1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/clk.txt 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/clk-provider.h> 14 #include <linux/clk/clk-conf.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/spinlock.h> 18 #include <linux/err.h> 19 #include <linux/list.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/sched.h> 25 #include <linux/clkdev.h> 26 27 #include "clk.h" 28 29 static DEFINE_SPINLOCK(enable_lock); 30 static DEFINE_MUTEX(prepare_lock); 31 32 static struct task_struct *prepare_owner; 33 static struct task_struct *enable_owner; 34 35 static int prepare_refcnt; 36 static int enable_refcnt; 37 38 static HLIST_HEAD(clk_root_list); 39 static HLIST_HEAD(clk_orphan_list); 40 static LIST_HEAD(clk_notifier_list); 41 42 /*** private data structures ***/ 43 44 struct clk_core { 45 const char *name; 46 const struct clk_ops *ops; 47 struct clk_hw *hw; 48 struct module *owner; 49 struct clk_core *parent; 50 const char **parent_names; 51 struct clk_core **parents; 52 u8 num_parents; 53 u8 new_parent_index; 54 unsigned long rate; 55 unsigned long req_rate; 56 unsigned long new_rate; 57 struct clk_core *new_parent; 58 struct clk_core *new_child; 59 unsigned long flags; 60 bool orphan; 61 unsigned int enable_count; 62 unsigned int prepare_count; 63 unsigned long min_rate; 64 unsigned long max_rate; 65 unsigned long accuracy; 66 int phase; 67 struct hlist_head children; 68 struct hlist_node child_node; 69 struct hlist_head clks; 70 unsigned int notifier_count; 71 #ifdef CONFIG_DEBUG_FS 72 struct dentry *dentry; 73 struct hlist_node debug_node; 74 #endif 75 struct kref ref; 76 }; 77 78 #define CREATE_TRACE_POINTS 79 #include <trace/events/clk.h> 80 81 struct clk { 82 struct clk_core *core; 83 const char *dev_id; 84 const char *con_id; 85 unsigned long min_rate; 86 unsigned long max_rate; 87 struct hlist_node clks_node; 88 }; 89 90 /*** locking ***/ 91 static void clk_prepare_lock(void) 92 { 93 if (!mutex_trylock(&prepare_lock)) { 94 if (prepare_owner == current) { 95 prepare_refcnt++; 96 return; 97 } 98 mutex_lock(&prepare_lock); 99 } 100 WARN_ON_ONCE(prepare_owner != NULL); 101 WARN_ON_ONCE(prepare_refcnt != 0); 102 prepare_owner = current; 103 prepare_refcnt = 1; 104 } 105 106 static void clk_prepare_unlock(void) 107 { 108 WARN_ON_ONCE(prepare_owner != current); 109 WARN_ON_ONCE(prepare_refcnt == 0); 110 111 if (--prepare_refcnt) 112 return; 113 prepare_owner = NULL; 114 mutex_unlock(&prepare_lock); 115 } 116 117 static unsigned long clk_enable_lock(void) 118 __acquires(enable_lock) 119 { 120 unsigned long flags; 121 122 if (!spin_trylock_irqsave(&enable_lock, flags)) { 123 if (enable_owner == current) { 124 enable_refcnt++; 125 __acquire(enable_lock); 126 return flags; 127 } 128 spin_lock_irqsave(&enable_lock, flags); 129 } 130 WARN_ON_ONCE(enable_owner != NULL); 131 WARN_ON_ONCE(enable_refcnt != 0); 132 enable_owner = current; 133 enable_refcnt = 1; 134 return flags; 135 } 136 137 static void clk_enable_unlock(unsigned long flags) 138 __releases(enable_lock) 139 { 140 WARN_ON_ONCE(enable_owner != current); 141 WARN_ON_ONCE(enable_refcnt == 0); 142 143 if (--enable_refcnt) { 144 __release(enable_lock); 145 return; 146 } 147 enable_owner = NULL; 148 spin_unlock_irqrestore(&enable_lock, flags); 149 } 150 151 static bool clk_core_is_prepared(struct clk_core *core) 152 { 153 /* 154 * .is_prepared is optional for clocks that can prepare 155 * fall back to software usage counter if it is missing 156 */ 157 if (!core->ops->is_prepared) 158 return core->prepare_count; 159 160 return core->ops->is_prepared(core->hw); 161 } 162 163 static bool clk_core_is_enabled(struct clk_core *core) 164 { 165 /* 166 * .is_enabled is only mandatory for clocks that gate 167 * fall back to software usage counter if .is_enabled is missing 168 */ 169 if (!core->ops->is_enabled) 170 return core->enable_count; 171 172 return core->ops->is_enabled(core->hw); 173 } 174 175 static void clk_unprepare_unused_subtree(struct clk_core *core) 176 { 177 struct clk_core *child; 178 179 lockdep_assert_held(&prepare_lock); 180 181 hlist_for_each_entry(child, &core->children, child_node) 182 clk_unprepare_unused_subtree(child); 183 184 if (core->prepare_count) 185 return; 186 187 if (core->flags & CLK_IGNORE_UNUSED) 188 return; 189 190 if (clk_core_is_prepared(core)) { 191 trace_clk_unprepare(core); 192 if (core->ops->unprepare_unused) 193 core->ops->unprepare_unused(core->hw); 194 else if (core->ops->unprepare) 195 core->ops->unprepare(core->hw); 196 trace_clk_unprepare_complete(core); 197 } 198 } 199 200 static void clk_disable_unused_subtree(struct clk_core *core) 201 { 202 struct clk_core *child; 203 unsigned long flags; 204 205 lockdep_assert_held(&prepare_lock); 206 207 hlist_for_each_entry(child, &core->children, child_node) 208 clk_disable_unused_subtree(child); 209 210 flags = clk_enable_lock(); 211 212 if (core->enable_count) 213 goto unlock_out; 214 215 if (core->flags & CLK_IGNORE_UNUSED) 216 goto unlock_out; 217 218 /* 219 * some gate clocks have special needs during the disable-unused 220 * sequence. call .disable_unused if available, otherwise fall 221 * back to .disable 222 */ 223 if (clk_core_is_enabled(core)) { 224 trace_clk_disable(core); 225 if (core->ops->disable_unused) 226 core->ops->disable_unused(core->hw); 227 else if (core->ops->disable) 228 core->ops->disable(core->hw); 229 trace_clk_disable_complete(core); 230 } 231 232 unlock_out: 233 clk_enable_unlock(flags); 234 } 235 236 static bool clk_ignore_unused; 237 static int __init clk_ignore_unused_setup(char *__unused) 238 { 239 clk_ignore_unused = true; 240 return 1; 241 } 242 __setup("clk_ignore_unused", clk_ignore_unused_setup); 243 244 static int clk_disable_unused(void) 245 { 246 struct clk_core *core; 247 248 if (clk_ignore_unused) { 249 pr_warn("clk: Not disabling unused clocks\n"); 250 return 0; 251 } 252 253 clk_prepare_lock(); 254 255 hlist_for_each_entry(core, &clk_root_list, child_node) 256 clk_disable_unused_subtree(core); 257 258 hlist_for_each_entry(core, &clk_orphan_list, child_node) 259 clk_disable_unused_subtree(core); 260 261 hlist_for_each_entry(core, &clk_root_list, child_node) 262 clk_unprepare_unused_subtree(core); 263 264 hlist_for_each_entry(core, &clk_orphan_list, child_node) 265 clk_unprepare_unused_subtree(core); 266 267 clk_prepare_unlock(); 268 269 return 0; 270 } 271 late_initcall_sync(clk_disable_unused); 272 273 /*** helper functions ***/ 274 275 const char *__clk_get_name(const struct clk *clk) 276 { 277 return !clk ? NULL : clk->core->name; 278 } 279 EXPORT_SYMBOL_GPL(__clk_get_name); 280 281 const char *clk_hw_get_name(const struct clk_hw *hw) 282 { 283 return hw->core->name; 284 } 285 EXPORT_SYMBOL_GPL(clk_hw_get_name); 286 287 struct clk_hw *__clk_get_hw(struct clk *clk) 288 { 289 return !clk ? NULL : clk->core->hw; 290 } 291 EXPORT_SYMBOL_GPL(__clk_get_hw); 292 293 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 294 { 295 return hw->core->num_parents; 296 } 297 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 298 299 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 300 { 301 return hw->core->parent ? hw->core->parent->hw : NULL; 302 } 303 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 304 305 static struct clk_core *__clk_lookup_subtree(const char *name, 306 struct clk_core *core) 307 { 308 struct clk_core *child; 309 struct clk_core *ret; 310 311 if (!strcmp(core->name, name)) 312 return core; 313 314 hlist_for_each_entry(child, &core->children, child_node) { 315 ret = __clk_lookup_subtree(name, child); 316 if (ret) 317 return ret; 318 } 319 320 return NULL; 321 } 322 323 static struct clk_core *clk_core_lookup(const char *name) 324 { 325 struct clk_core *root_clk; 326 struct clk_core *ret; 327 328 if (!name) 329 return NULL; 330 331 /* search the 'proper' clk tree first */ 332 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 333 ret = __clk_lookup_subtree(name, root_clk); 334 if (ret) 335 return ret; 336 } 337 338 /* if not found, then search the orphan tree */ 339 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 340 ret = __clk_lookup_subtree(name, root_clk); 341 if (ret) 342 return ret; 343 } 344 345 return NULL; 346 } 347 348 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 349 u8 index) 350 { 351 if (!core || index >= core->num_parents) 352 return NULL; 353 else if (!core->parents) 354 return clk_core_lookup(core->parent_names[index]); 355 else if (!core->parents[index]) 356 return core->parents[index] = 357 clk_core_lookup(core->parent_names[index]); 358 else 359 return core->parents[index]; 360 } 361 362 struct clk_hw * 363 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 364 { 365 struct clk_core *parent; 366 367 parent = clk_core_get_parent_by_index(hw->core, index); 368 369 return !parent ? NULL : parent->hw; 370 } 371 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 372 373 unsigned int __clk_get_enable_count(struct clk *clk) 374 { 375 return !clk ? 0 : clk->core->enable_count; 376 } 377 378 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 379 { 380 unsigned long ret; 381 382 if (!core) { 383 ret = 0; 384 goto out; 385 } 386 387 ret = core->rate; 388 389 if (core->flags & CLK_IS_ROOT) 390 goto out; 391 392 if (!core->parent) 393 ret = 0; 394 395 out: 396 return ret; 397 } 398 399 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 400 { 401 return clk_core_get_rate_nolock(hw->core); 402 } 403 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 404 405 static unsigned long __clk_get_accuracy(struct clk_core *core) 406 { 407 if (!core) 408 return 0; 409 410 return core->accuracy; 411 } 412 413 unsigned long __clk_get_flags(struct clk *clk) 414 { 415 return !clk ? 0 : clk->core->flags; 416 } 417 EXPORT_SYMBOL_GPL(__clk_get_flags); 418 419 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 420 { 421 return hw->core->flags; 422 } 423 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 424 425 bool clk_hw_is_prepared(const struct clk_hw *hw) 426 { 427 return clk_core_is_prepared(hw->core); 428 } 429 430 bool clk_hw_is_enabled(const struct clk_hw *hw) 431 { 432 return clk_core_is_enabled(hw->core); 433 } 434 435 bool __clk_is_enabled(struct clk *clk) 436 { 437 if (!clk) 438 return false; 439 440 return clk_core_is_enabled(clk->core); 441 } 442 EXPORT_SYMBOL_GPL(__clk_is_enabled); 443 444 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 445 unsigned long best, unsigned long flags) 446 { 447 if (flags & CLK_MUX_ROUND_CLOSEST) 448 return abs(now - rate) < abs(best - rate); 449 450 return now <= rate && now > best; 451 } 452 453 static int 454 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req, 455 unsigned long flags) 456 { 457 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 458 int i, num_parents, ret; 459 unsigned long best = 0; 460 struct clk_rate_request parent_req = *req; 461 462 /* if NO_REPARENT flag set, pass through to current parent */ 463 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 464 parent = core->parent; 465 if (core->flags & CLK_SET_RATE_PARENT) { 466 ret = __clk_determine_rate(parent ? parent->hw : NULL, 467 &parent_req); 468 if (ret) 469 return ret; 470 471 best = parent_req.rate; 472 } else if (parent) { 473 best = clk_core_get_rate_nolock(parent); 474 } else { 475 best = clk_core_get_rate_nolock(core); 476 } 477 478 goto out; 479 } 480 481 /* find the parent that can provide the fastest rate <= rate */ 482 num_parents = core->num_parents; 483 for (i = 0; i < num_parents; i++) { 484 parent = clk_core_get_parent_by_index(core, i); 485 if (!parent) 486 continue; 487 488 if (core->flags & CLK_SET_RATE_PARENT) { 489 parent_req = *req; 490 ret = __clk_determine_rate(parent->hw, &parent_req); 491 if (ret) 492 continue; 493 } else { 494 parent_req.rate = clk_core_get_rate_nolock(parent); 495 } 496 497 if (mux_is_better_rate(req->rate, parent_req.rate, 498 best, flags)) { 499 best_parent = parent; 500 best = parent_req.rate; 501 } 502 } 503 504 if (!best_parent) 505 return -EINVAL; 506 507 out: 508 if (best_parent) 509 req->best_parent_hw = best_parent->hw; 510 req->best_parent_rate = best; 511 req->rate = best; 512 513 return 0; 514 } 515 516 struct clk *__clk_lookup(const char *name) 517 { 518 struct clk_core *core = clk_core_lookup(name); 519 520 return !core ? NULL : core->hw->clk; 521 } 522 523 static void clk_core_get_boundaries(struct clk_core *core, 524 unsigned long *min_rate, 525 unsigned long *max_rate) 526 { 527 struct clk *clk_user; 528 529 *min_rate = core->min_rate; 530 *max_rate = core->max_rate; 531 532 hlist_for_each_entry(clk_user, &core->clks, clks_node) 533 *min_rate = max(*min_rate, clk_user->min_rate); 534 535 hlist_for_each_entry(clk_user, &core->clks, clks_node) 536 *max_rate = min(*max_rate, clk_user->max_rate); 537 } 538 539 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 540 unsigned long max_rate) 541 { 542 hw->core->min_rate = min_rate; 543 hw->core->max_rate = max_rate; 544 } 545 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 546 547 /* 548 * Helper for finding best parent to provide a given frequency. This can be used 549 * directly as a determine_rate callback (e.g. for a mux), or from a more 550 * complex clock that may combine a mux with other operations. 551 */ 552 int __clk_mux_determine_rate(struct clk_hw *hw, 553 struct clk_rate_request *req) 554 { 555 return clk_mux_determine_rate_flags(hw, req, 0); 556 } 557 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 558 559 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 560 struct clk_rate_request *req) 561 { 562 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 563 } 564 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 565 566 /*** clk api ***/ 567 568 static void clk_core_unprepare(struct clk_core *core) 569 { 570 lockdep_assert_held(&prepare_lock); 571 572 if (!core) 573 return; 574 575 if (WARN_ON(core->prepare_count == 0)) 576 return; 577 578 if (--core->prepare_count > 0) 579 return; 580 581 WARN_ON(core->enable_count > 0); 582 583 trace_clk_unprepare(core); 584 585 if (core->ops->unprepare) 586 core->ops->unprepare(core->hw); 587 588 trace_clk_unprepare_complete(core); 589 clk_core_unprepare(core->parent); 590 } 591 592 /** 593 * clk_unprepare - undo preparation of a clock source 594 * @clk: the clk being unprepared 595 * 596 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 597 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 598 * if the operation may sleep. One example is a clk which is accessed over 599 * I2c. In the complex case a clk gate operation may require a fast and a slow 600 * part. It is this reason that clk_unprepare and clk_disable are not mutually 601 * exclusive. In fact clk_disable must be called before clk_unprepare. 602 */ 603 void clk_unprepare(struct clk *clk) 604 { 605 if (IS_ERR_OR_NULL(clk)) 606 return; 607 608 clk_prepare_lock(); 609 clk_core_unprepare(clk->core); 610 clk_prepare_unlock(); 611 } 612 EXPORT_SYMBOL_GPL(clk_unprepare); 613 614 static int clk_core_prepare(struct clk_core *core) 615 { 616 int ret = 0; 617 618 lockdep_assert_held(&prepare_lock); 619 620 if (!core) 621 return 0; 622 623 if (core->prepare_count == 0) { 624 ret = clk_core_prepare(core->parent); 625 if (ret) 626 return ret; 627 628 trace_clk_prepare(core); 629 630 if (core->ops->prepare) 631 ret = core->ops->prepare(core->hw); 632 633 trace_clk_prepare_complete(core); 634 635 if (ret) { 636 clk_core_unprepare(core->parent); 637 return ret; 638 } 639 } 640 641 core->prepare_count++; 642 643 return 0; 644 } 645 646 /** 647 * clk_prepare - prepare a clock source 648 * @clk: the clk being prepared 649 * 650 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 651 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 652 * operation may sleep. One example is a clk which is accessed over I2c. In 653 * the complex case a clk ungate operation may require a fast and a slow part. 654 * It is this reason that clk_prepare and clk_enable are not mutually 655 * exclusive. In fact clk_prepare must be called before clk_enable. 656 * Returns 0 on success, -EERROR otherwise. 657 */ 658 int clk_prepare(struct clk *clk) 659 { 660 int ret; 661 662 if (!clk) 663 return 0; 664 665 clk_prepare_lock(); 666 ret = clk_core_prepare(clk->core); 667 clk_prepare_unlock(); 668 669 return ret; 670 } 671 EXPORT_SYMBOL_GPL(clk_prepare); 672 673 static void clk_core_disable(struct clk_core *core) 674 { 675 lockdep_assert_held(&enable_lock); 676 677 if (!core) 678 return; 679 680 if (WARN_ON(core->enable_count == 0)) 681 return; 682 683 if (--core->enable_count > 0) 684 return; 685 686 trace_clk_disable(core); 687 688 if (core->ops->disable) 689 core->ops->disable(core->hw); 690 691 trace_clk_disable_complete(core); 692 693 clk_core_disable(core->parent); 694 } 695 696 /** 697 * clk_disable - gate a clock 698 * @clk: the clk being gated 699 * 700 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 701 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 702 * clk if the operation is fast and will never sleep. One example is a 703 * SoC-internal clk which is controlled via simple register writes. In the 704 * complex case a clk gate operation may require a fast and a slow part. It is 705 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 706 * In fact clk_disable must be called before clk_unprepare. 707 */ 708 void clk_disable(struct clk *clk) 709 { 710 unsigned long flags; 711 712 if (IS_ERR_OR_NULL(clk)) 713 return; 714 715 flags = clk_enable_lock(); 716 clk_core_disable(clk->core); 717 clk_enable_unlock(flags); 718 } 719 EXPORT_SYMBOL_GPL(clk_disable); 720 721 static int clk_core_enable(struct clk_core *core) 722 { 723 int ret = 0; 724 725 lockdep_assert_held(&enable_lock); 726 727 if (!core) 728 return 0; 729 730 if (WARN_ON(core->prepare_count == 0)) 731 return -ESHUTDOWN; 732 733 if (core->enable_count == 0) { 734 ret = clk_core_enable(core->parent); 735 736 if (ret) 737 return ret; 738 739 trace_clk_enable(core); 740 741 if (core->ops->enable) 742 ret = core->ops->enable(core->hw); 743 744 trace_clk_enable_complete(core); 745 746 if (ret) { 747 clk_core_disable(core->parent); 748 return ret; 749 } 750 } 751 752 core->enable_count++; 753 return 0; 754 } 755 756 /** 757 * clk_enable - ungate a clock 758 * @clk: the clk being ungated 759 * 760 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 761 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 762 * if the operation will never sleep. One example is a SoC-internal clk which 763 * is controlled via simple register writes. In the complex case a clk ungate 764 * operation may require a fast and a slow part. It is this reason that 765 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 766 * must be called before clk_enable. Returns 0 on success, -EERROR 767 * otherwise. 768 */ 769 int clk_enable(struct clk *clk) 770 { 771 unsigned long flags; 772 int ret; 773 774 if (!clk) 775 return 0; 776 777 flags = clk_enable_lock(); 778 ret = clk_core_enable(clk->core); 779 clk_enable_unlock(flags); 780 781 return ret; 782 } 783 EXPORT_SYMBOL_GPL(clk_enable); 784 785 static int clk_core_round_rate_nolock(struct clk_core *core, 786 struct clk_rate_request *req) 787 { 788 struct clk_core *parent; 789 long rate; 790 791 lockdep_assert_held(&prepare_lock); 792 793 if (!core) 794 return 0; 795 796 parent = core->parent; 797 if (parent) { 798 req->best_parent_hw = parent->hw; 799 req->best_parent_rate = parent->rate; 800 } else { 801 req->best_parent_hw = NULL; 802 req->best_parent_rate = 0; 803 } 804 805 if (core->ops->determine_rate) { 806 return core->ops->determine_rate(core->hw, req); 807 } else if (core->ops->round_rate) { 808 rate = core->ops->round_rate(core->hw, req->rate, 809 &req->best_parent_rate); 810 if (rate < 0) 811 return rate; 812 813 req->rate = rate; 814 } else if (core->flags & CLK_SET_RATE_PARENT) { 815 return clk_core_round_rate_nolock(parent, req); 816 } else { 817 req->rate = core->rate; 818 } 819 820 return 0; 821 } 822 823 /** 824 * __clk_determine_rate - get the closest rate actually supported by a clock 825 * @hw: determine the rate of this clock 826 * @rate: target rate 827 * @min_rate: returned rate must be greater than this rate 828 * @max_rate: returned rate must be less than this rate 829 * 830 * Useful for clk_ops such as .set_rate and .determine_rate. 831 */ 832 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 833 { 834 if (!hw) { 835 req->rate = 0; 836 return 0; 837 } 838 839 return clk_core_round_rate_nolock(hw->core, req); 840 } 841 EXPORT_SYMBOL_GPL(__clk_determine_rate); 842 843 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 844 { 845 int ret; 846 struct clk_rate_request req; 847 848 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 849 req.rate = rate; 850 851 ret = clk_core_round_rate_nolock(hw->core, &req); 852 if (ret) 853 return 0; 854 855 return req.rate; 856 } 857 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 858 859 /** 860 * clk_round_rate - round the given rate for a clk 861 * @clk: the clk for which we are rounding a rate 862 * @rate: the rate which is to be rounded 863 * 864 * Takes in a rate as input and rounds it to a rate that the clk can actually 865 * use which is then returned. If clk doesn't support round_rate operation 866 * then the parent rate is returned. 867 */ 868 long clk_round_rate(struct clk *clk, unsigned long rate) 869 { 870 struct clk_rate_request req; 871 int ret; 872 873 if (!clk) 874 return 0; 875 876 clk_prepare_lock(); 877 878 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 879 req.rate = rate; 880 881 ret = clk_core_round_rate_nolock(clk->core, &req); 882 clk_prepare_unlock(); 883 884 if (ret) 885 return ret; 886 887 return req.rate; 888 } 889 EXPORT_SYMBOL_GPL(clk_round_rate); 890 891 /** 892 * __clk_notify - call clk notifier chain 893 * @core: clk that is changing rate 894 * @msg: clk notifier type (see include/linux/clk.h) 895 * @old_rate: old clk rate 896 * @new_rate: new clk rate 897 * 898 * Triggers a notifier call chain on the clk rate-change notification 899 * for 'clk'. Passes a pointer to the struct clk and the previous 900 * and current rates to the notifier callback. Intended to be called by 901 * internal clock code only. Returns NOTIFY_DONE from the last driver 902 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 903 * a driver returns that. 904 */ 905 static int __clk_notify(struct clk_core *core, unsigned long msg, 906 unsigned long old_rate, unsigned long new_rate) 907 { 908 struct clk_notifier *cn; 909 struct clk_notifier_data cnd; 910 int ret = NOTIFY_DONE; 911 912 cnd.old_rate = old_rate; 913 cnd.new_rate = new_rate; 914 915 list_for_each_entry(cn, &clk_notifier_list, node) { 916 if (cn->clk->core == core) { 917 cnd.clk = cn->clk; 918 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 919 &cnd); 920 } 921 } 922 923 return ret; 924 } 925 926 /** 927 * __clk_recalc_accuracies 928 * @core: first clk in the subtree 929 * 930 * Walks the subtree of clks starting with clk and recalculates accuracies as 931 * it goes. Note that if a clk does not implement the .recalc_accuracy 932 * callback then it is assumed that the clock will take on the accuracy of its 933 * parent. 934 */ 935 static void __clk_recalc_accuracies(struct clk_core *core) 936 { 937 unsigned long parent_accuracy = 0; 938 struct clk_core *child; 939 940 lockdep_assert_held(&prepare_lock); 941 942 if (core->parent) 943 parent_accuracy = core->parent->accuracy; 944 945 if (core->ops->recalc_accuracy) 946 core->accuracy = core->ops->recalc_accuracy(core->hw, 947 parent_accuracy); 948 else 949 core->accuracy = parent_accuracy; 950 951 hlist_for_each_entry(child, &core->children, child_node) 952 __clk_recalc_accuracies(child); 953 } 954 955 static long clk_core_get_accuracy(struct clk_core *core) 956 { 957 unsigned long accuracy; 958 959 clk_prepare_lock(); 960 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 961 __clk_recalc_accuracies(core); 962 963 accuracy = __clk_get_accuracy(core); 964 clk_prepare_unlock(); 965 966 return accuracy; 967 } 968 969 /** 970 * clk_get_accuracy - return the accuracy of clk 971 * @clk: the clk whose accuracy is being returned 972 * 973 * Simply returns the cached accuracy of the clk, unless 974 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 975 * issued. 976 * If clk is NULL then returns 0. 977 */ 978 long clk_get_accuracy(struct clk *clk) 979 { 980 if (!clk) 981 return 0; 982 983 return clk_core_get_accuracy(clk->core); 984 } 985 EXPORT_SYMBOL_GPL(clk_get_accuracy); 986 987 static unsigned long clk_recalc(struct clk_core *core, 988 unsigned long parent_rate) 989 { 990 if (core->ops->recalc_rate) 991 return core->ops->recalc_rate(core->hw, parent_rate); 992 return parent_rate; 993 } 994 995 /** 996 * __clk_recalc_rates 997 * @core: first clk in the subtree 998 * @msg: notification type (see include/linux/clk.h) 999 * 1000 * Walks the subtree of clks starting with clk and recalculates rates as it 1001 * goes. Note that if a clk does not implement the .recalc_rate callback then 1002 * it is assumed that the clock will take on the rate of its parent. 1003 * 1004 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1005 * if necessary. 1006 */ 1007 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1008 { 1009 unsigned long old_rate; 1010 unsigned long parent_rate = 0; 1011 struct clk_core *child; 1012 1013 lockdep_assert_held(&prepare_lock); 1014 1015 old_rate = core->rate; 1016 1017 if (core->parent) 1018 parent_rate = core->parent->rate; 1019 1020 core->rate = clk_recalc(core, parent_rate); 1021 1022 /* 1023 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1024 * & ABORT_RATE_CHANGE notifiers 1025 */ 1026 if (core->notifier_count && msg) 1027 __clk_notify(core, msg, old_rate, core->rate); 1028 1029 hlist_for_each_entry(child, &core->children, child_node) 1030 __clk_recalc_rates(child, msg); 1031 } 1032 1033 static unsigned long clk_core_get_rate(struct clk_core *core) 1034 { 1035 unsigned long rate; 1036 1037 clk_prepare_lock(); 1038 1039 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1040 __clk_recalc_rates(core, 0); 1041 1042 rate = clk_core_get_rate_nolock(core); 1043 clk_prepare_unlock(); 1044 1045 return rate; 1046 } 1047 1048 /** 1049 * clk_get_rate - return the rate of clk 1050 * @clk: the clk whose rate is being returned 1051 * 1052 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1053 * is set, which means a recalc_rate will be issued. 1054 * If clk is NULL then returns 0. 1055 */ 1056 unsigned long clk_get_rate(struct clk *clk) 1057 { 1058 if (!clk) 1059 return 0; 1060 1061 return clk_core_get_rate(clk->core); 1062 } 1063 EXPORT_SYMBOL_GPL(clk_get_rate); 1064 1065 static int clk_fetch_parent_index(struct clk_core *core, 1066 struct clk_core *parent) 1067 { 1068 int i; 1069 1070 if (!core->parents) { 1071 core->parents = kcalloc(core->num_parents, 1072 sizeof(struct clk *), GFP_KERNEL); 1073 if (!core->parents) 1074 return -ENOMEM; 1075 } 1076 1077 /* 1078 * find index of new parent clock using cached parent ptrs, 1079 * or if not yet cached, use string name comparison and cache 1080 * them now to avoid future calls to clk_core_lookup. 1081 */ 1082 for (i = 0; i < core->num_parents; i++) { 1083 if (core->parents[i] == parent) 1084 return i; 1085 1086 if (core->parents[i]) 1087 continue; 1088 1089 if (!strcmp(core->parent_names[i], parent->name)) { 1090 core->parents[i] = clk_core_lookup(parent->name); 1091 return i; 1092 } 1093 } 1094 1095 return -EINVAL; 1096 } 1097 1098 /* 1099 * Update the orphan status of @core and all its children. 1100 */ 1101 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1102 { 1103 struct clk_core *child; 1104 1105 core->orphan = is_orphan; 1106 1107 hlist_for_each_entry(child, &core->children, child_node) 1108 clk_core_update_orphan_status(child, is_orphan); 1109 } 1110 1111 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1112 { 1113 bool was_orphan = core->orphan; 1114 1115 hlist_del(&core->child_node); 1116 1117 if (new_parent) { 1118 bool becomes_orphan = new_parent->orphan; 1119 1120 /* avoid duplicate POST_RATE_CHANGE notifications */ 1121 if (new_parent->new_child == core) 1122 new_parent->new_child = NULL; 1123 1124 hlist_add_head(&core->child_node, &new_parent->children); 1125 1126 if (was_orphan != becomes_orphan) 1127 clk_core_update_orphan_status(core, becomes_orphan); 1128 } else { 1129 hlist_add_head(&core->child_node, &clk_orphan_list); 1130 if (!was_orphan) 1131 clk_core_update_orphan_status(core, true); 1132 } 1133 1134 core->parent = new_parent; 1135 } 1136 1137 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1138 struct clk_core *parent) 1139 { 1140 unsigned long flags; 1141 struct clk_core *old_parent = core->parent; 1142 1143 /* 1144 * Migrate prepare state between parents and prevent race with 1145 * clk_enable(). 1146 * 1147 * If the clock is not prepared, then a race with 1148 * clk_enable/disable() is impossible since we already have the 1149 * prepare lock (future calls to clk_enable() need to be preceded by 1150 * a clk_prepare()). 1151 * 1152 * If the clock is prepared, migrate the prepared state to the new 1153 * parent and also protect against a race with clk_enable() by 1154 * forcing the clock and the new parent on. This ensures that all 1155 * future calls to clk_enable() are practically NOPs with respect to 1156 * hardware and software states. 1157 * 1158 * See also: Comment for clk_set_parent() below. 1159 */ 1160 if (core->prepare_count) { 1161 clk_core_prepare(parent); 1162 flags = clk_enable_lock(); 1163 clk_core_enable(parent); 1164 clk_core_enable(core); 1165 clk_enable_unlock(flags); 1166 } 1167 1168 /* update the clk tree topology */ 1169 flags = clk_enable_lock(); 1170 clk_reparent(core, parent); 1171 clk_enable_unlock(flags); 1172 1173 return old_parent; 1174 } 1175 1176 static void __clk_set_parent_after(struct clk_core *core, 1177 struct clk_core *parent, 1178 struct clk_core *old_parent) 1179 { 1180 unsigned long flags; 1181 1182 /* 1183 * Finish the migration of prepare state and undo the changes done 1184 * for preventing a race with clk_enable(). 1185 */ 1186 if (core->prepare_count) { 1187 flags = clk_enable_lock(); 1188 clk_core_disable(core); 1189 clk_core_disable(old_parent); 1190 clk_enable_unlock(flags); 1191 clk_core_unprepare(old_parent); 1192 } 1193 } 1194 1195 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1196 u8 p_index) 1197 { 1198 unsigned long flags; 1199 int ret = 0; 1200 struct clk_core *old_parent; 1201 1202 old_parent = __clk_set_parent_before(core, parent); 1203 1204 trace_clk_set_parent(core, parent); 1205 1206 /* change clock input source */ 1207 if (parent && core->ops->set_parent) 1208 ret = core->ops->set_parent(core->hw, p_index); 1209 1210 trace_clk_set_parent_complete(core, parent); 1211 1212 if (ret) { 1213 flags = clk_enable_lock(); 1214 clk_reparent(core, old_parent); 1215 clk_enable_unlock(flags); 1216 __clk_set_parent_after(core, old_parent, parent); 1217 1218 return ret; 1219 } 1220 1221 __clk_set_parent_after(core, parent, old_parent); 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * __clk_speculate_rates 1228 * @core: first clk in the subtree 1229 * @parent_rate: the "future" rate of clk's parent 1230 * 1231 * Walks the subtree of clks starting with clk, speculating rates as it 1232 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1233 * 1234 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1235 * pre-rate change notifications and returns early if no clks in the 1236 * subtree have subscribed to the notifications. Note that if a clk does not 1237 * implement the .recalc_rate callback then it is assumed that the clock will 1238 * take on the rate of its parent. 1239 */ 1240 static int __clk_speculate_rates(struct clk_core *core, 1241 unsigned long parent_rate) 1242 { 1243 struct clk_core *child; 1244 unsigned long new_rate; 1245 int ret = NOTIFY_DONE; 1246 1247 lockdep_assert_held(&prepare_lock); 1248 1249 new_rate = clk_recalc(core, parent_rate); 1250 1251 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1252 if (core->notifier_count) 1253 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1254 1255 if (ret & NOTIFY_STOP_MASK) { 1256 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1257 __func__, core->name, ret); 1258 goto out; 1259 } 1260 1261 hlist_for_each_entry(child, &core->children, child_node) { 1262 ret = __clk_speculate_rates(child, new_rate); 1263 if (ret & NOTIFY_STOP_MASK) 1264 break; 1265 } 1266 1267 out: 1268 return ret; 1269 } 1270 1271 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1272 struct clk_core *new_parent, u8 p_index) 1273 { 1274 struct clk_core *child; 1275 1276 core->new_rate = new_rate; 1277 core->new_parent = new_parent; 1278 core->new_parent_index = p_index; 1279 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1280 core->new_child = NULL; 1281 if (new_parent && new_parent != core->parent) 1282 new_parent->new_child = core; 1283 1284 hlist_for_each_entry(child, &core->children, child_node) { 1285 child->new_rate = clk_recalc(child, new_rate); 1286 clk_calc_subtree(child, child->new_rate, NULL, 0); 1287 } 1288 } 1289 1290 /* 1291 * calculate the new rates returning the topmost clock that has to be 1292 * changed. 1293 */ 1294 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1295 unsigned long rate) 1296 { 1297 struct clk_core *top = core; 1298 struct clk_core *old_parent, *parent; 1299 unsigned long best_parent_rate = 0; 1300 unsigned long new_rate; 1301 unsigned long min_rate; 1302 unsigned long max_rate; 1303 int p_index = 0; 1304 long ret; 1305 1306 /* sanity */ 1307 if (IS_ERR_OR_NULL(core)) 1308 return NULL; 1309 1310 /* save parent rate, if it exists */ 1311 parent = old_parent = core->parent; 1312 if (parent) 1313 best_parent_rate = parent->rate; 1314 1315 clk_core_get_boundaries(core, &min_rate, &max_rate); 1316 1317 /* find the closest rate and parent clk/rate */ 1318 if (core->ops->determine_rate) { 1319 struct clk_rate_request req; 1320 1321 req.rate = rate; 1322 req.min_rate = min_rate; 1323 req.max_rate = max_rate; 1324 if (parent) { 1325 req.best_parent_hw = parent->hw; 1326 req.best_parent_rate = parent->rate; 1327 } else { 1328 req.best_parent_hw = NULL; 1329 req.best_parent_rate = 0; 1330 } 1331 1332 ret = core->ops->determine_rate(core->hw, &req); 1333 if (ret < 0) 1334 return NULL; 1335 1336 best_parent_rate = req.best_parent_rate; 1337 new_rate = req.rate; 1338 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1339 } else if (core->ops->round_rate) { 1340 ret = core->ops->round_rate(core->hw, rate, 1341 &best_parent_rate); 1342 if (ret < 0) 1343 return NULL; 1344 1345 new_rate = ret; 1346 if (new_rate < min_rate || new_rate > max_rate) 1347 return NULL; 1348 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1349 /* pass-through clock without adjustable parent */ 1350 core->new_rate = core->rate; 1351 return NULL; 1352 } else { 1353 /* pass-through clock with adjustable parent */ 1354 top = clk_calc_new_rates(parent, rate); 1355 new_rate = parent->new_rate; 1356 goto out; 1357 } 1358 1359 /* some clocks must be gated to change parent */ 1360 if (parent != old_parent && 1361 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1362 pr_debug("%s: %s not gated but wants to reparent\n", 1363 __func__, core->name); 1364 return NULL; 1365 } 1366 1367 /* try finding the new parent index */ 1368 if (parent && core->num_parents > 1) { 1369 p_index = clk_fetch_parent_index(core, parent); 1370 if (p_index < 0) { 1371 pr_debug("%s: clk %s can not be parent of clk %s\n", 1372 __func__, parent->name, core->name); 1373 return NULL; 1374 } 1375 } 1376 1377 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1378 best_parent_rate != parent->rate) 1379 top = clk_calc_new_rates(parent, best_parent_rate); 1380 1381 out: 1382 clk_calc_subtree(core, new_rate, parent, p_index); 1383 1384 return top; 1385 } 1386 1387 /* 1388 * Notify about rate changes in a subtree. Always walk down the whole tree 1389 * so that in case of an error we can walk down the whole tree again and 1390 * abort the change. 1391 */ 1392 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1393 unsigned long event) 1394 { 1395 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1396 int ret = NOTIFY_DONE; 1397 1398 if (core->rate == core->new_rate) 1399 return NULL; 1400 1401 if (core->notifier_count) { 1402 ret = __clk_notify(core, event, core->rate, core->new_rate); 1403 if (ret & NOTIFY_STOP_MASK) 1404 fail_clk = core; 1405 } 1406 1407 hlist_for_each_entry(child, &core->children, child_node) { 1408 /* Skip children who will be reparented to another clock */ 1409 if (child->new_parent && child->new_parent != core) 1410 continue; 1411 tmp_clk = clk_propagate_rate_change(child, event); 1412 if (tmp_clk) 1413 fail_clk = tmp_clk; 1414 } 1415 1416 /* handle the new child who might not be in core->children yet */ 1417 if (core->new_child) { 1418 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1419 if (tmp_clk) 1420 fail_clk = tmp_clk; 1421 } 1422 1423 return fail_clk; 1424 } 1425 1426 /* 1427 * walk down a subtree and set the new rates notifying the rate 1428 * change on the way 1429 */ 1430 static void clk_change_rate(struct clk_core *core) 1431 { 1432 struct clk_core *child; 1433 struct hlist_node *tmp; 1434 unsigned long old_rate; 1435 unsigned long best_parent_rate = 0; 1436 bool skip_set_rate = false; 1437 struct clk_core *old_parent; 1438 1439 old_rate = core->rate; 1440 1441 if (core->new_parent) 1442 best_parent_rate = core->new_parent->rate; 1443 else if (core->parent) 1444 best_parent_rate = core->parent->rate; 1445 1446 if (core->flags & CLK_SET_RATE_UNGATE) { 1447 unsigned long flags; 1448 1449 clk_core_prepare(core); 1450 flags = clk_enable_lock(); 1451 clk_core_enable(core); 1452 clk_enable_unlock(flags); 1453 } 1454 1455 if (core->new_parent && core->new_parent != core->parent) { 1456 old_parent = __clk_set_parent_before(core, core->new_parent); 1457 trace_clk_set_parent(core, core->new_parent); 1458 1459 if (core->ops->set_rate_and_parent) { 1460 skip_set_rate = true; 1461 core->ops->set_rate_and_parent(core->hw, core->new_rate, 1462 best_parent_rate, 1463 core->new_parent_index); 1464 } else if (core->ops->set_parent) { 1465 core->ops->set_parent(core->hw, core->new_parent_index); 1466 } 1467 1468 trace_clk_set_parent_complete(core, core->new_parent); 1469 __clk_set_parent_after(core, core->new_parent, old_parent); 1470 } 1471 1472 trace_clk_set_rate(core, core->new_rate); 1473 1474 if (!skip_set_rate && core->ops->set_rate) 1475 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 1476 1477 trace_clk_set_rate_complete(core, core->new_rate); 1478 1479 core->rate = clk_recalc(core, best_parent_rate); 1480 1481 if (core->flags & CLK_SET_RATE_UNGATE) { 1482 unsigned long flags; 1483 1484 flags = clk_enable_lock(); 1485 clk_core_disable(core); 1486 clk_enable_unlock(flags); 1487 clk_core_unprepare(core); 1488 } 1489 1490 if (core->notifier_count && old_rate != core->rate) 1491 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 1492 1493 if (core->flags & CLK_RECALC_NEW_RATES) 1494 (void)clk_calc_new_rates(core, core->new_rate); 1495 1496 /* 1497 * Use safe iteration, as change_rate can actually swap parents 1498 * for certain clock types. 1499 */ 1500 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 1501 /* Skip children who will be reparented to another clock */ 1502 if (child->new_parent && child->new_parent != core) 1503 continue; 1504 clk_change_rate(child); 1505 } 1506 1507 /* handle the new child who might not be in core->children yet */ 1508 if (core->new_child) 1509 clk_change_rate(core->new_child); 1510 } 1511 1512 static int clk_core_set_rate_nolock(struct clk_core *core, 1513 unsigned long req_rate) 1514 { 1515 struct clk_core *top, *fail_clk; 1516 unsigned long rate = req_rate; 1517 int ret = 0; 1518 1519 if (!core) 1520 return 0; 1521 1522 /* bail early if nothing to do */ 1523 if (rate == clk_core_get_rate_nolock(core)) 1524 return 0; 1525 1526 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count) 1527 return -EBUSY; 1528 1529 /* calculate new rates and get the topmost changed clock */ 1530 top = clk_calc_new_rates(core, rate); 1531 if (!top) 1532 return -EINVAL; 1533 1534 /* notify that we are about to change rates */ 1535 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1536 if (fail_clk) { 1537 pr_debug("%s: failed to set %s rate\n", __func__, 1538 fail_clk->name); 1539 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1540 return -EBUSY; 1541 } 1542 1543 /* change the rates */ 1544 clk_change_rate(top); 1545 1546 core->req_rate = req_rate; 1547 1548 return ret; 1549 } 1550 1551 /** 1552 * clk_set_rate - specify a new rate for clk 1553 * @clk: the clk whose rate is being changed 1554 * @rate: the new rate for clk 1555 * 1556 * In the simplest case clk_set_rate will only adjust the rate of clk. 1557 * 1558 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1559 * propagate up to clk's parent; whether or not this happens depends on the 1560 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1561 * after calling .round_rate then upstream parent propagation is ignored. If 1562 * *parent_rate comes back with a new rate for clk's parent then we propagate 1563 * up to clk's parent and set its rate. Upward propagation will continue 1564 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1565 * .round_rate stops requesting changes to clk's parent_rate. 1566 * 1567 * Rate changes are accomplished via tree traversal that also recalculates the 1568 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1569 * 1570 * Returns 0 on success, -EERROR otherwise. 1571 */ 1572 int clk_set_rate(struct clk *clk, unsigned long rate) 1573 { 1574 int ret; 1575 1576 if (!clk) 1577 return 0; 1578 1579 /* prevent racing with updates to the clock topology */ 1580 clk_prepare_lock(); 1581 1582 ret = clk_core_set_rate_nolock(clk->core, rate); 1583 1584 clk_prepare_unlock(); 1585 1586 return ret; 1587 } 1588 EXPORT_SYMBOL_GPL(clk_set_rate); 1589 1590 /** 1591 * clk_set_rate_range - set a rate range for a clock source 1592 * @clk: clock source 1593 * @min: desired minimum clock rate in Hz, inclusive 1594 * @max: desired maximum clock rate in Hz, inclusive 1595 * 1596 * Returns success (0) or negative errno. 1597 */ 1598 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 1599 { 1600 int ret = 0; 1601 1602 if (!clk) 1603 return 0; 1604 1605 if (min > max) { 1606 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 1607 __func__, clk->core->name, clk->dev_id, clk->con_id, 1608 min, max); 1609 return -EINVAL; 1610 } 1611 1612 clk_prepare_lock(); 1613 1614 if (min != clk->min_rate || max != clk->max_rate) { 1615 clk->min_rate = min; 1616 clk->max_rate = max; 1617 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 1618 } 1619 1620 clk_prepare_unlock(); 1621 1622 return ret; 1623 } 1624 EXPORT_SYMBOL_GPL(clk_set_rate_range); 1625 1626 /** 1627 * clk_set_min_rate - set a minimum clock rate for a clock source 1628 * @clk: clock source 1629 * @rate: desired minimum clock rate in Hz, inclusive 1630 * 1631 * Returns success (0) or negative errno. 1632 */ 1633 int clk_set_min_rate(struct clk *clk, unsigned long rate) 1634 { 1635 if (!clk) 1636 return 0; 1637 1638 return clk_set_rate_range(clk, rate, clk->max_rate); 1639 } 1640 EXPORT_SYMBOL_GPL(clk_set_min_rate); 1641 1642 /** 1643 * clk_set_max_rate - set a maximum clock rate for a clock source 1644 * @clk: clock source 1645 * @rate: desired maximum clock rate in Hz, inclusive 1646 * 1647 * Returns success (0) or negative errno. 1648 */ 1649 int clk_set_max_rate(struct clk *clk, unsigned long rate) 1650 { 1651 if (!clk) 1652 return 0; 1653 1654 return clk_set_rate_range(clk, clk->min_rate, rate); 1655 } 1656 EXPORT_SYMBOL_GPL(clk_set_max_rate); 1657 1658 /** 1659 * clk_get_parent - return the parent of a clk 1660 * @clk: the clk whose parent gets returned 1661 * 1662 * Simply returns clk->parent. Returns NULL if clk is NULL. 1663 */ 1664 struct clk *clk_get_parent(struct clk *clk) 1665 { 1666 struct clk *parent; 1667 1668 if (!clk) 1669 return NULL; 1670 1671 clk_prepare_lock(); 1672 /* TODO: Create a per-user clk and change callers to call clk_put */ 1673 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 1674 clk_prepare_unlock(); 1675 1676 return parent; 1677 } 1678 EXPORT_SYMBOL_GPL(clk_get_parent); 1679 1680 /* 1681 * .get_parent is mandatory for clocks with multiple possible parents. It is 1682 * optional for single-parent clocks. Always call .get_parent if it is 1683 * available and WARN if it is missing for multi-parent clocks. 1684 * 1685 * For single-parent clocks without .get_parent, first check to see if the 1686 * .parents array exists, and if so use it to avoid an expensive tree 1687 * traversal. If .parents does not exist then walk the tree. 1688 */ 1689 static struct clk_core *__clk_init_parent(struct clk_core *core) 1690 { 1691 struct clk_core *ret = NULL; 1692 u8 index; 1693 1694 /* handle the trivial cases */ 1695 1696 if (!core->num_parents) 1697 goto out; 1698 1699 if (core->num_parents == 1) { 1700 if (IS_ERR_OR_NULL(core->parent)) 1701 core->parent = clk_core_lookup(core->parent_names[0]); 1702 ret = core->parent; 1703 goto out; 1704 } 1705 1706 if (!core->ops->get_parent) { 1707 WARN(!core->ops->get_parent, 1708 "%s: multi-parent clocks must implement .get_parent\n", 1709 __func__); 1710 goto out; 1711 } 1712 1713 /* 1714 * Do our best to cache parent clocks in core->parents. This prevents 1715 * unnecessary and expensive lookups. We don't set core->parent here; 1716 * that is done by the calling function. 1717 */ 1718 1719 index = core->ops->get_parent(core->hw); 1720 1721 if (!core->parents) 1722 core->parents = 1723 kcalloc(core->num_parents, sizeof(struct clk *), 1724 GFP_KERNEL); 1725 1726 ret = clk_core_get_parent_by_index(core, index); 1727 1728 out: 1729 return ret; 1730 } 1731 1732 static void clk_core_reparent(struct clk_core *core, 1733 struct clk_core *new_parent) 1734 { 1735 clk_reparent(core, new_parent); 1736 __clk_recalc_accuracies(core); 1737 __clk_recalc_rates(core, POST_RATE_CHANGE); 1738 } 1739 1740 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 1741 { 1742 if (!hw) 1743 return; 1744 1745 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 1746 } 1747 1748 /** 1749 * clk_has_parent - check if a clock is a possible parent for another 1750 * @clk: clock source 1751 * @parent: parent clock source 1752 * 1753 * This function can be used in drivers that need to check that a clock can be 1754 * the parent of another without actually changing the parent. 1755 * 1756 * Returns true if @parent is a possible parent for @clk, false otherwise. 1757 */ 1758 bool clk_has_parent(struct clk *clk, struct clk *parent) 1759 { 1760 struct clk_core *core, *parent_core; 1761 unsigned int i; 1762 1763 /* NULL clocks should be nops, so return success if either is NULL. */ 1764 if (!clk || !parent) 1765 return true; 1766 1767 core = clk->core; 1768 parent_core = parent->core; 1769 1770 /* Optimize for the case where the parent is already the parent. */ 1771 if (core->parent == parent_core) 1772 return true; 1773 1774 for (i = 0; i < core->num_parents; i++) 1775 if (strcmp(core->parent_names[i], parent_core->name) == 0) 1776 return true; 1777 1778 return false; 1779 } 1780 EXPORT_SYMBOL_GPL(clk_has_parent); 1781 1782 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent) 1783 { 1784 int ret = 0; 1785 int p_index = 0; 1786 unsigned long p_rate = 0; 1787 1788 if (!core) 1789 return 0; 1790 1791 /* prevent racing with updates to the clock topology */ 1792 clk_prepare_lock(); 1793 1794 if (core->parent == parent) 1795 goto out; 1796 1797 /* verify ops for for multi-parent clks */ 1798 if ((core->num_parents > 1) && (!core->ops->set_parent)) { 1799 ret = -ENOSYS; 1800 goto out; 1801 } 1802 1803 /* check that we are allowed to re-parent if the clock is in use */ 1804 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1805 ret = -EBUSY; 1806 goto out; 1807 } 1808 1809 /* try finding the new parent index */ 1810 if (parent) { 1811 p_index = clk_fetch_parent_index(core, parent); 1812 p_rate = parent->rate; 1813 if (p_index < 0) { 1814 pr_debug("%s: clk %s can not be parent of clk %s\n", 1815 __func__, parent->name, core->name); 1816 ret = p_index; 1817 goto out; 1818 } 1819 } 1820 1821 /* propagate PRE_RATE_CHANGE notifications */ 1822 ret = __clk_speculate_rates(core, p_rate); 1823 1824 /* abort if a driver objects */ 1825 if (ret & NOTIFY_STOP_MASK) 1826 goto out; 1827 1828 /* do the re-parent */ 1829 ret = __clk_set_parent(core, parent, p_index); 1830 1831 /* propagate rate an accuracy recalculation accordingly */ 1832 if (ret) { 1833 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 1834 } else { 1835 __clk_recalc_rates(core, POST_RATE_CHANGE); 1836 __clk_recalc_accuracies(core); 1837 } 1838 1839 out: 1840 clk_prepare_unlock(); 1841 1842 return ret; 1843 } 1844 1845 /** 1846 * clk_set_parent - switch the parent of a mux clk 1847 * @clk: the mux clk whose input we are switching 1848 * @parent: the new input to clk 1849 * 1850 * Re-parent clk to use parent as its new input source. If clk is in 1851 * prepared state, the clk will get enabled for the duration of this call. If 1852 * that's not acceptable for a specific clk (Eg: the consumer can't handle 1853 * that, the reparenting is glitchy in hardware, etc), use the 1854 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 1855 * 1856 * After successfully changing clk's parent clk_set_parent will update the 1857 * clk topology, sysfs topology and propagate rate recalculation via 1858 * __clk_recalc_rates. 1859 * 1860 * Returns 0 on success, -EERROR otherwise. 1861 */ 1862 int clk_set_parent(struct clk *clk, struct clk *parent) 1863 { 1864 if (!clk) 1865 return 0; 1866 1867 return clk_core_set_parent(clk->core, parent ? parent->core : NULL); 1868 } 1869 EXPORT_SYMBOL_GPL(clk_set_parent); 1870 1871 /** 1872 * clk_set_phase - adjust the phase shift of a clock signal 1873 * @clk: clock signal source 1874 * @degrees: number of degrees the signal is shifted 1875 * 1876 * Shifts the phase of a clock signal by the specified 1877 * degrees. Returns 0 on success, -EERROR otherwise. 1878 * 1879 * This function makes no distinction about the input or reference 1880 * signal that we adjust the clock signal phase against. For example 1881 * phase locked-loop clock signal generators we may shift phase with 1882 * respect to feedback clock signal input, but for other cases the 1883 * clock phase may be shifted with respect to some other, unspecified 1884 * signal. 1885 * 1886 * Additionally the concept of phase shift does not propagate through 1887 * the clock tree hierarchy, which sets it apart from clock rates and 1888 * clock accuracy. A parent clock phase attribute does not have an 1889 * impact on the phase attribute of a child clock. 1890 */ 1891 int clk_set_phase(struct clk *clk, int degrees) 1892 { 1893 int ret = -EINVAL; 1894 1895 if (!clk) 1896 return 0; 1897 1898 /* sanity check degrees */ 1899 degrees %= 360; 1900 if (degrees < 0) 1901 degrees += 360; 1902 1903 clk_prepare_lock(); 1904 1905 trace_clk_set_phase(clk->core, degrees); 1906 1907 if (clk->core->ops->set_phase) 1908 ret = clk->core->ops->set_phase(clk->core->hw, degrees); 1909 1910 trace_clk_set_phase_complete(clk->core, degrees); 1911 1912 if (!ret) 1913 clk->core->phase = degrees; 1914 1915 clk_prepare_unlock(); 1916 1917 return ret; 1918 } 1919 EXPORT_SYMBOL_GPL(clk_set_phase); 1920 1921 static int clk_core_get_phase(struct clk_core *core) 1922 { 1923 int ret; 1924 1925 clk_prepare_lock(); 1926 ret = core->phase; 1927 clk_prepare_unlock(); 1928 1929 return ret; 1930 } 1931 1932 /** 1933 * clk_get_phase - return the phase shift of a clock signal 1934 * @clk: clock signal source 1935 * 1936 * Returns the phase shift of a clock node in degrees, otherwise returns 1937 * -EERROR. 1938 */ 1939 int clk_get_phase(struct clk *clk) 1940 { 1941 if (!clk) 1942 return 0; 1943 1944 return clk_core_get_phase(clk->core); 1945 } 1946 EXPORT_SYMBOL_GPL(clk_get_phase); 1947 1948 /** 1949 * clk_is_match - check if two clk's point to the same hardware clock 1950 * @p: clk compared against q 1951 * @q: clk compared against p 1952 * 1953 * Returns true if the two struct clk pointers both point to the same hardware 1954 * clock node. Put differently, returns true if struct clk *p and struct clk *q 1955 * share the same struct clk_core object. 1956 * 1957 * Returns false otherwise. Note that two NULL clks are treated as matching. 1958 */ 1959 bool clk_is_match(const struct clk *p, const struct clk *q) 1960 { 1961 /* trivial case: identical struct clk's or both NULL */ 1962 if (p == q) 1963 return true; 1964 1965 /* true if clk->core pointers match. Avoid dereferencing garbage */ 1966 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 1967 if (p->core == q->core) 1968 return true; 1969 1970 return false; 1971 } 1972 EXPORT_SYMBOL_GPL(clk_is_match); 1973 1974 /*** debugfs support ***/ 1975 1976 #ifdef CONFIG_DEBUG_FS 1977 #include <linux/debugfs.h> 1978 1979 static struct dentry *rootdir; 1980 static int inited = 0; 1981 static DEFINE_MUTEX(clk_debug_lock); 1982 static HLIST_HEAD(clk_debug_list); 1983 1984 static struct hlist_head *all_lists[] = { 1985 &clk_root_list, 1986 &clk_orphan_list, 1987 NULL, 1988 }; 1989 1990 static struct hlist_head *orphan_list[] = { 1991 &clk_orphan_list, 1992 NULL, 1993 }; 1994 1995 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 1996 int level) 1997 { 1998 if (!c) 1999 return; 2000 2001 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n", 2002 level * 3 + 1, "", 2003 30 - level * 3, c->name, 2004 c->enable_count, c->prepare_count, clk_core_get_rate(c), 2005 clk_core_get_accuracy(c), clk_core_get_phase(c)); 2006 } 2007 2008 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2009 int level) 2010 { 2011 struct clk_core *child; 2012 2013 if (!c) 2014 return; 2015 2016 clk_summary_show_one(s, c, level); 2017 2018 hlist_for_each_entry(child, &c->children, child_node) 2019 clk_summary_show_subtree(s, child, level + 1); 2020 } 2021 2022 static int clk_summary_show(struct seq_file *s, void *data) 2023 { 2024 struct clk_core *c; 2025 struct hlist_head **lists = (struct hlist_head **)s->private; 2026 2027 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n"); 2028 seq_puts(s, "----------------------------------------------------------------------------------------\n"); 2029 2030 clk_prepare_lock(); 2031 2032 for (; *lists; lists++) 2033 hlist_for_each_entry(c, *lists, child_node) 2034 clk_summary_show_subtree(s, c, 0); 2035 2036 clk_prepare_unlock(); 2037 2038 return 0; 2039 } 2040 2041 2042 static int clk_summary_open(struct inode *inode, struct file *file) 2043 { 2044 return single_open(file, clk_summary_show, inode->i_private); 2045 } 2046 2047 static const struct file_operations clk_summary_fops = { 2048 .open = clk_summary_open, 2049 .read = seq_read, 2050 .llseek = seq_lseek, 2051 .release = single_release, 2052 }; 2053 2054 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2055 { 2056 if (!c) 2057 return; 2058 2059 /* This should be JSON format, i.e. elements separated with a comma */ 2060 seq_printf(s, "\"%s\": { ", c->name); 2061 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2062 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2063 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2064 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2065 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c)); 2066 } 2067 2068 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2069 { 2070 struct clk_core *child; 2071 2072 if (!c) 2073 return; 2074 2075 clk_dump_one(s, c, level); 2076 2077 hlist_for_each_entry(child, &c->children, child_node) { 2078 seq_printf(s, ","); 2079 clk_dump_subtree(s, child, level + 1); 2080 } 2081 2082 seq_printf(s, "}"); 2083 } 2084 2085 static int clk_dump(struct seq_file *s, void *data) 2086 { 2087 struct clk_core *c; 2088 bool first_node = true; 2089 struct hlist_head **lists = (struct hlist_head **)s->private; 2090 2091 seq_printf(s, "{"); 2092 2093 clk_prepare_lock(); 2094 2095 for (; *lists; lists++) { 2096 hlist_for_each_entry(c, *lists, child_node) { 2097 if (!first_node) 2098 seq_puts(s, ","); 2099 first_node = false; 2100 clk_dump_subtree(s, c, 0); 2101 } 2102 } 2103 2104 clk_prepare_unlock(); 2105 2106 seq_puts(s, "}\n"); 2107 return 0; 2108 } 2109 2110 2111 static int clk_dump_open(struct inode *inode, struct file *file) 2112 { 2113 return single_open(file, clk_dump, inode->i_private); 2114 } 2115 2116 static const struct file_operations clk_dump_fops = { 2117 .open = clk_dump_open, 2118 .read = seq_read, 2119 .llseek = seq_lseek, 2120 .release = single_release, 2121 }; 2122 2123 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 2124 { 2125 struct dentry *d; 2126 int ret = -ENOMEM; 2127 2128 if (!core || !pdentry) { 2129 ret = -EINVAL; 2130 goto out; 2131 } 2132 2133 d = debugfs_create_dir(core->name, pdentry); 2134 if (!d) 2135 goto out; 2136 2137 core->dentry = d; 2138 2139 d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry, 2140 (u32 *)&core->rate); 2141 if (!d) 2142 goto err_out; 2143 2144 d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry, 2145 (u32 *)&core->accuracy); 2146 if (!d) 2147 goto err_out; 2148 2149 d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry, 2150 (u32 *)&core->phase); 2151 if (!d) 2152 goto err_out; 2153 2154 d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry, 2155 (u32 *)&core->flags); 2156 if (!d) 2157 goto err_out; 2158 2159 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry, 2160 (u32 *)&core->prepare_count); 2161 if (!d) 2162 goto err_out; 2163 2164 d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry, 2165 (u32 *)&core->enable_count); 2166 if (!d) 2167 goto err_out; 2168 2169 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry, 2170 (u32 *)&core->notifier_count); 2171 if (!d) 2172 goto err_out; 2173 2174 if (core->ops->debug_init) { 2175 ret = core->ops->debug_init(core->hw, core->dentry); 2176 if (ret) 2177 goto err_out; 2178 } 2179 2180 ret = 0; 2181 goto out; 2182 2183 err_out: 2184 debugfs_remove_recursive(core->dentry); 2185 core->dentry = NULL; 2186 out: 2187 return ret; 2188 } 2189 2190 /** 2191 * clk_debug_register - add a clk node to the debugfs clk directory 2192 * @core: the clk being added to the debugfs clk directory 2193 * 2194 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 2195 * initialized. Otherwise it bails out early since the debugfs clk directory 2196 * will be created lazily by clk_debug_init as part of a late_initcall. 2197 */ 2198 static int clk_debug_register(struct clk_core *core) 2199 { 2200 int ret = 0; 2201 2202 mutex_lock(&clk_debug_lock); 2203 hlist_add_head(&core->debug_node, &clk_debug_list); 2204 2205 if (!inited) 2206 goto unlock; 2207 2208 ret = clk_debug_create_one(core, rootdir); 2209 unlock: 2210 mutex_unlock(&clk_debug_lock); 2211 2212 return ret; 2213 } 2214 2215 /** 2216 * clk_debug_unregister - remove a clk node from the debugfs clk directory 2217 * @core: the clk being removed from the debugfs clk directory 2218 * 2219 * Dynamically removes a clk and all its child nodes from the 2220 * debugfs clk directory if clk->dentry points to debugfs created by 2221 * clk_debug_register in __clk_init. 2222 */ 2223 static void clk_debug_unregister(struct clk_core *core) 2224 { 2225 mutex_lock(&clk_debug_lock); 2226 hlist_del_init(&core->debug_node); 2227 debugfs_remove_recursive(core->dentry); 2228 core->dentry = NULL; 2229 mutex_unlock(&clk_debug_lock); 2230 } 2231 2232 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode, 2233 void *data, const struct file_operations *fops) 2234 { 2235 struct dentry *d = NULL; 2236 2237 if (hw->core->dentry) 2238 d = debugfs_create_file(name, mode, hw->core->dentry, data, 2239 fops); 2240 2241 return d; 2242 } 2243 EXPORT_SYMBOL_GPL(clk_debugfs_add_file); 2244 2245 /** 2246 * clk_debug_init - lazily populate the debugfs clk directory 2247 * 2248 * clks are often initialized very early during boot before memory can be 2249 * dynamically allocated and well before debugfs is setup. This function 2250 * populates the debugfs clk directory once at boot-time when we know that 2251 * debugfs is setup. It should only be called once at boot-time, all other clks 2252 * added dynamically will be done so with clk_debug_register. 2253 */ 2254 static int __init clk_debug_init(void) 2255 { 2256 struct clk_core *core; 2257 struct dentry *d; 2258 2259 rootdir = debugfs_create_dir("clk", NULL); 2260 2261 if (!rootdir) 2262 return -ENOMEM; 2263 2264 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists, 2265 &clk_summary_fops); 2266 if (!d) 2267 return -ENOMEM; 2268 2269 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists, 2270 &clk_dump_fops); 2271 if (!d) 2272 return -ENOMEM; 2273 2274 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir, 2275 &orphan_list, &clk_summary_fops); 2276 if (!d) 2277 return -ENOMEM; 2278 2279 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir, 2280 &orphan_list, &clk_dump_fops); 2281 if (!d) 2282 return -ENOMEM; 2283 2284 mutex_lock(&clk_debug_lock); 2285 hlist_for_each_entry(core, &clk_debug_list, debug_node) 2286 clk_debug_create_one(core, rootdir); 2287 2288 inited = 1; 2289 mutex_unlock(&clk_debug_lock); 2290 2291 return 0; 2292 } 2293 late_initcall(clk_debug_init); 2294 #else 2295 static inline int clk_debug_register(struct clk_core *core) { return 0; } 2296 static inline void clk_debug_reparent(struct clk_core *core, 2297 struct clk_core *new_parent) 2298 { 2299 } 2300 static inline void clk_debug_unregister(struct clk_core *core) 2301 { 2302 } 2303 #endif 2304 2305 /** 2306 * __clk_init - initialize the data structures in a struct clk 2307 * @dev: device initializing this clk, placeholder for now 2308 * @clk: clk being initialized 2309 * 2310 * Initializes the lists in struct clk_core, queries the hardware for the 2311 * parent and rate and sets them both. 2312 */ 2313 static int __clk_init(struct device *dev, struct clk *clk_user) 2314 { 2315 int i, ret = 0; 2316 struct clk_core *orphan; 2317 struct hlist_node *tmp2; 2318 struct clk_core *core; 2319 unsigned long rate; 2320 2321 if (!clk_user) 2322 return -EINVAL; 2323 2324 core = clk_user->core; 2325 2326 clk_prepare_lock(); 2327 2328 /* check to see if a clock with this name is already registered */ 2329 if (clk_core_lookup(core->name)) { 2330 pr_debug("%s: clk %s already initialized\n", 2331 __func__, core->name); 2332 ret = -EEXIST; 2333 goto out; 2334 } 2335 2336 /* check that clk_ops are sane. See Documentation/clk.txt */ 2337 if (core->ops->set_rate && 2338 !((core->ops->round_rate || core->ops->determine_rate) && 2339 core->ops->recalc_rate)) { 2340 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 2341 __func__, core->name); 2342 ret = -EINVAL; 2343 goto out; 2344 } 2345 2346 if (core->ops->set_parent && !core->ops->get_parent) { 2347 pr_warning("%s: %s must implement .get_parent & .set_parent\n", 2348 __func__, core->name); 2349 ret = -EINVAL; 2350 goto out; 2351 } 2352 2353 if (core->ops->set_rate_and_parent && 2354 !(core->ops->set_parent && core->ops->set_rate)) { 2355 pr_warn("%s: %s must implement .set_parent & .set_rate\n", 2356 __func__, core->name); 2357 ret = -EINVAL; 2358 goto out; 2359 } 2360 2361 /* throw a WARN if any entries in parent_names are NULL */ 2362 for (i = 0; i < core->num_parents; i++) 2363 WARN(!core->parent_names[i], 2364 "%s: invalid NULL in %s's .parent_names\n", 2365 __func__, core->name); 2366 2367 /* 2368 * Allocate an array of struct clk *'s to avoid unnecessary string 2369 * look-ups of clk's possible parents. This can fail for clocks passed 2370 * in to clk_init during early boot; thus any access to core->parents[] 2371 * must always check for a NULL pointer and try to populate it if 2372 * necessary. 2373 * 2374 * If core->parents is not NULL we skip this entire block. This allows 2375 * for clock drivers to statically initialize core->parents. 2376 */ 2377 if (core->num_parents > 1 && !core->parents) { 2378 core->parents = kcalloc(core->num_parents, sizeof(struct clk *), 2379 GFP_KERNEL); 2380 /* 2381 * clk_core_lookup returns NULL for parents that have not been 2382 * clk_init'd; thus any access to clk->parents[] must check 2383 * for a NULL pointer. We can always perform lazy lookups for 2384 * missing parents later on. 2385 */ 2386 if (core->parents) 2387 for (i = 0; i < core->num_parents; i++) 2388 core->parents[i] = 2389 clk_core_lookup(core->parent_names[i]); 2390 } 2391 2392 core->parent = __clk_init_parent(core); 2393 2394 /* 2395 * Populate core->parent if parent has already been __clk_init'd. If 2396 * parent has not yet been __clk_init'd then place clk in the orphan 2397 * list. If clk has set the CLK_IS_ROOT flag then place it in the root 2398 * clk list. 2399 * 2400 * Every time a new clk is clk_init'd then we walk the list of orphan 2401 * clocks and re-parent any that are children of the clock currently 2402 * being clk_init'd. 2403 */ 2404 if (core->parent) { 2405 hlist_add_head(&core->child_node, 2406 &core->parent->children); 2407 core->orphan = core->parent->orphan; 2408 } else if (core->flags & CLK_IS_ROOT) { 2409 hlist_add_head(&core->child_node, &clk_root_list); 2410 core->orphan = false; 2411 } else { 2412 hlist_add_head(&core->child_node, &clk_orphan_list); 2413 core->orphan = true; 2414 } 2415 2416 /* 2417 * Set clk's accuracy. The preferred method is to use 2418 * .recalc_accuracy. For simple clocks and lazy developers the default 2419 * fallback is to use the parent's accuracy. If a clock doesn't have a 2420 * parent (or is orphaned) then accuracy is set to zero (perfect 2421 * clock). 2422 */ 2423 if (core->ops->recalc_accuracy) 2424 core->accuracy = core->ops->recalc_accuracy(core->hw, 2425 __clk_get_accuracy(core->parent)); 2426 else if (core->parent) 2427 core->accuracy = core->parent->accuracy; 2428 else 2429 core->accuracy = 0; 2430 2431 /* 2432 * Set clk's phase. 2433 * Since a phase is by definition relative to its parent, just 2434 * query the current clock phase, or just assume it's in phase. 2435 */ 2436 if (core->ops->get_phase) 2437 core->phase = core->ops->get_phase(core->hw); 2438 else 2439 core->phase = 0; 2440 2441 /* 2442 * Set clk's rate. The preferred method is to use .recalc_rate. For 2443 * simple clocks and lazy developers the default fallback is to use the 2444 * parent's rate. If a clock doesn't have a parent (or is orphaned) 2445 * then rate is set to zero. 2446 */ 2447 if (core->ops->recalc_rate) 2448 rate = core->ops->recalc_rate(core->hw, 2449 clk_core_get_rate_nolock(core->parent)); 2450 else if (core->parent) 2451 rate = core->parent->rate; 2452 else 2453 rate = 0; 2454 core->rate = core->req_rate = rate; 2455 2456 /* 2457 * walk the list of orphan clocks and reparent any that are children of 2458 * this clock 2459 */ 2460 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 2461 if (orphan->num_parents && orphan->ops->get_parent) { 2462 i = orphan->ops->get_parent(orphan->hw); 2463 if (i >= 0 && i < orphan->num_parents && 2464 !strcmp(core->name, orphan->parent_names[i])) 2465 clk_core_reparent(orphan, core); 2466 continue; 2467 } 2468 2469 for (i = 0; i < orphan->num_parents; i++) 2470 if (!strcmp(core->name, orphan->parent_names[i])) { 2471 clk_core_reparent(orphan, core); 2472 break; 2473 } 2474 } 2475 2476 /* 2477 * optional platform-specific magic 2478 * 2479 * The .init callback is not used by any of the basic clock types, but 2480 * exists for weird hardware that must perform initialization magic. 2481 * Please consider other ways of solving initialization problems before 2482 * using this callback, as its use is discouraged. 2483 */ 2484 if (core->ops->init) 2485 core->ops->init(core->hw); 2486 2487 kref_init(&core->ref); 2488 out: 2489 clk_prepare_unlock(); 2490 2491 if (!ret) 2492 clk_debug_register(core); 2493 2494 return ret; 2495 } 2496 2497 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id, 2498 const char *con_id) 2499 { 2500 struct clk *clk; 2501 2502 /* This is to allow this function to be chained to others */ 2503 if (IS_ERR_OR_NULL(hw)) 2504 return (struct clk *) hw; 2505 2506 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 2507 if (!clk) 2508 return ERR_PTR(-ENOMEM); 2509 2510 clk->core = hw->core; 2511 clk->dev_id = dev_id; 2512 clk->con_id = con_id; 2513 clk->max_rate = ULONG_MAX; 2514 2515 clk_prepare_lock(); 2516 hlist_add_head(&clk->clks_node, &hw->core->clks); 2517 clk_prepare_unlock(); 2518 2519 return clk; 2520 } 2521 2522 void __clk_free_clk(struct clk *clk) 2523 { 2524 clk_prepare_lock(); 2525 hlist_del(&clk->clks_node); 2526 clk_prepare_unlock(); 2527 2528 kfree(clk); 2529 } 2530 2531 /** 2532 * clk_register - allocate a new clock, register it and return an opaque cookie 2533 * @dev: device that is registering this clock 2534 * @hw: link to hardware-specific clock data 2535 * 2536 * clk_register is the primary interface for populating the clock tree with new 2537 * clock nodes. It returns a pointer to the newly allocated struct clk which 2538 * cannot be dereferenced by driver code but may be used in conjunction with the 2539 * rest of the clock API. In the event of an error clk_register will return an 2540 * error code; drivers must test for an error code after calling clk_register. 2541 */ 2542 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 2543 { 2544 int i, ret; 2545 struct clk_core *core; 2546 2547 core = kzalloc(sizeof(*core), GFP_KERNEL); 2548 if (!core) { 2549 ret = -ENOMEM; 2550 goto fail_out; 2551 } 2552 2553 core->name = kstrdup_const(hw->init->name, GFP_KERNEL); 2554 if (!core->name) { 2555 ret = -ENOMEM; 2556 goto fail_name; 2557 } 2558 core->ops = hw->init->ops; 2559 if (dev && dev->driver) 2560 core->owner = dev->driver->owner; 2561 core->hw = hw; 2562 core->flags = hw->init->flags; 2563 core->num_parents = hw->init->num_parents; 2564 core->min_rate = 0; 2565 core->max_rate = ULONG_MAX; 2566 hw->core = core; 2567 2568 /* allocate local copy in case parent_names is __initdata */ 2569 core->parent_names = kcalloc(core->num_parents, sizeof(char *), 2570 GFP_KERNEL); 2571 2572 if (!core->parent_names) { 2573 ret = -ENOMEM; 2574 goto fail_parent_names; 2575 } 2576 2577 2578 /* copy each string name in case parent_names is __initdata */ 2579 for (i = 0; i < core->num_parents; i++) { 2580 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i], 2581 GFP_KERNEL); 2582 if (!core->parent_names[i]) { 2583 ret = -ENOMEM; 2584 goto fail_parent_names_copy; 2585 } 2586 } 2587 2588 INIT_HLIST_HEAD(&core->clks); 2589 2590 hw->clk = __clk_create_clk(hw, NULL, NULL); 2591 if (IS_ERR(hw->clk)) { 2592 ret = PTR_ERR(hw->clk); 2593 goto fail_parent_names_copy; 2594 } 2595 2596 ret = __clk_init(dev, hw->clk); 2597 if (!ret) 2598 return hw->clk; 2599 2600 __clk_free_clk(hw->clk); 2601 hw->clk = NULL; 2602 2603 fail_parent_names_copy: 2604 while (--i >= 0) 2605 kfree_const(core->parent_names[i]); 2606 kfree(core->parent_names); 2607 fail_parent_names: 2608 kfree_const(core->name); 2609 fail_name: 2610 kfree(core); 2611 fail_out: 2612 return ERR_PTR(ret); 2613 } 2614 EXPORT_SYMBOL_GPL(clk_register); 2615 2616 /* Free memory allocated for a clock. */ 2617 static void __clk_release(struct kref *ref) 2618 { 2619 struct clk_core *core = container_of(ref, struct clk_core, ref); 2620 int i = core->num_parents; 2621 2622 lockdep_assert_held(&prepare_lock); 2623 2624 kfree(core->parents); 2625 while (--i >= 0) 2626 kfree_const(core->parent_names[i]); 2627 2628 kfree(core->parent_names); 2629 kfree_const(core->name); 2630 kfree(core); 2631 } 2632 2633 /* 2634 * Empty clk_ops for unregistered clocks. These are used temporarily 2635 * after clk_unregister() was called on a clock and until last clock 2636 * consumer calls clk_put() and the struct clk object is freed. 2637 */ 2638 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 2639 { 2640 return -ENXIO; 2641 } 2642 2643 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 2644 { 2645 WARN_ON_ONCE(1); 2646 } 2647 2648 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 2649 unsigned long parent_rate) 2650 { 2651 return -ENXIO; 2652 } 2653 2654 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 2655 { 2656 return -ENXIO; 2657 } 2658 2659 static const struct clk_ops clk_nodrv_ops = { 2660 .enable = clk_nodrv_prepare_enable, 2661 .disable = clk_nodrv_disable_unprepare, 2662 .prepare = clk_nodrv_prepare_enable, 2663 .unprepare = clk_nodrv_disable_unprepare, 2664 .set_rate = clk_nodrv_set_rate, 2665 .set_parent = clk_nodrv_set_parent, 2666 }; 2667 2668 /** 2669 * clk_unregister - unregister a currently registered clock 2670 * @clk: clock to unregister 2671 */ 2672 void clk_unregister(struct clk *clk) 2673 { 2674 unsigned long flags; 2675 2676 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2677 return; 2678 2679 clk_debug_unregister(clk->core); 2680 2681 clk_prepare_lock(); 2682 2683 if (clk->core->ops == &clk_nodrv_ops) { 2684 pr_err("%s: unregistered clock: %s\n", __func__, 2685 clk->core->name); 2686 return; 2687 } 2688 /* 2689 * Assign empty clock ops for consumers that might still hold 2690 * a reference to this clock. 2691 */ 2692 flags = clk_enable_lock(); 2693 clk->core->ops = &clk_nodrv_ops; 2694 clk_enable_unlock(flags); 2695 2696 if (!hlist_empty(&clk->core->children)) { 2697 struct clk_core *child; 2698 struct hlist_node *t; 2699 2700 /* Reparent all children to the orphan list. */ 2701 hlist_for_each_entry_safe(child, t, &clk->core->children, 2702 child_node) 2703 clk_core_set_parent(child, NULL); 2704 } 2705 2706 hlist_del_init(&clk->core->child_node); 2707 2708 if (clk->core->prepare_count) 2709 pr_warn("%s: unregistering prepared clock: %s\n", 2710 __func__, clk->core->name); 2711 kref_put(&clk->core->ref, __clk_release); 2712 2713 clk_prepare_unlock(); 2714 } 2715 EXPORT_SYMBOL_GPL(clk_unregister); 2716 2717 static void devm_clk_release(struct device *dev, void *res) 2718 { 2719 clk_unregister(*(struct clk **)res); 2720 } 2721 2722 /** 2723 * devm_clk_register - resource managed clk_register() 2724 * @dev: device that is registering this clock 2725 * @hw: link to hardware-specific clock data 2726 * 2727 * Managed clk_register(). Clocks returned from this function are 2728 * automatically clk_unregister()ed on driver detach. See clk_register() for 2729 * more information. 2730 */ 2731 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 2732 { 2733 struct clk *clk; 2734 struct clk **clkp; 2735 2736 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 2737 if (!clkp) 2738 return ERR_PTR(-ENOMEM); 2739 2740 clk = clk_register(dev, hw); 2741 if (!IS_ERR(clk)) { 2742 *clkp = clk; 2743 devres_add(dev, clkp); 2744 } else { 2745 devres_free(clkp); 2746 } 2747 2748 return clk; 2749 } 2750 EXPORT_SYMBOL_GPL(devm_clk_register); 2751 2752 static int devm_clk_match(struct device *dev, void *res, void *data) 2753 { 2754 struct clk *c = res; 2755 if (WARN_ON(!c)) 2756 return 0; 2757 return c == data; 2758 } 2759 2760 /** 2761 * devm_clk_unregister - resource managed clk_unregister() 2762 * @clk: clock to unregister 2763 * 2764 * Deallocate a clock allocated with devm_clk_register(). Normally 2765 * this function will not need to be called and the resource management 2766 * code will ensure that the resource is freed. 2767 */ 2768 void devm_clk_unregister(struct device *dev, struct clk *clk) 2769 { 2770 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 2771 } 2772 EXPORT_SYMBOL_GPL(devm_clk_unregister); 2773 2774 /* 2775 * clkdev helpers 2776 */ 2777 int __clk_get(struct clk *clk) 2778 { 2779 struct clk_core *core = !clk ? NULL : clk->core; 2780 2781 if (core) { 2782 if (!try_module_get(core->owner)) 2783 return 0; 2784 2785 kref_get(&core->ref); 2786 } 2787 return 1; 2788 } 2789 2790 void __clk_put(struct clk *clk) 2791 { 2792 struct module *owner; 2793 2794 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2795 return; 2796 2797 clk_prepare_lock(); 2798 2799 hlist_del(&clk->clks_node); 2800 if (clk->min_rate > clk->core->req_rate || 2801 clk->max_rate < clk->core->req_rate) 2802 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 2803 2804 owner = clk->core->owner; 2805 kref_put(&clk->core->ref, __clk_release); 2806 2807 clk_prepare_unlock(); 2808 2809 module_put(owner); 2810 2811 kfree(clk); 2812 } 2813 2814 /*** clk rate change notifiers ***/ 2815 2816 /** 2817 * clk_notifier_register - add a clk rate change notifier 2818 * @clk: struct clk * to watch 2819 * @nb: struct notifier_block * with callback info 2820 * 2821 * Request notification when clk's rate changes. This uses an SRCU 2822 * notifier because we want it to block and notifier unregistrations are 2823 * uncommon. The callbacks associated with the notifier must not 2824 * re-enter into the clk framework by calling any top-level clk APIs; 2825 * this will cause a nested prepare_lock mutex. 2826 * 2827 * In all notification cases (pre, post and abort rate change) the original 2828 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 2829 * and the new frequency is passed via struct clk_notifier_data.new_rate. 2830 * 2831 * clk_notifier_register() must be called from non-atomic context. 2832 * Returns -EINVAL if called with null arguments, -ENOMEM upon 2833 * allocation failure; otherwise, passes along the return value of 2834 * srcu_notifier_chain_register(). 2835 */ 2836 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 2837 { 2838 struct clk_notifier *cn; 2839 int ret = -ENOMEM; 2840 2841 if (!clk || !nb) 2842 return -EINVAL; 2843 2844 clk_prepare_lock(); 2845 2846 /* search the list of notifiers for this clk */ 2847 list_for_each_entry(cn, &clk_notifier_list, node) 2848 if (cn->clk == clk) 2849 break; 2850 2851 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 2852 if (cn->clk != clk) { 2853 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL); 2854 if (!cn) 2855 goto out; 2856 2857 cn->clk = clk; 2858 srcu_init_notifier_head(&cn->notifier_head); 2859 2860 list_add(&cn->node, &clk_notifier_list); 2861 } 2862 2863 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 2864 2865 clk->core->notifier_count++; 2866 2867 out: 2868 clk_prepare_unlock(); 2869 2870 return ret; 2871 } 2872 EXPORT_SYMBOL_GPL(clk_notifier_register); 2873 2874 /** 2875 * clk_notifier_unregister - remove a clk rate change notifier 2876 * @clk: struct clk * 2877 * @nb: struct notifier_block * with callback info 2878 * 2879 * Request no further notification for changes to 'clk' and frees memory 2880 * allocated in clk_notifier_register. 2881 * 2882 * Returns -EINVAL if called with null arguments; otherwise, passes 2883 * along the return value of srcu_notifier_chain_unregister(). 2884 */ 2885 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 2886 { 2887 struct clk_notifier *cn = NULL; 2888 int ret = -EINVAL; 2889 2890 if (!clk || !nb) 2891 return -EINVAL; 2892 2893 clk_prepare_lock(); 2894 2895 list_for_each_entry(cn, &clk_notifier_list, node) 2896 if (cn->clk == clk) 2897 break; 2898 2899 if (cn->clk == clk) { 2900 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 2901 2902 clk->core->notifier_count--; 2903 2904 /* XXX the notifier code should handle this better */ 2905 if (!cn->notifier_head.head) { 2906 srcu_cleanup_notifier_head(&cn->notifier_head); 2907 list_del(&cn->node); 2908 kfree(cn); 2909 } 2910 2911 } else { 2912 ret = -ENOENT; 2913 } 2914 2915 clk_prepare_unlock(); 2916 2917 return ret; 2918 } 2919 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 2920 2921 #ifdef CONFIG_OF 2922 /** 2923 * struct of_clk_provider - Clock provider registration structure 2924 * @link: Entry in global list of clock providers 2925 * @node: Pointer to device tree node of clock provider 2926 * @get: Get clock callback. Returns NULL or a struct clk for the 2927 * given clock specifier 2928 * @data: context pointer to be passed into @get callback 2929 */ 2930 struct of_clk_provider { 2931 struct list_head link; 2932 2933 struct device_node *node; 2934 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 2935 void *data; 2936 }; 2937 2938 static const struct of_device_id __clk_of_table_sentinel 2939 __used __section(__clk_of_table_end); 2940 2941 static LIST_HEAD(of_clk_providers); 2942 static DEFINE_MUTEX(of_clk_mutex); 2943 2944 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 2945 void *data) 2946 { 2947 return data; 2948 } 2949 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 2950 2951 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 2952 { 2953 struct clk_onecell_data *clk_data = data; 2954 unsigned int idx = clkspec->args[0]; 2955 2956 if (idx >= clk_data->clk_num) { 2957 pr_err("%s: invalid clock index %u\n", __func__, idx); 2958 return ERR_PTR(-EINVAL); 2959 } 2960 2961 return clk_data->clks[idx]; 2962 } 2963 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 2964 2965 /** 2966 * of_clk_add_provider() - Register a clock provider for a node 2967 * @np: Device node pointer associated with clock provider 2968 * @clk_src_get: callback for decoding clock 2969 * @data: context pointer for @clk_src_get callback. 2970 */ 2971 int of_clk_add_provider(struct device_node *np, 2972 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 2973 void *data), 2974 void *data) 2975 { 2976 struct of_clk_provider *cp; 2977 int ret; 2978 2979 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL); 2980 if (!cp) 2981 return -ENOMEM; 2982 2983 cp->node = of_node_get(np); 2984 cp->data = data; 2985 cp->get = clk_src_get; 2986 2987 mutex_lock(&of_clk_mutex); 2988 list_add(&cp->link, &of_clk_providers); 2989 mutex_unlock(&of_clk_mutex); 2990 pr_debug("Added clock from %s\n", np->full_name); 2991 2992 ret = of_clk_set_defaults(np, true); 2993 if (ret < 0) 2994 of_clk_del_provider(np); 2995 2996 return ret; 2997 } 2998 EXPORT_SYMBOL_GPL(of_clk_add_provider); 2999 3000 /** 3001 * of_clk_del_provider() - Remove a previously registered clock provider 3002 * @np: Device node pointer associated with clock provider 3003 */ 3004 void of_clk_del_provider(struct device_node *np) 3005 { 3006 struct of_clk_provider *cp; 3007 3008 mutex_lock(&of_clk_mutex); 3009 list_for_each_entry(cp, &of_clk_providers, link) { 3010 if (cp->node == np) { 3011 list_del(&cp->link); 3012 of_node_put(cp->node); 3013 kfree(cp); 3014 break; 3015 } 3016 } 3017 mutex_unlock(&of_clk_mutex); 3018 } 3019 EXPORT_SYMBOL_GPL(of_clk_del_provider); 3020 3021 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec, 3022 const char *dev_id, const char *con_id) 3023 { 3024 struct of_clk_provider *provider; 3025 struct clk *clk = ERR_PTR(-EPROBE_DEFER); 3026 3027 if (!clkspec) 3028 return ERR_PTR(-EINVAL); 3029 3030 /* Check if we have such a provider in our array */ 3031 mutex_lock(&of_clk_mutex); 3032 list_for_each_entry(provider, &of_clk_providers, link) { 3033 if (provider->node == clkspec->np) 3034 clk = provider->get(clkspec, provider->data); 3035 if (!IS_ERR(clk)) { 3036 clk = __clk_create_clk(__clk_get_hw(clk), dev_id, 3037 con_id); 3038 3039 if (!IS_ERR(clk) && !__clk_get(clk)) { 3040 __clk_free_clk(clk); 3041 clk = ERR_PTR(-ENOENT); 3042 } 3043 3044 break; 3045 } 3046 } 3047 mutex_unlock(&of_clk_mutex); 3048 3049 return clk; 3050 } 3051 3052 /** 3053 * of_clk_get_from_provider() - Lookup a clock from a clock provider 3054 * @clkspec: pointer to a clock specifier data structure 3055 * 3056 * This function looks up a struct clk from the registered list of clock 3057 * providers, an input is a clock specifier data structure as returned 3058 * from the of_parse_phandle_with_args() function call. 3059 */ 3060 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 3061 { 3062 return __of_clk_get_from_provider(clkspec, NULL, __func__); 3063 } 3064 3065 int of_clk_get_parent_count(struct device_node *np) 3066 { 3067 return of_count_phandle_with_args(np, "clocks", "#clock-cells"); 3068 } 3069 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 3070 3071 const char *of_clk_get_parent_name(struct device_node *np, int index) 3072 { 3073 struct of_phandle_args clkspec; 3074 struct property *prop; 3075 const char *clk_name; 3076 const __be32 *vp; 3077 u32 pv; 3078 int rc; 3079 int count; 3080 struct clk *clk; 3081 3082 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 3083 &clkspec); 3084 if (rc) 3085 return NULL; 3086 3087 index = clkspec.args_count ? clkspec.args[0] : 0; 3088 count = 0; 3089 3090 /* if there is an indices property, use it to transfer the index 3091 * specified into an array offset for the clock-output-names property. 3092 */ 3093 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 3094 if (index == pv) { 3095 index = count; 3096 break; 3097 } 3098 count++; 3099 } 3100 /* We went off the end of 'clock-indices' without finding it */ 3101 if (prop && !vp) 3102 return NULL; 3103 3104 if (of_property_read_string_index(clkspec.np, "clock-output-names", 3105 index, 3106 &clk_name) < 0) { 3107 /* 3108 * Best effort to get the name if the clock has been 3109 * registered with the framework. If the clock isn't 3110 * registered, we return the node name as the name of 3111 * the clock as long as #clock-cells = 0. 3112 */ 3113 clk = of_clk_get_from_provider(&clkspec); 3114 if (IS_ERR(clk)) { 3115 if (clkspec.args_count == 0) 3116 clk_name = clkspec.np->name; 3117 else 3118 clk_name = NULL; 3119 } else { 3120 clk_name = __clk_get_name(clk); 3121 clk_put(clk); 3122 } 3123 } 3124 3125 3126 of_node_put(clkspec.np); 3127 return clk_name; 3128 } 3129 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 3130 3131 /** 3132 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 3133 * number of parents 3134 * @np: Device node pointer associated with clock provider 3135 * @parents: pointer to char array that hold the parents' names 3136 * @size: size of the @parents array 3137 * 3138 * Return: number of parents for the clock node. 3139 */ 3140 int of_clk_parent_fill(struct device_node *np, const char **parents, 3141 unsigned int size) 3142 { 3143 unsigned int i = 0; 3144 3145 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 3146 i++; 3147 3148 return i; 3149 } 3150 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 3151 3152 struct clock_provider { 3153 of_clk_init_cb_t clk_init_cb; 3154 struct device_node *np; 3155 struct list_head node; 3156 }; 3157 3158 /* 3159 * This function looks for a parent clock. If there is one, then it 3160 * checks that the provider for this parent clock was initialized, in 3161 * this case the parent clock will be ready. 3162 */ 3163 static int parent_ready(struct device_node *np) 3164 { 3165 int i = 0; 3166 3167 while (true) { 3168 struct clk *clk = of_clk_get(np, i); 3169 3170 /* this parent is ready we can check the next one */ 3171 if (!IS_ERR(clk)) { 3172 clk_put(clk); 3173 i++; 3174 continue; 3175 } 3176 3177 /* at least one parent is not ready, we exit now */ 3178 if (PTR_ERR(clk) == -EPROBE_DEFER) 3179 return 0; 3180 3181 /* 3182 * Here we make assumption that the device tree is 3183 * written correctly. So an error means that there is 3184 * no more parent. As we didn't exit yet, then the 3185 * previous parent are ready. If there is no clock 3186 * parent, no need to wait for them, then we can 3187 * consider their absence as being ready 3188 */ 3189 return 1; 3190 } 3191 } 3192 3193 /** 3194 * of_clk_init() - Scan and init clock providers from the DT 3195 * @matches: array of compatible values and init functions for providers. 3196 * 3197 * This function scans the device tree for matching clock providers 3198 * and calls their initialization functions. It also does it by trying 3199 * to follow the dependencies. 3200 */ 3201 void __init of_clk_init(const struct of_device_id *matches) 3202 { 3203 const struct of_device_id *match; 3204 struct device_node *np; 3205 struct clock_provider *clk_provider, *next; 3206 bool is_init_done; 3207 bool force = false; 3208 LIST_HEAD(clk_provider_list); 3209 3210 if (!matches) 3211 matches = &__clk_of_table; 3212 3213 /* First prepare the list of the clocks providers */ 3214 for_each_matching_node_and_match(np, matches, &match) { 3215 struct clock_provider *parent; 3216 3217 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 3218 if (!parent) { 3219 list_for_each_entry_safe(clk_provider, next, 3220 &clk_provider_list, node) { 3221 list_del(&clk_provider->node); 3222 of_node_put(clk_provider->np); 3223 kfree(clk_provider); 3224 } 3225 of_node_put(np); 3226 return; 3227 } 3228 3229 parent->clk_init_cb = match->data; 3230 parent->np = of_node_get(np); 3231 list_add_tail(&parent->node, &clk_provider_list); 3232 } 3233 3234 while (!list_empty(&clk_provider_list)) { 3235 is_init_done = false; 3236 list_for_each_entry_safe(clk_provider, next, 3237 &clk_provider_list, node) { 3238 if (force || parent_ready(clk_provider->np)) { 3239 3240 clk_provider->clk_init_cb(clk_provider->np); 3241 of_clk_set_defaults(clk_provider->np, true); 3242 3243 list_del(&clk_provider->node); 3244 of_node_put(clk_provider->np); 3245 kfree(clk_provider); 3246 is_init_done = true; 3247 } 3248 } 3249 3250 /* 3251 * We didn't manage to initialize any of the 3252 * remaining providers during the last loop, so now we 3253 * initialize all the remaining ones unconditionally 3254 * in case the clock parent was not mandatory 3255 */ 3256 if (!is_init_done) 3257 force = true; 3258 } 3259 } 3260 #endif 3261