned long clk_enable_lock(void) 160 __acquires(enable_lock) 161 { 162 unsigned long flags; 163 164 /* 165 * On UP systems, spin_trylock_irqsave() always returns true, even if 166 * we already hold the lock. So, in that case, we rely only on 167 * reference counting. 168 */ 169 if (!IS_ENABLED(CONFIG_SMP) || 170 !spin_trylock_irqsave(&enable_lock, flags)) { 171 if (enable_owner == current) { 172 enable_refcnt++; 173 __acquire(enable_lock); 174 if (!IS_ENABLED(CONFIG_SMP)) 175 local_save_flags(flags); 176 return flags; 177 } 178 spin_lock_irqsave(&enable_lock, flags); 179 } 180 WARN_ON_ONCE(enable_owner != NULL); 181 WARN_ON_ONCE(enable_refcnt != 0); 182 enable_owner = current; 183 enable_refcnt = 1; 184 return flags; 185 } 186 187 static void clk_enable_unlock(unsigned long flags) 188 __releases(enable_lock) 189 { 190 WARN_ON_ONCE(enable_owner != current); 191 WARN_ON_ONCE(enable_refcnt == 0); 192 193 if (--enable_refcnt) { 194 __release(enable_lock); 195 return; 196 } 197 enable_owner = NULL; 198 spin_unlock_irqrestore(&enable_lock, flags); 199 } 200 201 static bool clk_core_rate_is_protected(struct clk_core *core) 202 { 203 return core->protect_count; 204 } 205 206 static bool clk_core_is_prepared(struct clk_core *core) 207 { 208 bool ret = false; 209 210 /* 211 * .is_prepared is optional for clocks that can prepare 212 * fall back to software usage counter if it is missing 213 */ 214 if (!core->ops->is_prepared) 215 return core->prepare_count; 216 217 if (!clk_pm_runtime_get(core)) { 218 ret = core->ops->is_prepared(core->hw); 219 clk_pm_runtime_put(core); 220 } 221 222 return ret; 223 } 224 225 static bool clk_core_is_enabled(struct clk_core *core) 226 { 227 bool ret = false; 228 229 /* 230 * .is_enabled is only mandatory for clocks that gate 231 * fall back to software usage counter if .is_enabled is missing 232 */ 233 if (!core->ops->is_enabled) 234 return core->enable_count; 235 236 /* 237 * Check if clock controller's device is runtime active before 238 * calling .is_enabled callback. If not, assume that clock is 239 * disabled, because we might be called from atomic context, from 240 * which pm_runtime_get() is not allowed. 241 * This function is called mainly from clk_disable_unused_subtree, 242 * which ensures proper runtime pm activation of controller before 243 * taking enable spinlock, but the below check is needed if one tries 244 * to call it from other places. 245 */ 246 if (core->rpm_enabled) { 247 pm_runtime_get_noresume(core->dev); 248 if (!pm_runtime_active(core->dev)) { 249 ret = false; 250 goto done; 251 } 252 } 253 254 ret = core->ops->is_enabled(core->hw); 255 done: 256 if (core->rpm_enabled) 257 pm_runtime_put(core->dev); 258 259 return ret; 260 } 261 262 /*** helper functions ***/ 263 264 const char *__clk_get_name(const struct clk *clk) 265 { 266 return !clk ? NULL : clk->core->name; 267 } 268 EXPORT_SYMBOL_GPL(__clk_get_name); 269 270 const char *clk_hw_get_name(const struct clk_hw *hw) 271 { 272 return hw->core->name; 273 } 274 EXPORT_SYMBOL_GPL(clk_hw_get_name); 275 276 struct clk_hw *__clk_get_hw(struct clk *clk) 277 { 278 return !clk ? NULL : clk->core->hw; 279 } 280 EXPORT_SYMBOL_GPL(__clk_get_hw); 281 282 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 283 { 284 return hw->core->num_parents; 285 } 286 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 287 288 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 289 { 290 return hw->core->parent ? hw->core->parent->hw : NULL; 291 } 292 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 293 294 static struct clk_core *__clk_lookup_subtree(const char *name, 295 struct clk_core *core) 296 { 297 struct clk_core *child; 298 struct clk_core *ret; 299 300 if (!strcmp(core->name, name)) 301 return core; 302 303 hlist_for_each_entry(child, &core->children, child_node) { 304 ret = __clk_lookup_subtree(name, child); 305 if (ret) 306 return ret; 307 } 308 309 return NULL; 310 } 311 312 static struct clk_core *clk_core_lookup(const char *name) 313 { 314 struct clk_core *root_clk; 315 struct clk_core *ret; 316 317 if (!name) 318 return NULL; 319 320 /* search the 'proper' clk tree first */ 321 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 322 ret = __clk_lookup_subtree(name, root_clk); 323 if (ret) 324 return ret; 325 } 326 327 /* if not found, then search the orphan tree */ 328 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 329 ret = __clk_lookup_subtree(name, root_clk); 330 if (ret) 331 return ret; 332 } 333 334 return NULL; 335 } 336 337 #ifdef CONFIG_OF 338 static int of_parse_clkspec(const struct device_node *np, int index, 339 const char *name, struct of_phandle_args *out_args); 340 static struct clk_hw * 341 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 342 #else 343 static inline int of_parse_clkspec(const struct device_node *np, int index, 344 const char *name, 345 struct of_phandle_args *out_args) 346 { 347 return -ENOENT; 348 } 349 static inline struct clk_hw * 350 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 351 { 352 return ERR_PTR(-ENOENT); 353 } 354 #endif 355 356 /** 357 * clk_core_get - Find the clk_core parent of a clk 358 * @core: clk to find parent of 359 * @p_index: parent index to search for 360 * 361 * This is the preferred method for clk providers to find the parent of a 362 * clk when that parent is external to the clk controller. The parent_names 363 * array is indexed and treated as a local name matching a string in the device 364 * node's 'clock-names' property or as the 'con_id' matching the device's 365 * dev_name() in a clk_lookup. This allows clk providers to use their own 366 * namespace instead of looking for a globally unique parent string. 367 * 368 * For example the following DT snippet would allow a clock registered by the 369 * clock-controller@c001 that has a clk_init_data::parent_data array 370 * with 'xtal' in the 'name' member to find the clock provided by the 371 * clock-controller@f00abcd without needing to get the globally unique name of 372 * the xtal clk. 373 * 374 * parent: clock-controller@f00abcd { 375 * reg = <0xf00abcd 0xabcd>; 376 * #clock-cells = <0>; 377 * }; 378 * 379 * clock-controller@c001 { 380 * reg = <0xc001 0xf00d>; 381 * clocks = <&parent>; 382 * clock-names = "xtal"; 383 * #clock-cells = <1>; 384 * }; 385 * 386 * Returns: -ENOENT when the provider can't be found or the clk doesn't 387 * exist in the provider or the name can't be found in the DT node or 388 * in a clkdev lookup. NULL when the provider knows about the clk but it 389 * isn't provided on this system. 390 * A valid clk_core pointer when the clk can be found in the provider. 391 */ 392 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 393 { 394 const char *name = core->parents[p_index].fw_name; 395 int index = core->parents[p_index].index; 396 struct clk_hw *hw = ERR_PTR(-ENOENT); 397 struct device *dev = core->dev; 398 const char *dev_id = dev ? dev_name(dev) : NULL; 399 struct device_node *np = core->of_node; 400 struct of_phandle_args clkspec; 401 402 if (np && (name || index >= 0) && 403 !of_parse_clkspec(np, index, name, &clkspec)) { 404 hw = of_clk_get_hw_from_clkspec(&clkspec); 405 of_node_put(clkspec.np); 406 } else if (name) { 407 /* 408 * If the DT search above couldn't find the provider fallback to 409 * looking up via clkdev based clk_lookups. 410 */ 411 hw = clk_find_hw(dev_id, name); 412 } 413 414 if (IS_ERR(hw)) 415 return ERR_CAST(hw); 416 417 return hw->core; 418 } 419 420 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 421 { 422 struct clk_parent_map *entry = &core->parents[index]; 423 struct clk_core *parent; 424 425 if (entry->hw) { 426 parent = entry->hw->core; 427 } else { 428 parent = clk_core_get(core, index); 429 if (PTR_ERR(parent) == -ENOENT && entry->name) 430 parent = clk_core_lookup(entry->name); 431 } 432 433 /* 434 * We have a direct reference but it isn't registered yet? 435 * Orphan it and let clk_reparent() update the orphan status 436 * when the parent is registered. 437 */ 438 if (!parent) 439 parent = ERR_PTR(-EPROBE_DEFER); 440 441 /* Only cache it if it's not an error */ 442 if (!IS_ERR(parent)) 443 entry->core = parent; 444 } 445 446 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 447 u8 index) 448 { 449 if (!core || index >= core->num_parents || !core->parents) 450 return NULL; 451 452 if (!core->parents[index].core) 453 clk_core_fill_parent_index(core, index); 454 455 return core->parents[index].core; 456 } 457 458 struct clk_hw * 459 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 460 { 461 struct clk_core *parent; 462 463 parent = clk_core_get_parent_by_index(hw->core, index); 464 465 return !parent ? NULL : parent->hw; 466 } 467 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 468 469 unsigned int __clk_get_enable_count(struct clk *clk) 470 { 471 return !clk ? 0 : clk->core->enable_count; 472 } 473 474 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 475 { 476 if (!core) 477 return 0; 478 479 if (!core->num_parents || core->parent) 480 return core->rate; 481 482 /* 483 * Clk must have a parent because num_parents > 0 but the parent isn't 484 * known yet. Best to return 0 as the rate of this clk until we can 485 * properly recalc the rate based on the parent's rate. 486 */ 487 return 0; 488 } 489 490 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 491 { 492 return clk_core_get_rate_nolock(hw->core); 493 } 494 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 495 496 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 497 { 498 if (!core) 499 return 0; 500 501 return core->accuracy; 502 } 503 504 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 505 { 506 return hw->core->flags; 507 } 508 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 509 510 bool clk_hw_is_prepared(const struct clk_hw *hw) 511 { 512 return clk_core_is_prepared(hw->core); 513 } 514 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 515 516 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 517 { 518 return clk_core_rate_is_protected(hw->core); 519 } 520 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 521 522 bool clk_hw_is_enabled(const struct clk_hw *hw) 523 { 524 return clk_core_is_enabled(hw->core); 525 } 526 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 527 528 bool __clk_is_enabled(struct clk *clk) 529 { 530 if (!clk) 531 return false; 532 533 return clk_core_is_enabled(clk->core); 534 } 535 EXPORT_SYMBOL_GPL(__clk_is_enabled); 536 537 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 538 unsigned long best, unsigned long flags) 539 { 540 if (flags & CLK_MUX_ROUND_CLOSEST) 541 return abs(now - rate) < abs(best - rate); 542 543 return now <= rate && now > best; 544 } 545 546 int clk_mux_determine_rate_flags(struct clk_hw *hw, 547 struct clk_rate_request *req, 548 unsigned long flags) 549 { 550 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 551 int i, num_parents, ret; 552 unsigned long best = 0; 553 struct clk_rate_request parent_req = *req; 554 555 /* if NO_REPARENT flag set, pass through to current parent */ 556 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 557 parent = core->parent; 558 if (core->flags & CLK_SET_RATE_PARENT) { 559 ret = __clk_determine_rate(parent ? parent->hw : NULL, 560 &parent_req); 561 if (ret) 562 return ret; 563 564 best = parent_req.rate; 565 } else if (parent) { 566 best = clk_core_get_rate_nolock(parent); 567 } else { 568 best = clk_core_get_rate_nolock(core); 569 } 570 571 goto out; 572 } 573 574 /* find the parent that can provide the fastest rate <= rate */ 575 num_parents = core->num_parents; 576 for (i = 0; i < num_parents; i++) { 577 parent = clk_core_get_parent_by_index(core, i); 578 if (!parent) 579 continue; 580 581 if (core->flags & CLK_SET_RATE_PARENT) { 582 parent_req = *req; 583 ret = __clk_determine_rate(parent->hw, &parent_req); 584 if (ret) 585 continue; 586 } else { 587 parent_req.rate = clk_core_get_rate_nolock(parent); 588 } 589 590 if (mux_is_better_rate(req->rate, parent_req.rate, 591 best, flags)) { 592 best_parent = parent; 593 best = parent_req.rate; 594 } 595 } 596 597 if (!best_parent) 598 return -EINVAL; 599 600 out: 601 if (best_parent) 602 req->best_parent_hw = best_parent->hw; 603 req->best_parent_rate = best; 604 req->rate = best; 605 606 return 0; 607 } 608 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 609 610 struct clk *__clk_lookup(const char *name) 611 { 612 struct clk_core *core = clk_core_lookup(name); 613 614 return !core ? NULL : core->hw->clk; 615 } 616 617 static void clk_core_get_boundaries(struct clk_core *core, 618 unsigned long *min_rate, 619 unsigned long *max_rate) 620 { 621 struct clk *clk_user; 622 623 lockdep_assert_held(&prepare_lock); 624 625 *min_rate = core->min_rate; 626 *max_rate = core->max_rate; 627 628 hlist_for_each_entry(clk_user, &core->clks, clks_node) 629 *min_rate = max(*min_rate, clk_user->min_rate); 630 631 hlist_for_each_entry(clk_user, &core->clks, clks_node) 632 *max_rate = min(*max_rate, clk_user->max_rate); 633 } 634 635 static bool clk_core_check_boundaries(struct clk_core *core, 636 unsigned long min_rate, 637 unsigned long max_rate) 638 { 639 struct clk *user; 640 641 lockdep_assert_held(&prepare_lock); 642 643 if (min_rate > core->max_rate || max_rate < core->min_rate) 644 return false; 645 646 hlist_for_each_entry(user, &core->clks, clks_node) 647 if (min_rate > user->max_rate || max_rate < user->min_rate) 648 return false; 649 650 return true; 651 } 652 653 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 654 unsigned long max_rate) 655 { 656 hw->core->min_rate = min_rate; 657 hw->core->max_rate = max_rate; 658 } 659 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 660 661 /* 662 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 663 * @hw: mux type clk to determine rate on 664 * @req: rate request, also used to return preferred parent and frequencies 665 * 666 * Helper for finding best parent to provide a given frequency. This can be used 667 * directly as a determine_rate callback (e.g. for a mux), or from a more 668 * complex clock that may combine a mux with other operations. 669 * 670 * Returns: 0 on success, -EERROR value on error 671 */ 672 int __clk_mux_determine_rate(struct clk_hw *hw, 673 struct clk_rate_request *req) 674 { 675 return clk_mux_determine_rate_flags(hw, req, 0); 676 } 677 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 678 679 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 680 struct clk_rate_request *req) 681 { 682 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 683 } 684 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 685 686 /*** clk api ***/ 687 688 static void clk_core_rate_unprotect(struct clk_core *core) 689 { 690 lockdep_assert_held(&prepare_lock); 691 692 if (!core) 693 return; 694 695 if (WARN(core->protect_count == 0, 696 "%s already unprotected\n", core->name)) 697 return; 698 699 if (--core->protect_count > 0) 700 return; 701 702 clk_core_rate_unprotect(core->parent); 703 } 704 705 static int clk_core_rate_nuke_protect(struct clk_core *core) 706 { 707 int ret; 708 709 lockdep_assert_held(&prepare_lock); 710 711 if (!core) 712 return -EINVAL; 713 714 if (core->protect_count == 0) 715 return 0; 716 717 ret = core->protect_count; 718 core->protect_count = 1; 719 clk_core_rate_unprotect(core); 720 721 return ret; 722 } 723 724 /** 725 * clk_rate_exclusive_put - release exclusivity over clock rate control 726 * @clk: the clk over which the exclusivity is released 727 * 728 * clk_rate_exclusive_put() completes a critical section during which a clock 729 * consumer cannot tolerate any other consumer making any operation on the 730 * clock which could result in a rate change or rate glitch. Exclusive clocks 731 * cannot have their rate changed, either directly or indirectly due to changes 732 * further up the parent chain of clocks. As a result, clocks up parent chain 733 * also get under exclusive control of the calling consumer. 734 * 735 * If exlusivity is claimed more than once on clock, even by the same consumer, 736 * the rate effectively gets locked as exclusivity can't be preempted. 737 * 738 * Calls to clk_rate_exclusive_put() must be balanced with calls to 739 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 740 * error status. 741 */ 742 void clk_rate_exclusive_put(struct clk *clk) 743 { 744 if (!clk) 745 return; 746 747 clk_prepare_lock(); 748 749 /* 750 * if there is something wrong with this consumer protect count, stop 751 * here before messing with the provider 752 */ 753 if (WARN_ON(clk->exclusive_count <= 0)) 754 goto out; 755 756 clk_core_rate_unprotect(clk->core); 757 clk->exclusive_count--; 758 out: 759 clk_prepare_unlock(); 760 } 761 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 762 763 static void clk_core_rate_protect(struct clk_core *core) 764 { 765 lockdep_assert_held(&prepare_lock); 766 767 if (!core) 768 return; 769 770 if (core->protect_count == 0) 771 clk_core_rate_protect(core->parent); 772 773 core->protect_count++; 774 } 775 776 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 777 { 778 lockdep_assert_held(&prepare_lock); 779 780 if (!core) 781 return; 782 783 if (count == 0) 784 return; 785 786 clk_core_rate_protect(core); 787 core->protect_count = count; 788 } 789 790 /** 791 * clk_rate_exclusive_get - get exclusivity over the clk rate control 792 * @clk: the clk over which the exclusity of rate control is requested 793 * 794 * clk_rate_exclusive_get() begins a critical section during which a clock 795 * consumer cannot tolerate any other consumer making any operation on the 796 * clock which could result in a rate change or rate glitch. Exclusive clocks 797 * cannot have their rate changed, either directly or indirectly due to changes 798 * further up the parent chain of clocks. As a result, clocks up parent chain 799 * also get under exclusive control of the calling consumer. 800 * 801 * If exlusivity is claimed more than once on clock, even by the same consumer, 802 * the rate effectively gets locked as exclusivity can't be preempted. 803 * 804 * Calls to clk_rate_exclusive_get() should be balanced with calls to 805 * clk_rate_exclusive_put(). Calls to this function may sleep. 806 * Returns 0 on success, -EERROR otherwise 807 */ 808 int clk_rate_exclusive_get(struct clk *clk) 809 { 810 if (!clk) 811 return 0; 812 813 clk_prepare_lock(); 814 clk_core_rate_protect(clk->core); 815 clk->exclusive_count++; 816 clk_prepare_unlock(); 817 818 return 0; 819 } 820 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 821 822 static void clk_core_unprepare(struct clk_core *core) 823 { 824 lockdep_assert_held(&prepare_lock); 825 826 if (!core) 827 return; 828 829 if (WARN(core->prepare_count == 0, 830 "%s already unprepared\n", core->name)) 831 return; 832 833 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 834 "Unpreparing critical %s\n", core->name)) 835 return; 836 837 if (core->flags & CLK_SET_RATE_GATE) 838 clk_core_rate_unprotect(core); 839 840 if (--core->prepare_count > 0) 841 return; 842 843 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 844 845 trace_clk_unprepare(core); 846 847 if (core->ops->unprepare) 848 core->ops->unprepare(core->hw); 849 850 clk_pm_runtime_put(core); 851 852 trace_clk_unprepare_complete(core); 853 clk_core_unprepare(core->parent); 854 } 855 856 static void clk_core_unprepare_lock(struct clk_core *core) 857 { 858 clk_prepare_lock(); 859 clk_core_unprepare(core); 860 clk_prepare_unlock(); 861 } 862 863 /** 864 * clk_unprepare - undo preparation of a clock source 865 * @clk: the clk being unprepared 866 * 867 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 868 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 869 * if the operation may sleep. One example is a clk which is accessed over 870 * I2c. In the complex case a clk gate operation may require a fast and a slow 871 * part. It is this reason that clk_unprepare and clk_disable are not mutually 872 * exclusive. In fact clk_disable must be called before clk_unprepare. 873 */ 874 void clk_unprepare(struct clk *clk) 875 { 876 if (IS_ERR_OR_NULL(clk)) 877 return; 878 879 clk_core_unprepare_lock(clk->core); 880 } 881 EXPORT_SYMBOL_GPL(clk_unprepare); 882 883 static int clk_core_prepare(struct clk_core *core) 884 { 885 int ret = 0; 886 887 lockdep_assert_held(&prepare_lock); 888 889 if (!core) 890 return 0; 891 892 if (core->prepare_count == 0) { 893 ret = clk_pm_runtime_get(core); 894 if (ret) 895 return ret; 896 897 ret = clk_core_prepare(core->parent); 898 if (ret) 899 goto runtime_put; 900 901 trace_clk_prepare(core); 902 903 if (core->ops->prepare) 904 ret = core->ops->prepare(core->hw); 905 906 trace_clk_prepare_complete(core); 907 908 if (ret) 909 goto unprepare; 910 } 911 912 core->prepare_count++; 913 914 /* 915 * CLK_SET_RATE_GATE is a special case of clock protection 916 * Instead of a consumer claiming exclusive rate control, it is 917 * actually the provider which prevents any consumer from making any 918 * operation which could result in a rate change or rate glitch while 919 * the clock is prepared. 920 */ 921 if (core->flags & CLK_SET_RATE_GATE) 922 clk_core_rate_protect(core); 923 924 return 0; 925 unprepare: 926 clk_core_unprepare(core->parent); 927 runtime_put: 928 clk_pm_runtime_put(core); 929 return ret; 930 } 931 932 static int clk_core_prepare_lock(struct clk_core *core) 933 { 934 int ret; 935 936 clk_prepare_lock(); 937 ret = clk_core_prepare(core); 938 clk_prepare_unlock(); 939 940 return ret; 941 } 942 943 /** 944 * clk_prepare - prepare a clock source 945 * @clk: the clk being prepared 946 * 947 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 948 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 949 * operation may sleep. One example is a clk which is accessed over I2c. In 950 * the complex case a clk ungate operation may require a fast and a slow part. 951 * It is this reason that clk_prepare and clk_enable are not mutually 952 * exclusive. In fact clk_prepare must be called before clk_enable. 953 * Returns 0 on success, -EERROR otherwise. 954 */ 955 int clk_prepare(struct clk *clk) 956 { 957 if (!clk) 958 return 0; 959 960 return clk_core_prepare_lock(clk->core); 961 } 962 EXPORT_SYMBOL_GPL(clk_prepare); 963 964 static void clk_core_disable(struct clk_core *core) 965 { 966 lockdep_assert_held(&enable_lock); 967 968 if (!core) 969 return; 970 971 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 972 return; 973 974 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 975 "Disabling critical %s\n", core->name)) 976 return; 977 978 if (--core->enable_count > 0) 979 return; 980 981 trace_clk_disable_rcuidle(core); 982 983 if (core->ops->disable) 984 core->ops->disable(core->hw); 985 986 trace_clk_disable_complete_rcuidle(core); 987 988 clk_core_disable(core->parent); 989 } 990 991 static void clk_core_disable_lock(struct clk_core *core) 992 { 993 unsigned long flags; 994 995 flags = clk_enable_lock(); 996 clk_core_disable(core); 997 clk_enable_unlock(flags); 998 } 999 1000 /** 1001 * clk_disable - gate a clock 1002 * @clk: the clk being gated 1003 * 1004 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 1005 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 1006 * clk if the operation is fast and will never sleep. One example is a 1007 * SoC-internal clk which is controlled via simple register writes. In the 1008 * complex case a clk gate operation may require a fast and a slow part. It is 1009 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 1010 * In fact clk_disable must be called before clk_unprepare. 1011 */ 1012 void clk_disable(struct clk *clk) 1013 { 1014 if (IS_ERR_OR_NULL(clk)) 1015 return; 1016 1017 clk_core_disable_lock(clk->core); 1018 } 1019 EXPORT_SYMBOL_GPL(clk_disable); 1020 1021 static int clk_core_enable(struct clk_core *core) 1022 { 1023 int ret = 0; 1024 1025 lockdep_assert_held(&enable_lock); 1026 1027 if (!core) 1028 return 0; 1029 1030 if (WARN(core->prepare_count == 0, 1031 "Enabling unprepared %s\n", core->name)) 1032 return -ESHUTDOWN; 1033 1034 if (core->enable_count == 0) { 1035 ret = clk_core_enable(core->parent); 1036 1037 if (ret) 1038 return ret; 1039 1040 trace_clk_enable_rcuidle(core); 1041 1042 if (core->ops->enable) 1043 ret = core->ops->enable(core->hw); 1044 1045 trace_clk_enable_complete_rcuidle(core); 1046 1047 if (ret) { 1048 clk_core_disable(core->parent); 1049 return ret; 1050 } 1051 } 1052 1053 core->enable_count++; 1054 return 0; 1055 } 1056 1057 static int clk_core_enable_lock(struct clk_core *core) 1058 { 1059 unsigned long flags; 1060 int ret; 1061 1062 flags = clk_enable_lock(); 1063 ret = clk_core_enable(core); 1064 clk_enable_unlock(flags); 1065 1066 return ret; 1067 } 1068 1069 /** 1070 * clk_gate_restore_context - restore context for poweroff 1071 * @hw: the clk_hw pointer of clock whose state is to be restored 1072 * 1073 * The clock gate restore context function enables or disables 1074 * the gate clocks based on the enable_count. This is done in cases 1075 * where the clock context is lost and based on the enable_count 1076 * the clock either needs to be enabled/disabled. This 1077 * helps restore the state of gate clocks. 1078 */ 1079 void clk_gate_restore_context(struct clk_hw *hw) 1080 { 1081 struct clk_core *core = hw->core; 1082 1083 if (core->enable_count) 1084 core->ops->enable(hw); 1085 else 1086 core->ops->disable(hw); 1087 } 1088 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1089 1090 static int clk_core_save_context(struct clk_core *core) 1091 { 1092 struct clk_core *child; 1093 int ret = 0; 1094 1095 hlist_for_each_entry(child, &core->children, child_node) { 1096 ret = clk_core_save_context(child); 1097 if (ret < 0) 1098 return ret; 1099 } 1100 1101 if (core->ops && core->ops->save_context) 1102 ret = core->ops->save_context(core->hw); 1103 1104 return ret; 1105 } 1106 1107 static void clk_core_restore_context(struct clk_core *core) 1108 { 1109 struct clk_core *child; 1110 1111 if (core->ops && core->ops->restore_context) 1112 core->ops->restore_context(core->hw); 1113 1114 hlist_for_each_entry(child, &core->children, child_node) 1115 clk_core_restore_context(child); 1116 } 1117 1118 /** 1119 * clk_save_context - save clock context for poweroff 1120 * 1121 * Saves the context of the clock register for powerstates in which the 1122 * contents of the registers will be lost. Occurs deep within the suspend 1123 * code. Returns 0 on success. 1124 */ 1125 int clk_save_context(void) 1126 { 1127 struct clk_core *clk; 1128 int ret; 1129 1130 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1131 ret = clk_core_save_context(clk); 1132 if (ret < 0) 1133 return ret; 1134 } 1135 1136 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1137 ret = clk_core_save_context(clk); 1138 if (ret < 0) 1139 return ret; 1140 } 1141 1142 return 0; 1143 } 1144 EXPORT_SYMBOL_GPL(clk_save_context); 1145 1146 /** 1147 * clk_restore_context - restore clock context after poweroff 1148 * 1149 * Restore the saved clock context upon resume. 1150 * 1151 */ 1152 void clk_restore_context(void) 1153 { 1154 struct clk_core *core; 1155 1156 hlist_for_each_entry(core, &clk_root_list, child_node) 1157 clk_core_restore_context(core); 1158 1159 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1160 clk_core_restore_context(core); 1161 } 1162 EXPORT_SYMBOL_GPL(clk_restore_context); 1163 1164 /** 1165 * clk_enable - ungate a clock 1166 * @clk: the clk being ungated 1167 * 1168 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1169 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1170 * if the operation will never sleep. One example is a SoC-internal clk which 1171 * is controlled via simple register writes. In the complex case a clk ungate 1172 * operation may require a fast and a slow part. It is this reason that 1173 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1174 * must be called before clk_enable. Returns 0 on success, -EERROR 1175 * otherwise. 1176 */ 1177 int clk_enable(struct clk *clk) 1178 { 1179 if (!clk) 1180 return 0; 1181 1182 return clk_core_enable_lock(clk->core); 1183 } 1184 EXPORT_SYMBOL_GPL(clk_enable); 1185 1186 /** 1187 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it. 1188 * @clk: clock source 1189 * 1190 * Returns true if clk_prepare() implicitly enables the clock, effectively 1191 * making clk_enable()/clk_disable() no-ops, false otherwise. 1192 * 1193 * This is of interest mainly to power management code where actually 1194 * disabling the clock also requires unpreparing it to have any material 1195 * effect. 1196 * 1197 * Regardless of the value returned here, the caller must always invoke 1198 * clk_enable() or clk_prepare_enable() and counterparts for usage counts 1199 * to be right. 1200 */ 1201 bool clk_is_enabled_when_prepared(struct clk *clk) 1202 { 1203 return clk && !(clk->core->ops->enable && clk->core->ops->disable); 1204 } 1205 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared); 1206 1207 static int clk_core_prepare_enable(struct clk_core *core) 1208 { 1209 int ret; 1210 1211 ret = clk_core_prepare_lock(core); 1212 if (ret) 1213 return ret; 1214 1215 ret = clk_core_enable_lock(core); 1216 if (ret) 1217 clk_core_unprepare_lock(core); 1218 1219 return ret; 1220 } 1221 1222 static void clk_core_disable_unprepare(struct clk_core *core) 1223 { 1224 clk_core_disable_lock(core); 1225 clk_core_unprepare_lock(core); 1226 } 1227 1228 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1229 { 1230 struct clk_core *child; 1231 1232 lockdep_assert_held(&prepare_lock); 1233 1234 hlist_for_each_entry(child, &core->children, child_node) 1235 clk_unprepare_unused_subtree(child); 1236 1237 if (core->prepare_count) 1238 return; 1239 1240 if (core->flags & CLK_IGNORE_UNUSED) 1241 return; 1242 1243 if (clk_pm_runtime_get(core)) 1244 return; 1245 1246 if (clk_core_is_prepared(core)) { 1247 trace_clk_unprepare(core); 1248 if (core->ops->unprepare_unused) 1249 core->ops->unprepare_unused(core->hw); 1250 else if (core->ops->unprepare) 1251 core->ops->unprepare(core->hw); 1252 trace_clk_unprepare_complete(core); 1253 } 1254 1255 clk_pm_runtime_put(core); 1256 } 1257 1258 static void __init clk_disable_unused_subtree(struct clk_core *core) 1259 { 1260 struct clk_core *child; 1261 unsigned long flags; 1262 1263 lockdep_assert_held(&prepare_lock); 1264 1265 hlist_for_each_entry(child, &core->children, child_node) 1266 clk_disable_unused_subtree(child); 1267 1268 if (core->flags & CLK_OPS_PARENT_ENABLE) 1269 clk_core_prepare_enable(core->parent); 1270 1271 if (clk_pm_runtime_get(core)) 1272 goto unprepare_out; 1273 1274 flags = clk_enable_lock(); 1275 1276 if (core->enable_count) 1277 goto unlock_out; 1278 1279 if (core->flags & CLK_IGNORE_UNUSED) 1280 goto unlock_out; 1281 1282 /* 1283 * some gate clocks have special needs during the disable-unused 1284 * sequence. call .disable_unused if available, otherwise fall 1285 * back to .disable 1286 */ 1287 if (clk_core_is_enabled(core)) { 1288 trace_clk_disable(core); 1289 if (core->ops->disable_unused) 1290 core->ops->disable_unused(core->hw); 1291 else if (core->ops->disable) 1292 core->ops->disable(core->hw); 1293 trace_clk_disable_complete(core); 1294 } 1295 1296 unlock_out: 1297 clk_enable_unlock(flags); 1298 clk_pm_runtime_put(core); 1299 unprepare_out: 1300 if (core->flags & CLK_OPS_PARENT_ENABLE) 1301 clk_core_disable_unprepare(core->parent); 1302 } 1303 1304 static bool clk_ignore_unused __initdata; 1305 static int __init clk_ignore_unused_setup(char *__unused) 1306 { 1307 clk_ignore_unused = true; 1308 return 1; 1309 } 1310 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1311 1312 static int __init clk_disable_unused(void) 1313 { 1314 struct clk_core *core; 1315 1316 if (clk_ignore_unused) { 1317 pr_warn("clk: Not disabling unused clocks\n"); 1318 return 0; 1319 } 1320 1321 clk_prepare_lock(); 1322 1323 hlist_for_each_entry(core, &clk_root_list, child_node) 1324 clk_disable_unused_subtree(core); 1325 1326 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1327 clk_disable_unused_subtree(core); 1328 1329 hlist_for_each_entry(core, &clk_root_list, child_node) 1330 clk_unprepare_unused_subtree(core); 1331 1332 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1333 clk_unprepare_unused_subtree(core); 1334 1335 clk_prepare_unlock(); 1336 1337 return 0; 1338 } 1339 late_initcall_sync(clk_disable_unused); 1340 1341 static int clk_core_determine_round_nolock(struct clk_core *core, 1342 struct clk_rate_request *req) 1343 { 1344 long rate; 1345 1346 lockdep_assert_held(&prepare_lock); 1347 1348 if (!core) 1349 return 0; 1350 1351 req->rate = clamp(req->rate, req->min_rate, req->max_rate); 1352 1353 /* 1354 * At this point, core protection will be disabled 1355 * - if the provider is not protected at all 1356 * - if the calling consumer is the only one which has exclusivity 1357 * over the provider 1358 */ 1359 if (clk_core_rate_is_protected(core)) { 1360 req->rate = core->rate; 1361 } else if (core->ops->determine_rate) { 1362 return core->ops->determine_rate(core->hw, req); 1363 } else if (core->ops->round_rate) { 1364 rate = core->ops->round_rate(core->hw, req->rate, 1365 &req->best_parent_rate); 1366 if (rate < 0) 1367 return rate; 1368 1369 req->rate = rate; 1370 } else { 1371 return -EINVAL; 1372 } 1373 1374 return 0; 1375 } 1376 1377 static void clk_core_init_rate_req(struct clk_core * const core, 1378 struct clk_rate_request *req) 1379 { 1380 struct clk_core *parent; 1381 1382 if (WARN_ON(!core || !req)) 1383 return; 1384 1385 parent = core->parent; 1386 if (parent) { 1387 req->best_parent_hw = parent->hw; 1388 req->best_parent_rate = parent->rate; 1389 } else { 1390 req->best_parent_hw = NULL; 1391 req->best_parent_rate = 0; 1392 } 1393 } 1394 1395 static bool clk_core_can_round(struct clk_core * const core) 1396 { 1397 return core->ops->determine_rate || core->ops->round_rate; 1398 } 1399 1400 static int clk_core_round_rate_nolock(struct clk_core *core, 1401 struct clk_rate_request *req) 1402 { 1403 lockdep_assert_held(&prepare_lock); 1404 1405 if (!core) { 1406 req->rate = 0; 1407 return 0; 1408 } 1409 1410 clk_core_init_rate_req(core, req); 1411 1412 if (clk_core_can_round(core)) 1413 return clk_core_determine_round_nolock(core, req); 1414 else if (core->flags & CLK_SET_RATE_PARENT) 1415 return clk_core_round_rate_nolock(core->parent, req); 1416 1417 req->rate = core->rate; 1418 return 0; 1419 } 1420 1421 /** 1422 * __clk_determine_rate - get the closest rate actually supported by a clock 1423 * @hw: determine the rate of this clock 1424 * @req: target rate request 1425 * 1426 * Useful for clk_ops such as .set_rate and .determine_rate. 1427 */ 1428 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1429 { 1430 if (!hw) { 1431 req->rate = 0; 1432 return 0; 1433 } 1434 1435 return clk_core_round_rate_nolock(hw->core, req); 1436 } 1437 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1438 1439 /** 1440 * clk_hw_round_rate() - round the given rate for a hw clk 1441 * @hw: the hw clk for which we are rounding a rate 1442 * @rate: the rate which is to be rounded 1443 * 1444 * Takes in a rate as input and rounds it to a rate that the clk can actually 1445 * use. 1446 * 1447 * Context: prepare_lock must be held. 1448 * For clk providers to call from within clk_ops such as .round_rate, 1449 * .determine_rate. 1450 * 1451 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1452 * else returns the parent rate. 1453 */ 1454 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1455 { 1456 int ret; 1457 struct clk_rate_request req; 1458 1459 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1460 req.rate = rate; 1461 1462 ret = clk_core_round_rate_nolock(hw->core, &req); 1463 if (ret) 1464 return 0; 1465 1466 return req.rate; 1467 } 1468 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1469 1470 /** 1471 * clk_round_rate - round the given rate for a clk 1472 * @clk: the clk for which we are rounding a rate 1473 * @rate: the rate which is to be rounded 1474 * 1475 * Takes in a rate as input and rounds it to a rate that the clk can actually 1476 * use which is then returned. If clk doesn't support round_rate operation 1477 * then the parent rate is returned. 1478 */ 1479 long clk_round_rate(struct clk *clk, unsigned long rate) 1480 { 1481 struct clk_rate_request req; 1482 int ret; 1483 1484 if (!clk) 1485 return 0; 1486 1487 clk_prepare_lock(); 1488 1489 if (clk->exclusive_count) 1490 clk_core_rate_unprotect(clk->core); 1491 1492 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1493 req.rate = rate; 1494 1495 ret = clk_core_round_rate_nolock(clk->core, &req); 1496 1497 if (clk->exclusive_count) 1498 clk_core_rate_protect(clk->core); 1499 1500 clk_prepare_unlock(); 1501 1502 if (ret) 1503 return ret; 1504 1505 return req.rate; 1506 } 1507 EXPORT_SYMBOL_GPL(clk_round_rate); 1508 1509 /** 1510 * __clk_notify - call clk notifier chain 1511 * @core: clk that is changing rate 1512 * @msg: clk notifier type (see include/linux/clk.h) 1513 * @old_rate: old clk rate 1514 * @new_rate: new clk rate 1515 * 1516 * Triggers a notifier call chain on the clk rate-change notification 1517 * for 'clk'. Passes a pointer to the struct clk and the previous 1518 * and current rates to the notifier callback. Intended to be called by 1519 * internal clock code only. Returns NOTIFY_DONE from the last driver 1520 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1521 * a driver returns that. 1522 */ 1523 static int __clk_notify(struct clk_core *core, unsigned long msg, 1524 unsigned long old_rate, unsigned long new_rate) 1525 { 1526 struct clk_notifier *cn; 1527 struct clk_notifier_data cnd; 1528 int ret = NOTIFY_DONE; 1529 1530 cnd.old_rate = old_rate; 1531 cnd.new_rate = new_rate; 1532 1533 list_for_each_entry(cn, &clk_notifier_list, node) { 1534 if (cn->clk->core == core) { 1535 cnd.clk = cn->clk; 1536 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1537 &cnd); 1538 if (ret & NOTIFY_STOP_MASK) 1539 return ret; 1540 } 1541 } 1542 1543 return ret; 1544 } 1545 1546 /** 1547 * __clk_recalc_accuracies 1548 * @core: first clk in the subtree 1549 * 1550 * Walks the subtree of clks starting with clk and recalculates accuracies as 1551 * it goes. Note that if a clk does not implement the .recalc_accuracy 1552 * callback then it is assumed that the clock will take on the accuracy of its 1553 * parent. 1554 */ 1555 static void __clk_recalc_accuracies(struct clk_core *core) 1556 { 1557 unsigned long parent_accuracy = 0; 1558 struct clk_core *child; 1559 1560 lockdep_assert_held(&prepare_lock); 1561 1562 if (core->parent) 1563 parent_accuracy = core->parent->accuracy; 1564 1565 if (core->ops->recalc_accuracy) 1566 core->accuracy = core->ops->recalc_accuracy(core->hw, 1567 parent_accuracy); 1568 else 1569 core->accuracy = parent_accuracy; 1570 1571 hlist_for_each_entry(child, &core->children, child_node) 1572 __clk_recalc_accuracies(child); 1573 } 1574 1575 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1576 { 1577 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1578 __clk_recalc_accuracies(core); 1579 1580 return clk_core_get_accuracy_no_lock(core); 1581 } 1582 1583 /** 1584 * clk_get_accuracy - return the accuracy of clk 1585 * @clk: the clk whose accuracy is being returned 1586 * 1587 * Simply returns the cached accuracy of the clk, unless 1588 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1589 * issued. 1590 * If clk is NULL then returns 0. 1591 */ 1592 long clk_get_accuracy(struct clk *clk) 1593 { 1594 long accuracy; 1595 1596 if (!clk) 1597 return 0; 1598 1599 clk_prepare_lock(); 1600 accuracy = clk_core_get_accuracy_recalc(clk->core); 1601 clk_prepare_unlock(); 1602 1603 return accuracy; 1604 } 1605 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1606 1607 static unsigned long clk_recalc(struct clk_core *core, 1608 unsigned long parent_rate) 1609 { 1610 unsigned long rate = parent_rate; 1611 1612 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1613 rate = core->ops->recalc_rate(core->hw, parent_rate); 1614 clk_pm_runtime_put(core); 1615 } 1616 return rate; 1617 } 1618 1619 /** 1620 * __clk_recalc_rates 1621 * @core: first clk in the subtree 1622 * @msg: notification type (see include/linux/clk.h) 1623 * 1624 * Walks the subtree of clks starting with clk and recalculates rates as it 1625 * goes. Note that if a clk does not implement the .recalc_rate callback then 1626 * it is assumed that the clock will take on the rate of its parent. 1627 * 1628 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1629 * if necessary. 1630 */ 1631 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1632 { 1633 unsigned long old_rate; 1634 unsigned long parent_rate = 0; 1635 struct clk_core *child; 1636 1637 lockdep_assert_held(&prepare_lock); 1638 1639 old_rate = core->rate; 1640 1641 if (core->parent) 1642 parent_rate = core->parent->rate; 1643 1644 core->rate = clk_recalc(core, parent_rate); 1645 1646 /* 1647 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1648 * & ABORT_RATE_CHANGE notifiers 1649 */ 1650 if (core->notifier_count && msg) 1651 __clk_notify(core, msg, old_rate, core->rate); 1652 1653 hlist_for_each_entry(child, &core->children, child_node) 1654 __clk_recalc_rates(child, msg); 1655 } 1656 1657 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1658 { 1659 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1660 __clk_recalc_rates(core, 0); 1661 1662 return clk_core_get_rate_nolock(core); 1663 } 1664 1665 /** 1666 * clk_get_rate - return the rate of clk 1667 * @clk: the clk whose rate is being returned 1668 * 1669 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1670 * is set, which means a recalc_rate will be issued. 1671 * If clk is NULL then returns 0. 1672 */ 1673 unsigned long clk_get_rate(struct clk *clk) 1674 { 1675 unsigned long rate; 1676 1677 if (!clk) 1678 return 0; 1679 1680 clk_prepare_lock(); 1681 rate = clk_core_get_rate_recalc(clk->core); 1682 clk_prepare_unlock(); 1683 1684 return rate; 1685 } 1686 EXPORT_SYMBOL_GPL(clk_get_rate); 1687 1688 static int clk_fetch_parent_index(struct clk_core *core, 1689 struct clk_core *parent) 1690 { 1691 int i; 1692 1693 if (!parent) 1694 return -EINVAL; 1695 1696 for (i = 0; i < core->num_parents; i++) { 1697 /* Found it first try! */ 1698 if (core->parents[i].core == parent) 1699 return i; 1700 1701 /* Something else is here, so keep looking */ 1702 if (core->parents[i].core) 1703 continue; 1704 1705 /* Maybe core hasn't been cached but the hw is all we know? */ 1706 if (core->parents[i].hw) { 1707 if (core->parents[i].hw == parent->hw) 1708 break; 1709 1710 /* Didn't match, but we're expecting a clk_hw */ 1711 continue; 1712 } 1713 1714 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1715 if (parent == clk_core_get(core, i)) 1716 break; 1717 1718 /* Fallback to comparing globally unique names */ 1719 if (core->parents[i].name && 1720 !strcmp(parent->name, core->parents[i].name)) 1721 break; 1722 } 1723 1724 if (i == core->num_parents) 1725 return -EINVAL; 1726 1727 core->parents[i].core = parent; 1728 return i; 1729 } 1730 1731 /** 1732 * clk_hw_get_parent_index - return the index of the parent clock 1733 * @hw: clk_hw associated with the clk being consumed 1734 * 1735 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1736 * clock does not have a current parent. 1737 */ 1738 int clk_hw_get_parent_index(struct clk_hw *hw) 1739 { 1740 struct clk_hw *parent = clk_hw_get_parent(hw); 1741 1742 if (WARN_ON(parent == NULL)) 1743 return -EINVAL; 1744 1745 return clk_fetch_parent_index(hw->core, parent->core); 1746 } 1747 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1748 1749 /* 1750 * Update the orphan status of @core and all its children. 1751 */ 1752 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1753 { 1754 struct clk_core *child; 1755 1756 core->orphan = is_orphan; 1757 1758 hlist_for_each_entry(child, &core->children, child_node) 1759 clk_core_update_orphan_status(child, is_orphan); 1760 } 1761 1762 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1763 { 1764 bool was_orphan = core->orphan; 1765 1766 hlist_del(&core->child_node); 1767 1768 if (new_parent) { 1769 bool becomes_orphan = new_parent->orphan; 1770 1771 /* avoid duplicate POST_RATE_CHANGE notifications */ 1772 if (new_parent->new_child == core) 1773 new_parent->new_child = NULL; 1774 1775 hlist_add_head(&core->child_node, &new_parent->children); 1776 1777 if (was_orphan != becomes_orphan) 1778 clk_core_update_orphan_status(core, becomes_orphan); 1779 } else { 1780 hlist_add_head(&core->child_node, &clk_orphan_list); 1781 if (!was_orphan) 1782 clk_core_update_orphan_status(core, true); 1783 } 1784 1785 core->parent = new_parent; 1786 } 1787 1788 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1789 struct clk_core *parent) 1790 { 1791 unsigned long flags; 1792 struct clk_core *old_parent = core->parent; 1793 1794 /* 1795 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1796 * 1797 * 2. Migrate prepare state between parents and prevent race with 1798 * clk_enable(). 1799 * 1800 * If the clock is not prepared, then a race with 1801 * clk_enable/disable() is impossible since we already have the 1802 * prepare lock (future calls to clk_enable() need to be preceded by 1803 * a clk_prepare()). 1804 * 1805 * If the clock is prepared, migrate the prepared state to the new 1806 * parent and also protect against a race with clk_enable() by 1807 * forcing the clock and the new parent on. This ensures that all 1808 * future calls to clk_enable() are practically NOPs with respect to 1809 * hardware and software states. 1810 * 1811 * See also: Comment for clk_set_parent() below. 1812 */ 1813 1814 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1815 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1816 clk_core_prepare_enable(old_parent); 1817 clk_core_prepare_enable(parent); 1818 } 1819 1820 /* migrate prepare count if > 0 */ 1821 if (core->prepare_count) { 1822 clk_core_prepare_enable(parent); 1823 clk_core_enable_lock(core); 1824 } 1825 1826 /* update the clk tree topology */ 1827 flags = clk_enable_lock(); 1828 clk_reparent(core, parent); 1829 clk_enable_unlock(flags); 1830 1831 return old_parent; 1832 } 1833 1834 static void __clk_set_parent_after(struct clk_core *core, 1835 struct clk_core *parent, 1836 struct clk_core *old_parent) 1837 { 1838 /* 1839 * Finish the migration of prepare state and undo the changes done 1840 * for preventing a race with clk_enable(). 1841 */ 1842 if (core->prepare_count) { 1843 clk_core_disable_lock(core); 1844 clk_core_disable_unprepare(old_parent); 1845 } 1846 1847 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1848 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1849 clk_core_disable_unprepare(parent); 1850 clk_core_disable_unprepare(old_parent); 1851 } 1852 } 1853 1854 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1855 u8 p_index) 1856 { 1857 unsigned long flags; 1858 int ret = 0; 1859 struct clk_core *old_parent; 1860 1861 old_parent = __clk_set_parent_before(core, parent); 1862 1863 trace_clk_set_parent(core, parent); 1864 1865 /* change clock input source */ 1866 if (parent && core->ops->set_parent) 1867 ret = core->ops->set_parent(core->hw, p_index); 1868 1869 trace_clk_set_parent_complete(core, parent); 1870 1871 if (ret) { 1872 flags = clk_enable_lock(); 1873 clk_reparent(core, old_parent); 1874 clk_enable_unlock(flags); 1875 __clk_set_parent_after(core, old_parent, parent); 1876 1877 return ret; 1878 } 1879 1880 __clk_set_parent_after(core, parent, old_parent); 1881 1882 return 0; 1883 } 1884 1885 /** 1886 * __clk_speculate_rates 1887 * @core: first clk in the subtree 1888 * @parent_rate: the "future" rate of clk's parent 1889 * 1890 * Walks the subtree of clks starting with clk, speculating rates as it 1891 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1892 * 1893 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1894 * pre-rate change notifications and returns early if no clks in the 1895 * subtree have subscribed to the notifications. Note that if a clk does not 1896 * implement the .recalc_rate callback then it is assumed that the clock will 1897 * take on the rate of its parent. 1898 */ 1899 static int __clk_speculate_rates(struct clk_core *core, 1900 unsigned long parent_rate) 1901 { 1902 struct clk_core *child; 1903 unsigned long new_rate; 1904 int ret = NOTIFY_DONE; 1905 1906 lockdep_assert_held(&prepare_lock); 1907 1908 new_rate = clk_recalc(core, parent_rate); 1909 1910 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1911 if (core->notifier_count) 1912 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1913 1914 if (ret & NOTIFY_STOP_MASK) { 1915 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1916 __func__, core->name, ret); 1917 goto out; 1918 } 1919 1920 hlist_for_each_entry(child, &core->children, child_node) { 1921 ret = __clk_speculate_rates(child, new_rate); 1922 if (ret & NOTIFY_STOP_MASK) 1923 break; 1924 } 1925 1926 out: 1927 return ret; 1928 } 1929 1930 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1931 struct clk_core *new_parent, u8 p_index) 1932 { 1933 struct clk_core *child; 1934 1935 core->new_rate = new_rate; 1936 core->new_parent = new_parent; 1937 core->new_parent_index = p_index; 1938 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1939 core->new_child = NULL; 1940 if (new_parent && new_parent != core->parent) 1941 new_parent->new_child = core; 1942 1943 hlist_for_each_entry(child, &core->children, child_node) { 1944 child->new_rate = clk_recalc(child, new_rate); 1945 clk_calc_subtree(child, child->new_rate, NULL, 0); 1946 } 1947 } 1948 1949 /* 1950 * calculate the new rates returning the topmost clock that has to be 1951 * changed. 1952 */ 1953 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1954 unsigned long rate) 1955 { 1956 struct clk_core *top = core; 1957 struct clk_core *old_parent, *parent; 1958 unsigned long best_parent_rate = 0; 1959 unsigned long new_rate; 1960 unsigned long min_rate; 1961 unsigned long max_rate; 1962 int p_index = 0; 1963 long ret; 1964 1965 /* sanity */ 1966 if (IS_ERR_OR_NULL(core)) 1967 return NULL; 1968 1969 /* save parent rate, if it exists */ 1970 parent = old_parent = core->parent; 1971 if (parent) 1972 best_parent_rate = parent->rate; 1973 1974 clk_core_get_boundaries(core, &min_rate, &max_rate); 1975 1976 /* find the closest rate and parent clk/rate */ 1977 if (clk_core_can_round(core)) { 1978 struct clk_rate_request req; 1979 1980 req.rate = rate; 1981 req.min_rate = min_rate; 1982 req.max_rate = max_rate; 1983 1984 clk_core_init_rate_req(core, &req); 1985 1986 ret = clk_core_determine_round_nolock(core, &req); 1987 if (ret < 0) 1988 return NULL; 1989 1990 best_parent_rate = req.best_parent_rate; 1991 new_rate = req.rate; 1992 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1993 1994 if (new_rate < min_rate || new_rate > max_rate) 1995 return NULL; 1996 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1997 /* pass-through clock without adjustable parent */ 1998 core->new_rate = core->rate; 1999 return NULL; 2000 } else { 2001 /* pass-through clock with adjustable parent */ 2002 top = clk_calc_new_rates(parent, rate); 2003 new_rate = parent->new_rate; 2004 goto out; 2005 } 2006 2007 /* some clocks must be gated to change parent */ 2008 if (parent != old_parent && 2009 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 2010 pr_debug("%s: %s not gated but wants to reparent\n", 2011 __func__, core->name); 2012 return NULL; 2013 } 2014 2015 /* try finding the new parent index */ 2016 if (parent && core->num_parents > 1) { 2017 p_index = clk_fetch_parent_index(core, parent); 2018 if (p_index < 0) { 2019 pr_debug("%s: clk %s can not be parent of clk %s\n", 2020 __func__, parent->name, core->name); 2021 return NULL; 2022 } 2023 } 2024 2025 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 2026 best_parent_rate != parent->rate) 2027 top = clk_calc_new_rates(parent, best_parent_rate); 2028 2029 out: 2030 clk_calc_subtree(core, new_rate, parent, p_index); 2031 2032 return top; 2033 } 2034 2035 /* 2036 * Notify about rate changes in a subtree. Always walk down the whole tree 2037 * so that in case of an error we can walk down the whole tree again and 2038 * abort the change. 2039 */ 2040 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2041 unsigned long event) 2042 { 2043 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2044 int ret = NOTIFY_DONE; 2045 2046 if (core->rate == core->new_rate) 2047 return NULL; 2048 2049 if (core->notifier_count) { 2050 ret = __clk_notify(core, event, core->rate, core->new_rate); 2051 if (ret & NOTIFY_STOP_MASK) 2052 fail_clk = core; 2053 } 2054 2055 hlist_for_each_entry(child, &core->children, child_node) { 2056 /* Skip children who will be reparented to another clock */ 2057 if (child->new_parent && child->new_parent != core) 2058 continue; 2059 tmp_clk = clk_propagate_rate_change(child, event); 2060 if (tmp_clk) 2061 fail_clk = tmp_clk; 2062 } 2063 2064 /* handle the new child who might not be in core->children yet */ 2065 if (core->new_child) { 2066 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2067 if (tmp_clk) 2068 fail_clk = tmp_clk; 2069 } 2070 2071 return fail_clk; 2072 } 2073 2074 /* 2075 * walk down a subtree and set the new rates notifying the rate 2076 * change on the way 2077 */ 2078 static void clk_change_rate(struct clk_core *core) 2079 { 2080 struct clk_core *child; 2081 struct hlist_node *tmp; 2082 unsigned long old_rate; 2083 unsigned long best_parent_rate = 0; 2084 bool skip_set_rate = false; 2085 struct clk_core *old_parent; 2086 struct clk_core *parent = NULL; 2087 2088 old_rate = core->rate; 2089 2090 if (core->new_parent) { 2091 parent = core->new_parent; 2092 best_parent_rate = core->new_parent->rate; 2093 } else if (core->parent) { 2094 parent = core->parent; 2095 best_parent_rate = core->parent->rate; 2096 } 2097 2098 if (clk_pm_runtime_get(core)) 2099 return; 2100 2101 if (core->flags & CLK_SET_RATE_UNGATE) { 2102 clk_core_prepare(core); 2103 clk_core_enable_lock(core); 2104 } 2105 2106 if (core->new_parent && core->new_parent != core->parent) { 2107 old_parent = __clk_set_parent_before(core, core->new_parent); 2108 trace_clk_set_parent(core, core->new_parent); 2109 2110 if (core->ops->set_rate_and_parent) { 2111 skip_set_rate = true; 2112 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2113 best_parent_rate, 2114 core->new_parent_index); 2115 } else if (core->ops->set_parent) { 2116 core->ops->set_parent(core->hw, core->new_parent_index); 2117 } 2118 2119 trace_clk_set_parent_complete(core, core->new_parent); 2120 __clk_set_parent_after(core, core->new_parent, old_parent); 2121 } 2122 2123 if (core->flags & CLK_OPS_PARENT_ENABLE) 2124 clk_core_prepare_enable(parent); 2125 2126 trace_clk_set_rate(core, core->new_rate); 2127 2128 if (!skip_set_rate && core->ops->set_rate) 2129 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2130 2131 trace_clk_set_rate_complete(core, core->new_rate); 2132 2133 core->rate = clk_recalc(core, best_parent_rate); 2134 2135 if (core->flags & CLK_SET_RATE_UNGATE) { 2136 clk_core_disable_lock(core); 2137 clk_core_unprepare(core); 2138 } 2139 2140 if (core->flags & CLK_OPS_PARENT_ENABLE) 2141 clk_core_disable_unprepare(parent); 2142 2143 if (core->notifier_count && old_rate != core->rate) 2144 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2145 2146 if (core->flags & CLK_RECALC_NEW_RATES) 2147 (void)clk_calc_new_rates(core, core->new_rate); 2148 2149 /* 2150 * Use safe iteration, as change_rate can actually swap parents 2151 * for certain clock types. 2152 */ 2153 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2154 /* Skip children who will be reparented to another clock */ 2155 if (child->new_parent && child->new_parent != core) 2156 continue; 2157 clk_change_rate(child); 2158 } 2159 2160 /* handle the new child who might not be in core->children yet */ 2161 if (core->new_child) 2162 clk_change_rate(core->new_child); 2163 2164 clk_pm_runtime_put(core); 2165 } 2166 2167 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2168 unsigned long req_rate) 2169 { 2170 int ret, cnt; 2171 struct clk_rate_request req; 2172 2173 lockdep_assert_held(&prepare_lock); 2174 2175 if (!core) 2176 return 0; 2177 2178 /* simulate what the rate would be if it could be freely set */ 2179 cnt = clk_core_rate_nuke_protect(core); 2180 if (cnt < 0) 2181 return cnt; 2182 2183 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2184 req.rate = req_rate; 2185 2186 ret = clk_core_round_rate_nolock(core, &req); 2187 2188 /* restore the protection */ 2189 clk_core_rate_restore_protect(core, cnt); 2190 2191 return ret ? 0 : req.rate; 2192 } 2193 2194 static int clk_core_set_rate_nolock(struct clk_core *core, 2195 unsigned long req_rate) 2196 { 2197 struct clk_core *top, *fail_clk; 2198 unsigned long rate; 2199 int ret = 0; 2200 2201 if (!core) 2202 return 0; 2203 2204 rate = clk_core_req_round_rate_nolock(core, req_rate); 2205 2206 /* bail early if nothing to do */ 2207 if (rate == clk_core_get_rate_nolock(core)) 2208 return 0; 2209 2210 /* fail on a direct rate set of a protected provider */ 2211 if (clk_core_rate_is_protected(core)) 2212 return -EBUSY; 2213 2214 /* calculate new rates and get the topmost changed clock */ 2215 top = clk_calc_new_rates(core, req_rate); 2216 if (!top) 2217 return -EINVAL; 2218 2219 ret = clk_pm_runtime_get(core); 2220 if (ret) 2221 return ret; 2222 2223 /* notify that we are about to change rates */ 2224 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2225 if (fail_clk) { 2226 pr_debug("%s: failed to set %s rate\n", __func__, 2227 fail_clk->name); 2228 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2229 ret = -EBUSY; 2230 goto err; 2231 } 2232 2233 /* change the rates */ 2234 clk_change_rate(top); 2235 2236 core->req_rate = req_rate; 2237 err: 2238 clk_pm_runtime_put(core); 2239 2240 return ret; 2241 } 2242 2243 /** 2244 * clk_set_rate - specify a new rate for clk 2245 * @clk: the clk whose rate is being changed 2246 * @rate: the new rate for clk 2247 * 2248 * In the simplest case clk_set_rate will only adjust the rate of clk. 2249 * 2250 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2251 * propagate up to clk's parent; whether or not this happens depends on the 2252 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2253 * after calling .round_rate then upstream parent propagation is ignored. If 2254 * *parent_rate comes back with a new rate for clk's parent then we propagate 2255 * up to clk's parent and set its rate. Upward propagation will continue 2256 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2257 * .round_rate stops requesting changes to clk's parent_rate. 2258 * 2259 * Rate changes are accomplished via tree traversal that also recalculates the 2260 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2261 * 2262 * Returns 0 on success, -EERROR otherwise. 2263 */ 2264 int clk_set_rate(struct clk *clk, unsigned long rate) 2265 { 2266 int ret; 2267 2268 if (!clk) 2269 return 0; 2270 2271 /* prevent racing with updates to the clock topology */ 2272 clk_prepare_lock(); 2273 2274 if (clk->exclusive_count) 2275 clk_core_rate_unprotect(clk->core); 2276 2277 ret = clk_core_set_rate_nolock(clk->core, rate); 2278 2279 if (clk->exclusive_count) 2280 clk_core_rate_protect(clk->core); 2281 2282 clk_prepare_unlock(); 2283 2284 return ret; 2285 } 2286 EXPORT_SYMBOL_GPL(clk_set_rate); 2287 2288 /** 2289 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2290 * @clk: the clk whose rate is being changed 2291 * @rate: the new rate for clk 2292 * 2293 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2294 * within a critical section 2295 * 2296 * This can be used initially to ensure that at least 1 consumer is 2297 * satisfied when several consumers are competing for exclusivity over the 2298 * same clock provider. 2299 * 2300 * The exclusivity is not applied if setting the rate failed. 2301 * 2302 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2303 * clk_rate_exclusive_put(). 2304 * 2305 * Returns 0 on success, -EERROR otherwise. 2306 */ 2307 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2308 { 2309 int ret; 2310 2311 if (!clk) 2312 return 0; 2313 2314 /* prevent racing with updates to the clock topology */ 2315 clk_prepare_lock(); 2316 2317 /* 2318 * The temporary protection removal is not here, on purpose 2319 * This function is meant to be used instead of clk_rate_protect, 2320 * so before the consumer code path protect the clock provider 2321 */ 2322 2323 ret = clk_core_set_rate_nolock(clk->core, rate); 2324 if (!ret) { 2325 clk_core_rate_protect(clk->core); 2326 clk->exclusive_count++; 2327 } 2328 2329 clk_prepare_unlock(); 2330 2331 return ret; 2332 } 2333 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2334 2335 /** 2336 * clk_set_rate_range - set a rate range for a clock source 2337 * @clk: clock source 2338 * @min: desired minimum clock rate in Hz, inclusive 2339 * @max: desired maximum clock rate in Hz, inclusive 2340 * 2341 * Returns success (0) or negative errno. 2342 */ 2343 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2344 { 2345 int ret = 0; 2346 unsigned long old_min, old_max, rate; 2347 2348 if (!clk) 2349 return 0; 2350 2351 trace_clk_set_rate_range(clk->core, min, max); 2352 2353 if (min > max) { 2354 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2355 __func__, clk->core->name, clk->dev_id, clk->con_id, 2356 min, max); 2357 return -EINVAL; 2358 } 2359 2360 clk_prepare_lock(); 2361 2362 if (clk->exclusive_count) 2363 clk_core_rate_unprotect(clk->core); 2364 2365 /* Save the current values in case we need to rollback the change */ 2366 old_min = clk->min_rate; 2367 old_max = clk->max_rate; 2368 clk->min_rate = min; 2369 clk->max_rate = max; 2370 2371 if (!clk_core_check_boundaries(clk->core, min, max)) { 2372 ret = -EINVAL; 2373 goto out; 2374 } 2375 2376 /* 2377 * Since the boundaries have been changed, let's give the 2378 * opportunity to the provider to adjust the clock rate based on 2379 * the new boundaries. 2380 * 2381 * We also need to handle the case where the clock is currently 2382 * outside of the boundaries. Clamping the last requested rate 2383 * to the current minimum and maximum will also handle this. 2384 * 2385 * FIXME: 2386 * There is a catch. It may fail for the usual reason (clock 2387 * broken, clock protected, etc) but also because: 2388 * - round_rate() was not favorable and fell on the wrong 2389 * side of the boundary 2390 * - the determine_rate() callback does not really check for 2391 * this corner case when determining the rate 2392 */ 2393 rate = clamp(clk->core->req_rate, min, max); 2394 ret = clk_core_set_rate_nolock(clk->core, rate); 2395 if (ret) { 2396 /* rollback the changes */ 2397 clk->min_rate = old_min; 2398 clk->max_rate = old_max; 2399 } 2400 2401 out: 2402 if (clk->exclusive_count) 2403 clk_core_rate_protect(clk->core); 2404 2405 clk_prepare_unlock(); 2406 2407 return ret; 2408 } 2409 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2410 2411 /** 2412 * clk_set_min_rate - set a minimum clock rate for a clock source 2413 * @clk: clock source 2414 * @rate: desired minimum clock rate in Hz, inclusive 2415 * 2416 * Returns success (0) or negative errno. 2417 */ 2418 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2419 { 2420 if (!clk) 2421 return 0; 2422 2423 trace_clk_set_min_rate(clk->core, rate); 2424 2425 return clk_set_rate_range(clk, rate, clk->max_rate); 2426 } 2427 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2428 2429 /** 2430 * clk_set_max_rate - set a maximum clock rate for a clock source 2431 * @clk: clock source 2432 * @rate: desired maximum clock rate in Hz, inclusive 2433 * 2434 * Returns success (0) or negative errno. 2435 */ 2436 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2437 { 2438 if (!clk) 2439 return 0; 2440 2441 trace_clk_set_max_rate(clk->core, rate); 2442 2443 return clk_set_rate_range(clk, clk->min_rate, rate); 2444 } 2445 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2446 2447 /** 2448 * clk_get_parent - return the parent of a clk 2449 * @clk: the clk whose parent gets returned 2450 * 2451 * Simply returns clk->parent. Returns NULL if clk is NULL. 2452 */ 2453 struct clk *clk_get_parent(struct clk *clk) 2454 { 2455 struct clk *parent; 2456 2457 if (!clk) 2458 return NULL; 2459 2460 clk_prepare_lock(); 2461 /* TODO: Create a per-user clk and change callers to call clk_put */ 2462 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2463 clk_prepare_unlock(); 2464 2465 return parent; 2466 } 2467 EXPORT_SYMBOL_GPL(clk_get_parent); 2468 2469 static struct clk_core *__clk_init_parent(struct clk_core *core) 2470 { 2471 u8 index = 0; 2472 2473 if (core->num_parents > 1 && core->ops->get_parent) 2474 index = core->ops->get_parent(core->hw); 2475 2476 return clk_core_get_parent_by_index(core, index); 2477 } 2478 2479 static void clk_core_reparent(struct clk_core *core, 2480 struct clk_core *new_parent) 2481 { 2482 clk_reparent(core, new_parent); 2483 __clk_recalc_accuracies(core); 2484 __clk_recalc_rates(core, POST_RATE_CHANGE); 2485 } 2486 2487 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2488 { 2489 if (!hw) 2490 return; 2491 2492 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2493 } 2494 2495 /** 2496 * clk_has_parent - check if a clock is a possible parent for another 2497 * @clk: clock source 2498 * @parent: parent clock source 2499 * 2500 * This function can be used in drivers that need to check that a clock can be 2501 * the parent of another without actually changing the parent. 2502 * 2503 * Returns true if @parent is a possible parent for @clk, false otherwise. 2504 */ 2505 bool clk_has_parent(struct clk *clk, struct clk *parent) 2506 { 2507 struct clk_core *core, *parent_core; 2508 int i; 2509 2510 /* NULL clocks should be nops, so return success if either is NULL. */ 2511 if (!clk || !parent) 2512 return true; 2513 2514 core = clk->core; 2515 parent_core = parent->core; 2516 2517 /* Optimize for the case where the parent is already the parent. */ 2518 if (core->parent == parent_core) 2519 return true; 2520 2521 for (i = 0; i < core->num_parents; i++) 2522 if (!strcmp(core->parents[i].name, parent_core->name)) 2523 return true; 2524 2525 return false; 2526 } 2527 EXPORT_SYMBOL_GPL(clk_has_parent); 2528 2529 static int clk_core_set_parent_nolock(struct clk_core *core, 2530 struct clk_core *parent) 2531 { 2532 int ret = 0; 2533 int p_index = 0; 2534 unsigned long p_rate = 0; 2535 2536 lockdep_assert_held(&prepare_lock); 2537 2538 if (!core) 2539 return 0; 2540 2541 if (core->parent == parent) 2542 return 0; 2543 2544 /* verify ops for multi-parent clks */ 2545 if (core->num_parents > 1 && !core->ops->set_parent) 2546 return -EPERM; 2547 2548 /* check that we are allowed to re-parent if the clock is in use */ 2549 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2550 return -EBUSY; 2551 2552 if (clk_core_rate_is_protected(core)) 2553 return -EBUSY; 2554 2555 /* try finding the new parent index */ 2556 if (parent) { 2557 p_index = clk_fetch_parent_index(core, parent); 2558 if (p_index < 0) { 2559 pr_debug("%s: clk %s can not be parent of clk %s\n", 2560 __func__, parent->name, core->name); 2561 return p_index; 2562 } 2563 p_rate = parent->rate; 2564 } 2565 2566 ret = clk_pm_runtime_get(core); 2567 if (ret) 2568 return ret; 2569 2570 /* propagate PRE_RATE_CHANGE notifications */ 2571 ret = __clk_speculate_rates(core, p_rate); 2572 2573 /* abort if a driver objects */ 2574 if (ret & NOTIFY_STOP_MASK) 2575 goto runtime_put; 2576 2577 /* do the re-parent */ 2578 ret = __clk_set_parent(core, parent, p_index); 2579 2580 /* propagate rate an accuracy recalculation accordingly */ 2581 if (ret) { 2582 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2583 } else { 2584 __clk_recalc_rates(core, POST_RATE_CHANGE); 2585 __clk_recalc_accuracies(core); 2586 } 2587 2588 runtime_put: 2589 clk_pm_runtime_put(core); 2590 2591 return ret; 2592 } 2593 2594 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2595 { 2596 return clk_core_set_parent_nolock(hw->core, parent->core); 2597 } 2598 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2599 2600 /** 2601 * clk_set_parent - switch the parent of a mux clk 2602 * @clk: the mux clk whose input we are switching 2603 * @parent: the new input to clk 2604 * 2605 * Re-parent clk to use parent as its new input source. If clk is in 2606 * prepared state, the clk will get enabled for the duration of this call. If 2607 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2608 * that, the reparenting is glitchy in hardware, etc), use the 2609 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2610 * 2611 * After successfully changing clk's parent clk_set_parent will update the 2612 * clk topology, sysfs topology and propagate rate recalculation via 2613 * __clk_recalc_rates. 2614 * 2615 * Returns 0 on success, -EERROR otherwise. 2616 */ 2617 int clk_set_parent(struct clk *clk, struct clk *parent) 2618 { 2619 int ret; 2620 2621 if (!clk) 2622 return 0; 2623 2624 clk_prepare_lock(); 2625 2626 if (clk->exclusive_count) 2627 clk_core_rate_unprotect(clk->core); 2628 2629 ret = clk_core_set_parent_nolock(clk->core, 2630 parent ? parent->core : NULL); 2631 2632 if (clk->exclusive_count) 2633 clk_core_rate_protect(clk->core); 2634 2635 clk_prepare_unlock(); 2636 2637 return ret; 2638 } 2639 EXPORT_SYMBOL_GPL(clk_set_parent); 2640 2641 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2642 { 2643 int ret = -EINVAL; 2644 2645 lockdep_assert_held(&prepare_lock); 2646 2647 if (!core) 2648 return 0; 2649 2650 if (clk_core_rate_is_protected(core)) 2651 return -EBUSY; 2652 2653 trace_clk_set_phase(core, degrees); 2654 2655 if (core->ops->set_phase) { 2656 ret = core->ops->set_phase(core->hw, degrees); 2657 if (!ret) 2658 core->phase = degrees; 2659 } 2660 2661 trace_clk_set_phase_complete(core, degrees); 2662 2663 return ret; 2664 } 2665 2666 /** 2667 * clk_set_phase - adjust the phase shift of a clock signal 2668 * @clk: clock signal source 2669 * @degrees: number of degrees the signal is shifted 2670 * 2671 * Shifts the phase of a clock signal by the specified 2672 * degrees. Returns 0 on success, -EERROR otherwise. 2673 * 2674 * This function makes no distinction about the input or reference 2675 * signal that we adjust the clock signal phase against. For example 2676 * phase locked-loop clock signal generators we may shift phase with 2677 * respect to feedback clock signal input, but for other cases the 2678 * clock phase may be shifted with respect to some other, unspecified 2679 * signal. 2680 * 2681 * Additionally the concept of phase shift does not propagate through 2682 * the clock tree hierarchy, which sets it apart from clock rates and 2683 * clock accuracy. A parent clock phase attribute does not have an 2684 * impact on the phase attribute of a child clock. 2685 */ 2686 int clk_set_phase(struct clk *clk, int degrees) 2687 { 2688 int ret; 2689 2690 if (!clk) 2691 return 0; 2692 2693 /* sanity check degrees */ 2694 degrees %= 360; 2695 if (degrees < 0) 2696 degrees += 360; 2697 2698 clk_prepare_lock(); 2699 2700 if (clk->exclusive_count) 2701 clk_core_rate_unprotect(clk->core); 2702 2703 ret = clk_core_set_phase_nolock(clk->core, degrees); 2704 2705 if (clk->exclusive_count) 2706 clk_core_rate_protect(clk->core); 2707 2708 clk_prepare_unlock(); 2709 2710 return ret; 2711 } 2712 EXPORT_SYMBOL_GPL(clk_set_phase); 2713 2714 static int clk_core_get_phase(struct clk_core *core) 2715 { 2716 int ret; 2717 2718 lockdep_assert_held(&prepare_lock); 2719 if (!core->ops->get_phase) 2720 return 0; 2721 2722 /* Always try to update cached phase if possible */ 2723 ret = core->ops->get_phase(core->hw); 2724 if (ret >= 0) 2725 core->phase = ret; 2726 2727 return ret; 2728 } 2729 2730 /** 2731 * clk_get_phase - return the phase shift of a clock signal 2732 * @clk: clock signal source 2733 * 2734 * Returns the phase shift of a clock node in degrees, otherwise returns 2735 * -EERROR. 2736 */ 2737 int clk_get_phase(struct clk *clk) 2738 { 2739 int ret; 2740 2741 if (!clk) 2742 return 0; 2743 2744 clk_prepare_lock(); 2745 ret = clk_core_get_phase(clk->core); 2746 clk_prepare_unlock(); 2747 2748 return ret; 2749 } 2750 EXPORT_SYMBOL_GPL(clk_get_phase); 2751 2752 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2753 { 2754 /* Assume a default value of 50% */ 2755 core->duty.num = 1; 2756 core->duty.den = 2; 2757 } 2758 2759 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2760 2761 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2762 { 2763 struct clk_duty *duty = &core->duty; 2764 int ret = 0; 2765 2766 if (!core->ops->get_duty_cycle) 2767 return clk_core_update_duty_cycle_parent_nolock(core); 2768 2769 ret = core->ops->get_duty_cycle(core->hw, duty); 2770 if (ret) 2771 goto reset; 2772 2773 /* Don't trust the clock provider too much */ 2774 if (duty->den == 0 || duty->num > duty->den) { 2775 ret = -EINVAL; 2776 goto reset; 2777 } 2778 2779 return 0; 2780 2781 reset: 2782 clk_core_reset_duty_cycle_nolock(core); 2783 return ret; 2784 } 2785 2786 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2787 { 2788 int ret = 0; 2789 2790 if (core->parent && 2791 core->flags & CLK_DUTY_CYCLE_PARENT) { 2792 ret = clk_core_update_duty_cycle_nolock(core->parent); 2793 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2794 } else { 2795 clk_core_reset_duty_cycle_nolock(core); 2796 } 2797 2798 return ret; 2799 } 2800 2801 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2802 struct clk_duty *duty); 2803 2804 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2805 struct clk_duty *duty) 2806 { 2807 int ret; 2808 2809 lockdep_assert_held(&prepare_lock); 2810 2811 if (clk_core_rate_is_protected(core)) 2812 return -EBUSY; 2813 2814 trace_clk_set_duty_cycle(core, duty); 2815 2816 if (!core->ops->set_duty_cycle) 2817 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2818 2819 ret = core->ops->set_duty_cycle(core->hw, duty); 2820 if (!ret) 2821 memcpy(&core->duty, duty, sizeof(*duty)); 2822 2823 trace_clk_set_duty_cycle_complete(core, duty); 2824 2825 return ret; 2826 } 2827 2828 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2829 struct clk_duty *duty) 2830 { 2831 int ret = 0; 2832 2833 if (core->parent && 2834 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2835 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2836 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2837 } 2838 2839 return ret; 2840 } 2841 2842 /** 2843 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2844 * @clk: clock signal source 2845 * @num: numerator of the duty cycle ratio to be applied 2846 * @den: denominator of the duty cycle ratio to be applied 2847 * 2848 * Apply the duty cycle ratio if the ratio is valid and the clock can 2849 * perform this operation 2850 * 2851 * Returns (0) on success, a negative errno otherwise. 2852 */ 2853 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2854 { 2855 int ret; 2856 struct clk_duty duty; 2857 2858 if (!clk) 2859 return 0; 2860 2861 /* sanity check the ratio */ 2862 if (den == 0 || num > den) 2863 return -EINVAL; 2864 2865 duty.num = num; 2866 duty.den = den; 2867 2868 clk_prepare_lock(); 2869 2870 if (clk->exclusive_count) 2871 clk_core_rate_unprotect(clk->core); 2872 2873 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2874 2875 if (clk->exclusive_count) 2876 clk_core_rate_protect(clk->core); 2877 2878 clk_prepare_unlock(); 2879 2880 return ret; 2881 } 2882 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2883 2884 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2885 unsigned int scale) 2886 { 2887 struct clk_duty *duty = &core->duty; 2888 int ret; 2889 2890 clk_prepare_lock(); 2891 2892 ret = clk_core_update_duty_cycle_nolock(core); 2893 if (!ret) 2894 ret = mult_frac(scale, duty->num, duty->den); 2895 2896 clk_prepare_unlock(); 2897 2898 return ret; 2899 } 2900 2901 /** 2902 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2903 * @clk: clock signal source 2904 * @scale: scaling factor to be applied to represent the ratio as an integer 2905 * 2906 * Returns the duty cycle ratio of a clock node multiplied by the provided 2907 * scaling factor, or negative errno on error. 2908 */ 2909 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2910 { 2911 if (!clk) 2912 return 0; 2913 2914 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2915 } 2916 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2917 2918 /** 2919 * clk_is_match - check if two clk's point to the same hardware clock 2920 * @p: clk compared against q 2921 * @q: clk compared against p 2922 * 2923 * Returns true if the two struct clk pointers both point to the same hardware 2924 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2925 * share the same struct clk_core object. 2926 * 2927 * Returns false otherwise. Note that two NULL clks are treated as matching. 2928 */ 2929 bool clk_is_match(const struct clk *p, const struct clk *q) 2930 { 2931 /* trivial case: identical struct clk's or both NULL */ 2932 if (p == q) 2933 return true; 2934 2935 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2936 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2937 if (p->core == q->core) 2938 return true; 2939 2940 return false; 2941 } 2942 EXPORT_SYMBOL_GPL(clk_is_match); 2943 2944 /*** debugfs support ***/ 2945 2946 #ifdef CONFIG_DEBUG_FS 2947 #include <linux/debugfs.h> 2948 2949 static struct dentry *rootdir; 2950 static int inited = 0; 2951 static DEFINE_MUTEX(clk_debug_lock); 2952 static HLIST_HEAD(clk_debug_list); 2953 2954 static struct hlist_head *orphan_list[] = { 2955 &clk_orphan_list, 2956 NULL, 2957 }; 2958 2959 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2960 int level) 2961 { 2962 int phase; 2963 2964 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ", 2965 level * 3 + 1, "", 2966 30 - level * 3, c->name, 2967 c->enable_count, c->prepare_count, c->protect_count, 2968 clk_core_get_rate_recalc(c), 2969 clk_core_get_accuracy_recalc(c)); 2970 2971 phase = clk_core_get_phase(c); 2972 if (phase >= 0) 2973 seq_printf(s, "%5d", phase); 2974 else 2975 seq_puts(s, "-----"); 2976 2977 seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000)); 2978 2979 if (c->ops->is_enabled) 2980 seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N'); 2981 else if (!c->ops->enable) 2982 seq_printf(s, " %9c\n", 'Y'); 2983 else 2984 seq_printf(s, " %9c\n", '?'); 2985 } 2986 2987 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2988 int level) 2989 { 2990 struct clk_core *child; 2991 2992 clk_pm_runtime_get(c); 2993 clk_summary_show_one(s, c, level); 2994 clk_pm_runtime_put(c); 2995 2996 hlist_for_each_entry(child, &c->children, child_node) 2997 clk_summary_show_subtree(s, child, level + 1); 2998 } 2999 3000 static int clk_summary_show(struct seq_file *s, void *data) 3001 { 3002 struct clk_core *c; 3003 struct hlist_head **lists = (struct hlist_head **)s->private; 3004 3005 seq_puts(s, " enable prepare protect duty hardware\n"); 3006 seq_puts(s, " clock count count count rate accuracy phase cycle enable\n"); 3007 seq_puts(s, "-------------------------------------------------------------------------------------------------------\n"); 3008 3009 clk_prepare_lock(); 3010 3011 for (; *lists; lists++) 3012 hlist_for_each_entry(c, *lists, child_node) 3013 clk_summary_show_subtree(s, c, 0); 3014 3015 clk_prepare_unlock(); 3016 3017 return 0; 3018 } 3019 DEFINE_SHOW_ATTRIBUTE(clk_summary); 3020 3021 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 3022 { 3023 int phase; 3024 unsigned long min_rate, max_rate; 3025 3026 clk_core_get_boundaries(c, &min_rate, &max_rate); 3027 3028 /* This should be JSON format, i.e. elements separated with a comma */ 3029 seq_printf(s, "\"%s\": { ", c->name); 3030 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 3031 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 3032 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 3033 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 3034 seq_printf(s, "\"min_rate\": %lu,", min_rate); 3035 seq_printf(s, "\"max_rate\": %lu,", max_rate); 3036 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 3037 phase = clk_core_get_phase(c); 3038 if (phase >= 0) 3039 seq_printf(s, "\"phase\": %d,", phase); 3040 seq_printf(s, "\"duty_cycle\": %u", 3041 clk_core_get_scaled_duty_cycle(c, 100000)); 3042 } 3043 3044 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3045 { 3046 struct clk_core *child; 3047 3048 clk_dump_one(s, c, level); 3049 3050 hlist_for_each_entry(child, &c->children, child_node) { 3051 seq_putc(s, ','); 3052 clk_dump_subtree(s, child, level + 1); 3053 } 3054 3055 seq_putc(s, '}'); 3056 } 3057 3058 static int clk_dump_show(struct seq_file *s, void *data) 3059 { 3060 struct clk_core *c; 3061 bool first_node = true; 3062 struct hlist_head **lists = (struct hlist_head **)s->private; 3063 3064 seq_putc(s, '{'); 3065 clk_prepare_lock(); 3066 3067 for (; *lists; lists++) { 3068 hlist_for_each_entry(c, *lists, child_node) { 3069 if (!first_node) 3070 seq_putc(s, ','); 3071 first_node = false; 3072 clk_dump_subtree(s, c, 0); 3073 } 3074 } 3075 3076 clk_prepare_unlock(); 3077 3078 seq_puts(s, "}\n"); 3079 return 0; 3080 } 3081 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3082 3083 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3084 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3085 /* 3086 * This can be dangerous, therefore don't provide any real compile time 3087 * configuration option for this feature. 3088 * People who want to use this will need to modify the source code directly. 3089 */ 3090 static int clk_rate_set(void *data, u64 val) 3091 { 3092 struct clk_core *core = data; 3093 int ret; 3094 3095 clk_prepare_lock(); 3096 ret = clk_core_set_rate_nolock(core, val); 3097 clk_prepare_unlock(); 3098 3099 return ret; 3100 } 3101 3102 #define clk_rate_mode 0644 3103 3104 static int clk_prepare_enable_set(void *data, u64 val) 3105 { 3106 struct clk_core *core = data; 3107 int ret = 0; 3108 3109 if (val) 3110 ret = clk_prepare_enable(core->hw->clk); 3111 else 3112 clk_disable_unprepare(core->hw->clk); 3113 3114 return ret; 3115 } 3116 3117 static int clk_prepare_enable_get(void *data, u64 *val) 3118 { 3119 struct clk_core *core = data; 3120 3121 *val = core->enable_count && core->prepare_count; 3122 return 0; 3123 } 3124 3125 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3126 clk_prepare_enable_set, "%llu\n"); 3127 3128 #else 3129 #define clk_rate_set NULL 3130 #define clk_rate_mode 0444 3131 #endif 3132 3133 static int clk_rate_get(void *data, u64 *val) 3134 { 3135 struct clk_core *core = data; 3136 3137 clk_prepare_lock(); 3138 *val = clk_core_get_rate_recalc(core); 3139 clk_prepare_unlock(); 3140 3141 return 0; 3142 } 3143 3144 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3145 3146 static const struct { 3147 unsigned long flag; 3148 const char *name; 3149 } clk_flags[] = { 3150 #define ENTRY(f) { f, #f } 3151 ENTRY(CLK_SET_RATE_GATE), 3152 ENTRY(CLK_SET_PARENT_GATE), 3153 ENTRY(CLK_SET_RATE_PARENT), 3154 ENTRY(CLK_IGNORE_UNUSED), 3155 ENTRY(CLK_GET_RATE_NOCACHE), 3156 ENTRY(CLK_SET_RATE_NO_REPARENT), 3157 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3158 ENTRY(CLK_RECALC_NEW_RATES), 3159 ENTRY(CLK_SET_RATE_UNGATE), 3160 ENTRY(CLK_IS_CRITICAL), 3161 ENTRY(CLK_OPS_PARENT_ENABLE), 3162 ENTRY(CLK_DUTY_CYCLE_PARENT), 3163 #undef ENTRY 3164 }; 3165 3166 static int clk_flags_show(struct seq_file *s, void *data) 3167 { 3168 struct clk_core *core = s->private; 3169 unsigned long flags = core->flags; 3170 unsigned int i; 3171 3172 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3173 if (flags & clk_flags[i].flag) { 3174 seq_printf(s, "%s\n", clk_flags[i].name); 3175 flags &= ~clk_flags[i].flag; 3176 } 3177 } 3178 if (flags) { 3179 /* Unknown flags */ 3180 seq_printf(s, "0x%lx\n", flags); 3181 } 3182 3183 return 0; 3184 } 3185 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3186 3187 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3188 unsigned int i, char terminator) 3189 { 3190 struct clk_core *parent; 3191 3192 /* 3193 * Go through the following options to fetch a parent's name. 3194 * 3195 * 1. Fetch the registered parent clock and use its name 3196 * 2. Use the global (fallback) name if specified 3197 * 3. Use the local fw_name if provided 3198 * 4. Fetch parent clock's clock-output-name if DT index was set 3199 * 3200 * This may still fail in some cases, such as when the parent is 3201 * specified directly via a struct clk_hw pointer, but it isn't 3202 * registered (yet). 3203 */ 3204 parent = clk_core_get_parent_by_index(core, i); 3205 if (parent) 3206 seq_puts(s, parent->name); 3207 else if (core->parents[i].name) 3208 seq_puts(s, core->parents[i].name); 3209 else if (core->parents[i].fw_name) 3210 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3211 else if (core->parents[i].index >= 0) 3212 seq_puts(s, 3213 of_clk_get_parent_name(core->of_node, 3214 core->parents[i].index)); 3215 else 3216 seq_puts(s, "(missing)"); 3217 3218 seq_putc(s, terminator); 3219 } 3220 3221 static int possible_parents_show(struct seq_file *s, void *data) 3222 { 3223 struct clk_core *core = s->private; 3224 int i; 3225 3226 for (i = 0; i < core->num_parents - 1; i++) 3227 possible_parent_show(s, core, i, ' '); 3228 3229 possible_parent_show(s, core, i, '\n'); 3230 3231 return 0; 3232 } 3233 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3234 3235 static int current_parent_show(struct seq_file *s, void *data) 3236 { 3237 struct clk_core *core = s->private; 3238 3239 if (core->parent) 3240 seq_printf(s, "%s\n", core->parent->name); 3241 3242 return 0; 3243 } 3244 DEFINE_SHOW_ATTRIBUTE(current_parent); 3245 3246 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3247 static ssize_t current_parent_write(struct file *file, const char __user *ubuf, 3248 size_t count, loff_t *ppos) 3249 { 3250 struct seq_file *s = file->private_data; 3251 struct clk_core *core = s->private; 3252 struct clk_core *parent; 3253 u8 idx; 3254 int err; 3255 3256 err = kstrtou8_from_user(ubuf, count, 0, &idx); 3257 if (err < 0) 3258 return err; 3259 3260 parent = clk_core_get_parent_by_index(core, idx); 3261 if (!parent) 3262 return -ENOENT; 3263 3264 clk_prepare_lock(); 3265 err = clk_core_set_parent_nolock(core, parent); 3266 clk_prepare_unlock(); 3267 if (err) 3268 return err; 3269 3270 return count; 3271 } 3272 3273 static const struct file_operations current_parent_rw_fops = { 3274 .open = current_parent_open, 3275 .write = current_parent_write, 3276 .read = seq_read, 3277 .llseek = seq_lseek, 3278 .release = single_release, 3279 }; 3280 #endif 3281 3282 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3283 { 3284 struct clk_core *core = s->private; 3285 struct clk_duty *duty = &core->duty; 3286 3287 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3288 3289 return 0; 3290 } 3291 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3292 3293 static int clk_min_rate_show(struct seq_file *s, void *data) 3294 { 3295 struct clk_core *core = s->private; 3296 unsigned long min_rate, max_rate; 3297 3298 clk_prepare_lock(); 3299 clk_core_get_boundaries(core, &min_rate, &max_rate); 3300 clk_prepare_unlock(); 3301 seq_printf(s, "%lu\n", min_rate); 3302 3303 return 0; 3304 } 3305 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3306 3307 static int clk_max_rate_show(struct seq_file *s, void *data) 3308 { 3309 struct clk_core *core = s->private; 3310 unsigned long min_rate, max_rate; 3311 3312 clk_prepare_lock(); 3313 clk_core_get_boundaries(core, &min_rate, &max_rate); 3314 clk_prepare_unlock(); 3315 seq_printf(s, "%lu\n", max_rate); 3316 3317 return 0; 3318 } 3319 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3320 3321 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3322 { 3323 struct dentry *root; 3324 3325 if (!core || !pdentry) 3326 return; 3327 3328 root = debugfs_create_dir(core->name, pdentry); 3329 core->dentry = root; 3330 3331 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3332 &clk_rate_fops); 3333 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3334 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3335 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3336 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3337 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3338 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3339 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3340 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3341 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3342 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3343 &clk_duty_cycle_fops); 3344 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3345 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3346 &clk_prepare_enable_fops); 3347 3348 if (core->num_parents > 1) 3349 debugfs_create_file("clk_parent", 0644, root, core, 3350 ¤t_parent_rw_fops); 3351 else 3352 #endif 3353 if (core->num_parents > 0) 3354 debugfs_create_file("clk_parent", 0444, root, core, 3355 ¤t_parent_fops); 3356 3357 if (core->num_parents > 1) 3358 debugfs_create_file("clk_possible_parents", 0444, root, core, 3359 &possible_parents_fops); 3360 3361 if (core->ops->debug_init) 3362 core->ops->debug_init(core->hw, core->dentry); 3363 } 3364 3365 /** 3366 * clk_debug_register - add a clk node to the debugfs clk directory 3367 * @core: the clk being added to the debugfs clk directory 3368 * 3369 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3370 * initialized. Otherwise it bails out early since the debugfs clk directory 3371 * will be created lazily by clk_debug_init as part of a late_initcall. 3372 */ 3373 static void clk_debug_register(struct clk_core *core) 3374 { 3375 mutex_lock(&clk_debug_lock); 3376 hlist_add_head(&core->debug_node, &clk_debug_list); 3377 if (inited) 3378 clk_debug_create_one(core, rootdir); 3379 mutex_unlock(&clk_debug_lock); 3380 } 3381 3382 /** 3383 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3384 * @core: the clk being removed from the debugfs clk directory 3385 * 3386 * Dynamically removes a clk and all its child nodes from the 3387 * debugfs clk directory if clk->dentry points to debugfs created by 3388 * clk_debug_register in __clk_core_init. 3389 */ 3390 static void clk_debug_unregister(struct clk_core *core) 3391 { 3392 mutex_lock(&clk_debug_lock); 3393 hlist_del_init(&core->debug_node); 3394 debugfs_remove_recursive(core->dentry); 3395 core->dentry = NULL; 3396 mutex_unlock(&clk_debug_lock); 3397 } 3398 3399 /** 3400 * clk_debug_init - lazily populate the debugfs clk directory 3401 * 3402 * clks are often initialized very early during boot before memory can be 3403 * dynamically allocated and well before debugfs is setup. This function 3404 * populates the debugfs clk directory once at boot-time when we know that 3405 * debugfs is setup. It should only be called once at boot-time, all other clks 3406 * added dynamically will be done so with clk_debug_register. 3407 */ 3408 static int __init clk_debug_init(void) 3409 { 3410 struct clk_core *core; 3411 3412 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3413 pr_warn("\n"); 3414 pr_warn("********************************************************************\n"); 3415 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3416 pr_warn("** **\n"); 3417 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n"); 3418 pr_warn("** **\n"); 3419 pr_warn("** This means that this kernel is built to expose clk operations **\n"); 3420 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n"); 3421 pr_warn("** to userspace, which may compromise security on your system. **\n"); 3422 pr_warn("** **\n"); 3423 pr_warn("** If you see this message and you are not debugging the **\n"); 3424 pr_warn("** kernel, report this immediately to your vendor! **\n"); 3425 pr_warn("** **\n"); 3426 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3427 pr_warn("********************************************************************\n"); 3428 #endif 3429 3430 rootdir = debugfs_create_dir("clk", NULL); 3431 3432 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3433 &clk_summary_fops); 3434 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3435 &clk_dump_fops); 3436 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3437 &clk_summary_fops); 3438 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3439 &clk_dump_fops); 3440 3441 mutex_lock(&clk_debug_lock); 3442 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3443 clk_debug_create_one(core, rootdir); 3444 3445 inited = 1; 3446 mutex_unlock(&clk_debug_lock); 3447 3448 return 0; 3449 } 3450 late_initcall(clk_debug_init); 3451 #else 3452 static inline void clk_debug_register(struct clk_core *core) { } 3453 static inline void clk_debug_unregister(struct clk_core *core) 3454 { 3455 } 3456 #endif 3457 3458 static void clk_core_reparent_orphans_nolock(void) 3459 { 3460 struct clk_core *orphan; 3461 struct hlist_node *tmp2; 3462 3463 /* 3464 * walk the list of orphan clocks and reparent any that newly finds a 3465 * parent. 3466 */ 3467 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3468 struct clk_core *parent = __clk_init_parent(orphan); 3469 3470 /* 3471 * We need to use __clk_set_parent_before() and _after() to 3472 * to properly migrate any prepare/enable count of the orphan 3473 * clock. This is important for CLK_IS_CRITICAL clocks, which 3474 * are enabled during init but might not have a parent yet. 3475 */ 3476 if (parent) { 3477 /* update the clk tree topology */ 3478 __clk_set_parent_before(orphan, parent); 3479 __clk_set_parent_after(orphan, parent, NULL); 3480 __clk_recalc_accuracies(orphan); 3481 __clk_recalc_rates(orphan, 0); 3482 3483 /* 3484 * __clk_init_parent() will set the initial req_rate to 3485 * 0 if the clock doesn't have clk_ops::recalc_rate and 3486 * is an orphan when it's registered. 3487 * 3488 * 'req_rate' is used by clk_set_rate_range() and 3489 * clk_put() to trigger a clk_set_rate() call whenever 3490 * the boundaries are modified. Let's make sure 3491 * 'req_rate' is set to something non-zero so that 3492 * clk_set_rate_range() doesn't drop the frequency. 3493 */ 3494 orphan->req_rate = orphan->rate; 3495 } 3496 } 3497 } 3498 3499 /** 3500 * __clk_core_init - initialize the data structures in a struct clk_core 3501 * @core: clk_core being initialized 3502 * 3503 * Initializes the lists in struct clk_core, queries the hardware for the 3504 * parent and rate and sets them both. 3505 */ 3506 static int __clk_core_init(struct clk_core *core) 3507 { 3508 int ret; 3509 struct clk_core *parent; 3510 unsigned long rate; 3511 int phase; 3512 3513 clk_prepare_lock(); 3514 3515 /* 3516 * Set hw->core after grabbing the prepare_lock to synchronize with 3517 * callers of clk_core_fill_parent_index() where we treat hw->core 3518 * being NULL as the clk not being registered yet. This is crucial so 3519 * that clks aren't parented until their parent is fully registered. 3520 */ 3521 core->hw->core = core; 3522 3523 ret = clk_pm_runtime_get(core); 3524 if (ret) 3525 goto unlock; 3526 3527 /* check to see if a clock with this name is already registered */ 3528 if (clk_core_lookup(core->name)) { 3529 pr_debug("%s: clk %s already initialized\n", 3530 __func__, core->name); 3531 ret = -EEXIST; 3532 goto out; 3533 } 3534 3535 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3536 if (core->ops->set_rate && 3537 !((core->ops->round_rate || core->ops->determine_rate) && 3538 core->ops->recalc_rate)) { 3539 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3540 __func__, core->name); 3541 ret = -EINVAL; 3542 goto out; 3543 } 3544 3545 if (core->ops->set_parent && !core->ops->get_parent) { 3546 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3547 __func__, core->name); 3548 ret = -EINVAL; 3549 goto out; 3550 } 3551 3552 if (core->num_parents > 1 && !core->ops->get_parent) { 3553 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3554 __func__, core->name); 3555 ret = -EINVAL; 3556 goto out; 3557 } 3558 3559 if (core->ops->set_rate_and_parent && 3560 !(core->ops->set_parent && core->ops->set_rate)) { 3561 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3562 __func__, core->name); 3563 ret = -EINVAL; 3564 goto out; 3565 } 3566 3567 /* 3568 * optional platform-specific magic 3569 * 3570 * The .init callback is not used by any of the basic clock types, but 3571 * exists for weird hardware that must perform initialization magic for 3572 * CCF to get an accurate view of clock for any other callbacks. It may 3573 * also be used needs to perform dynamic allocations. Such allocation 3574 * must be freed in the terminate() callback. 3575 * This callback shall not be used to initialize the parameters state, 3576 * such as rate, parent, etc ... 3577 * 3578 * If it exist, this callback should called before any other callback of 3579 * the clock 3580 */ 3581 if (core->ops->init) { 3582 ret = core->ops->init(core->hw); 3583 if (ret) 3584 goto out; 3585 } 3586 3587 parent = core->parent = __clk_init_parent(core); 3588 3589 /* 3590 * Populate core->parent if parent has already been clk_core_init'd. If 3591 * parent has not yet been clk_core_init'd then place clk in the orphan 3592 * list. If clk doesn't have any parents then place it in the root 3593 * clk list. 3594 * 3595 * Every time a new clk is clk_init'd then we walk the list of orphan 3596 * clocks and re-parent any that are children of the clock currently 3597 * being clk_init'd. 3598 */ 3599 if (parent) { 3600 hlist_add_head(&core->child_node, &parent->children); 3601 core->orphan = parent->orphan; 3602 } else if (!core->num_parents) { 3603 hlist_add_head(&core->child_node, &clk_root_list); 3604 core->orphan = false; 3605 } else { 3606 hlist_add_head(&core->child_node, &clk_orphan_list); 3607 core->orphan = true; 3608 } 3609 3610 /* 3611 * Set clk's accuracy. The preferred method is to use 3612 * .recalc_accuracy. For simple clocks and lazy developers the default 3613 * fallback is to use the parent's accuracy. If a clock doesn't have a 3614 * parent (or is orphaned) then accuracy is set to zero (perfect 3615 * clock). 3616 */ 3617 if (core->ops->recalc_accuracy) 3618 core->accuracy = core->ops->recalc_accuracy(core->hw, 3619 clk_core_get_accuracy_no_lock(parent)); 3620 else if (parent) 3621 core->accuracy = parent->accuracy; 3622 else 3623 core->accuracy = 0; 3624 3625 /* 3626 * Set clk's phase by clk_core_get_phase() caching the phase. 3627 * Since a phase is by definition relative to its parent, just 3628 * query the current clock phase, or just assume it's in phase. 3629 */ 3630 phase = clk_core_get_phase(core); 3631 if (phase < 0) { 3632 ret = phase; 3633 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 3634 core->name); 3635 goto out; 3636 } 3637 3638 /* 3639 * Set clk's duty cycle. 3640 */ 3641 clk_core_update_duty_cycle_nolock(core); 3642 3643 /* 3644 * Set clk's rate. The preferred method is to use .recalc_rate. For 3645 * simple clocks and lazy developers the default fallback is to use the 3646 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3647 * then rate is set to zero. 3648 */ 3649 if (core->ops->recalc_rate) 3650 rate = core->ops->recalc_rate(core->hw, 3651 clk_core_get_rate_nolock(parent)); 3652 else if (parent) 3653 rate = parent->rate; 3654 else 3655 rate = 0; 3656 core->rate = core->req_rate = rate; 3657 3658 /* 3659 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3660 * don't get accidentally disabled when walking the orphan tree and 3661 * reparenting clocks 3662 */ 3663 if (core->flags & CLK_IS_CRITICAL) { 3664 ret = clk_core_prepare(core); 3665 if (ret) { 3666 pr_warn("%s: critical clk '%s' failed to prepare\n", 3667 __func__, core->name); 3668 goto out; 3669 } 3670 3671 ret = clk_core_enable_lock(core); 3672 if (ret) { 3673 pr_warn("%s: critical clk '%s' failed to enable\n", 3674 __func__, core->name); 3675 clk_core_unprepare(core); 3676 goto out; 3677 } 3678 } 3679 3680 clk_core_reparent_orphans_nolock(); 3681 3682 3683 kref_init(&core->ref); 3684 out: 3685 clk_pm_runtime_put(core); 3686 unlock: 3687 if (ret) { 3688 hlist_del_init(&core->child_node); 3689 core->hw->core = NULL; 3690 } 3691 3692 clk_prepare_unlock(); 3693 3694 if (!ret) 3695 clk_debug_register(core); 3696 3697 return ret; 3698 } 3699 3700 /** 3701 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3702 * @core: clk to add consumer to 3703 * @clk: consumer to link to a clk 3704 */ 3705 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3706 { 3707 clk_prepare_lock(); 3708 hlist_add_head(&clk->clks_node, &core->clks); 3709 clk_prepare_unlock(); 3710 } 3711 3712 /** 3713 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3714 * @clk: consumer to unlink 3715 */ 3716 static void clk_core_unlink_consumer(struct clk *clk) 3717 { 3718 lockdep_assert_held(&prepare_lock); 3719 hlist_del(&clk->clks_node); 3720 } 3721 3722 /** 3723 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3724 * @core: clk to allocate a consumer for 3725 * @dev_id: string describing device name 3726 * @con_id: connection ID string on device 3727 * 3728 * Returns: clk consumer left unlinked from the consumer list 3729 */ 3730 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3731 const char *con_id) 3732 { 3733 struct clk *clk; 3734 3735 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3736 if (!clk) 3737 return ERR_PTR(-ENOMEM); 3738 3739 clk->core = core; 3740 clk->dev_id = dev_id; 3741 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3742 clk->max_rate = ULONG_MAX; 3743 3744 return clk; 3745 } 3746 3747 /** 3748 * free_clk - Free a clk consumer 3749 * @clk: clk consumer to free 3750 * 3751 * Note, this assumes the clk has been unlinked from the clk_core consumer 3752 * list. 3753 */ 3754 static void free_clk(struct clk *clk) 3755 { 3756 kfree_const(clk->con_id); 3757 kfree(clk); 3758 } 3759 3760 /** 3761 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3762 * a clk_hw 3763 * @dev: clk consumer device 3764 * @hw: clk_hw associated with the clk being consumed 3765 * @dev_id: string describing device name 3766 * @con_id: connection ID string on device 3767 * 3768 * This is the main function used to create a clk pointer for use by clk 3769 * consumers. It connects a consumer to the clk_core and clk_hw structures 3770 * used by the framework and clk provider respectively. 3771 */ 3772 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3773 const char *dev_id, const char *con_id) 3774 { 3775 struct clk *clk; 3776 struct clk_core *core; 3777 3778 /* This is to allow this function to be chained to others */ 3779 if (IS_ERR_OR_NULL(hw)) 3780 return ERR_CAST(hw); 3781 3782 core = hw->core; 3783 clk = alloc_clk(core, dev_id, con_id); 3784 if (IS_ERR(clk)) 3785 return clk; 3786 clk->dev = dev; 3787 3788 if (!try_module_get(core->owner)) { 3789 free_clk(clk); 3790 return ERR_PTR(-ENOENT); 3791 } 3792 3793 kref_get(&core->ref); 3794 clk_core_link_consumer(core, clk); 3795 3796 return clk; 3797 } 3798 3799 /** 3800 * clk_hw_get_clk - get clk consumer given an clk_hw 3801 * @hw: clk_hw associated with the clk being consumed 3802 * @con_id: connection ID string on device 3803 * 3804 * Returns: new clk consumer 3805 * This is the function to be used by providers which need 3806 * to get a consumer clk and act on the clock element 3807 * Calls to this function must be balanced with calls clk_put() 3808 */ 3809 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id) 3810 { 3811 struct device *dev = hw->core->dev; 3812 const char *name = dev ? dev_name(dev) : NULL; 3813 3814 return clk_hw_create_clk(dev, hw, name, con_id); 3815 } 3816 EXPORT_SYMBOL(clk_hw_get_clk); 3817 3818 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3819 { 3820 const char *dst; 3821 3822 if (!src) { 3823 if (must_exist) 3824 return -EINVAL; 3825 return 0; 3826 } 3827 3828 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3829 if (!dst) 3830 return -ENOMEM; 3831 3832 return 0; 3833 } 3834 3835 static int clk_core_populate_parent_map(struct clk_core *core, 3836 const struct clk_init_data *init) 3837 { 3838 u8 num_parents = init->num_parents; 3839 const char * const *parent_names = init->parent_names; 3840 const struct clk_hw **parent_hws = init->parent_hws; 3841 const struct clk_parent_data *parent_data = init->parent_data; 3842 int i, ret = 0; 3843 struct clk_parent_map *parents, *parent; 3844 3845 if (!num_parents) 3846 return 0; 3847 3848 /* 3849 * Avoid unnecessary string look-ups of clk_core's possible parents by 3850 * having a cache of names/clk_hw pointers to clk_core pointers. 3851 */ 3852 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3853 core->parents = parents; 3854 if (!parents) 3855 return -ENOMEM; 3856 3857 /* Copy everything over because it might be __initdata */ 3858 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3859 parent->index = -1; 3860 if (parent_names) { 3861 /* throw a WARN if any entries are NULL */ 3862 WARN(!parent_names[i], 3863 "%s: invalid NULL in %s's .parent_names\n", 3864 __func__, core->name); 3865 ret = clk_cpy_name(&parent->name, parent_names[i], 3866 true); 3867 } else if (parent_data) { 3868 parent->hw = parent_data[i].hw; 3869 parent->index = parent_data[i].index; 3870 ret = clk_cpy_name(&parent->fw_name, 3871 parent_data[i].fw_name, false); 3872 if (!ret) 3873 ret = clk_cpy_name(&parent->name, 3874 parent_data[i].name, 3875 false); 3876 } else if (parent_hws) { 3877 parent->hw = parent_hws[i]; 3878 } else { 3879 ret = -EINVAL; 3880 WARN(1, "Must specify parents if num_parents > 0\n"); 3881 } 3882 3883 if (ret) { 3884 do { 3885 kfree_const(parents[i].name); 3886 kfree_const(parents[i].fw_name); 3887 } while (--i >= 0); 3888 kfree(parents); 3889 3890 return ret; 3891 } 3892 } 3893 3894 return 0; 3895 } 3896 3897 static void clk_core_free_parent_map(struct clk_core *core) 3898 { 3899 int i = core->num_parents; 3900 3901 if (!core->num_parents) 3902 return; 3903 3904 while (--i >= 0) { 3905 kfree_const(core->parents[i].name); 3906 kfree_const(core->parents[i].fw_name); 3907 } 3908 3909 kfree(core->parents); 3910 } 3911 3912 static struct clk * 3913 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3914 { 3915 int ret; 3916 struct clk_core *core; 3917 const struct clk_init_data *init = hw->init; 3918 3919 /* 3920 * The init data is not supposed to be used outside of registration path. 3921 * Set it to NULL so that provider drivers can't use it either and so that 3922 * we catch use of hw->init early on in the core. 3923 */ 3924 hw->init = NULL; 3925 3926 core = kzalloc(sizeof(*core), GFP_KERNEL); 3927 if (!core) { 3928 ret = -ENOMEM; 3929 goto fail_out; 3930 } 3931 3932 core->name = kstrdup_const(init->name, GFP_KERNEL); 3933 if (!core->name) { 3934 ret = -ENOMEM; 3935 goto fail_name; 3936 } 3937 3938 if (WARN_ON(!init->ops)) { 3939 ret = -EINVAL; 3940 goto fail_ops; 3941 } 3942 core->ops = init->ops; 3943 3944 if (dev && pm_runtime_enabled(dev)) 3945 core->rpm_enabled = true; 3946 core->dev = dev; 3947 core->of_node = np; 3948 if (dev && dev->driver) 3949 core->owner = dev->driver->owner; 3950 core->hw = hw; 3951 core->flags = init->flags; 3952 core->num_parents = init->num_parents; 3953 core->min_rate = 0; 3954 core->max_rate = ULONG_MAX; 3955 3956 ret = clk_core_populate_parent_map(core, init); 3957 if (ret) 3958 goto fail_parents; 3959 3960 INIT_HLIST_HEAD(&core->clks); 3961 3962 /* 3963 * Don't call clk_hw_create_clk() here because that would pin the 3964 * provider module to itself and prevent it from ever being removed. 3965 */ 3966 hw->clk = alloc_clk(core, NULL, NULL); 3967 if (IS_ERR(hw->clk)) { 3968 ret = PTR_ERR(hw->clk); 3969 goto fail_create_clk; 3970 } 3971 3972 clk_core_link_consumer(core, hw->clk); 3973 3974 ret = __clk_core_init(core); 3975 if (!ret) 3976 return hw->clk; 3977 3978 clk_prepare_lock(); 3979 clk_core_unlink_consumer(hw->clk); 3980 clk_prepare_unlock(); 3981 3982 free_clk(hw->clk); 3983 hw->clk = NULL; 3984 3985 fail_create_clk: 3986 clk_core_free_parent_map(core); 3987 fail_parents: 3988 fail_ops: 3989 kfree_const(core->name); 3990 fail_name: 3991 kfree(core); 3992 fail_out: 3993 return ERR_PTR(ret); 3994 } 3995 3996 /** 3997 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 3998 * @dev: Device to get device node of 3999 * 4000 * Return: device node pointer of @dev, or the device node pointer of 4001 * @dev->parent if dev doesn't have a device node, or NULL if neither 4002 * @dev or @dev->parent have a device node. 4003 */ 4004 static struct device_node *dev_or_parent_of_node(struct device *dev) 4005 { 4006 struct device_node *np; 4007 4008 if (!dev) 4009 return NULL; 4010 4011 np = dev_of_node(dev); 4012 if (!np) 4013 np = dev_of_node(dev->parent); 4014 4015 return np; 4016 } 4017 4018 /** 4019 * clk_register - allocate a new clock, register it and return an opaque cookie 4020 * @dev: device that is registering this clock 4021 * @hw: link to hardware-specific clock data 4022 * 4023 * clk_register is the *deprecated* interface for populating the clock tree with 4024 * new clock nodes. Use clk_hw_register() instead. 4025 * 4026 * Returns: a pointer to the newly allocated struct clk which 4027 * cannot be dereferenced by driver code but may be used in conjunction with the 4028 * rest of the clock API. In the event of an error clk_register will return an 4029 * error code; drivers must test for an error code after calling clk_register. 4030 */ 4031 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 4032 { 4033 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 4034 } 4035 EXPORT_SYMBOL_GPL(clk_register); 4036 4037 /** 4038 * clk_hw_register - register a clk_hw and return an error code 4039 * @dev: device that is registering this clock 4040 * @hw: link to hardware-specific clock data 4041 * 4042 * clk_hw_register is the primary interface for populating the clock tree with 4043 * new clock nodes. It returns an integer equal to zero indicating success or 4044 * less than zero indicating failure. Drivers must test for an error code after 4045 * calling clk_hw_register(). 4046 */ 4047 int clk_hw_register(struct device *dev, struct clk_hw *hw) 4048 { 4049 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 4050 hw)); 4051 } 4052 EXPORT_SYMBOL_GPL(clk_hw_register); 4053 4054 /* 4055 * of_clk_hw_register - register a clk_hw and return an error code 4056 * @node: device_node of device that is registering this clock 4057 * @hw: link to hardware-specific clock data 4058 * 4059 * of_clk_hw_register() is the primary interface for populating the clock tree 4060 * with new clock nodes when a struct device is not available, but a struct 4061 * device_node is. It returns an integer equal to zero indicating success or 4062 * less than zero indicating failure. Drivers must test for an error code after 4063 * calling of_clk_hw_register(). 4064 */ 4065 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 4066 { 4067 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 4068 } 4069 EXPORT_SYMBOL_GPL(of_clk_hw_register); 4070 4071 /* Free memory allocated for a clock. */ 4072 static void __clk_release(struct kref *ref) 4073 { 4074 struct clk_core *core = container_of(ref, struct clk_core, ref); 4075 4076 lockdep_assert_held(&prepare_lock); 4077 4078 clk_core_free_parent_map(core); 4079 kfree_const(core->name); 4080 kfree(core); 4081 } 4082 4083 /* 4084 * Empty clk_ops for unregistered clocks. These are used temporarily 4085 * after clk_unregister() was called on a clock and until last clock 4086 * consumer calls clk_put() and the struct clk object is freed. 4087 */ 4088 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 4089 { 4090 return -ENXIO; 4091 } 4092 4093 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 4094 { 4095 WARN_ON_ONCE(1); 4096 } 4097 4098 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 4099 unsigned long parent_rate) 4100 { 4101 return -ENXIO; 4102 } 4103 4104 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 4105 { 4106 return -ENXIO; 4107 } 4108 4109 static const struct clk_ops clk_nodrv_ops = { 4110 .enable = clk_nodrv_prepare_enable, 4111 .disable = clk_nodrv_disable_unprepare, 4112 .prepare = clk_nodrv_prepare_enable, 4113 .unprepare = clk_nodrv_disable_unprepare, 4114 .set_rate = clk_nodrv_set_rate, 4115 .set_parent = clk_nodrv_set_parent, 4116 }; 4117 4118 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4119 const struct clk_core *target) 4120 { 4121 int i; 4122 struct clk_core *child; 4123 4124 for (i = 0; i < root->num_parents; i++) 4125 if (root->parents[i].core == target) 4126 root->parents[i].core = NULL; 4127 4128 hlist_for_each_entry(child, &root->children, child_node) 4129 clk_core_evict_parent_cache_subtree(child, target); 4130 } 4131 4132 /* Remove this clk from all parent caches */ 4133 static void clk_core_evict_parent_cache(struct clk_core *core) 4134 { 4135 const struct hlist_head **lists; 4136 struct clk_core *root; 4137 4138 lockdep_assert_held(&prepare_lock); 4139 4140 for (lists = all_lists; *lists; lists++) 4141 hlist_for_each_entry(root, *lists, child_node) 4142 clk_core_evict_parent_cache_subtree(root, core); 4143 4144 } 4145 4146 /** 4147 * clk_unregister - unregister a currently registered clock 4148 * @clk: clock to unregister 4149 */ 4150 void clk_unregister(struct clk *clk) 4151 { 4152 unsigned long flags; 4153 const struct clk_ops *ops; 4154 4155 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4156 return; 4157 4158 clk_debug_unregister(clk->core); 4159 4160 clk_prepare_lock(); 4161 4162 ops = clk->core->ops; 4163 if (ops == &clk_nodrv_ops) { 4164 pr_err("%s: unregistered clock: %s\n", __func__, 4165 clk->core->name); 4166 goto unlock; 4167 } 4168 /* 4169 * Assign empty clock ops for consumers that might still hold 4170 * a reference to this clock. 4171 */ 4172 flags = clk_enable_lock(); 4173 clk->core->ops = &clk_nodrv_ops; 4174 clk_enable_unlock(flags); 4175 4176 if (ops->terminate) 4177 ops->terminate(clk->core->hw); 4178 4179 if (!hlist_empty(&clk->core->children)) { 4180 struct clk_core *child; 4181 struct hlist_node *t; 4182 4183 /* Reparent all children to the orphan list. */ 4184 hlist_for_each_entry_safe(child, t, &clk->core->children, 4185 child_node) 4186 clk_core_set_parent_nolock(child, NULL); 4187 } 4188 4189 clk_core_evict_parent_cache(clk->core); 4190 4191 hlist_del_init(&clk->core->child_node); 4192 4193 if (clk->core->prepare_count) 4194 pr_warn("%s: unregistering prepared clock: %s\n", 4195 __func__, clk->core->name); 4196 4197 if (clk->core->protect_count) 4198 pr_warn("%s: unregistering protected clock: %s\n", 4199 __func__, clk->core->name); 4200 4201 kref_put(&clk->core->ref, __clk_release); 4202 free_clk(clk); 4203 unlock: 4204 clk_prepare_unlock(); 4205 } 4206 EXPORT_SYMBOL_GPL(clk_unregister); 4207 4208 /** 4209 * clk_hw_unregister - unregister a currently registered clk_hw 4210 * @hw: hardware-specific clock data to unregister 4211 */ 4212 void clk_hw_unregister(struct clk_hw *hw) 4213 { 4214 clk_unregister(hw->clk); 4215 } 4216 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4217 4218 static void devm_clk_unregister_cb(struct device *dev, void *res) 4219 { 4220 clk_unregister(*(struct clk **)res); 4221 } 4222 4223 static void devm_clk_hw_unregister_cb(struct device *dev, void *res) 4224 { 4225 clk_hw_unregister(*(struct clk_hw **)res); 4226 } 4227 4228 /** 4229 * devm_clk_register - resource managed clk_register() 4230 * @dev: device that is registering this clock 4231 * @hw: link to hardware-specific clock data 4232 * 4233 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4234 * 4235 * Clocks returned from this function are automatically clk_unregister()ed on 4236 * driver detach. See clk_register() for more information. 4237 */ 4238 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4239 { 4240 struct clk *clk; 4241 struct clk **clkp; 4242 4243 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL); 4244 if (!clkp) 4245 return ERR_PTR(-ENOMEM); 4246 4247 clk = clk_register(dev, hw); 4248 if (!IS_ERR(clk)) { 4249 *clkp = clk; 4250 devres_add(dev, clkp); 4251 } else { 4252 devres_free(clkp); 4253 } 4254 4255 return clk; 4256 } 4257 EXPORT_SYMBOL_GPL(devm_clk_register); 4258 4259 /** 4260 * devm_clk_hw_register - resource managed clk_hw_register() 4261 * @dev: device that is registering this clock 4262 * @hw: link to hardware-specific clock data 4263 * 4264 * Managed clk_hw_register(). Clocks registered by this function are 4265 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4266 * for more information. 4267 */ 4268 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4269 { 4270 struct clk_hw **hwp; 4271 int ret; 4272 4273 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL); 4274 if (!hwp) 4275 return -ENOMEM; 4276 4277 ret = clk_hw_register(dev, hw); 4278 if (!ret) { 4279 *hwp = hw; 4280 devres_add(dev, hwp); 4281 } else { 4282 devres_free(hwp); 4283 } 4284 4285 return ret; 4286 } 4287 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4288 4289 static int devm_clk_match(struct device *dev, void *res, void *data) 4290 { 4291 struct clk *c = res; 4292 if (WARN_ON(!c)) 4293 return 0; 4294 return c == data; 4295 } 4296 4297 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 4298 { 4299 struct clk_hw *hw = res; 4300 4301 if (WARN_ON(!hw)) 4302 return 0; 4303 return hw == data; 4304 } 4305 4306 /** 4307 * devm_clk_unregister - resource managed clk_unregister() 4308 * @dev: device that is unregistering the clock data 4309 * @clk: clock to unregister 4310 * 4311 * Deallocate a clock allocated with devm_clk_register(). Normally 4312 * this function will not need to be called and the resource management 4313 * code will ensure that the resource is freed. 4314 */ 4315 void devm_clk_unregister(struct device *dev, struct clk *clk) 4316 { 4317 WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk)); 4318 } 4319 EXPORT_SYMBOL_GPL(devm_clk_unregister); 4320 4321 /** 4322 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 4323 * @dev: device that is unregistering the hardware-specific clock data 4324 * @hw: link to hardware-specific clock data 4325 * 4326 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 4327 * this function will not need to be called and the resource management 4328 * code will ensure that the resource is freed. 4329 */ 4330 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 4331 { 4332 WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match, 4333 hw)); 4334 } 4335 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 4336 4337 static void devm_clk_release(struct device *dev, void *res) 4338 { 4339 clk_put(*(struct clk **)res); 4340 } 4341 4342 /** 4343 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk() 4344 * @dev: device that is registering this clock 4345 * @hw: clk_hw associated with the clk being consumed 4346 * @con_id: connection ID string on device 4347 * 4348 * Managed clk_hw_get_clk(). Clocks got with this function are 4349 * automatically clk_put() on driver detach. See clk_put() 4350 * for more information. 4351 */ 4352 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw, 4353 const char *con_id) 4354 { 4355 struct clk *clk; 4356 struct clk **clkp; 4357 4358 /* This should not happen because it would mean we have drivers 4359 * passing around clk_hw pointers instead of having the caller use 4360 * proper clk_get() style APIs 4361 */ 4362 WARN_ON_ONCE(dev != hw->core->dev); 4363 4364 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4365 if (!clkp) 4366 return ERR_PTR(-ENOMEM); 4367 4368 clk = clk_hw_get_clk(hw, con_id); 4369 if (!IS_ERR(clk)) { 4370 *clkp = clk; 4371 devres_add(dev, clkp); 4372 } else { 4373 devres_free(clkp); 4374 } 4375 4376 return clk; 4377 } 4378 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk); 4379 4380 /* 4381 * clkdev helpers 4382 */ 4383 4384 void __clk_put(struct clk *clk) 4385 { 4386 struct module *owner; 4387 4388 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4389 return; 4390 4391 clk_prepare_lock(); 4392 4393 /* 4394 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4395 * given user should be balanced with calls to clk_rate_exclusive_put() 4396 * and by that same consumer 4397 */ 4398 if (WARN_ON(clk->exclusive_count)) { 4399 /* We voiced our concern, let's sanitize the situation */ 4400 clk->core->protect_count -= (clk->exclusive_count - 1); 4401 clk_core_rate_unprotect(clk->core); 4402 clk->exclusive_count = 0; 4403 } 4404 4405 hlist_del(&clk->clks_node); 4406 if (clk->min_rate > clk->core->req_rate || 4407 clk->max_rate < clk->core->req_rate) 4408 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 4409 4410 owner = clk->core->owner; 4411 kref_put(&clk->core->ref, __clk_release); 4412 4413 clk_prepare_unlock(); 4414 4415 module_put(owner); 4416 4417 free_clk(clk); 4418 } 4419 4420 /*** clk rate change notifiers ***/ 4421 4422 /** 4423 * clk_notifier_register - add a clk rate change notifier 4424 * @clk: struct clk * to watch 4425 * @nb: struct notifier_block * with callback info 4426 * 4427 * Request notification when clk's rate changes. This uses an SRCU 4428 * notifier because we want it to block and notifier unregistrations are 4429 * uncommon. The callbacks associated with the notifier must not 4430 * re-enter into the clk framework by calling any top-level clk APIs; 4431 * this will cause a nested prepare_lock mutex. 4432 * 4433 * In all notification cases (pre, post and abort rate change) the original 4434 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4435 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4436 * 4437 * clk_notifier_register() must be called from non-atomic context. 4438 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4439 * allocation failure; otherwise, passes along the return value of 4440 * srcu_notifier_chain_register(). 4441 */ 4442 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4443 { 4444 struct clk_notifier *cn; 4445 int ret = -ENOMEM; 4446 4447 if (!clk || !nb) 4448 return -EINVAL; 4449 4450 clk_prepare_lock(); 4451 4452 /* search the list of notifiers for this clk */ 4453 list_for_each_entry(cn, &clk_notifier_list, node) 4454 if (cn->clk == clk) 4455 goto found; 4456 4457 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4458 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4459 if (!cn) 4460 goto out; 4461 4462 cn->clk = clk; 4463 srcu_init_notifier_head(&cn->notifier_head); 4464 4465 list_add(&cn->node, &clk_notifier_list); 4466 4467 found: 4468 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4469 4470 clk->core->notifier_count++; 4471 4472 out: 4473 clk_prepare_unlock(); 4474 4475 return ret; 4476 } 4477 EXPORT_SYMBOL_GPL(clk_notifier_register); 4478 4479 /** 4480 * clk_notifier_unregister - remove a clk rate change notifier 4481 * @clk: struct clk * 4482 * @nb: struct notifier_block * with callback info 4483 * 4484 * Request no further notification for changes to 'clk' and frees memory 4485 * allocated in clk_notifier_register. 4486 * 4487 * Returns -EINVAL if called with null arguments; otherwise, passes 4488 * along the return value of srcu_notifier_chain_unregister(). 4489 */ 4490 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4491 { 4492 struct clk_notifier *cn; 4493 int ret = -ENOENT; 4494 4495 if (!clk || !nb) 4496 return -EINVAL; 4497 4498 clk_prepare_lock(); 4499 4500 list_for_each_entry(cn, &clk_notifier_list, node) { 4501 if (cn->clk == clk) { 4502 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4503 4504 clk->core->notifier_count--; 4505 4506 /* XXX the notifier code should handle this better */ 4507 if (!cn->notifier_head.head) { 4508 srcu_cleanup_notifier_head(&cn->notifier_head); 4509 list_del(&cn->node); 4510 kfree(cn); 4511 } 4512 break; 4513 } 4514 } 4515 4516 clk_prepare_unlock(); 4517 4518 return ret; 4519 } 4520 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4521 4522 struct clk_notifier_devres { 4523 struct clk *clk; 4524 struct notifier_block *nb; 4525 }; 4526 4527 static void devm_clk_notifier_release(struct device *dev, void *res) 4528 { 4529 struct clk_notifier_devres *devres = res; 4530 4531 clk_notifier_unregister(devres->clk, devres->nb); 4532 } 4533 4534 int devm_clk_notifier_register(struct device *dev, struct clk *clk, 4535 struct notifier_block *nb) 4536 { 4537 struct clk_notifier_devres *devres; 4538 int ret; 4539 4540 devres = devres_alloc(devm_clk_notifier_release, 4541 sizeof(*devres), GFP_KERNEL); 4542 4543 if (!devres) 4544 return -ENOMEM; 4545 4546 ret = clk_notifier_register(clk, nb); 4547 if (!ret) { 4548 devres->clk = clk; 4549 devres->nb = nb; 4550 } else { 4551 devres_free(devres); 4552 } 4553 4554 return ret; 4555 } 4556 EXPORT_SYMBOL_GPL(devm_clk_notifier_register); 4557 4558 #ifdef CONFIG_OF 4559 static void clk_core_reparent_orphans(void) 4560 { 4561 clk_prepare_lock(); 4562 clk_core_reparent_orphans_nolock(); 4563 clk_prepare_unlock(); 4564 } 4565 4566 /** 4567 * struct of_clk_provider - Clock provider registration structure 4568 * @link: Entry in global list of clock providers 4569 * @node: Pointer to device tree node of clock provider 4570 * @get: Get clock callback. Returns NULL or a struct clk for the 4571 * given clock specifier 4572 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4573 * struct clk_hw for the given clock specifier 4574 * @data: context pointer to be passed into @get callback 4575 */ 4576 struct of_clk_provider { 4577 struct list_head link; 4578 4579 struct device_node *node; 4580 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4581 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4582 void *data; 4583 }; 4584 4585 extern struct of_device_id __clk_of_table; 4586 static const struct of_device_id __clk_of_table_sentinel 4587 __used __section("__clk_of_table_end"); 4588 4589 static LIST_HEAD(of_clk_providers); 4590 static DEFINE_MUTEX(of_clk_mutex); 4591 4592 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4593 void *data) 4594 { 4595 return data; 4596 } 4597 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4598 4599 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4600 { 4601 return data; 4602 } 4603 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4604 4605 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4606 { 4607 struct clk_onecell_data *clk_data = data; 4608 unsigned int idx = clkspec->args[0]; 4609 4610 if (idx >= clk_data->clk_num) { 4611 pr_err("%s: invalid clock index %u\n", __func__, idx); 4612 return ERR_PTR(-EINVAL); 4613 } 4614 4615 return clk_data->clks[idx]; 4616 } 4617 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4618 4619 struct clk_hw * 4620 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4621 { 4622 struct clk_hw_onecell_data *hw_data = data; 4623 unsigned int idx = clkspec->args[0]; 4624 4625 if (idx >= hw_data->num) { 4626 pr_err("%s: invalid index %u\n", __func__, idx); 4627 return ERR_PTR(-EINVAL); 4628 } 4629 4630 return hw_data->hws[idx]; 4631 } 4632 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4633 4634 /** 4635 * of_clk_add_provider() - Register a clock provider for a node 4636 * @np: Device node pointer associated with clock provider 4637 * @clk_src_get: callback for decoding clock 4638 * @data: context pointer for @clk_src_get callback. 4639 * 4640 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4641 */ 4642 int of_clk_add_provider(struct device_node *np, 4643 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4644 void *data), 4645 void *data) 4646 { 4647 struct of_clk_provider *cp; 4648 int ret; 4649 4650 if (!np) 4651 return 0; 4652 4653 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4654 if (!cp) 4655 return -ENOMEM; 4656 4657 cp->node = of_node_get(np); 4658 cp->data = data; 4659 cp->get = clk_src_get; 4660 4661 mutex_lock(&of_clk_mutex); 4662 list_add(&cp->link, &of_clk_providers); 4663 mutex_unlock(&of_clk_mutex); 4664 pr_debug("Added clock from %pOF\n", np); 4665 4666 clk_core_reparent_orphans(); 4667 4668 ret = of_clk_set_defaults(np, true); 4669 if (ret < 0) 4670 of_clk_del_provider(np); 4671 4672 fwnode_dev_initialized(&np->fwnode, true); 4673 4674 return ret; 4675 } 4676 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4677 4678 /** 4679 * of_clk_add_hw_provider() - Register a clock provider for a node 4680 * @np: Device node pointer associated with clock provider 4681 * @get: callback for decoding clk_hw 4682 * @data: context pointer for @get callback. 4683 */ 4684 int of_clk_add_hw_provider(struct device_node *np, 4685 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4686 void *data), 4687 void *data) 4688 { 4689 struct of_clk_provider *cp; 4690 int ret; 4691 4692 if (!np) 4693 return 0; 4694 4695 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4696 if (!cp) 4697 return -ENOMEM; 4698 4699 cp->node = of_node_get(np); 4700 cp->data = data; 4701 cp->get_hw = get; 4702 4703 mutex_lock(&of_clk_mutex); 4704 list_add(&cp->link, &of_clk_providers); 4705 mutex_unlock(&of_clk_mutex); 4706 pr_debug("Added clk_hw provider from %pOF\n", np); 4707 4708 clk_core_reparent_orphans(); 4709 4710 ret = of_clk_set_defaults(np, true); 4711 if (ret < 0) 4712 of_clk_del_provider(np); 4713 4714 fwnode_dev_initialized(&np->fwnode, true); 4715 4716 return ret; 4717 } 4718 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4719 4720 static void devm_of_clk_release_provider(struct device *dev, void *res) 4721 { 4722 of_clk_del_provider(*(struct device_node **)res); 4723 } 4724 4725 /* 4726 * We allow a child device to use its parent device as the clock provider node 4727 * for cases like MFD sub-devices where the child device driver wants to use 4728 * devm_*() APIs but not list the device in DT as a sub-node. 4729 */ 4730 static struct device_node *get_clk_provider_node(struct device *dev) 4731 { 4732 struct device_node *np, *parent_np; 4733 4734 np = dev->of_node; 4735 parent_np = dev->parent ? dev->parent->of_node : NULL; 4736 4737 if (!of_find_property(np, "#clock-cells", NULL)) 4738 if (of_find_property(parent_np, "#clock-cells", NULL)) 4739 np = parent_np; 4740 4741 return np; 4742 } 4743 4744 /** 4745 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4746 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4747 * @get: callback for decoding clk_hw 4748 * @data: context pointer for @get callback 4749 * 4750 * Registers clock provider for given device's node. If the device has no DT 4751 * node or if the device node lacks of clock provider information (#clock-cells) 4752 * then the parent device's node is scanned for this information. If parent node 4753 * has the #clock-cells then it is used in registration. Provider is 4754 * automatically released at device exit. 4755 * 4756 * Return: 0 on success or an errno on failure. 4757 */ 4758 int devm_of_clk_add_hw_provider(struct device *dev, 4759 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4760 void *data), 4761 void *data) 4762 { 4763 struct device_node **ptr, *np; 4764 int ret; 4765 4766 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4767 GFP_KERNEL); 4768 if (!ptr) 4769 return -ENOMEM; 4770 4771 np = get_clk_provider_node(dev); 4772 ret = of_clk_add_hw_provider(np, get, data); 4773 if (!ret) { 4774 *ptr = np; 4775 devres_add(dev, ptr); 4776 } else { 4777 devres_free(ptr); 4778 } 4779 4780 return ret; 4781 } 4782 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4783 4784 /** 4785 * of_clk_del_provider() - Remove a previously registered clock provider 4786 * @np: Device node pointer associated with clock provider 4787 */ 4788 void of_clk_del_provider(struct device_node *np) 4789 { 4790 struct of_clk_provider *cp; 4791 4792 if (!np) 4793 return; 4794 4795 mutex_lock(&of_clk_mutex); 4796 list_for_each_entry(cp, &of_clk_providers, link) { 4797 if (cp->node == np) { 4798 list_del(&cp->link); 4799 fwnode_dev_initialized(&np->fwnode, false); 4800 of_node_put(cp->node); 4801 kfree(cp); 4802 break; 4803 } 4804 } 4805 mutex_unlock(&of_clk_mutex); 4806 } 4807 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4808 4809 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4810 { 4811 struct device_node **np = res; 4812 4813 if (WARN_ON(!np || !*np)) 4814 return 0; 4815 4816 return *np == data; 4817 } 4818 4819 /** 4820 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4821 * @dev: Device to whose lifetime the clock provider was bound 4822 */ 4823 void devm_of_clk_del_provider(struct device *dev) 4824 { 4825 int ret; 4826 struct device_node *np = get_clk_provider_node(dev); 4827 4828 ret = devres_release(dev, devm_of_clk_release_provider, 4829 devm_clk_provider_match, np); 4830 4831 WARN_ON(ret); 4832 } 4833 EXPORT_SYMBOL(devm_of_clk_del_provider); 4834 4835 /** 4836 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4837 * @np: device node to parse clock specifier from 4838 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4839 * @name: clock name to find and parse. If name is NULL, the index is used 4840 * @out_args: Result of parsing the clock specifier 4841 * 4842 * Parses a device node's "clocks" and "clock-names" properties to find the 4843 * phandle and cells for the index or name that is desired. The resulting clock 4844 * specifier is placed into @out_args, or an errno is returned when there's a 4845 * parsing error. The @index argument is ignored if @name is non-NULL. 4846 * 4847 * Example: 4848 * 4849 * phandle1: clock-controller@1 { 4850 * #clock-cells = <2>; 4851 * } 4852 * 4853 * phandle2: clock-controller@2 { 4854 * #clock-cells = <1>; 4855 * } 4856 * 4857 * clock-consumer@3 { 4858 * clocks = <&phandle1 1 2 &phandle2 3>; 4859 * clock-names = "name1", "name2"; 4860 * } 4861 * 4862 * To get a device_node for `clock-controller@2' node you may call this 4863 * function a few different ways: 4864 * 4865 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4866 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4867 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4868 * 4869 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4870 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4871 * the "clock-names" property of @np. 4872 */ 4873 static int of_parse_clkspec(const struct device_node *np, int index, 4874 const char *name, struct of_phandle_args *out_args) 4875 { 4876 int ret = -ENOENT; 4877 4878 /* Walk up the tree of devices looking for a clock property that matches */ 4879 while (np) { 4880 /* 4881 * For named clocks, first look up the name in the 4882 * "clock-names" property. If it cannot be found, then index 4883 * will be an error code and of_parse_phandle_with_args() will 4884 * return -EINVAL. 4885 */ 4886 if (name) 4887 index = of_property_match_string(np, "clock-names", name); 4888 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4889 index, out_args); 4890 if (!ret) 4891 break; 4892 if (name && index >= 0) 4893 break; 4894 4895 /* 4896 * No matching clock found on this node. If the parent node 4897 * has a "clock-ranges" property, then we can try one of its 4898 * clocks. 4899 */ 4900 np = np->parent; 4901 if (np && !of_get_property(np, "clock-ranges", NULL)) 4902 break; 4903 index = 0; 4904 } 4905 4906 return ret; 4907 } 4908 4909 static struct clk_hw * 4910 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4911 struct of_phandle_args *clkspec) 4912 { 4913 struct clk *clk; 4914 4915 if (provider->get_hw) 4916 return provider->get_hw(clkspec, provider->data); 4917 4918 clk = provider->get(clkspec, provider->data); 4919 if (IS_ERR(clk)) 4920 return ERR_CAST(clk); 4921 return __clk_get_hw(clk); 4922 } 4923 4924 static struct clk_hw * 4925 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4926 { 4927 struct of_clk_provider *provider; 4928 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4929 4930 if (!clkspec) 4931 return ERR_PTR(-EINVAL); 4932 4933 mutex_lock(&of_clk_mutex); 4934 list_for_each_entry(provider, &of_clk_providers, link) { 4935 if (provider->node == clkspec->np) { 4936 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4937 if (!IS_ERR(hw)) 4938 break; 4939 } 4940 } 4941 mutex_unlock(&of_clk_mutex); 4942 4943 return hw; 4944 } 4945 4946 /** 4947 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4948 * @clkspec: pointer to a clock specifier data structure 4949 * 4950 * This function looks up a struct clk from the registered list of clock 4951 * providers, an input is a clock specifier data structure as returned 4952 * from the of_parse_phandle_with_args() function call. 4953 */ 4954 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4955 { 4956 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4957 4958 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4959 } 4960 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4961 4962 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4963 const char *con_id) 4964 { 4965 int ret; 4966 struct clk_hw *hw; 4967 struct of_phandle_args clkspec; 4968 4969 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4970 if (ret) 4971 return ERR_PTR(ret); 4972 4973 hw = of_clk_get_hw_from_clkspec(&clkspec); 4974 of_node_put(clkspec.np); 4975 4976 return hw; 4977 } 4978 4979 static struct clk *__of_clk_get(struct device_node *np, 4980 int index, const char *dev_id, 4981 const char *con_id) 4982 { 4983 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4984 4985 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4986 } 4987 4988 struct clk *of_clk_get(struct device_node *np, int index) 4989 { 4990 return __of_clk_get(np, index, np->full_name, NULL); 4991 } 4992 EXPORT_SYMBOL(of_clk_get); 4993 4994 /** 4995 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4996 * @np: pointer to clock consumer node 4997 * @name: name of consumer's clock input, or NULL for the first clock reference 4998 * 4999 * This function parses the clocks and clock-names properties, 5000 * and uses them to look up the struct clk from the registered list of clock 5001 * providers. 5002 */ 5003 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 5004 { 5005 if (!np) 5006 return ERR_PTR(-ENOENT); 5007 5008 return __of_clk_get(np, 0, np->full_name, name); 5009 } 5010 EXPORT_SYMBOL(of_clk_get_by_name); 5011 5012 /** 5013 * of_clk_get_parent_count() - Count the number of clocks a device node has 5014 * @np: device node to count 5015 * 5016 * Returns: The number of clocks that are possible parents of this node 5017 */ 5018 unsigned int of_clk_get_parent_count(const struct device_node *np) 5019 { 5020 int count; 5021 5022 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 5023 if (count < 0) 5024 return 0; 5025 5026 return count; 5027 } 5028 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 5029 5030 const char *of_clk_get_parent_name(const struct device_node *np, int index) 5031 { 5032 struct of_phandle_args clkspec; 5033 struct property *prop; 5034 const char *clk_name; 5035 const __be32 *vp; 5036 u32 pv; 5037 int rc; 5038 int count; 5039 struct clk *clk; 5040 5041 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 5042 &clkspec); 5043 if (rc) 5044 return NULL; 5045 5046 index = clkspec.args_count ? clkspec.args[0] : 0; 5047 count = 0; 5048 5049 /* if there is an indices property, use it to transfer the index 5050 * specified into an array offset for the clock-output-names property. 5051 */ 5052 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 5053 if (index == pv) { 5054 index = count; 5055 break; 5056 } 5057 count++; 5058 } 5059 /* We went off the end of 'clock-indices' without finding it */ 5060 if (prop && !vp) 5061 return NULL; 5062 5063 if (of_property_read_string_index(clkspec.np, "clock-output-names", 5064 index, 5065 &clk_name) < 0) { 5066 /* 5067 * Best effort to get the name if the clock has been 5068 * registered with the framework. If the clock isn't 5069 * registered, we return the node name as the name of 5070 * the clock as long as #clock-cells = 0. 5071 */ 5072 clk = of_clk_get_from_provider(&clkspec); 5073 if (IS_ERR(clk)) { 5074 if (clkspec.args_count == 0) 5075 clk_name = clkspec.np->name; 5076 else 5077 clk_name = NULL; 5078 } else { 5079 clk_name = __clk_get_name(clk); 5080 clk_put(clk); 5081 } 5082 } 5083 5084 5085 of_node_put(clkspec.np); 5086 return clk_name; 5087 } 5088 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 5089 5090 /** 5091 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 5092 * number of parents 5093 * @np: Device node pointer associated with clock provider 5094 * @parents: pointer to char array that hold the parents' names 5095 * @size: size of the @parents array 5096 * 5097 * Return: number of parents for the clock node. 5098 */ 5099 int of_clk_parent_fill(struct device_node *np, const char **parents, 5100 unsigned int size) 5101 { 5102 unsigned int i = 0; 5103 5104 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 5105 i++; 5106 5107 return i; 5108 } 5109 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 5110 5111 struct clock_provider { 5112 void (*clk_init_cb)(struct device_node *); 5113 struct device_node *np; 5114 struct list_head node; 5115 }; 5116 5117 /* 5118 * This function looks for a parent clock. If there is one, then it 5119 * checks that the provider for this parent clock was initialized, in 5120 * this case the parent clock will be ready. 5121 */ 5122 static int parent_ready(struct device_node *np) 5123 { 5124 int i = 0; 5125 5126 while (true) { 5127 struct clk *clk = of_clk_get(np, i); 5128 5129 /* this parent is ready we can check the next one */ 5130 if (!IS_ERR(clk)) { 5131 clk_put(clk); 5132 i++; 5133 continue; 5134 } 5135 5136 /* at least one parent is not ready, we exit now */ 5137 if (PTR_ERR(clk) == -EPROBE_DEFER) 5138 return 0; 5139 5140 /* 5141 * Here we make assumption that the device tree is 5142 * written correctly. So an error means that there is 5143 * no more parent. As we didn't exit yet, then the 5144 * previous parent are ready. If there is no clock 5145 * parent, no need to wait for them, then we can 5146 * consider their absence as being ready 5147 */ 5148 return 1; 5149 } 5150 } 5151 5152 /** 5153 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5154 * @np: Device node pointer associated with clock provider 5155 * @index: clock index 5156 * @flags: pointer to top-level framework flags 5157 * 5158 * Detects if the clock-critical property exists and, if so, sets the 5159 * corresponding CLK_IS_CRITICAL flag. 5160 * 5161 * Do not use this function. It exists only for legacy Device Tree 5162 * bindings, such as the one-clock-per-node style that are outdated. 5163 * Those bindings typically put all clock data into .dts and the Linux 5164 * driver has no clock data, thus making it impossible to set this flag 5165 * correctly from the driver. Only those drivers may call 5166 * of_clk_detect_critical from their setup functions. 5167 * 5168 * Return: error code or zero on success 5169 */ 5170 int of_clk_detect_critical(struct device_node *np, int index, 5171 unsigned long *flags) 5172 { 5173 struct property *prop; 5174 const __be32 *cur; 5175 uint32_t idx; 5176 5177 if (!np || !flags) 5178 return -EINVAL; 5179 5180 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 5181 if (index == idx) 5182 *flags |= CLK_IS_CRITICAL; 5183 5184 return 0; 5185 } 5186 5187 /** 5188 * of_clk_init() - Scan and init clock providers from the DT 5189 * @matches: array of compatible values and init functions for providers. 5190 * 5191 * This function scans the device tree for matching clock providers 5192 * and calls their initialization functions. It also does it by trying 5193 * to follow the dependencies. 5194 */ 5195 void __init of_clk_init(const struct of_device_id *matches) 5196 { 5197 const struct of_device_id *match; 5198 struct device_node *np; 5199 struct clock_provider *clk_provider, *next; 5200 bool is_init_done; 5201 bool force = false; 5202 LIST_HEAD(clk_provider_list); 5203 5204 if (!matches) 5205 matches = &__clk_of_table; 5206 5207 /* First prepare the list of the clocks providers */ 5208 for_each_matching_node_and_match(np, matches, &match) { 5209 struct clock_provider *parent; 5210 5211 if (!of_device_is_available(np)) 5212 continue; 5213 5214 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5215 if (!parent) { 5216 list_for_each_entry_safe(clk_provider, next, 5217 &clk_provider_list, node) { 5218 list_del(&clk_provider->node); 5219 of_node_put(clk_provider->np); 5220 kfree(clk_provider); 5221 } 5222 of_node_put(np); 5223 return; 5224 } 5225 5226 parent->clk_init_cb = match->data; 5227 parent->np = of_node_get(np); 5228 list_add_tail(&parent->node, &clk_provider_list); 5229 } 5230 5231 while (!list_empty(&clk_provider_list)) { 5232 is_init_done = false; 5233 list_for_each_entry_safe(clk_provider, next, 5234 &clk_provider_list, node) { 5235 if (force || parent_ready(clk_provider->np)) { 5236 5237 /* Don't populate platform devices */ 5238 of_node_set_flag(clk_provider->np, 5239 OF_POPULATED); 5240 5241 clk_provider->clk_init_cb(clk_provider->np); 5242 of_clk_set_defaults(clk_provider->np, true); 5243 5244 list_del(&clk_provider->node); 5245 of_node_put(clk_provider->np); 5246 kfree(clk_provider); 5247 is_init_done = true; 5248 } 5249 } 5250 5251 /* 5252 * We didn't manage to initialize any of the 5253 * remaining providers during the last loop, so now we 5254 * initialize all the remaining ones unconditionally 5255 * in case the clock parent was not mandatory 5256 */ 5257 if (!is_init_done) 5258 force = true; 5259 } 5260 } 5261 #endif 5262