xref: /linux/drivers/clk/clk.c (revision b60a5b8dcf49af9f2c60ae82e0383ee8e62a9a52)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 /***    private data structures    ***/
41 
42 struct clk_core {
43 	const char		*name;
44 	const struct clk_ops	*ops;
45 	struct clk_hw		*hw;
46 	struct module		*owner;
47 	struct device		*dev;
48 	struct clk_core		*parent;
49 	const char		**parent_names;
50 	struct clk_core		**parents;
51 	u8			num_parents;
52 	u8			new_parent_index;
53 	unsigned long		rate;
54 	unsigned long		req_rate;
55 	unsigned long		new_rate;
56 	struct clk_core		*new_parent;
57 	struct clk_core		*new_child;
58 	unsigned long		flags;
59 	bool			orphan;
60 	bool			rpm_enabled;
61 	unsigned int		enable_count;
62 	unsigned int		prepare_count;
63 	unsigned int		protect_count;
64 	unsigned long		min_rate;
65 	unsigned long		max_rate;
66 	unsigned long		accuracy;
67 	int			phase;
68 	struct clk_duty		duty;
69 	struct hlist_head	children;
70 	struct hlist_node	child_node;
71 	struct hlist_head	clks;
72 	unsigned int		notifier_count;
73 #ifdef CONFIG_DEBUG_FS
74 	struct dentry		*dentry;
75 	struct hlist_node	debug_node;
76 #endif
77 	struct kref		ref;
78 };
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/clk.h>
82 
83 struct clk {
84 	struct clk_core	*core;
85 	struct device *dev;
86 	const char *dev_id;
87 	const char *con_id;
88 	unsigned long min_rate;
89 	unsigned long max_rate;
90 	unsigned int exclusive_count;
91 	struct hlist_node clks_node;
92 };
93 
94 /***           runtime pm          ***/
95 static int clk_pm_runtime_get(struct clk_core *core)
96 {
97 	int ret;
98 
99 	if (!core->rpm_enabled)
100 		return 0;
101 
102 	ret = pm_runtime_get_sync(core->dev);
103 	return ret < 0 ? ret : 0;
104 }
105 
106 static void clk_pm_runtime_put(struct clk_core *core)
107 {
108 	if (!core->rpm_enabled)
109 		return;
110 
111 	pm_runtime_put_sync(core->dev);
112 }
113 
114 /***           locking             ***/
115 static void clk_prepare_lock(void)
116 {
117 	if (!mutex_trylock(&prepare_lock)) {
118 		if (prepare_owner == current) {
119 			prepare_refcnt++;
120 			return;
121 		}
122 		mutex_lock(&prepare_lock);
123 	}
124 	WARN_ON_ONCE(prepare_owner != NULL);
125 	WARN_ON_ONCE(prepare_refcnt != 0);
126 	prepare_owner = current;
127 	prepare_refcnt = 1;
128 }
129 
130 static void clk_prepare_unlock(void)
131 {
132 	WARN_ON_ONCE(prepare_owner != current);
133 	WARN_ON_ONCE(prepare_refcnt == 0);
134 
135 	if (--prepare_refcnt)
136 		return;
137 	prepare_owner = NULL;
138 	mutex_unlock(&prepare_lock);
139 }
140 
141 static unsigned long clk_enable_lock(void)
142 	__acquires(enable_lock)
143 {
144 	unsigned long flags;
145 
146 	/*
147 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
148 	 * we already hold the lock. So, in that case, we rely only on
149 	 * reference counting.
150 	 */
151 	if (!IS_ENABLED(CONFIG_SMP) ||
152 	    !spin_trylock_irqsave(&enable_lock, flags)) {
153 		if (enable_owner == current) {
154 			enable_refcnt++;
155 			__acquire(enable_lock);
156 			if (!IS_ENABLED(CONFIG_SMP))
157 				local_save_flags(flags);
158 			return flags;
159 		}
160 		spin_lock_irqsave(&enable_lock, flags);
161 	}
162 	WARN_ON_ONCE(enable_owner != NULL);
163 	WARN_ON_ONCE(enable_refcnt != 0);
164 	enable_owner = current;
165 	enable_refcnt = 1;
166 	return flags;
167 }
168 
169 static void clk_enable_unlock(unsigned long flags)
170 	__releases(enable_lock)
171 {
172 	WARN_ON_ONCE(enable_owner != current);
173 	WARN_ON_ONCE(enable_refcnt == 0);
174 
175 	if (--enable_refcnt) {
176 		__release(enable_lock);
177 		return;
178 	}
179 	enable_owner = NULL;
180 	spin_unlock_irqrestore(&enable_lock, flags);
181 }
182 
183 static bool clk_core_rate_is_protected(struct clk_core *core)
184 {
185 	return core->protect_count;
186 }
187 
188 static bool clk_core_is_prepared(struct clk_core *core)
189 {
190 	bool ret = false;
191 
192 	/*
193 	 * .is_prepared is optional for clocks that can prepare
194 	 * fall back to software usage counter if it is missing
195 	 */
196 	if (!core->ops->is_prepared)
197 		return core->prepare_count;
198 
199 	if (!clk_pm_runtime_get(core)) {
200 		ret = core->ops->is_prepared(core->hw);
201 		clk_pm_runtime_put(core);
202 	}
203 
204 	return ret;
205 }
206 
207 static bool clk_core_is_enabled(struct clk_core *core)
208 {
209 	bool ret = false;
210 
211 	/*
212 	 * .is_enabled is only mandatory for clocks that gate
213 	 * fall back to software usage counter if .is_enabled is missing
214 	 */
215 	if (!core->ops->is_enabled)
216 		return core->enable_count;
217 
218 	/*
219 	 * Check if clock controller's device is runtime active before
220 	 * calling .is_enabled callback. If not, assume that clock is
221 	 * disabled, because we might be called from atomic context, from
222 	 * which pm_runtime_get() is not allowed.
223 	 * This function is called mainly from clk_disable_unused_subtree,
224 	 * which ensures proper runtime pm activation of controller before
225 	 * taking enable spinlock, but the below check is needed if one tries
226 	 * to call it from other places.
227 	 */
228 	if (core->rpm_enabled) {
229 		pm_runtime_get_noresume(core->dev);
230 		if (!pm_runtime_active(core->dev)) {
231 			ret = false;
232 			goto done;
233 		}
234 	}
235 
236 	ret = core->ops->is_enabled(core->hw);
237 done:
238 	if (core->rpm_enabled)
239 		pm_runtime_put(core->dev);
240 
241 	return ret;
242 }
243 
244 /***    helper functions   ***/
245 
246 const char *__clk_get_name(const struct clk *clk)
247 {
248 	return !clk ? NULL : clk->core->name;
249 }
250 EXPORT_SYMBOL_GPL(__clk_get_name);
251 
252 const char *clk_hw_get_name(const struct clk_hw *hw)
253 {
254 	return hw->core->name;
255 }
256 EXPORT_SYMBOL_GPL(clk_hw_get_name);
257 
258 struct clk_hw *__clk_get_hw(struct clk *clk)
259 {
260 	return !clk ? NULL : clk->core->hw;
261 }
262 EXPORT_SYMBOL_GPL(__clk_get_hw);
263 
264 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
265 {
266 	return hw->core->num_parents;
267 }
268 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
269 
270 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
271 {
272 	return hw->core->parent ? hw->core->parent->hw : NULL;
273 }
274 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
275 
276 static struct clk_core *__clk_lookup_subtree(const char *name,
277 					     struct clk_core *core)
278 {
279 	struct clk_core *child;
280 	struct clk_core *ret;
281 
282 	if (!strcmp(core->name, name))
283 		return core;
284 
285 	hlist_for_each_entry(child, &core->children, child_node) {
286 		ret = __clk_lookup_subtree(name, child);
287 		if (ret)
288 			return ret;
289 	}
290 
291 	return NULL;
292 }
293 
294 static struct clk_core *clk_core_lookup(const char *name)
295 {
296 	struct clk_core *root_clk;
297 	struct clk_core *ret;
298 
299 	if (!name)
300 		return NULL;
301 
302 	/* search the 'proper' clk tree first */
303 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
304 		ret = __clk_lookup_subtree(name, root_clk);
305 		if (ret)
306 			return ret;
307 	}
308 
309 	/* if not found, then search the orphan tree */
310 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
311 		ret = __clk_lookup_subtree(name, root_clk);
312 		if (ret)
313 			return ret;
314 	}
315 
316 	return NULL;
317 }
318 
319 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
320 							 u8 index)
321 {
322 	if (!core || index >= core->num_parents)
323 		return NULL;
324 
325 	if (!core->parents[index])
326 		core->parents[index] =
327 				clk_core_lookup(core->parent_names[index]);
328 
329 	return core->parents[index];
330 }
331 
332 struct clk_hw *
333 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
334 {
335 	struct clk_core *parent;
336 
337 	parent = clk_core_get_parent_by_index(hw->core, index);
338 
339 	return !parent ? NULL : parent->hw;
340 }
341 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
342 
343 unsigned int __clk_get_enable_count(struct clk *clk)
344 {
345 	return !clk ? 0 : clk->core->enable_count;
346 }
347 
348 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
349 {
350 	unsigned long ret;
351 
352 	if (!core) {
353 		ret = 0;
354 		goto out;
355 	}
356 
357 	ret = core->rate;
358 
359 	if (!core->num_parents)
360 		goto out;
361 
362 	if (!core->parent)
363 		ret = 0;
364 
365 out:
366 	return ret;
367 }
368 
369 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
370 {
371 	return clk_core_get_rate_nolock(hw->core);
372 }
373 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
374 
375 static unsigned long __clk_get_accuracy(struct clk_core *core)
376 {
377 	if (!core)
378 		return 0;
379 
380 	return core->accuracy;
381 }
382 
383 unsigned long __clk_get_flags(struct clk *clk)
384 {
385 	return !clk ? 0 : clk->core->flags;
386 }
387 EXPORT_SYMBOL_GPL(__clk_get_flags);
388 
389 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
390 {
391 	return hw->core->flags;
392 }
393 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
394 
395 bool clk_hw_is_prepared(const struct clk_hw *hw)
396 {
397 	return clk_core_is_prepared(hw->core);
398 }
399 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
400 
401 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
402 {
403 	return clk_core_rate_is_protected(hw->core);
404 }
405 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
406 
407 bool clk_hw_is_enabled(const struct clk_hw *hw)
408 {
409 	return clk_core_is_enabled(hw->core);
410 }
411 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
412 
413 bool __clk_is_enabled(struct clk *clk)
414 {
415 	if (!clk)
416 		return false;
417 
418 	return clk_core_is_enabled(clk->core);
419 }
420 EXPORT_SYMBOL_GPL(__clk_is_enabled);
421 
422 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
423 			   unsigned long best, unsigned long flags)
424 {
425 	if (flags & CLK_MUX_ROUND_CLOSEST)
426 		return abs(now - rate) < abs(best - rate);
427 
428 	return now <= rate && now > best;
429 }
430 
431 int clk_mux_determine_rate_flags(struct clk_hw *hw,
432 				 struct clk_rate_request *req,
433 				 unsigned long flags)
434 {
435 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
436 	int i, num_parents, ret;
437 	unsigned long best = 0;
438 	struct clk_rate_request parent_req = *req;
439 
440 	/* if NO_REPARENT flag set, pass through to current parent */
441 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
442 		parent = core->parent;
443 		if (core->flags & CLK_SET_RATE_PARENT) {
444 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
445 						   &parent_req);
446 			if (ret)
447 				return ret;
448 
449 			best = parent_req.rate;
450 		} else if (parent) {
451 			best = clk_core_get_rate_nolock(parent);
452 		} else {
453 			best = clk_core_get_rate_nolock(core);
454 		}
455 
456 		goto out;
457 	}
458 
459 	/* find the parent that can provide the fastest rate <= rate */
460 	num_parents = core->num_parents;
461 	for (i = 0; i < num_parents; i++) {
462 		parent = clk_core_get_parent_by_index(core, i);
463 		if (!parent)
464 			continue;
465 
466 		if (core->flags & CLK_SET_RATE_PARENT) {
467 			parent_req = *req;
468 			ret = __clk_determine_rate(parent->hw, &parent_req);
469 			if (ret)
470 				continue;
471 		} else {
472 			parent_req.rate = clk_core_get_rate_nolock(parent);
473 		}
474 
475 		if (mux_is_better_rate(req->rate, parent_req.rate,
476 				       best, flags)) {
477 			best_parent = parent;
478 			best = parent_req.rate;
479 		}
480 	}
481 
482 	if (!best_parent)
483 		return -EINVAL;
484 
485 out:
486 	if (best_parent)
487 		req->best_parent_hw = best_parent->hw;
488 	req->best_parent_rate = best;
489 	req->rate = best;
490 
491 	return 0;
492 }
493 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
494 
495 struct clk *__clk_lookup(const char *name)
496 {
497 	struct clk_core *core = clk_core_lookup(name);
498 
499 	return !core ? NULL : core->hw->clk;
500 }
501 
502 static void clk_core_get_boundaries(struct clk_core *core,
503 				    unsigned long *min_rate,
504 				    unsigned long *max_rate)
505 {
506 	struct clk *clk_user;
507 
508 	*min_rate = core->min_rate;
509 	*max_rate = core->max_rate;
510 
511 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
512 		*min_rate = max(*min_rate, clk_user->min_rate);
513 
514 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
515 		*max_rate = min(*max_rate, clk_user->max_rate);
516 }
517 
518 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
519 			   unsigned long max_rate)
520 {
521 	hw->core->min_rate = min_rate;
522 	hw->core->max_rate = max_rate;
523 }
524 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
525 
526 /*
527  * Helper for finding best parent to provide a given frequency. This can be used
528  * directly as a determine_rate callback (e.g. for a mux), or from a more
529  * complex clock that may combine a mux with other operations.
530  */
531 int __clk_mux_determine_rate(struct clk_hw *hw,
532 			     struct clk_rate_request *req)
533 {
534 	return clk_mux_determine_rate_flags(hw, req, 0);
535 }
536 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
537 
538 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
539 				     struct clk_rate_request *req)
540 {
541 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
542 }
543 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
544 
545 /***        clk api        ***/
546 
547 static void clk_core_rate_unprotect(struct clk_core *core)
548 {
549 	lockdep_assert_held(&prepare_lock);
550 
551 	if (!core)
552 		return;
553 
554 	if (WARN(core->protect_count == 0,
555 	    "%s already unprotected\n", core->name))
556 		return;
557 
558 	if (--core->protect_count > 0)
559 		return;
560 
561 	clk_core_rate_unprotect(core->parent);
562 }
563 
564 static int clk_core_rate_nuke_protect(struct clk_core *core)
565 {
566 	int ret;
567 
568 	lockdep_assert_held(&prepare_lock);
569 
570 	if (!core)
571 		return -EINVAL;
572 
573 	if (core->protect_count == 0)
574 		return 0;
575 
576 	ret = core->protect_count;
577 	core->protect_count = 1;
578 	clk_core_rate_unprotect(core);
579 
580 	return ret;
581 }
582 
583 /**
584  * clk_rate_exclusive_put - release exclusivity over clock rate control
585  * @clk: the clk over which the exclusivity is released
586  *
587  * clk_rate_exclusive_put() completes a critical section during which a clock
588  * consumer cannot tolerate any other consumer making any operation on the
589  * clock which could result in a rate change or rate glitch. Exclusive clocks
590  * cannot have their rate changed, either directly or indirectly due to changes
591  * further up the parent chain of clocks. As a result, clocks up parent chain
592  * also get under exclusive control of the calling consumer.
593  *
594  * If exlusivity is claimed more than once on clock, even by the same consumer,
595  * the rate effectively gets locked as exclusivity can't be preempted.
596  *
597  * Calls to clk_rate_exclusive_put() must be balanced with calls to
598  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
599  * error status.
600  */
601 void clk_rate_exclusive_put(struct clk *clk)
602 {
603 	if (!clk)
604 		return;
605 
606 	clk_prepare_lock();
607 
608 	/*
609 	 * if there is something wrong with this consumer protect count, stop
610 	 * here before messing with the provider
611 	 */
612 	if (WARN_ON(clk->exclusive_count <= 0))
613 		goto out;
614 
615 	clk_core_rate_unprotect(clk->core);
616 	clk->exclusive_count--;
617 out:
618 	clk_prepare_unlock();
619 }
620 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
621 
622 static void clk_core_rate_protect(struct clk_core *core)
623 {
624 	lockdep_assert_held(&prepare_lock);
625 
626 	if (!core)
627 		return;
628 
629 	if (core->protect_count == 0)
630 		clk_core_rate_protect(core->parent);
631 
632 	core->protect_count++;
633 }
634 
635 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
636 {
637 	lockdep_assert_held(&prepare_lock);
638 
639 	if (!core)
640 		return;
641 
642 	if (count == 0)
643 		return;
644 
645 	clk_core_rate_protect(core);
646 	core->protect_count = count;
647 }
648 
649 /**
650  * clk_rate_exclusive_get - get exclusivity over the clk rate control
651  * @clk: the clk over which the exclusity of rate control is requested
652  *
653  * clk_rate_exlusive_get() begins a critical section during which a clock
654  * consumer cannot tolerate any other consumer making any operation on the
655  * clock which could result in a rate change or rate glitch. Exclusive clocks
656  * cannot have their rate changed, either directly or indirectly due to changes
657  * further up the parent chain of clocks. As a result, clocks up parent chain
658  * also get under exclusive control of the calling consumer.
659  *
660  * If exlusivity is claimed more than once on clock, even by the same consumer,
661  * the rate effectively gets locked as exclusivity can't be preempted.
662  *
663  * Calls to clk_rate_exclusive_get() should be balanced with calls to
664  * clk_rate_exclusive_put(). Calls to this function may sleep.
665  * Returns 0 on success, -EERROR otherwise
666  */
667 int clk_rate_exclusive_get(struct clk *clk)
668 {
669 	if (!clk)
670 		return 0;
671 
672 	clk_prepare_lock();
673 	clk_core_rate_protect(clk->core);
674 	clk->exclusive_count++;
675 	clk_prepare_unlock();
676 
677 	return 0;
678 }
679 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
680 
681 static void clk_core_unprepare(struct clk_core *core)
682 {
683 	lockdep_assert_held(&prepare_lock);
684 
685 	if (!core)
686 		return;
687 
688 	if (WARN(core->prepare_count == 0,
689 	    "%s already unprepared\n", core->name))
690 		return;
691 
692 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
693 	    "Unpreparing critical %s\n", core->name))
694 		return;
695 
696 	if (core->flags & CLK_SET_RATE_GATE)
697 		clk_core_rate_unprotect(core);
698 
699 	if (--core->prepare_count > 0)
700 		return;
701 
702 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
703 
704 	trace_clk_unprepare(core);
705 
706 	if (core->ops->unprepare)
707 		core->ops->unprepare(core->hw);
708 
709 	clk_pm_runtime_put(core);
710 
711 	trace_clk_unprepare_complete(core);
712 	clk_core_unprepare(core->parent);
713 }
714 
715 static void clk_core_unprepare_lock(struct clk_core *core)
716 {
717 	clk_prepare_lock();
718 	clk_core_unprepare(core);
719 	clk_prepare_unlock();
720 }
721 
722 /**
723  * clk_unprepare - undo preparation of a clock source
724  * @clk: the clk being unprepared
725  *
726  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
727  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
728  * if the operation may sleep.  One example is a clk which is accessed over
729  * I2c.  In the complex case a clk gate operation may require a fast and a slow
730  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
731  * exclusive.  In fact clk_disable must be called before clk_unprepare.
732  */
733 void clk_unprepare(struct clk *clk)
734 {
735 	if (IS_ERR_OR_NULL(clk))
736 		return;
737 
738 	clk_core_unprepare_lock(clk->core);
739 }
740 EXPORT_SYMBOL_GPL(clk_unprepare);
741 
742 static int clk_core_prepare(struct clk_core *core)
743 {
744 	int ret = 0;
745 
746 	lockdep_assert_held(&prepare_lock);
747 
748 	if (!core)
749 		return 0;
750 
751 	if (core->prepare_count == 0) {
752 		ret = clk_pm_runtime_get(core);
753 		if (ret)
754 			return ret;
755 
756 		ret = clk_core_prepare(core->parent);
757 		if (ret)
758 			goto runtime_put;
759 
760 		trace_clk_prepare(core);
761 
762 		if (core->ops->prepare)
763 			ret = core->ops->prepare(core->hw);
764 
765 		trace_clk_prepare_complete(core);
766 
767 		if (ret)
768 			goto unprepare;
769 	}
770 
771 	core->prepare_count++;
772 
773 	/*
774 	 * CLK_SET_RATE_GATE is a special case of clock protection
775 	 * Instead of a consumer claiming exclusive rate control, it is
776 	 * actually the provider which prevents any consumer from making any
777 	 * operation which could result in a rate change or rate glitch while
778 	 * the clock is prepared.
779 	 */
780 	if (core->flags & CLK_SET_RATE_GATE)
781 		clk_core_rate_protect(core);
782 
783 	return 0;
784 unprepare:
785 	clk_core_unprepare(core->parent);
786 runtime_put:
787 	clk_pm_runtime_put(core);
788 	return ret;
789 }
790 
791 static int clk_core_prepare_lock(struct clk_core *core)
792 {
793 	int ret;
794 
795 	clk_prepare_lock();
796 	ret = clk_core_prepare(core);
797 	clk_prepare_unlock();
798 
799 	return ret;
800 }
801 
802 /**
803  * clk_prepare - prepare a clock source
804  * @clk: the clk being prepared
805  *
806  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
807  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
808  * operation may sleep.  One example is a clk which is accessed over I2c.  In
809  * the complex case a clk ungate operation may require a fast and a slow part.
810  * It is this reason that clk_prepare and clk_enable are not mutually
811  * exclusive.  In fact clk_prepare must be called before clk_enable.
812  * Returns 0 on success, -EERROR otherwise.
813  */
814 int clk_prepare(struct clk *clk)
815 {
816 	if (!clk)
817 		return 0;
818 
819 	return clk_core_prepare_lock(clk->core);
820 }
821 EXPORT_SYMBOL_GPL(clk_prepare);
822 
823 static void clk_core_disable(struct clk_core *core)
824 {
825 	lockdep_assert_held(&enable_lock);
826 
827 	if (!core)
828 		return;
829 
830 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
831 		return;
832 
833 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
834 	    "Disabling critical %s\n", core->name))
835 		return;
836 
837 	if (--core->enable_count > 0)
838 		return;
839 
840 	trace_clk_disable_rcuidle(core);
841 
842 	if (core->ops->disable)
843 		core->ops->disable(core->hw);
844 
845 	trace_clk_disable_complete_rcuidle(core);
846 
847 	clk_core_disable(core->parent);
848 }
849 
850 static void clk_core_disable_lock(struct clk_core *core)
851 {
852 	unsigned long flags;
853 
854 	flags = clk_enable_lock();
855 	clk_core_disable(core);
856 	clk_enable_unlock(flags);
857 }
858 
859 /**
860  * clk_disable - gate a clock
861  * @clk: the clk being gated
862  *
863  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
864  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
865  * clk if the operation is fast and will never sleep.  One example is a
866  * SoC-internal clk which is controlled via simple register writes.  In the
867  * complex case a clk gate operation may require a fast and a slow part.  It is
868  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
869  * In fact clk_disable must be called before clk_unprepare.
870  */
871 void clk_disable(struct clk *clk)
872 {
873 	if (IS_ERR_OR_NULL(clk))
874 		return;
875 
876 	clk_core_disable_lock(clk->core);
877 }
878 EXPORT_SYMBOL_GPL(clk_disable);
879 
880 static int clk_core_enable(struct clk_core *core)
881 {
882 	int ret = 0;
883 
884 	lockdep_assert_held(&enable_lock);
885 
886 	if (!core)
887 		return 0;
888 
889 	if (WARN(core->prepare_count == 0,
890 	    "Enabling unprepared %s\n", core->name))
891 		return -ESHUTDOWN;
892 
893 	if (core->enable_count == 0) {
894 		ret = clk_core_enable(core->parent);
895 
896 		if (ret)
897 			return ret;
898 
899 		trace_clk_enable_rcuidle(core);
900 
901 		if (core->ops->enable)
902 			ret = core->ops->enable(core->hw);
903 
904 		trace_clk_enable_complete_rcuidle(core);
905 
906 		if (ret) {
907 			clk_core_disable(core->parent);
908 			return ret;
909 		}
910 	}
911 
912 	core->enable_count++;
913 	return 0;
914 }
915 
916 static int clk_core_enable_lock(struct clk_core *core)
917 {
918 	unsigned long flags;
919 	int ret;
920 
921 	flags = clk_enable_lock();
922 	ret = clk_core_enable(core);
923 	clk_enable_unlock(flags);
924 
925 	return ret;
926 }
927 
928 /**
929  * clk_gate_restore_context - restore context for poweroff
930  * @hw: the clk_hw pointer of clock whose state is to be restored
931  *
932  * The clock gate restore context function enables or disables
933  * the gate clocks based on the enable_count. This is done in cases
934  * where the clock context is lost and based on the enable_count
935  * the clock either needs to be enabled/disabled. This
936  * helps restore the state of gate clocks.
937  */
938 void clk_gate_restore_context(struct clk_hw *hw)
939 {
940 	struct clk_core *core = hw->core;
941 
942 	if (core->enable_count)
943 		core->ops->enable(hw);
944 	else
945 		core->ops->disable(hw);
946 }
947 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
948 
949 static int clk_core_save_context(struct clk_core *core)
950 {
951 	struct clk_core *child;
952 	int ret = 0;
953 
954 	hlist_for_each_entry(child, &core->children, child_node) {
955 		ret = clk_core_save_context(child);
956 		if (ret < 0)
957 			return ret;
958 	}
959 
960 	if (core->ops && core->ops->save_context)
961 		ret = core->ops->save_context(core->hw);
962 
963 	return ret;
964 }
965 
966 static void clk_core_restore_context(struct clk_core *core)
967 {
968 	struct clk_core *child;
969 
970 	if (core->ops && core->ops->restore_context)
971 		core->ops->restore_context(core->hw);
972 
973 	hlist_for_each_entry(child, &core->children, child_node)
974 		clk_core_restore_context(child);
975 }
976 
977 /**
978  * clk_save_context - save clock context for poweroff
979  *
980  * Saves the context of the clock register for powerstates in which the
981  * contents of the registers will be lost. Occurs deep within the suspend
982  * code.  Returns 0 on success.
983  */
984 int clk_save_context(void)
985 {
986 	struct clk_core *clk;
987 	int ret;
988 
989 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
990 		ret = clk_core_save_context(clk);
991 		if (ret < 0)
992 			return ret;
993 	}
994 
995 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
996 		ret = clk_core_save_context(clk);
997 		if (ret < 0)
998 			return ret;
999 	}
1000 
1001 	return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(clk_save_context);
1004 
1005 /**
1006  * clk_restore_context - restore clock context after poweroff
1007  *
1008  * Restore the saved clock context upon resume.
1009  *
1010  */
1011 void clk_restore_context(void)
1012 {
1013 	struct clk_core *core;
1014 
1015 	hlist_for_each_entry(core, &clk_root_list, child_node)
1016 		clk_core_restore_context(core);
1017 
1018 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1019 		clk_core_restore_context(core);
1020 }
1021 EXPORT_SYMBOL_GPL(clk_restore_context);
1022 
1023 /**
1024  * clk_enable - ungate a clock
1025  * @clk: the clk being ungated
1026  *
1027  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1028  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1029  * if the operation will never sleep.  One example is a SoC-internal clk which
1030  * is controlled via simple register writes.  In the complex case a clk ungate
1031  * operation may require a fast and a slow part.  It is this reason that
1032  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1033  * must be called before clk_enable.  Returns 0 on success, -EERROR
1034  * otherwise.
1035  */
1036 int clk_enable(struct clk *clk)
1037 {
1038 	if (!clk)
1039 		return 0;
1040 
1041 	return clk_core_enable_lock(clk->core);
1042 }
1043 EXPORT_SYMBOL_GPL(clk_enable);
1044 
1045 static int clk_core_prepare_enable(struct clk_core *core)
1046 {
1047 	int ret;
1048 
1049 	ret = clk_core_prepare_lock(core);
1050 	if (ret)
1051 		return ret;
1052 
1053 	ret = clk_core_enable_lock(core);
1054 	if (ret)
1055 		clk_core_unprepare_lock(core);
1056 
1057 	return ret;
1058 }
1059 
1060 static void clk_core_disable_unprepare(struct clk_core *core)
1061 {
1062 	clk_core_disable_lock(core);
1063 	clk_core_unprepare_lock(core);
1064 }
1065 
1066 static void clk_unprepare_unused_subtree(struct clk_core *core)
1067 {
1068 	struct clk_core *child;
1069 
1070 	lockdep_assert_held(&prepare_lock);
1071 
1072 	hlist_for_each_entry(child, &core->children, child_node)
1073 		clk_unprepare_unused_subtree(child);
1074 
1075 	if (core->prepare_count)
1076 		return;
1077 
1078 	if (core->flags & CLK_IGNORE_UNUSED)
1079 		return;
1080 
1081 	if (clk_pm_runtime_get(core))
1082 		return;
1083 
1084 	if (clk_core_is_prepared(core)) {
1085 		trace_clk_unprepare(core);
1086 		if (core->ops->unprepare_unused)
1087 			core->ops->unprepare_unused(core->hw);
1088 		else if (core->ops->unprepare)
1089 			core->ops->unprepare(core->hw);
1090 		trace_clk_unprepare_complete(core);
1091 	}
1092 
1093 	clk_pm_runtime_put(core);
1094 }
1095 
1096 static void clk_disable_unused_subtree(struct clk_core *core)
1097 {
1098 	struct clk_core *child;
1099 	unsigned long flags;
1100 
1101 	lockdep_assert_held(&prepare_lock);
1102 
1103 	hlist_for_each_entry(child, &core->children, child_node)
1104 		clk_disable_unused_subtree(child);
1105 
1106 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1107 		clk_core_prepare_enable(core->parent);
1108 
1109 	if (clk_pm_runtime_get(core))
1110 		goto unprepare_out;
1111 
1112 	flags = clk_enable_lock();
1113 
1114 	if (core->enable_count)
1115 		goto unlock_out;
1116 
1117 	if (core->flags & CLK_IGNORE_UNUSED)
1118 		goto unlock_out;
1119 
1120 	/*
1121 	 * some gate clocks have special needs during the disable-unused
1122 	 * sequence.  call .disable_unused if available, otherwise fall
1123 	 * back to .disable
1124 	 */
1125 	if (clk_core_is_enabled(core)) {
1126 		trace_clk_disable(core);
1127 		if (core->ops->disable_unused)
1128 			core->ops->disable_unused(core->hw);
1129 		else if (core->ops->disable)
1130 			core->ops->disable(core->hw);
1131 		trace_clk_disable_complete(core);
1132 	}
1133 
1134 unlock_out:
1135 	clk_enable_unlock(flags);
1136 	clk_pm_runtime_put(core);
1137 unprepare_out:
1138 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1139 		clk_core_disable_unprepare(core->parent);
1140 }
1141 
1142 static bool clk_ignore_unused;
1143 static int __init clk_ignore_unused_setup(char *__unused)
1144 {
1145 	clk_ignore_unused = true;
1146 	return 1;
1147 }
1148 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1149 
1150 static int clk_disable_unused(void)
1151 {
1152 	struct clk_core *core;
1153 
1154 	if (clk_ignore_unused) {
1155 		pr_warn("clk: Not disabling unused clocks\n");
1156 		return 0;
1157 	}
1158 
1159 	clk_prepare_lock();
1160 
1161 	hlist_for_each_entry(core, &clk_root_list, child_node)
1162 		clk_disable_unused_subtree(core);
1163 
1164 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1165 		clk_disable_unused_subtree(core);
1166 
1167 	hlist_for_each_entry(core, &clk_root_list, child_node)
1168 		clk_unprepare_unused_subtree(core);
1169 
1170 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1171 		clk_unprepare_unused_subtree(core);
1172 
1173 	clk_prepare_unlock();
1174 
1175 	return 0;
1176 }
1177 late_initcall_sync(clk_disable_unused);
1178 
1179 static int clk_core_determine_round_nolock(struct clk_core *core,
1180 					   struct clk_rate_request *req)
1181 {
1182 	long rate;
1183 
1184 	lockdep_assert_held(&prepare_lock);
1185 
1186 	if (!core)
1187 		return 0;
1188 
1189 	/*
1190 	 * At this point, core protection will be disabled if
1191 	 * - if the provider is not protected at all
1192 	 * - if the calling consumer is the only one which has exclusivity
1193 	 *   over the provider
1194 	 */
1195 	if (clk_core_rate_is_protected(core)) {
1196 		req->rate = core->rate;
1197 	} else if (core->ops->determine_rate) {
1198 		return core->ops->determine_rate(core->hw, req);
1199 	} else if (core->ops->round_rate) {
1200 		rate = core->ops->round_rate(core->hw, req->rate,
1201 					     &req->best_parent_rate);
1202 		if (rate < 0)
1203 			return rate;
1204 
1205 		req->rate = rate;
1206 	} else {
1207 		return -EINVAL;
1208 	}
1209 
1210 	return 0;
1211 }
1212 
1213 static void clk_core_init_rate_req(struct clk_core * const core,
1214 				   struct clk_rate_request *req)
1215 {
1216 	struct clk_core *parent;
1217 
1218 	if (WARN_ON(!core || !req))
1219 		return;
1220 
1221 	parent = core->parent;
1222 	if (parent) {
1223 		req->best_parent_hw = parent->hw;
1224 		req->best_parent_rate = parent->rate;
1225 	} else {
1226 		req->best_parent_hw = NULL;
1227 		req->best_parent_rate = 0;
1228 	}
1229 }
1230 
1231 static bool clk_core_can_round(struct clk_core * const core)
1232 {
1233 	if (core->ops->determine_rate || core->ops->round_rate)
1234 		return true;
1235 
1236 	return false;
1237 }
1238 
1239 static int clk_core_round_rate_nolock(struct clk_core *core,
1240 				      struct clk_rate_request *req)
1241 {
1242 	lockdep_assert_held(&prepare_lock);
1243 
1244 	if (!core) {
1245 		req->rate = 0;
1246 		return 0;
1247 	}
1248 
1249 	clk_core_init_rate_req(core, req);
1250 
1251 	if (clk_core_can_round(core))
1252 		return clk_core_determine_round_nolock(core, req);
1253 	else if (core->flags & CLK_SET_RATE_PARENT)
1254 		return clk_core_round_rate_nolock(core->parent, req);
1255 
1256 	req->rate = core->rate;
1257 	return 0;
1258 }
1259 
1260 /**
1261  * __clk_determine_rate - get the closest rate actually supported by a clock
1262  * @hw: determine the rate of this clock
1263  * @req: target rate request
1264  *
1265  * Useful for clk_ops such as .set_rate and .determine_rate.
1266  */
1267 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1268 {
1269 	if (!hw) {
1270 		req->rate = 0;
1271 		return 0;
1272 	}
1273 
1274 	return clk_core_round_rate_nolock(hw->core, req);
1275 }
1276 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1277 
1278 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1279 {
1280 	int ret;
1281 	struct clk_rate_request req;
1282 
1283 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1284 	req.rate = rate;
1285 
1286 	ret = clk_core_round_rate_nolock(hw->core, &req);
1287 	if (ret)
1288 		return 0;
1289 
1290 	return req.rate;
1291 }
1292 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1293 
1294 /**
1295  * clk_round_rate - round the given rate for a clk
1296  * @clk: the clk for which we are rounding a rate
1297  * @rate: the rate which is to be rounded
1298  *
1299  * Takes in a rate as input and rounds it to a rate that the clk can actually
1300  * use which is then returned.  If clk doesn't support round_rate operation
1301  * then the parent rate is returned.
1302  */
1303 long clk_round_rate(struct clk *clk, unsigned long rate)
1304 {
1305 	struct clk_rate_request req;
1306 	int ret;
1307 
1308 	if (!clk)
1309 		return 0;
1310 
1311 	clk_prepare_lock();
1312 
1313 	if (clk->exclusive_count)
1314 		clk_core_rate_unprotect(clk->core);
1315 
1316 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1317 	req.rate = rate;
1318 
1319 	ret = clk_core_round_rate_nolock(clk->core, &req);
1320 
1321 	if (clk->exclusive_count)
1322 		clk_core_rate_protect(clk->core);
1323 
1324 	clk_prepare_unlock();
1325 
1326 	if (ret)
1327 		return ret;
1328 
1329 	return req.rate;
1330 }
1331 EXPORT_SYMBOL_GPL(clk_round_rate);
1332 
1333 /**
1334  * __clk_notify - call clk notifier chain
1335  * @core: clk that is changing rate
1336  * @msg: clk notifier type (see include/linux/clk.h)
1337  * @old_rate: old clk rate
1338  * @new_rate: new clk rate
1339  *
1340  * Triggers a notifier call chain on the clk rate-change notification
1341  * for 'clk'.  Passes a pointer to the struct clk and the previous
1342  * and current rates to the notifier callback.  Intended to be called by
1343  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1344  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1345  * a driver returns that.
1346  */
1347 static int __clk_notify(struct clk_core *core, unsigned long msg,
1348 		unsigned long old_rate, unsigned long new_rate)
1349 {
1350 	struct clk_notifier *cn;
1351 	struct clk_notifier_data cnd;
1352 	int ret = NOTIFY_DONE;
1353 
1354 	cnd.old_rate = old_rate;
1355 	cnd.new_rate = new_rate;
1356 
1357 	list_for_each_entry(cn, &clk_notifier_list, node) {
1358 		if (cn->clk->core == core) {
1359 			cnd.clk = cn->clk;
1360 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1361 					&cnd);
1362 			if (ret & NOTIFY_STOP_MASK)
1363 				return ret;
1364 		}
1365 	}
1366 
1367 	return ret;
1368 }
1369 
1370 /**
1371  * __clk_recalc_accuracies
1372  * @core: first clk in the subtree
1373  *
1374  * Walks the subtree of clks starting with clk and recalculates accuracies as
1375  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1376  * callback then it is assumed that the clock will take on the accuracy of its
1377  * parent.
1378  */
1379 static void __clk_recalc_accuracies(struct clk_core *core)
1380 {
1381 	unsigned long parent_accuracy = 0;
1382 	struct clk_core *child;
1383 
1384 	lockdep_assert_held(&prepare_lock);
1385 
1386 	if (core->parent)
1387 		parent_accuracy = core->parent->accuracy;
1388 
1389 	if (core->ops->recalc_accuracy)
1390 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1391 							  parent_accuracy);
1392 	else
1393 		core->accuracy = parent_accuracy;
1394 
1395 	hlist_for_each_entry(child, &core->children, child_node)
1396 		__clk_recalc_accuracies(child);
1397 }
1398 
1399 static long clk_core_get_accuracy(struct clk_core *core)
1400 {
1401 	unsigned long accuracy;
1402 
1403 	clk_prepare_lock();
1404 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1405 		__clk_recalc_accuracies(core);
1406 
1407 	accuracy = __clk_get_accuracy(core);
1408 	clk_prepare_unlock();
1409 
1410 	return accuracy;
1411 }
1412 
1413 /**
1414  * clk_get_accuracy - return the accuracy of clk
1415  * @clk: the clk whose accuracy is being returned
1416  *
1417  * Simply returns the cached accuracy of the clk, unless
1418  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1419  * issued.
1420  * If clk is NULL then returns 0.
1421  */
1422 long clk_get_accuracy(struct clk *clk)
1423 {
1424 	if (!clk)
1425 		return 0;
1426 
1427 	return clk_core_get_accuracy(clk->core);
1428 }
1429 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1430 
1431 static unsigned long clk_recalc(struct clk_core *core,
1432 				unsigned long parent_rate)
1433 {
1434 	unsigned long rate = parent_rate;
1435 
1436 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1437 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1438 		clk_pm_runtime_put(core);
1439 	}
1440 	return rate;
1441 }
1442 
1443 /**
1444  * __clk_recalc_rates
1445  * @core: first clk in the subtree
1446  * @msg: notification type (see include/linux/clk.h)
1447  *
1448  * Walks the subtree of clks starting with clk and recalculates rates as it
1449  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1450  * it is assumed that the clock will take on the rate of its parent.
1451  *
1452  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1453  * if necessary.
1454  */
1455 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1456 {
1457 	unsigned long old_rate;
1458 	unsigned long parent_rate = 0;
1459 	struct clk_core *child;
1460 
1461 	lockdep_assert_held(&prepare_lock);
1462 
1463 	old_rate = core->rate;
1464 
1465 	if (core->parent)
1466 		parent_rate = core->parent->rate;
1467 
1468 	core->rate = clk_recalc(core, parent_rate);
1469 
1470 	/*
1471 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1472 	 * & ABORT_RATE_CHANGE notifiers
1473 	 */
1474 	if (core->notifier_count && msg)
1475 		__clk_notify(core, msg, old_rate, core->rate);
1476 
1477 	hlist_for_each_entry(child, &core->children, child_node)
1478 		__clk_recalc_rates(child, msg);
1479 }
1480 
1481 static unsigned long clk_core_get_rate(struct clk_core *core)
1482 {
1483 	unsigned long rate;
1484 
1485 	clk_prepare_lock();
1486 
1487 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1488 		__clk_recalc_rates(core, 0);
1489 
1490 	rate = clk_core_get_rate_nolock(core);
1491 	clk_prepare_unlock();
1492 
1493 	return rate;
1494 }
1495 
1496 /**
1497  * clk_get_rate - return the rate of clk
1498  * @clk: the clk whose rate is being returned
1499  *
1500  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1501  * is set, which means a recalc_rate will be issued.
1502  * If clk is NULL then returns 0.
1503  */
1504 unsigned long clk_get_rate(struct clk *clk)
1505 {
1506 	if (!clk)
1507 		return 0;
1508 
1509 	return clk_core_get_rate(clk->core);
1510 }
1511 EXPORT_SYMBOL_GPL(clk_get_rate);
1512 
1513 static int clk_fetch_parent_index(struct clk_core *core,
1514 				  struct clk_core *parent)
1515 {
1516 	int i;
1517 
1518 	if (!parent)
1519 		return -EINVAL;
1520 
1521 	for (i = 0; i < core->num_parents; i++) {
1522 		if (core->parents[i] == parent)
1523 			return i;
1524 
1525 		if (core->parents[i])
1526 			continue;
1527 
1528 		/* Fallback to comparing globally unique names */
1529 		if (!strcmp(parent->name, core->parent_names[i])) {
1530 			core->parents[i] = parent;
1531 			return i;
1532 		}
1533 	}
1534 
1535 	return -EINVAL;
1536 }
1537 
1538 /*
1539  * Update the orphan status of @core and all its children.
1540  */
1541 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1542 {
1543 	struct clk_core *child;
1544 
1545 	core->orphan = is_orphan;
1546 
1547 	hlist_for_each_entry(child, &core->children, child_node)
1548 		clk_core_update_orphan_status(child, is_orphan);
1549 }
1550 
1551 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1552 {
1553 	bool was_orphan = core->orphan;
1554 
1555 	hlist_del(&core->child_node);
1556 
1557 	if (new_parent) {
1558 		bool becomes_orphan = new_parent->orphan;
1559 
1560 		/* avoid duplicate POST_RATE_CHANGE notifications */
1561 		if (new_parent->new_child == core)
1562 			new_parent->new_child = NULL;
1563 
1564 		hlist_add_head(&core->child_node, &new_parent->children);
1565 
1566 		if (was_orphan != becomes_orphan)
1567 			clk_core_update_orphan_status(core, becomes_orphan);
1568 	} else {
1569 		hlist_add_head(&core->child_node, &clk_orphan_list);
1570 		if (!was_orphan)
1571 			clk_core_update_orphan_status(core, true);
1572 	}
1573 
1574 	core->parent = new_parent;
1575 }
1576 
1577 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1578 					   struct clk_core *parent)
1579 {
1580 	unsigned long flags;
1581 	struct clk_core *old_parent = core->parent;
1582 
1583 	/*
1584 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1585 	 *
1586 	 * 2. Migrate prepare state between parents and prevent race with
1587 	 * clk_enable().
1588 	 *
1589 	 * If the clock is not prepared, then a race with
1590 	 * clk_enable/disable() is impossible since we already have the
1591 	 * prepare lock (future calls to clk_enable() need to be preceded by
1592 	 * a clk_prepare()).
1593 	 *
1594 	 * If the clock is prepared, migrate the prepared state to the new
1595 	 * parent and also protect against a race with clk_enable() by
1596 	 * forcing the clock and the new parent on.  This ensures that all
1597 	 * future calls to clk_enable() are practically NOPs with respect to
1598 	 * hardware and software states.
1599 	 *
1600 	 * See also: Comment for clk_set_parent() below.
1601 	 */
1602 
1603 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1604 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1605 		clk_core_prepare_enable(old_parent);
1606 		clk_core_prepare_enable(parent);
1607 	}
1608 
1609 	/* migrate prepare count if > 0 */
1610 	if (core->prepare_count) {
1611 		clk_core_prepare_enable(parent);
1612 		clk_core_enable_lock(core);
1613 	}
1614 
1615 	/* update the clk tree topology */
1616 	flags = clk_enable_lock();
1617 	clk_reparent(core, parent);
1618 	clk_enable_unlock(flags);
1619 
1620 	return old_parent;
1621 }
1622 
1623 static void __clk_set_parent_after(struct clk_core *core,
1624 				   struct clk_core *parent,
1625 				   struct clk_core *old_parent)
1626 {
1627 	/*
1628 	 * Finish the migration of prepare state and undo the changes done
1629 	 * for preventing a race with clk_enable().
1630 	 */
1631 	if (core->prepare_count) {
1632 		clk_core_disable_lock(core);
1633 		clk_core_disable_unprepare(old_parent);
1634 	}
1635 
1636 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1637 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1638 		clk_core_disable_unprepare(parent);
1639 		clk_core_disable_unprepare(old_parent);
1640 	}
1641 }
1642 
1643 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1644 			    u8 p_index)
1645 {
1646 	unsigned long flags;
1647 	int ret = 0;
1648 	struct clk_core *old_parent;
1649 
1650 	old_parent = __clk_set_parent_before(core, parent);
1651 
1652 	trace_clk_set_parent(core, parent);
1653 
1654 	/* change clock input source */
1655 	if (parent && core->ops->set_parent)
1656 		ret = core->ops->set_parent(core->hw, p_index);
1657 
1658 	trace_clk_set_parent_complete(core, parent);
1659 
1660 	if (ret) {
1661 		flags = clk_enable_lock();
1662 		clk_reparent(core, old_parent);
1663 		clk_enable_unlock(flags);
1664 		__clk_set_parent_after(core, old_parent, parent);
1665 
1666 		return ret;
1667 	}
1668 
1669 	__clk_set_parent_after(core, parent, old_parent);
1670 
1671 	return 0;
1672 }
1673 
1674 /**
1675  * __clk_speculate_rates
1676  * @core: first clk in the subtree
1677  * @parent_rate: the "future" rate of clk's parent
1678  *
1679  * Walks the subtree of clks starting with clk, speculating rates as it
1680  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1681  *
1682  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1683  * pre-rate change notifications and returns early if no clks in the
1684  * subtree have subscribed to the notifications.  Note that if a clk does not
1685  * implement the .recalc_rate callback then it is assumed that the clock will
1686  * take on the rate of its parent.
1687  */
1688 static int __clk_speculate_rates(struct clk_core *core,
1689 				 unsigned long parent_rate)
1690 {
1691 	struct clk_core *child;
1692 	unsigned long new_rate;
1693 	int ret = NOTIFY_DONE;
1694 
1695 	lockdep_assert_held(&prepare_lock);
1696 
1697 	new_rate = clk_recalc(core, parent_rate);
1698 
1699 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1700 	if (core->notifier_count)
1701 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1702 
1703 	if (ret & NOTIFY_STOP_MASK) {
1704 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1705 				__func__, core->name, ret);
1706 		goto out;
1707 	}
1708 
1709 	hlist_for_each_entry(child, &core->children, child_node) {
1710 		ret = __clk_speculate_rates(child, new_rate);
1711 		if (ret & NOTIFY_STOP_MASK)
1712 			break;
1713 	}
1714 
1715 out:
1716 	return ret;
1717 }
1718 
1719 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1720 			     struct clk_core *new_parent, u8 p_index)
1721 {
1722 	struct clk_core *child;
1723 
1724 	core->new_rate = new_rate;
1725 	core->new_parent = new_parent;
1726 	core->new_parent_index = p_index;
1727 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1728 	core->new_child = NULL;
1729 	if (new_parent && new_parent != core->parent)
1730 		new_parent->new_child = core;
1731 
1732 	hlist_for_each_entry(child, &core->children, child_node) {
1733 		child->new_rate = clk_recalc(child, new_rate);
1734 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1735 	}
1736 }
1737 
1738 /*
1739  * calculate the new rates returning the topmost clock that has to be
1740  * changed.
1741  */
1742 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1743 					   unsigned long rate)
1744 {
1745 	struct clk_core *top = core;
1746 	struct clk_core *old_parent, *parent;
1747 	unsigned long best_parent_rate = 0;
1748 	unsigned long new_rate;
1749 	unsigned long min_rate;
1750 	unsigned long max_rate;
1751 	int p_index = 0;
1752 	long ret;
1753 
1754 	/* sanity */
1755 	if (IS_ERR_OR_NULL(core))
1756 		return NULL;
1757 
1758 	/* save parent rate, if it exists */
1759 	parent = old_parent = core->parent;
1760 	if (parent)
1761 		best_parent_rate = parent->rate;
1762 
1763 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1764 
1765 	/* find the closest rate and parent clk/rate */
1766 	if (clk_core_can_round(core)) {
1767 		struct clk_rate_request req;
1768 
1769 		req.rate = rate;
1770 		req.min_rate = min_rate;
1771 		req.max_rate = max_rate;
1772 
1773 		clk_core_init_rate_req(core, &req);
1774 
1775 		ret = clk_core_determine_round_nolock(core, &req);
1776 		if (ret < 0)
1777 			return NULL;
1778 
1779 		best_parent_rate = req.best_parent_rate;
1780 		new_rate = req.rate;
1781 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1782 
1783 		if (new_rate < min_rate || new_rate > max_rate)
1784 			return NULL;
1785 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1786 		/* pass-through clock without adjustable parent */
1787 		core->new_rate = core->rate;
1788 		return NULL;
1789 	} else {
1790 		/* pass-through clock with adjustable parent */
1791 		top = clk_calc_new_rates(parent, rate);
1792 		new_rate = parent->new_rate;
1793 		goto out;
1794 	}
1795 
1796 	/* some clocks must be gated to change parent */
1797 	if (parent != old_parent &&
1798 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1799 		pr_debug("%s: %s not gated but wants to reparent\n",
1800 			 __func__, core->name);
1801 		return NULL;
1802 	}
1803 
1804 	/* try finding the new parent index */
1805 	if (parent && core->num_parents > 1) {
1806 		p_index = clk_fetch_parent_index(core, parent);
1807 		if (p_index < 0) {
1808 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1809 				 __func__, parent->name, core->name);
1810 			return NULL;
1811 		}
1812 	}
1813 
1814 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1815 	    best_parent_rate != parent->rate)
1816 		top = clk_calc_new_rates(parent, best_parent_rate);
1817 
1818 out:
1819 	clk_calc_subtree(core, new_rate, parent, p_index);
1820 
1821 	return top;
1822 }
1823 
1824 /*
1825  * Notify about rate changes in a subtree. Always walk down the whole tree
1826  * so that in case of an error we can walk down the whole tree again and
1827  * abort the change.
1828  */
1829 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1830 						  unsigned long event)
1831 {
1832 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1833 	int ret = NOTIFY_DONE;
1834 
1835 	if (core->rate == core->new_rate)
1836 		return NULL;
1837 
1838 	if (core->notifier_count) {
1839 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1840 		if (ret & NOTIFY_STOP_MASK)
1841 			fail_clk = core;
1842 	}
1843 
1844 	hlist_for_each_entry(child, &core->children, child_node) {
1845 		/* Skip children who will be reparented to another clock */
1846 		if (child->new_parent && child->new_parent != core)
1847 			continue;
1848 		tmp_clk = clk_propagate_rate_change(child, event);
1849 		if (tmp_clk)
1850 			fail_clk = tmp_clk;
1851 	}
1852 
1853 	/* handle the new child who might not be in core->children yet */
1854 	if (core->new_child) {
1855 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1856 		if (tmp_clk)
1857 			fail_clk = tmp_clk;
1858 	}
1859 
1860 	return fail_clk;
1861 }
1862 
1863 /*
1864  * walk down a subtree and set the new rates notifying the rate
1865  * change on the way
1866  */
1867 static void clk_change_rate(struct clk_core *core)
1868 {
1869 	struct clk_core *child;
1870 	struct hlist_node *tmp;
1871 	unsigned long old_rate;
1872 	unsigned long best_parent_rate = 0;
1873 	bool skip_set_rate = false;
1874 	struct clk_core *old_parent;
1875 	struct clk_core *parent = NULL;
1876 
1877 	old_rate = core->rate;
1878 
1879 	if (core->new_parent) {
1880 		parent = core->new_parent;
1881 		best_parent_rate = core->new_parent->rate;
1882 	} else if (core->parent) {
1883 		parent = core->parent;
1884 		best_parent_rate = core->parent->rate;
1885 	}
1886 
1887 	if (clk_pm_runtime_get(core))
1888 		return;
1889 
1890 	if (core->flags & CLK_SET_RATE_UNGATE) {
1891 		unsigned long flags;
1892 
1893 		clk_core_prepare(core);
1894 		flags = clk_enable_lock();
1895 		clk_core_enable(core);
1896 		clk_enable_unlock(flags);
1897 	}
1898 
1899 	if (core->new_parent && core->new_parent != core->parent) {
1900 		old_parent = __clk_set_parent_before(core, core->new_parent);
1901 		trace_clk_set_parent(core, core->new_parent);
1902 
1903 		if (core->ops->set_rate_and_parent) {
1904 			skip_set_rate = true;
1905 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1906 					best_parent_rate,
1907 					core->new_parent_index);
1908 		} else if (core->ops->set_parent) {
1909 			core->ops->set_parent(core->hw, core->new_parent_index);
1910 		}
1911 
1912 		trace_clk_set_parent_complete(core, core->new_parent);
1913 		__clk_set_parent_after(core, core->new_parent, old_parent);
1914 	}
1915 
1916 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1917 		clk_core_prepare_enable(parent);
1918 
1919 	trace_clk_set_rate(core, core->new_rate);
1920 
1921 	if (!skip_set_rate && core->ops->set_rate)
1922 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1923 
1924 	trace_clk_set_rate_complete(core, core->new_rate);
1925 
1926 	core->rate = clk_recalc(core, best_parent_rate);
1927 
1928 	if (core->flags & CLK_SET_RATE_UNGATE) {
1929 		unsigned long flags;
1930 
1931 		flags = clk_enable_lock();
1932 		clk_core_disable(core);
1933 		clk_enable_unlock(flags);
1934 		clk_core_unprepare(core);
1935 	}
1936 
1937 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1938 		clk_core_disable_unprepare(parent);
1939 
1940 	if (core->notifier_count && old_rate != core->rate)
1941 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1942 
1943 	if (core->flags & CLK_RECALC_NEW_RATES)
1944 		(void)clk_calc_new_rates(core, core->new_rate);
1945 
1946 	/*
1947 	 * Use safe iteration, as change_rate can actually swap parents
1948 	 * for certain clock types.
1949 	 */
1950 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1951 		/* Skip children who will be reparented to another clock */
1952 		if (child->new_parent && child->new_parent != core)
1953 			continue;
1954 		clk_change_rate(child);
1955 	}
1956 
1957 	/* handle the new child who might not be in core->children yet */
1958 	if (core->new_child)
1959 		clk_change_rate(core->new_child);
1960 
1961 	clk_pm_runtime_put(core);
1962 }
1963 
1964 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
1965 						     unsigned long req_rate)
1966 {
1967 	int ret, cnt;
1968 	struct clk_rate_request req;
1969 
1970 	lockdep_assert_held(&prepare_lock);
1971 
1972 	if (!core)
1973 		return 0;
1974 
1975 	/* simulate what the rate would be if it could be freely set */
1976 	cnt = clk_core_rate_nuke_protect(core);
1977 	if (cnt < 0)
1978 		return cnt;
1979 
1980 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
1981 	req.rate = req_rate;
1982 
1983 	ret = clk_core_round_rate_nolock(core, &req);
1984 
1985 	/* restore the protection */
1986 	clk_core_rate_restore_protect(core, cnt);
1987 
1988 	return ret ? 0 : req.rate;
1989 }
1990 
1991 static int clk_core_set_rate_nolock(struct clk_core *core,
1992 				    unsigned long req_rate)
1993 {
1994 	struct clk_core *top, *fail_clk;
1995 	unsigned long rate;
1996 	int ret = 0;
1997 
1998 	if (!core)
1999 		return 0;
2000 
2001 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2002 
2003 	/* bail early if nothing to do */
2004 	if (rate == clk_core_get_rate_nolock(core))
2005 		return 0;
2006 
2007 	/* fail on a direct rate set of a protected provider */
2008 	if (clk_core_rate_is_protected(core))
2009 		return -EBUSY;
2010 
2011 	/* calculate new rates and get the topmost changed clock */
2012 	top = clk_calc_new_rates(core, req_rate);
2013 	if (!top)
2014 		return -EINVAL;
2015 
2016 	ret = clk_pm_runtime_get(core);
2017 	if (ret)
2018 		return ret;
2019 
2020 	/* notify that we are about to change rates */
2021 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2022 	if (fail_clk) {
2023 		pr_debug("%s: failed to set %s rate\n", __func__,
2024 				fail_clk->name);
2025 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2026 		ret = -EBUSY;
2027 		goto err;
2028 	}
2029 
2030 	/* change the rates */
2031 	clk_change_rate(top);
2032 
2033 	core->req_rate = req_rate;
2034 err:
2035 	clk_pm_runtime_put(core);
2036 
2037 	return ret;
2038 }
2039 
2040 /**
2041  * clk_set_rate - specify a new rate for clk
2042  * @clk: the clk whose rate is being changed
2043  * @rate: the new rate for clk
2044  *
2045  * In the simplest case clk_set_rate will only adjust the rate of clk.
2046  *
2047  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2048  * propagate up to clk's parent; whether or not this happens depends on the
2049  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2050  * after calling .round_rate then upstream parent propagation is ignored.  If
2051  * *parent_rate comes back with a new rate for clk's parent then we propagate
2052  * up to clk's parent and set its rate.  Upward propagation will continue
2053  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2054  * .round_rate stops requesting changes to clk's parent_rate.
2055  *
2056  * Rate changes are accomplished via tree traversal that also recalculates the
2057  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2058  *
2059  * Returns 0 on success, -EERROR otherwise.
2060  */
2061 int clk_set_rate(struct clk *clk, unsigned long rate)
2062 {
2063 	int ret;
2064 
2065 	if (!clk)
2066 		return 0;
2067 
2068 	/* prevent racing with updates to the clock topology */
2069 	clk_prepare_lock();
2070 
2071 	if (clk->exclusive_count)
2072 		clk_core_rate_unprotect(clk->core);
2073 
2074 	ret = clk_core_set_rate_nolock(clk->core, rate);
2075 
2076 	if (clk->exclusive_count)
2077 		clk_core_rate_protect(clk->core);
2078 
2079 	clk_prepare_unlock();
2080 
2081 	return ret;
2082 }
2083 EXPORT_SYMBOL_GPL(clk_set_rate);
2084 
2085 /**
2086  * clk_set_rate_exclusive - specify a new rate get exclusive control
2087  * @clk: the clk whose rate is being changed
2088  * @rate: the new rate for clk
2089  *
2090  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2091  * within a critical section
2092  *
2093  * This can be used initially to ensure that at least 1 consumer is
2094  * statisfied when several consumers are competing for exclusivity over the
2095  * same clock provider.
2096  *
2097  * The exclusivity is not applied if setting the rate failed.
2098  *
2099  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2100  * clk_rate_exclusive_put().
2101  *
2102  * Returns 0 on success, -EERROR otherwise.
2103  */
2104 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2105 {
2106 	int ret;
2107 
2108 	if (!clk)
2109 		return 0;
2110 
2111 	/* prevent racing with updates to the clock topology */
2112 	clk_prepare_lock();
2113 
2114 	/*
2115 	 * The temporary protection removal is not here, on purpose
2116 	 * This function is meant to be used instead of clk_rate_protect,
2117 	 * so before the consumer code path protect the clock provider
2118 	 */
2119 
2120 	ret = clk_core_set_rate_nolock(clk->core, rate);
2121 	if (!ret) {
2122 		clk_core_rate_protect(clk->core);
2123 		clk->exclusive_count++;
2124 	}
2125 
2126 	clk_prepare_unlock();
2127 
2128 	return ret;
2129 }
2130 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2131 
2132 /**
2133  * clk_set_rate_range - set a rate range for a clock source
2134  * @clk: clock source
2135  * @min: desired minimum clock rate in Hz, inclusive
2136  * @max: desired maximum clock rate in Hz, inclusive
2137  *
2138  * Returns success (0) or negative errno.
2139  */
2140 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2141 {
2142 	int ret = 0;
2143 	unsigned long old_min, old_max, rate;
2144 
2145 	if (!clk)
2146 		return 0;
2147 
2148 	if (min > max) {
2149 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2150 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2151 		       min, max);
2152 		return -EINVAL;
2153 	}
2154 
2155 	clk_prepare_lock();
2156 
2157 	if (clk->exclusive_count)
2158 		clk_core_rate_unprotect(clk->core);
2159 
2160 	/* Save the current values in case we need to rollback the change */
2161 	old_min = clk->min_rate;
2162 	old_max = clk->max_rate;
2163 	clk->min_rate = min;
2164 	clk->max_rate = max;
2165 
2166 	rate = clk_core_get_rate_nolock(clk->core);
2167 	if (rate < min || rate > max) {
2168 		/*
2169 		 * FIXME:
2170 		 * We are in bit of trouble here, current rate is outside the
2171 		 * the requested range. We are going try to request appropriate
2172 		 * range boundary but there is a catch. It may fail for the
2173 		 * usual reason (clock broken, clock protected, etc) but also
2174 		 * because:
2175 		 * - round_rate() was not favorable and fell on the wrong
2176 		 *   side of the boundary
2177 		 * - the determine_rate() callback does not really check for
2178 		 *   this corner case when determining the rate
2179 		 */
2180 
2181 		if (rate < min)
2182 			rate = min;
2183 		else
2184 			rate = max;
2185 
2186 		ret = clk_core_set_rate_nolock(clk->core, rate);
2187 		if (ret) {
2188 			/* rollback the changes */
2189 			clk->min_rate = old_min;
2190 			clk->max_rate = old_max;
2191 		}
2192 	}
2193 
2194 	if (clk->exclusive_count)
2195 		clk_core_rate_protect(clk->core);
2196 
2197 	clk_prepare_unlock();
2198 
2199 	return ret;
2200 }
2201 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2202 
2203 /**
2204  * clk_set_min_rate - set a minimum clock rate for a clock source
2205  * @clk: clock source
2206  * @rate: desired minimum clock rate in Hz, inclusive
2207  *
2208  * Returns success (0) or negative errno.
2209  */
2210 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2211 {
2212 	if (!clk)
2213 		return 0;
2214 
2215 	return clk_set_rate_range(clk, rate, clk->max_rate);
2216 }
2217 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2218 
2219 /**
2220  * clk_set_max_rate - set a maximum clock rate for a clock source
2221  * @clk: clock source
2222  * @rate: desired maximum clock rate in Hz, inclusive
2223  *
2224  * Returns success (0) or negative errno.
2225  */
2226 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2227 {
2228 	if (!clk)
2229 		return 0;
2230 
2231 	return clk_set_rate_range(clk, clk->min_rate, rate);
2232 }
2233 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2234 
2235 /**
2236  * clk_get_parent - return the parent of a clk
2237  * @clk: the clk whose parent gets returned
2238  *
2239  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2240  */
2241 struct clk *clk_get_parent(struct clk *clk)
2242 {
2243 	struct clk *parent;
2244 
2245 	if (!clk)
2246 		return NULL;
2247 
2248 	clk_prepare_lock();
2249 	/* TODO: Create a per-user clk and change callers to call clk_put */
2250 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2251 	clk_prepare_unlock();
2252 
2253 	return parent;
2254 }
2255 EXPORT_SYMBOL_GPL(clk_get_parent);
2256 
2257 static struct clk_core *__clk_init_parent(struct clk_core *core)
2258 {
2259 	u8 index = 0;
2260 
2261 	if (core->num_parents > 1 && core->ops->get_parent)
2262 		index = core->ops->get_parent(core->hw);
2263 
2264 	return clk_core_get_parent_by_index(core, index);
2265 }
2266 
2267 static void clk_core_reparent(struct clk_core *core,
2268 				  struct clk_core *new_parent)
2269 {
2270 	clk_reparent(core, new_parent);
2271 	__clk_recalc_accuracies(core);
2272 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2273 }
2274 
2275 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2276 {
2277 	if (!hw)
2278 		return;
2279 
2280 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2281 }
2282 
2283 /**
2284  * clk_has_parent - check if a clock is a possible parent for another
2285  * @clk: clock source
2286  * @parent: parent clock source
2287  *
2288  * This function can be used in drivers that need to check that a clock can be
2289  * the parent of another without actually changing the parent.
2290  *
2291  * Returns true if @parent is a possible parent for @clk, false otherwise.
2292  */
2293 bool clk_has_parent(struct clk *clk, struct clk *parent)
2294 {
2295 	struct clk_core *core, *parent_core;
2296 
2297 	/* NULL clocks should be nops, so return success if either is NULL. */
2298 	if (!clk || !parent)
2299 		return true;
2300 
2301 	core = clk->core;
2302 	parent_core = parent->core;
2303 
2304 	/* Optimize for the case where the parent is already the parent. */
2305 	if (core->parent == parent_core)
2306 		return true;
2307 
2308 	return match_string(core->parent_names, core->num_parents,
2309 			    parent_core->name) >= 0;
2310 }
2311 EXPORT_SYMBOL_GPL(clk_has_parent);
2312 
2313 static int clk_core_set_parent_nolock(struct clk_core *core,
2314 				      struct clk_core *parent)
2315 {
2316 	int ret = 0;
2317 	int p_index = 0;
2318 	unsigned long p_rate = 0;
2319 
2320 	lockdep_assert_held(&prepare_lock);
2321 
2322 	if (!core)
2323 		return 0;
2324 
2325 	if (core->parent == parent)
2326 		return 0;
2327 
2328 	/* verify ops for for multi-parent clks */
2329 	if (core->num_parents > 1 && !core->ops->set_parent)
2330 		return -EPERM;
2331 
2332 	/* check that we are allowed to re-parent if the clock is in use */
2333 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2334 		return -EBUSY;
2335 
2336 	if (clk_core_rate_is_protected(core))
2337 		return -EBUSY;
2338 
2339 	/* try finding the new parent index */
2340 	if (parent) {
2341 		p_index = clk_fetch_parent_index(core, parent);
2342 		if (p_index < 0) {
2343 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2344 					__func__, parent->name, core->name);
2345 			return p_index;
2346 		}
2347 		p_rate = parent->rate;
2348 	}
2349 
2350 	ret = clk_pm_runtime_get(core);
2351 	if (ret)
2352 		return ret;
2353 
2354 	/* propagate PRE_RATE_CHANGE notifications */
2355 	ret = __clk_speculate_rates(core, p_rate);
2356 
2357 	/* abort if a driver objects */
2358 	if (ret & NOTIFY_STOP_MASK)
2359 		goto runtime_put;
2360 
2361 	/* do the re-parent */
2362 	ret = __clk_set_parent(core, parent, p_index);
2363 
2364 	/* propagate rate an accuracy recalculation accordingly */
2365 	if (ret) {
2366 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2367 	} else {
2368 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2369 		__clk_recalc_accuracies(core);
2370 	}
2371 
2372 runtime_put:
2373 	clk_pm_runtime_put(core);
2374 
2375 	return ret;
2376 }
2377 
2378 /**
2379  * clk_set_parent - switch the parent of a mux clk
2380  * @clk: the mux clk whose input we are switching
2381  * @parent: the new input to clk
2382  *
2383  * Re-parent clk to use parent as its new input source.  If clk is in
2384  * prepared state, the clk will get enabled for the duration of this call. If
2385  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2386  * that, the reparenting is glitchy in hardware, etc), use the
2387  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2388  *
2389  * After successfully changing clk's parent clk_set_parent will update the
2390  * clk topology, sysfs topology and propagate rate recalculation via
2391  * __clk_recalc_rates.
2392  *
2393  * Returns 0 on success, -EERROR otherwise.
2394  */
2395 int clk_set_parent(struct clk *clk, struct clk *parent)
2396 {
2397 	int ret;
2398 
2399 	if (!clk)
2400 		return 0;
2401 
2402 	clk_prepare_lock();
2403 
2404 	if (clk->exclusive_count)
2405 		clk_core_rate_unprotect(clk->core);
2406 
2407 	ret = clk_core_set_parent_nolock(clk->core,
2408 					 parent ? parent->core : NULL);
2409 
2410 	if (clk->exclusive_count)
2411 		clk_core_rate_protect(clk->core);
2412 
2413 	clk_prepare_unlock();
2414 
2415 	return ret;
2416 }
2417 EXPORT_SYMBOL_GPL(clk_set_parent);
2418 
2419 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2420 {
2421 	int ret = -EINVAL;
2422 
2423 	lockdep_assert_held(&prepare_lock);
2424 
2425 	if (!core)
2426 		return 0;
2427 
2428 	if (clk_core_rate_is_protected(core))
2429 		return -EBUSY;
2430 
2431 	trace_clk_set_phase(core, degrees);
2432 
2433 	if (core->ops->set_phase) {
2434 		ret = core->ops->set_phase(core->hw, degrees);
2435 		if (!ret)
2436 			core->phase = degrees;
2437 	}
2438 
2439 	trace_clk_set_phase_complete(core, degrees);
2440 
2441 	return ret;
2442 }
2443 
2444 /**
2445  * clk_set_phase - adjust the phase shift of a clock signal
2446  * @clk: clock signal source
2447  * @degrees: number of degrees the signal is shifted
2448  *
2449  * Shifts the phase of a clock signal by the specified
2450  * degrees. Returns 0 on success, -EERROR otherwise.
2451  *
2452  * This function makes no distinction about the input or reference
2453  * signal that we adjust the clock signal phase against. For example
2454  * phase locked-loop clock signal generators we may shift phase with
2455  * respect to feedback clock signal input, but for other cases the
2456  * clock phase may be shifted with respect to some other, unspecified
2457  * signal.
2458  *
2459  * Additionally the concept of phase shift does not propagate through
2460  * the clock tree hierarchy, which sets it apart from clock rates and
2461  * clock accuracy. A parent clock phase attribute does not have an
2462  * impact on the phase attribute of a child clock.
2463  */
2464 int clk_set_phase(struct clk *clk, int degrees)
2465 {
2466 	int ret;
2467 
2468 	if (!clk)
2469 		return 0;
2470 
2471 	/* sanity check degrees */
2472 	degrees %= 360;
2473 	if (degrees < 0)
2474 		degrees += 360;
2475 
2476 	clk_prepare_lock();
2477 
2478 	if (clk->exclusive_count)
2479 		clk_core_rate_unprotect(clk->core);
2480 
2481 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2482 
2483 	if (clk->exclusive_count)
2484 		clk_core_rate_protect(clk->core);
2485 
2486 	clk_prepare_unlock();
2487 
2488 	return ret;
2489 }
2490 EXPORT_SYMBOL_GPL(clk_set_phase);
2491 
2492 static int clk_core_get_phase(struct clk_core *core)
2493 {
2494 	int ret;
2495 
2496 	clk_prepare_lock();
2497 	/* Always try to update cached phase if possible */
2498 	if (core->ops->get_phase)
2499 		core->phase = core->ops->get_phase(core->hw);
2500 	ret = core->phase;
2501 	clk_prepare_unlock();
2502 
2503 	return ret;
2504 }
2505 
2506 /**
2507  * clk_get_phase - return the phase shift of a clock signal
2508  * @clk: clock signal source
2509  *
2510  * Returns the phase shift of a clock node in degrees, otherwise returns
2511  * -EERROR.
2512  */
2513 int clk_get_phase(struct clk *clk)
2514 {
2515 	if (!clk)
2516 		return 0;
2517 
2518 	return clk_core_get_phase(clk->core);
2519 }
2520 EXPORT_SYMBOL_GPL(clk_get_phase);
2521 
2522 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2523 {
2524 	/* Assume a default value of 50% */
2525 	core->duty.num = 1;
2526 	core->duty.den = 2;
2527 }
2528 
2529 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2530 
2531 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2532 {
2533 	struct clk_duty *duty = &core->duty;
2534 	int ret = 0;
2535 
2536 	if (!core->ops->get_duty_cycle)
2537 		return clk_core_update_duty_cycle_parent_nolock(core);
2538 
2539 	ret = core->ops->get_duty_cycle(core->hw, duty);
2540 	if (ret)
2541 		goto reset;
2542 
2543 	/* Don't trust the clock provider too much */
2544 	if (duty->den == 0 || duty->num > duty->den) {
2545 		ret = -EINVAL;
2546 		goto reset;
2547 	}
2548 
2549 	return 0;
2550 
2551 reset:
2552 	clk_core_reset_duty_cycle_nolock(core);
2553 	return ret;
2554 }
2555 
2556 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2557 {
2558 	int ret = 0;
2559 
2560 	if (core->parent &&
2561 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2562 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2563 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2564 	} else {
2565 		clk_core_reset_duty_cycle_nolock(core);
2566 	}
2567 
2568 	return ret;
2569 }
2570 
2571 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2572 						 struct clk_duty *duty);
2573 
2574 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2575 					  struct clk_duty *duty)
2576 {
2577 	int ret;
2578 
2579 	lockdep_assert_held(&prepare_lock);
2580 
2581 	if (clk_core_rate_is_protected(core))
2582 		return -EBUSY;
2583 
2584 	trace_clk_set_duty_cycle(core, duty);
2585 
2586 	if (!core->ops->set_duty_cycle)
2587 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2588 
2589 	ret = core->ops->set_duty_cycle(core->hw, duty);
2590 	if (!ret)
2591 		memcpy(&core->duty, duty, sizeof(*duty));
2592 
2593 	trace_clk_set_duty_cycle_complete(core, duty);
2594 
2595 	return ret;
2596 }
2597 
2598 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2599 						 struct clk_duty *duty)
2600 {
2601 	int ret = 0;
2602 
2603 	if (core->parent &&
2604 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2605 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2606 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2607 	}
2608 
2609 	return ret;
2610 }
2611 
2612 /**
2613  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2614  * @clk: clock signal source
2615  * @num: numerator of the duty cycle ratio to be applied
2616  * @den: denominator of the duty cycle ratio to be applied
2617  *
2618  * Apply the duty cycle ratio if the ratio is valid and the clock can
2619  * perform this operation
2620  *
2621  * Returns (0) on success, a negative errno otherwise.
2622  */
2623 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2624 {
2625 	int ret;
2626 	struct clk_duty duty;
2627 
2628 	if (!clk)
2629 		return 0;
2630 
2631 	/* sanity check the ratio */
2632 	if (den == 0 || num > den)
2633 		return -EINVAL;
2634 
2635 	duty.num = num;
2636 	duty.den = den;
2637 
2638 	clk_prepare_lock();
2639 
2640 	if (clk->exclusive_count)
2641 		clk_core_rate_unprotect(clk->core);
2642 
2643 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2644 
2645 	if (clk->exclusive_count)
2646 		clk_core_rate_protect(clk->core);
2647 
2648 	clk_prepare_unlock();
2649 
2650 	return ret;
2651 }
2652 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2653 
2654 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2655 					  unsigned int scale)
2656 {
2657 	struct clk_duty *duty = &core->duty;
2658 	int ret;
2659 
2660 	clk_prepare_lock();
2661 
2662 	ret = clk_core_update_duty_cycle_nolock(core);
2663 	if (!ret)
2664 		ret = mult_frac(scale, duty->num, duty->den);
2665 
2666 	clk_prepare_unlock();
2667 
2668 	return ret;
2669 }
2670 
2671 /**
2672  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2673  * @clk: clock signal source
2674  * @scale: scaling factor to be applied to represent the ratio as an integer
2675  *
2676  * Returns the duty cycle ratio of a clock node multiplied by the provided
2677  * scaling factor, or negative errno on error.
2678  */
2679 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2680 {
2681 	if (!clk)
2682 		return 0;
2683 
2684 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2685 }
2686 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2687 
2688 /**
2689  * clk_is_match - check if two clk's point to the same hardware clock
2690  * @p: clk compared against q
2691  * @q: clk compared against p
2692  *
2693  * Returns true if the two struct clk pointers both point to the same hardware
2694  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2695  * share the same struct clk_core object.
2696  *
2697  * Returns false otherwise. Note that two NULL clks are treated as matching.
2698  */
2699 bool clk_is_match(const struct clk *p, const struct clk *q)
2700 {
2701 	/* trivial case: identical struct clk's or both NULL */
2702 	if (p == q)
2703 		return true;
2704 
2705 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2706 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2707 		if (p->core == q->core)
2708 			return true;
2709 
2710 	return false;
2711 }
2712 EXPORT_SYMBOL_GPL(clk_is_match);
2713 
2714 /***        debugfs support        ***/
2715 
2716 #ifdef CONFIG_DEBUG_FS
2717 #include <linux/debugfs.h>
2718 
2719 static struct dentry *rootdir;
2720 static int inited = 0;
2721 static DEFINE_MUTEX(clk_debug_lock);
2722 static HLIST_HEAD(clk_debug_list);
2723 
2724 static struct hlist_head *all_lists[] = {
2725 	&clk_root_list,
2726 	&clk_orphan_list,
2727 	NULL,
2728 };
2729 
2730 static struct hlist_head *orphan_list[] = {
2731 	&clk_orphan_list,
2732 	NULL,
2733 };
2734 
2735 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2736 				 int level)
2737 {
2738 	if (!c)
2739 		return;
2740 
2741 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n",
2742 		   level * 3 + 1, "",
2743 		   30 - level * 3, c->name,
2744 		   c->enable_count, c->prepare_count, c->protect_count,
2745 		   clk_core_get_rate(c), clk_core_get_accuracy(c),
2746 		   clk_core_get_phase(c),
2747 		   clk_core_get_scaled_duty_cycle(c, 100000));
2748 }
2749 
2750 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2751 				     int level)
2752 {
2753 	struct clk_core *child;
2754 
2755 	if (!c)
2756 		return;
2757 
2758 	clk_summary_show_one(s, c, level);
2759 
2760 	hlist_for_each_entry(child, &c->children, child_node)
2761 		clk_summary_show_subtree(s, child, level + 1);
2762 }
2763 
2764 static int clk_summary_show(struct seq_file *s, void *data)
2765 {
2766 	struct clk_core *c;
2767 	struct hlist_head **lists = (struct hlist_head **)s->private;
2768 
2769 	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
2770 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
2771 	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2772 
2773 	clk_prepare_lock();
2774 
2775 	for (; *lists; lists++)
2776 		hlist_for_each_entry(c, *lists, child_node)
2777 			clk_summary_show_subtree(s, c, 0);
2778 
2779 	clk_prepare_unlock();
2780 
2781 	return 0;
2782 }
2783 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2784 
2785 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2786 {
2787 	if (!c)
2788 		return;
2789 
2790 	/* This should be JSON format, i.e. elements separated with a comma */
2791 	seq_printf(s, "\"%s\": { ", c->name);
2792 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2793 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2794 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2795 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2796 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2797 	seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c));
2798 	seq_printf(s, "\"duty_cycle\": %u",
2799 		   clk_core_get_scaled_duty_cycle(c, 100000));
2800 }
2801 
2802 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2803 {
2804 	struct clk_core *child;
2805 
2806 	if (!c)
2807 		return;
2808 
2809 	clk_dump_one(s, c, level);
2810 
2811 	hlist_for_each_entry(child, &c->children, child_node) {
2812 		seq_putc(s, ',');
2813 		clk_dump_subtree(s, child, level + 1);
2814 	}
2815 
2816 	seq_putc(s, '}');
2817 }
2818 
2819 static int clk_dump_show(struct seq_file *s, void *data)
2820 {
2821 	struct clk_core *c;
2822 	bool first_node = true;
2823 	struct hlist_head **lists = (struct hlist_head **)s->private;
2824 
2825 	seq_putc(s, '{');
2826 	clk_prepare_lock();
2827 
2828 	for (; *lists; lists++) {
2829 		hlist_for_each_entry(c, *lists, child_node) {
2830 			if (!first_node)
2831 				seq_putc(s, ',');
2832 			first_node = false;
2833 			clk_dump_subtree(s, c, 0);
2834 		}
2835 	}
2836 
2837 	clk_prepare_unlock();
2838 
2839 	seq_puts(s, "}\n");
2840 	return 0;
2841 }
2842 DEFINE_SHOW_ATTRIBUTE(clk_dump);
2843 
2844 static const struct {
2845 	unsigned long flag;
2846 	const char *name;
2847 } clk_flags[] = {
2848 #define ENTRY(f) { f, #f }
2849 	ENTRY(CLK_SET_RATE_GATE),
2850 	ENTRY(CLK_SET_PARENT_GATE),
2851 	ENTRY(CLK_SET_RATE_PARENT),
2852 	ENTRY(CLK_IGNORE_UNUSED),
2853 	ENTRY(CLK_IS_BASIC),
2854 	ENTRY(CLK_GET_RATE_NOCACHE),
2855 	ENTRY(CLK_SET_RATE_NO_REPARENT),
2856 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
2857 	ENTRY(CLK_RECALC_NEW_RATES),
2858 	ENTRY(CLK_SET_RATE_UNGATE),
2859 	ENTRY(CLK_IS_CRITICAL),
2860 	ENTRY(CLK_OPS_PARENT_ENABLE),
2861 	ENTRY(CLK_DUTY_CYCLE_PARENT),
2862 #undef ENTRY
2863 };
2864 
2865 static int clk_flags_show(struct seq_file *s, void *data)
2866 {
2867 	struct clk_core *core = s->private;
2868 	unsigned long flags = core->flags;
2869 	unsigned int i;
2870 
2871 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
2872 		if (flags & clk_flags[i].flag) {
2873 			seq_printf(s, "%s\n", clk_flags[i].name);
2874 			flags &= ~clk_flags[i].flag;
2875 		}
2876 	}
2877 	if (flags) {
2878 		/* Unknown flags */
2879 		seq_printf(s, "0x%lx\n", flags);
2880 	}
2881 
2882 	return 0;
2883 }
2884 DEFINE_SHOW_ATTRIBUTE(clk_flags);
2885 
2886 static int possible_parents_show(struct seq_file *s, void *data)
2887 {
2888 	struct clk_core *core = s->private;
2889 	int i;
2890 
2891 	for (i = 0; i < core->num_parents - 1; i++)
2892 		seq_printf(s, "%s ", core->parent_names[i]);
2893 
2894 	seq_printf(s, "%s\n", core->parent_names[i]);
2895 
2896 	return 0;
2897 }
2898 DEFINE_SHOW_ATTRIBUTE(possible_parents);
2899 
2900 static int clk_duty_cycle_show(struct seq_file *s, void *data)
2901 {
2902 	struct clk_core *core = s->private;
2903 	struct clk_duty *duty = &core->duty;
2904 
2905 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
2906 
2907 	return 0;
2908 }
2909 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
2910 
2911 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2912 {
2913 	struct dentry *root;
2914 
2915 	if (!core || !pdentry)
2916 		return;
2917 
2918 	root = debugfs_create_dir(core->name, pdentry);
2919 	core->dentry = root;
2920 
2921 	debugfs_create_ulong("clk_rate", 0444, root, &core->rate);
2922 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
2923 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
2924 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
2925 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
2926 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
2927 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
2928 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
2929 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
2930 			    &clk_duty_cycle_fops);
2931 
2932 	if (core->num_parents > 1)
2933 		debugfs_create_file("clk_possible_parents", 0444, root, core,
2934 				    &possible_parents_fops);
2935 
2936 	if (core->ops->debug_init)
2937 		core->ops->debug_init(core->hw, core->dentry);
2938 }
2939 
2940 /**
2941  * clk_debug_register - add a clk node to the debugfs clk directory
2942  * @core: the clk being added to the debugfs clk directory
2943  *
2944  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2945  * initialized.  Otherwise it bails out early since the debugfs clk directory
2946  * will be created lazily by clk_debug_init as part of a late_initcall.
2947  */
2948 static void clk_debug_register(struct clk_core *core)
2949 {
2950 	mutex_lock(&clk_debug_lock);
2951 	hlist_add_head(&core->debug_node, &clk_debug_list);
2952 	if (inited)
2953 		clk_debug_create_one(core, rootdir);
2954 	mutex_unlock(&clk_debug_lock);
2955 }
2956 
2957  /**
2958  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2959  * @core: the clk being removed from the debugfs clk directory
2960  *
2961  * Dynamically removes a clk and all its child nodes from the
2962  * debugfs clk directory if clk->dentry points to debugfs created by
2963  * clk_debug_register in __clk_core_init.
2964  */
2965 static void clk_debug_unregister(struct clk_core *core)
2966 {
2967 	mutex_lock(&clk_debug_lock);
2968 	hlist_del_init(&core->debug_node);
2969 	debugfs_remove_recursive(core->dentry);
2970 	core->dentry = NULL;
2971 	mutex_unlock(&clk_debug_lock);
2972 }
2973 
2974 /**
2975  * clk_debug_init - lazily populate the debugfs clk directory
2976  *
2977  * clks are often initialized very early during boot before memory can be
2978  * dynamically allocated and well before debugfs is setup. This function
2979  * populates the debugfs clk directory once at boot-time when we know that
2980  * debugfs is setup. It should only be called once at boot-time, all other clks
2981  * added dynamically will be done so with clk_debug_register.
2982  */
2983 static int __init clk_debug_init(void)
2984 {
2985 	struct clk_core *core;
2986 
2987 	rootdir = debugfs_create_dir("clk", NULL);
2988 
2989 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
2990 			    &clk_summary_fops);
2991 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
2992 			    &clk_dump_fops);
2993 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
2994 			    &clk_summary_fops);
2995 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
2996 			    &clk_dump_fops);
2997 
2998 	mutex_lock(&clk_debug_lock);
2999 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3000 		clk_debug_create_one(core, rootdir);
3001 
3002 	inited = 1;
3003 	mutex_unlock(&clk_debug_lock);
3004 
3005 	return 0;
3006 }
3007 late_initcall(clk_debug_init);
3008 #else
3009 static inline void clk_debug_register(struct clk_core *core) { }
3010 static inline void clk_debug_reparent(struct clk_core *core,
3011 				      struct clk_core *new_parent)
3012 {
3013 }
3014 static inline void clk_debug_unregister(struct clk_core *core)
3015 {
3016 }
3017 #endif
3018 
3019 /**
3020  * __clk_core_init - initialize the data structures in a struct clk_core
3021  * @core:	clk_core being initialized
3022  *
3023  * Initializes the lists in struct clk_core, queries the hardware for the
3024  * parent and rate and sets them both.
3025  */
3026 static int __clk_core_init(struct clk_core *core)
3027 {
3028 	int i, ret;
3029 	struct clk_core *orphan;
3030 	struct hlist_node *tmp2;
3031 	unsigned long rate;
3032 
3033 	if (!core)
3034 		return -EINVAL;
3035 
3036 	clk_prepare_lock();
3037 
3038 	ret = clk_pm_runtime_get(core);
3039 	if (ret)
3040 		goto unlock;
3041 
3042 	/* check to see if a clock with this name is already registered */
3043 	if (clk_core_lookup(core->name)) {
3044 		pr_debug("%s: clk %s already initialized\n",
3045 				__func__, core->name);
3046 		ret = -EEXIST;
3047 		goto out;
3048 	}
3049 
3050 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3051 	if (core->ops->set_rate &&
3052 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3053 	      core->ops->recalc_rate)) {
3054 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3055 		       __func__, core->name);
3056 		ret = -EINVAL;
3057 		goto out;
3058 	}
3059 
3060 	if (core->ops->set_parent && !core->ops->get_parent) {
3061 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3062 		       __func__, core->name);
3063 		ret = -EINVAL;
3064 		goto out;
3065 	}
3066 
3067 	if (core->num_parents > 1 && !core->ops->get_parent) {
3068 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3069 		       __func__, core->name);
3070 		ret = -EINVAL;
3071 		goto out;
3072 	}
3073 
3074 	if (core->ops->set_rate_and_parent &&
3075 			!(core->ops->set_parent && core->ops->set_rate)) {
3076 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3077 				__func__, core->name);
3078 		ret = -EINVAL;
3079 		goto out;
3080 	}
3081 
3082 	/* throw a WARN if any entries in parent_names are NULL */
3083 	for (i = 0; i < core->num_parents; i++)
3084 		WARN(!core->parent_names[i],
3085 				"%s: invalid NULL in %s's .parent_names\n",
3086 				__func__, core->name);
3087 
3088 	core->parent = __clk_init_parent(core);
3089 
3090 	/*
3091 	 * Populate core->parent if parent has already been clk_core_init'd. If
3092 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3093 	 * list.  If clk doesn't have any parents then place it in the root
3094 	 * clk list.
3095 	 *
3096 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3097 	 * clocks and re-parent any that are children of the clock currently
3098 	 * being clk_init'd.
3099 	 */
3100 	if (core->parent) {
3101 		hlist_add_head(&core->child_node,
3102 				&core->parent->children);
3103 		core->orphan = core->parent->orphan;
3104 	} else if (!core->num_parents) {
3105 		hlist_add_head(&core->child_node, &clk_root_list);
3106 		core->orphan = false;
3107 	} else {
3108 		hlist_add_head(&core->child_node, &clk_orphan_list);
3109 		core->orphan = true;
3110 	}
3111 
3112 	/*
3113 	 * optional platform-specific magic
3114 	 *
3115 	 * The .init callback is not used by any of the basic clock types, but
3116 	 * exists for weird hardware that must perform initialization magic.
3117 	 * Please consider other ways of solving initialization problems before
3118 	 * using this callback, as its use is discouraged.
3119 	 */
3120 	if (core->ops->init)
3121 		core->ops->init(core->hw);
3122 
3123 	/*
3124 	 * Set clk's accuracy.  The preferred method is to use
3125 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3126 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3127 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3128 	 * clock).
3129 	 */
3130 	if (core->ops->recalc_accuracy)
3131 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3132 					__clk_get_accuracy(core->parent));
3133 	else if (core->parent)
3134 		core->accuracy = core->parent->accuracy;
3135 	else
3136 		core->accuracy = 0;
3137 
3138 	/*
3139 	 * Set clk's phase.
3140 	 * Since a phase is by definition relative to its parent, just
3141 	 * query the current clock phase, or just assume it's in phase.
3142 	 */
3143 	if (core->ops->get_phase)
3144 		core->phase = core->ops->get_phase(core->hw);
3145 	else
3146 		core->phase = 0;
3147 
3148 	/*
3149 	 * Set clk's duty cycle.
3150 	 */
3151 	clk_core_update_duty_cycle_nolock(core);
3152 
3153 	/*
3154 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3155 	 * simple clocks and lazy developers the default fallback is to use the
3156 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3157 	 * then rate is set to zero.
3158 	 */
3159 	if (core->ops->recalc_rate)
3160 		rate = core->ops->recalc_rate(core->hw,
3161 				clk_core_get_rate_nolock(core->parent));
3162 	else if (core->parent)
3163 		rate = core->parent->rate;
3164 	else
3165 		rate = 0;
3166 	core->rate = core->req_rate = rate;
3167 
3168 	/*
3169 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3170 	 * don't get accidentally disabled when walking the orphan tree and
3171 	 * reparenting clocks
3172 	 */
3173 	if (core->flags & CLK_IS_CRITICAL) {
3174 		unsigned long flags;
3175 
3176 		clk_core_prepare(core);
3177 
3178 		flags = clk_enable_lock();
3179 		clk_core_enable(core);
3180 		clk_enable_unlock(flags);
3181 	}
3182 
3183 	/*
3184 	 * walk the list of orphan clocks and reparent any that newly finds a
3185 	 * parent.
3186 	 */
3187 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3188 		struct clk_core *parent = __clk_init_parent(orphan);
3189 
3190 		/*
3191 		 * We need to use __clk_set_parent_before() and _after() to
3192 		 * to properly migrate any prepare/enable count of the orphan
3193 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3194 		 * are enabled during init but might not have a parent yet.
3195 		 */
3196 		if (parent) {
3197 			/* update the clk tree topology */
3198 			__clk_set_parent_before(orphan, parent);
3199 			__clk_set_parent_after(orphan, parent, NULL);
3200 			__clk_recalc_accuracies(orphan);
3201 			__clk_recalc_rates(orphan, 0);
3202 		}
3203 	}
3204 
3205 	kref_init(&core->ref);
3206 out:
3207 	clk_pm_runtime_put(core);
3208 unlock:
3209 	clk_prepare_unlock();
3210 
3211 	if (!ret)
3212 		clk_debug_register(core);
3213 
3214 	return ret;
3215 }
3216 
3217 /**
3218  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3219  * @core: clk to add consumer to
3220  * @clk: consumer to link to a clk
3221  */
3222 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3223 {
3224 	clk_prepare_lock();
3225 	hlist_add_head(&clk->clks_node, &core->clks);
3226 	clk_prepare_unlock();
3227 }
3228 
3229 /**
3230  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3231  * @clk: consumer to unlink
3232  */
3233 static void clk_core_unlink_consumer(struct clk *clk)
3234 {
3235 	lockdep_assert_held(&prepare_lock);
3236 	hlist_del(&clk->clks_node);
3237 }
3238 
3239 /**
3240  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3241  * @core: clk to allocate a consumer for
3242  * @dev_id: string describing device name
3243  * @con_id: connection ID string on device
3244  *
3245  * Returns: clk consumer left unlinked from the consumer list
3246  */
3247 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3248 			     const char *con_id)
3249 {
3250 	struct clk *clk;
3251 
3252 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3253 	if (!clk)
3254 		return ERR_PTR(-ENOMEM);
3255 
3256 	clk->core = core;
3257 	clk->dev_id = dev_id;
3258 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3259 	clk->max_rate = ULONG_MAX;
3260 
3261 	return clk;
3262 }
3263 
3264 /**
3265  * free_clk - Free a clk consumer
3266  * @clk: clk consumer to free
3267  *
3268  * Note, this assumes the clk has been unlinked from the clk_core consumer
3269  * list.
3270  */
3271 static void free_clk(struct clk *clk)
3272 {
3273 	kfree_const(clk->con_id);
3274 	kfree(clk);
3275 }
3276 
3277 /**
3278  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3279  * a clk_hw
3280  * @dev: clk consumer device
3281  * @hw: clk_hw associated with the clk being consumed
3282  * @dev_id: string describing device name
3283  * @con_id: connection ID string on device
3284  *
3285  * This is the main function used to create a clk pointer for use by clk
3286  * consumers. It connects a consumer to the clk_core and clk_hw structures
3287  * used by the framework and clk provider respectively.
3288  */
3289 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3290 			      const char *dev_id, const char *con_id)
3291 {
3292 	struct clk *clk;
3293 	struct clk_core *core;
3294 
3295 	/* This is to allow this function to be chained to others */
3296 	if (IS_ERR_OR_NULL(hw))
3297 		return ERR_CAST(hw);
3298 
3299 	core = hw->core;
3300 	clk = alloc_clk(core, dev_id, con_id);
3301 	if (IS_ERR(clk))
3302 		return clk;
3303 	clk->dev = dev;
3304 
3305 	if (!try_module_get(core->owner)) {
3306 		free_clk(clk);
3307 		return ERR_PTR(-ENOENT);
3308 	}
3309 
3310 	kref_get(&core->ref);
3311 	clk_core_link_consumer(core, clk);
3312 
3313 	return clk;
3314 }
3315 
3316 /**
3317  * clk_register - allocate a new clock, register it and return an opaque cookie
3318  * @dev: device that is registering this clock
3319  * @hw: link to hardware-specific clock data
3320  *
3321  * clk_register is the primary interface for populating the clock tree with new
3322  * clock nodes.  It returns a pointer to the newly allocated struct clk which
3323  * cannot be dereferenced by driver code but may be used in conjunction with the
3324  * rest of the clock API.  In the event of an error clk_register will return an
3325  * error code; drivers must test for an error code after calling clk_register.
3326  */
3327 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3328 {
3329 	int i, ret;
3330 	struct clk_core *core;
3331 
3332 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3333 	if (!core) {
3334 		ret = -ENOMEM;
3335 		goto fail_out;
3336 	}
3337 
3338 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
3339 	if (!core->name) {
3340 		ret = -ENOMEM;
3341 		goto fail_name;
3342 	}
3343 
3344 	if (WARN_ON(!hw->init->ops)) {
3345 		ret = -EINVAL;
3346 		goto fail_ops;
3347 	}
3348 	core->ops = hw->init->ops;
3349 
3350 	if (dev && pm_runtime_enabled(dev))
3351 		core->rpm_enabled = true;
3352 	core->dev = dev;
3353 	if (dev && dev->driver)
3354 		core->owner = dev->driver->owner;
3355 	core->hw = hw;
3356 	core->flags = hw->init->flags;
3357 	core->num_parents = hw->init->num_parents;
3358 	core->min_rate = 0;
3359 	core->max_rate = ULONG_MAX;
3360 	hw->core = core;
3361 
3362 	/* allocate local copy in case parent_names is __initdata */
3363 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
3364 					GFP_KERNEL);
3365 
3366 	if (!core->parent_names) {
3367 		ret = -ENOMEM;
3368 		goto fail_parent_names;
3369 	}
3370 
3371 
3372 	/* copy each string name in case parent_names is __initdata */
3373 	for (i = 0; i < core->num_parents; i++) {
3374 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
3375 						GFP_KERNEL);
3376 		if (!core->parent_names[i]) {
3377 			ret = -ENOMEM;
3378 			goto fail_parent_names_copy;
3379 		}
3380 	}
3381 
3382 	/* avoid unnecessary string look-ups of clk_core's possible parents. */
3383 	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
3384 				GFP_KERNEL);
3385 	if (!core->parents) {
3386 		ret = -ENOMEM;
3387 		goto fail_parents;
3388 	};
3389 
3390 	INIT_HLIST_HEAD(&core->clks);
3391 
3392 	/*
3393 	 * Don't call clk_hw_create_clk() here because that would pin the
3394 	 * provider module to itself and prevent it from ever being removed.
3395 	 */
3396 	hw->clk = alloc_clk(core, NULL, NULL);
3397 	if (IS_ERR(hw->clk)) {
3398 		ret = PTR_ERR(hw->clk);
3399 		goto fail_parents;
3400 	}
3401 
3402 	clk_core_link_consumer(hw->core, hw->clk);
3403 
3404 	ret = __clk_core_init(core);
3405 	if (!ret)
3406 		return hw->clk;
3407 
3408 	clk_prepare_lock();
3409 	clk_core_unlink_consumer(hw->clk);
3410 	clk_prepare_unlock();
3411 
3412 	free_clk(hw->clk);
3413 	hw->clk = NULL;
3414 
3415 fail_parents:
3416 	kfree(core->parents);
3417 fail_parent_names_copy:
3418 	while (--i >= 0)
3419 		kfree_const(core->parent_names[i]);
3420 	kfree(core->parent_names);
3421 fail_parent_names:
3422 fail_ops:
3423 	kfree_const(core->name);
3424 fail_name:
3425 	kfree(core);
3426 fail_out:
3427 	return ERR_PTR(ret);
3428 }
3429 EXPORT_SYMBOL_GPL(clk_register);
3430 
3431 /**
3432  * clk_hw_register - register a clk_hw and return an error code
3433  * @dev: device that is registering this clock
3434  * @hw: link to hardware-specific clock data
3435  *
3436  * clk_hw_register is the primary interface for populating the clock tree with
3437  * new clock nodes. It returns an integer equal to zero indicating success or
3438  * less than zero indicating failure. Drivers must test for an error code after
3439  * calling clk_hw_register().
3440  */
3441 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3442 {
3443 	return PTR_ERR_OR_ZERO(clk_register(dev, hw));
3444 }
3445 EXPORT_SYMBOL_GPL(clk_hw_register);
3446 
3447 /* Free memory allocated for a clock. */
3448 static void __clk_release(struct kref *ref)
3449 {
3450 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3451 	int i = core->num_parents;
3452 
3453 	lockdep_assert_held(&prepare_lock);
3454 
3455 	kfree(core->parents);
3456 	while (--i >= 0)
3457 		kfree_const(core->parent_names[i]);
3458 
3459 	kfree(core->parent_names);
3460 	kfree_const(core->name);
3461 	kfree(core);
3462 }
3463 
3464 /*
3465  * Empty clk_ops for unregistered clocks. These are used temporarily
3466  * after clk_unregister() was called on a clock and until last clock
3467  * consumer calls clk_put() and the struct clk object is freed.
3468  */
3469 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3470 {
3471 	return -ENXIO;
3472 }
3473 
3474 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3475 {
3476 	WARN_ON_ONCE(1);
3477 }
3478 
3479 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3480 					unsigned long parent_rate)
3481 {
3482 	return -ENXIO;
3483 }
3484 
3485 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3486 {
3487 	return -ENXIO;
3488 }
3489 
3490 static const struct clk_ops clk_nodrv_ops = {
3491 	.enable		= clk_nodrv_prepare_enable,
3492 	.disable	= clk_nodrv_disable_unprepare,
3493 	.prepare	= clk_nodrv_prepare_enable,
3494 	.unprepare	= clk_nodrv_disable_unprepare,
3495 	.set_rate	= clk_nodrv_set_rate,
3496 	.set_parent	= clk_nodrv_set_parent,
3497 };
3498 
3499 /**
3500  * clk_unregister - unregister a currently registered clock
3501  * @clk: clock to unregister
3502  */
3503 void clk_unregister(struct clk *clk)
3504 {
3505 	unsigned long flags;
3506 
3507 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3508 		return;
3509 
3510 	clk_debug_unregister(clk->core);
3511 
3512 	clk_prepare_lock();
3513 
3514 	if (clk->core->ops == &clk_nodrv_ops) {
3515 		pr_err("%s: unregistered clock: %s\n", __func__,
3516 		       clk->core->name);
3517 		goto unlock;
3518 	}
3519 	/*
3520 	 * Assign empty clock ops for consumers that might still hold
3521 	 * a reference to this clock.
3522 	 */
3523 	flags = clk_enable_lock();
3524 	clk->core->ops = &clk_nodrv_ops;
3525 	clk_enable_unlock(flags);
3526 
3527 	if (!hlist_empty(&clk->core->children)) {
3528 		struct clk_core *child;
3529 		struct hlist_node *t;
3530 
3531 		/* Reparent all children to the orphan list. */
3532 		hlist_for_each_entry_safe(child, t, &clk->core->children,
3533 					  child_node)
3534 			clk_core_set_parent_nolock(child, NULL);
3535 	}
3536 
3537 	hlist_del_init(&clk->core->child_node);
3538 
3539 	if (clk->core->prepare_count)
3540 		pr_warn("%s: unregistering prepared clock: %s\n",
3541 					__func__, clk->core->name);
3542 
3543 	if (clk->core->protect_count)
3544 		pr_warn("%s: unregistering protected clock: %s\n",
3545 					__func__, clk->core->name);
3546 
3547 	kref_put(&clk->core->ref, __clk_release);
3548 unlock:
3549 	clk_prepare_unlock();
3550 }
3551 EXPORT_SYMBOL_GPL(clk_unregister);
3552 
3553 /**
3554  * clk_hw_unregister - unregister a currently registered clk_hw
3555  * @hw: hardware-specific clock data to unregister
3556  */
3557 void clk_hw_unregister(struct clk_hw *hw)
3558 {
3559 	clk_unregister(hw->clk);
3560 }
3561 EXPORT_SYMBOL_GPL(clk_hw_unregister);
3562 
3563 static void devm_clk_release(struct device *dev, void *res)
3564 {
3565 	clk_unregister(*(struct clk **)res);
3566 }
3567 
3568 static void devm_clk_hw_release(struct device *dev, void *res)
3569 {
3570 	clk_hw_unregister(*(struct clk_hw **)res);
3571 }
3572 
3573 /**
3574  * devm_clk_register - resource managed clk_register()
3575  * @dev: device that is registering this clock
3576  * @hw: link to hardware-specific clock data
3577  *
3578  * Managed clk_register(). Clocks returned from this function are
3579  * automatically clk_unregister()ed on driver detach. See clk_register() for
3580  * more information.
3581  */
3582 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3583 {
3584 	struct clk *clk;
3585 	struct clk **clkp;
3586 
3587 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3588 	if (!clkp)
3589 		return ERR_PTR(-ENOMEM);
3590 
3591 	clk = clk_register(dev, hw);
3592 	if (!IS_ERR(clk)) {
3593 		*clkp = clk;
3594 		devres_add(dev, clkp);
3595 	} else {
3596 		devres_free(clkp);
3597 	}
3598 
3599 	return clk;
3600 }
3601 EXPORT_SYMBOL_GPL(devm_clk_register);
3602 
3603 /**
3604  * devm_clk_hw_register - resource managed clk_hw_register()
3605  * @dev: device that is registering this clock
3606  * @hw: link to hardware-specific clock data
3607  *
3608  * Managed clk_hw_register(). Clocks registered by this function are
3609  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3610  * for more information.
3611  */
3612 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3613 {
3614 	struct clk_hw **hwp;
3615 	int ret;
3616 
3617 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3618 	if (!hwp)
3619 		return -ENOMEM;
3620 
3621 	ret = clk_hw_register(dev, hw);
3622 	if (!ret) {
3623 		*hwp = hw;
3624 		devres_add(dev, hwp);
3625 	} else {
3626 		devres_free(hwp);
3627 	}
3628 
3629 	return ret;
3630 }
3631 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3632 
3633 static int devm_clk_match(struct device *dev, void *res, void *data)
3634 {
3635 	struct clk *c = res;
3636 	if (WARN_ON(!c))
3637 		return 0;
3638 	return c == data;
3639 }
3640 
3641 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3642 {
3643 	struct clk_hw *hw = res;
3644 
3645 	if (WARN_ON(!hw))
3646 		return 0;
3647 	return hw == data;
3648 }
3649 
3650 /**
3651  * devm_clk_unregister - resource managed clk_unregister()
3652  * @clk: clock to unregister
3653  *
3654  * Deallocate a clock allocated with devm_clk_register(). Normally
3655  * this function will not need to be called and the resource management
3656  * code will ensure that the resource is freed.
3657  */
3658 void devm_clk_unregister(struct device *dev, struct clk *clk)
3659 {
3660 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3661 }
3662 EXPORT_SYMBOL_GPL(devm_clk_unregister);
3663 
3664 /**
3665  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
3666  * @dev: device that is unregistering the hardware-specific clock data
3667  * @hw: link to hardware-specific clock data
3668  *
3669  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
3670  * this function will not need to be called and the resource management
3671  * code will ensure that the resource is freed.
3672  */
3673 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
3674 {
3675 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
3676 				hw));
3677 }
3678 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3679 
3680 /*
3681  * clkdev helpers
3682  */
3683 
3684 void __clk_put(struct clk *clk)
3685 {
3686 	struct module *owner;
3687 
3688 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3689 		return;
3690 
3691 	clk_prepare_lock();
3692 
3693 	/*
3694 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
3695 	 * given user should be balanced with calls to clk_rate_exclusive_put()
3696 	 * and by that same consumer
3697 	 */
3698 	if (WARN_ON(clk->exclusive_count)) {
3699 		/* We voiced our concern, let's sanitize the situation */
3700 		clk->core->protect_count -= (clk->exclusive_count - 1);
3701 		clk_core_rate_unprotect(clk->core);
3702 		clk->exclusive_count = 0;
3703 	}
3704 
3705 	hlist_del(&clk->clks_node);
3706 	if (clk->min_rate > clk->core->req_rate ||
3707 	    clk->max_rate < clk->core->req_rate)
3708 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3709 
3710 	owner = clk->core->owner;
3711 	kref_put(&clk->core->ref, __clk_release);
3712 
3713 	clk_prepare_unlock();
3714 
3715 	module_put(owner);
3716 
3717 	free_clk(clk);
3718 }
3719 
3720 /***        clk rate change notifiers        ***/
3721 
3722 /**
3723  * clk_notifier_register - add a clk rate change notifier
3724  * @clk: struct clk * to watch
3725  * @nb: struct notifier_block * with callback info
3726  *
3727  * Request notification when clk's rate changes.  This uses an SRCU
3728  * notifier because we want it to block and notifier unregistrations are
3729  * uncommon.  The callbacks associated with the notifier must not
3730  * re-enter into the clk framework by calling any top-level clk APIs;
3731  * this will cause a nested prepare_lock mutex.
3732  *
3733  * In all notification cases (pre, post and abort rate change) the original
3734  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3735  * and the new frequency is passed via struct clk_notifier_data.new_rate.
3736  *
3737  * clk_notifier_register() must be called from non-atomic context.
3738  * Returns -EINVAL if called with null arguments, -ENOMEM upon
3739  * allocation failure; otherwise, passes along the return value of
3740  * srcu_notifier_chain_register().
3741  */
3742 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3743 {
3744 	struct clk_notifier *cn;
3745 	int ret = -ENOMEM;
3746 
3747 	if (!clk || !nb)
3748 		return -EINVAL;
3749 
3750 	clk_prepare_lock();
3751 
3752 	/* search the list of notifiers for this clk */
3753 	list_for_each_entry(cn, &clk_notifier_list, node)
3754 		if (cn->clk == clk)
3755 			break;
3756 
3757 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
3758 	if (cn->clk != clk) {
3759 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3760 		if (!cn)
3761 			goto out;
3762 
3763 		cn->clk = clk;
3764 		srcu_init_notifier_head(&cn->notifier_head);
3765 
3766 		list_add(&cn->node, &clk_notifier_list);
3767 	}
3768 
3769 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3770 
3771 	clk->core->notifier_count++;
3772 
3773 out:
3774 	clk_prepare_unlock();
3775 
3776 	return ret;
3777 }
3778 EXPORT_SYMBOL_GPL(clk_notifier_register);
3779 
3780 /**
3781  * clk_notifier_unregister - remove a clk rate change notifier
3782  * @clk: struct clk *
3783  * @nb: struct notifier_block * with callback info
3784  *
3785  * Request no further notification for changes to 'clk' and frees memory
3786  * allocated in clk_notifier_register.
3787  *
3788  * Returns -EINVAL if called with null arguments; otherwise, passes
3789  * along the return value of srcu_notifier_chain_unregister().
3790  */
3791 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3792 {
3793 	struct clk_notifier *cn = NULL;
3794 	int ret = -EINVAL;
3795 
3796 	if (!clk || !nb)
3797 		return -EINVAL;
3798 
3799 	clk_prepare_lock();
3800 
3801 	list_for_each_entry(cn, &clk_notifier_list, node)
3802 		if (cn->clk == clk)
3803 			break;
3804 
3805 	if (cn->clk == clk) {
3806 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3807 
3808 		clk->core->notifier_count--;
3809 
3810 		/* XXX the notifier code should handle this better */
3811 		if (!cn->notifier_head.head) {
3812 			srcu_cleanup_notifier_head(&cn->notifier_head);
3813 			list_del(&cn->node);
3814 			kfree(cn);
3815 		}
3816 
3817 	} else {
3818 		ret = -ENOENT;
3819 	}
3820 
3821 	clk_prepare_unlock();
3822 
3823 	return ret;
3824 }
3825 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3826 
3827 #ifdef CONFIG_OF
3828 /**
3829  * struct of_clk_provider - Clock provider registration structure
3830  * @link: Entry in global list of clock providers
3831  * @node: Pointer to device tree node of clock provider
3832  * @get: Get clock callback.  Returns NULL or a struct clk for the
3833  *       given clock specifier
3834  * @data: context pointer to be passed into @get callback
3835  */
3836 struct of_clk_provider {
3837 	struct list_head link;
3838 
3839 	struct device_node *node;
3840 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3841 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3842 	void *data;
3843 };
3844 
3845 static const struct of_device_id __clk_of_table_sentinel
3846 	__used __section(__clk_of_table_end);
3847 
3848 static LIST_HEAD(of_clk_providers);
3849 static DEFINE_MUTEX(of_clk_mutex);
3850 
3851 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3852 				     void *data)
3853 {
3854 	return data;
3855 }
3856 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3857 
3858 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3859 {
3860 	return data;
3861 }
3862 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3863 
3864 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3865 {
3866 	struct clk_onecell_data *clk_data = data;
3867 	unsigned int idx = clkspec->args[0];
3868 
3869 	if (idx >= clk_data->clk_num) {
3870 		pr_err("%s: invalid clock index %u\n", __func__, idx);
3871 		return ERR_PTR(-EINVAL);
3872 	}
3873 
3874 	return clk_data->clks[idx];
3875 }
3876 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3877 
3878 struct clk_hw *
3879 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3880 {
3881 	struct clk_hw_onecell_data *hw_data = data;
3882 	unsigned int idx = clkspec->args[0];
3883 
3884 	if (idx >= hw_data->num) {
3885 		pr_err("%s: invalid index %u\n", __func__, idx);
3886 		return ERR_PTR(-EINVAL);
3887 	}
3888 
3889 	return hw_data->hws[idx];
3890 }
3891 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3892 
3893 /**
3894  * of_clk_add_provider() - Register a clock provider for a node
3895  * @np: Device node pointer associated with clock provider
3896  * @clk_src_get: callback for decoding clock
3897  * @data: context pointer for @clk_src_get callback.
3898  */
3899 int of_clk_add_provider(struct device_node *np,
3900 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3901 						   void *data),
3902 			void *data)
3903 {
3904 	struct of_clk_provider *cp;
3905 	int ret;
3906 
3907 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3908 	if (!cp)
3909 		return -ENOMEM;
3910 
3911 	cp->node = of_node_get(np);
3912 	cp->data = data;
3913 	cp->get = clk_src_get;
3914 
3915 	mutex_lock(&of_clk_mutex);
3916 	list_add(&cp->link, &of_clk_providers);
3917 	mutex_unlock(&of_clk_mutex);
3918 	pr_debug("Added clock from %pOF\n", np);
3919 
3920 	ret = of_clk_set_defaults(np, true);
3921 	if (ret < 0)
3922 		of_clk_del_provider(np);
3923 
3924 	return ret;
3925 }
3926 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3927 
3928 /**
3929  * of_clk_add_hw_provider() - Register a clock provider for a node
3930  * @np: Device node pointer associated with clock provider
3931  * @get: callback for decoding clk_hw
3932  * @data: context pointer for @get callback.
3933  */
3934 int of_clk_add_hw_provider(struct device_node *np,
3935 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3936 						 void *data),
3937 			   void *data)
3938 {
3939 	struct of_clk_provider *cp;
3940 	int ret;
3941 
3942 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3943 	if (!cp)
3944 		return -ENOMEM;
3945 
3946 	cp->node = of_node_get(np);
3947 	cp->data = data;
3948 	cp->get_hw = get;
3949 
3950 	mutex_lock(&of_clk_mutex);
3951 	list_add(&cp->link, &of_clk_providers);
3952 	mutex_unlock(&of_clk_mutex);
3953 	pr_debug("Added clk_hw provider from %pOF\n", np);
3954 
3955 	ret = of_clk_set_defaults(np, true);
3956 	if (ret < 0)
3957 		of_clk_del_provider(np);
3958 
3959 	return ret;
3960 }
3961 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3962 
3963 static void devm_of_clk_release_provider(struct device *dev, void *res)
3964 {
3965 	of_clk_del_provider(*(struct device_node **)res);
3966 }
3967 
3968 /*
3969  * We allow a child device to use its parent device as the clock provider node
3970  * for cases like MFD sub-devices where the child device driver wants to use
3971  * devm_*() APIs but not list the device in DT as a sub-node.
3972  */
3973 static struct device_node *get_clk_provider_node(struct device *dev)
3974 {
3975 	struct device_node *np, *parent_np;
3976 
3977 	np = dev->of_node;
3978 	parent_np = dev->parent ? dev->parent->of_node : NULL;
3979 
3980 	if (!of_find_property(np, "#clock-cells", NULL))
3981 		if (of_find_property(parent_np, "#clock-cells", NULL))
3982 			np = parent_np;
3983 
3984 	return np;
3985 }
3986 
3987 /**
3988  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
3989  * @dev: Device acting as the clock provider (used for DT node and lifetime)
3990  * @get: callback for decoding clk_hw
3991  * @data: context pointer for @get callback
3992  *
3993  * Registers clock provider for given device's node. If the device has no DT
3994  * node or if the device node lacks of clock provider information (#clock-cells)
3995  * then the parent device's node is scanned for this information. If parent node
3996  * has the #clock-cells then it is used in registration. Provider is
3997  * automatically released at device exit.
3998  *
3999  * Return: 0 on success or an errno on failure.
4000  */
4001 int devm_of_clk_add_hw_provider(struct device *dev,
4002 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4003 					      void *data),
4004 			void *data)
4005 {
4006 	struct device_node **ptr, *np;
4007 	int ret;
4008 
4009 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4010 			   GFP_KERNEL);
4011 	if (!ptr)
4012 		return -ENOMEM;
4013 
4014 	np = get_clk_provider_node(dev);
4015 	ret = of_clk_add_hw_provider(np, get, data);
4016 	if (!ret) {
4017 		*ptr = np;
4018 		devres_add(dev, ptr);
4019 	} else {
4020 		devres_free(ptr);
4021 	}
4022 
4023 	return ret;
4024 }
4025 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4026 
4027 /**
4028  * of_clk_del_provider() - Remove a previously registered clock provider
4029  * @np: Device node pointer associated with clock provider
4030  */
4031 void of_clk_del_provider(struct device_node *np)
4032 {
4033 	struct of_clk_provider *cp;
4034 
4035 	mutex_lock(&of_clk_mutex);
4036 	list_for_each_entry(cp, &of_clk_providers, link) {
4037 		if (cp->node == np) {
4038 			list_del(&cp->link);
4039 			of_node_put(cp->node);
4040 			kfree(cp);
4041 			break;
4042 		}
4043 	}
4044 	mutex_unlock(&of_clk_mutex);
4045 }
4046 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4047 
4048 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4049 {
4050 	struct device_node **np = res;
4051 
4052 	if (WARN_ON(!np || !*np))
4053 		return 0;
4054 
4055 	return *np == data;
4056 }
4057 
4058 /**
4059  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4060  * @dev: Device to whose lifetime the clock provider was bound
4061  */
4062 void devm_of_clk_del_provider(struct device *dev)
4063 {
4064 	int ret;
4065 	struct device_node *np = get_clk_provider_node(dev);
4066 
4067 	ret = devres_release(dev, devm_of_clk_release_provider,
4068 			     devm_clk_provider_match, np);
4069 
4070 	WARN_ON(ret);
4071 }
4072 EXPORT_SYMBOL(devm_of_clk_del_provider);
4073 
4074 /*
4075  * Beware the return values when np is valid, but no clock provider is found.
4076  * If name == NULL, the function returns -ENOENT.
4077  * If name != NULL, the function returns -EINVAL. This is because
4078  * of_parse_phandle_with_args() is called even if of_property_match_string()
4079  * returns an error.
4080  */
4081 static int of_parse_clkspec(const struct device_node *np, int index,
4082 			    const char *name, struct of_phandle_args *out_args)
4083 {
4084 	int ret = -ENOENT;
4085 
4086 	/* Walk up the tree of devices looking for a clock property that matches */
4087 	while (np) {
4088 		/*
4089 		 * For named clocks, first look up the name in the
4090 		 * "clock-names" property.  If it cannot be found, then index
4091 		 * will be an error code and of_parse_phandle_with_args() will
4092 		 * return -EINVAL.
4093 		 */
4094 		if (name)
4095 			index = of_property_match_string(np, "clock-names", name);
4096 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4097 						 index, out_args);
4098 		if (!ret)
4099 			break;
4100 		if (name && index >= 0)
4101 			break;
4102 
4103 		/*
4104 		 * No matching clock found on this node.  If the parent node
4105 		 * has a "clock-ranges" property, then we can try one of its
4106 		 * clocks.
4107 		 */
4108 		np = np->parent;
4109 		if (np && !of_get_property(np, "clock-ranges", NULL))
4110 			break;
4111 		index = 0;
4112 	}
4113 
4114 	return ret;
4115 }
4116 
4117 static struct clk_hw *
4118 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4119 			      struct of_phandle_args *clkspec)
4120 {
4121 	struct clk *clk;
4122 
4123 	if (provider->get_hw)
4124 		return provider->get_hw(clkspec, provider->data);
4125 
4126 	clk = provider->get(clkspec, provider->data);
4127 	if (IS_ERR(clk))
4128 		return ERR_CAST(clk);
4129 	return __clk_get_hw(clk);
4130 }
4131 
4132 static struct clk_hw *
4133 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4134 {
4135 	struct of_clk_provider *provider;
4136 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4137 
4138 	if (!clkspec)
4139 		return ERR_PTR(-EINVAL);
4140 
4141 	mutex_lock(&of_clk_mutex);
4142 	list_for_each_entry(provider, &of_clk_providers, link) {
4143 		if (provider->node == clkspec->np) {
4144 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4145 			if (!IS_ERR(hw))
4146 				break;
4147 		}
4148 	}
4149 	mutex_unlock(&of_clk_mutex);
4150 
4151 	return hw;
4152 }
4153 
4154 /**
4155  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4156  * @clkspec: pointer to a clock specifier data structure
4157  *
4158  * This function looks up a struct clk from the registered list of clock
4159  * providers, an input is a clock specifier data structure as returned
4160  * from the of_parse_phandle_with_args() function call.
4161  */
4162 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4163 {
4164 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4165 
4166 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4167 }
4168 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4169 
4170 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4171 			     const char *con_id)
4172 {
4173 	int ret;
4174 	struct clk_hw *hw;
4175 	struct of_phandle_args clkspec;
4176 
4177 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4178 	if (ret)
4179 		return ERR_PTR(ret);
4180 
4181 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4182 	of_node_put(clkspec.np);
4183 
4184 	return hw;
4185 }
4186 
4187 static struct clk *__of_clk_get(struct device_node *np,
4188 				int index, const char *dev_id,
4189 				const char *con_id)
4190 {
4191 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4192 
4193 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4194 }
4195 
4196 struct clk *of_clk_get(struct device_node *np, int index)
4197 {
4198 	return __of_clk_get(np, index, np->full_name, NULL);
4199 }
4200 EXPORT_SYMBOL(of_clk_get);
4201 
4202 /**
4203  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4204  * @np: pointer to clock consumer node
4205  * @name: name of consumer's clock input, or NULL for the first clock reference
4206  *
4207  * This function parses the clocks and clock-names properties,
4208  * and uses them to look up the struct clk from the registered list of clock
4209  * providers.
4210  */
4211 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4212 {
4213 	if (!np)
4214 		return ERR_PTR(-ENOENT);
4215 
4216 	return __of_clk_get(np, 0, np->full_name, name);
4217 }
4218 EXPORT_SYMBOL(of_clk_get_by_name);
4219 
4220 /**
4221  * of_clk_get_parent_count() - Count the number of clocks a device node has
4222  * @np: device node to count
4223  *
4224  * Returns: The number of clocks that are possible parents of this node
4225  */
4226 unsigned int of_clk_get_parent_count(struct device_node *np)
4227 {
4228 	int count;
4229 
4230 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4231 	if (count < 0)
4232 		return 0;
4233 
4234 	return count;
4235 }
4236 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4237 
4238 const char *of_clk_get_parent_name(struct device_node *np, int index)
4239 {
4240 	struct of_phandle_args clkspec;
4241 	struct property *prop;
4242 	const char *clk_name;
4243 	const __be32 *vp;
4244 	u32 pv;
4245 	int rc;
4246 	int count;
4247 	struct clk *clk;
4248 
4249 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4250 					&clkspec);
4251 	if (rc)
4252 		return NULL;
4253 
4254 	index = clkspec.args_count ? clkspec.args[0] : 0;
4255 	count = 0;
4256 
4257 	/* if there is an indices property, use it to transfer the index
4258 	 * specified into an array offset for the clock-output-names property.
4259 	 */
4260 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4261 		if (index == pv) {
4262 			index = count;
4263 			break;
4264 		}
4265 		count++;
4266 	}
4267 	/* We went off the end of 'clock-indices' without finding it */
4268 	if (prop && !vp)
4269 		return NULL;
4270 
4271 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4272 					  index,
4273 					  &clk_name) < 0) {
4274 		/*
4275 		 * Best effort to get the name if the clock has been
4276 		 * registered with the framework. If the clock isn't
4277 		 * registered, we return the node name as the name of
4278 		 * the clock as long as #clock-cells = 0.
4279 		 */
4280 		clk = of_clk_get_from_provider(&clkspec);
4281 		if (IS_ERR(clk)) {
4282 			if (clkspec.args_count == 0)
4283 				clk_name = clkspec.np->name;
4284 			else
4285 				clk_name = NULL;
4286 		} else {
4287 			clk_name = __clk_get_name(clk);
4288 			clk_put(clk);
4289 		}
4290 	}
4291 
4292 
4293 	of_node_put(clkspec.np);
4294 	return clk_name;
4295 }
4296 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4297 
4298 /**
4299  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4300  * number of parents
4301  * @np: Device node pointer associated with clock provider
4302  * @parents: pointer to char array that hold the parents' names
4303  * @size: size of the @parents array
4304  *
4305  * Return: number of parents for the clock node.
4306  */
4307 int of_clk_parent_fill(struct device_node *np, const char **parents,
4308 		       unsigned int size)
4309 {
4310 	unsigned int i = 0;
4311 
4312 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4313 		i++;
4314 
4315 	return i;
4316 }
4317 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4318 
4319 struct clock_provider {
4320 	void (*clk_init_cb)(struct device_node *);
4321 	struct device_node *np;
4322 	struct list_head node;
4323 };
4324 
4325 /*
4326  * This function looks for a parent clock. If there is one, then it
4327  * checks that the provider for this parent clock was initialized, in
4328  * this case the parent clock will be ready.
4329  */
4330 static int parent_ready(struct device_node *np)
4331 {
4332 	int i = 0;
4333 
4334 	while (true) {
4335 		struct clk *clk = of_clk_get(np, i);
4336 
4337 		/* this parent is ready we can check the next one */
4338 		if (!IS_ERR(clk)) {
4339 			clk_put(clk);
4340 			i++;
4341 			continue;
4342 		}
4343 
4344 		/* at least one parent is not ready, we exit now */
4345 		if (PTR_ERR(clk) == -EPROBE_DEFER)
4346 			return 0;
4347 
4348 		/*
4349 		 * Here we make assumption that the device tree is
4350 		 * written correctly. So an error means that there is
4351 		 * no more parent. As we didn't exit yet, then the
4352 		 * previous parent are ready. If there is no clock
4353 		 * parent, no need to wait for them, then we can
4354 		 * consider their absence as being ready
4355 		 */
4356 		return 1;
4357 	}
4358 }
4359 
4360 /**
4361  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4362  * @np: Device node pointer associated with clock provider
4363  * @index: clock index
4364  * @flags: pointer to top-level framework flags
4365  *
4366  * Detects if the clock-critical property exists and, if so, sets the
4367  * corresponding CLK_IS_CRITICAL flag.
4368  *
4369  * Do not use this function. It exists only for legacy Device Tree
4370  * bindings, such as the one-clock-per-node style that are outdated.
4371  * Those bindings typically put all clock data into .dts and the Linux
4372  * driver has no clock data, thus making it impossible to set this flag
4373  * correctly from the driver. Only those drivers may call
4374  * of_clk_detect_critical from their setup functions.
4375  *
4376  * Return: error code or zero on success
4377  */
4378 int of_clk_detect_critical(struct device_node *np,
4379 					  int index, unsigned long *flags)
4380 {
4381 	struct property *prop;
4382 	const __be32 *cur;
4383 	uint32_t idx;
4384 
4385 	if (!np || !flags)
4386 		return -EINVAL;
4387 
4388 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4389 		if (index == idx)
4390 			*flags |= CLK_IS_CRITICAL;
4391 
4392 	return 0;
4393 }
4394 
4395 /**
4396  * of_clk_init() - Scan and init clock providers from the DT
4397  * @matches: array of compatible values and init functions for providers.
4398  *
4399  * This function scans the device tree for matching clock providers
4400  * and calls their initialization functions. It also does it by trying
4401  * to follow the dependencies.
4402  */
4403 void __init of_clk_init(const struct of_device_id *matches)
4404 {
4405 	const struct of_device_id *match;
4406 	struct device_node *np;
4407 	struct clock_provider *clk_provider, *next;
4408 	bool is_init_done;
4409 	bool force = false;
4410 	LIST_HEAD(clk_provider_list);
4411 
4412 	if (!matches)
4413 		matches = &__clk_of_table;
4414 
4415 	/* First prepare the list of the clocks providers */
4416 	for_each_matching_node_and_match(np, matches, &match) {
4417 		struct clock_provider *parent;
4418 
4419 		if (!of_device_is_available(np))
4420 			continue;
4421 
4422 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4423 		if (!parent) {
4424 			list_for_each_entry_safe(clk_provider, next,
4425 						 &clk_provider_list, node) {
4426 				list_del(&clk_provider->node);
4427 				of_node_put(clk_provider->np);
4428 				kfree(clk_provider);
4429 			}
4430 			of_node_put(np);
4431 			return;
4432 		}
4433 
4434 		parent->clk_init_cb = match->data;
4435 		parent->np = of_node_get(np);
4436 		list_add_tail(&parent->node, &clk_provider_list);
4437 	}
4438 
4439 	while (!list_empty(&clk_provider_list)) {
4440 		is_init_done = false;
4441 		list_for_each_entry_safe(clk_provider, next,
4442 					&clk_provider_list, node) {
4443 			if (force || parent_ready(clk_provider->np)) {
4444 
4445 				/* Don't populate platform devices */
4446 				of_node_set_flag(clk_provider->np,
4447 						 OF_POPULATED);
4448 
4449 				clk_provider->clk_init_cb(clk_provider->np);
4450 				of_clk_set_defaults(clk_provider->np, true);
4451 
4452 				list_del(&clk_provider->node);
4453 				of_node_put(clk_provider->np);
4454 				kfree(clk_provider);
4455 				is_init_done = true;
4456 			}
4457 		}
4458 
4459 		/*
4460 		 * We didn't manage to initialize any of the
4461 		 * remaining providers during the last loop, so now we
4462 		 * initialize all the remaining ones unconditionally
4463 		 * in case the clock parent was not mandatory
4464 		 */
4465 		if (!is_init_done)
4466 			force = true;
4467 	}
4468 }
4469 #endif
4470