1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44 }; 45 46 /*** private data structures ***/ 47 48 struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54 }; 55 56 struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87 #ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90 #endif 91 struct kref ref; 92 }; 93 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/clk.h> 96 97 struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106 }; 107 108 /*** runtime pm ***/ 109 static int clk_pm_runtime_get(struct clk_core *core) 110 { 111 int ret; 112 113 if (!core->rpm_enabled) 114 return 0; 115 116 ret = pm_runtime_get_sync(core->dev); 117 if (ret < 0) { 118 pm_runtime_put_noidle(core->dev); 119 return ret; 120 } 121 return 0; 122 } 123 124 static void clk_pm_runtime_put(struct clk_core *core) 125 { 126 if (!core->rpm_enabled) 127 return; 128 129 pm_runtime_put_sync(core->dev); 130 } 131 132 /*** locking ***/ 133 static void clk_prepare_lock(void) 134 { 135 if (!mutex_trylock(&prepare_lock)) { 136 if (prepare_owner == current) { 137 prepare_refcnt++; 138 return; 139 } 140 mutex_lock(&prepare_lock); 141 } 142 WARN_ON_ONCE(prepare_owner != NULL); 143 WARN_ON_ONCE(prepare_refcnt != 0); 144 prepare_owner = current; 145 prepare_refcnt = 1; 146 } 147 148 static void clk_prepare_unlock(void) 149 { 150 WARN_ON_ONCE(prepare_owner != current); 151 WARN_ON_ONCE(prepare_refcnt == 0); 152 153 if (--prepare_refcnt) 154 return; 155 prepare_owner = NULL; 156 mutex_unlock(&prepare_lock); 157 } 158 159 static unsigned long clk_enable_lock(void) 160 __acquires(enable_lock) 161 { 162 unsigned long flags; 163 164 /* 165 * On UP systems, spin_trylock_irqsave() always returns true, even if 166 * we already hold the lock. So, in that case, we rely only on 167 * reference counting. 168 */ 169 if (!IS_ENABLED(CONFIG_SMP) || 170 !spin_trylock_irqsave(&enable_lock, flags)) { 171 if (enable_owner == current) { 172 enable_refcnt++; 173 __acquire(enable_lock); 174 if (!IS_ENABLED(CONFIG_SMP)) 175 local_save_flags(flags); 176 return flags; 177 } 178 spin_lock_irqsave(&enable_lock, flags); 179 } 180 WARN_ON_ONCE(enable_owner != NULL); 181 WARN_ON_ONCE(enable_refcnt != 0); 182 enable_owner = current; 183 enable_refcnt = 1; 184 return flags; 185 } 186 187 static void clk_enable_unlock(unsigned long flags) 188 __releases(enable_lock) 189 { 190 WARN_ON_ONCE(enable_owner != current); 191 WARN_ON_ONCE(enable_refcnt == 0); 192 193 if (--enable_refcnt) { 194 __release(enable_lock); 195 return; 196 } 197 enable_owner = NULL; 198 spin_unlock_irqrestore(&enable_lock, flags); 199 } 200 201 static bool clk_core_rate_is_protected(struct clk_core *core) 202 { 203 return core->protect_count; 204 } 205 206 static bool clk_core_is_prepared(struct clk_core *core) 207 { 208 bool ret = false; 209 210 /* 211 * .is_prepared is optional for clocks that can prepare 212 * fall back to software usage counter if it is missing 213 */ 214 if (!core->ops->is_prepared) 215 return core->prepare_count; 216 217 if (!clk_pm_runtime_get(core)) { 218 ret = core->ops->is_prepared(core->hw); 219 clk_pm_runtime_put(core); 220 } 221 222 return ret; 223 } 224 225 static bool clk_core_is_enabled(struct clk_core *core) 226 { 227 bool ret = false; 228 229 /* 230 * .is_enabled is only mandatory for clocks that gate 231 * fall back to software usage counter if .is_enabled is missing 232 */ 233 if (!core->ops->is_enabled) 234 return core->enable_count; 235 236 /* 237 * Check if clock controller's device is runtime active before 238 * calling .is_enabled callback. If not, assume that clock is 239 * disabled, because we might be called from atomic context, from 240 * which pm_runtime_get() is not allowed. 241 * This function is called mainly from clk_disable_unused_subtree, 242 * which ensures proper runtime pm activation of controller before 243 * taking enable spinlock, but the below check is needed if one tries 244 * to call it from other places. 245 */ 246 if (core->rpm_enabled) { 247 pm_runtime_get_noresume(core->dev); 248 if (!pm_runtime_active(core->dev)) { 249 ret = false; 250 goto done; 251 } 252 } 253 254 ret = core->ops->is_enabled(core->hw); 255 done: 256 if (core->rpm_enabled) 257 pm_runtime_put(core->dev); 258 259 return ret; 260 } 261 262 /*** helper functions ***/ 263 264 const char *__clk_get_name(const struct clk *clk) 265 { 266 return !clk ? NULL : clk->core->name; 267 } 268 EXPORT_SYMBOL_GPL(__clk_get_name); 269 270 const char *clk_hw_get_name(const struct clk_hw *hw) 271 { 272 return hw->core->name; 273 } 274 EXPORT_SYMBOL_GPL(clk_hw_get_name); 275 276 struct clk_hw *__clk_get_hw(struct clk *clk) 277 { 278 return !clk ? NULL : clk->core->hw; 279 } 280 EXPORT_SYMBOL_GPL(__clk_get_hw); 281 282 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 283 { 284 return hw->core->num_parents; 285 } 286 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 287 288 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 289 { 290 return hw->core->parent ? hw->core->parent->hw : NULL; 291 } 292 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 293 294 static struct clk_core *__clk_lookup_subtree(const char *name, 295 struct clk_core *core) 296 { 297 struct clk_core *child; 298 struct clk_core *ret; 299 300 if (!strcmp(core->name, name)) 301 return core; 302 303 hlist_for_each_entry(child, &core->children, child_node) { 304 ret = __clk_lookup_subtree(name, child); 305 if (ret) 306 return ret; 307 } 308 309 return NULL; 310 } 311 312 static struct clk_core *clk_core_lookup(const char *name) 313 { 314 struct clk_core *root_clk; 315 struct clk_core *ret; 316 317 if (!name) 318 return NULL; 319 320 /* search the 'proper' clk tree first */ 321 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 322 ret = __clk_lookup_subtree(name, root_clk); 323 if (ret) 324 return ret; 325 } 326 327 /* if not found, then search the orphan tree */ 328 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 329 ret = __clk_lookup_subtree(name, root_clk); 330 if (ret) 331 return ret; 332 } 333 334 return NULL; 335 } 336 337 #ifdef CONFIG_OF 338 static int of_parse_clkspec(const struct device_node *np, int index, 339 const char *name, struct of_phandle_args *out_args); 340 static struct clk_hw * 341 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 342 #else 343 static inline int of_parse_clkspec(const struct device_node *np, int index, 344 const char *name, 345 struct of_phandle_args *out_args) 346 { 347 return -ENOENT; 348 } 349 static inline struct clk_hw * 350 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 351 { 352 return ERR_PTR(-ENOENT); 353 } 354 #endif 355 356 /** 357 * clk_core_get - Find the clk_core parent of a clk 358 * @core: clk to find parent of 359 * @p_index: parent index to search for 360 * 361 * This is the preferred method for clk providers to find the parent of a 362 * clk when that parent is external to the clk controller. The parent_names 363 * array is indexed and treated as a local name matching a string in the device 364 * node's 'clock-names' property or as the 'con_id' matching the device's 365 * dev_name() in a clk_lookup. This allows clk providers to use their own 366 * namespace instead of looking for a globally unique parent string. 367 * 368 * For example the following DT snippet would allow a clock registered by the 369 * clock-controller@c001 that has a clk_init_data::parent_data array 370 * with 'xtal' in the 'name' member to find the clock provided by the 371 * clock-controller@f00abcd without needing to get the globally unique name of 372 * the xtal clk. 373 * 374 * parent: clock-controller@f00abcd { 375 * reg = <0xf00abcd 0xabcd>; 376 * #clock-cells = <0>; 377 * }; 378 * 379 * clock-controller@c001 { 380 * reg = <0xc001 0xf00d>; 381 * clocks = <&parent>; 382 * clock-names = "xtal"; 383 * #clock-cells = <1>; 384 * }; 385 * 386 * Returns: -ENOENT when the provider can't be found or the clk doesn't 387 * exist in the provider or the name can't be found in the DT node or 388 * in a clkdev lookup. NULL when the provider knows about the clk but it 389 * isn't provided on this system. 390 * A valid clk_core pointer when the clk can be found in the provider. 391 */ 392 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 393 { 394 const char *name = core->parents[p_index].fw_name; 395 int index = core->parents[p_index].index; 396 struct clk_hw *hw = ERR_PTR(-ENOENT); 397 struct device *dev = core->dev; 398 const char *dev_id = dev ? dev_name(dev) : NULL; 399 struct device_node *np = core->of_node; 400 struct of_phandle_args clkspec; 401 402 if (np && (name || index >= 0) && 403 !of_parse_clkspec(np, index, name, &clkspec)) { 404 hw = of_clk_get_hw_from_clkspec(&clkspec); 405 of_node_put(clkspec.np); 406 } else if (name) { 407 /* 408 * If the DT search above couldn't find the provider fallback to 409 * looking up via clkdev based clk_lookups. 410 */ 411 hw = clk_find_hw(dev_id, name); 412 } 413 414 if (IS_ERR(hw)) 415 return ERR_CAST(hw); 416 417 return hw->core; 418 } 419 420 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 421 { 422 struct clk_parent_map *entry = &core->parents[index]; 423 struct clk_core *parent; 424 425 if (entry->hw) { 426 parent = entry->hw->core; 427 /* 428 * We have a direct reference but it isn't registered yet? 429 * Orphan it and let clk_reparent() update the orphan status 430 * when the parent is registered. 431 */ 432 if (!parent) 433 parent = ERR_PTR(-EPROBE_DEFER); 434 } else { 435 parent = clk_core_get(core, index); 436 if (PTR_ERR(parent) == -ENOENT && entry->name) 437 parent = clk_core_lookup(entry->name); 438 } 439 440 /* Only cache it if it's not an error */ 441 if (!IS_ERR(parent)) 442 entry->core = parent; 443 } 444 445 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 446 u8 index) 447 { 448 if (!core || index >= core->num_parents || !core->parents) 449 return NULL; 450 451 if (!core->parents[index].core) 452 clk_core_fill_parent_index(core, index); 453 454 return core->parents[index].core; 455 } 456 457 struct clk_hw * 458 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 459 { 460 struct clk_core *parent; 461 462 parent = clk_core_get_parent_by_index(hw->core, index); 463 464 return !parent ? NULL : parent->hw; 465 } 466 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 467 468 unsigned int __clk_get_enable_count(struct clk *clk) 469 { 470 return !clk ? 0 : clk->core->enable_count; 471 } 472 473 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 474 { 475 if (!core) 476 return 0; 477 478 if (!core->num_parents || core->parent) 479 return core->rate; 480 481 /* 482 * Clk must have a parent because num_parents > 0 but the parent isn't 483 * known yet. Best to return 0 as the rate of this clk until we can 484 * properly recalc the rate based on the parent's rate. 485 */ 486 return 0; 487 } 488 489 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 490 { 491 return clk_core_get_rate_nolock(hw->core); 492 } 493 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 494 495 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 496 { 497 if (!core) 498 return 0; 499 500 return core->accuracy; 501 } 502 503 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 504 { 505 return hw->core->flags; 506 } 507 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 508 509 bool clk_hw_is_prepared(const struct clk_hw *hw) 510 { 511 return clk_core_is_prepared(hw->core); 512 } 513 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 514 515 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 516 { 517 return clk_core_rate_is_protected(hw->core); 518 } 519 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 520 521 bool clk_hw_is_enabled(const struct clk_hw *hw) 522 { 523 return clk_core_is_enabled(hw->core); 524 } 525 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 526 527 bool __clk_is_enabled(struct clk *clk) 528 { 529 if (!clk) 530 return false; 531 532 return clk_core_is_enabled(clk->core); 533 } 534 EXPORT_SYMBOL_GPL(__clk_is_enabled); 535 536 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 537 unsigned long best, unsigned long flags) 538 { 539 if (flags & CLK_MUX_ROUND_CLOSEST) 540 return abs(now - rate) < abs(best - rate); 541 542 return now <= rate && now > best; 543 } 544 545 int clk_mux_determine_rate_flags(struct clk_hw *hw, 546 struct clk_rate_request *req, 547 unsigned long flags) 548 { 549 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 550 int i, num_parents, ret; 551 unsigned long best = 0; 552 struct clk_rate_request parent_req = *req; 553 554 /* if NO_REPARENT flag set, pass through to current parent */ 555 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 556 parent = core->parent; 557 if (core->flags & CLK_SET_RATE_PARENT) { 558 ret = __clk_determine_rate(parent ? parent->hw : NULL, 559 &parent_req); 560 if (ret) 561 return ret; 562 563 best = parent_req.rate; 564 } else if (parent) { 565 best = clk_core_get_rate_nolock(parent); 566 } else { 567 best = clk_core_get_rate_nolock(core); 568 } 569 570 goto out; 571 } 572 573 /* find the parent that can provide the fastest rate <= rate */ 574 num_parents = core->num_parents; 575 for (i = 0; i < num_parents; i++) { 576 parent = clk_core_get_parent_by_index(core, i); 577 if (!parent) 578 continue; 579 580 if (core->flags & CLK_SET_RATE_PARENT) { 581 parent_req = *req; 582 ret = __clk_determine_rate(parent->hw, &parent_req); 583 if (ret) 584 continue; 585 } else { 586 parent_req.rate = clk_core_get_rate_nolock(parent); 587 } 588 589 if (mux_is_better_rate(req->rate, parent_req.rate, 590 best, flags)) { 591 best_parent = parent; 592 best = parent_req.rate; 593 } 594 } 595 596 if (!best_parent) 597 return -EINVAL; 598 599 out: 600 if (best_parent) 601 req->best_parent_hw = best_parent->hw; 602 req->best_parent_rate = best; 603 req->rate = best; 604 605 return 0; 606 } 607 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 608 609 struct clk *__clk_lookup(const char *name) 610 { 611 struct clk_core *core = clk_core_lookup(name); 612 613 return !core ? NULL : core->hw->clk; 614 } 615 616 static void clk_core_get_boundaries(struct clk_core *core, 617 unsigned long *min_rate, 618 unsigned long *max_rate) 619 { 620 struct clk *clk_user; 621 622 lockdep_assert_held(&prepare_lock); 623 624 *min_rate = core->min_rate; 625 *max_rate = core->max_rate; 626 627 hlist_for_each_entry(clk_user, &core->clks, clks_node) 628 *min_rate = max(*min_rate, clk_user->min_rate); 629 630 hlist_for_each_entry(clk_user, &core->clks, clks_node) 631 *max_rate = min(*max_rate, clk_user->max_rate); 632 } 633 634 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 635 unsigned long max_rate) 636 { 637 hw->core->min_rate = min_rate; 638 hw->core->max_rate = max_rate; 639 } 640 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 641 642 /* 643 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 644 * @hw: mux type clk to determine rate on 645 * @req: rate request, also used to return preferred parent and frequencies 646 * 647 * Helper for finding best parent to provide a given frequency. This can be used 648 * directly as a determine_rate callback (e.g. for a mux), or from a more 649 * complex clock that may combine a mux with other operations. 650 * 651 * Returns: 0 on success, -EERROR value on error 652 */ 653 int __clk_mux_determine_rate(struct clk_hw *hw, 654 struct clk_rate_request *req) 655 { 656 return clk_mux_determine_rate_flags(hw, req, 0); 657 } 658 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 659 660 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 661 struct clk_rate_request *req) 662 { 663 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 664 } 665 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 666 667 /*** clk api ***/ 668 669 static void clk_core_rate_unprotect(struct clk_core *core) 670 { 671 lockdep_assert_held(&prepare_lock); 672 673 if (!core) 674 return; 675 676 if (WARN(core->protect_count == 0, 677 "%s already unprotected\n", core->name)) 678 return; 679 680 if (--core->protect_count > 0) 681 return; 682 683 clk_core_rate_unprotect(core->parent); 684 } 685 686 static int clk_core_rate_nuke_protect(struct clk_core *core) 687 { 688 int ret; 689 690 lockdep_assert_held(&prepare_lock); 691 692 if (!core) 693 return -EINVAL; 694 695 if (core->protect_count == 0) 696 return 0; 697 698 ret = core->protect_count; 699 core->protect_count = 1; 700 clk_core_rate_unprotect(core); 701 702 return ret; 703 } 704 705 /** 706 * clk_rate_exclusive_put - release exclusivity over clock rate control 707 * @clk: the clk over which the exclusivity is released 708 * 709 * clk_rate_exclusive_put() completes a critical section during which a clock 710 * consumer cannot tolerate any other consumer making any operation on the 711 * clock which could result in a rate change or rate glitch. Exclusive clocks 712 * cannot have their rate changed, either directly or indirectly due to changes 713 * further up the parent chain of clocks. As a result, clocks up parent chain 714 * also get under exclusive control of the calling consumer. 715 * 716 * If exlusivity is claimed more than once on clock, even by the same consumer, 717 * the rate effectively gets locked as exclusivity can't be preempted. 718 * 719 * Calls to clk_rate_exclusive_put() must be balanced with calls to 720 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 721 * error status. 722 */ 723 void clk_rate_exclusive_put(struct clk *clk) 724 { 725 if (!clk) 726 return; 727 728 clk_prepare_lock(); 729 730 /* 731 * if there is something wrong with this consumer protect count, stop 732 * here before messing with the provider 733 */ 734 if (WARN_ON(clk->exclusive_count <= 0)) 735 goto out; 736 737 clk_core_rate_unprotect(clk->core); 738 clk->exclusive_count--; 739 out: 740 clk_prepare_unlock(); 741 } 742 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 743 744 static void clk_core_rate_protect(struct clk_core *core) 745 { 746 lockdep_assert_held(&prepare_lock); 747 748 if (!core) 749 return; 750 751 if (core->protect_count == 0) 752 clk_core_rate_protect(core->parent); 753 754 core->protect_count++; 755 } 756 757 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 758 { 759 lockdep_assert_held(&prepare_lock); 760 761 if (!core) 762 return; 763 764 if (count == 0) 765 return; 766 767 clk_core_rate_protect(core); 768 core->protect_count = count; 769 } 770 771 /** 772 * clk_rate_exclusive_get - get exclusivity over the clk rate control 773 * @clk: the clk over which the exclusity of rate control is requested 774 * 775 * clk_rate_exclusive_get() begins a critical section during which a clock 776 * consumer cannot tolerate any other consumer making any operation on the 777 * clock which could result in a rate change or rate glitch. Exclusive clocks 778 * cannot have their rate changed, either directly or indirectly due to changes 779 * further up the parent chain of clocks. As a result, clocks up parent chain 780 * also get under exclusive control of the calling consumer. 781 * 782 * If exlusivity is claimed more than once on clock, even by the same consumer, 783 * the rate effectively gets locked as exclusivity can't be preempted. 784 * 785 * Calls to clk_rate_exclusive_get() should be balanced with calls to 786 * clk_rate_exclusive_put(). Calls to this function may sleep. 787 * Returns 0 on success, -EERROR otherwise 788 */ 789 int clk_rate_exclusive_get(struct clk *clk) 790 { 791 if (!clk) 792 return 0; 793 794 clk_prepare_lock(); 795 clk_core_rate_protect(clk->core); 796 clk->exclusive_count++; 797 clk_prepare_unlock(); 798 799 return 0; 800 } 801 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 802 803 static void clk_core_unprepare(struct clk_core *core) 804 { 805 lockdep_assert_held(&prepare_lock); 806 807 if (!core) 808 return; 809 810 if (WARN(core->prepare_count == 0, 811 "%s already unprepared\n", core->name)) 812 return; 813 814 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 815 "Unpreparing critical %s\n", core->name)) 816 return; 817 818 if (core->flags & CLK_SET_RATE_GATE) 819 clk_core_rate_unprotect(core); 820 821 if (--core->prepare_count > 0) 822 return; 823 824 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 825 826 trace_clk_unprepare(core); 827 828 if (core->ops->unprepare) 829 core->ops->unprepare(core->hw); 830 831 clk_pm_runtime_put(core); 832 833 trace_clk_unprepare_complete(core); 834 clk_core_unprepare(core->parent); 835 } 836 837 static void clk_core_unprepare_lock(struct clk_core *core) 838 { 839 clk_prepare_lock(); 840 clk_core_unprepare(core); 841 clk_prepare_unlock(); 842 } 843 844 /** 845 * clk_unprepare - undo preparation of a clock source 846 * @clk: the clk being unprepared 847 * 848 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 849 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 850 * if the operation may sleep. One example is a clk which is accessed over 851 * I2c. In the complex case a clk gate operation may require a fast and a slow 852 * part. It is this reason that clk_unprepare and clk_disable are not mutually 853 * exclusive. In fact clk_disable must be called before clk_unprepare. 854 */ 855 void clk_unprepare(struct clk *clk) 856 { 857 if (IS_ERR_OR_NULL(clk)) 858 return; 859 860 clk_core_unprepare_lock(clk->core); 861 } 862 EXPORT_SYMBOL_GPL(clk_unprepare); 863 864 static int clk_core_prepare(struct clk_core *core) 865 { 866 int ret = 0; 867 868 lockdep_assert_held(&prepare_lock); 869 870 if (!core) 871 return 0; 872 873 if (core->prepare_count == 0) { 874 ret = clk_pm_runtime_get(core); 875 if (ret) 876 return ret; 877 878 ret = clk_core_prepare(core->parent); 879 if (ret) 880 goto runtime_put; 881 882 trace_clk_prepare(core); 883 884 if (core->ops->prepare) 885 ret = core->ops->prepare(core->hw); 886 887 trace_clk_prepare_complete(core); 888 889 if (ret) 890 goto unprepare; 891 } 892 893 core->prepare_count++; 894 895 /* 896 * CLK_SET_RATE_GATE is a special case of clock protection 897 * Instead of a consumer claiming exclusive rate control, it is 898 * actually the provider which prevents any consumer from making any 899 * operation which could result in a rate change or rate glitch while 900 * the clock is prepared. 901 */ 902 if (core->flags & CLK_SET_RATE_GATE) 903 clk_core_rate_protect(core); 904 905 return 0; 906 unprepare: 907 clk_core_unprepare(core->parent); 908 runtime_put: 909 clk_pm_runtime_put(core); 910 return ret; 911 } 912 913 static int clk_core_prepare_lock(struct clk_core *core) 914 { 915 int ret; 916 917 clk_prepare_lock(); 918 ret = clk_core_prepare(core); 919 clk_prepare_unlock(); 920 921 return ret; 922 } 923 924 /** 925 * clk_prepare - prepare a clock source 926 * @clk: the clk being prepared 927 * 928 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 929 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 930 * operation may sleep. One example is a clk which is accessed over I2c. In 931 * the complex case a clk ungate operation may require a fast and a slow part. 932 * It is this reason that clk_prepare and clk_enable are not mutually 933 * exclusive. In fact clk_prepare must be called before clk_enable. 934 * Returns 0 on success, -EERROR otherwise. 935 */ 936 int clk_prepare(struct clk *clk) 937 { 938 if (!clk) 939 return 0; 940 941 return clk_core_prepare_lock(clk->core); 942 } 943 EXPORT_SYMBOL_GPL(clk_prepare); 944 945 static void clk_core_disable(struct clk_core *core) 946 { 947 lockdep_assert_held(&enable_lock); 948 949 if (!core) 950 return; 951 952 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 953 return; 954 955 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 956 "Disabling critical %s\n", core->name)) 957 return; 958 959 if (--core->enable_count > 0) 960 return; 961 962 trace_clk_disable_rcuidle(core); 963 964 if (core->ops->disable) 965 core->ops->disable(core->hw); 966 967 trace_clk_disable_complete_rcuidle(core); 968 969 clk_core_disable(core->parent); 970 } 971 972 static void clk_core_disable_lock(struct clk_core *core) 973 { 974 unsigned long flags; 975 976 flags = clk_enable_lock(); 977 clk_core_disable(core); 978 clk_enable_unlock(flags); 979 } 980 981 /** 982 * clk_disable - gate a clock 983 * @clk: the clk being gated 984 * 985 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 986 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 987 * clk if the operation is fast and will never sleep. One example is a 988 * SoC-internal clk which is controlled via simple register writes. In the 989 * complex case a clk gate operation may require a fast and a slow part. It is 990 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 991 * In fact clk_disable must be called before clk_unprepare. 992 */ 993 void clk_disable(struct clk *clk) 994 { 995 if (IS_ERR_OR_NULL(clk)) 996 return; 997 998 clk_core_disable_lock(clk->core); 999 } 1000 EXPORT_SYMBOL_GPL(clk_disable); 1001 1002 static int clk_core_enable(struct clk_core *core) 1003 { 1004 int ret = 0; 1005 1006 lockdep_assert_held(&enable_lock); 1007 1008 if (!core) 1009 return 0; 1010 1011 if (WARN(core->prepare_count == 0, 1012 "Enabling unprepared %s\n", core->name)) 1013 return -ESHUTDOWN; 1014 1015 if (core->enable_count == 0) { 1016 ret = clk_core_enable(core->parent); 1017 1018 if (ret) 1019 return ret; 1020 1021 trace_clk_enable_rcuidle(core); 1022 1023 if (core->ops->enable) 1024 ret = core->ops->enable(core->hw); 1025 1026 trace_clk_enable_complete_rcuidle(core); 1027 1028 if (ret) { 1029 clk_core_disable(core->parent); 1030 return ret; 1031 } 1032 } 1033 1034 core->enable_count++; 1035 return 0; 1036 } 1037 1038 static int clk_core_enable_lock(struct clk_core *core) 1039 { 1040 unsigned long flags; 1041 int ret; 1042 1043 flags = clk_enable_lock(); 1044 ret = clk_core_enable(core); 1045 clk_enable_unlock(flags); 1046 1047 return ret; 1048 } 1049 1050 /** 1051 * clk_gate_restore_context - restore context for poweroff 1052 * @hw: the clk_hw pointer of clock whose state is to be restored 1053 * 1054 * The clock gate restore context function enables or disables 1055 * the gate clocks based on the enable_count. This is done in cases 1056 * where the clock context is lost and based on the enable_count 1057 * the clock either needs to be enabled/disabled. This 1058 * helps restore the state of gate clocks. 1059 */ 1060 void clk_gate_restore_context(struct clk_hw *hw) 1061 { 1062 struct clk_core *core = hw->core; 1063 1064 if (core->enable_count) 1065 core->ops->enable(hw); 1066 else 1067 core->ops->disable(hw); 1068 } 1069 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1070 1071 static int clk_core_save_context(struct clk_core *core) 1072 { 1073 struct clk_core *child; 1074 int ret = 0; 1075 1076 hlist_for_each_entry(child, &core->children, child_node) { 1077 ret = clk_core_save_context(child); 1078 if (ret < 0) 1079 return ret; 1080 } 1081 1082 if (core->ops && core->ops->save_context) 1083 ret = core->ops->save_context(core->hw); 1084 1085 return ret; 1086 } 1087 1088 static void clk_core_restore_context(struct clk_core *core) 1089 { 1090 struct clk_core *child; 1091 1092 if (core->ops && core->ops->restore_context) 1093 core->ops->restore_context(core->hw); 1094 1095 hlist_for_each_entry(child, &core->children, child_node) 1096 clk_core_restore_context(child); 1097 } 1098 1099 /** 1100 * clk_save_context - save clock context for poweroff 1101 * 1102 * Saves the context of the clock register for powerstates in which the 1103 * contents of the registers will be lost. Occurs deep within the suspend 1104 * code. Returns 0 on success. 1105 */ 1106 int clk_save_context(void) 1107 { 1108 struct clk_core *clk; 1109 int ret; 1110 1111 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1112 ret = clk_core_save_context(clk); 1113 if (ret < 0) 1114 return ret; 1115 } 1116 1117 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1118 ret = clk_core_save_context(clk); 1119 if (ret < 0) 1120 return ret; 1121 } 1122 1123 return 0; 1124 } 1125 EXPORT_SYMBOL_GPL(clk_save_context); 1126 1127 /** 1128 * clk_restore_context - restore clock context after poweroff 1129 * 1130 * Restore the saved clock context upon resume. 1131 * 1132 */ 1133 void clk_restore_context(void) 1134 { 1135 struct clk_core *core; 1136 1137 hlist_for_each_entry(core, &clk_root_list, child_node) 1138 clk_core_restore_context(core); 1139 1140 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1141 clk_core_restore_context(core); 1142 } 1143 EXPORT_SYMBOL_GPL(clk_restore_context); 1144 1145 /** 1146 * clk_enable - ungate a clock 1147 * @clk: the clk being ungated 1148 * 1149 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1150 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1151 * if the operation will never sleep. One example is a SoC-internal clk which 1152 * is controlled via simple register writes. In the complex case a clk ungate 1153 * operation may require a fast and a slow part. It is this reason that 1154 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1155 * must be called before clk_enable. Returns 0 on success, -EERROR 1156 * otherwise. 1157 */ 1158 int clk_enable(struct clk *clk) 1159 { 1160 if (!clk) 1161 return 0; 1162 1163 return clk_core_enable_lock(clk->core); 1164 } 1165 EXPORT_SYMBOL_GPL(clk_enable); 1166 1167 /** 1168 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it. 1169 * @clk: clock source 1170 * 1171 * Returns true if clk_prepare() implicitly enables the clock, effectively 1172 * making clk_enable()/clk_disable() no-ops, false otherwise. 1173 * 1174 * This is of interest mainly to power management code where actually 1175 * disabling the clock also requires unpreparing it to have any material 1176 * effect. 1177 * 1178 * Regardless of the value returned here, the caller must always invoke 1179 * clk_enable() or clk_prepare_enable() and counterparts for usage counts 1180 * to be right. 1181 */ 1182 bool clk_is_enabled_when_prepared(struct clk *clk) 1183 { 1184 return clk && !(clk->core->ops->enable && clk->core->ops->disable); 1185 } 1186 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared); 1187 1188 static int clk_core_prepare_enable(struct clk_core *core) 1189 { 1190 int ret; 1191 1192 ret = clk_core_prepare_lock(core); 1193 if (ret) 1194 return ret; 1195 1196 ret = clk_core_enable_lock(core); 1197 if (ret) 1198 clk_core_unprepare_lock(core); 1199 1200 return ret; 1201 } 1202 1203 static void clk_core_disable_unprepare(struct clk_core *core) 1204 { 1205 clk_core_disable_lock(core); 1206 clk_core_unprepare_lock(core); 1207 } 1208 1209 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1210 { 1211 struct clk_core *child; 1212 1213 lockdep_assert_held(&prepare_lock); 1214 1215 hlist_for_each_entry(child, &core->children, child_node) 1216 clk_unprepare_unused_subtree(child); 1217 1218 if (core->prepare_count) 1219 return; 1220 1221 if (core->flags & CLK_IGNORE_UNUSED) 1222 return; 1223 1224 if (clk_pm_runtime_get(core)) 1225 return; 1226 1227 if (clk_core_is_prepared(core)) { 1228 trace_clk_unprepare(core); 1229 if (core->ops->unprepare_unused) 1230 core->ops->unprepare_unused(core->hw); 1231 else if (core->ops->unprepare) 1232 core->ops->unprepare(core->hw); 1233 trace_clk_unprepare_complete(core); 1234 } 1235 1236 clk_pm_runtime_put(core); 1237 } 1238 1239 static void __init clk_disable_unused_subtree(struct clk_core *core) 1240 { 1241 struct clk_core *child; 1242 unsigned long flags; 1243 1244 lockdep_assert_held(&prepare_lock); 1245 1246 hlist_for_each_entry(child, &core->children, child_node) 1247 clk_disable_unused_subtree(child); 1248 1249 if (core->flags & CLK_OPS_PARENT_ENABLE) 1250 clk_core_prepare_enable(core->parent); 1251 1252 if (clk_pm_runtime_get(core)) 1253 goto unprepare_out; 1254 1255 flags = clk_enable_lock(); 1256 1257 if (core->enable_count) 1258 goto unlock_out; 1259 1260 if (core->flags & CLK_IGNORE_UNUSED) 1261 goto unlock_out; 1262 1263 /* 1264 * some gate clocks have special needs during the disable-unused 1265 * sequence. call .disable_unused if available, otherwise fall 1266 * back to .disable 1267 */ 1268 if (clk_core_is_enabled(core)) { 1269 trace_clk_disable(core); 1270 if (core->ops->disable_unused) 1271 core->ops->disable_unused(core->hw); 1272 else if (core->ops->disable) 1273 core->ops->disable(core->hw); 1274 trace_clk_disable_complete(core); 1275 } 1276 1277 unlock_out: 1278 clk_enable_unlock(flags); 1279 clk_pm_runtime_put(core); 1280 unprepare_out: 1281 if (core->flags & CLK_OPS_PARENT_ENABLE) 1282 clk_core_disable_unprepare(core->parent); 1283 } 1284 1285 static bool clk_ignore_unused __initdata; 1286 static int __init clk_ignore_unused_setup(char *__unused) 1287 { 1288 clk_ignore_unused = true; 1289 return 1; 1290 } 1291 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1292 1293 static int __init clk_disable_unused(void) 1294 { 1295 struct clk_core *core; 1296 1297 if (clk_ignore_unused) { 1298 pr_warn("clk: Not disabling unused clocks\n"); 1299 return 0; 1300 } 1301 1302 clk_prepare_lock(); 1303 1304 hlist_for_each_entry(core, &clk_root_list, child_node) 1305 clk_disable_unused_subtree(core); 1306 1307 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1308 clk_disable_unused_subtree(core); 1309 1310 hlist_for_each_entry(core, &clk_root_list, child_node) 1311 clk_unprepare_unused_subtree(core); 1312 1313 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1314 clk_unprepare_unused_subtree(core); 1315 1316 clk_prepare_unlock(); 1317 1318 return 0; 1319 } 1320 late_initcall_sync(clk_disable_unused); 1321 1322 static int clk_core_determine_round_nolock(struct clk_core *core, 1323 struct clk_rate_request *req) 1324 { 1325 long rate; 1326 1327 lockdep_assert_held(&prepare_lock); 1328 1329 if (!core) 1330 return 0; 1331 1332 /* 1333 * At this point, core protection will be disabled if 1334 * - if the provider is not protected at all 1335 * - if the calling consumer is the only one which has exclusivity 1336 * over the provider 1337 */ 1338 if (clk_core_rate_is_protected(core)) { 1339 req->rate = core->rate; 1340 } else if (core->ops->determine_rate) { 1341 return core->ops->determine_rate(core->hw, req); 1342 } else if (core->ops->round_rate) { 1343 rate = core->ops->round_rate(core->hw, req->rate, 1344 &req->best_parent_rate); 1345 if (rate < 0) 1346 return rate; 1347 1348 req->rate = rate; 1349 } else { 1350 return -EINVAL; 1351 } 1352 1353 return 0; 1354 } 1355 1356 static void clk_core_init_rate_req(struct clk_core * const core, 1357 struct clk_rate_request *req) 1358 { 1359 struct clk_core *parent; 1360 1361 if (WARN_ON(!core || !req)) 1362 return; 1363 1364 parent = core->parent; 1365 if (parent) { 1366 req->best_parent_hw = parent->hw; 1367 req->best_parent_rate = parent->rate; 1368 } else { 1369 req->best_parent_hw = NULL; 1370 req->best_parent_rate = 0; 1371 } 1372 } 1373 1374 static bool clk_core_can_round(struct clk_core * const core) 1375 { 1376 return core->ops->determine_rate || core->ops->round_rate; 1377 } 1378 1379 static int clk_core_round_rate_nolock(struct clk_core *core, 1380 struct clk_rate_request *req) 1381 { 1382 lockdep_assert_held(&prepare_lock); 1383 1384 if (!core) { 1385 req->rate = 0; 1386 return 0; 1387 } 1388 1389 clk_core_init_rate_req(core, req); 1390 1391 if (clk_core_can_round(core)) 1392 return clk_core_determine_round_nolock(core, req); 1393 else if (core->flags & CLK_SET_RATE_PARENT) 1394 return clk_core_round_rate_nolock(core->parent, req); 1395 1396 req->rate = core->rate; 1397 return 0; 1398 } 1399 1400 /** 1401 * __clk_determine_rate - get the closest rate actually supported by a clock 1402 * @hw: determine the rate of this clock 1403 * @req: target rate request 1404 * 1405 * Useful for clk_ops such as .set_rate and .determine_rate. 1406 */ 1407 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1408 { 1409 if (!hw) { 1410 req->rate = 0; 1411 return 0; 1412 } 1413 1414 return clk_core_round_rate_nolock(hw->core, req); 1415 } 1416 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1417 1418 /** 1419 * clk_hw_round_rate() - round the given rate for a hw clk 1420 * @hw: the hw clk for which we are rounding a rate 1421 * @rate: the rate which is to be rounded 1422 * 1423 * Takes in a rate as input and rounds it to a rate that the clk can actually 1424 * use. 1425 * 1426 * Context: prepare_lock must be held. 1427 * For clk providers to call from within clk_ops such as .round_rate, 1428 * .determine_rate. 1429 * 1430 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1431 * else returns the parent rate. 1432 */ 1433 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1434 { 1435 int ret; 1436 struct clk_rate_request req; 1437 1438 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1439 req.rate = rate; 1440 1441 ret = clk_core_round_rate_nolock(hw->core, &req); 1442 if (ret) 1443 return 0; 1444 1445 return req.rate; 1446 } 1447 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1448 1449 /** 1450 * clk_round_rate - round the given rate for a clk 1451 * @clk: the clk for which we are rounding a rate 1452 * @rate: the rate which is to be rounded 1453 * 1454 * Takes in a rate as input and rounds it to a rate that the clk can actually 1455 * use which is then returned. If clk doesn't support round_rate operation 1456 * then the parent rate is returned. 1457 */ 1458 long clk_round_rate(struct clk *clk, unsigned long rate) 1459 { 1460 struct clk_rate_request req; 1461 int ret; 1462 1463 if (!clk) 1464 return 0; 1465 1466 clk_prepare_lock(); 1467 1468 if (clk->exclusive_count) 1469 clk_core_rate_unprotect(clk->core); 1470 1471 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1472 req.rate = rate; 1473 1474 ret = clk_core_round_rate_nolock(clk->core, &req); 1475 1476 if (clk->exclusive_count) 1477 clk_core_rate_protect(clk->core); 1478 1479 clk_prepare_unlock(); 1480 1481 if (ret) 1482 return ret; 1483 1484 return req.rate; 1485 } 1486 EXPORT_SYMBOL_GPL(clk_round_rate); 1487 1488 /** 1489 * __clk_notify - call clk notifier chain 1490 * @core: clk that is changing rate 1491 * @msg: clk notifier type (see include/linux/clk.h) 1492 * @old_rate: old clk rate 1493 * @new_rate: new clk rate 1494 * 1495 * Triggers a notifier call chain on the clk rate-change notification 1496 * for 'clk'. Passes a pointer to the struct clk and the previous 1497 * and current rates to the notifier callback. Intended to be called by 1498 * internal clock code only. Returns NOTIFY_DONE from the last driver 1499 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1500 * a driver returns that. 1501 */ 1502 static int __clk_notify(struct clk_core *core, unsigned long msg, 1503 unsigned long old_rate, unsigned long new_rate) 1504 { 1505 struct clk_notifier *cn; 1506 struct clk_notifier_data cnd; 1507 int ret = NOTIFY_DONE; 1508 1509 cnd.old_rate = old_rate; 1510 cnd.new_rate = new_rate; 1511 1512 list_for_each_entry(cn, &clk_notifier_list, node) { 1513 if (cn->clk->core == core) { 1514 cnd.clk = cn->clk; 1515 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1516 &cnd); 1517 if (ret & NOTIFY_STOP_MASK) 1518 return ret; 1519 } 1520 } 1521 1522 return ret; 1523 } 1524 1525 /** 1526 * __clk_recalc_accuracies 1527 * @core: first clk in the subtree 1528 * 1529 * Walks the subtree of clks starting with clk and recalculates accuracies as 1530 * it goes. Note that if a clk does not implement the .recalc_accuracy 1531 * callback then it is assumed that the clock will take on the accuracy of its 1532 * parent. 1533 */ 1534 static void __clk_recalc_accuracies(struct clk_core *core) 1535 { 1536 unsigned long parent_accuracy = 0; 1537 struct clk_core *child; 1538 1539 lockdep_assert_held(&prepare_lock); 1540 1541 if (core->parent) 1542 parent_accuracy = core->parent->accuracy; 1543 1544 if (core->ops->recalc_accuracy) 1545 core->accuracy = core->ops->recalc_accuracy(core->hw, 1546 parent_accuracy); 1547 else 1548 core->accuracy = parent_accuracy; 1549 1550 hlist_for_each_entry(child, &core->children, child_node) 1551 __clk_recalc_accuracies(child); 1552 } 1553 1554 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1555 { 1556 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1557 __clk_recalc_accuracies(core); 1558 1559 return clk_core_get_accuracy_no_lock(core); 1560 } 1561 1562 /** 1563 * clk_get_accuracy - return the accuracy of clk 1564 * @clk: the clk whose accuracy is being returned 1565 * 1566 * Simply returns the cached accuracy of the clk, unless 1567 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1568 * issued. 1569 * If clk is NULL then returns 0. 1570 */ 1571 long clk_get_accuracy(struct clk *clk) 1572 { 1573 long accuracy; 1574 1575 if (!clk) 1576 return 0; 1577 1578 clk_prepare_lock(); 1579 accuracy = clk_core_get_accuracy_recalc(clk->core); 1580 clk_prepare_unlock(); 1581 1582 return accuracy; 1583 } 1584 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1585 1586 static unsigned long clk_recalc(struct clk_core *core, 1587 unsigned long parent_rate) 1588 { 1589 unsigned long rate = parent_rate; 1590 1591 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1592 rate = core->ops->recalc_rate(core->hw, parent_rate); 1593 clk_pm_runtime_put(core); 1594 } 1595 return rate; 1596 } 1597 1598 /** 1599 * __clk_recalc_rates 1600 * @core: first clk in the subtree 1601 * @msg: notification type (see include/linux/clk.h) 1602 * 1603 * Walks the subtree of clks starting with clk and recalculates rates as it 1604 * goes. Note that if a clk does not implement the .recalc_rate callback then 1605 * it is assumed that the clock will take on the rate of its parent. 1606 * 1607 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1608 * if necessary. 1609 */ 1610 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1611 { 1612 unsigned long old_rate; 1613 unsigned long parent_rate = 0; 1614 struct clk_core *child; 1615 1616 lockdep_assert_held(&prepare_lock); 1617 1618 old_rate = core->rate; 1619 1620 if (core->parent) 1621 parent_rate = core->parent->rate; 1622 1623 core->rate = clk_recalc(core, parent_rate); 1624 1625 /* 1626 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1627 * & ABORT_RATE_CHANGE notifiers 1628 */ 1629 if (core->notifier_count && msg) 1630 __clk_notify(core, msg, old_rate, core->rate); 1631 1632 hlist_for_each_entry(child, &core->children, child_node) 1633 __clk_recalc_rates(child, msg); 1634 } 1635 1636 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1637 { 1638 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1639 __clk_recalc_rates(core, 0); 1640 1641 return clk_core_get_rate_nolock(core); 1642 } 1643 1644 /** 1645 * clk_get_rate - return the rate of clk 1646 * @clk: the clk whose rate is being returned 1647 * 1648 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1649 * is set, which means a recalc_rate will be issued. 1650 * If clk is NULL then returns 0. 1651 */ 1652 unsigned long clk_get_rate(struct clk *clk) 1653 { 1654 unsigned long rate; 1655 1656 if (!clk) 1657 return 0; 1658 1659 clk_prepare_lock(); 1660 rate = clk_core_get_rate_recalc(clk->core); 1661 clk_prepare_unlock(); 1662 1663 return rate; 1664 } 1665 EXPORT_SYMBOL_GPL(clk_get_rate); 1666 1667 static int clk_fetch_parent_index(struct clk_core *core, 1668 struct clk_core *parent) 1669 { 1670 int i; 1671 1672 if (!parent) 1673 return -EINVAL; 1674 1675 for (i = 0; i < core->num_parents; i++) { 1676 /* Found it first try! */ 1677 if (core->parents[i].core == parent) 1678 return i; 1679 1680 /* Something else is here, so keep looking */ 1681 if (core->parents[i].core) 1682 continue; 1683 1684 /* Maybe core hasn't been cached but the hw is all we know? */ 1685 if (core->parents[i].hw) { 1686 if (core->parents[i].hw == parent->hw) 1687 break; 1688 1689 /* Didn't match, but we're expecting a clk_hw */ 1690 continue; 1691 } 1692 1693 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1694 if (parent == clk_core_get(core, i)) 1695 break; 1696 1697 /* Fallback to comparing globally unique names */ 1698 if (core->parents[i].name && 1699 !strcmp(parent->name, core->parents[i].name)) 1700 break; 1701 } 1702 1703 if (i == core->num_parents) 1704 return -EINVAL; 1705 1706 core->parents[i].core = parent; 1707 return i; 1708 } 1709 1710 /** 1711 * clk_hw_get_parent_index - return the index of the parent clock 1712 * @hw: clk_hw associated with the clk being consumed 1713 * 1714 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1715 * clock does not have a current parent. 1716 */ 1717 int clk_hw_get_parent_index(struct clk_hw *hw) 1718 { 1719 struct clk_hw *parent = clk_hw_get_parent(hw); 1720 1721 if (WARN_ON(parent == NULL)) 1722 return -EINVAL; 1723 1724 return clk_fetch_parent_index(hw->core, parent->core); 1725 } 1726 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1727 1728 /* 1729 * Update the orphan status of @core and all its children. 1730 */ 1731 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1732 { 1733 struct clk_core *child; 1734 1735 core->orphan = is_orphan; 1736 1737 hlist_for_each_entry(child, &core->children, child_node) 1738 clk_core_update_orphan_status(child, is_orphan); 1739 } 1740 1741 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1742 { 1743 bool was_orphan = core->orphan; 1744 1745 hlist_del(&core->child_node); 1746 1747 if (new_parent) { 1748 bool becomes_orphan = new_parent->orphan; 1749 1750 /* avoid duplicate POST_RATE_CHANGE notifications */ 1751 if (new_parent->new_child == core) 1752 new_parent->new_child = NULL; 1753 1754 hlist_add_head(&core->child_node, &new_parent->children); 1755 1756 if (was_orphan != becomes_orphan) 1757 clk_core_update_orphan_status(core, becomes_orphan); 1758 } else { 1759 hlist_add_head(&core->child_node, &clk_orphan_list); 1760 if (!was_orphan) 1761 clk_core_update_orphan_status(core, true); 1762 } 1763 1764 core->parent = new_parent; 1765 } 1766 1767 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1768 struct clk_core *parent) 1769 { 1770 unsigned long flags; 1771 struct clk_core *old_parent = core->parent; 1772 1773 /* 1774 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1775 * 1776 * 2. Migrate prepare state between parents and prevent race with 1777 * clk_enable(). 1778 * 1779 * If the clock is not prepared, then a race with 1780 * clk_enable/disable() is impossible since we already have the 1781 * prepare lock (future calls to clk_enable() need to be preceded by 1782 * a clk_prepare()). 1783 * 1784 * If the clock is prepared, migrate the prepared state to the new 1785 * parent and also protect against a race with clk_enable() by 1786 * forcing the clock and the new parent on. This ensures that all 1787 * future calls to clk_enable() are practically NOPs with respect to 1788 * hardware and software states. 1789 * 1790 * See also: Comment for clk_set_parent() below. 1791 */ 1792 1793 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1794 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1795 clk_core_prepare_enable(old_parent); 1796 clk_core_prepare_enable(parent); 1797 } 1798 1799 /* migrate prepare count if > 0 */ 1800 if (core->prepare_count) { 1801 clk_core_prepare_enable(parent); 1802 clk_core_enable_lock(core); 1803 } 1804 1805 /* update the clk tree topology */ 1806 flags = clk_enable_lock(); 1807 clk_reparent(core, parent); 1808 clk_enable_unlock(flags); 1809 1810 return old_parent; 1811 } 1812 1813 static void __clk_set_parent_after(struct clk_core *core, 1814 struct clk_core *parent, 1815 struct clk_core *old_parent) 1816 { 1817 /* 1818 * Finish the migration of prepare state and undo the changes done 1819 * for preventing a race with clk_enable(). 1820 */ 1821 if (core->prepare_count) { 1822 clk_core_disable_lock(core); 1823 clk_core_disable_unprepare(old_parent); 1824 } 1825 1826 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1827 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1828 clk_core_disable_unprepare(parent); 1829 clk_core_disable_unprepare(old_parent); 1830 } 1831 } 1832 1833 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1834 u8 p_index) 1835 { 1836 unsigned long flags; 1837 int ret = 0; 1838 struct clk_core *old_parent; 1839 1840 old_parent = __clk_set_parent_before(core, parent); 1841 1842 trace_clk_set_parent(core, parent); 1843 1844 /* change clock input source */ 1845 if (parent && core->ops->set_parent) 1846 ret = core->ops->set_parent(core->hw, p_index); 1847 1848 trace_clk_set_parent_complete(core, parent); 1849 1850 if (ret) { 1851 flags = clk_enable_lock(); 1852 clk_reparent(core, old_parent); 1853 clk_enable_unlock(flags); 1854 __clk_set_parent_after(core, old_parent, parent); 1855 1856 return ret; 1857 } 1858 1859 __clk_set_parent_after(core, parent, old_parent); 1860 1861 return 0; 1862 } 1863 1864 /** 1865 * __clk_speculate_rates 1866 * @core: first clk in the subtree 1867 * @parent_rate: the "future" rate of clk's parent 1868 * 1869 * Walks the subtree of clks starting with clk, speculating rates as it 1870 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1871 * 1872 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1873 * pre-rate change notifications and returns early if no clks in the 1874 * subtree have subscribed to the notifications. Note that if a clk does not 1875 * implement the .recalc_rate callback then it is assumed that the clock will 1876 * take on the rate of its parent. 1877 */ 1878 static int __clk_speculate_rates(struct clk_core *core, 1879 unsigned long parent_rate) 1880 { 1881 struct clk_core *child; 1882 unsigned long new_rate; 1883 int ret = NOTIFY_DONE; 1884 1885 lockdep_assert_held(&prepare_lock); 1886 1887 new_rate = clk_recalc(core, parent_rate); 1888 1889 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1890 if (core->notifier_count) 1891 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1892 1893 if (ret & NOTIFY_STOP_MASK) { 1894 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1895 __func__, core->name, ret); 1896 goto out; 1897 } 1898 1899 hlist_for_each_entry(child, &core->children, child_node) { 1900 ret = __clk_speculate_rates(child, new_rate); 1901 if (ret & NOTIFY_STOP_MASK) 1902 break; 1903 } 1904 1905 out: 1906 return ret; 1907 } 1908 1909 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1910 struct clk_core *new_parent, u8 p_index) 1911 { 1912 struct clk_core *child; 1913 1914 core->new_rate = new_rate; 1915 core->new_parent = new_parent; 1916 core->new_parent_index = p_index; 1917 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1918 core->new_child = NULL; 1919 if (new_parent && new_parent != core->parent) 1920 new_parent->new_child = core; 1921 1922 hlist_for_each_entry(child, &core->children, child_node) { 1923 child->new_rate = clk_recalc(child, new_rate); 1924 clk_calc_subtree(child, child->new_rate, NULL, 0); 1925 } 1926 } 1927 1928 /* 1929 * calculate the new rates returning the topmost clock that has to be 1930 * changed. 1931 */ 1932 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1933 unsigned long rate) 1934 { 1935 struct clk_core *top = core; 1936 struct clk_core *old_parent, *parent; 1937 unsigned long best_parent_rate = 0; 1938 unsigned long new_rate; 1939 unsigned long min_rate; 1940 unsigned long max_rate; 1941 int p_index = 0; 1942 long ret; 1943 1944 /* sanity */ 1945 if (IS_ERR_OR_NULL(core)) 1946 return NULL; 1947 1948 /* save parent rate, if it exists */ 1949 parent = old_parent = core->parent; 1950 if (parent) 1951 best_parent_rate = parent->rate; 1952 1953 clk_core_get_boundaries(core, &min_rate, &max_rate); 1954 1955 /* find the closest rate and parent clk/rate */ 1956 if (clk_core_can_round(core)) { 1957 struct clk_rate_request req; 1958 1959 req.rate = rate; 1960 req.min_rate = min_rate; 1961 req.max_rate = max_rate; 1962 1963 clk_core_init_rate_req(core, &req); 1964 1965 ret = clk_core_determine_round_nolock(core, &req); 1966 if (ret < 0) 1967 return NULL; 1968 1969 best_parent_rate = req.best_parent_rate; 1970 new_rate = req.rate; 1971 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1972 1973 if (new_rate < min_rate || new_rate > max_rate) 1974 return NULL; 1975 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1976 /* pass-through clock without adjustable parent */ 1977 core->new_rate = core->rate; 1978 return NULL; 1979 } else { 1980 /* pass-through clock with adjustable parent */ 1981 top = clk_calc_new_rates(parent, rate); 1982 new_rate = parent->new_rate; 1983 goto out; 1984 } 1985 1986 /* some clocks must be gated to change parent */ 1987 if (parent != old_parent && 1988 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1989 pr_debug("%s: %s not gated but wants to reparent\n", 1990 __func__, core->name); 1991 return NULL; 1992 } 1993 1994 /* try finding the new parent index */ 1995 if (parent && core->num_parents > 1) { 1996 p_index = clk_fetch_parent_index(core, parent); 1997 if (p_index < 0) { 1998 pr_debug("%s: clk %s can not be parent of clk %s\n", 1999 __func__, parent->name, core->name); 2000 return NULL; 2001 } 2002 } 2003 2004 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 2005 best_parent_rate != parent->rate) 2006 top = clk_calc_new_rates(parent, best_parent_rate); 2007 2008 out: 2009 clk_calc_subtree(core, new_rate, parent, p_index); 2010 2011 return top; 2012 } 2013 2014 /* 2015 * Notify about rate changes in a subtree. Always walk down the whole tree 2016 * so that in case of an error we can walk down the whole tree again and 2017 * abort the change. 2018 */ 2019 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2020 unsigned long event) 2021 { 2022 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2023 int ret = NOTIFY_DONE; 2024 2025 if (core->rate == core->new_rate) 2026 return NULL; 2027 2028 if (core->notifier_count) { 2029 ret = __clk_notify(core, event, core->rate, core->new_rate); 2030 if (ret & NOTIFY_STOP_MASK) 2031 fail_clk = core; 2032 } 2033 2034 hlist_for_each_entry(child, &core->children, child_node) { 2035 /* Skip children who will be reparented to another clock */ 2036 if (child->new_parent && child->new_parent != core) 2037 continue; 2038 tmp_clk = clk_propagate_rate_change(child, event); 2039 if (tmp_clk) 2040 fail_clk = tmp_clk; 2041 } 2042 2043 /* handle the new child who might not be in core->children yet */ 2044 if (core->new_child) { 2045 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2046 if (tmp_clk) 2047 fail_clk = tmp_clk; 2048 } 2049 2050 return fail_clk; 2051 } 2052 2053 /* 2054 * walk down a subtree and set the new rates notifying the rate 2055 * change on the way 2056 */ 2057 static void clk_change_rate(struct clk_core *core) 2058 { 2059 struct clk_core *child; 2060 struct hlist_node *tmp; 2061 unsigned long old_rate; 2062 unsigned long best_parent_rate = 0; 2063 bool skip_set_rate = false; 2064 struct clk_core *old_parent; 2065 struct clk_core *parent = NULL; 2066 2067 old_rate = core->rate; 2068 2069 if (core->new_parent) { 2070 parent = core->new_parent; 2071 best_parent_rate = core->new_parent->rate; 2072 } else if (core->parent) { 2073 parent = core->parent; 2074 best_parent_rate = core->parent->rate; 2075 } 2076 2077 if (clk_pm_runtime_get(core)) 2078 return; 2079 2080 if (core->flags & CLK_SET_RATE_UNGATE) { 2081 unsigned long flags; 2082 2083 clk_core_prepare(core); 2084 flags = clk_enable_lock(); 2085 clk_core_enable(core); 2086 clk_enable_unlock(flags); 2087 } 2088 2089 if (core->new_parent && core->new_parent != core->parent) { 2090 old_parent = __clk_set_parent_before(core, core->new_parent); 2091 trace_clk_set_parent(core, core->new_parent); 2092 2093 if (core->ops->set_rate_and_parent) { 2094 skip_set_rate = true; 2095 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2096 best_parent_rate, 2097 core->new_parent_index); 2098 } else if (core->ops->set_parent) { 2099 core->ops->set_parent(core->hw, core->new_parent_index); 2100 } 2101 2102 trace_clk_set_parent_complete(core, core->new_parent); 2103 __clk_set_parent_after(core, core->new_parent, old_parent); 2104 } 2105 2106 if (core->flags & CLK_OPS_PARENT_ENABLE) 2107 clk_core_prepare_enable(parent); 2108 2109 trace_clk_set_rate(core, core->new_rate); 2110 2111 if (!skip_set_rate && core->ops->set_rate) 2112 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2113 2114 trace_clk_set_rate_complete(core, core->new_rate); 2115 2116 core->rate = clk_recalc(core, best_parent_rate); 2117 2118 if (core->flags & CLK_SET_RATE_UNGATE) { 2119 unsigned long flags; 2120 2121 flags = clk_enable_lock(); 2122 clk_core_disable(core); 2123 clk_enable_unlock(flags); 2124 clk_core_unprepare(core); 2125 } 2126 2127 if (core->flags & CLK_OPS_PARENT_ENABLE) 2128 clk_core_disable_unprepare(parent); 2129 2130 if (core->notifier_count && old_rate != core->rate) 2131 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2132 2133 if (core->flags & CLK_RECALC_NEW_RATES) 2134 (void)clk_calc_new_rates(core, core->new_rate); 2135 2136 /* 2137 * Use safe iteration, as change_rate can actually swap parents 2138 * for certain clock types. 2139 */ 2140 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2141 /* Skip children who will be reparented to another clock */ 2142 if (child->new_parent && child->new_parent != core) 2143 continue; 2144 clk_change_rate(child); 2145 } 2146 2147 /* handle the new child who might not be in core->children yet */ 2148 if (core->new_child) 2149 clk_change_rate(core->new_child); 2150 2151 clk_pm_runtime_put(core); 2152 } 2153 2154 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2155 unsigned long req_rate) 2156 { 2157 int ret, cnt; 2158 struct clk_rate_request req; 2159 2160 lockdep_assert_held(&prepare_lock); 2161 2162 if (!core) 2163 return 0; 2164 2165 /* simulate what the rate would be if it could be freely set */ 2166 cnt = clk_core_rate_nuke_protect(core); 2167 if (cnt < 0) 2168 return cnt; 2169 2170 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2171 req.rate = req_rate; 2172 2173 ret = clk_core_round_rate_nolock(core, &req); 2174 2175 /* restore the protection */ 2176 clk_core_rate_restore_protect(core, cnt); 2177 2178 return ret ? 0 : req.rate; 2179 } 2180 2181 static int clk_core_set_rate_nolock(struct clk_core *core, 2182 unsigned long req_rate) 2183 { 2184 struct clk_core *top, *fail_clk; 2185 unsigned long rate; 2186 int ret = 0; 2187 2188 if (!core) 2189 return 0; 2190 2191 rate = clk_core_req_round_rate_nolock(core, req_rate); 2192 2193 /* bail early if nothing to do */ 2194 if (rate == clk_core_get_rate_nolock(core)) 2195 return 0; 2196 2197 /* fail on a direct rate set of a protected provider */ 2198 if (clk_core_rate_is_protected(core)) 2199 return -EBUSY; 2200 2201 /* calculate new rates and get the topmost changed clock */ 2202 top = clk_calc_new_rates(core, req_rate); 2203 if (!top) 2204 return -EINVAL; 2205 2206 ret = clk_pm_runtime_get(core); 2207 if (ret) 2208 return ret; 2209 2210 /* notify that we are about to change rates */ 2211 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2212 if (fail_clk) { 2213 pr_debug("%s: failed to set %s rate\n", __func__, 2214 fail_clk->name); 2215 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2216 ret = -EBUSY; 2217 goto err; 2218 } 2219 2220 /* change the rates */ 2221 clk_change_rate(top); 2222 2223 core->req_rate = req_rate; 2224 err: 2225 clk_pm_runtime_put(core); 2226 2227 return ret; 2228 } 2229 2230 /** 2231 * clk_set_rate - specify a new rate for clk 2232 * @clk: the clk whose rate is being changed 2233 * @rate: the new rate for clk 2234 * 2235 * In the simplest case clk_set_rate will only adjust the rate of clk. 2236 * 2237 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2238 * propagate up to clk's parent; whether or not this happens depends on the 2239 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2240 * after calling .round_rate then upstream parent propagation is ignored. If 2241 * *parent_rate comes back with a new rate for clk's parent then we propagate 2242 * up to clk's parent and set its rate. Upward propagation will continue 2243 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2244 * .round_rate stops requesting changes to clk's parent_rate. 2245 * 2246 * Rate changes are accomplished via tree traversal that also recalculates the 2247 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2248 * 2249 * Returns 0 on success, -EERROR otherwise. 2250 */ 2251 int clk_set_rate(struct clk *clk, unsigned long rate) 2252 { 2253 int ret; 2254 2255 if (!clk) 2256 return 0; 2257 2258 /* prevent racing with updates to the clock topology */ 2259 clk_prepare_lock(); 2260 2261 if (clk->exclusive_count) 2262 clk_core_rate_unprotect(clk->core); 2263 2264 ret = clk_core_set_rate_nolock(clk->core, rate); 2265 2266 if (clk->exclusive_count) 2267 clk_core_rate_protect(clk->core); 2268 2269 clk_prepare_unlock(); 2270 2271 return ret; 2272 } 2273 EXPORT_SYMBOL_GPL(clk_set_rate); 2274 2275 /** 2276 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2277 * @clk: the clk whose rate is being changed 2278 * @rate: the new rate for clk 2279 * 2280 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2281 * within a critical section 2282 * 2283 * This can be used initially to ensure that at least 1 consumer is 2284 * satisfied when several consumers are competing for exclusivity over the 2285 * same clock provider. 2286 * 2287 * The exclusivity is not applied if setting the rate failed. 2288 * 2289 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2290 * clk_rate_exclusive_put(). 2291 * 2292 * Returns 0 on success, -EERROR otherwise. 2293 */ 2294 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2295 { 2296 int ret; 2297 2298 if (!clk) 2299 return 0; 2300 2301 /* prevent racing with updates to the clock topology */ 2302 clk_prepare_lock(); 2303 2304 /* 2305 * The temporary protection removal is not here, on purpose 2306 * This function is meant to be used instead of clk_rate_protect, 2307 * so before the consumer code path protect the clock provider 2308 */ 2309 2310 ret = clk_core_set_rate_nolock(clk->core, rate); 2311 if (!ret) { 2312 clk_core_rate_protect(clk->core); 2313 clk->exclusive_count++; 2314 } 2315 2316 clk_prepare_unlock(); 2317 2318 return ret; 2319 } 2320 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2321 2322 /** 2323 * clk_set_rate_range - set a rate range for a clock source 2324 * @clk: clock source 2325 * @min: desired minimum clock rate in Hz, inclusive 2326 * @max: desired maximum clock rate in Hz, inclusive 2327 * 2328 * Returns success (0) or negative errno. 2329 */ 2330 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2331 { 2332 int ret = 0; 2333 unsigned long old_min, old_max, rate; 2334 2335 if (!clk) 2336 return 0; 2337 2338 trace_clk_set_rate_range(clk->core, min, max); 2339 2340 if (min > max) { 2341 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2342 __func__, clk->core->name, clk->dev_id, clk->con_id, 2343 min, max); 2344 return -EINVAL; 2345 } 2346 2347 clk_prepare_lock(); 2348 2349 if (clk->exclusive_count) 2350 clk_core_rate_unprotect(clk->core); 2351 2352 /* Save the current values in case we need to rollback the change */ 2353 old_min = clk->min_rate; 2354 old_max = clk->max_rate; 2355 clk->min_rate = min; 2356 clk->max_rate = max; 2357 2358 rate = clk_core_get_rate_nolock(clk->core); 2359 if (rate < min || rate > max) { 2360 /* 2361 * FIXME: 2362 * We are in bit of trouble here, current rate is outside the 2363 * the requested range. We are going try to request appropriate 2364 * range boundary but there is a catch. It may fail for the 2365 * usual reason (clock broken, clock protected, etc) but also 2366 * because: 2367 * - round_rate() was not favorable and fell on the wrong 2368 * side of the boundary 2369 * - the determine_rate() callback does not really check for 2370 * this corner case when determining the rate 2371 */ 2372 2373 if (rate < min) 2374 rate = min; 2375 else 2376 rate = max; 2377 2378 ret = clk_core_set_rate_nolock(clk->core, rate); 2379 if (ret) { 2380 /* rollback the changes */ 2381 clk->min_rate = old_min; 2382 clk->max_rate = old_max; 2383 } 2384 } 2385 2386 if (clk->exclusive_count) 2387 clk_core_rate_protect(clk->core); 2388 2389 clk_prepare_unlock(); 2390 2391 return ret; 2392 } 2393 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2394 2395 /** 2396 * clk_set_min_rate - set a minimum clock rate for a clock source 2397 * @clk: clock source 2398 * @rate: desired minimum clock rate in Hz, inclusive 2399 * 2400 * Returns success (0) or negative errno. 2401 */ 2402 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2403 { 2404 if (!clk) 2405 return 0; 2406 2407 trace_clk_set_min_rate(clk->core, rate); 2408 2409 return clk_set_rate_range(clk, rate, clk->max_rate); 2410 } 2411 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2412 2413 /** 2414 * clk_set_max_rate - set a maximum clock rate for a clock source 2415 * @clk: clock source 2416 * @rate: desired maximum clock rate in Hz, inclusive 2417 * 2418 * Returns success (0) or negative errno. 2419 */ 2420 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2421 { 2422 if (!clk) 2423 return 0; 2424 2425 trace_clk_set_max_rate(clk->core, rate); 2426 2427 return clk_set_rate_range(clk, clk->min_rate, rate); 2428 } 2429 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2430 2431 /** 2432 * clk_get_parent - return the parent of a clk 2433 * @clk: the clk whose parent gets returned 2434 * 2435 * Simply returns clk->parent. Returns NULL if clk is NULL. 2436 */ 2437 struct clk *clk_get_parent(struct clk *clk) 2438 { 2439 struct clk *parent; 2440 2441 if (!clk) 2442 return NULL; 2443 2444 clk_prepare_lock(); 2445 /* TODO: Create a per-user clk and change callers to call clk_put */ 2446 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2447 clk_prepare_unlock(); 2448 2449 return parent; 2450 } 2451 EXPORT_SYMBOL_GPL(clk_get_parent); 2452 2453 static struct clk_core *__clk_init_parent(struct clk_core *core) 2454 { 2455 u8 index = 0; 2456 2457 if (core->num_parents > 1 && core->ops->get_parent) 2458 index = core->ops->get_parent(core->hw); 2459 2460 return clk_core_get_parent_by_index(core, index); 2461 } 2462 2463 static void clk_core_reparent(struct clk_core *core, 2464 struct clk_core *new_parent) 2465 { 2466 clk_reparent(core, new_parent); 2467 __clk_recalc_accuracies(core); 2468 __clk_recalc_rates(core, POST_RATE_CHANGE); 2469 } 2470 2471 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2472 { 2473 if (!hw) 2474 return; 2475 2476 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2477 } 2478 2479 /** 2480 * clk_has_parent - check if a clock is a possible parent for another 2481 * @clk: clock source 2482 * @parent: parent clock source 2483 * 2484 * This function can be used in drivers that need to check that a clock can be 2485 * the parent of another without actually changing the parent. 2486 * 2487 * Returns true if @parent is a possible parent for @clk, false otherwise. 2488 */ 2489 bool clk_has_parent(struct clk *clk, struct clk *parent) 2490 { 2491 struct clk_core *core, *parent_core; 2492 int i; 2493 2494 /* NULL clocks should be nops, so return success if either is NULL. */ 2495 if (!clk || !parent) 2496 return true; 2497 2498 core = clk->core; 2499 parent_core = parent->core; 2500 2501 /* Optimize for the case where the parent is already the parent. */ 2502 if (core->parent == parent_core) 2503 return true; 2504 2505 for (i = 0; i < core->num_parents; i++) 2506 if (!strcmp(core->parents[i].name, parent_core->name)) 2507 return true; 2508 2509 return false; 2510 } 2511 EXPORT_SYMBOL_GPL(clk_has_parent); 2512 2513 static int clk_core_set_parent_nolock(struct clk_core *core, 2514 struct clk_core *parent) 2515 { 2516 int ret = 0; 2517 int p_index = 0; 2518 unsigned long p_rate = 0; 2519 2520 lockdep_assert_held(&prepare_lock); 2521 2522 if (!core) 2523 return 0; 2524 2525 if (core->parent == parent) 2526 return 0; 2527 2528 /* verify ops for multi-parent clks */ 2529 if (core->num_parents > 1 && !core->ops->set_parent) 2530 return -EPERM; 2531 2532 /* check that we are allowed to re-parent if the clock is in use */ 2533 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2534 return -EBUSY; 2535 2536 if (clk_core_rate_is_protected(core)) 2537 return -EBUSY; 2538 2539 /* try finding the new parent index */ 2540 if (parent) { 2541 p_index = clk_fetch_parent_index(core, parent); 2542 if (p_index < 0) { 2543 pr_debug("%s: clk %s can not be parent of clk %s\n", 2544 __func__, parent->name, core->name); 2545 return p_index; 2546 } 2547 p_rate = parent->rate; 2548 } 2549 2550 ret = clk_pm_runtime_get(core); 2551 if (ret) 2552 return ret; 2553 2554 /* propagate PRE_RATE_CHANGE notifications */ 2555 ret = __clk_speculate_rates(core, p_rate); 2556 2557 /* abort if a driver objects */ 2558 if (ret & NOTIFY_STOP_MASK) 2559 goto runtime_put; 2560 2561 /* do the re-parent */ 2562 ret = __clk_set_parent(core, parent, p_index); 2563 2564 /* propagate rate an accuracy recalculation accordingly */ 2565 if (ret) { 2566 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2567 } else { 2568 __clk_recalc_rates(core, POST_RATE_CHANGE); 2569 __clk_recalc_accuracies(core); 2570 } 2571 2572 runtime_put: 2573 clk_pm_runtime_put(core); 2574 2575 return ret; 2576 } 2577 2578 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2579 { 2580 return clk_core_set_parent_nolock(hw->core, parent->core); 2581 } 2582 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2583 2584 /** 2585 * clk_set_parent - switch the parent of a mux clk 2586 * @clk: the mux clk whose input we are switching 2587 * @parent: the new input to clk 2588 * 2589 * Re-parent clk to use parent as its new input source. If clk is in 2590 * prepared state, the clk will get enabled for the duration of this call. If 2591 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2592 * that, the reparenting is glitchy in hardware, etc), use the 2593 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2594 * 2595 * After successfully changing clk's parent clk_set_parent will update the 2596 * clk topology, sysfs topology and propagate rate recalculation via 2597 * __clk_recalc_rates. 2598 * 2599 * Returns 0 on success, -EERROR otherwise. 2600 */ 2601 int clk_set_parent(struct clk *clk, struct clk *parent) 2602 { 2603 int ret; 2604 2605 if (!clk) 2606 return 0; 2607 2608 clk_prepare_lock(); 2609 2610 if (clk->exclusive_count) 2611 clk_core_rate_unprotect(clk->core); 2612 2613 ret = clk_core_set_parent_nolock(clk->core, 2614 parent ? parent->core : NULL); 2615 2616 if (clk->exclusive_count) 2617 clk_core_rate_protect(clk->core); 2618 2619 clk_prepare_unlock(); 2620 2621 return ret; 2622 } 2623 EXPORT_SYMBOL_GPL(clk_set_parent); 2624 2625 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2626 { 2627 int ret = -EINVAL; 2628 2629 lockdep_assert_held(&prepare_lock); 2630 2631 if (!core) 2632 return 0; 2633 2634 if (clk_core_rate_is_protected(core)) 2635 return -EBUSY; 2636 2637 trace_clk_set_phase(core, degrees); 2638 2639 if (core->ops->set_phase) { 2640 ret = core->ops->set_phase(core->hw, degrees); 2641 if (!ret) 2642 core->phase = degrees; 2643 } 2644 2645 trace_clk_set_phase_complete(core, degrees); 2646 2647 return ret; 2648 } 2649 2650 /** 2651 * clk_set_phase - adjust the phase shift of a clock signal 2652 * @clk: clock signal source 2653 * @degrees: number of degrees the signal is shifted 2654 * 2655 * Shifts the phase of a clock signal by the specified 2656 * degrees. Returns 0 on success, -EERROR otherwise. 2657 * 2658 * This function makes no distinction about the input or reference 2659 * signal that we adjust the clock signal phase against. For example 2660 * phase locked-loop clock signal generators we may shift phase with 2661 * respect to feedback clock signal input, but for other cases the 2662 * clock phase may be shifted with respect to some other, unspecified 2663 * signal. 2664 * 2665 * Additionally the concept of phase shift does not propagate through 2666 * the clock tree hierarchy, which sets it apart from clock rates and 2667 * clock accuracy. A parent clock phase attribute does not have an 2668 * impact on the phase attribute of a child clock. 2669 */ 2670 int clk_set_phase(struct clk *clk, int degrees) 2671 { 2672 int ret; 2673 2674 if (!clk) 2675 return 0; 2676 2677 /* sanity check degrees */ 2678 degrees %= 360; 2679 if (degrees < 0) 2680 degrees += 360; 2681 2682 clk_prepare_lock(); 2683 2684 if (clk->exclusive_count) 2685 clk_core_rate_unprotect(clk->core); 2686 2687 ret = clk_core_set_phase_nolock(clk->core, degrees); 2688 2689 if (clk->exclusive_count) 2690 clk_core_rate_protect(clk->core); 2691 2692 clk_prepare_unlock(); 2693 2694 return ret; 2695 } 2696 EXPORT_SYMBOL_GPL(clk_set_phase); 2697 2698 static int clk_core_get_phase(struct clk_core *core) 2699 { 2700 int ret; 2701 2702 lockdep_assert_held(&prepare_lock); 2703 if (!core->ops->get_phase) 2704 return 0; 2705 2706 /* Always try to update cached phase if possible */ 2707 ret = core->ops->get_phase(core->hw); 2708 if (ret >= 0) 2709 core->phase = ret; 2710 2711 return ret; 2712 } 2713 2714 /** 2715 * clk_get_phase - return the phase shift of a clock signal 2716 * @clk: clock signal source 2717 * 2718 * Returns the phase shift of a clock node in degrees, otherwise returns 2719 * -EERROR. 2720 */ 2721 int clk_get_phase(struct clk *clk) 2722 { 2723 int ret; 2724 2725 if (!clk) 2726 return 0; 2727 2728 clk_prepare_lock(); 2729 ret = clk_core_get_phase(clk->core); 2730 clk_prepare_unlock(); 2731 2732 return ret; 2733 } 2734 EXPORT_SYMBOL_GPL(clk_get_phase); 2735 2736 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2737 { 2738 /* Assume a default value of 50% */ 2739 core->duty.num = 1; 2740 core->duty.den = 2; 2741 } 2742 2743 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2744 2745 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2746 { 2747 struct clk_duty *duty = &core->duty; 2748 int ret = 0; 2749 2750 if (!core->ops->get_duty_cycle) 2751 return clk_core_update_duty_cycle_parent_nolock(core); 2752 2753 ret = core->ops->get_duty_cycle(core->hw, duty); 2754 if (ret) 2755 goto reset; 2756 2757 /* Don't trust the clock provider too much */ 2758 if (duty->den == 0 || duty->num > duty->den) { 2759 ret = -EINVAL; 2760 goto reset; 2761 } 2762 2763 return 0; 2764 2765 reset: 2766 clk_core_reset_duty_cycle_nolock(core); 2767 return ret; 2768 } 2769 2770 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2771 { 2772 int ret = 0; 2773 2774 if (core->parent && 2775 core->flags & CLK_DUTY_CYCLE_PARENT) { 2776 ret = clk_core_update_duty_cycle_nolock(core->parent); 2777 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2778 } else { 2779 clk_core_reset_duty_cycle_nolock(core); 2780 } 2781 2782 return ret; 2783 } 2784 2785 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2786 struct clk_duty *duty); 2787 2788 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2789 struct clk_duty *duty) 2790 { 2791 int ret; 2792 2793 lockdep_assert_held(&prepare_lock); 2794 2795 if (clk_core_rate_is_protected(core)) 2796 return -EBUSY; 2797 2798 trace_clk_set_duty_cycle(core, duty); 2799 2800 if (!core->ops->set_duty_cycle) 2801 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2802 2803 ret = core->ops->set_duty_cycle(core->hw, duty); 2804 if (!ret) 2805 memcpy(&core->duty, duty, sizeof(*duty)); 2806 2807 trace_clk_set_duty_cycle_complete(core, duty); 2808 2809 return ret; 2810 } 2811 2812 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2813 struct clk_duty *duty) 2814 { 2815 int ret = 0; 2816 2817 if (core->parent && 2818 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2819 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2820 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2821 } 2822 2823 return ret; 2824 } 2825 2826 /** 2827 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2828 * @clk: clock signal source 2829 * @num: numerator of the duty cycle ratio to be applied 2830 * @den: denominator of the duty cycle ratio to be applied 2831 * 2832 * Apply the duty cycle ratio if the ratio is valid and the clock can 2833 * perform this operation 2834 * 2835 * Returns (0) on success, a negative errno otherwise. 2836 */ 2837 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2838 { 2839 int ret; 2840 struct clk_duty duty; 2841 2842 if (!clk) 2843 return 0; 2844 2845 /* sanity check the ratio */ 2846 if (den == 0 || num > den) 2847 return -EINVAL; 2848 2849 duty.num = num; 2850 duty.den = den; 2851 2852 clk_prepare_lock(); 2853 2854 if (clk->exclusive_count) 2855 clk_core_rate_unprotect(clk->core); 2856 2857 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2858 2859 if (clk->exclusive_count) 2860 clk_core_rate_protect(clk->core); 2861 2862 clk_prepare_unlock(); 2863 2864 return ret; 2865 } 2866 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2867 2868 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2869 unsigned int scale) 2870 { 2871 struct clk_duty *duty = &core->duty; 2872 int ret; 2873 2874 clk_prepare_lock(); 2875 2876 ret = clk_core_update_duty_cycle_nolock(core); 2877 if (!ret) 2878 ret = mult_frac(scale, duty->num, duty->den); 2879 2880 clk_prepare_unlock(); 2881 2882 return ret; 2883 } 2884 2885 /** 2886 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2887 * @clk: clock signal source 2888 * @scale: scaling factor to be applied to represent the ratio as an integer 2889 * 2890 * Returns the duty cycle ratio of a clock node multiplied by the provided 2891 * scaling factor, or negative errno on error. 2892 */ 2893 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2894 { 2895 if (!clk) 2896 return 0; 2897 2898 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2899 } 2900 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2901 2902 /** 2903 * clk_is_match - check if two clk's point to the same hardware clock 2904 * @p: clk compared against q 2905 * @q: clk compared against p 2906 * 2907 * Returns true if the two struct clk pointers both point to the same hardware 2908 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2909 * share the same struct clk_core object. 2910 * 2911 * Returns false otherwise. Note that two NULL clks are treated as matching. 2912 */ 2913 bool clk_is_match(const struct clk *p, const struct clk *q) 2914 { 2915 /* trivial case: identical struct clk's or both NULL */ 2916 if (p == q) 2917 return true; 2918 2919 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2920 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2921 if (p->core == q->core) 2922 return true; 2923 2924 return false; 2925 } 2926 EXPORT_SYMBOL_GPL(clk_is_match); 2927 2928 /*** debugfs support ***/ 2929 2930 #ifdef CONFIG_DEBUG_FS 2931 #include <linux/debugfs.h> 2932 2933 static struct dentry *rootdir; 2934 static int inited = 0; 2935 static DEFINE_MUTEX(clk_debug_lock); 2936 static HLIST_HEAD(clk_debug_list); 2937 2938 static struct hlist_head *orphan_list[] = { 2939 &clk_orphan_list, 2940 NULL, 2941 }; 2942 2943 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2944 int level) 2945 { 2946 int phase; 2947 2948 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ", 2949 level * 3 + 1, "", 2950 30 - level * 3, c->name, 2951 c->enable_count, c->prepare_count, c->protect_count, 2952 clk_core_get_rate_recalc(c), 2953 clk_core_get_accuracy_recalc(c)); 2954 2955 phase = clk_core_get_phase(c); 2956 if (phase >= 0) 2957 seq_printf(s, "%5d", phase); 2958 else 2959 seq_puts(s, "-----"); 2960 2961 seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000)); 2962 2963 if (c->ops->is_enabled) 2964 seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N'); 2965 else if (!c->ops->enable) 2966 seq_printf(s, " %9c\n", 'Y'); 2967 else 2968 seq_printf(s, " %9c\n", '?'); 2969 } 2970 2971 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2972 int level) 2973 { 2974 struct clk_core *child; 2975 2976 clk_summary_show_one(s, c, level); 2977 2978 hlist_for_each_entry(child, &c->children, child_node) 2979 clk_summary_show_subtree(s, child, level + 1); 2980 } 2981 2982 static int clk_summary_show(struct seq_file *s, void *data) 2983 { 2984 struct clk_core *c; 2985 struct hlist_head **lists = (struct hlist_head **)s->private; 2986 2987 seq_puts(s, " enable prepare protect duty hardware\n"); 2988 seq_puts(s, " clock count count count rate accuracy phase cycle enable\n"); 2989 seq_puts(s, "-------------------------------------------------------------------------------------------------------\n"); 2990 2991 clk_prepare_lock(); 2992 2993 for (; *lists; lists++) 2994 hlist_for_each_entry(c, *lists, child_node) 2995 clk_summary_show_subtree(s, c, 0); 2996 2997 clk_prepare_unlock(); 2998 2999 return 0; 3000 } 3001 DEFINE_SHOW_ATTRIBUTE(clk_summary); 3002 3003 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 3004 { 3005 int phase; 3006 unsigned long min_rate, max_rate; 3007 3008 clk_core_get_boundaries(c, &min_rate, &max_rate); 3009 3010 /* This should be JSON format, i.e. elements separated with a comma */ 3011 seq_printf(s, "\"%s\": { ", c->name); 3012 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 3013 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 3014 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 3015 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 3016 seq_printf(s, "\"min_rate\": %lu,", min_rate); 3017 seq_printf(s, "\"max_rate\": %lu,", max_rate); 3018 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 3019 phase = clk_core_get_phase(c); 3020 if (phase >= 0) 3021 seq_printf(s, "\"phase\": %d,", phase); 3022 seq_printf(s, "\"duty_cycle\": %u", 3023 clk_core_get_scaled_duty_cycle(c, 100000)); 3024 } 3025 3026 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3027 { 3028 struct clk_core *child; 3029 3030 clk_dump_one(s, c, level); 3031 3032 hlist_for_each_entry(child, &c->children, child_node) { 3033 seq_putc(s, ','); 3034 clk_dump_subtree(s, child, level + 1); 3035 } 3036 3037 seq_putc(s, '}'); 3038 } 3039 3040 static int clk_dump_show(struct seq_file *s, void *data) 3041 { 3042 struct clk_core *c; 3043 bool first_node = true; 3044 struct hlist_head **lists = (struct hlist_head **)s->private; 3045 3046 seq_putc(s, '{'); 3047 clk_prepare_lock(); 3048 3049 for (; *lists; lists++) { 3050 hlist_for_each_entry(c, *lists, child_node) { 3051 if (!first_node) 3052 seq_putc(s, ','); 3053 first_node = false; 3054 clk_dump_subtree(s, c, 0); 3055 } 3056 } 3057 3058 clk_prepare_unlock(); 3059 3060 seq_puts(s, "}\n"); 3061 return 0; 3062 } 3063 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3064 3065 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3066 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3067 /* 3068 * This can be dangerous, therefore don't provide any real compile time 3069 * configuration option for this feature. 3070 * People who want to use this will need to modify the source code directly. 3071 */ 3072 static int clk_rate_set(void *data, u64 val) 3073 { 3074 struct clk_core *core = data; 3075 int ret; 3076 3077 clk_prepare_lock(); 3078 ret = clk_core_set_rate_nolock(core, val); 3079 clk_prepare_unlock(); 3080 3081 return ret; 3082 } 3083 3084 #define clk_rate_mode 0644 3085 3086 static int clk_prepare_enable_set(void *data, u64 val) 3087 { 3088 struct clk_core *core = data; 3089 int ret = 0; 3090 3091 if (val) 3092 ret = clk_prepare_enable(core->hw->clk); 3093 else 3094 clk_disable_unprepare(core->hw->clk); 3095 3096 return ret; 3097 } 3098 3099 static int clk_prepare_enable_get(void *data, u64 *val) 3100 { 3101 struct clk_core *core = data; 3102 3103 *val = core->enable_count && core->prepare_count; 3104 return 0; 3105 } 3106 3107 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3108 clk_prepare_enable_set, "%llu\n"); 3109 3110 #else 3111 #define clk_rate_set NULL 3112 #define clk_rate_mode 0444 3113 #endif 3114 3115 static int clk_rate_get(void *data, u64 *val) 3116 { 3117 struct clk_core *core = data; 3118 3119 *val = core->rate; 3120 return 0; 3121 } 3122 3123 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3124 3125 static const struct { 3126 unsigned long flag; 3127 const char *name; 3128 } clk_flags[] = { 3129 #define ENTRY(f) { f, #f } 3130 ENTRY(CLK_SET_RATE_GATE), 3131 ENTRY(CLK_SET_PARENT_GATE), 3132 ENTRY(CLK_SET_RATE_PARENT), 3133 ENTRY(CLK_IGNORE_UNUSED), 3134 ENTRY(CLK_GET_RATE_NOCACHE), 3135 ENTRY(CLK_SET_RATE_NO_REPARENT), 3136 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3137 ENTRY(CLK_RECALC_NEW_RATES), 3138 ENTRY(CLK_SET_RATE_UNGATE), 3139 ENTRY(CLK_IS_CRITICAL), 3140 ENTRY(CLK_OPS_PARENT_ENABLE), 3141 ENTRY(CLK_DUTY_CYCLE_PARENT), 3142 #undef ENTRY 3143 }; 3144 3145 static int clk_flags_show(struct seq_file *s, void *data) 3146 { 3147 struct clk_core *core = s->private; 3148 unsigned long flags = core->flags; 3149 unsigned int i; 3150 3151 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3152 if (flags & clk_flags[i].flag) { 3153 seq_printf(s, "%s\n", clk_flags[i].name); 3154 flags &= ~clk_flags[i].flag; 3155 } 3156 } 3157 if (flags) { 3158 /* Unknown flags */ 3159 seq_printf(s, "0x%lx\n", flags); 3160 } 3161 3162 return 0; 3163 } 3164 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3165 3166 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3167 unsigned int i, char terminator) 3168 { 3169 struct clk_core *parent; 3170 3171 /* 3172 * Go through the following options to fetch a parent's name. 3173 * 3174 * 1. Fetch the registered parent clock and use its name 3175 * 2. Use the global (fallback) name if specified 3176 * 3. Use the local fw_name if provided 3177 * 4. Fetch parent clock's clock-output-name if DT index was set 3178 * 3179 * This may still fail in some cases, such as when the parent is 3180 * specified directly via a struct clk_hw pointer, but it isn't 3181 * registered (yet). 3182 */ 3183 parent = clk_core_get_parent_by_index(core, i); 3184 if (parent) 3185 seq_puts(s, parent->name); 3186 else if (core->parents[i].name) 3187 seq_puts(s, core->parents[i].name); 3188 else if (core->parents[i].fw_name) 3189 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3190 else if (core->parents[i].index >= 0) 3191 seq_puts(s, 3192 of_clk_get_parent_name(core->of_node, 3193 core->parents[i].index)); 3194 else 3195 seq_puts(s, "(missing)"); 3196 3197 seq_putc(s, terminator); 3198 } 3199 3200 static int possible_parents_show(struct seq_file *s, void *data) 3201 { 3202 struct clk_core *core = s->private; 3203 int i; 3204 3205 for (i = 0; i < core->num_parents - 1; i++) 3206 possible_parent_show(s, core, i, ' '); 3207 3208 possible_parent_show(s, core, i, '\n'); 3209 3210 return 0; 3211 } 3212 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3213 3214 static int current_parent_show(struct seq_file *s, void *data) 3215 { 3216 struct clk_core *core = s->private; 3217 3218 if (core->parent) 3219 seq_printf(s, "%s\n", core->parent->name); 3220 3221 return 0; 3222 } 3223 DEFINE_SHOW_ATTRIBUTE(current_parent); 3224 3225 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3226 { 3227 struct clk_core *core = s->private; 3228 struct clk_duty *duty = &core->duty; 3229 3230 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3231 3232 return 0; 3233 } 3234 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3235 3236 static int clk_min_rate_show(struct seq_file *s, void *data) 3237 { 3238 struct clk_core *core = s->private; 3239 unsigned long min_rate, max_rate; 3240 3241 clk_prepare_lock(); 3242 clk_core_get_boundaries(core, &min_rate, &max_rate); 3243 clk_prepare_unlock(); 3244 seq_printf(s, "%lu\n", min_rate); 3245 3246 return 0; 3247 } 3248 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3249 3250 static int clk_max_rate_show(struct seq_file *s, void *data) 3251 { 3252 struct clk_core *core = s->private; 3253 unsigned long min_rate, max_rate; 3254 3255 clk_prepare_lock(); 3256 clk_core_get_boundaries(core, &min_rate, &max_rate); 3257 clk_prepare_unlock(); 3258 seq_printf(s, "%lu\n", max_rate); 3259 3260 return 0; 3261 } 3262 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3263 3264 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3265 { 3266 struct dentry *root; 3267 3268 if (!core || !pdentry) 3269 return; 3270 3271 root = debugfs_create_dir(core->name, pdentry); 3272 core->dentry = root; 3273 3274 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3275 &clk_rate_fops); 3276 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3277 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3278 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3279 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3280 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3281 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3282 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3283 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3284 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3285 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3286 &clk_duty_cycle_fops); 3287 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3288 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3289 &clk_prepare_enable_fops); 3290 #endif 3291 3292 if (core->num_parents > 0) 3293 debugfs_create_file("clk_parent", 0444, root, core, 3294 ¤t_parent_fops); 3295 3296 if (core->num_parents > 1) 3297 debugfs_create_file("clk_possible_parents", 0444, root, core, 3298 &possible_parents_fops); 3299 3300 if (core->ops->debug_init) 3301 core->ops->debug_init(core->hw, core->dentry); 3302 } 3303 3304 /** 3305 * clk_debug_register - add a clk node to the debugfs clk directory 3306 * @core: the clk being added to the debugfs clk directory 3307 * 3308 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3309 * initialized. Otherwise it bails out early since the debugfs clk directory 3310 * will be created lazily by clk_debug_init as part of a late_initcall. 3311 */ 3312 static void clk_debug_register(struct clk_core *core) 3313 { 3314 mutex_lock(&clk_debug_lock); 3315 hlist_add_head(&core->debug_node, &clk_debug_list); 3316 if (inited) 3317 clk_debug_create_one(core, rootdir); 3318 mutex_unlock(&clk_debug_lock); 3319 } 3320 3321 /** 3322 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3323 * @core: the clk being removed from the debugfs clk directory 3324 * 3325 * Dynamically removes a clk and all its child nodes from the 3326 * debugfs clk directory if clk->dentry points to debugfs created by 3327 * clk_debug_register in __clk_core_init. 3328 */ 3329 static void clk_debug_unregister(struct clk_core *core) 3330 { 3331 mutex_lock(&clk_debug_lock); 3332 hlist_del_init(&core->debug_node); 3333 debugfs_remove_recursive(core->dentry); 3334 core->dentry = NULL; 3335 mutex_unlock(&clk_debug_lock); 3336 } 3337 3338 /** 3339 * clk_debug_init - lazily populate the debugfs clk directory 3340 * 3341 * clks are often initialized very early during boot before memory can be 3342 * dynamically allocated and well before debugfs is setup. This function 3343 * populates the debugfs clk directory once at boot-time when we know that 3344 * debugfs is setup. It should only be called once at boot-time, all other clks 3345 * added dynamically will be done so with clk_debug_register. 3346 */ 3347 static int __init clk_debug_init(void) 3348 { 3349 struct clk_core *core; 3350 3351 rootdir = debugfs_create_dir("clk", NULL); 3352 3353 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3354 &clk_summary_fops); 3355 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3356 &clk_dump_fops); 3357 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3358 &clk_summary_fops); 3359 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3360 &clk_dump_fops); 3361 3362 mutex_lock(&clk_debug_lock); 3363 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3364 clk_debug_create_one(core, rootdir); 3365 3366 inited = 1; 3367 mutex_unlock(&clk_debug_lock); 3368 3369 return 0; 3370 } 3371 late_initcall(clk_debug_init); 3372 #else 3373 static inline void clk_debug_register(struct clk_core *core) { } 3374 static inline void clk_debug_unregister(struct clk_core *core) 3375 { 3376 } 3377 #endif 3378 3379 static void clk_core_reparent_orphans_nolock(void) 3380 { 3381 struct clk_core *orphan; 3382 struct hlist_node *tmp2; 3383 3384 /* 3385 * walk the list of orphan clocks and reparent any that newly finds a 3386 * parent. 3387 */ 3388 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3389 struct clk_core *parent = __clk_init_parent(orphan); 3390 3391 /* 3392 * We need to use __clk_set_parent_before() and _after() to 3393 * to properly migrate any prepare/enable count of the orphan 3394 * clock. This is important for CLK_IS_CRITICAL clocks, which 3395 * are enabled during init but might not have a parent yet. 3396 */ 3397 if (parent) { 3398 /* update the clk tree topology */ 3399 __clk_set_parent_before(orphan, parent); 3400 __clk_set_parent_after(orphan, parent, NULL); 3401 __clk_recalc_accuracies(orphan); 3402 __clk_recalc_rates(orphan, 0); 3403 } 3404 } 3405 } 3406 3407 /** 3408 * __clk_core_init - initialize the data structures in a struct clk_core 3409 * @core: clk_core being initialized 3410 * 3411 * Initializes the lists in struct clk_core, queries the hardware for the 3412 * parent and rate and sets them both. 3413 */ 3414 static int __clk_core_init(struct clk_core *core) 3415 { 3416 int ret; 3417 struct clk_core *parent; 3418 unsigned long rate; 3419 int phase; 3420 3421 if (!core) 3422 return -EINVAL; 3423 3424 clk_prepare_lock(); 3425 3426 ret = clk_pm_runtime_get(core); 3427 if (ret) 3428 goto unlock; 3429 3430 /* check to see if a clock with this name is already registered */ 3431 if (clk_core_lookup(core->name)) { 3432 pr_debug("%s: clk %s already initialized\n", 3433 __func__, core->name); 3434 ret = -EEXIST; 3435 goto out; 3436 } 3437 3438 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3439 if (core->ops->set_rate && 3440 !((core->ops->round_rate || core->ops->determine_rate) && 3441 core->ops->recalc_rate)) { 3442 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3443 __func__, core->name); 3444 ret = -EINVAL; 3445 goto out; 3446 } 3447 3448 if (core->ops->set_parent && !core->ops->get_parent) { 3449 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3450 __func__, core->name); 3451 ret = -EINVAL; 3452 goto out; 3453 } 3454 3455 if (core->num_parents > 1 && !core->ops->get_parent) { 3456 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3457 __func__, core->name); 3458 ret = -EINVAL; 3459 goto out; 3460 } 3461 3462 if (core->ops->set_rate_and_parent && 3463 !(core->ops->set_parent && core->ops->set_rate)) { 3464 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3465 __func__, core->name); 3466 ret = -EINVAL; 3467 goto out; 3468 } 3469 3470 /* 3471 * optional platform-specific magic 3472 * 3473 * The .init callback is not used by any of the basic clock types, but 3474 * exists for weird hardware that must perform initialization magic for 3475 * CCF to get an accurate view of clock for any other callbacks. It may 3476 * also be used needs to perform dynamic allocations. Such allocation 3477 * must be freed in the terminate() callback. 3478 * This callback shall not be used to initialize the parameters state, 3479 * such as rate, parent, etc ... 3480 * 3481 * If it exist, this callback should called before any other callback of 3482 * the clock 3483 */ 3484 if (core->ops->init) { 3485 ret = core->ops->init(core->hw); 3486 if (ret) 3487 goto out; 3488 } 3489 3490 parent = core->parent = __clk_init_parent(core); 3491 3492 /* 3493 * Populate core->parent if parent has already been clk_core_init'd. If 3494 * parent has not yet been clk_core_init'd then place clk in the orphan 3495 * list. If clk doesn't have any parents then place it in the root 3496 * clk list. 3497 * 3498 * Every time a new clk is clk_init'd then we walk the list of orphan 3499 * clocks and re-parent any that are children of the clock currently 3500 * being clk_init'd. 3501 */ 3502 if (parent) { 3503 hlist_add_head(&core->child_node, &parent->children); 3504 core->orphan = parent->orphan; 3505 } else if (!core->num_parents) { 3506 hlist_add_head(&core->child_node, &clk_root_list); 3507 core->orphan = false; 3508 } else { 3509 hlist_add_head(&core->child_node, &clk_orphan_list); 3510 core->orphan = true; 3511 } 3512 3513 /* 3514 * Set clk's accuracy. The preferred method is to use 3515 * .recalc_accuracy. For simple clocks and lazy developers the default 3516 * fallback is to use the parent's accuracy. If a clock doesn't have a 3517 * parent (or is orphaned) then accuracy is set to zero (perfect 3518 * clock). 3519 */ 3520 if (core->ops->recalc_accuracy) 3521 core->accuracy = core->ops->recalc_accuracy(core->hw, 3522 clk_core_get_accuracy_no_lock(parent)); 3523 else if (parent) 3524 core->accuracy = parent->accuracy; 3525 else 3526 core->accuracy = 0; 3527 3528 /* 3529 * Set clk's phase by clk_core_get_phase() caching the phase. 3530 * Since a phase is by definition relative to its parent, just 3531 * query the current clock phase, or just assume it's in phase. 3532 */ 3533 phase = clk_core_get_phase(core); 3534 if (phase < 0) { 3535 ret = phase; 3536 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 3537 core->name); 3538 goto out; 3539 } 3540 3541 /* 3542 * Set clk's duty cycle. 3543 */ 3544 clk_core_update_duty_cycle_nolock(core); 3545 3546 /* 3547 * Set clk's rate. The preferred method is to use .recalc_rate. For 3548 * simple clocks and lazy developers the default fallback is to use the 3549 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3550 * then rate is set to zero. 3551 */ 3552 if (core->ops->recalc_rate) 3553 rate = core->ops->recalc_rate(core->hw, 3554 clk_core_get_rate_nolock(parent)); 3555 else if (parent) 3556 rate = parent->rate; 3557 else 3558 rate = 0; 3559 core->rate = core->req_rate = rate; 3560 3561 /* 3562 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3563 * don't get accidentally disabled when walking the orphan tree and 3564 * reparenting clocks 3565 */ 3566 if (core->flags & CLK_IS_CRITICAL) { 3567 unsigned long flags; 3568 3569 ret = clk_core_prepare(core); 3570 if (ret) { 3571 pr_warn("%s: critical clk '%s' failed to prepare\n", 3572 __func__, core->name); 3573 goto out; 3574 } 3575 3576 flags = clk_enable_lock(); 3577 ret = clk_core_enable(core); 3578 clk_enable_unlock(flags); 3579 if (ret) { 3580 pr_warn("%s: critical clk '%s' failed to enable\n", 3581 __func__, core->name); 3582 clk_core_unprepare(core); 3583 goto out; 3584 } 3585 } 3586 3587 clk_core_reparent_orphans_nolock(); 3588 3589 3590 kref_init(&core->ref); 3591 out: 3592 clk_pm_runtime_put(core); 3593 unlock: 3594 if (ret) 3595 hlist_del_init(&core->child_node); 3596 3597 clk_prepare_unlock(); 3598 3599 if (!ret) 3600 clk_debug_register(core); 3601 3602 return ret; 3603 } 3604 3605 /** 3606 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3607 * @core: clk to add consumer to 3608 * @clk: consumer to link to a clk 3609 */ 3610 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3611 { 3612 clk_prepare_lock(); 3613 hlist_add_head(&clk->clks_node, &core->clks); 3614 clk_prepare_unlock(); 3615 } 3616 3617 /** 3618 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3619 * @clk: consumer to unlink 3620 */ 3621 static void clk_core_unlink_consumer(struct clk *clk) 3622 { 3623 lockdep_assert_held(&prepare_lock); 3624 hlist_del(&clk->clks_node); 3625 } 3626 3627 /** 3628 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3629 * @core: clk to allocate a consumer for 3630 * @dev_id: string describing device name 3631 * @con_id: connection ID string on device 3632 * 3633 * Returns: clk consumer left unlinked from the consumer list 3634 */ 3635 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3636 const char *con_id) 3637 { 3638 struct clk *clk; 3639 3640 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3641 if (!clk) 3642 return ERR_PTR(-ENOMEM); 3643 3644 clk->core = core; 3645 clk->dev_id = dev_id; 3646 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3647 clk->max_rate = ULONG_MAX; 3648 3649 return clk; 3650 } 3651 3652 /** 3653 * free_clk - Free a clk consumer 3654 * @clk: clk consumer to free 3655 * 3656 * Note, this assumes the clk has been unlinked from the clk_core consumer 3657 * list. 3658 */ 3659 static void free_clk(struct clk *clk) 3660 { 3661 kfree_const(clk->con_id); 3662 kfree(clk); 3663 } 3664 3665 /** 3666 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3667 * a clk_hw 3668 * @dev: clk consumer device 3669 * @hw: clk_hw associated with the clk being consumed 3670 * @dev_id: string describing device name 3671 * @con_id: connection ID string on device 3672 * 3673 * This is the main function used to create a clk pointer for use by clk 3674 * consumers. It connects a consumer to the clk_core and clk_hw structures 3675 * used by the framework and clk provider respectively. 3676 */ 3677 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3678 const char *dev_id, const char *con_id) 3679 { 3680 struct clk *clk; 3681 struct clk_core *core; 3682 3683 /* This is to allow this function to be chained to others */ 3684 if (IS_ERR_OR_NULL(hw)) 3685 return ERR_CAST(hw); 3686 3687 core = hw->core; 3688 clk = alloc_clk(core, dev_id, con_id); 3689 if (IS_ERR(clk)) 3690 return clk; 3691 clk->dev = dev; 3692 3693 if (!try_module_get(core->owner)) { 3694 free_clk(clk); 3695 return ERR_PTR(-ENOENT); 3696 } 3697 3698 kref_get(&core->ref); 3699 clk_core_link_consumer(core, clk); 3700 3701 return clk; 3702 } 3703 3704 /** 3705 * clk_hw_get_clk - get clk consumer given an clk_hw 3706 * @hw: clk_hw associated with the clk being consumed 3707 * @con_id: connection ID string on device 3708 * 3709 * Returns: new clk consumer 3710 * This is the function to be used by providers which need 3711 * to get a consumer clk and act on the clock element 3712 * Calls to this function must be balanced with calls clk_put() 3713 */ 3714 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id) 3715 { 3716 struct device *dev = hw->core->dev; 3717 3718 return clk_hw_create_clk(dev, hw, dev_name(dev), con_id); 3719 } 3720 EXPORT_SYMBOL(clk_hw_get_clk); 3721 3722 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3723 { 3724 const char *dst; 3725 3726 if (!src) { 3727 if (must_exist) 3728 return -EINVAL; 3729 return 0; 3730 } 3731 3732 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3733 if (!dst) 3734 return -ENOMEM; 3735 3736 return 0; 3737 } 3738 3739 static int clk_core_populate_parent_map(struct clk_core *core, 3740 const struct clk_init_data *init) 3741 { 3742 u8 num_parents = init->num_parents; 3743 const char * const *parent_names = init->parent_names; 3744 const struct clk_hw **parent_hws = init->parent_hws; 3745 const struct clk_parent_data *parent_data = init->parent_data; 3746 int i, ret = 0; 3747 struct clk_parent_map *parents, *parent; 3748 3749 if (!num_parents) 3750 return 0; 3751 3752 /* 3753 * Avoid unnecessary string look-ups of clk_core's possible parents by 3754 * having a cache of names/clk_hw pointers to clk_core pointers. 3755 */ 3756 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3757 core->parents = parents; 3758 if (!parents) 3759 return -ENOMEM; 3760 3761 /* Copy everything over because it might be __initdata */ 3762 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3763 parent->index = -1; 3764 if (parent_names) { 3765 /* throw a WARN if any entries are NULL */ 3766 WARN(!parent_names[i], 3767 "%s: invalid NULL in %s's .parent_names\n", 3768 __func__, core->name); 3769 ret = clk_cpy_name(&parent->name, parent_names[i], 3770 true); 3771 } else if (parent_data) { 3772 parent->hw = parent_data[i].hw; 3773 parent->index = parent_data[i].index; 3774 ret = clk_cpy_name(&parent->fw_name, 3775 parent_data[i].fw_name, false); 3776 if (!ret) 3777 ret = clk_cpy_name(&parent->name, 3778 parent_data[i].name, 3779 false); 3780 } else if (parent_hws) { 3781 parent->hw = parent_hws[i]; 3782 } else { 3783 ret = -EINVAL; 3784 WARN(1, "Must specify parents if num_parents > 0\n"); 3785 } 3786 3787 if (ret) { 3788 do { 3789 kfree_const(parents[i].name); 3790 kfree_const(parents[i].fw_name); 3791 } while (--i >= 0); 3792 kfree(parents); 3793 3794 return ret; 3795 } 3796 } 3797 3798 return 0; 3799 } 3800 3801 static void clk_core_free_parent_map(struct clk_core *core) 3802 { 3803 int i = core->num_parents; 3804 3805 if (!core->num_parents) 3806 return; 3807 3808 while (--i >= 0) { 3809 kfree_const(core->parents[i].name); 3810 kfree_const(core->parents[i].fw_name); 3811 } 3812 3813 kfree(core->parents); 3814 } 3815 3816 static struct clk * 3817 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3818 { 3819 int ret; 3820 struct clk_core *core; 3821 const struct clk_init_data *init = hw->init; 3822 3823 /* 3824 * The init data is not supposed to be used outside of registration path. 3825 * Set it to NULL so that provider drivers can't use it either and so that 3826 * we catch use of hw->init early on in the core. 3827 */ 3828 hw->init = NULL; 3829 3830 core = kzalloc(sizeof(*core), GFP_KERNEL); 3831 if (!core) { 3832 ret = -ENOMEM; 3833 goto fail_out; 3834 } 3835 3836 core->name = kstrdup_const(init->name, GFP_KERNEL); 3837 if (!core->name) { 3838 ret = -ENOMEM; 3839 goto fail_name; 3840 } 3841 3842 if (WARN_ON(!init->ops)) { 3843 ret = -EINVAL; 3844 goto fail_ops; 3845 } 3846 core->ops = init->ops; 3847 3848 if (dev && pm_runtime_enabled(dev)) 3849 core->rpm_enabled = true; 3850 core->dev = dev; 3851 core->of_node = np; 3852 if (dev && dev->driver) 3853 core->owner = dev->driver->owner; 3854 core->hw = hw; 3855 core->flags = init->flags; 3856 core->num_parents = init->num_parents; 3857 core->min_rate = 0; 3858 core->max_rate = ULONG_MAX; 3859 hw->core = core; 3860 3861 ret = clk_core_populate_parent_map(core, init); 3862 if (ret) 3863 goto fail_parents; 3864 3865 INIT_HLIST_HEAD(&core->clks); 3866 3867 /* 3868 * Don't call clk_hw_create_clk() here because that would pin the 3869 * provider module to itself and prevent it from ever being removed. 3870 */ 3871 hw->clk = alloc_clk(core, NULL, NULL); 3872 if (IS_ERR(hw->clk)) { 3873 ret = PTR_ERR(hw->clk); 3874 goto fail_create_clk; 3875 } 3876 3877 clk_core_link_consumer(hw->core, hw->clk); 3878 3879 ret = __clk_core_init(core); 3880 if (!ret) 3881 return hw->clk; 3882 3883 clk_prepare_lock(); 3884 clk_core_unlink_consumer(hw->clk); 3885 clk_prepare_unlock(); 3886 3887 free_clk(hw->clk); 3888 hw->clk = NULL; 3889 3890 fail_create_clk: 3891 clk_core_free_parent_map(core); 3892 fail_parents: 3893 fail_ops: 3894 kfree_const(core->name); 3895 fail_name: 3896 kfree(core); 3897 fail_out: 3898 return ERR_PTR(ret); 3899 } 3900 3901 /** 3902 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 3903 * @dev: Device to get device node of 3904 * 3905 * Return: device node pointer of @dev, or the device node pointer of 3906 * @dev->parent if dev doesn't have a device node, or NULL if neither 3907 * @dev or @dev->parent have a device node. 3908 */ 3909 static struct device_node *dev_or_parent_of_node(struct device *dev) 3910 { 3911 struct device_node *np; 3912 3913 if (!dev) 3914 return NULL; 3915 3916 np = dev_of_node(dev); 3917 if (!np) 3918 np = dev_of_node(dev->parent); 3919 3920 return np; 3921 } 3922 3923 /** 3924 * clk_register - allocate a new clock, register it and return an opaque cookie 3925 * @dev: device that is registering this clock 3926 * @hw: link to hardware-specific clock data 3927 * 3928 * clk_register is the *deprecated* interface for populating the clock tree with 3929 * new clock nodes. Use clk_hw_register() instead. 3930 * 3931 * Returns: a pointer to the newly allocated struct clk which 3932 * cannot be dereferenced by driver code but may be used in conjunction with the 3933 * rest of the clock API. In the event of an error clk_register will return an 3934 * error code; drivers must test for an error code after calling clk_register. 3935 */ 3936 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3937 { 3938 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 3939 } 3940 EXPORT_SYMBOL_GPL(clk_register); 3941 3942 /** 3943 * clk_hw_register - register a clk_hw and return an error code 3944 * @dev: device that is registering this clock 3945 * @hw: link to hardware-specific clock data 3946 * 3947 * clk_hw_register is the primary interface for populating the clock tree with 3948 * new clock nodes. It returns an integer equal to zero indicating success or 3949 * less than zero indicating failure. Drivers must test for an error code after 3950 * calling clk_hw_register(). 3951 */ 3952 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3953 { 3954 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 3955 hw)); 3956 } 3957 EXPORT_SYMBOL_GPL(clk_hw_register); 3958 3959 /* 3960 * of_clk_hw_register - register a clk_hw and return an error code 3961 * @node: device_node of device that is registering this clock 3962 * @hw: link to hardware-specific clock data 3963 * 3964 * of_clk_hw_register() is the primary interface for populating the clock tree 3965 * with new clock nodes when a struct device is not available, but a struct 3966 * device_node is. It returns an integer equal to zero indicating success or 3967 * less than zero indicating failure. Drivers must test for an error code after 3968 * calling of_clk_hw_register(). 3969 */ 3970 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 3971 { 3972 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 3973 } 3974 EXPORT_SYMBOL_GPL(of_clk_hw_register); 3975 3976 /* Free memory allocated for a clock. */ 3977 static void __clk_release(struct kref *ref) 3978 { 3979 struct clk_core *core = container_of(ref, struct clk_core, ref); 3980 3981 lockdep_assert_held(&prepare_lock); 3982 3983 clk_core_free_parent_map(core); 3984 kfree_const(core->name); 3985 kfree(core); 3986 } 3987 3988 /* 3989 * Empty clk_ops for unregistered clocks. These are used temporarily 3990 * after clk_unregister() was called on a clock and until last clock 3991 * consumer calls clk_put() and the struct clk object is freed. 3992 */ 3993 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3994 { 3995 return -ENXIO; 3996 } 3997 3998 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3999 { 4000 WARN_ON_ONCE(1); 4001 } 4002 4003 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 4004 unsigned long parent_rate) 4005 { 4006 return -ENXIO; 4007 } 4008 4009 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 4010 { 4011 return -ENXIO; 4012 } 4013 4014 static const struct clk_ops clk_nodrv_ops = { 4015 .enable = clk_nodrv_prepare_enable, 4016 .disable = clk_nodrv_disable_unprepare, 4017 .prepare = clk_nodrv_prepare_enable, 4018 .unprepare = clk_nodrv_disable_unprepare, 4019 .set_rate = clk_nodrv_set_rate, 4020 .set_parent = clk_nodrv_set_parent, 4021 }; 4022 4023 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4024 struct clk_core *target) 4025 { 4026 int i; 4027 struct clk_core *child; 4028 4029 for (i = 0; i < root->num_parents; i++) 4030 if (root->parents[i].core == target) 4031 root->parents[i].core = NULL; 4032 4033 hlist_for_each_entry(child, &root->children, child_node) 4034 clk_core_evict_parent_cache_subtree(child, target); 4035 } 4036 4037 /* Remove this clk from all parent caches */ 4038 static void clk_core_evict_parent_cache(struct clk_core *core) 4039 { 4040 struct hlist_head **lists; 4041 struct clk_core *root; 4042 4043 lockdep_assert_held(&prepare_lock); 4044 4045 for (lists = all_lists; *lists; lists++) 4046 hlist_for_each_entry(root, *lists, child_node) 4047 clk_core_evict_parent_cache_subtree(root, core); 4048 4049 } 4050 4051 /** 4052 * clk_unregister - unregister a currently registered clock 4053 * @clk: clock to unregister 4054 */ 4055 void clk_unregister(struct clk *clk) 4056 { 4057 unsigned long flags; 4058 const struct clk_ops *ops; 4059 4060 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4061 return; 4062 4063 clk_debug_unregister(clk->core); 4064 4065 clk_prepare_lock(); 4066 4067 ops = clk->core->ops; 4068 if (ops == &clk_nodrv_ops) { 4069 pr_err("%s: unregistered clock: %s\n", __func__, 4070 clk->core->name); 4071 goto unlock; 4072 } 4073 /* 4074 * Assign empty clock ops for consumers that might still hold 4075 * a reference to this clock. 4076 */ 4077 flags = clk_enable_lock(); 4078 clk->core->ops = &clk_nodrv_ops; 4079 clk_enable_unlock(flags); 4080 4081 if (ops->terminate) 4082 ops->terminate(clk->core->hw); 4083 4084 if (!hlist_empty(&clk->core->children)) { 4085 struct clk_core *child; 4086 struct hlist_node *t; 4087 4088 /* Reparent all children to the orphan list. */ 4089 hlist_for_each_entry_safe(child, t, &clk->core->children, 4090 child_node) 4091 clk_core_set_parent_nolock(child, NULL); 4092 } 4093 4094 clk_core_evict_parent_cache(clk->core); 4095 4096 hlist_del_init(&clk->core->child_node); 4097 4098 if (clk->core->prepare_count) 4099 pr_warn("%s: unregistering prepared clock: %s\n", 4100 __func__, clk->core->name); 4101 4102 if (clk->core->protect_count) 4103 pr_warn("%s: unregistering protected clock: %s\n", 4104 __func__, clk->core->name); 4105 4106 kref_put(&clk->core->ref, __clk_release); 4107 free_clk(clk); 4108 unlock: 4109 clk_prepare_unlock(); 4110 } 4111 EXPORT_SYMBOL_GPL(clk_unregister); 4112 4113 /** 4114 * clk_hw_unregister - unregister a currently registered clk_hw 4115 * @hw: hardware-specific clock data to unregister 4116 */ 4117 void clk_hw_unregister(struct clk_hw *hw) 4118 { 4119 clk_unregister(hw->clk); 4120 } 4121 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4122 4123 static void devm_clk_unregister_cb(struct device *dev, void *res) 4124 { 4125 clk_unregister(*(struct clk **)res); 4126 } 4127 4128 static void devm_clk_hw_unregister_cb(struct device *dev, void *res) 4129 { 4130 clk_hw_unregister(*(struct clk_hw **)res); 4131 } 4132 4133 /** 4134 * devm_clk_register - resource managed clk_register() 4135 * @dev: device that is registering this clock 4136 * @hw: link to hardware-specific clock data 4137 * 4138 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4139 * 4140 * Clocks returned from this function are automatically clk_unregister()ed on 4141 * driver detach. See clk_register() for more information. 4142 */ 4143 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4144 { 4145 struct clk *clk; 4146 struct clk **clkp; 4147 4148 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL); 4149 if (!clkp) 4150 return ERR_PTR(-ENOMEM); 4151 4152 clk = clk_register(dev, hw); 4153 if (!IS_ERR(clk)) { 4154 *clkp = clk; 4155 devres_add(dev, clkp); 4156 } else { 4157 devres_free(clkp); 4158 } 4159 4160 return clk; 4161 } 4162 EXPORT_SYMBOL_GPL(devm_clk_register); 4163 4164 /** 4165 * devm_clk_hw_register - resource managed clk_hw_register() 4166 * @dev: device that is registering this clock 4167 * @hw: link to hardware-specific clock data 4168 * 4169 * Managed clk_hw_register(). Clocks registered by this function are 4170 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4171 * for more information. 4172 */ 4173 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4174 { 4175 struct clk_hw **hwp; 4176 int ret; 4177 4178 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL); 4179 if (!hwp) 4180 return -ENOMEM; 4181 4182 ret = clk_hw_register(dev, hw); 4183 if (!ret) { 4184 *hwp = hw; 4185 devres_add(dev, hwp); 4186 } else { 4187 devres_free(hwp); 4188 } 4189 4190 return ret; 4191 } 4192 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4193 4194 static int devm_clk_match(struct device *dev, void *res, void *data) 4195 { 4196 struct clk *c = res; 4197 if (WARN_ON(!c)) 4198 return 0; 4199 return c == data; 4200 } 4201 4202 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 4203 { 4204 struct clk_hw *hw = res; 4205 4206 if (WARN_ON(!hw)) 4207 return 0; 4208 return hw == data; 4209 } 4210 4211 /** 4212 * devm_clk_unregister - resource managed clk_unregister() 4213 * @dev: device that is unregistering the clock data 4214 * @clk: clock to unregister 4215 * 4216 * Deallocate a clock allocated with devm_clk_register(). Normally 4217 * this function will not need to be called and the resource management 4218 * code will ensure that the resource is freed. 4219 */ 4220 void devm_clk_unregister(struct device *dev, struct clk *clk) 4221 { 4222 WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk)); 4223 } 4224 EXPORT_SYMBOL_GPL(devm_clk_unregister); 4225 4226 /** 4227 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 4228 * @dev: device that is unregistering the hardware-specific clock data 4229 * @hw: link to hardware-specific clock data 4230 * 4231 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 4232 * this function will not need to be called and the resource management 4233 * code will ensure that the resource is freed. 4234 */ 4235 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 4236 { 4237 WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match, 4238 hw)); 4239 } 4240 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 4241 4242 static void devm_clk_release(struct device *dev, void *res) 4243 { 4244 clk_put(*(struct clk **)res); 4245 } 4246 4247 /** 4248 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk() 4249 * @dev: device that is registering this clock 4250 * @hw: clk_hw associated with the clk being consumed 4251 * @con_id: connection ID string on device 4252 * 4253 * Managed clk_hw_get_clk(). Clocks got with this function are 4254 * automatically clk_put() on driver detach. See clk_put() 4255 * for more information. 4256 */ 4257 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw, 4258 const char *con_id) 4259 { 4260 struct clk *clk; 4261 struct clk **clkp; 4262 4263 /* This should not happen because it would mean we have drivers 4264 * passing around clk_hw pointers instead of having the caller use 4265 * proper clk_get() style APIs 4266 */ 4267 WARN_ON_ONCE(dev != hw->core->dev); 4268 4269 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4270 if (!clkp) 4271 return ERR_PTR(-ENOMEM); 4272 4273 clk = clk_hw_get_clk(hw, con_id); 4274 if (!IS_ERR(clk)) { 4275 *clkp = clk; 4276 devres_add(dev, clkp); 4277 } else { 4278 devres_free(clkp); 4279 } 4280 4281 return clk; 4282 } 4283 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk); 4284 4285 /* 4286 * clkdev helpers 4287 */ 4288 4289 void __clk_put(struct clk *clk) 4290 { 4291 struct module *owner; 4292 4293 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4294 return; 4295 4296 clk_prepare_lock(); 4297 4298 /* 4299 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4300 * given user should be balanced with calls to clk_rate_exclusive_put() 4301 * and by that same consumer 4302 */ 4303 if (WARN_ON(clk->exclusive_count)) { 4304 /* We voiced our concern, let's sanitize the situation */ 4305 clk->core->protect_count -= (clk->exclusive_count - 1); 4306 clk_core_rate_unprotect(clk->core); 4307 clk->exclusive_count = 0; 4308 } 4309 4310 hlist_del(&clk->clks_node); 4311 if (clk->min_rate > clk->core->req_rate || 4312 clk->max_rate < clk->core->req_rate) 4313 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 4314 4315 owner = clk->core->owner; 4316 kref_put(&clk->core->ref, __clk_release); 4317 4318 clk_prepare_unlock(); 4319 4320 module_put(owner); 4321 4322 free_clk(clk); 4323 } 4324 4325 /*** clk rate change notifiers ***/ 4326 4327 /** 4328 * clk_notifier_register - add a clk rate change notifier 4329 * @clk: struct clk * to watch 4330 * @nb: struct notifier_block * with callback info 4331 * 4332 * Request notification when clk's rate changes. This uses an SRCU 4333 * notifier because we want it to block and notifier unregistrations are 4334 * uncommon. The callbacks associated with the notifier must not 4335 * re-enter into the clk framework by calling any top-level clk APIs; 4336 * this will cause a nested prepare_lock mutex. 4337 * 4338 * In all notification cases (pre, post and abort rate change) the original 4339 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4340 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4341 * 4342 * clk_notifier_register() must be called from non-atomic context. 4343 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4344 * allocation failure; otherwise, passes along the return value of 4345 * srcu_notifier_chain_register(). 4346 */ 4347 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4348 { 4349 struct clk_notifier *cn; 4350 int ret = -ENOMEM; 4351 4352 if (!clk || !nb) 4353 return -EINVAL; 4354 4355 clk_prepare_lock(); 4356 4357 /* search the list of notifiers for this clk */ 4358 list_for_each_entry(cn, &clk_notifier_list, node) 4359 if (cn->clk == clk) 4360 break; 4361 4362 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4363 if (cn->clk != clk) { 4364 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4365 if (!cn) 4366 goto out; 4367 4368 cn->clk = clk; 4369 srcu_init_notifier_head(&cn->notifier_head); 4370 4371 list_add(&cn->node, &clk_notifier_list); 4372 } 4373 4374 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4375 4376 clk->core->notifier_count++; 4377 4378 out: 4379 clk_prepare_unlock(); 4380 4381 return ret; 4382 } 4383 EXPORT_SYMBOL_GPL(clk_notifier_register); 4384 4385 /** 4386 * clk_notifier_unregister - remove a clk rate change notifier 4387 * @clk: struct clk * 4388 * @nb: struct notifier_block * with callback info 4389 * 4390 * Request no further notification for changes to 'clk' and frees memory 4391 * allocated in clk_notifier_register. 4392 * 4393 * Returns -EINVAL if called with null arguments; otherwise, passes 4394 * along the return value of srcu_notifier_chain_unregister(). 4395 */ 4396 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4397 { 4398 struct clk_notifier *cn = NULL; 4399 int ret = -EINVAL; 4400 4401 if (!clk || !nb) 4402 return -EINVAL; 4403 4404 clk_prepare_lock(); 4405 4406 list_for_each_entry(cn, &clk_notifier_list, node) 4407 if (cn->clk == clk) 4408 break; 4409 4410 if (cn->clk == clk) { 4411 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4412 4413 clk->core->notifier_count--; 4414 4415 /* XXX the notifier code should handle this better */ 4416 if (!cn->notifier_head.head) { 4417 srcu_cleanup_notifier_head(&cn->notifier_head); 4418 list_del(&cn->node); 4419 kfree(cn); 4420 } 4421 4422 } else { 4423 ret = -ENOENT; 4424 } 4425 4426 clk_prepare_unlock(); 4427 4428 return ret; 4429 } 4430 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4431 4432 struct clk_notifier_devres { 4433 struct clk *clk; 4434 struct notifier_block *nb; 4435 }; 4436 4437 static void devm_clk_notifier_release(struct device *dev, void *res) 4438 { 4439 struct clk_notifier_devres *devres = res; 4440 4441 clk_notifier_unregister(devres->clk, devres->nb); 4442 } 4443 4444 int devm_clk_notifier_register(struct device *dev, struct clk *clk, 4445 struct notifier_block *nb) 4446 { 4447 struct clk_notifier_devres *devres; 4448 int ret; 4449 4450 devres = devres_alloc(devm_clk_notifier_release, 4451 sizeof(*devres), GFP_KERNEL); 4452 4453 if (!devres) 4454 return -ENOMEM; 4455 4456 ret = clk_notifier_register(clk, nb); 4457 if (!ret) { 4458 devres->clk = clk; 4459 devres->nb = nb; 4460 } else { 4461 devres_free(devres); 4462 } 4463 4464 return ret; 4465 } 4466 EXPORT_SYMBOL_GPL(devm_clk_notifier_register); 4467 4468 #ifdef CONFIG_OF 4469 static void clk_core_reparent_orphans(void) 4470 { 4471 clk_prepare_lock(); 4472 clk_core_reparent_orphans_nolock(); 4473 clk_prepare_unlock(); 4474 } 4475 4476 /** 4477 * struct of_clk_provider - Clock provider registration structure 4478 * @link: Entry in global list of clock providers 4479 * @node: Pointer to device tree node of clock provider 4480 * @get: Get clock callback. Returns NULL or a struct clk for the 4481 * given clock specifier 4482 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4483 * struct clk_hw for the given clock specifier 4484 * @data: context pointer to be passed into @get callback 4485 */ 4486 struct of_clk_provider { 4487 struct list_head link; 4488 4489 struct device_node *node; 4490 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4491 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4492 void *data; 4493 }; 4494 4495 extern struct of_device_id __clk_of_table; 4496 static const struct of_device_id __clk_of_table_sentinel 4497 __used __section("__clk_of_table_end"); 4498 4499 static LIST_HEAD(of_clk_providers); 4500 static DEFINE_MUTEX(of_clk_mutex); 4501 4502 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4503 void *data) 4504 { 4505 return data; 4506 } 4507 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4508 4509 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4510 { 4511 return data; 4512 } 4513 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4514 4515 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4516 { 4517 struct clk_onecell_data *clk_data = data; 4518 unsigned int idx = clkspec->args[0]; 4519 4520 if (idx >= clk_data->clk_num) { 4521 pr_err("%s: invalid clock index %u\n", __func__, idx); 4522 return ERR_PTR(-EINVAL); 4523 } 4524 4525 return clk_data->clks[idx]; 4526 } 4527 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4528 4529 struct clk_hw * 4530 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4531 { 4532 struct clk_hw_onecell_data *hw_data = data; 4533 unsigned int idx = clkspec->args[0]; 4534 4535 if (idx >= hw_data->num) { 4536 pr_err("%s: invalid index %u\n", __func__, idx); 4537 return ERR_PTR(-EINVAL); 4538 } 4539 4540 return hw_data->hws[idx]; 4541 } 4542 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4543 4544 /** 4545 * of_clk_add_provider() - Register a clock provider for a node 4546 * @np: Device node pointer associated with clock provider 4547 * @clk_src_get: callback for decoding clock 4548 * @data: context pointer for @clk_src_get callback. 4549 * 4550 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4551 */ 4552 int of_clk_add_provider(struct device_node *np, 4553 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4554 void *data), 4555 void *data) 4556 { 4557 struct of_clk_provider *cp; 4558 int ret; 4559 4560 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4561 if (!cp) 4562 return -ENOMEM; 4563 4564 cp->node = of_node_get(np); 4565 cp->data = data; 4566 cp->get = clk_src_get; 4567 4568 mutex_lock(&of_clk_mutex); 4569 list_add(&cp->link, &of_clk_providers); 4570 mutex_unlock(&of_clk_mutex); 4571 pr_debug("Added clock from %pOF\n", np); 4572 4573 clk_core_reparent_orphans(); 4574 4575 ret = of_clk_set_defaults(np, true); 4576 if (ret < 0) 4577 of_clk_del_provider(np); 4578 4579 fwnode_dev_initialized(&np->fwnode, true); 4580 4581 return ret; 4582 } 4583 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4584 4585 /** 4586 * of_clk_add_hw_provider() - Register a clock provider for a node 4587 * @np: Device node pointer associated with clock provider 4588 * @get: callback for decoding clk_hw 4589 * @data: context pointer for @get callback. 4590 */ 4591 int of_clk_add_hw_provider(struct device_node *np, 4592 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4593 void *data), 4594 void *data) 4595 { 4596 struct of_clk_provider *cp; 4597 int ret; 4598 4599 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4600 if (!cp) 4601 return -ENOMEM; 4602 4603 cp->node = of_node_get(np); 4604 cp->data = data; 4605 cp->get_hw = get; 4606 4607 mutex_lock(&of_clk_mutex); 4608 list_add(&cp->link, &of_clk_providers); 4609 mutex_unlock(&of_clk_mutex); 4610 pr_debug("Added clk_hw provider from %pOF\n", np); 4611 4612 clk_core_reparent_orphans(); 4613 4614 ret = of_clk_set_defaults(np, true); 4615 if (ret < 0) 4616 of_clk_del_provider(np); 4617 4618 return ret; 4619 } 4620 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4621 4622 static void devm_of_clk_release_provider(struct device *dev, void *res) 4623 { 4624 of_clk_del_provider(*(struct device_node **)res); 4625 } 4626 4627 /* 4628 * We allow a child device to use its parent device as the clock provider node 4629 * for cases like MFD sub-devices where the child device driver wants to use 4630 * devm_*() APIs but not list the device in DT as a sub-node. 4631 */ 4632 static struct device_node *get_clk_provider_node(struct device *dev) 4633 { 4634 struct device_node *np, *parent_np; 4635 4636 np = dev->of_node; 4637 parent_np = dev->parent ? dev->parent->of_node : NULL; 4638 4639 if (!of_find_property(np, "#clock-cells", NULL)) 4640 if (of_find_property(parent_np, "#clock-cells", NULL)) 4641 np = parent_np; 4642 4643 return np; 4644 } 4645 4646 /** 4647 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4648 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4649 * @get: callback for decoding clk_hw 4650 * @data: context pointer for @get callback 4651 * 4652 * Registers clock provider for given device's node. If the device has no DT 4653 * node or if the device node lacks of clock provider information (#clock-cells) 4654 * then the parent device's node is scanned for this information. If parent node 4655 * has the #clock-cells then it is used in registration. Provider is 4656 * automatically released at device exit. 4657 * 4658 * Return: 0 on success or an errno on failure. 4659 */ 4660 int devm_of_clk_add_hw_provider(struct device *dev, 4661 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4662 void *data), 4663 void *data) 4664 { 4665 struct device_node **ptr, *np; 4666 int ret; 4667 4668 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4669 GFP_KERNEL); 4670 if (!ptr) 4671 return -ENOMEM; 4672 4673 np = get_clk_provider_node(dev); 4674 ret = of_clk_add_hw_provider(np, get, data); 4675 if (!ret) { 4676 *ptr = np; 4677 devres_add(dev, ptr); 4678 } else { 4679 devres_free(ptr); 4680 } 4681 4682 return ret; 4683 } 4684 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4685 4686 /** 4687 * of_clk_del_provider() - Remove a previously registered clock provider 4688 * @np: Device node pointer associated with clock provider 4689 */ 4690 void of_clk_del_provider(struct device_node *np) 4691 { 4692 struct of_clk_provider *cp; 4693 4694 mutex_lock(&of_clk_mutex); 4695 list_for_each_entry(cp, &of_clk_providers, link) { 4696 if (cp->node == np) { 4697 list_del(&cp->link); 4698 fwnode_dev_initialized(&np->fwnode, false); 4699 of_node_put(cp->node); 4700 kfree(cp); 4701 break; 4702 } 4703 } 4704 mutex_unlock(&of_clk_mutex); 4705 } 4706 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4707 4708 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4709 { 4710 struct device_node **np = res; 4711 4712 if (WARN_ON(!np || !*np)) 4713 return 0; 4714 4715 return *np == data; 4716 } 4717 4718 /** 4719 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4720 * @dev: Device to whose lifetime the clock provider was bound 4721 */ 4722 void devm_of_clk_del_provider(struct device *dev) 4723 { 4724 int ret; 4725 struct device_node *np = get_clk_provider_node(dev); 4726 4727 ret = devres_release(dev, devm_of_clk_release_provider, 4728 devm_clk_provider_match, np); 4729 4730 WARN_ON(ret); 4731 } 4732 EXPORT_SYMBOL(devm_of_clk_del_provider); 4733 4734 /** 4735 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4736 * @np: device node to parse clock specifier from 4737 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4738 * @name: clock name to find and parse. If name is NULL, the index is used 4739 * @out_args: Result of parsing the clock specifier 4740 * 4741 * Parses a device node's "clocks" and "clock-names" properties to find the 4742 * phandle and cells for the index or name that is desired. The resulting clock 4743 * specifier is placed into @out_args, or an errno is returned when there's a 4744 * parsing error. The @index argument is ignored if @name is non-NULL. 4745 * 4746 * Example: 4747 * 4748 * phandle1: clock-controller@1 { 4749 * #clock-cells = <2>; 4750 * } 4751 * 4752 * phandle2: clock-controller@2 { 4753 * #clock-cells = <1>; 4754 * } 4755 * 4756 * clock-consumer@3 { 4757 * clocks = <&phandle1 1 2 &phandle2 3>; 4758 * clock-names = "name1", "name2"; 4759 * } 4760 * 4761 * To get a device_node for `clock-controller@2' node you may call this 4762 * function a few different ways: 4763 * 4764 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4765 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4766 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4767 * 4768 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4769 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4770 * the "clock-names" property of @np. 4771 */ 4772 static int of_parse_clkspec(const struct device_node *np, int index, 4773 const char *name, struct of_phandle_args *out_args) 4774 { 4775 int ret = -ENOENT; 4776 4777 /* Walk up the tree of devices looking for a clock property that matches */ 4778 while (np) { 4779 /* 4780 * For named clocks, first look up the name in the 4781 * "clock-names" property. If it cannot be found, then index 4782 * will be an error code and of_parse_phandle_with_args() will 4783 * return -EINVAL. 4784 */ 4785 if (name) 4786 index = of_property_match_string(np, "clock-names", name); 4787 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4788 index, out_args); 4789 if (!ret) 4790 break; 4791 if (name && index >= 0) 4792 break; 4793 4794 /* 4795 * No matching clock found on this node. If the parent node 4796 * has a "clock-ranges" property, then we can try one of its 4797 * clocks. 4798 */ 4799 np = np->parent; 4800 if (np && !of_get_property(np, "clock-ranges", NULL)) 4801 break; 4802 index = 0; 4803 } 4804 4805 return ret; 4806 } 4807 4808 static struct clk_hw * 4809 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4810 struct of_phandle_args *clkspec) 4811 { 4812 struct clk *clk; 4813 4814 if (provider->get_hw) 4815 return provider->get_hw(clkspec, provider->data); 4816 4817 clk = provider->get(clkspec, provider->data); 4818 if (IS_ERR(clk)) 4819 return ERR_CAST(clk); 4820 return __clk_get_hw(clk); 4821 } 4822 4823 static struct clk_hw * 4824 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4825 { 4826 struct of_clk_provider *provider; 4827 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4828 4829 if (!clkspec) 4830 return ERR_PTR(-EINVAL); 4831 4832 mutex_lock(&of_clk_mutex); 4833 list_for_each_entry(provider, &of_clk_providers, link) { 4834 if (provider->node == clkspec->np) { 4835 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4836 if (!IS_ERR(hw)) 4837 break; 4838 } 4839 } 4840 mutex_unlock(&of_clk_mutex); 4841 4842 return hw; 4843 } 4844 4845 /** 4846 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4847 * @clkspec: pointer to a clock specifier data structure 4848 * 4849 * This function looks up a struct clk from the registered list of clock 4850 * providers, an input is a clock specifier data structure as returned 4851 * from the of_parse_phandle_with_args() function call. 4852 */ 4853 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4854 { 4855 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4856 4857 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4858 } 4859 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4860 4861 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4862 const char *con_id) 4863 { 4864 int ret; 4865 struct clk_hw *hw; 4866 struct of_phandle_args clkspec; 4867 4868 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4869 if (ret) 4870 return ERR_PTR(ret); 4871 4872 hw = of_clk_get_hw_from_clkspec(&clkspec); 4873 of_node_put(clkspec.np); 4874 4875 return hw; 4876 } 4877 4878 static struct clk *__of_clk_get(struct device_node *np, 4879 int index, const char *dev_id, 4880 const char *con_id) 4881 { 4882 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4883 4884 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4885 } 4886 4887 struct clk *of_clk_get(struct device_node *np, int index) 4888 { 4889 return __of_clk_get(np, index, np->full_name, NULL); 4890 } 4891 EXPORT_SYMBOL(of_clk_get); 4892 4893 /** 4894 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4895 * @np: pointer to clock consumer node 4896 * @name: name of consumer's clock input, or NULL for the first clock reference 4897 * 4898 * This function parses the clocks and clock-names properties, 4899 * and uses them to look up the struct clk from the registered list of clock 4900 * providers. 4901 */ 4902 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4903 { 4904 if (!np) 4905 return ERR_PTR(-ENOENT); 4906 4907 return __of_clk_get(np, 0, np->full_name, name); 4908 } 4909 EXPORT_SYMBOL(of_clk_get_by_name); 4910 4911 /** 4912 * of_clk_get_parent_count() - Count the number of clocks a device node has 4913 * @np: device node to count 4914 * 4915 * Returns: The number of clocks that are possible parents of this node 4916 */ 4917 unsigned int of_clk_get_parent_count(const struct device_node *np) 4918 { 4919 int count; 4920 4921 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4922 if (count < 0) 4923 return 0; 4924 4925 return count; 4926 } 4927 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4928 4929 const char *of_clk_get_parent_name(const struct device_node *np, int index) 4930 { 4931 struct of_phandle_args clkspec; 4932 struct property *prop; 4933 const char *clk_name; 4934 const __be32 *vp; 4935 u32 pv; 4936 int rc; 4937 int count; 4938 struct clk *clk; 4939 4940 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 4941 &clkspec); 4942 if (rc) 4943 return NULL; 4944 4945 index = clkspec.args_count ? clkspec.args[0] : 0; 4946 count = 0; 4947 4948 /* if there is an indices property, use it to transfer the index 4949 * specified into an array offset for the clock-output-names property. 4950 */ 4951 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 4952 if (index == pv) { 4953 index = count; 4954 break; 4955 } 4956 count++; 4957 } 4958 /* We went off the end of 'clock-indices' without finding it */ 4959 if (prop && !vp) 4960 return NULL; 4961 4962 if (of_property_read_string_index(clkspec.np, "clock-output-names", 4963 index, 4964 &clk_name) < 0) { 4965 /* 4966 * Best effort to get the name if the clock has been 4967 * registered with the framework. If the clock isn't 4968 * registered, we return the node name as the name of 4969 * the clock as long as #clock-cells = 0. 4970 */ 4971 clk = of_clk_get_from_provider(&clkspec); 4972 if (IS_ERR(clk)) { 4973 if (clkspec.args_count == 0) 4974 clk_name = clkspec.np->name; 4975 else 4976 clk_name = NULL; 4977 } else { 4978 clk_name = __clk_get_name(clk); 4979 clk_put(clk); 4980 } 4981 } 4982 4983 4984 of_node_put(clkspec.np); 4985 return clk_name; 4986 } 4987 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 4988 4989 /** 4990 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 4991 * number of parents 4992 * @np: Device node pointer associated with clock provider 4993 * @parents: pointer to char array that hold the parents' names 4994 * @size: size of the @parents array 4995 * 4996 * Return: number of parents for the clock node. 4997 */ 4998 int of_clk_parent_fill(struct device_node *np, const char **parents, 4999 unsigned int size) 5000 { 5001 unsigned int i = 0; 5002 5003 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 5004 i++; 5005 5006 return i; 5007 } 5008 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 5009 5010 struct clock_provider { 5011 void (*clk_init_cb)(struct device_node *); 5012 struct device_node *np; 5013 struct list_head node; 5014 }; 5015 5016 /* 5017 * This function looks for a parent clock. If there is one, then it 5018 * checks that the provider for this parent clock was initialized, in 5019 * this case the parent clock will be ready. 5020 */ 5021 static int parent_ready(struct device_node *np) 5022 { 5023 int i = 0; 5024 5025 while (true) { 5026 struct clk *clk = of_clk_get(np, i); 5027 5028 /* this parent is ready we can check the next one */ 5029 if (!IS_ERR(clk)) { 5030 clk_put(clk); 5031 i++; 5032 continue; 5033 } 5034 5035 /* at least one parent is not ready, we exit now */ 5036 if (PTR_ERR(clk) == -EPROBE_DEFER) 5037 return 0; 5038 5039 /* 5040 * Here we make assumption that the device tree is 5041 * written correctly. So an error means that there is 5042 * no more parent. As we didn't exit yet, then the 5043 * previous parent are ready. If there is no clock 5044 * parent, no need to wait for them, then we can 5045 * consider their absence as being ready 5046 */ 5047 return 1; 5048 } 5049 } 5050 5051 /** 5052 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5053 * @np: Device node pointer associated with clock provider 5054 * @index: clock index 5055 * @flags: pointer to top-level framework flags 5056 * 5057 * Detects if the clock-critical property exists and, if so, sets the 5058 * corresponding CLK_IS_CRITICAL flag. 5059 * 5060 * Do not use this function. It exists only for legacy Device Tree 5061 * bindings, such as the one-clock-per-node style that are outdated. 5062 * Those bindings typically put all clock data into .dts and the Linux 5063 * driver has no clock data, thus making it impossible to set this flag 5064 * correctly from the driver. Only those drivers may call 5065 * of_clk_detect_critical from their setup functions. 5066 * 5067 * Return: error code or zero on success 5068 */ 5069 int of_clk_detect_critical(struct device_node *np, int index, 5070 unsigned long *flags) 5071 { 5072 struct property *prop; 5073 const __be32 *cur; 5074 uint32_t idx; 5075 5076 if (!np || !flags) 5077 return -EINVAL; 5078 5079 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 5080 if (index == idx) 5081 *flags |= CLK_IS_CRITICAL; 5082 5083 return 0; 5084 } 5085 5086 /** 5087 * of_clk_init() - Scan and init clock providers from the DT 5088 * @matches: array of compatible values and init functions for providers. 5089 * 5090 * This function scans the device tree for matching clock providers 5091 * and calls their initialization functions. It also does it by trying 5092 * to follow the dependencies. 5093 */ 5094 void __init of_clk_init(const struct of_device_id *matches) 5095 { 5096 const struct of_device_id *match; 5097 struct device_node *np; 5098 struct clock_provider *clk_provider, *next; 5099 bool is_init_done; 5100 bool force = false; 5101 LIST_HEAD(clk_provider_list); 5102 5103 if (!matches) 5104 matches = &__clk_of_table; 5105 5106 /* First prepare the list of the clocks providers */ 5107 for_each_matching_node_and_match(np, matches, &match) { 5108 struct clock_provider *parent; 5109 5110 if (!of_device_is_available(np)) 5111 continue; 5112 5113 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5114 if (!parent) { 5115 list_for_each_entry_safe(clk_provider, next, 5116 &clk_provider_list, node) { 5117 list_del(&clk_provider->node); 5118 of_node_put(clk_provider->np); 5119 kfree(clk_provider); 5120 } 5121 of_node_put(np); 5122 return; 5123 } 5124 5125 parent->clk_init_cb = match->data; 5126 parent->np = of_node_get(np); 5127 list_add_tail(&parent->node, &clk_provider_list); 5128 } 5129 5130 while (!list_empty(&clk_provider_list)) { 5131 is_init_done = false; 5132 list_for_each_entry_safe(clk_provider, next, 5133 &clk_provider_list, node) { 5134 if (force || parent_ready(clk_provider->np)) { 5135 5136 /* Don't populate platform devices */ 5137 of_node_set_flag(clk_provider->np, 5138 OF_POPULATED); 5139 5140 clk_provider->clk_init_cb(clk_provider->np); 5141 of_clk_set_defaults(clk_provider->np, true); 5142 5143 list_del(&clk_provider->node); 5144 of_node_put(clk_provider->np); 5145 kfree(clk_provider); 5146 is_init_done = true; 5147 } 5148 } 5149 5150 /* 5151 * We didn't manage to initialize any of the 5152 * remaining providers during the last loop, so now we 5153 * initialize all the remaining ones unconditionally 5154 * in case the clock parent was not mandatory 5155 */ 5156 if (!is_init_done) 5157 force = true; 5158 } 5159 } 5160 #endif 5161