xref: /linux/drivers/clk/clk.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/clkdev.h>
26 
27 #include "clk.h"
28 
29 static DEFINE_SPINLOCK(enable_lock);
30 static DEFINE_MUTEX(prepare_lock);
31 
32 static struct task_struct *prepare_owner;
33 static struct task_struct *enable_owner;
34 
35 static int prepare_refcnt;
36 static int enable_refcnt;
37 
38 static HLIST_HEAD(clk_root_list);
39 static HLIST_HEAD(clk_orphan_list);
40 static LIST_HEAD(clk_notifier_list);
41 
42 /***    private data structures    ***/
43 
44 struct clk_core {
45 	const char		*name;
46 	const struct clk_ops	*ops;
47 	struct clk_hw		*hw;
48 	struct module		*owner;
49 	struct clk_core		*parent;
50 	const char		**parent_names;
51 	struct clk_core		**parents;
52 	u8			num_parents;
53 	u8			new_parent_index;
54 	unsigned long		rate;
55 	unsigned long		req_rate;
56 	unsigned long		new_rate;
57 	struct clk_core		*new_parent;
58 	struct clk_core		*new_child;
59 	unsigned long		flags;
60 	bool			orphan;
61 	unsigned int		enable_count;
62 	unsigned int		prepare_count;
63 	unsigned long		min_rate;
64 	unsigned long		max_rate;
65 	unsigned long		accuracy;
66 	int			phase;
67 	struct hlist_head	children;
68 	struct hlist_node	child_node;
69 	struct hlist_head	clks;
70 	unsigned int		notifier_count;
71 #ifdef CONFIG_DEBUG_FS
72 	struct dentry		*dentry;
73 	struct hlist_node	debug_node;
74 #endif
75 	struct kref		ref;
76 };
77 
78 #define CREATE_TRACE_POINTS
79 #include <trace/events/clk.h>
80 
81 struct clk {
82 	struct clk_core	*core;
83 	const char *dev_id;
84 	const char *con_id;
85 	unsigned long min_rate;
86 	unsigned long max_rate;
87 	struct hlist_node clks_node;
88 };
89 
90 /***           locking             ***/
91 static void clk_prepare_lock(void)
92 {
93 	if (!mutex_trylock(&prepare_lock)) {
94 		if (prepare_owner == current) {
95 			prepare_refcnt++;
96 			return;
97 		}
98 		mutex_lock(&prepare_lock);
99 	}
100 	WARN_ON_ONCE(prepare_owner != NULL);
101 	WARN_ON_ONCE(prepare_refcnt != 0);
102 	prepare_owner = current;
103 	prepare_refcnt = 1;
104 }
105 
106 static void clk_prepare_unlock(void)
107 {
108 	WARN_ON_ONCE(prepare_owner != current);
109 	WARN_ON_ONCE(prepare_refcnt == 0);
110 
111 	if (--prepare_refcnt)
112 		return;
113 	prepare_owner = NULL;
114 	mutex_unlock(&prepare_lock);
115 }
116 
117 static unsigned long clk_enable_lock(void)
118 	__acquires(enable_lock)
119 {
120 	unsigned long flags;
121 
122 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
123 		if (enable_owner == current) {
124 			enable_refcnt++;
125 			__acquire(enable_lock);
126 			return flags;
127 		}
128 		spin_lock_irqsave(&enable_lock, flags);
129 	}
130 	WARN_ON_ONCE(enable_owner != NULL);
131 	WARN_ON_ONCE(enable_refcnt != 0);
132 	enable_owner = current;
133 	enable_refcnt = 1;
134 	return flags;
135 }
136 
137 static void clk_enable_unlock(unsigned long flags)
138 	__releases(enable_lock)
139 {
140 	WARN_ON_ONCE(enable_owner != current);
141 	WARN_ON_ONCE(enable_refcnt == 0);
142 
143 	if (--enable_refcnt) {
144 		__release(enable_lock);
145 		return;
146 	}
147 	enable_owner = NULL;
148 	spin_unlock_irqrestore(&enable_lock, flags);
149 }
150 
151 static bool clk_core_is_prepared(struct clk_core *core)
152 {
153 	/*
154 	 * .is_prepared is optional for clocks that can prepare
155 	 * fall back to software usage counter if it is missing
156 	 */
157 	if (!core->ops->is_prepared)
158 		return core->prepare_count;
159 
160 	return core->ops->is_prepared(core->hw);
161 }
162 
163 static bool clk_core_is_enabled(struct clk_core *core)
164 {
165 	/*
166 	 * .is_enabled is only mandatory for clocks that gate
167 	 * fall back to software usage counter if .is_enabled is missing
168 	 */
169 	if (!core->ops->is_enabled)
170 		return core->enable_count;
171 
172 	return core->ops->is_enabled(core->hw);
173 }
174 
175 static void clk_unprepare_unused_subtree(struct clk_core *core)
176 {
177 	struct clk_core *child;
178 
179 	lockdep_assert_held(&prepare_lock);
180 
181 	hlist_for_each_entry(child, &core->children, child_node)
182 		clk_unprepare_unused_subtree(child);
183 
184 	if (core->prepare_count)
185 		return;
186 
187 	if (core->flags & CLK_IGNORE_UNUSED)
188 		return;
189 
190 	if (clk_core_is_prepared(core)) {
191 		trace_clk_unprepare(core);
192 		if (core->ops->unprepare_unused)
193 			core->ops->unprepare_unused(core->hw);
194 		else if (core->ops->unprepare)
195 			core->ops->unprepare(core->hw);
196 		trace_clk_unprepare_complete(core);
197 	}
198 }
199 
200 static void clk_disable_unused_subtree(struct clk_core *core)
201 {
202 	struct clk_core *child;
203 	unsigned long flags;
204 
205 	lockdep_assert_held(&prepare_lock);
206 
207 	hlist_for_each_entry(child, &core->children, child_node)
208 		clk_disable_unused_subtree(child);
209 
210 	flags = clk_enable_lock();
211 
212 	if (core->enable_count)
213 		goto unlock_out;
214 
215 	if (core->flags & CLK_IGNORE_UNUSED)
216 		goto unlock_out;
217 
218 	/*
219 	 * some gate clocks have special needs during the disable-unused
220 	 * sequence.  call .disable_unused if available, otherwise fall
221 	 * back to .disable
222 	 */
223 	if (clk_core_is_enabled(core)) {
224 		trace_clk_disable(core);
225 		if (core->ops->disable_unused)
226 			core->ops->disable_unused(core->hw);
227 		else if (core->ops->disable)
228 			core->ops->disable(core->hw);
229 		trace_clk_disable_complete(core);
230 	}
231 
232 unlock_out:
233 	clk_enable_unlock(flags);
234 }
235 
236 static bool clk_ignore_unused;
237 static int __init clk_ignore_unused_setup(char *__unused)
238 {
239 	clk_ignore_unused = true;
240 	return 1;
241 }
242 __setup("clk_ignore_unused", clk_ignore_unused_setup);
243 
244 static int clk_disable_unused(void)
245 {
246 	struct clk_core *core;
247 
248 	if (clk_ignore_unused) {
249 		pr_warn("clk: Not disabling unused clocks\n");
250 		return 0;
251 	}
252 
253 	clk_prepare_lock();
254 
255 	hlist_for_each_entry(core, &clk_root_list, child_node)
256 		clk_disable_unused_subtree(core);
257 
258 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
259 		clk_disable_unused_subtree(core);
260 
261 	hlist_for_each_entry(core, &clk_root_list, child_node)
262 		clk_unprepare_unused_subtree(core);
263 
264 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
265 		clk_unprepare_unused_subtree(core);
266 
267 	clk_prepare_unlock();
268 
269 	return 0;
270 }
271 late_initcall_sync(clk_disable_unused);
272 
273 /***    helper functions   ***/
274 
275 const char *__clk_get_name(const struct clk *clk)
276 {
277 	return !clk ? NULL : clk->core->name;
278 }
279 EXPORT_SYMBOL_GPL(__clk_get_name);
280 
281 const char *clk_hw_get_name(const struct clk_hw *hw)
282 {
283 	return hw->core->name;
284 }
285 EXPORT_SYMBOL_GPL(clk_hw_get_name);
286 
287 struct clk_hw *__clk_get_hw(struct clk *clk)
288 {
289 	return !clk ? NULL : clk->core->hw;
290 }
291 EXPORT_SYMBOL_GPL(__clk_get_hw);
292 
293 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
294 {
295 	return hw->core->num_parents;
296 }
297 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
298 
299 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
300 {
301 	return hw->core->parent ? hw->core->parent->hw : NULL;
302 }
303 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
304 
305 static struct clk_core *__clk_lookup_subtree(const char *name,
306 					     struct clk_core *core)
307 {
308 	struct clk_core *child;
309 	struct clk_core *ret;
310 
311 	if (!strcmp(core->name, name))
312 		return core;
313 
314 	hlist_for_each_entry(child, &core->children, child_node) {
315 		ret = __clk_lookup_subtree(name, child);
316 		if (ret)
317 			return ret;
318 	}
319 
320 	return NULL;
321 }
322 
323 static struct clk_core *clk_core_lookup(const char *name)
324 {
325 	struct clk_core *root_clk;
326 	struct clk_core *ret;
327 
328 	if (!name)
329 		return NULL;
330 
331 	/* search the 'proper' clk tree first */
332 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
333 		ret = __clk_lookup_subtree(name, root_clk);
334 		if (ret)
335 			return ret;
336 	}
337 
338 	/* if not found, then search the orphan tree */
339 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
340 		ret = __clk_lookup_subtree(name, root_clk);
341 		if (ret)
342 			return ret;
343 	}
344 
345 	return NULL;
346 }
347 
348 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
349 							 u8 index)
350 {
351 	if (!core || index >= core->num_parents)
352 		return NULL;
353 	else if (!core->parents)
354 		return clk_core_lookup(core->parent_names[index]);
355 	else if (!core->parents[index])
356 		return core->parents[index] =
357 			clk_core_lookup(core->parent_names[index]);
358 	else
359 		return core->parents[index];
360 }
361 
362 struct clk_hw *
363 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
364 {
365 	struct clk_core *parent;
366 
367 	parent = clk_core_get_parent_by_index(hw->core, index);
368 
369 	return !parent ? NULL : parent->hw;
370 }
371 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
372 
373 unsigned int __clk_get_enable_count(struct clk *clk)
374 {
375 	return !clk ? 0 : clk->core->enable_count;
376 }
377 
378 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
379 {
380 	unsigned long ret;
381 
382 	if (!core) {
383 		ret = 0;
384 		goto out;
385 	}
386 
387 	ret = core->rate;
388 
389 	if (core->flags & CLK_IS_ROOT)
390 		goto out;
391 
392 	if (!core->parent)
393 		ret = 0;
394 
395 out:
396 	return ret;
397 }
398 
399 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
400 {
401 	return clk_core_get_rate_nolock(hw->core);
402 }
403 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
404 
405 static unsigned long __clk_get_accuracy(struct clk_core *core)
406 {
407 	if (!core)
408 		return 0;
409 
410 	return core->accuracy;
411 }
412 
413 unsigned long __clk_get_flags(struct clk *clk)
414 {
415 	return !clk ? 0 : clk->core->flags;
416 }
417 EXPORT_SYMBOL_GPL(__clk_get_flags);
418 
419 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
420 {
421 	return hw->core->flags;
422 }
423 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
424 
425 bool clk_hw_is_prepared(const struct clk_hw *hw)
426 {
427 	return clk_core_is_prepared(hw->core);
428 }
429 
430 bool clk_hw_is_enabled(const struct clk_hw *hw)
431 {
432 	return clk_core_is_enabled(hw->core);
433 }
434 
435 bool __clk_is_enabled(struct clk *clk)
436 {
437 	if (!clk)
438 		return false;
439 
440 	return clk_core_is_enabled(clk->core);
441 }
442 EXPORT_SYMBOL_GPL(__clk_is_enabled);
443 
444 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
445 			   unsigned long best, unsigned long flags)
446 {
447 	if (flags & CLK_MUX_ROUND_CLOSEST)
448 		return abs(now - rate) < abs(best - rate);
449 
450 	return now <= rate && now > best;
451 }
452 
453 static int
454 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
455 			     unsigned long flags)
456 {
457 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
458 	int i, num_parents, ret;
459 	unsigned long best = 0;
460 	struct clk_rate_request parent_req = *req;
461 
462 	/* if NO_REPARENT flag set, pass through to current parent */
463 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
464 		parent = core->parent;
465 		if (core->flags & CLK_SET_RATE_PARENT) {
466 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
467 						   &parent_req);
468 			if (ret)
469 				return ret;
470 
471 			best = parent_req.rate;
472 		} else if (parent) {
473 			best = clk_core_get_rate_nolock(parent);
474 		} else {
475 			best = clk_core_get_rate_nolock(core);
476 		}
477 
478 		goto out;
479 	}
480 
481 	/* find the parent that can provide the fastest rate <= rate */
482 	num_parents = core->num_parents;
483 	for (i = 0; i < num_parents; i++) {
484 		parent = clk_core_get_parent_by_index(core, i);
485 		if (!parent)
486 			continue;
487 
488 		if (core->flags & CLK_SET_RATE_PARENT) {
489 			parent_req = *req;
490 			ret = __clk_determine_rate(parent->hw, &parent_req);
491 			if (ret)
492 				continue;
493 		} else {
494 			parent_req.rate = clk_core_get_rate_nolock(parent);
495 		}
496 
497 		if (mux_is_better_rate(req->rate, parent_req.rate,
498 				       best, flags)) {
499 			best_parent = parent;
500 			best = parent_req.rate;
501 		}
502 	}
503 
504 	if (!best_parent)
505 		return -EINVAL;
506 
507 out:
508 	if (best_parent)
509 		req->best_parent_hw = best_parent->hw;
510 	req->best_parent_rate = best;
511 	req->rate = best;
512 
513 	return 0;
514 }
515 
516 struct clk *__clk_lookup(const char *name)
517 {
518 	struct clk_core *core = clk_core_lookup(name);
519 
520 	return !core ? NULL : core->hw->clk;
521 }
522 
523 static void clk_core_get_boundaries(struct clk_core *core,
524 				    unsigned long *min_rate,
525 				    unsigned long *max_rate)
526 {
527 	struct clk *clk_user;
528 
529 	*min_rate = core->min_rate;
530 	*max_rate = core->max_rate;
531 
532 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
533 		*min_rate = max(*min_rate, clk_user->min_rate);
534 
535 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
536 		*max_rate = min(*max_rate, clk_user->max_rate);
537 }
538 
539 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
540 			   unsigned long max_rate)
541 {
542 	hw->core->min_rate = min_rate;
543 	hw->core->max_rate = max_rate;
544 }
545 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
546 
547 /*
548  * Helper for finding best parent to provide a given frequency. This can be used
549  * directly as a determine_rate callback (e.g. for a mux), or from a more
550  * complex clock that may combine a mux with other operations.
551  */
552 int __clk_mux_determine_rate(struct clk_hw *hw,
553 			     struct clk_rate_request *req)
554 {
555 	return clk_mux_determine_rate_flags(hw, req, 0);
556 }
557 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
558 
559 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
560 				     struct clk_rate_request *req)
561 {
562 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
563 }
564 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
565 
566 /***        clk api        ***/
567 
568 static void clk_core_unprepare(struct clk_core *core)
569 {
570 	lockdep_assert_held(&prepare_lock);
571 
572 	if (!core)
573 		return;
574 
575 	if (WARN_ON(core->prepare_count == 0))
576 		return;
577 
578 	if (--core->prepare_count > 0)
579 		return;
580 
581 	WARN_ON(core->enable_count > 0);
582 
583 	trace_clk_unprepare(core);
584 
585 	if (core->ops->unprepare)
586 		core->ops->unprepare(core->hw);
587 
588 	trace_clk_unprepare_complete(core);
589 	clk_core_unprepare(core->parent);
590 }
591 
592 /**
593  * clk_unprepare - undo preparation of a clock source
594  * @clk: the clk being unprepared
595  *
596  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
597  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
598  * if the operation may sleep.  One example is a clk which is accessed over
599  * I2c.  In the complex case a clk gate operation may require a fast and a slow
600  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
601  * exclusive.  In fact clk_disable must be called before clk_unprepare.
602  */
603 void clk_unprepare(struct clk *clk)
604 {
605 	if (IS_ERR_OR_NULL(clk))
606 		return;
607 
608 	clk_prepare_lock();
609 	clk_core_unprepare(clk->core);
610 	clk_prepare_unlock();
611 }
612 EXPORT_SYMBOL_GPL(clk_unprepare);
613 
614 static int clk_core_prepare(struct clk_core *core)
615 {
616 	int ret = 0;
617 
618 	lockdep_assert_held(&prepare_lock);
619 
620 	if (!core)
621 		return 0;
622 
623 	if (core->prepare_count == 0) {
624 		ret = clk_core_prepare(core->parent);
625 		if (ret)
626 			return ret;
627 
628 		trace_clk_prepare(core);
629 
630 		if (core->ops->prepare)
631 			ret = core->ops->prepare(core->hw);
632 
633 		trace_clk_prepare_complete(core);
634 
635 		if (ret) {
636 			clk_core_unprepare(core->parent);
637 			return ret;
638 		}
639 	}
640 
641 	core->prepare_count++;
642 
643 	return 0;
644 }
645 
646 /**
647  * clk_prepare - prepare a clock source
648  * @clk: the clk being prepared
649  *
650  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
651  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
652  * operation may sleep.  One example is a clk which is accessed over I2c.  In
653  * the complex case a clk ungate operation may require a fast and a slow part.
654  * It is this reason that clk_prepare and clk_enable are not mutually
655  * exclusive.  In fact clk_prepare must be called before clk_enable.
656  * Returns 0 on success, -EERROR otherwise.
657  */
658 int clk_prepare(struct clk *clk)
659 {
660 	int ret;
661 
662 	if (!clk)
663 		return 0;
664 
665 	clk_prepare_lock();
666 	ret = clk_core_prepare(clk->core);
667 	clk_prepare_unlock();
668 
669 	return ret;
670 }
671 EXPORT_SYMBOL_GPL(clk_prepare);
672 
673 static void clk_core_disable(struct clk_core *core)
674 {
675 	lockdep_assert_held(&enable_lock);
676 
677 	if (!core)
678 		return;
679 
680 	if (WARN_ON(core->enable_count == 0))
681 		return;
682 
683 	if (--core->enable_count > 0)
684 		return;
685 
686 	trace_clk_disable(core);
687 
688 	if (core->ops->disable)
689 		core->ops->disable(core->hw);
690 
691 	trace_clk_disable_complete(core);
692 
693 	clk_core_disable(core->parent);
694 }
695 
696 /**
697  * clk_disable - gate a clock
698  * @clk: the clk being gated
699  *
700  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
701  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
702  * clk if the operation is fast and will never sleep.  One example is a
703  * SoC-internal clk which is controlled via simple register writes.  In the
704  * complex case a clk gate operation may require a fast and a slow part.  It is
705  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
706  * In fact clk_disable must be called before clk_unprepare.
707  */
708 void clk_disable(struct clk *clk)
709 {
710 	unsigned long flags;
711 
712 	if (IS_ERR_OR_NULL(clk))
713 		return;
714 
715 	flags = clk_enable_lock();
716 	clk_core_disable(clk->core);
717 	clk_enable_unlock(flags);
718 }
719 EXPORT_SYMBOL_GPL(clk_disable);
720 
721 static int clk_core_enable(struct clk_core *core)
722 {
723 	int ret = 0;
724 
725 	lockdep_assert_held(&enable_lock);
726 
727 	if (!core)
728 		return 0;
729 
730 	if (WARN_ON(core->prepare_count == 0))
731 		return -ESHUTDOWN;
732 
733 	if (core->enable_count == 0) {
734 		ret = clk_core_enable(core->parent);
735 
736 		if (ret)
737 			return ret;
738 
739 		trace_clk_enable(core);
740 
741 		if (core->ops->enable)
742 			ret = core->ops->enable(core->hw);
743 
744 		trace_clk_enable_complete(core);
745 
746 		if (ret) {
747 			clk_core_disable(core->parent);
748 			return ret;
749 		}
750 	}
751 
752 	core->enable_count++;
753 	return 0;
754 }
755 
756 /**
757  * clk_enable - ungate a clock
758  * @clk: the clk being ungated
759  *
760  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
761  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
762  * if the operation will never sleep.  One example is a SoC-internal clk which
763  * is controlled via simple register writes.  In the complex case a clk ungate
764  * operation may require a fast and a slow part.  It is this reason that
765  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
766  * must be called before clk_enable.  Returns 0 on success, -EERROR
767  * otherwise.
768  */
769 int clk_enable(struct clk *clk)
770 {
771 	unsigned long flags;
772 	int ret;
773 
774 	if (!clk)
775 		return 0;
776 
777 	flags = clk_enable_lock();
778 	ret = clk_core_enable(clk->core);
779 	clk_enable_unlock(flags);
780 
781 	return ret;
782 }
783 EXPORT_SYMBOL_GPL(clk_enable);
784 
785 static int clk_core_round_rate_nolock(struct clk_core *core,
786 				      struct clk_rate_request *req)
787 {
788 	struct clk_core *parent;
789 	long rate;
790 
791 	lockdep_assert_held(&prepare_lock);
792 
793 	if (!core)
794 		return 0;
795 
796 	parent = core->parent;
797 	if (parent) {
798 		req->best_parent_hw = parent->hw;
799 		req->best_parent_rate = parent->rate;
800 	} else {
801 		req->best_parent_hw = NULL;
802 		req->best_parent_rate = 0;
803 	}
804 
805 	if (core->ops->determine_rate) {
806 		return core->ops->determine_rate(core->hw, req);
807 	} else if (core->ops->round_rate) {
808 		rate = core->ops->round_rate(core->hw, req->rate,
809 					     &req->best_parent_rate);
810 		if (rate < 0)
811 			return rate;
812 
813 		req->rate = rate;
814 	} else if (core->flags & CLK_SET_RATE_PARENT) {
815 		return clk_core_round_rate_nolock(parent, req);
816 	} else {
817 		req->rate = core->rate;
818 	}
819 
820 	return 0;
821 }
822 
823 /**
824  * __clk_determine_rate - get the closest rate actually supported by a clock
825  * @hw: determine the rate of this clock
826  * @rate: target rate
827  * @min_rate: returned rate must be greater than this rate
828  * @max_rate: returned rate must be less than this rate
829  *
830  * Useful for clk_ops such as .set_rate and .determine_rate.
831  */
832 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
833 {
834 	if (!hw) {
835 		req->rate = 0;
836 		return 0;
837 	}
838 
839 	return clk_core_round_rate_nolock(hw->core, req);
840 }
841 EXPORT_SYMBOL_GPL(__clk_determine_rate);
842 
843 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
844 {
845 	int ret;
846 	struct clk_rate_request req;
847 
848 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
849 	req.rate = rate;
850 
851 	ret = clk_core_round_rate_nolock(hw->core, &req);
852 	if (ret)
853 		return 0;
854 
855 	return req.rate;
856 }
857 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
858 
859 /**
860  * clk_round_rate - round the given rate for a clk
861  * @clk: the clk for which we are rounding a rate
862  * @rate: the rate which is to be rounded
863  *
864  * Takes in a rate as input and rounds it to a rate that the clk can actually
865  * use which is then returned.  If clk doesn't support round_rate operation
866  * then the parent rate is returned.
867  */
868 long clk_round_rate(struct clk *clk, unsigned long rate)
869 {
870 	struct clk_rate_request req;
871 	int ret;
872 
873 	if (!clk)
874 		return 0;
875 
876 	clk_prepare_lock();
877 
878 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
879 	req.rate = rate;
880 
881 	ret = clk_core_round_rate_nolock(clk->core, &req);
882 	clk_prepare_unlock();
883 
884 	if (ret)
885 		return ret;
886 
887 	return req.rate;
888 }
889 EXPORT_SYMBOL_GPL(clk_round_rate);
890 
891 /**
892  * __clk_notify - call clk notifier chain
893  * @core: clk that is changing rate
894  * @msg: clk notifier type (see include/linux/clk.h)
895  * @old_rate: old clk rate
896  * @new_rate: new clk rate
897  *
898  * Triggers a notifier call chain on the clk rate-change notification
899  * for 'clk'.  Passes a pointer to the struct clk and the previous
900  * and current rates to the notifier callback.  Intended to be called by
901  * internal clock code only.  Returns NOTIFY_DONE from the last driver
902  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
903  * a driver returns that.
904  */
905 static int __clk_notify(struct clk_core *core, unsigned long msg,
906 		unsigned long old_rate, unsigned long new_rate)
907 {
908 	struct clk_notifier *cn;
909 	struct clk_notifier_data cnd;
910 	int ret = NOTIFY_DONE;
911 
912 	cnd.old_rate = old_rate;
913 	cnd.new_rate = new_rate;
914 
915 	list_for_each_entry(cn, &clk_notifier_list, node) {
916 		if (cn->clk->core == core) {
917 			cnd.clk = cn->clk;
918 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
919 					&cnd);
920 		}
921 	}
922 
923 	return ret;
924 }
925 
926 /**
927  * __clk_recalc_accuracies
928  * @core: first clk in the subtree
929  *
930  * Walks the subtree of clks starting with clk and recalculates accuracies as
931  * it goes.  Note that if a clk does not implement the .recalc_accuracy
932  * callback then it is assumed that the clock will take on the accuracy of its
933  * parent.
934  */
935 static void __clk_recalc_accuracies(struct clk_core *core)
936 {
937 	unsigned long parent_accuracy = 0;
938 	struct clk_core *child;
939 
940 	lockdep_assert_held(&prepare_lock);
941 
942 	if (core->parent)
943 		parent_accuracy = core->parent->accuracy;
944 
945 	if (core->ops->recalc_accuracy)
946 		core->accuracy = core->ops->recalc_accuracy(core->hw,
947 							  parent_accuracy);
948 	else
949 		core->accuracy = parent_accuracy;
950 
951 	hlist_for_each_entry(child, &core->children, child_node)
952 		__clk_recalc_accuracies(child);
953 }
954 
955 static long clk_core_get_accuracy(struct clk_core *core)
956 {
957 	unsigned long accuracy;
958 
959 	clk_prepare_lock();
960 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
961 		__clk_recalc_accuracies(core);
962 
963 	accuracy = __clk_get_accuracy(core);
964 	clk_prepare_unlock();
965 
966 	return accuracy;
967 }
968 
969 /**
970  * clk_get_accuracy - return the accuracy of clk
971  * @clk: the clk whose accuracy is being returned
972  *
973  * Simply returns the cached accuracy of the clk, unless
974  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
975  * issued.
976  * If clk is NULL then returns 0.
977  */
978 long clk_get_accuracy(struct clk *clk)
979 {
980 	if (!clk)
981 		return 0;
982 
983 	return clk_core_get_accuracy(clk->core);
984 }
985 EXPORT_SYMBOL_GPL(clk_get_accuracy);
986 
987 static unsigned long clk_recalc(struct clk_core *core,
988 				unsigned long parent_rate)
989 {
990 	if (core->ops->recalc_rate)
991 		return core->ops->recalc_rate(core->hw, parent_rate);
992 	return parent_rate;
993 }
994 
995 /**
996  * __clk_recalc_rates
997  * @core: first clk in the subtree
998  * @msg: notification type (see include/linux/clk.h)
999  *
1000  * Walks the subtree of clks starting with clk and recalculates rates as it
1001  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1002  * it is assumed that the clock will take on the rate of its parent.
1003  *
1004  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1005  * if necessary.
1006  */
1007 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1008 {
1009 	unsigned long old_rate;
1010 	unsigned long parent_rate = 0;
1011 	struct clk_core *child;
1012 
1013 	lockdep_assert_held(&prepare_lock);
1014 
1015 	old_rate = core->rate;
1016 
1017 	if (core->parent)
1018 		parent_rate = core->parent->rate;
1019 
1020 	core->rate = clk_recalc(core, parent_rate);
1021 
1022 	/*
1023 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1024 	 * & ABORT_RATE_CHANGE notifiers
1025 	 */
1026 	if (core->notifier_count && msg)
1027 		__clk_notify(core, msg, old_rate, core->rate);
1028 
1029 	hlist_for_each_entry(child, &core->children, child_node)
1030 		__clk_recalc_rates(child, msg);
1031 }
1032 
1033 static unsigned long clk_core_get_rate(struct clk_core *core)
1034 {
1035 	unsigned long rate;
1036 
1037 	clk_prepare_lock();
1038 
1039 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1040 		__clk_recalc_rates(core, 0);
1041 
1042 	rate = clk_core_get_rate_nolock(core);
1043 	clk_prepare_unlock();
1044 
1045 	return rate;
1046 }
1047 
1048 /**
1049  * clk_get_rate - return the rate of clk
1050  * @clk: the clk whose rate is being returned
1051  *
1052  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1053  * is set, which means a recalc_rate will be issued.
1054  * If clk is NULL then returns 0.
1055  */
1056 unsigned long clk_get_rate(struct clk *clk)
1057 {
1058 	if (!clk)
1059 		return 0;
1060 
1061 	return clk_core_get_rate(clk->core);
1062 }
1063 EXPORT_SYMBOL_GPL(clk_get_rate);
1064 
1065 static int clk_fetch_parent_index(struct clk_core *core,
1066 				  struct clk_core *parent)
1067 {
1068 	int i;
1069 
1070 	if (!core->parents) {
1071 		core->parents = kcalloc(core->num_parents,
1072 					sizeof(struct clk *), GFP_KERNEL);
1073 		if (!core->parents)
1074 			return -ENOMEM;
1075 	}
1076 
1077 	/*
1078 	 * find index of new parent clock using cached parent ptrs,
1079 	 * or if not yet cached, use string name comparison and cache
1080 	 * them now to avoid future calls to clk_core_lookup.
1081 	 */
1082 	for (i = 0; i < core->num_parents; i++) {
1083 		if (core->parents[i] == parent)
1084 			return i;
1085 
1086 		if (core->parents[i])
1087 			continue;
1088 
1089 		if (!strcmp(core->parent_names[i], parent->name)) {
1090 			core->parents[i] = clk_core_lookup(parent->name);
1091 			return i;
1092 		}
1093 	}
1094 
1095 	return -EINVAL;
1096 }
1097 
1098 /*
1099  * Update the orphan status of @core and all its children.
1100  */
1101 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1102 {
1103 	struct clk_core *child;
1104 
1105 	core->orphan = is_orphan;
1106 
1107 	hlist_for_each_entry(child, &core->children, child_node)
1108 		clk_core_update_orphan_status(child, is_orphan);
1109 }
1110 
1111 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1112 {
1113 	bool was_orphan = core->orphan;
1114 
1115 	hlist_del(&core->child_node);
1116 
1117 	if (new_parent) {
1118 		bool becomes_orphan = new_parent->orphan;
1119 
1120 		/* avoid duplicate POST_RATE_CHANGE notifications */
1121 		if (new_parent->new_child == core)
1122 			new_parent->new_child = NULL;
1123 
1124 		hlist_add_head(&core->child_node, &new_parent->children);
1125 
1126 		if (was_orphan != becomes_orphan)
1127 			clk_core_update_orphan_status(core, becomes_orphan);
1128 	} else {
1129 		hlist_add_head(&core->child_node, &clk_orphan_list);
1130 		if (!was_orphan)
1131 			clk_core_update_orphan_status(core, true);
1132 	}
1133 
1134 	core->parent = new_parent;
1135 }
1136 
1137 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1138 					   struct clk_core *parent)
1139 {
1140 	unsigned long flags;
1141 	struct clk_core *old_parent = core->parent;
1142 
1143 	/*
1144 	 * Migrate prepare state between parents and prevent race with
1145 	 * clk_enable().
1146 	 *
1147 	 * If the clock is not prepared, then a race with
1148 	 * clk_enable/disable() is impossible since we already have the
1149 	 * prepare lock (future calls to clk_enable() need to be preceded by
1150 	 * a clk_prepare()).
1151 	 *
1152 	 * If the clock is prepared, migrate the prepared state to the new
1153 	 * parent and also protect against a race with clk_enable() by
1154 	 * forcing the clock and the new parent on.  This ensures that all
1155 	 * future calls to clk_enable() are practically NOPs with respect to
1156 	 * hardware and software states.
1157 	 *
1158 	 * See also: Comment for clk_set_parent() below.
1159 	 */
1160 	if (core->prepare_count) {
1161 		clk_core_prepare(parent);
1162 		flags = clk_enable_lock();
1163 		clk_core_enable(parent);
1164 		clk_core_enable(core);
1165 		clk_enable_unlock(flags);
1166 	}
1167 
1168 	/* update the clk tree topology */
1169 	flags = clk_enable_lock();
1170 	clk_reparent(core, parent);
1171 	clk_enable_unlock(flags);
1172 
1173 	return old_parent;
1174 }
1175 
1176 static void __clk_set_parent_after(struct clk_core *core,
1177 				   struct clk_core *parent,
1178 				   struct clk_core *old_parent)
1179 {
1180 	unsigned long flags;
1181 
1182 	/*
1183 	 * Finish the migration of prepare state and undo the changes done
1184 	 * for preventing a race with clk_enable().
1185 	 */
1186 	if (core->prepare_count) {
1187 		flags = clk_enable_lock();
1188 		clk_core_disable(core);
1189 		clk_core_disable(old_parent);
1190 		clk_enable_unlock(flags);
1191 		clk_core_unprepare(old_parent);
1192 	}
1193 }
1194 
1195 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1196 			    u8 p_index)
1197 {
1198 	unsigned long flags;
1199 	int ret = 0;
1200 	struct clk_core *old_parent;
1201 
1202 	old_parent = __clk_set_parent_before(core, parent);
1203 
1204 	trace_clk_set_parent(core, parent);
1205 
1206 	/* change clock input source */
1207 	if (parent && core->ops->set_parent)
1208 		ret = core->ops->set_parent(core->hw, p_index);
1209 
1210 	trace_clk_set_parent_complete(core, parent);
1211 
1212 	if (ret) {
1213 		flags = clk_enable_lock();
1214 		clk_reparent(core, old_parent);
1215 		clk_enable_unlock(flags);
1216 		__clk_set_parent_after(core, old_parent, parent);
1217 
1218 		return ret;
1219 	}
1220 
1221 	__clk_set_parent_after(core, parent, old_parent);
1222 
1223 	return 0;
1224 }
1225 
1226 /**
1227  * __clk_speculate_rates
1228  * @core: first clk in the subtree
1229  * @parent_rate: the "future" rate of clk's parent
1230  *
1231  * Walks the subtree of clks starting with clk, speculating rates as it
1232  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1233  *
1234  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1235  * pre-rate change notifications and returns early if no clks in the
1236  * subtree have subscribed to the notifications.  Note that if a clk does not
1237  * implement the .recalc_rate callback then it is assumed that the clock will
1238  * take on the rate of its parent.
1239  */
1240 static int __clk_speculate_rates(struct clk_core *core,
1241 				 unsigned long parent_rate)
1242 {
1243 	struct clk_core *child;
1244 	unsigned long new_rate;
1245 	int ret = NOTIFY_DONE;
1246 
1247 	lockdep_assert_held(&prepare_lock);
1248 
1249 	new_rate = clk_recalc(core, parent_rate);
1250 
1251 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1252 	if (core->notifier_count)
1253 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1254 
1255 	if (ret & NOTIFY_STOP_MASK) {
1256 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1257 				__func__, core->name, ret);
1258 		goto out;
1259 	}
1260 
1261 	hlist_for_each_entry(child, &core->children, child_node) {
1262 		ret = __clk_speculate_rates(child, new_rate);
1263 		if (ret & NOTIFY_STOP_MASK)
1264 			break;
1265 	}
1266 
1267 out:
1268 	return ret;
1269 }
1270 
1271 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1272 			     struct clk_core *new_parent, u8 p_index)
1273 {
1274 	struct clk_core *child;
1275 
1276 	core->new_rate = new_rate;
1277 	core->new_parent = new_parent;
1278 	core->new_parent_index = p_index;
1279 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1280 	core->new_child = NULL;
1281 	if (new_parent && new_parent != core->parent)
1282 		new_parent->new_child = core;
1283 
1284 	hlist_for_each_entry(child, &core->children, child_node) {
1285 		child->new_rate = clk_recalc(child, new_rate);
1286 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1287 	}
1288 }
1289 
1290 /*
1291  * calculate the new rates returning the topmost clock that has to be
1292  * changed.
1293  */
1294 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1295 					   unsigned long rate)
1296 {
1297 	struct clk_core *top = core;
1298 	struct clk_core *old_parent, *parent;
1299 	unsigned long best_parent_rate = 0;
1300 	unsigned long new_rate;
1301 	unsigned long min_rate;
1302 	unsigned long max_rate;
1303 	int p_index = 0;
1304 	long ret;
1305 
1306 	/* sanity */
1307 	if (IS_ERR_OR_NULL(core))
1308 		return NULL;
1309 
1310 	/* save parent rate, if it exists */
1311 	parent = old_parent = core->parent;
1312 	if (parent)
1313 		best_parent_rate = parent->rate;
1314 
1315 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1316 
1317 	/* find the closest rate and parent clk/rate */
1318 	if (core->ops->determine_rate) {
1319 		struct clk_rate_request req;
1320 
1321 		req.rate = rate;
1322 		req.min_rate = min_rate;
1323 		req.max_rate = max_rate;
1324 		if (parent) {
1325 			req.best_parent_hw = parent->hw;
1326 			req.best_parent_rate = parent->rate;
1327 		} else {
1328 			req.best_parent_hw = NULL;
1329 			req.best_parent_rate = 0;
1330 		}
1331 
1332 		ret = core->ops->determine_rate(core->hw, &req);
1333 		if (ret < 0)
1334 			return NULL;
1335 
1336 		best_parent_rate = req.best_parent_rate;
1337 		new_rate = req.rate;
1338 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1339 	} else if (core->ops->round_rate) {
1340 		ret = core->ops->round_rate(core->hw, rate,
1341 					    &best_parent_rate);
1342 		if (ret < 0)
1343 			return NULL;
1344 
1345 		new_rate = ret;
1346 		if (new_rate < min_rate || new_rate > max_rate)
1347 			return NULL;
1348 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1349 		/* pass-through clock without adjustable parent */
1350 		core->new_rate = core->rate;
1351 		return NULL;
1352 	} else {
1353 		/* pass-through clock with adjustable parent */
1354 		top = clk_calc_new_rates(parent, rate);
1355 		new_rate = parent->new_rate;
1356 		goto out;
1357 	}
1358 
1359 	/* some clocks must be gated to change parent */
1360 	if (parent != old_parent &&
1361 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1362 		pr_debug("%s: %s not gated but wants to reparent\n",
1363 			 __func__, core->name);
1364 		return NULL;
1365 	}
1366 
1367 	/* try finding the new parent index */
1368 	if (parent && core->num_parents > 1) {
1369 		p_index = clk_fetch_parent_index(core, parent);
1370 		if (p_index < 0) {
1371 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1372 				 __func__, parent->name, core->name);
1373 			return NULL;
1374 		}
1375 	}
1376 
1377 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1378 	    best_parent_rate != parent->rate)
1379 		top = clk_calc_new_rates(parent, best_parent_rate);
1380 
1381 out:
1382 	clk_calc_subtree(core, new_rate, parent, p_index);
1383 
1384 	return top;
1385 }
1386 
1387 /*
1388  * Notify about rate changes in a subtree. Always walk down the whole tree
1389  * so that in case of an error we can walk down the whole tree again and
1390  * abort the change.
1391  */
1392 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1393 						  unsigned long event)
1394 {
1395 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1396 	int ret = NOTIFY_DONE;
1397 
1398 	if (core->rate == core->new_rate)
1399 		return NULL;
1400 
1401 	if (core->notifier_count) {
1402 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1403 		if (ret & NOTIFY_STOP_MASK)
1404 			fail_clk = core;
1405 	}
1406 
1407 	hlist_for_each_entry(child, &core->children, child_node) {
1408 		/* Skip children who will be reparented to another clock */
1409 		if (child->new_parent && child->new_parent != core)
1410 			continue;
1411 		tmp_clk = clk_propagate_rate_change(child, event);
1412 		if (tmp_clk)
1413 			fail_clk = tmp_clk;
1414 	}
1415 
1416 	/* handle the new child who might not be in core->children yet */
1417 	if (core->new_child) {
1418 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1419 		if (tmp_clk)
1420 			fail_clk = tmp_clk;
1421 	}
1422 
1423 	return fail_clk;
1424 }
1425 
1426 /*
1427  * walk down a subtree and set the new rates notifying the rate
1428  * change on the way
1429  */
1430 static void clk_change_rate(struct clk_core *core)
1431 {
1432 	struct clk_core *child;
1433 	struct hlist_node *tmp;
1434 	unsigned long old_rate;
1435 	unsigned long best_parent_rate = 0;
1436 	bool skip_set_rate = false;
1437 	struct clk_core *old_parent;
1438 
1439 	old_rate = core->rate;
1440 
1441 	if (core->new_parent)
1442 		best_parent_rate = core->new_parent->rate;
1443 	else if (core->parent)
1444 		best_parent_rate = core->parent->rate;
1445 
1446 	if (core->flags & CLK_SET_RATE_UNGATE) {
1447 		unsigned long flags;
1448 
1449 		clk_core_prepare(core);
1450 		flags = clk_enable_lock();
1451 		clk_core_enable(core);
1452 		clk_enable_unlock(flags);
1453 	}
1454 
1455 	if (core->new_parent && core->new_parent != core->parent) {
1456 		old_parent = __clk_set_parent_before(core, core->new_parent);
1457 		trace_clk_set_parent(core, core->new_parent);
1458 
1459 		if (core->ops->set_rate_and_parent) {
1460 			skip_set_rate = true;
1461 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1462 					best_parent_rate,
1463 					core->new_parent_index);
1464 		} else if (core->ops->set_parent) {
1465 			core->ops->set_parent(core->hw, core->new_parent_index);
1466 		}
1467 
1468 		trace_clk_set_parent_complete(core, core->new_parent);
1469 		__clk_set_parent_after(core, core->new_parent, old_parent);
1470 	}
1471 
1472 	trace_clk_set_rate(core, core->new_rate);
1473 
1474 	if (!skip_set_rate && core->ops->set_rate)
1475 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1476 
1477 	trace_clk_set_rate_complete(core, core->new_rate);
1478 
1479 	core->rate = clk_recalc(core, best_parent_rate);
1480 
1481 	if (core->flags & CLK_SET_RATE_UNGATE) {
1482 		unsigned long flags;
1483 
1484 		flags = clk_enable_lock();
1485 		clk_core_disable(core);
1486 		clk_enable_unlock(flags);
1487 		clk_core_unprepare(core);
1488 	}
1489 
1490 	if (core->notifier_count && old_rate != core->rate)
1491 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1492 
1493 	if (core->flags & CLK_RECALC_NEW_RATES)
1494 		(void)clk_calc_new_rates(core, core->new_rate);
1495 
1496 	/*
1497 	 * Use safe iteration, as change_rate can actually swap parents
1498 	 * for certain clock types.
1499 	 */
1500 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1501 		/* Skip children who will be reparented to another clock */
1502 		if (child->new_parent && child->new_parent != core)
1503 			continue;
1504 		clk_change_rate(child);
1505 	}
1506 
1507 	/* handle the new child who might not be in core->children yet */
1508 	if (core->new_child)
1509 		clk_change_rate(core->new_child);
1510 }
1511 
1512 static int clk_core_set_rate_nolock(struct clk_core *core,
1513 				    unsigned long req_rate)
1514 {
1515 	struct clk_core *top, *fail_clk;
1516 	unsigned long rate = req_rate;
1517 	int ret = 0;
1518 
1519 	if (!core)
1520 		return 0;
1521 
1522 	/* bail early if nothing to do */
1523 	if (rate == clk_core_get_rate_nolock(core))
1524 		return 0;
1525 
1526 	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1527 		return -EBUSY;
1528 
1529 	/* calculate new rates and get the topmost changed clock */
1530 	top = clk_calc_new_rates(core, rate);
1531 	if (!top)
1532 		return -EINVAL;
1533 
1534 	/* notify that we are about to change rates */
1535 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1536 	if (fail_clk) {
1537 		pr_debug("%s: failed to set %s rate\n", __func__,
1538 				fail_clk->name);
1539 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1540 		return -EBUSY;
1541 	}
1542 
1543 	/* change the rates */
1544 	clk_change_rate(top);
1545 
1546 	core->req_rate = req_rate;
1547 
1548 	return ret;
1549 }
1550 
1551 /**
1552  * clk_set_rate - specify a new rate for clk
1553  * @clk: the clk whose rate is being changed
1554  * @rate: the new rate for clk
1555  *
1556  * In the simplest case clk_set_rate will only adjust the rate of clk.
1557  *
1558  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1559  * propagate up to clk's parent; whether or not this happens depends on the
1560  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1561  * after calling .round_rate then upstream parent propagation is ignored.  If
1562  * *parent_rate comes back with a new rate for clk's parent then we propagate
1563  * up to clk's parent and set its rate.  Upward propagation will continue
1564  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1565  * .round_rate stops requesting changes to clk's parent_rate.
1566  *
1567  * Rate changes are accomplished via tree traversal that also recalculates the
1568  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1569  *
1570  * Returns 0 on success, -EERROR otherwise.
1571  */
1572 int clk_set_rate(struct clk *clk, unsigned long rate)
1573 {
1574 	int ret;
1575 
1576 	if (!clk)
1577 		return 0;
1578 
1579 	/* prevent racing with updates to the clock topology */
1580 	clk_prepare_lock();
1581 
1582 	ret = clk_core_set_rate_nolock(clk->core, rate);
1583 
1584 	clk_prepare_unlock();
1585 
1586 	return ret;
1587 }
1588 EXPORT_SYMBOL_GPL(clk_set_rate);
1589 
1590 /**
1591  * clk_set_rate_range - set a rate range for a clock source
1592  * @clk: clock source
1593  * @min: desired minimum clock rate in Hz, inclusive
1594  * @max: desired maximum clock rate in Hz, inclusive
1595  *
1596  * Returns success (0) or negative errno.
1597  */
1598 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1599 {
1600 	int ret = 0;
1601 
1602 	if (!clk)
1603 		return 0;
1604 
1605 	if (min > max) {
1606 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1607 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1608 		       min, max);
1609 		return -EINVAL;
1610 	}
1611 
1612 	clk_prepare_lock();
1613 
1614 	if (min != clk->min_rate || max != clk->max_rate) {
1615 		clk->min_rate = min;
1616 		clk->max_rate = max;
1617 		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1618 	}
1619 
1620 	clk_prepare_unlock();
1621 
1622 	return ret;
1623 }
1624 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1625 
1626 /**
1627  * clk_set_min_rate - set a minimum clock rate for a clock source
1628  * @clk: clock source
1629  * @rate: desired minimum clock rate in Hz, inclusive
1630  *
1631  * Returns success (0) or negative errno.
1632  */
1633 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1634 {
1635 	if (!clk)
1636 		return 0;
1637 
1638 	return clk_set_rate_range(clk, rate, clk->max_rate);
1639 }
1640 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1641 
1642 /**
1643  * clk_set_max_rate - set a maximum clock rate for a clock source
1644  * @clk: clock source
1645  * @rate: desired maximum clock rate in Hz, inclusive
1646  *
1647  * Returns success (0) or negative errno.
1648  */
1649 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1650 {
1651 	if (!clk)
1652 		return 0;
1653 
1654 	return clk_set_rate_range(clk, clk->min_rate, rate);
1655 }
1656 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1657 
1658 /**
1659  * clk_get_parent - return the parent of a clk
1660  * @clk: the clk whose parent gets returned
1661  *
1662  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1663  */
1664 struct clk *clk_get_parent(struct clk *clk)
1665 {
1666 	struct clk *parent;
1667 
1668 	if (!clk)
1669 		return NULL;
1670 
1671 	clk_prepare_lock();
1672 	/* TODO: Create a per-user clk and change callers to call clk_put */
1673 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1674 	clk_prepare_unlock();
1675 
1676 	return parent;
1677 }
1678 EXPORT_SYMBOL_GPL(clk_get_parent);
1679 
1680 /*
1681  * .get_parent is mandatory for clocks with multiple possible parents.  It is
1682  * optional for single-parent clocks.  Always call .get_parent if it is
1683  * available and WARN if it is missing for multi-parent clocks.
1684  *
1685  * For single-parent clocks without .get_parent, first check to see if the
1686  * .parents array exists, and if so use it to avoid an expensive tree
1687  * traversal.  If .parents does not exist then walk the tree.
1688  */
1689 static struct clk_core *__clk_init_parent(struct clk_core *core)
1690 {
1691 	struct clk_core *ret = NULL;
1692 	u8 index;
1693 
1694 	/* handle the trivial cases */
1695 
1696 	if (!core->num_parents)
1697 		goto out;
1698 
1699 	if (core->num_parents == 1) {
1700 		if (IS_ERR_OR_NULL(core->parent))
1701 			core->parent = clk_core_lookup(core->parent_names[0]);
1702 		ret = core->parent;
1703 		goto out;
1704 	}
1705 
1706 	if (!core->ops->get_parent) {
1707 		WARN(!core->ops->get_parent,
1708 			"%s: multi-parent clocks must implement .get_parent\n",
1709 			__func__);
1710 		goto out;
1711 	}
1712 
1713 	/*
1714 	 * Do our best to cache parent clocks in core->parents.  This prevents
1715 	 * unnecessary and expensive lookups.  We don't set core->parent here;
1716 	 * that is done by the calling function.
1717 	 */
1718 
1719 	index = core->ops->get_parent(core->hw);
1720 
1721 	if (!core->parents)
1722 		core->parents =
1723 			kcalloc(core->num_parents, sizeof(struct clk *),
1724 					GFP_KERNEL);
1725 
1726 	ret = clk_core_get_parent_by_index(core, index);
1727 
1728 out:
1729 	return ret;
1730 }
1731 
1732 static void clk_core_reparent(struct clk_core *core,
1733 				  struct clk_core *new_parent)
1734 {
1735 	clk_reparent(core, new_parent);
1736 	__clk_recalc_accuracies(core);
1737 	__clk_recalc_rates(core, POST_RATE_CHANGE);
1738 }
1739 
1740 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1741 {
1742 	if (!hw)
1743 		return;
1744 
1745 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1746 }
1747 
1748 /**
1749  * clk_has_parent - check if a clock is a possible parent for another
1750  * @clk: clock source
1751  * @parent: parent clock source
1752  *
1753  * This function can be used in drivers that need to check that a clock can be
1754  * the parent of another without actually changing the parent.
1755  *
1756  * Returns true if @parent is a possible parent for @clk, false otherwise.
1757  */
1758 bool clk_has_parent(struct clk *clk, struct clk *parent)
1759 {
1760 	struct clk_core *core, *parent_core;
1761 	unsigned int i;
1762 
1763 	/* NULL clocks should be nops, so return success if either is NULL. */
1764 	if (!clk || !parent)
1765 		return true;
1766 
1767 	core = clk->core;
1768 	parent_core = parent->core;
1769 
1770 	/* Optimize for the case where the parent is already the parent. */
1771 	if (core->parent == parent_core)
1772 		return true;
1773 
1774 	for (i = 0; i < core->num_parents; i++)
1775 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1776 			return true;
1777 
1778 	return false;
1779 }
1780 EXPORT_SYMBOL_GPL(clk_has_parent);
1781 
1782 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1783 {
1784 	int ret = 0;
1785 	int p_index = 0;
1786 	unsigned long p_rate = 0;
1787 
1788 	if (!core)
1789 		return 0;
1790 
1791 	/* prevent racing with updates to the clock topology */
1792 	clk_prepare_lock();
1793 
1794 	if (core->parent == parent)
1795 		goto out;
1796 
1797 	/* verify ops for for multi-parent clks */
1798 	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1799 		ret = -ENOSYS;
1800 		goto out;
1801 	}
1802 
1803 	/* check that we are allowed to re-parent if the clock is in use */
1804 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1805 		ret = -EBUSY;
1806 		goto out;
1807 	}
1808 
1809 	/* try finding the new parent index */
1810 	if (parent) {
1811 		p_index = clk_fetch_parent_index(core, parent);
1812 		p_rate = parent->rate;
1813 		if (p_index < 0) {
1814 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1815 					__func__, parent->name, core->name);
1816 			ret = p_index;
1817 			goto out;
1818 		}
1819 	}
1820 
1821 	/* propagate PRE_RATE_CHANGE notifications */
1822 	ret = __clk_speculate_rates(core, p_rate);
1823 
1824 	/* abort if a driver objects */
1825 	if (ret & NOTIFY_STOP_MASK)
1826 		goto out;
1827 
1828 	/* do the re-parent */
1829 	ret = __clk_set_parent(core, parent, p_index);
1830 
1831 	/* propagate rate an accuracy recalculation accordingly */
1832 	if (ret) {
1833 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
1834 	} else {
1835 		__clk_recalc_rates(core, POST_RATE_CHANGE);
1836 		__clk_recalc_accuracies(core);
1837 	}
1838 
1839 out:
1840 	clk_prepare_unlock();
1841 
1842 	return ret;
1843 }
1844 
1845 /**
1846  * clk_set_parent - switch the parent of a mux clk
1847  * @clk: the mux clk whose input we are switching
1848  * @parent: the new input to clk
1849  *
1850  * Re-parent clk to use parent as its new input source.  If clk is in
1851  * prepared state, the clk will get enabled for the duration of this call. If
1852  * that's not acceptable for a specific clk (Eg: the consumer can't handle
1853  * that, the reparenting is glitchy in hardware, etc), use the
1854  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1855  *
1856  * After successfully changing clk's parent clk_set_parent will update the
1857  * clk topology, sysfs topology and propagate rate recalculation via
1858  * __clk_recalc_rates.
1859  *
1860  * Returns 0 on success, -EERROR otherwise.
1861  */
1862 int clk_set_parent(struct clk *clk, struct clk *parent)
1863 {
1864 	if (!clk)
1865 		return 0;
1866 
1867 	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1868 }
1869 EXPORT_SYMBOL_GPL(clk_set_parent);
1870 
1871 /**
1872  * clk_set_phase - adjust the phase shift of a clock signal
1873  * @clk: clock signal source
1874  * @degrees: number of degrees the signal is shifted
1875  *
1876  * Shifts the phase of a clock signal by the specified
1877  * degrees. Returns 0 on success, -EERROR otherwise.
1878  *
1879  * This function makes no distinction about the input or reference
1880  * signal that we adjust the clock signal phase against. For example
1881  * phase locked-loop clock signal generators we may shift phase with
1882  * respect to feedback clock signal input, but for other cases the
1883  * clock phase may be shifted with respect to some other, unspecified
1884  * signal.
1885  *
1886  * Additionally the concept of phase shift does not propagate through
1887  * the clock tree hierarchy, which sets it apart from clock rates and
1888  * clock accuracy. A parent clock phase attribute does not have an
1889  * impact on the phase attribute of a child clock.
1890  */
1891 int clk_set_phase(struct clk *clk, int degrees)
1892 {
1893 	int ret = -EINVAL;
1894 
1895 	if (!clk)
1896 		return 0;
1897 
1898 	/* sanity check degrees */
1899 	degrees %= 360;
1900 	if (degrees < 0)
1901 		degrees += 360;
1902 
1903 	clk_prepare_lock();
1904 
1905 	trace_clk_set_phase(clk->core, degrees);
1906 
1907 	if (clk->core->ops->set_phase)
1908 		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1909 
1910 	trace_clk_set_phase_complete(clk->core, degrees);
1911 
1912 	if (!ret)
1913 		clk->core->phase = degrees;
1914 
1915 	clk_prepare_unlock();
1916 
1917 	return ret;
1918 }
1919 EXPORT_SYMBOL_GPL(clk_set_phase);
1920 
1921 static int clk_core_get_phase(struct clk_core *core)
1922 {
1923 	int ret;
1924 
1925 	clk_prepare_lock();
1926 	ret = core->phase;
1927 	clk_prepare_unlock();
1928 
1929 	return ret;
1930 }
1931 
1932 /**
1933  * clk_get_phase - return the phase shift of a clock signal
1934  * @clk: clock signal source
1935  *
1936  * Returns the phase shift of a clock node in degrees, otherwise returns
1937  * -EERROR.
1938  */
1939 int clk_get_phase(struct clk *clk)
1940 {
1941 	if (!clk)
1942 		return 0;
1943 
1944 	return clk_core_get_phase(clk->core);
1945 }
1946 EXPORT_SYMBOL_GPL(clk_get_phase);
1947 
1948 /**
1949  * clk_is_match - check if two clk's point to the same hardware clock
1950  * @p: clk compared against q
1951  * @q: clk compared against p
1952  *
1953  * Returns true if the two struct clk pointers both point to the same hardware
1954  * clock node. Put differently, returns true if struct clk *p and struct clk *q
1955  * share the same struct clk_core object.
1956  *
1957  * Returns false otherwise. Note that two NULL clks are treated as matching.
1958  */
1959 bool clk_is_match(const struct clk *p, const struct clk *q)
1960 {
1961 	/* trivial case: identical struct clk's or both NULL */
1962 	if (p == q)
1963 		return true;
1964 
1965 	/* true if clk->core pointers match. Avoid dereferencing garbage */
1966 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1967 		if (p->core == q->core)
1968 			return true;
1969 
1970 	return false;
1971 }
1972 EXPORT_SYMBOL_GPL(clk_is_match);
1973 
1974 /***        debugfs support        ***/
1975 
1976 #ifdef CONFIG_DEBUG_FS
1977 #include <linux/debugfs.h>
1978 
1979 static struct dentry *rootdir;
1980 static int inited = 0;
1981 static DEFINE_MUTEX(clk_debug_lock);
1982 static HLIST_HEAD(clk_debug_list);
1983 
1984 static struct hlist_head *all_lists[] = {
1985 	&clk_root_list,
1986 	&clk_orphan_list,
1987 	NULL,
1988 };
1989 
1990 static struct hlist_head *orphan_list[] = {
1991 	&clk_orphan_list,
1992 	NULL,
1993 };
1994 
1995 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
1996 				 int level)
1997 {
1998 	if (!c)
1999 		return;
2000 
2001 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
2002 		   level * 3 + 1, "",
2003 		   30 - level * 3, c->name,
2004 		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
2005 		   clk_core_get_accuracy(c), clk_core_get_phase(c));
2006 }
2007 
2008 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2009 				     int level)
2010 {
2011 	struct clk_core *child;
2012 
2013 	if (!c)
2014 		return;
2015 
2016 	clk_summary_show_one(s, c, level);
2017 
2018 	hlist_for_each_entry(child, &c->children, child_node)
2019 		clk_summary_show_subtree(s, child, level + 1);
2020 }
2021 
2022 static int clk_summary_show(struct seq_file *s, void *data)
2023 {
2024 	struct clk_core *c;
2025 	struct hlist_head **lists = (struct hlist_head **)s->private;
2026 
2027 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
2028 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
2029 
2030 	clk_prepare_lock();
2031 
2032 	for (; *lists; lists++)
2033 		hlist_for_each_entry(c, *lists, child_node)
2034 			clk_summary_show_subtree(s, c, 0);
2035 
2036 	clk_prepare_unlock();
2037 
2038 	return 0;
2039 }
2040 
2041 
2042 static int clk_summary_open(struct inode *inode, struct file *file)
2043 {
2044 	return single_open(file, clk_summary_show, inode->i_private);
2045 }
2046 
2047 static const struct file_operations clk_summary_fops = {
2048 	.open		= clk_summary_open,
2049 	.read		= seq_read,
2050 	.llseek		= seq_lseek,
2051 	.release	= single_release,
2052 };
2053 
2054 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2055 {
2056 	if (!c)
2057 		return;
2058 
2059 	/* This should be JSON format, i.e. elements separated with a comma */
2060 	seq_printf(s, "\"%s\": { ", c->name);
2061 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2062 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2063 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2064 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2065 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2066 }
2067 
2068 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2069 {
2070 	struct clk_core *child;
2071 
2072 	if (!c)
2073 		return;
2074 
2075 	clk_dump_one(s, c, level);
2076 
2077 	hlist_for_each_entry(child, &c->children, child_node) {
2078 		seq_printf(s, ",");
2079 		clk_dump_subtree(s, child, level + 1);
2080 	}
2081 
2082 	seq_printf(s, "}");
2083 }
2084 
2085 static int clk_dump(struct seq_file *s, void *data)
2086 {
2087 	struct clk_core *c;
2088 	bool first_node = true;
2089 	struct hlist_head **lists = (struct hlist_head **)s->private;
2090 
2091 	seq_printf(s, "{");
2092 
2093 	clk_prepare_lock();
2094 
2095 	for (; *lists; lists++) {
2096 		hlist_for_each_entry(c, *lists, child_node) {
2097 			if (!first_node)
2098 				seq_puts(s, ",");
2099 			first_node = false;
2100 			clk_dump_subtree(s, c, 0);
2101 		}
2102 	}
2103 
2104 	clk_prepare_unlock();
2105 
2106 	seq_puts(s, "}\n");
2107 	return 0;
2108 }
2109 
2110 
2111 static int clk_dump_open(struct inode *inode, struct file *file)
2112 {
2113 	return single_open(file, clk_dump, inode->i_private);
2114 }
2115 
2116 static const struct file_operations clk_dump_fops = {
2117 	.open		= clk_dump_open,
2118 	.read		= seq_read,
2119 	.llseek		= seq_lseek,
2120 	.release	= single_release,
2121 };
2122 
2123 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2124 {
2125 	struct dentry *d;
2126 	int ret = -ENOMEM;
2127 
2128 	if (!core || !pdentry) {
2129 		ret = -EINVAL;
2130 		goto out;
2131 	}
2132 
2133 	d = debugfs_create_dir(core->name, pdentry);
2134 	if (!d)
2135 		goto out;
2136 
2137 	core->dentry = d;
2138 
2139 	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2140 			(u32 *)&core->rate);
2141 	if (!d)
2142 		goto err_out;
2143 
2144 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2145 			(u32 *)&core->accuracy);
2146 	if (!d)
2147 		goto err_out;
2148 
2149 	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2150 			(u32 *)&core->phase);
2151 	if (!d)
2152 		goto err_out;
2153 
2154 	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2155 			(u32 *)&core->flags);
2156 	if (!d)
2157 		goto err_out;
2158 
2159 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2160 			(u32 *)&core->prepare_count);
2161 	if (!d)
2162 		goto err_out;
2163 
2164 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2165 			(u32 *)&core->enable_count);
2166 	if (!d)
2167 		goto err_out;
2168 
2169 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2170 			(u32 *)&core->notifier_count);
2171 	if (!d)
2172 		goto err_out;
2173 
2174 	if (core->ops->debug_init) {
2175 		ret = core->ops->debug_init(core->hw, core->dentry);
2176 		if (ret)
2177 			goto err_out;
2178 	}
2179 
2180 	ret = 0;
2181 	goto out;
2182 
2183 err_out:
2184 	debugfs_remove_recursive(core->dentry);
2185 	core->dentry = NULL;
2186 out:
2187 	return ret;
2188 }
2189 
2190 /**
2191  * clk_debug_register - add a clk node to the debugfs clk directory
2192  * @core: the clk being added to the debugfs clk directory
2193  *
2194  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2195  * initialized.  Otherwise it bails out early since the debugfs clk directory
2196  * will be created lazily by clk_debug_init as part of a late_initcall.
2197  */
2198 static int clk_debug_register(struct clk_core *core)
2199 {
2200 	int ret = 0;
2201 
2202 	mutex_lock(&clk_debug_lock);
2203 	hlist_add_head(&core->debug_node, &clk_debug_list);
2204 
2205 	if (!inited)
2206 		goto unlock;
2207 
2208 	ret = clk_debug_create_one(core, rootdir);
2209 unlock:
2210 	mutex_unlock(&clk_debug_lock);
2211 
2212 	return ret;
2213 }
2214 
2215  /**
2216  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2217  * @core: the clk being removed from the debugfs clk directory
2218  *
2219  * Dynamically removes a clk and all its child nodes from the
2220  * debugfs clk directory if clk->dentry points to debugfs created by
2221  * clk_debug_register in __clk_init.
2222  */
2223 static void clk_debug_unregister(struct clk_core *core)
2224 {
2225 	mutex_lock(&clk_debug_lock);
2226 	hlist_del_init(&core->debug_node);
2227 	debugfs_remove_recursive(core->dentry);
2228 	core->dentry = NULL;
2229 	mutex_unlock(&clk_debug_lock);
2230 }
2231 
2232 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2233 				void *data, const struct file_operations *fops)
2234 {
2235 	struct dentry *d = NULL;
2236 
2237 	if (hw->core->dentry)
2238 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2239 					fops);
2240 
2241 	return d;
2242 }
2243 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2244 
2245 /**
2246  * clk_debug_init - lazily populate the debugfs clk directory
2247  *
2248  * clks are often initialized very early during boot before memory can be
2249  * dynamically allocated and well before debugfs is setup. This function
2250  * populates the debugfs clk directory once at boot-time when we know that
2251  * debugfs is setup. It should only be called once at boot-time, all other clks
2252  * added dynamically will be done so with clk_debug_register.
2253  */
2254 static int __init clk_debug_init(void)
2255 {
2256 	struct clk_core *core;
2257 	struct dentry *d;
2258 
2259 	rootdir = debugfs_create_dir("clk", NULL);
2260 
2261 	if (!rootdir)
2262 		return -ENOMEM;
2263 
2264 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2265 				&clk_summary_fops);
2266 	if (!d)
2267 		return -ENOMEM;
2268 
2269 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2270 				&clk_dump_fops);
2271 	if (!d)
2272 		return -ENOMEM;
2273 
2274 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2275 				&orphan_list, &clk_summary_fops);
2276 	if (!d)
2277 		return -ENOMEM;
2278 
2279 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2280 				&orphan_list, &clk_dump_fops);
2281 	if (!d)
2282 		return -ENOMEM;
2283 
2284 	mutex_lock(&clk_debug_lock);
2285 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2286 		clk_debug_create_one(core, rootdir);
2287 
2288 	inited = 1;
2289 	mutex_unlock(&clk_debug_lock);
2290 
2291 	return 0;
2292 }
2293 late_initcall(clk_debug_init);
2294 #else
2295 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2296 static inline void clk_debug_reparent(struct clk_core *core,
2297 				      struct clk_core *new_parent)
2298 {
2299 }
2300 static inline void clk_debug_unregister(struct clk_core *core)
2301 {
2302 }
2303 #endif
2304 
2305 /**
2306  * __clk_init - initialize the data structures in a struct clk
2307  * @dev:	device initializing this clk, placeholder for now
2308  * @clk:	clk being initialized
2309  *
2310  * Initializes the lists in struct clk_core, queries the hardware for the
2311  * parent and rate and sets them both.
2312  */
2313 static int __clk_init(struct device *dev, struct clk *clk_user)
2314 {
2315 	int i, ret = 0;
2316 	struct clk_core *orphan;
2317 	struct hlist_node *tmp2;
2318 	struct clk_core *core;
2319 	unsigned long rate;
2320 
2321 	if (!clk_user)
2322 		return -EINVAL;
2323 
2324 	core = clk_user->core;
2325 
2326 	clk_prepare_lock();
2327 
2328 	/* check to see if a clock with this name is already registered */
2329 	if (clk_core_lookup(core->name)) {
2330 		pr_debug("%s: clk %s already initialized\n",
2331 				__func__, core->name);
2332 		ret = -EEXIST;
2333 		goto out;
2334 	}
2335 
2336 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2337 	if (core->ops->set_rate &&
2338 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2339 	      core->ops->recalc_rate)) {
2340 		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2341 				__func__, core->name);
2342 		ret = -EINVAL;
2343 		goto out;
2344 	}
2345 
2346 	if (core->ops->set_parent && !core->ops->get_parent) {
2347 		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2348 				__func__, core->name);
2349 		ret = -EINVAL;
2350 		goto out;
2351 	}
2352 
2353 	if (core->ops->set_rate_and_parent &&
2354 			!(core->ops->set_parent && core->ops->set_rate)) {
2355 		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2356 				__func__, core->name);
2357 		ret = -EINVAL;
2358 		goto out;
2359 	}
2360 
2361 	/* throw a WARN if any entries in parent_names are NULL */
2362 	for (i = 0; i < core->num_parents; i++)
2363 		WARN(!core->parent_names[i],
2364 				"%s: invalid NULL in %s's .parent_names\n",
2365 				__func__, core->name);
2366 
2367 	/*
2368 	 * Allocate an array of struct clk *'s to avoid unnecessary string
2369 	 * look-ups of clk's possible parents.  This can fail for clocks passed
2370 	 * in to clk_init during early boot; thus any access to core->parents[]
2371 	 * must always check for a NULL pointer and try to populate it if
2372 	 * necessary.
2373 	 *
2374 	 * If core->parents is not NULL we skip this entire block.  This allows
2375 	 * for clock drivers to statically initialize core->parents.
2376 	 */
2377 	if (core->num_parents > 1 && !core->parents) {
2378 		core->parents = kcalloc(core->num_parents, sizeof(struct clk *),
2379 					GFP_KERNEL);
2380 		/*
2381 		 * clk_core_lookup returns NULL for parents that have not been
2382 		 * clk_init'd; thus any access to clk->parents[] must check
2383 		 * for a NULL pointer.  We can always perform lazy lookups for
2384 		 * missing parents later on.
2385 		 */
2386 		if (core->parents)
2387 			for (i = 0; i < core->num_parents; i++)
2388 				core->parents[i] =
2389 					clk_core_lookup(core->parent_names[i]);
2390 	}
2391 
2392 	core->parent = __clk_init_parent(core);
2393 
2394 	/*
2395 	 * Populate core->parent if parent has already been __clk_init'd.  If
2396 	 * parent has not yet been __clk_init'd then place clk in the orphan
2397 	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
2398 	 * clk list.
2399 	 *
2400 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2401 	 * clocks and re-parent any that are children of the clock currently
2402 	 * being clk_init'd.
2403 	 */
2404 	if (core->parent) {
2405 		hlist_add_head(&core->child_node,
2406 				&core->parent->children);
2407 		core->orphan = core->parent->orphan;
2408 	} else if (core->flags & CLK_IS_ROOT) {
2409 		hlist_add_head(&core->child_node, &clk_root_list);
2410 		core->orphan = false;
2411 	} else {
2412 		hlist_add_head(&core->child_node, &clk_orphan_list);
2413 		core->orphan = true;
2414 	}
2415 
2416 	/*
2417 	 * Set clk's accuracy.  The preferred method is to use
2418 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2419 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2420 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2421 	 * clock).
2422 	 */
2423 	if (core->ops->recalc_accuracy)
2424 		core->accuracy = core->ops->recalc_accuracy(core->hw,
2425 					__clk_get_accuracy(core->parent));
2426 	else if (core->parent)
2427 		core->accuracy = core->parent->accuracy;
2428 	else
2429 		core->accuracy = 0;
2430 
2431 	/*
2432 	 * Set clk's phase.
2433 	 * Since a phase is by definition relative to its parent, just
2434 	 * query the current clock phase, or just assume it's in phase.
2435 	 */
2436 	if (core->ops->get_phase)
2437 		core->phase = core->ops->get_phase(core->hw);
2438 	else
2439 		core->phase = 0;
2440 
2441 	/*
2442 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2443 	 * simple clocks and lazy developers the default fallback is to use the
2444 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2445 	 * then rate is set to zero.
2446 	 */
2447 	if (core->ops->recalc_rate)
2448 		rate = core->ops->recalc_rate(core->hw,
2449 				clk_core_get_rate_nolock(core->parent));
2450 	else if (core->parent)
2451 		rate = core->parent->rate;
2452 	else
2453 		rate = 0;
2454 	core->rate = core->req_rate = rate;
2455 
2456 	/*
2457 	 * walk the list of orphan clocks and reparent any that are children of
2458 	 * this clock
2459 	 */
2460 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2461 		if (orphan->num_parents && orphan->ops->get_parent) {
2462 			i = orphan->ops->get_parent(orphan->hw);
2463 			if (i >= 0 && i < orphan->num_parents &&
2464 			    !strcmp(core->name, orphan->parent_names[i]))
2465 				clk_core_reparent(orphan, core);
2466 			continue;
2467 		}
2468 
2469 		for (i = 0; i < orphan->num_parents; i++)
2470 			if (!strcmp(core->name, orphan->parent_names[i])) {
2471 				clk_core_reparent(orphan, core);
2472 				break;
2473 			}
2474 	 }
2475 
2476 	/*
2477 	 * optional platform-specific magic
2478 	 *
2479 	 * The .init callback is not used by any of the basic clock types, but
2480 	 * exists for weird hardware that must perform initialization magic.
2481 	 * Please consider other ways of solving initialization problems before
2482 	 * using this callback, as its use is discouraged.
2483 	 */
2484 	if (core->ops->init)
2485 		core->ops->init(core->hw);
2486 
2487 	kref_init(&core->ref);
2488 out:
2489 	clk_prepare_unlock();
2490 
2491 	if (!ret)
2492 		clk_debug_register(core);
2493 
2494 	return ret;
2495 }
2496 
2497 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2498 			     const char *con_id)
2499 {
2500 	struct clk *clk;
2501 
2502 	/* This is to allow this function to be chained to others */
2503 	if (IS_ERR_OR_NULL(hw))
2504 		return (struct clk *) hw;
2505 
2506 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2507 	if (!clk)
2508 		return ERR_PTR(-ENOMEM);
2509 
2510 	clk->core = hw->core;
2511 	clk->dev_id = dev_id;
2512 	clk->con_id = con_id;
2513 	clk->max_rate = ULONG_MAX;
2514 
2515 	clk_prepare_lock();
2516 	hlist_add_head(&clk->clks_node, &hw->core->clks);
2517 	clk_prepare_unlock();
2518 
2519 	return clk;
2520 }
2521 
2522 void __clk_free_clk(struct clk *clk)
2523 {
2524 	clk_prepare_lock();
2525 	hlist_del(&clk->clks_node);
2526 	clk_prepare_unlock();
2527 
2528 	kfree(clk);
2529 }
2530 
2531 /**
2532  * clk_register - allocate a new clock, register it and return an opaque cookie
2533  * @dev: device that is registering this clock
2534  * @hw: link to hardware-specific clock data
2535  *
2536  * clk_register is the primary interface for populating the clock tree with new
2537  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2538  * cannot be dereferenced by driver code but may be used in conjunction with the
2539  * rest of the clock API.  In the event of an error clk_register will return an
2540  * error code; drivers must test for an error code after calling clk_register.
2541  */
2542 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2543 {
2544 	int i, ret;
2545 	struct clk_core *core;
2546 
2547 	core = kzalloc(sizeof(*core), GFP_KERNEL);
2548 	if (!core) {
2549 		ret = -ENOMEM;
2550 		goto fail_out;
2551 	}
2552 
2553 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2554 	if (!core->name) {
2555 		ret = -ENOMEM;
2556 		goto fail_name;
2557 	}
2558 	core->ops = hw->init->ops;
2559 	if (dev && dev->driver)
2560 		core->owner = dev->driver->owner;
2561 	core->hw = hw;
2562 	core->flags = hw->init->flags;
2563 	core->num_parents = hw->init->num_parents;
2564 	core->min_rate = 0;
2565 	core->max_rate = ULONG_MAX;
2566 	hw->core = core;
2567 
2568 	/* allocate local copy in case parent_names is __initdata */
2569 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2570 					GFP_KERNEL);
2571 
2572 	if (!core->parent_names) {
2573 		ret = -ENOMEM;
2574 		goto fail_parent_names;
2575 	}
2576 
2577 
2578 	/* copy each string name in case parent_names is __initdata */
2579 	for (i = 0; i < core->num_parents; i++) {
2580 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2581 						GFP_KERNEL);
2582 		if (!core->parent_names[i]) {
2583 			ret = -ENOMEM;
2584 			goto fail_parent_names_copy;
2585 		}
2586 	}
2587 
2588 	INIT_HLIST_HEAD(&core->clks);
2589 
2590 	hw->clk = __clk_create_clk(hw, NULL, NULL);
2591 	if (IS_ERR(hw->clk)) {
2592 		ret = PTR_ERR(hw->clk);
2593 		goto fail_parent_names_copy;
2594 	}
2595 
2596 	ret = __clk_init(dev, hw->clk);
2597 	if (!ret)
2598 		return hw->clk;
2599 
2600 	__clk_free_clk(hw->clk);
2601 	hw->clk = NULL;
2602 
2603 fail_parent_names_copy:
2604 	while (--i >= 0)
2605 		kfree_const(core->parent_names[i]);
2606 	kfree(core->parent_names);
2607 fail_parent_names:
2608 	kfree_const(core->name);
2609 fail_name:
2610 	kfree(core);
2611 fail_out:
2612 	return ERR_PTR(ret);
2613 }
2614 EXPORT_SYMBOL_GPL(clk_register);
2615 
2616 /* Free memory allocated for a clock. */
2617 static void __clk_release(struct kref *ref)
2618 {
2619 	struct clk_core *core = container_of(ref, struct clk_core, ref);
2620 	int i = core->num_parents;
2621 
2622 	lockdep_assert_held(&prepare_lock);
2623 
2624 	kfree(core->parents);
2625 	while (--i >= 0)
2626 		kfree_const(core->parent_names[i]);
2627 
2628 	kfree(core->parent_names);
2629 	kfree_const(core->name);
2630 	kfree(core);
2631 }
2632 
2633 /*
2634  * Empty clk_ops for unregistered clocks. These are used temporarily
2635  * after clk_unregister() was called on a clock and until last clock
2636  * consumer calls clk_put() and the struct clk object is freed.
2637  */
2638 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2639 {
2640 	return -ENXIO;
2641 }
2642 
2643 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2644 {
2645 	WARN_ON_ONCE(1);
2646 }
2647 
2648 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2649 					unsigned long parent_rate)
2650 {
2651 	return -ENXIO;
2652 }
2653 
2654 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2655 {
2656 	return -ENXIO;
2657 }
2658 
2659 static const struct clk_ops clk_nodrv_ops = {
2660 	.enable		= clk_nodrv_prepare_enable,
2661 	.disable	= clk_nodrv_disable_unprepare,
2662 	.prepare	= clk_nodrv_prepare_enable,
2663 	.unprepare	= clk_nodrv_disable_unprepare,
2664 	.set_rate	= clk_nodrv_set_rate,
2665 	.set_parent	= clk_nodrv_set_parent,
2666 };
2667 
2668 /**
2669  * clk_unregister - unregister a currently registered clock
2670  * @clk: clock to unregister
2671  */
2672 void clk_unregister(struct clk *clk)
2673 {
2674 	unsigned long flags;
2675 
2676 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2677 		return;
2678 
2679 	clk_debug_unregister(clk->core);
2680 
2681 	clk_prepare_lock();
2682 
2683 	if (clk->core->ops == &clk_nodrv_ops) {
2684 		pr_err("%s: unregistered clock: %s\n", __func__,
2685 		       clk->core->name);
2686 		return;
2687 	}
2688 	/*
2689 	 * Assign empty clock ops for consumers that might still hold
2690 	 * a reference to this clock.
2691 	 */
2692 	flags = clk_enable_lock();
2693 	clk->core->ops = &clk_nodrv_ops;
2694 	clk_enable_unlock(flags);
2695 
2696 	if (!hlist_empty(&clk->core->children)) {
2697 		struct clk_core *child;
2698 		struct hlist_node *t;
2699 
2700 		/* Reparent all children to the orphan list. */
2701 		hlist_for_each_entry_safe(child, t, &clk->core->children,
2702 					  child_node)
2703 			clk_core_set_parent(child, NULL);
2704 	}
2705 
2706 	hlist_del_init(&clk->core->child_node);
2707 
2708 	if (clk->core->prepare_count)
2709 		pr_warn("%s: unregistering prepared clock: %s\n",
2710 					__func__, clk->core->name);
2711 	kref_put(&clk->core->ref, __clk_release);
2712 
2713 	clk_prepare_unlock();
2714 }
2715 EXPORT_SYMBOL_GPL(clk_unregister);
2716 
2717 static void devm_clk_release(struct device *dev, void *res)
2718 {
2719 	clk_unregister(*(struct clk **)res);
2720 }
2721 
2722 /**
2723  * devm_clk_register - resource managed clk_register()
2724  * @dev: device that is registering this clock
2725  * @hw: link to hardware-specific clock data
2726  *
2727  * Managed clk_register(). Clocks returned from this function are
2728  * automatically clk_unregister()ed on driver detach. See clk_register() for
2729  * more information.
2730  */
2731 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2732 {
2733 	struct clk *clk;
2734 	struct clk **clkp;
2735 
2736 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2737 	if (!clkp)
2738 		return ERR_PTR(-ENOMEM);
2739 
2740 	clk = clk_register(dev, hw);
2741 	if (!IS_ERR(clk)) {
2742 		*clkp = clk;
2743 		devres_add(dev, clkp);
2744 	} else {
2745 		devres_free(clkp);
2746 	}
2747 
2748 	return clk;
2749 }
2750 EXPORT_SYMBOL_GPL(devm_clk_register);
2751 
2752 static int devm_clk_match(struct device *dev, void *res, void *data)
2753 {
2754 	struct clk *c = res;
2755 	if (WARN_ON(!c))
2756 		return 0;
2757 	return c == data;
2758 }
2759 
2760 /**
2761  * devm_clk_unregister - resource managed clk_unregister()
2762  * @clk: clock to unregister
2763  *
2764  * Deallocate a clock allocated with devm_clk_register(). Normally
2765  * this function will not need to be called and the resource management
2766  * code will ensure that the resource is freed.
2767  */
2768 void devm_clk_unregister(struct device *dev, struct clk *clk)
2769 {
2770 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2771 }
2772 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2773 
2774 /*
2775  * clkdev helpers
2776  */
2777 int __clk_get(struct clk *clk)
2778 {
2779 	struct clk_core *core = !clk ? NULL : clk->core;
2780 
2781 	if (core) {
2782 		if (!try_module_get(core->owner))
2783 			return 0;
2784 
2785 		kref_get(&core->ref);
2786 	}
2787 	return 1;
2788 }
2789 
2790 void __clk_put(struct clk *clk)
2791 {
2792 	struct module *owner;
2793 
2794 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2795 		return;
2796 
2797 	clk_prepare_lock();
2798 
2799 	hlist_del(&clk->clks_node);
2800 	if (clk->min_rate > clk->core->req_rate ||
2801 	    clk->max_rate < clk->core->req_rate)
2802 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2803 
2804 	owner = clk->core->owner;
2805 	kref_put(&clk->core->ref, __clk_release);
2806 
2807 	clk_prepare_unlock();
2808 
2809 	module_put(owner);
2810 
2811 	kfree(clk);
2812 }
2813 
2814 /***        clk rate change notifiers        ***/
2815 
2816 /**
2817  * clk_notifier_register - add a clk rate change notifier
2818  * @clk: struct clk * to watch
2819  * @nb: struct notifier_block * with callback info
2820  *
2821  * Request notification when clk's rate changes.  This uses an SRCU
2822  * notifier because we want it to block and notifier unregistrations are
2823  * uncommon.  The callbacks associated with the notifier must not
2824  * re-enter into the clk framework by calling any top-level clk APIs;
2825  * this will cause a nested prepare_lock mutex.
2826  *
2827  * In all notification cases (pre, post and abort rate change) the original
2828  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
2829  * and the new frequency is passed via struct clk_notifier_data.new_rate.
2830  *
2831  * clk_notifier_register() must be called from non-atomic context.
2832  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2833  * allocation failure; otherwise, passes along the return value of
2834  * srcu_notifier_chain_register().
2835  */
2836 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2837 {
2838 	struct clk_notifier *cn;
2839 	int ret = -ENOMEM;
2840 
2841 	if (!clk || !nb)
2842 		return -EINVAL;
2843 
2844 	clk_prepare_lock();
2845 
2846 	/* search the list of notifiers for this clk */
2847 	list_for_each_entry(cn, &clk_notifier_list, node)
2848 		if (cn->clk == clk)
2849 			break;
2850 
2851 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2852 	if (cn->clk != clk) {
2853 		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2854 		if (!cn)
2855 			goto out;
2856 
2857 		cn->clk = clk;
2858 		srcu_init_notifier_head(&cn->notifier_head);
2859 
2860 		list_add(&cn->node, &clk_notifier_list);
2861 	}
2862 
2863 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2864 
2865 	clk->core->notifier_count++;
2866 
2867 out:
2868 	clk_prepare_unlock();
2869 
2870 	return ret;
2871 }
2872 EXPORT_SYMBOL_GPL(clk_notifier_register);
2873 
2874 /**
2875  * clk_notifier_unregister - remove a clk rate change notifier
2876  * @clk: struct clk *
2877  * @nb: struct notifier_block * with callback info
2878  *
2879  * Request no further notification for changes to 'clk' and frees memory
2880  * allocated in clk_notifier_register.
2881  *
2882  * Returns -EINVAL if called with null arguments; otherwise, passes
2883  * along the return value of srcu_notifier_chain_unregister().
2884  */
2885 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2886 {
2887 	struct clk_notifier *cn = NULL;
2888 	int ret = -EINVAL;
2889 
2890 	if (!clk || !nb)
2891 		return -EINVAL;
2892 
2893 	clk_prepare_lock();
2894 
2895 	list_for_each_entry(cn, &clk_notifier_list, node)
2896 		if (cn->clk == clk)
2897 			break;
2898 
2899 	if (cn->clk == clk) {
2900 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2901 
2902 		clk->core->notifier_count--;
2903 
2904 		/* XXX the notifier code should handle this better */
2905 		if (!cn->notifier_head.head) {
2906 			srcu_cleanup_notifier_head(&cn->notifier_head);
2907 			list_del(&cn->node);
2908 			kfree(cn);
2909 		}
2910 
2911 	} else {
2912 		ret = -ENOENT;
2913 	}
2914 
2915 	clk_prepare_unlock();
2916 
2917 	return ret;
2918 }
2919 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2920 
2921 #ifdef CONFIG_OF
2922 /**
2923  * struct of_clk_provider - Clock provider registration structure
2924  * @link: Entry in global list of clock providers
2925  * @node: Pointer to device tree node of clock provider
2926  * @get: Get clock callback.  Returns NULL or a struct clk for the
2927  *       given clock specifier
2928  * @data: context pointer to be passed into @get callback
2929  */
2930 struct of_clk_provider {
2931 	struct list_head link;
2932 
2933 	struct device_node *node;
2934 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2935 	void *data;
2936 };
2937 
2938 static const struct of_device_id __clk_of_table_sentinel
2939 	__used __section(__clk_of_table_end);
2940 
2941 static LIST_HEAD(of_clk_providers);
2942 static DEFINE_MUTEX(of_clk_mutex);
2943 
2944 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2945 				     void *data)
2946 {
2947 	return data;
2948 }
2949 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2950 
2951 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2952 {
2953 	struct clk_onecell_data *clk_data = data;
2954 	unsigned int idx = clkspec->args[0];
2955 
2956 	if (idx >= clk_data->clk_num) {
2957 		pr_err("%s: invalid clock index %u\n", __func__, idx);
2958 		return ERR_PTR(-EINVAL);
2959 	}
2960 
2961 	return clk_data->clks[idx];
2962 }
2963 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2964 
2965 /**
2966  * of_clk_add_provider() - Register a clock provider for a node
2967  * @np: Device node pointer associated with clock provider
2968  * @clk_src_get: callback for decoding clock
2969  * @data: context pointer for @clk_src_get callback.
2970  */
2971 int of_clk_add_provider(struct device_node *np,
2972 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2973 						   void *data),
2974 			void *data)
2975 {
2976 	struct of_clk_provider *cp;
2977 	int ret;
2978 
2979 	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2980 	if (!cp)
2981 		return -ENOMEM;
2982 
2983 	cp->node = of_node_get(np);
2984 	cp->data = data;
2985 	cp->get = clk_src_get;
2986 
2987 	mutex_lock(&of_clk_mutex);
2988 	list_add(&cp->link, &of_clk_providers);
2989 	mutex_unlock(&of_clk_mutex);
2990 	pr_debug("Added clock from %s\n", np->full_name);
2991 
2992 	ret = of_clk_set_defaults(np, true);
2993 	if (ret < 0)
2994 		of_clk_del_provider(np);
2995 
2996 	return ret;
2997 }
2998 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2999 
3000 /**
3001  * of_clk_del_provider() - Remove a previously registered clock provider
3002  * @np: Device node pointer associated with clock provider
3003  */
3004 void of_clk_del_provider(struct device_node *np)
3005 {
3006 	struct of_clk_provider *cp;
3007 
3008 	mutex_lock(&of_clk_mutex);
3009 	list_for_each_entry(cp, &of_clk_providers, link) {
3010 		if (cp->node == np) {
3011 			list_del(&cp->link);
3012 			of_node_put(cp->node);
3013 			kfree(cp);
3014 			break;
3015 		}
3016 	}
3017 	mutex_unlock(&of_clk_mutex);
3018 }
3019 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3020 
3021 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3022 				       const char *dev_id, const char *con_id)
3023 {
3024 	struct of_clk_provider *provider;
3025 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3026 
3027 	if (!clkspec)
3028 		return ERR_PTR(-EINVAL);
3029 
3030 	/* Check if we have such a provider in our array */
3031 	mutex_lock(&of_clk_mutex);
3032 	list_for_each_entry(provider, &of_clk_providers, link) {
3033 		if (provider->node == clkspec->np)
3034 			clk = provider->get(clkspec, provider->data);
3035 		if (!IS_ERR(clk)) {
3036 			clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
3037 					       con_id);
3038 
3039 			if (!IS_ERR(clk) && !__clk_get(clk)) {
3040 				__clk_free_clk(clk);
3041 				clk = ERR_PTR(-ENOENT);
3042 			}
3043 
3044 			break;
3045 		}
3046 	}
3047 	mutex_unlock(&of_clk_mutex);
3048 
3049 	return clk;
3050 }
3051 
3052 /**
3053  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3054  * @clkspec: pointer to a clock specifier data structure
3055  *
3056  * This function looks up a struct clk from the registered list of clock
3057  * providers, an input is a clock specifier data structure as returned
3058  * from the of_parse_phandle_with_args() function call.
3059  */
3060 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3061 {
3062 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3063 }
3064 
3065 int of_clk_get_parent_count(struct device_node *np)
3066 {
3067 	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
3068 }
3069 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3070 
3071 const char *of_clk_get_parent_name(struct device_node *np, int index)
3072 {
3073 	struct of_phandle_args clkspec;
3074 	struct property *prop;
3075 	const char *clk_name;
3076 	const __be32 *vp;
3077 	u32 pv;
3078 	int rc;
3079 	int count;
3080 	struct clk *clk;
3081 
3082 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3083 					&clkspec);
3084 	if (rc)
3085 		return NULL;
3086 
3087 	index = clkspec.args_count ? clkspec.args[0] : 0;
3088 	count = 0;
3089 
3090 	/* if there is an indices property, use it to transfer the index
3091 	 * specified into an array offset for the clock-output-names property.
3092 	 */
3093 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3094 		if (index == pv) {
3095 			index = count;
3096 			break;
3097 		}
3098 		count++;
3099 	}
3100 	/* We went off the end of 'clock-indices' without finding it */
3101 	if (prop && !vp)
3102 		return NULL;
3103 
3104 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3105 					  index,
3106 					  &clk_name) < 0) {
3107 		/*
3108 		 * Best effort to get the name if the clock has been
3109 		 * registered with the framework. If the clock isn't
3110 		 * registered, we return the node name as the name of
3111 		 * the clock as long as #clock-cells = 0.
3112 		 */
3113 		clk = of_clk_get_from_provider(&clkspec);
3114 		if (IS_ERR(clk)) {
3115 			if (clkspec.args_count == 0)
3116 				clk_name = clkspec.np->name;
3117 			else
3118 				clk_name = NULL;
3119 		} else {
3120 			clk_name = __clk_get_name(clk);
3121 			clk_put(clk);
3122 		}
3123 	}
3124 
3125 
3126 	of_node_put(clkspec.np);
3127 	return clk_name;
3128 }
3129 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3130 
3131 /**
3132  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3133  * number of parents
3134  * @np: Device node pointer associated with clock provider
3135  * @parents: pointer to char array that hold the parents' names
3136  * @size: size of the @parents array
3137  *
3138  * Return: number of parents for the clock node.
3139  */
3140 int of_clk_parent_fill(struct device_node *np, const char **parents,
3141 		       unsigned int size)
3142 {
3143 	unsigned int i = 0;
3144 
3145 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3146 		i++;
3147 
3148 	return i;
3149 }
3150 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3151 
3152 struct clock_provider {
3153 	of_clk_init_cb_t clk_init_cb;
3154 	struct device_node *np;
3155 	struct list_head node;
3156 };
3157 
3158 /*
3159  * This function looks for a parent clock. If there is one, then it
3160  * checks that the provider for this parent clock was initialized, in
3161  * this case the parent clock will be ready.
3162  */
3163 static int parent_ready(struct device_node *np)
3164 {
3165 	int i = 0;
3166 
3167 	while (true) {
3168 		struct clk *clk = of_clk_get(np, i);
3169 
3170 		/* this parent is ready we can check the next one */
3171 		if (!IS_ERR(clk)) {
3172 			clk_put(clk);
3173 			i++;
3174 			continue;
3175 		}
3176 
3177 		/* at least one parent is not ready, we exit now */
3178 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3179 			return 0;
3180 
3181 		/*
3182 		 * Here we make assumption that the device tree is
3183 		 * written correctly. So an error means that there is
3184 		 * no more parent. As we didn't exit yet, then the
3185 		 * previous parent are ready. If there is no clock
3186 		 * parent, no need to wait for them, then we can
3187 		 * consider their absence as being ready
3188 		 */
3189 		return 1;
3190 	}
3191 }
3192 
3193 /**
3194  * of_clk_init() - Scan and init clock providers from the DT
3195  * @matches: array of compatible values and init functions for providers.
3196  *
3197  * This function scans the device tree for matching clock providers
3198  * and calls their initialization functions. It also does it by trying
3199  * to follow the dependencies.
3200  */
3201 void __init of_clk_init(const struct of_device_id *matches)
3202 {
3203 	const struct of_device_id *match;
3204 	struct device_node *np;
3205 	struct clock_provider *clk_provider, *next;
3206 	bool is_init_done;
3207 	bool force = false;
3208 	LIST_HEAD(clk_provider_list);
3209 
3210 	if (!matches)
3211 		matches = &__clk_of_table;
3212 
3213 	/* First prepare the list of the clocks providers */
3214 	for_each_matching_node_and_match(np, matches, &match) {
3215 		struct clock_provider *parent;
3216 
3217 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3218 		if (!parent) {
3219 			list_for_each_entry_safe(clk_provider, next,
3220 						 &clk_provider_list, node) {
3221 				list_del(&clk_provider->node);
3222 				of_node_put(clk_provider->np);
3223 				kfree(clk_provider);
3224 			}
3225 			of_node_put(np);
3226 			return;
3227 		}
3228 
3229 		parent->clk_init_cb = match->data;
3230 		parent->np = of_node_get(np);
3231 		list_add_tail(&parent->node, &clk_provider_list);
3232 	}
3233 
3234 	while (!list_empty(&clk_provider_list)) {
3235 		is_init_done = false;
3236 		list_for_each_entry_safe(clk_provider, next,
3237 					&clk_provider_list, node) {
3238 			if (force || parent_ready(clk_provider->np)) {
3239 
3240 				clk_provider->clk_init_cb(clk_provider->np);
3241 				of_clk_set_defaults(clk_provider->np, true);
3242 
3243 				list_del(&clk_provider->node);
3244 				of_node_put(clk_provider->np);
3245 				kfree(clk_provider);
3246 				is_init_done = true;
3247 			}
3248 		}
3249 
3250 		/*
3251 		 * We didn't manage to initialize any of the
3252 		 * remaining providers during the last loop, so now we
3253 		 * initialize all the remaining ones unconditionally
3254 		 * in case the clock parent was not mandatory
3255 		 */
3256 		if (!is_init_done)
3257 			force = true;
3258 	}
3259 }
3260 #endif
3261