xref: /linux/drivers/clk/clk.c (revision 962a70d05edac2e2eb53cd077715930083964b9e)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk-private.h>
13 #include <linux/clk/clk-conf.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/list.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/sched.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 /***           locking             ***/
41 static void clk_prepare_lock(void)
42 {
43 	if (!mutex_trylock(&prepare_lock)) {
44 		if (prepare_owner == current) {
45 			prepare_refcnt++;
46 			return;
47 		}
48 		mutex_lock(&prepare_lock);
49 	}
50 	WARN_ON_ONCE(prepare_owner != NULL);
51 	WARN_ON_ONCE(prepare_refcnt != 0);
52 	prepare_owner = current;
53 	prepare_refcnt = 1;
54 }
55 
56 static void clk_prepare_unlock(void)
57 {
58 	WARN_ON_ONCE(prepare_owner != current);
59 	WARN_ON_ONCE(prepare_refcnt == 0);
60 
61 	if (--prepare_refcnt)
62 		return;
63 	prepare_owner = NULL;
64 	mutex_unlock(&prepare_lock);
65 }
66 
67 static unsigned long clk_enable_lock(void)
68 {
69 	unsigned long flags;
70 
71 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
72 		if (enable_owner == current) {
73 			enable_refcnt++;
74 			return flags;
75 		}
76 		spin_lock_irqsave(&enable_lock, flags);
77 	}
78 	WARN_ON_ONCE(enable_owner != NULL);
79 	WARN_ON_ONCE(enable_refcnt != 0);
80 	enable_owner = current;
81 	enable_refcnt = 1;
82 	return flags;
83 }
84 
85 static void clk_enable_unlock(unsigned long flags)
86 {
87 	WARN_ON_ONCE(enable_owner != current);
88 	WARN_ON_ONCE(enable_refcnt == 0);
89 
90 	if (--enable_refcnt)
91 		return;
92 	enable_owner = NULL;
93 	spin_unlock_irqrestore(&enable_lock, flags);
94 }
95 
96 /***        debugfs support        ***/
97 
98 #ifdef CONFIG_DEBUG_FS
99 #include <linux/debugfs.h>
100 
101 static struct dentry *rootdir;
102 static int inited = 0;
103 static DEFINE_MUTEX(clk_debug_lock);
104 static HLIST_HEAD(clk_debug_list);
105 
106 static struct hlist_head *all_lists[] = {
107 	&clk_root_list,
108 	&clk_orphan_list,
109 	NULL,
110 };
111 
112 static struct hlist_head *orphan_list[] = {
113 	&clk_orphan_list,
114 	NULL,
115 };
116 
117 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
118 {
119 	if (!c)
120 		return;
121 
122 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
123 		   level * 3 + 1, "",
124 		   30 - level * 3, c->name,
125 		   c->enable_count, c->prepare_count, clk_get_rate(c),
126 		   clk_get_accuracy(c), clk_get_phase(c));
127 }
128 
129 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
130 				     int level)
131 {
132 	struct clk *child;
133 
134 	if (!c)
135 		return;
136 
137 	clk_summary_show_one(s, c, level);
138 
139 	hlist_for_each_entry(child, &c->children, child_node)
140 		clk_summary_show_subtree(s, child, level + 1);
141 }
142 
143 static int clk_summary_show(struct seq_file *s, void *data)
144 {
145 	struct clk *c;
146 	struct hlist_head **lists = (struct hlist_head **)s->private;
147 
148 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
149 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
150 
151 	clk_prepare_lock();
152 
153 	for (; *lists; lists++)
154 		hlist_for_each_entry(c, *lists, child_node)
155 			clk_summary_show_subtree(s, c, 0);
156 
157 	clk_prepare_unlock();
158 
159 	return 0;
160 }
161 
162 
163 static int clk_summary_open(struct inode *inode, struct file *file)
164 {
165 	return single_open(file, clk_summary_show, inode->i_private);
166 }
167 
168 static const struct file_operations clk_summary_fops = {
169 	.open		= clk_summary_open,
170 	.read		= seq_read,
171 	.llseek		= seq_lseek,
172 	.release	= single_release,
173 };
174 
175 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
176 {
177 	if (!c)
178 		return;
179 
180 	seq_printf(s, "\"%s\": { ", c->name);
181 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
182 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
183 	seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
184 	seq_printf(s, "\"accuracy\": %lu", clk_get_accuracy(c));
185 	seq_printf(s, "\"phase\": %d", clk_get_phase(c));
186 }
187 
188 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
189 {
190 	struct clk *child;
191 
192 	if (!c)
193 		return;
194 
195 	clk_dump_one(s, c, level);
196 
197 	hlist_for_each_entry(child, &c->children, child_node) {
198 		seq_printf(s, ",");
199 		clk_dump_subtree(s, child, level + 1);
200 	}
201 
202 	seq_printf(s, "}");
203 }
204 
205 static int clk_dump(struct seq_file *s, void *data)
206 {
207 	struct clk *c;
208 	bool first_node = true;
209 	struct hlist_head **lists = (struct hlist_head **)s->private;
210 
211 	seq_printf(s, "{");
212 
213 	clk_prepare_lock();
214 
215 	for (; *lists; lists++) {
216 		hlist_for_each_entry(c, *lists, child_node) {
217 			if (!first_node)
218 				seq_puts(s, ",");
219 			first_node = false;
220 			clk_dump_subtree(s, c, 0);
221 		}
222 	}
223 
224 	clk_prepare_unlock();
225 
226 	seq_printf(s, "}");
227 	return 0;
228 }
229 
230 
231 static int clk_dump_open(struct inode *inode, struct file *file)
232 {
233 	return single_open(file, clk_dump, inode->i_private);
234 }
235 
236 static const struct file_operations clk_dump_fops = {
237 	.open		= clk_dump_open,
238 	.read		= seq_read,
239 	.llseek		= seq_lseek,
240 	.release	= single_release,
241 };
242 
243 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
244 {
245 	struct dentry *d;
246 	int ret = -ENOMEM;
247 
248 	if (!clk || !pdentry) {
249 		ret = -EINVAL;
250 		goto out;
251 	}
252 
253 	d = debugfs_create_dir(clk->name, pdentry);
254 	if (!d)
255 		goto out;
256 
257 	clk->dentry = d;
258 
259 	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
260 			(u32 *)&clk->rate);
261 	if (!d)
262 		goto err_out;
263 
264 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
265 			(u32 *)&clk->accuracy);
266 	if (!d)
267 		goto err_out;
268 
269 	d = debugfs_create_u32("clk_phase", S_IRUGO, clk->dentry,
270 			(u32 *)&clk->phase);
271 	if (!d)
272 		goto err_out;
273 
274 	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
275 			(u32 *)&clk->flags);
276 	if (!d)
277 		goto err_out;
278 
279 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
280 			(u32 *)&clk->prepare_count);
281 	if (!d)
282 		goto err_out;
283 
284 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
285 			(u32 *)&clk->enable_count);
286 	if (!d)
287 		goto err_out;
288 
289 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
290 			(u32 *)&clk->notifier_count);
291 	if (!d)
292 		goto err_out;
293 
294 	if (clk->ops->debug_init) {
295 		ret = clk->ops->debug_init(clk->hw, clk->dentry);
296 		if (ret)
297 			goto err_out;
298 	}
299 
300 	ret = 0;
301 	goto out;
302 
303 err_out:
304 	debugfs_remove_recursive(clk->dentry);
305 	clk->dentry = NULL;
306 out:
307 	return ret;
308 }
309 
310 /**
311  * clk_debug_register - add a clk node to the debugfs clk tree
312  * @clk: the clk being added to the debugfs clk tree
313  *
314  * Dynamically adds a clk to the debugfs clk tree if debugfs has been
315  * initialized.  Otherwise it bails out early since the debugfs clk tree
316  * will be created lazily by clk_debug_init as part of a late_initcall.
317  */
318 static int clk_debug_register(struct clk *clk)
319 {
320 	int ret = 0;
321 
322 	mutex_lock(&clk_debug_lock);
323 	hlist_add_head(&clk->debug_node, &clk_debug_list);
324 
325 	if (!inited)
326 		goto unlock;
327 
328 	ret = clk_debug_create_one(clk, rootdir);
329 unlock:
330 	mutex_unlock(&clk_debug_lock);
331 
332 	return ret;
333 }
334 
335  /**
336  * clk_debug_unregister - remove a clk node from the debugfs clk tree
337  * @clk: the clk being removed from the debugfs clk tree
338  *
339  * Dynamically removes a clk and all it's children clk nodes from the
340  * debugfs clk tree if clk->dentry points to debugfs created by
341  * clk_debug_register in __clk_init.
342  */
343 static void clk_debug_unregister(struct clk *clk)
344 {
345 	mutex_lock(&clk_debug_lock);
346 	if (!clk->dentry)
347 		goto out;
348 
349 	hlist_del_init(&clk->debug_node);
350 	debugfs_remove_recursive(clk->dentry);
351 	clk->dentry = NULL;
352 out:
353 	mutex_unlock(&clk_debug_lock);
354 }
355 
356 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
357 				void *data, const struct file_operations *fops)
358 {
359 	struct dentry *d = NULL;
360 
361 	if (hw->clk->dentry)
362 		d = debugfs_create_file(name, mode, hw->clk->dentry, data, fops);
363 
364 	return d;
365 }
366 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
367 
368 /**
369  * clk_debug_init - lazily create the debugfs clk tree visualization
370  *
371  * clks are often initialized very early during boot before memory can
372  * be dynamically allocated and well before debugfs is setup.
373  * clk_debug_init walks the clk tree hierarchy while holding
374  * prepare_lock and creates the topology as part of a late_initcall,
375  * thus insuring that clks initialized very early will still be
376  * represented in the debugfs clk tree.  This function should only be
377  * called once at boot-time, and all other clks added dynamically will
378  * be done so with clk_debug_register.
379  */
380 static int __init clk_debug_init(void)
381 {
382 	struct clk *clk;
383 	struct dentry *d;
384 
385 	rootdir = debugfs_create_dir("clk", NULL);
386 
387 	if (!rootdir)
388 		return -ENOMEM;
389 
390 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
391 				&clk_summary_fops);
392 	if (!d)
393 		return -ENOMEM;
394 
395 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
396 				&clk_dump_fops);
397 	if (!d)
398 		return -ENOMEM;
399 
400 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
401 				&orphan_list, &clk_summary_fops);
402 	if (!d)
403 		return -ENOMEM;
404 
405 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
406 				&orphan_list, &clk_dump_fops);
407 	if (!d)
408 		return -ENOMEM;
409 
410 	mutex_lock(&clk_debug_lock);
411 	hlist_for_each_entry(clk, &clk_debug_list, debug_node)
412 		clk_debug_create_one(clk, rootdir);
413 
414 	inited = 1;
415 	mutex_unlock(&clk_debug_lock);
416 
417 	return 0;
418 }
419 late_initcall(clk_debug_init);
420 #else
421 static inline int clk_debug_register(struct clk *clk) { return 0; }
422 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
423 {
424 }
425 static inline void clk_debug_unregister(struct clk *clk)
426 {
427 }
428 #endif
429 
430 /* caller must hold prepare_lock */
431 static void clk_unprepare_unused_subtree(struct clk *clk)
432 {
433 	struct clk *child;
434 
435 	if (!clk)
436 		return;
437 
438 	hlist_for_each_entry(child, &clk->children, child_node)
439 		clk_unprepare_unused_subtree(child);
440 
441 	if (clk->prepare_count)
442 		return;
443 
444 	if (clk->flags & CLK_IGNORE_UNUSED)
445 		return;
446 
447 	if (__clk_is_prepared(clk)) {
448 		if (clk->ops->unprepare_unused)
449 			clk->ops->unprepare_unused(clk->hw);
450 		else if (clk->ops->unprepare)
451 			clk->ops->unprepare(clk->hw);
452 	}
453 }
454 
455 /* caller must hold prepare_lock */
456 static void clk_disable_unused_subtree(struct clk *clk)
457 {
458 	struct clk *child;
459 	unsigned long flags;
460 
461 	if (!clk)
462 		goto out;
463 
464 	hlist_for_each_entry(child, &clk->children, child_node)
465 		clk_disable_unused_subtree(child);
466 
467 	flags = clk_enable_lock();
468 
469 	if (clk->enable_count)
470 		goto unlock_out;
471 
472 	if (clk->flags & CLK_IGNORE_UNUSED)
473 		goto unlock_out;
474 
475 	/*
476 	 * some gate clocks have special needs during the disable-unused
477 	 * sequence.  call .disable_unused if available, otherwise fall
478 	 * back to .disable
479 	 */
480 	if (__clk_is_enabled(clk)) {
481 		if (clk->ops->disable_unused)
482 			clk->ops->disable_unused(clk->hw);
483 		else if (clk->ops->disable)
484 			clk->ops->disable(clk->hw);
485 	}
486 
487 unlock_out:
488 	clk_enable_unlock(flags);
489 
490 out:
491 	return;
492 }
493 
494 static bool clk_ignore_unused;
495 static int __init clk_ignore_unused_setup(char *__unused)
496 {
497 	clk_ignore_unused = true;
498 	return 1;
499 }
500 __setup("clk_ignore_unused", clk_ignore_unused_setup);
501 
502 static int clk_disable_unused(void)
503 {
504 	struct clk *clk;
505 
506 	if (clk_ignore_unused) {
507 		pr_warn("clk: Not disabling unused clocks\n");
508 		return 0;
509 	}
510 
511 	clk_prepare_lock();
512 
513 	hlist_for_each_entry(clk, &clk_root_list, child_node)
514 		clk_disable_unused_subtree(clk);
515 
516 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
517 		clk_disable_unused_subtree(clk);
518 
519 	hlist_for_each_entry(clk, &clk_root_list, child_node)
520 		clk_unprepare_unused_subtree(clk);
521 
522 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
523 		clk_unprepare_unused_subtree(clk);
524 
525 	clk_prepare_unlock();
526 
527 	return 0;
528 }
529 late_initcall_sync(clk_disable_unused);
530 
531 /***    helper functions   ***/
532 
533 const char *__clk_get_name(struct clk *clk)
534 {
535 	return !clk ? NULL : clk->name;
536 }
537 EXPORT_SYMBOL_GPL(__clk_get_name);
538 
539 struct clk_hw *__clk_get_hw(struct clk *clk)
540 {
541 	return !clk ? NULL : clk->hw;
542 }
543 EXPORT_SYMBOL_GPL(__clk_get_hw);
544 
545 u8 __clk_get_num_parents(struct clk *clk)
546 {
547 	return !clk ? 0 : clk->num_parents;
548 }
549 EXPORT_SYMBOL_GPL(__clk_get_num_parents);
550 
551 struct clk *__clk_get_parent(struct clk *clk)
552 {
553 	return !clk ? NULL : clk->parent;
554 }
555 EXPORT_SYMBOL_GPL(__clk_get_parent);
556 
557 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
558 {
559 	if (!clk || index >= clk->num_parents)
560 		return NULL;
561 	else if (!clk->parents)
562 		return __clk_lookup(clk->parent_names[index]);
563 	else if (!clk->parents[index])
564 		return clk->parents[index] =
565 			__clk_lookup(clk->parent_names[index]);
566 	else
567 		return clk->parents[index];
568 }
569 EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
570 
571 unsigned int __clk_get_enable_count(struct clk *clk)
572 {
573 	return !clk ? 0 : clk->enable_count;
574 }
575 
576 unsigned long __clk_get_rate(struct clk *clk)
577 {
578 	unsigned long ret;
579 
580 	if (!clk) {
581 		ret = 0;
582 		goto out;
583 	}
584 
585 	ret = clk->rate;
586 
587 	if (clk->flags & CLK_IS_ROOT)
588 		goto out;
589 
590 	if (!clk->parent)
591 		ret = 0;
592 
593 out:
594 	return ret;
595 }
596 EXPORT_SYMBOL_GPL(__clk_get_rate);
597 
598 static unsigned long __clk_get_accuracy(struct clk *clk)
599 {
600 	if (!clk)
601 		return 0;
602 
603 	return clk->accuracy;
604 }
605 
606 unsigned long __clk_get_flags(struct clk *clk)
607 {
608 	return !clk ? 0 : clk->flags;
609 }
610 EXPORT_SYMBOL_GPL(__clk_get_flags);
611 
612 bool __clk_is_prepared(struct clk *clk)
613 {
614 	int ret;
615 
616 	if (!clk)
617 		return false;
618 
619 	/*
620 	 * .is_prepared is optional for clocks that can prepare
621 	 * fall back to software usage counter if it is missing
622 	 */
623 	if (!clk->ops->is_prepared) {
624 		ret = clk->prepare_count ? 1 : 0;
625 		goto out;
626 	}
627 
628 	ret = clk->ops->is_prepared(clk->hw);
629 out:
630 	return !!ret;
631 }
632 
633 bool __clk_is_enabled(struct clk *clk)
634 {
635 	int ret;
636 
637 	if (!clk)
638 		return false;
639 
640 	/*
641 	 * .is_enabled is only mandatory for clocks that gate
642 	 * fall back to software usage counter if .is_enabled is missing
643 	 */
644 	if (!clk->ops->is_enabled) {
645 		ret = clk->enable_count ? 1 : 0;
646 		goto out;
647 	}
648 
649 	ret = clk->ops->is_enabled(clk->hw);
650 out:
651 	return !!ret;
652 }
653 EXPORT_SYMBOL_GPL(__clk_is_enabled);
654 
655 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
656 {
657 	struct clk *child;
658 	struct clk *ret;
659 
660 	if (!strcmp(clk->name, name))
661 		return clk;
662 
663 	hlist_for_each_entry(child, &clk->children, child_node) {
664 		ret = __clk_lookup_subtree(name, child);
665 		if (ret)
666 			return ret;
667 	}
668 
669 	return NULL;
670 }
671 
672 struct clk *__clk_lookup(const char *name)
673 {
674 	struct clk *root_clk;
675 	struct clk *ret;
676 
677 	if (!name)
678 		return NULL;
679 
680 	/* search the 'proper' clk tree first */
681 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
682 		ret = __clk_lookup_subtree(name, root_clk);
683 		if (ret)
684 			return ret;
685 	}
686 
687 	/* if not found, then search the orphan tree */
688 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
689 		ret = __clk_lookup_subtree(name, root_clk);
690 		if (ret)
691 			return ret;
692 	}
693 
694 	return NULL;
695 }
696 
697 /*
698  * Helper for finding best parent to provide a given frequency. This can be used
699  * directly as a determine_rate callback (e.g. for a mux), or from a more
700  * complex clock that may combine a mux with other operations.
701  */
702 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
703 			      unsigned long *best_parent_rate,
704 			      struct clk_hw **best_parent_p)
705 {
706 	struct clk *clk = hw->clk, *parent, *best_parent = NULL;
707 	int i, num_parents;
708 	unsigned long parent_rate, best = 0;
709 
710 	/* if NO_REPARENT flag set, pass through to current parent */
711 	if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
712 		parent = clk->parent;
713 		if (clk->flags & CLK_SET_RATE_PARENT)
714 			best = __clk_round_rate(parent, rate);
715 		else if (parent)
716 			best = __clk_get_rate(parent);
717 		else
718 			best = __clk_get_rate(clk);
719 		goto out;
720 	}
721 
722 	/* find the parent that can provide the fastest rate <= rate */
723 	num_parents = clk->num_parents;
724 	for (i = 0; i < num_parents; i++) {
725 		parent = clk_get_parent_by_index(clk, i);
726 		if (!parent)
727 			continue;
728 		if (clk->flags & CLK_SET_RATE_PARENT)
729 			parent_rate = __clk_round_rate(parent, rate);
730 		else
731 			parent_rate = __clk_get_rate(parent);
732 		if (parent_rate <= rate && parent_rate > best) {
733 			best_parent = parent;
734 			best = parent_rate;
735 		}
736 	}
737 
738 out:
739 	if (best_parent)
740 		*best_parent_p = best_parent->hw;
741 	*best_parent_rate = best;
742 
743 	return best;
744 }
745 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
746 
747 /***        clk api        ***/
748 
749 void __clk_unprepare(struct clk *clk)
750 {
751 	if (!clk)
752 		return;
753 
754 	if (WARN_ON(clk->prepare_count == 0))
755 		return;
756 
757 	if (--clk->prepare_count > 0)
758 		return;
759 
760 	WARN_ON(clk->enable_count > 0);
761 
762 	if (clk->ops->unprepare)
763 		clk->ops->unprepare(clk->hw);
764 
765 	__clk_unprepare(clk->parent);
766 }
767 
768 /**
769  * clk_unprepare - undo preparation of a clock source
770  * @clk: the clk being unprepared
771  *
772  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
773  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
774  * if the operation may sleep.  One example is a clk which is accessed over
775  * I2c.  In the complex case a clk gate operation may require a fast and a slow
776  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
777  * exclusive.  In fact clk_disable must be called before clk_unprepare.
778  */
779 void clk_unprepare(struct clk *clk)
780 {
781 	if (IS_ERR_OR_NULL(clk))
782 		return;
783 
784 	clk_prepare_lock();
785 	__clk_unprepare(clk);
786 	clk_prepare_unlock();
787 }
788 EXPORT_SYMBOL_GPL(clk_unprepare);
789 
790 int __clk_prepare(struct clk *clk)
791 {
792 	int ret = 0;
793 
794 	if (!clk)
795 		return 0;
796 
797 	if (clk->prepare_count == 0) {
798 		ret = __clk_prepare(clk->parent);
799 		if (ret)
800 			return ret;
801 
802 		if (clk->ops->prepare) {
803 			ret = clk->ops->prepare(clk->hw);
804 			if (ret) {
805 				__clk_unprepare(clk->parent);
806 				return ret;
807 			}
808 		}
809 	}
810 
811 	clk->prepare_count++;
812 
813 	return 0;
814 }
815 
816 /**
817  * clk_prepare - prepare a clock source
818  * @clk: the clk being prepared
819  *
820  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
821  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
822  * operation may sleep.  One example is a clk which is accessed over I2c.  In
823  * the complex case a clk ungate operation may require a fast and a slow part.
824  * It is this reason that clk_prepare and clk_enable are not mutually
825  * exclusive.  In fact clk_prepare must be called before clk_enable.
826  * Returns 0 on success, -EERROR otherwise.
827  */
828 int clk_prepare(struct clk *clk)
829 {
830 	int ret;
831 
832 	clk_prepare_lock();
833 	ret = __clk_prepare(clk);
834 	clk_prepare_unlock();
835 
836 	return ret;
837 }
838 EXPORT_SYMBOL_GPL(clk_prepare);
839 
840 static void __clk_disable(struct clk *clk)
841 {
842 	if (!clk)
843 		return;
844 
845 	if (WARN_ON(clk->enable_count == 0))
846 		return;
847 
848 	if (--clk->enable_count > 0)
849 		return;
850 
851 	if (clk->ops->disable)
852 		clk->ops->disable(clk->hw);
853 
854 	__clk_disable(clk->parent);
855 }
856 
857 /**
858  * clk_disable - gate a clock
859  * @clk: the clk being gated
860  *
861  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
862  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
863  * clk if the operation is fast and will never sleep.  One example is a
864  * SoC-internal clk which is controlled via simple register writes.  In the
865  * complex case a clk gate operation may require a fast and a slow part.  It is
866  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
867  * In fact clk_disable must be called before clk_unprepare.
868  */
869 void clk_disable(struct clk *clk)
870 {
871 	unsigned long flags;
872 
873 	if (IS_ERR_OR_NULL(clk))
874 		return;
875 
876 	flags = clk_enable_lock();
877 	__clk_disable(clk);
878 	clk_enable_unlock(flags);
879 }
880 EXPORT_SYMBOL_GPL(clk_disable);
881 
882 static int __clk_enable(struct clk *clk)
883 {
884 	int ret = 0;
885 
886 	if (!clk)
887 		return 0;
888 
889 	if (WARN_ON(clk->prepare_count == 0))
890 		return -ESHUTDOWN;
891 
892 	if (clk->enable_count == 0) {
893 		ret = __clk_enable(clk->parent);
894 
895 		if (ret)
896 			return ret;
897 
898 		if (clk->ops->enable) {
899 			ret = clk->ops->enable(clk->hw);
900 			if (ret) {
901 				__clk_disable(clk->parent);
902 				return ret;
903 			}
904 		}
905 	}
906 
907 	clk->enable_count++;
908 	return 0;
909 }
910 
911 /**
912  * clk_enable - ungate a clock
913  * @clk: the clk being ungated
914  *
915  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
916  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
917  * if the operation will never sleep.  One example is a SoC-internal clk which
918  * is controlled via simple register writes.  In the complex case a clk ungate
919  * operation may require a fast and a slow part.  It is this reason that
920  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
921  * must be called before clk_enable.  Returns 0 on success, -EERROR
922  * otherwise.
923  */
924 int clk_enable(struct clk *clk)
925 {
926 	unsigned long flags;
927 	int ret;
928 
929 	flags = clk_enable_lock();
930 	ret = __clk_enable(clk);
931 	clk_enable_unlock(flags);
932 
933 	return ret;
934 }
935 EXPORT_SYMBOL_GPL(clk_enable);
936 
937 /**
938  * __clk_round_rate - round the given rate for a clk
939  * @clk: round the rate of this clock
940  * @rate: the rate which is to be rounded
941  *
942  * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
943  */
944 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
945 {
946 	unsigned long parent_rate = 0;
947 	struct clk *parent;
948 	struct clk_hw *parent_hw;
949 
950 	if (!clk)
951 		return 0;
952 
953 	parent = clk->parent;
954 	if (parent)
955 		parent_rate = parent->rate;
956 
957 	if (clk->ops->determine_rate) {
958 		parent_hw = parent ? parent->hw : NULL;
959 		return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
960 						&parent_hw);
961 	} else if (clk->ops->round_rate)
962 		return clk->ops->round_rate(clk->hw, rate, &parent_rate);
963 	else if (clk->flags & CLK_SET_RATE_PARENT)
964 		return __clk_round_rate(clk->parent, rate);
965 	else
966 		return clk->rate;
967 }
968 EXPORT_SYMBOL_GPL(__clk_round_rate);
969 
970 /**
971  * clk_round_rate - round the given rate for a clk
972  * @clk: the clk for which we are rounding a rate
973  * @rate: the rate which is to be rounded
974  *
975  * Takes in a rate as input and rounds it to a rate that the clk can actually
976  * use which is then returned.  If clk doesn't support round_rate operation
977  * then the parent rate is returned.
978  */
979 long clk_round_rate(struct clk *clk, unsigned long rate)
980 {
981 	unsigned long ret;
982 
983 	clk_prepare_lock();
984 	ret = __clk_round_rate(clk, rate);
985 	clk_prepare_unlock();
986 
987 	return ret;
988 }
989 EXPORT_SYMBOL_GPL(clk_round_rate);
990 
991 /**
992  * __clk_notify - call clk notifier chain
993  * @clk: struct clk * that is changing rate
994  * @msg: clk notifier type (see include/linux/clk.h)
995  * @old_rate: old clk rate
996  * @new_rate: new clk rate
997  *
998  * Triggers a notifier call chain on the clk rate-change notification
999  * for 'clk'.  Passes a pointer to the struct clk and the previous
1000  * and current rates to the notifier callback.  Intended to be called by
1001  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1002  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1003  * a driver returns that.
1004  */
1005 static int __clk_notify(struct clk *clk, unsigned long msg,
1006 		unsigned long old_rate, unsigned long new_rate)
1007 {
1008 	struct clk_notifier *cn;
1009 	struct clk_notifier_data cnd;
1010 	int ret = NOTIFY_DONE;
1011 
1012 	cnd.clk = clk;
1013 	cnd.old_rate = old_rate;
1014 	cnd.new_rate = new_rate;
1015 
1016 	list_for_each_entry(cn, &clk_notifier_list, node) {
1017 		if (cn->clk == clk) {
1018 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1019 					&cnd);
1020 			break;
1021 		}
1022 	}
1023 
1024 	return ret;
1025 }
1026 
1027 /**
1028  * __clk_recalc_accuracies
1029  * @clk: first clk in the subtree
1030  *
1031  * Walks the subtree of clks starting with clk and recalculates accuracies as
1032  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1033  * callback then it is assumed that the clock will take on the accuracy of it's
1034  * parent.
1035  *
1036  * Caller must hold prepare_lock.
1037  */
1038 static void __clk_recalc_accuracies(struct clk *clk)
1039 {
1040 	unsigned long parent_accuracy = 0;
1041 	struct clk *child;
1042 
1043 	if (clk->parent)
1044 		parent_accuracy = clk->parent->accuracy;
1045 
1046 	if (clk->ops->recalc_accuracy)
1047 		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1048 							  parent_accuracy);
1049 	else
1050 		clk->accuracy = parent_accuracy;
1051 
1052 	hlist_for_each_entry(child, &clk->children, child_node)
1053 		__clk_recalc_accuracies(child);
1054 }
1055 
1056 /**
1057  * clk_get_accuracy - return the accuracy of clk
1058  * @clk: the clk whose accuracy is being returned
1059  *
1060  * Simply returns the cached accuracy of the clk, unless
1061  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1062  * issued.
1063  * If clk is NULL then returns 0.
1064  */
1065 long clk_get_accuracy(struct clk *clk)
1066 {
1067 	unsigned long accuracy;
1068 
1069 	clk_prepare_lock();
1070 	if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1071 		__clk_recalc_accuracies(clk);
1072 
1073 	accuracy = __clk_get_accuracy(clk);
1074 	clk_prepare_unlock();
1075 
1076 	return accuracy;
1077 }
1078 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1079 
1080 static unsigned long clk_recalc(struct clk *clk, unsigned long parent_rate)
1081 {
1082 	if (clk->ops->recalc_rate)
1083 		return clk->ops->recalc_rate(clk->hw, parent_rate);
1084 	return parent_rate;
1085 }
1086 
1087 /**
1088  * __clk_recalc_rates
1089  * @clk: first clk in the subtree
1090  * @msg: notification type (see include/linux/clk.h)
1091  *
1092  * Walks the subtree of clks starting with clk and recalculates rates as it
1093  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1094  * it is assumed that the clock will take on the rate of its parent.
1095  *
1096  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1097  * if necessary.
1098  *
1099  * Caller must hold prepare_lock.
1100  */
1101 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1102 {
1103 	unsigned long old_rate;
1104 	unsigned long parent_rate = 0;
1105 	struct clk *child;
1106 
1107 	old_rate = clk->rate;
1108 
1109 	if (clk->parent)
1110 		parent_rate = clk->parent->rate;
1111 
1112 	clk->rate = clk_recalc(clk, parent_rate);
1113 
1114 	/*
1115 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1116 	 * & ABORT_RATE_CHANGE notifiers
1117 	 */
1118 	if (clk->notifier_count && msg)
1119 		__clk_notify(clk, msg, old_rate, clk->rate);
1120 
1121 	hlist_for_each_entry(child, &clk->children, child_node)
1122 		__clk_recalc_rates(child, msg);
1123 }
1124 
1125 /**
1126  * clk_get_rate - return the rate of clk
1127  * @clk: the clk whose rate is being returned
1128  *
1129  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1130  * is set, which means a recalc_rate will be issued.
1131  * If clk is NULL then returns 0.
1132  */
1133 unsigned long clk_get_rate(struct clk *clk)
1134 {
1135 	unsigned long rate;
1136 
1137 	clk_prepare_lock();
1138 
1139 	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1140 		__clk_recalc_rates(clk, 0);
1141 
1142 	rate = __clk_get_rate(clk);
1143 	clk_prepare_unlock();
1144 
1145 	return rate;
1146 }
1147 EXPORT_SYMBOL_GPL(clk_get_rate);
1148 
1149 static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1150 {
1151 	int i;
1152 
1153 	if (!clk->parents) {
1154 		clk->parents = kcalloc(clk->num_parents,
1155 					sizeof(struct clk *), GFP_KERNEL);
1156 		if (!clk->parents)
1157 			return -ENOMEM;
1158 	}
1159 
1160 	/*
1161 	 * find index of new parent clock using cached parent ptrs,
1162 	 * or if not yet cached, use string name comparison and cache
1163 	 * them now to avoid future calls to __clk_lookup.
1164 	 */
1165 	for (i = 0; i < clk->num_parents; i++) {
1166 		if (clk->parents[i] == parent)
1167 			return i;
1168 
1169 		if (clk->parents[i])
1170 			continue;
1171 
1172 		if (!strcmp(clk->parent_names[i], parent->name)) {
1173 			clk->parents[i] = __clk_lookup(parent->name);
1174 			return i;
1175 		}
1176 	}
1177 
1178 	return -EINVAL;
1179 }
1180 
1181 static void clk_reparent(struct clk *clk, struct clk *new_parent)
1182 {
1183 	hlist_del(&clk->child_node);
1184 
1185 	if (new_parent) {
1186 		/* avoid duplicate POST_RATE_CHANGE notifications */
1187 		if (new_parent->new_child == clk)
1188 			new_parent->new_child = NULL;
1189 
1190 		hlist_add_head(&clk->child_node, &new_parent->children);
1191 	} else {
1192 		hlist_add_head(&clk->child_node, &clk_orphan_list);
1193 	}
1194 
1195 	clk->parent = new_parent;
1196 }
1197 
1198 static struct clk *__clk_set_parent_before(struct clk *clk, struct clk *parent)
1199 {
1200 	unsigned long flags;
1201 	struct clk *old_parent = clk->parent;
1202 
1203 	/*
1204 	 * Migrate prepare state between parents and prevent race with
1205 	 * clk_enable().
1206 	 *
1207 	 * If the clock is not prepared, then a race with
1208 	 * clk_enable/disable() is impossible since we already have the
1209 	 * prepare lock (future calls to clk_enable() need to be preceded by
1210 	 * a clk_prepare()).
1211 	 *
1212 	 * If the clock is prepared, migrate the prepared state to the new
1213 	 * parent and also protect against a race with clk_enable() by
1214 	 * forcing the clock and the new parent on.  This ensures that all
1215 	 * future calls to clk_enable() are practically NOPs with respect to
1216 	 * hardware and software states.
1217 	 *
1218 	 * See also: Comment for clk_set_parent() below.
1219 	 */
1220 	if (clk->prepare_count) {
1221 		__clk_prepare(parent);
1222 		clk_enable(parent);
1223 		clk_enable(clk);
1224 	}
1225 
1226 	/* update the clk tree topology */
1227 	flags = clk_enable_lock();
1228 	clk_reparent(clk, parent);
1229 	clk_enable_unlock(flags);
1230 
1231 	return old_parent;
1232 }
1233 
1234 static void __clk_set_parent_after(struct clk *clk, struct clk *parent,
1235 		struct clk *old_parent)
1236 {
1237 	/*
1238 	 * Finish the migration of prepare state and undo the changes done
1239 	 * for preventing a race with clk_enable().
1240 	 */
1241 	if (clk->prepare_count) {
1242 		clk_disable(clk);
1243 		clk_disable(old_parent);
1244 		__clk_unprepare(old_parent);
1245 	}
1246 }
1247 
1248 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1249 {
1250 	unsigned long flags;
1251 	int ret = 0;
1252 	struct clk *old_parent;
1253 
1254 	old_parent = __clk_set_parent_before(clk, parent);
1255 
1256 	/* change clock input source */
1257 	if (parent && clk->ops->set_parent)
1258 		ret = clk->ops->set_parent(clk->hw, p_index);
1259 
1260 	if (ret) {
1261 		flags = clk_enable_lock();
1262 		clk_reparent(clk, old_parent);
1263 		clk_enable_unlock(flags);
1264 
1265 		if (clk->prepare_count) {
1266 			clk_disable(clk);
1267 			clk_disable(parent);
1268 			__clk_unprepare(parent);
1269 		}
1270 		return ret;
1271 	}
1272 
1273 	__clk_set_parent_after(clk, parent, old_parent);
1274 
1275 	return 0;
1276 }
1277 
1278 /**
1279  * __clk_speculate_rates
1280  * @clk: first clk in the subtree
1281  * @parent_rate: the "future" rate of clk's parent
1282  *
1283  * Walks the subtree of clks starting with clk, speculating rates as it
1284  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1285  *
1286  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1287  * pre-rate change notifications and returns early if no clks in the
1288  * subtree have subscribed to the notifications.  Note that if a clk does not
1289  * implement the .recalc_rate callback then it is assumed that the clock will
1290  * take on the rate of its parent.
1291  *
1292  * Caller must hold prepare_lock.
1293  */
1294 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1295 {
1296 	struct clk *child;
1297 	unsigned long new_rate;
1298 	int ret = NOTIFY_DONE;
1299 
1300 	new_rate = clk_recalc(clk, parent_rate);
1301 
1302 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1303 	if (clk->notifier_count)
1304 		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1305 
1306 	if (ret & NOTIFY_STOP_MASK) {
1307 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1308 				__func__, clk->name, ret);
1309 		goto out;
1310 	}
1311 
1312 	hlist_for_each_entry(child, &clk->children, child_node) {
1313 		ret = __clk_speculate_rates(child, new_rate);
1314 		if (ret & NOTIFY_STOP_MASK)
1315 			break;
1316 	}
1317 
1318 out:
1319 	return ret;
1320 }
1321 
1322 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1323 			     struct clk *new_parent, u8 p_index)
1324 {
1325 	struct clk *child;
1326 
1327 	clk->new_rate = new_rate;
1328 	clk->new_parent = new_parent;
1329 	clk->new_parent_index = p_index;
1330 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1331 	clk->new_child = NULL;
1332 	if (new_parent && new_parent != clk->parent)
1333 		new_parent->new_child = clk;
1334 
1335 	hlist_for_each_entry(child, &clk->children, child_node) {
1336 		child->new_rate = clk_recalc(child, new_rate);
1337 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1338 	}
1339 }
1340 
1341 /*
1342  * calculate the new rates returning the topmost clock that has to be
1343  * changed.
1344  */
1345 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1346 {
1347 	struct clk *top = clk;
1348 	struct clk *old_parent, *parent;
1349 	struct clk_hw *parent_hw;
1350 	unsigned long best_parent_rate = 0;
1351 	unsigned long new_rate;
1352 	int p_index = 0;
1353 
1354 	/* sanity */
1355 	if (IS_ERR_OR_NULL(clk))
1356 		return NULL;
1357 
1358 	/* save parent rate, if it exists */
1359 	parent = old_parent = clk->parent;
1360 	if (parent)
1361 		best_parent_rate = parent->rate;
1362 
1363 	/* find the closest rate and parent clk/rate */
1364 	if (clk->ops->determine_rate) {
1365 		parent_hw = parent ? parent->hw : NULL;
1366 		new_rate = clk->ops->determine_rate(clk->hw, rate,
1367 						    &best_parent_rate,
1368 						    &parent_hw);
1369 		parent = parent_hw ? parent_hw->clk : NULL;
1370 	} else if (clk->ops->round_rate) {
1371 		new_rate = clk->ops->round_rate(clk->hw, rate,
1372 						&best_parent_rate);
1373 	} else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1374 		/* pass-through clock without adjustable parent */
1375 		clk->new_rate = clk->rate;
1376 		return NULL;
1377 	} else {
1378 		/* pass-through clock with adjustable parent */
1379 		top = clk_calc_new_rates(parent, rate);
1380 		new_rate = parent->new_rate;
1381 		goto out;
1382 	}
1383 
1384 	/* some clocks must be gated to change parent */
1385 	if (parent != old_parent &&
1386 	    (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1387 		pr_debug("%s: %s not gated but wants to reparent\n",
1388 			 __func__, clk->name);
1389 		return NULL;
1390 	}
1391 
1392 	/* try finding the new parent index */
1393 	if (parent) {
1394 		p_index = clk_fetch_parent_index(clk, parent);
1395 		if (p_index < 0) {
1396 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1397 				 __func__, parent->name, clk->name);
1398 			return NULL;
1399 		}
1400 	}
1401 
1402 	if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1403 	    best_parent_rate != parent->rate)
1404 		top = clk_calc_new_rates(parent, best_parent_rate);
1405 
1406 out:
1407 	clk_calc_subtree(clk, new_rate, parent, p_index);
1408 
1409 	return top;
1410 }
1411 
1412 /*
1413  * Notify about rate changes in a subtree. Always walk down the whole tree
1414  * so that in case of an error we can walk down the whole tree again and
1415  * abort the change.
1416  */
1417 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1418 {
1419 	struct clk *child, *tmp_clk, *fail_clk = NULL;
1420 	int ret = NOTIFY_DONE;
1421 
1422 	if (clk->rate == clk->new_rate)
1423 		return NULL;
1424 
1425 	if (clk->notifier_count) {
1426 		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1427 		if (ret & NOTIFY_STOP_MASK)
1428 			fail_clk = clk;
1429 	}
1430 
1431 	hlist_for_each_entry(child, &clk->children, child_node) {
1432 		/* Skip children who will be reparented to another clock */
1433 		if (child->new_parent && child->new_parent != clk)
1434 			continue;
1435 		tmp_clk = clk_propagate_rate_change(child, event);
1436 		if (tmp_clk)
1437 			fail_clk = tmp_clk;
1438 	}
1439 
1440 	/* handle the new child who might not be in clk->children yet */
1441 	if (clk->new_child) {
1442 		tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1443 		if (tmp_clk)
1444 			fail_clk = tmp_clk;
1445 	}
1446 
1447 	return fail_clk;
1448 }
1449 
1450 /*
1451  * walk down a subtree and set the new rates notifying the rate
1452  * change on the way
1453  */
1454 static void clk_change_rate(struct clk *clk)
1455 {
1456 	struct clk *child;
1457 	struct hlist_node *tmp;
1458 	unsigned long old_rate;
1459 	unsigned long best_parent_rate = 0;
1460 	bool skip_set_rate = false;
1461 	struct clk *old_parent;
1462 
1463 	old_rate = clk->rate;
1464 
1465 	if (clk->new_parent)
1466 		best_parent_rate = clk->new_parent->rate;
1467 	else if (clk->parent)
1468 		best_parent_rate = clk->parent->rate;
1469 
1470 	if (clk->new_parent && clk->new_parent != clk->parent) {
1471 		old_parent = __clk_set_parent_before(clk, clk->new_parent);
1472 
1473 		if (clk->ops->set_rate_and_parent) {
1474 			skip_set_rate = true;
1475 			clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1476 					best_parent_rate,
1477 					clk->new_parent_index);
1478 		} else if (clk->ops->set_parent) {
1479 			clk->ops->set_parent(clk->hw, clk->new_parent_index);
1480 		}
1481 
1482 		__clk_set_parent_after(clk, clk->new_parent, old_parent);
1483 	}
1484 
1485 	if (!skip_set_rate && clk->ops->set_rate)
1486 		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1487 
1488 	clk->rate = clk_recalc(clk, best_parent_rate);
1489 
1490 	if (clk->notifier_count && old_rate != clk->rate)
1491 		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1492 
1493 	/*
1494 	 * Use safe iteration, as change_rate can actually swap parents
1495 	 * for certain clock types.
1496 	 */
1497 	hlist_for_each_entry_safe(child, tmp, &clk->children, child_node) {
1498 		/* Skip children who will be reparented to another clock */
1499 		if (child->new_parent && child->new_parent != clk)
1500 			continue;
1501 		clk_change_rate(child);
1502 	}
1503 
1504 	/* handle the new child who might not be in clk->children yet */
1505 	if (clk->new_child)
1506 		clk_change_rate(clk->new_child);
1507 }
1508 
1509 /**
1510  * clk_set_rate - specify a new rate for clk
1511  * @clk: the clk whose rate is being changed
1512  * @rate: the new rate for clk
1513  *
1514  * In the simplest case clk_set_rate will only adjust the rate of clk.
1515  *
1516  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1517  * propagate up to clk's parent; whether or not this happens depends on the
1518  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1519  * after calling .round_rate then upstream parent propagation is ignored.  If
1520  * *parent_rate comes back with a new rate for clk's parent then we propagate
1521  * up to clk's parent and set its rate.  Upward propagation will continue
1522  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1523  * .round_rate stops requesting changes to clk's parent_rate.
1524  *
1525  * Rate changes are accomplished via tree traversal that also recalculates the
1526  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1527  *
1528  * Returns 0 on success, -EERROR otherwise.
1529  */
1530 int clk_set_rate(struct clk *clk, unsigned long rate)
1531 {
1532 	struct clk *top, *fail_clk;
1533 	int ret = 0;
1534 
1535 	if (!clk)
1536 		return 0;
1537 
1538 	/* prevent racing with updates to the clock topology */
1539 	clk_prepare_lock();
1540 
1541 	/* bail early if nothing to do */
1542 	if (rate == clk_get_rate(clk))
1543 		goto out;
1544 
1545 	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1546 		ret = -EBUSY;
1547 		goto out;
1548 	}
1549 
1550 	/* calculate new rates and get the topmost changed clock */
1551 	top = clk_calc_new_rates(clk, rate);
1552 	if (!top) {
1553 		ret = -EINVAL;
1554 		goto out;
1555 	}
1556 
1557 	/* notify that we are about to change rates */
1558 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1559 	if (fail_clk) {
1560 		pr_debug("%s: failed to set %s rate\n", __func__,
1561 				fail_clk->name);
1562 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1563 		ret = -EBUSY;
1564 		goto out;
1565 	}
1566 
1567 	/* change the rates */
1568 	clk_change_rate(top);
1569 
1570 out:
1571 	clk_prepare_unlock();
1572 
1573 	return ret;
1574 }
1575 EXPORT_SYMBOL_GPL(clk_set_rate);
1576 
1577 /**
1578  * clk_get_parent - return the parent of a clk
1579  * @clk: the clk whose parent gets returned
1580  *
1581  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1582  */
1583 struct clk *clk_get_parent(struct clk *clk)
1584 {
1585 	struct clk *parent;
1586 
1587 	clk_prepare_lock();
1588 	parent = __clk_get_parent(clk);
1589 	clk_prepare_unlock();
1590 
1591 	return parent;
1592 }
1593 EXPORT_SYMBOL_GPL(clk_get_parent);
1594 
1595 /*
1596  * .get_parent is mandatory for clocks with multiple possible parents.  It is
1597  * optional for single-parent clocks.  Always call .get_parent if it is
1598  * available and WARN if it is missing for multi-parent clocks.
1599  *
1600  * For single-parent clocks without .get_parent, first check to see if the
1601  * .parents array exists, and if so use it to avoid an expensive tree
1602  * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
1603  */
1604 static struct clk *__clk_init_parent(struct clk *clk)
1605 {
1606 	struct clk *ret = NULL;
1607 	u8 index;
1608 
1609 	/* handle the trivial cases */
1610 
1611 	if (!clk->num_parents)
1612 		goto out;
1613 
1614 	if (clk->num_parents == 1) {
1615 		if (IS_ERR_OR_NULL(clk->parent))
1616 			clk->parent = __clk_lookup(clk->parent_names[0]);
1617 		ret = clk->parent;
1618 		goto out;
1619 	}
1620 
1621 	if (!clk->ops->get_parent) {
1622 		WARN(!clk->ops->get_parent,
1623 			"%s: multi-parent clocks must implement .get_parent\n",
1624 			__func__);
1625 		goto out;
1626 	};
1627 
1628 	/*
1629 	 * Do our best to cache parent clocks in clk->parents.  This prevents
1630 	 * unnecessary and expensive calls to __clk_lookup.  We don't set
1631 	 * clk->parent here; that is done by the calling function
1632 	 */
1633 
1634 	index = clk->ops->get_parent(clk->hw);
1635 
1636 	if (!clk->parents)
1637 		clk->parents =
1638 			kcalloc(clk->num_parents, sizeof(struct clk *),
1639 					GFP_KERNEL);
1640 
1641 	ret = clk_get_parent_by_index(clk, index);
1642 
1643 out:
1644 	return ret;
1645 }
1646 
1647 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1648 {
1649 	clk_reparent(clk, new_parent);
1650 	__clk_recalc_accuracies(clk);
1651 	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1652 }
1653 
1654 /**
1655  * clk_set_parent - switch the parent of a mux clk
1656  * @clk: the mux clk whose input we are switching
1657  * @parent: the new input to clk
1658  *
1659  * Re-parent clk to use parent as its new input source.  If clk is in
1660  * prepared state, the clk will get enabled for the duration of this call. If
1661  * that's not acceptable for a specific clk (Eg: the consumer can't handle
1662  * that, the reparenting is glitchy in hardware, etc), use the
1663  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1664  *
1665  * After successfully changing clk's parent clk_set_parent will update the
1666  * clk topology, sysfs topology and propagate rate recalculation via
1667  * __clk_recalc_rates.
1668  *
1669  * Returns 0 on success, -EERROR otherwise.
1670  */
1671 int clk_set_parent(struct clk *clk, struct clk *parent)
1672 {
1673 	int ret = 0;
1674 	int p_index = 0;
1675 	unsigned long p_rate = 0;
1676 
1677 	if (!clk)
1678 		return 0;
1679 
1680 	/* verify ops for for multi-parent clks */
1681 	if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1682 		return -ENOSYS;
1683 
1684 	/* prevent racing with updates to the clock topology */
1685 	clk_prepare_lock();
1686 
1687 	if (clk->parent == parent)
1688 		goto out;
1689 
1690 	/* check that we are allowed to re-parent if the clock is in use */
1691 	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1692 		ret = -EBUSY;
1693 		goto out;
1694 	}
1695 
1696 	/* try finding the new parent index */
1697 	if (parent) {
1698 		p_index = clk_fetch_parent_index(clk, parent);
1699 		p_rate = parent->rate;
1700 		if (p_index < 0) {
1701 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1702 					__func__, parent->name, clk->name);
1703 			ret = p_index;
1704 			goto out;
1705 		}
1706 	}
1707 
1708 	/* propagate PRE_RATE_CHANGE notifications */
1709 	ret = __clk_speculate_rates(clk, p_rate);
1710 
1711 	/* abort if a driver objects */
1712 	if (ret & NOTIFY_STOP_MASK)
1713 		goto out;
1714 
1715 	/* do the re-parent */
1716 	ret = __clk_set_parent(clk, parent, p_index);
1717 
1718 	/* propagate rate an accuracy recalculation accordingly */
1719 	if (ret) {
1720 		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1721 	} else {
1722 		__clk_recalc_rates(clk, POST_RATE_CHANGE);
1723 		__clk_recalc_accuracies(clk);
1724 	}
1725 
1726 out:
1727 	clk_prepare_unlock();
1728 
1729 	return ret;
1730 }
1731 EXPORT_SYMBOL_GPL(clk_set_parent);
1732 
1733 /**
1734  * clk_set_phase - adjust the phase shift of a clock signal
1735  * @clk: clock signal source
1736  * @degrees: number of degrees the signal is shifted
1737  *
1738  * Shifts the phase of a clock signal by the specified
1739  * degrees. Returns 0 on success, -EERROR otherwise.
1740  *
1741  * This function makes no distinction about the input or reference
1742  * signal that we adjust the clock signal phase against. For example
1743  * phase locked-loop clock signal generators we may shift phase with
1744  * respect to feedback clock signal input, but for other cases the
1745  * clock phase may be shifted with respect to some other, unspecified
1746  * signal.
1747  *
1748  * Additionally the concept of phase shift does not propagate through
1749  * the clock tree hierarchy, which sets it apart from clock rates and
1750  * clock accuracy. A parent clock phase attribute does not have an
1751  * impact on the phase attribute of a child clock.
1752  */
1753 int clk_set_phase(struct clk *clk, int degrees)
1754 {
1755 	int ret = 0;
1756 
1757 	if (!clk)
1758 		goto out;
1759 
1760 	/* sanity check degrees */
1761 	degrees %= 360;
1762 	if (degrees < 0)
1763 		degrees += 360;
1764 
1765 	clk_prepare_lock();
1766 
1767 	if (!clk->ops->set_phase)
1768 		goto out_unlock;
1769 
1770 	ret = clk->ops->set_phase(clk->hw, degrees);
1771 
1772 	if (!ret)
1773 		clk->phase = degrees;
1774 
1775 out_unlock:
1776 	clk_prepare_unlock();
1777 
1778 out:
1779 	return ret;
1780 }
1781 
1782 /**
1783  * clk_get_phase - return the phase shift of a clock signal
1784  * @clk: clock signal source
1785  *
1786  * Returns the phase shift of a clock node in degrees, otherwise returns
1787  * -EERROR.
1788  */
1789 int clk_get_phase(struct clk *clk)
1790 {
1791 	int ret = 0;
1792 
1793 	if (!clk)
1794 		goto out;
1795 
1796 	clk_prepare_lock();
1797 	ret = clk->phase;
1798 	clk_prepare_unlock();
1799 
1800 out:
1801 	return ret;
1802 }
1803 
1804 /**
1805  * __clk_init - initialize the data structures in a struct clk
1806  * @dev:	device initializing this clk, placeholder for now
1807  * @clk:	clk being initialized
1808  *
1809  * Initializes the lists in struct clk, queries the hardware for the
1810  * parent and rate and sets them both.
1811  */
1812 int __clk_init(struct device *dev, struct clk *clk)
1813 {
1814 	int i, ret = 0;
1815 	struct clk *orphan;
1816 	struct hlist_node *tmp2;
1817 
1818 	if (!clk)
1819 		return -EINVAL;
1820 
1821 	clk_prepare_lock();
1822 
1823 	/* check to see if a clock with this name is already registered */
1824 	if (__clk_lookup(clk->name)) {
1825 		pr_debug("%s: clk %s already initialized\n",
1826 				__func__, clk->name);
1827 		ret = -EEXIST;
1828 		goto out;
1829 	}
1830 
1831 	/* check that clk_ops are sane.  See Documentation/clk.txt */
1832 	if (clk->ops->set_rate &&
1833 	    !((clk->ops->round_rate || clk->ops->determine_rate) &&
1834 	      clk->ops->recalc_rate)) {
1835 		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1836 				__func__, clk->name);
1837 		ret = -EINVAL;
1838 		goto out;
1839 	}
1840 
1841 	if (clk->ops->set_parent && !clk->ops->get_parent) {
1842 		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1843 				__func__, clk->name);
1844 		ret = -EINVAL;
1845 		goto out;
1846 	}
1847 
1848 	if (clk->ops->set_rate_and_parent &&
1849 			!(clk->ops->set_parent && clk->ops->set_rate)) {
1850 		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
1851 				__func__, clk->name);
1852 		ret = -EINVAL;
1853 		goto out;
1854 	}
1855 
1856 	/* throw a WARN if any entries in parent_names are NULL */
1857 	for (i = 0; i < clk->num_parents; i++)
1858 		WARN(!clk->parent_names[i],
1859 				"%s: invalid NULL in %s's .parent_names\n",
1860 				__func__, clk->name);
1861 
1862 	/*
1863 	 * Allocate an array of struct clk *'s to avoid unnecessary string
1864 	 * look-ups of clk's possible parents.  This can fail for clocks passed
1865 	 * in to clk_init during early boot; thus any access to clk->parents[]
1866 	 * must always check for a NULL pointer and try to populate it if
1867 	 * necessary.
1868 	 *
1869 	 * If clk->parents is not NULL we skip this entire block.  This allows
1870 	 * for clock drivers to statically initialize clk->parents.
1871 	 */
1872 	if (clk->num_parents > 1 && !clk->parents) {
1873 		clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
1874 					GFP_KERNEL);
1875 		/*
1876 		 * __clk_lookup returns NULL for parents that have not been
1877 		 * clk_init'd; thus any access to clk->parents[] must check
1878 		 * for a NULL pointer.  We can always perform lazy lookups for
1879 		 * missing parents later on.
1880 		 */
1881 		if (clk->parents)
1882 			for (i = 0; i < clk->num_parents; i++)
1883 				clk->parents[i] =
1884 					__clk_lookup(clk->parent_names[i]);
1885 	}
1886 
1887 	clk->parent = __clk_init_parent(clk);
1888 
1889 	/*
1890 	 * Populate clk->parent if parent has already been __clk_init'd.  If
1891 	 * parent has not yet been __clk_init'd then place clk in the orphan
1892 	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1893 	 * clk list.
1894 	 *
1895 	 * Every time a new clk is clk_init'd then we walk the list of orphan
1896 	 * clocks and re-parent any that are children of the clock currently
1897 	 * being clk_init'd.
1898 	 */
1899 	if (clk->parent)
1900 		hlist_add_head(&clk->child_node,
1901 				&clk->parent->children);
1902 	else if (clk->flags & CLK_IS_ROOT)
1903 		hlist_add_head(&clk->child_node, &clk_root_list);
1904 	else
1905 		hlist_add_head(&clk->child_node, &clk_orphan_list);
1906 
1907 	/*
1908 	 * Set clk's accuracy.  The preferred method is to use
1909 	 * .recalc_accuracy. For simple clocks and lazy developers the default
1910 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
1911 	 * parent (or is orphaned) then accuracy is set to zero (perfect
1912 	 * clock).
1913 	 */
1914 	if (clk->ops->recalc_accuracy)
1915 		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1916 					__clk_get_accuracy(clk->parent));
1917 	else if (clk->parent)
1918 		clk->accuracy = clk->parent->accuracy;
1919 	else
1920 		clk->accuracy = 0;
1921 
1922 	/*
1923 	 * Set clk's phase.
1924 	 * Since a phase is by definition relative to its parent, just
1925 	 * query the current clock phase, or just assume it's in phase.
1926 	 */
1927 	if (clk->ops->get_phase)
1928 		clk->phase = clk->ops->get_phase(clk->hw);
1929 	else
1930 		clk->phase = 0;
1931 
1932 	/*
1933 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1934 	 * simple clocks and lazy developers the default fallback is to use the
1935 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1936 	 * then rate is set to zero.
1937 	 */
1938 	if (clk->ops->recalc_rate)
1939 		clk->rate = clk->ops->recalc_rate(clk->hw,
1940 				__clk_get_rate(clk->parent));
1941 	else if (clk->parent)
1942 		clk->rate = clk->parent->rate;
1943 	else
1944 		clk->rate = 0;
1945 
1946 	/*
1947 	 * walk the list of orphan clocks and reparent any that are children of
1948 	 * this clock
1949 	 */
1950 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1951 		if (orphan->num_parents && orphan->ops->get_parent) {
1952 			i = orphan->ops->get_parent(orphan->hw);
1953 			if (!strcmp(clk->name, orphan->parent_names[i]))
1954 				__clk_reparent(orphan, clk);
1955 			continue;
1956 		}
1957 
1958 		for (i = 0; i < orphan->num_parents; i++)
1959 			if (!strcmp(clk->name, orphan->parent_names[i])) {
1960 				__clk_reparent(orphan, clk);
1961 				break;
1962 			}
1963 	 }
1964 
1965 	/*
1966 	 * optional platform-specific magic
1967 	 *
1968 	 * The .init callback is not used by any of the basic clock types, but
1969 	 * exists for weird hardware that must perform initialization magic.
1970 	 * Please consider other ways of solving initialization problems before
1971 	 * using this callback, as its use is discouraged.
1972 	 */
1973 	if (clk->ops->init)
1974 		clk->ops->init(clk->hw);
1975 
1976 	kref_init(&clk->ref);
1977 out:
1978 	clk_prepare_unlock();
1979 
1980 	if (!ret)
1981 		clk_debug_register(clk);
1982 
1983 	return ret;
1984 }
1985 
1986 /**
1987  * __clk_register - register a clock and return a cookie.
1988  *
1989  * Same as clk_register, except that the .clk field inside hw shall point to a
1990  * preallocated (generally statically allocated) struct clk. None of the fields
1991  * of the struct clk need to be initialized.
1992  *
1993  * The data pointed to by .init and .clk field shall NOT be marked as init
1994  * data.
1995  *
1996  * __clk_register is only exposed via clk-private.h and is intended for use with
1997  * very large numbers of clocks that need to be statically initialized.  It is
1998  * a layering violation to include clk-private.h from any code which implements
1999  * a clock's .ops; as such any statically initialized clock data MUST be in a
2000  * separate C file from the logic that implements its operations.  Returns 0
2001  * on success, otherwise an error code.
2002  */
2003 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
2004 {
2005 	int ret;
2006 	struct clk *clk;
2007 
2008 	clk = hw->clk;
2009 	clk->name = hw->init->name;
2010 	clk->ops = hw->init->ops;
2011 	clk->hw = hw;
2012 	clk->flags = hw->init->flags;
2013 	clk->parent_names = hw->init->parent_names;
2014 	clk->num_parents = hw->init->num_parents;
2015 	if (dev && dev->driver)
2016 		clk->owner = dev->driver->owner;
2017 	else
2018 		clk->owner = NULL;
2019 
2020 	ret = __clk_init(dev, clk);
2021 	if (ret)
2022 		return ERR_PTR(ret);
2023 
2024 	return clk;
2025 }
2026 EXPORT_SYMBOL_GPL(__clk_register);
2027 
2028 /**
2029  * clk_register - allocate a new clock, register it and return an opaque cookie
2030  * @dev: device that is registering this clock
2031  * @hw: link to hardware-specific clock data
2032  *
2033  * clk_register is the primary interface for populating the clock tree with new
2034  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2035  * cannot be dereferenced by driver code but may be used in conjuction with the
2036  * rest of the clock API.  In the event of an error clk_register will return an
2037  * error code; drivers must test for an error code after calling clk_register.
2038  */
2039 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2040 {
2041 	int i, ret;
2042 	struct clk *clk;
2043 
2044 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2045 	if (!clk) {
2046 		pr_err("%s: could not allocate clk\n", __func__);
2047 		ret = -ENOMEM;
2048 		goto fail_out;
2049 	}
2050 
2051 	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
2052 	if (!clk->name) {
2053 		pr_err("%s: could not allocate clk->name\n", __func__);
2054 		ret = -ENOMEM;
2055 		goto fail_name;
2056 	}
2057 	clk->ops = hw->init->ops;
2058 	if (dev && dev->driver)
2059 		clk->owner = dev->driver->owner;
2060 	clk->hw = hw;
2061 	clk->flags = hw->init->flags;
2062 	clk->num_parents = hw->init->num_parents;
2063 	hw->clk = clk;
2064 
2065 	/* allocate local copy in case parent_names is __initdata */
2066 	clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
2067 					GFP_KERNEL);
2068 
2069 	if (!clk->parent_names) {
2070 		pr_err("%s: could not allocate clk->parent_names\n", __func__);
2071 		ret = -ENOMEM;
2072 		goto fail_parent_names;
2073 	}
2074 
2075 
2076 	/* copy each string name in case parent_names is __initdata */
2077 	for (i = 0; i < clk->num_parents; i++) {
2078 		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
2079 						GFP_KERNEL);
2080 		if (!clk->parent_names[i]) {
2081 			pr_err("%s: could not copy parent_names\n", __func__);
2082 			ret = -ENOMEM;
2083 			goto fail_parent_names_copy;
2084 		}
2085 	}
2086 
2087 	ret = __clk_init(dev, clk);
2088 	if (!ret)
2089 		return clk;
2090 
2091 fail_parent_names_copy:
2092 	while (--i >= 0)
2093 		kfree(clk->parent_names[i]);
2094 	kfree(clk->parent_names);
2095 fail_parent_names:
2096 	kfree(clk->name);
2097 fail_name:
2098 	kfree(clk);
2099 fail_out:
2100 	return ERR_PTR(ret);
2101 }
2102 EXPORT_SYMBOL_GPL(clk_register);
2103 
2104 /*
2105  * Free memory allocated for a clock.
2106  * Caller must hold prepare_lock.
2107  */
2108 static void __clk_release(struct kref *ref)
2109 {
2110 	struct clk *clk = container_of(ref, struct clk, ref);
2111 	int i = clk->num_parents;
2112 
2113 	kfree(clk->parents);
2114 	while (--i >= 0)
2115 		kfree(clk->parent_names[i]);
2116 
2117 	kfree(clk->parent_names);
2118 	kfree(clk->name);
2119 	kfree(clk);
2120 }
2121 
2122 /*
2123  * Empty clk_ops for unregistered clocks. These are used temporarily
2124  * after clk_unregister() was called on a clock and until last clock
2125  * consumer calls clk_put() and the struct clk object is freed.
2126  */
2127 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2128 {
2129 	return -ENXIO;
2130 }
2131 
2132 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2133 {
2134 	WARN_ON_ONCE(1);
2135 }
2136 
2137 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2138 					unsigned long parent_rate)
2139 {
2140 	return -ENXIO;
2141 }
2142 
2143 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2144 {
2145 	return -ENXIO;
2146 }
2147 
2148 static const struct clk_ops clk_nodrv_ops = {
2149 	.enable		= clk_nodrv_prepare_enable,
2150 	.disable	= clk_nodrv_disable_unprepare,
2151 	.prepare	= clk_nodrv_prepare_enable,
2152 	.unprepare	= clk_nodrv_disable_unprepare,
2153 	.set_rate	= clk_nodrv_set_rate,
2154 	.set_parent	= clk_nodrv_set_parent,
2155 };
2156 
2157 /**
2158  * clk_unregister - unregister a currently registered clock
2159  * @clk: clock to unregister
2160  */
2161 void clk_unregister(struct clk *clk)
2162 {
2163 	unsigned long flags;
2164 
2165 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2166 		return;
2167 
2168 	clk_debug_unregister(clk);
2169 
2170 	clk_prepare_lock();
2171 
2172 	if (clk->ops == &clk_nodrv_ops) {
2173 		pr_err("%s: unregistered clock: %s\n", __func__, clk->name);
2174 		return;
2175 	}
2176 	/*
2177 	 * Assign empty clock ops for consumers that might still hold
2178 	 * a reference to this clock.
2179 	 */
2180 	flags = clk_enable_lock();
2181 	clk->ops = &clk_nodrv_ops;
2182 	clk_enable_unlock(flags);
2183 
2184 	if (!hlist_empty(&clk->children)) {
2185 		struct clk *child;
2186 		struct hlist_node *t;
2187 
2188 		/* Reparent all children to the orphan list. */
2189 		hlist_for_each_entry_safe(child, t, &clk->children, child_node)
2190 			clk_set_parent(child, NULL);
2191 	}
2192 
2193 	hlist_del_init(&clk->child_node);
2194 
2195 	if (clk->prepare_count)
2196 		pr_warn("%s: unregistering prepared clock: %s\n",
2197 					__func__, clk->name);
2198 	kref_put(&clk->ref, __clk_release);
2199 
2200 	clk_prepare_unlock();
2201 }
2202 EXPORT_SYMBOL_GPL(clk_unregister);
2203 
2204 static void devm_clk_release(struct device *dev, void *res)
2205 {
2206 	clk_unregister(*(struct clk **)res);
2207 }
2208 
2209 /**
2210  * devm_clk_register - resource managed clk_register()
2211  * @dev: device that is registering this clock
2212  * @hw: link to hardware-specific clock data
2213  *
2214  * Managed clk_register(). Clocks returned from this function are
2215  * automatically clk_unregister()ed on driver detach. See clk_register() for
2216  * more information.
2217  */
2218 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2219 {
2220 	struct clk *clk;
2221 	struct clk **clkp;
2222 
2223 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2224 	if (!clkp)
2225 		return ERR_PTR(-ENOMEM);
2226 
2227 	clk = clk_register(dev, hw);
2228 	if (!IS_ERR(clk)) {
2229 		*clkp = clk;
2230 		devres_add(dev, clkp);
2231 	} else {
2232 		devres_free(clkp);
2233 	}
2234 
2235 	return clk;
2236 }
2237 EXPORT_SYMBOL_GPL(devm_clk_register);
2238 
2239 static int devm_clk_match(struct device *dev, void *res, void *data)
2240 {
2241 	struct clk *c = res;
2242 	if (WARN_ON(!c))
2243 		return 0;
2244 	return c == data;
2245 }
2246 
2247 /**
2248  * devm_clk_unregister - resource managed clk_unregister()
2249  * @clk: clock to unregister
2250  *
2251  * Deallocate a clock allocated with devm_clk_register(). Normally
2252  * this function will not need to be called and the resource management
2253  * code will ensure that the resource is freed.
2254  */
2255 void devm_clk_unregister(struct device *dev, struct clk *clk)
2256 {
2257 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2258 }
2259 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2260 
2261 /*
2262  * clkdev helpers
2263  */
2264 int __clk_get(struct clk *clk)
2265 {
2266 	if (clk) {
2267 		if (!try_module_get(clk->owner))
2268 			return 0;
2269 
2270 		kref_get(&clk->ref);
2271 	}
2272 	return 1;
2273 }
2274 
2275 void __clk_put(struct clk *clk)
2276 {
2277 	struct module *owner;
2278 
2279 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2280 		return;
2281 
2282 	clk_prepare_lock();
2283 	owner = clk->owner;
2284 	kref_put(&clk->ref, __clk_release);
2285 	clk_prepare_unlock();
2286 
2287 	module_put(owner);
2288 }
2289 
2290 /***        clk rate change notifiers        ***/
2291 
2292 /**
2293  * clk_notifier_register - add a clk rate change notifier
2294  * @clk: struct clk * to watch
2295  * @nb: struct notifier_block * with callback info
2296  *
2297  * Request notification when clk's rate changes.  This uses an SRCU
2298  * notifier because we want it to block and notifier unregistrations are
2299  * uncommon.  The callbacks associated with the notifier must not
2300  * re-enter into the clk framework by calling any top-level clk APIs;
2301  * this will cause a nested prepare_lock mutex.
2302  *
2303  * In all notification cases cases (pre, post and abort rate change) the
2304  * original clock rate is passed to the callback via struct
2305  * clk_notifier_data.old_rate and the new frequency is passed via struct
2306  * clk_notifier_data.new_rate.
2307  *
2308  * clk_notifier_register() must be called from non-atomic context.
2309  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2310  * allocation failure; otherwise, passes along the return value of
2311  * srcu_notifier_chain_register().
2312  */
2313 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2314 {
2315 	struct clk_notifier *cn;
2316 	int ret = -ENOMEM;
2317 
2318 	if (!clk || !nb)
2319 		return -EINVAL;
2320 
2321 	clk_prepare_lock();
2322 
2323 	/* search the list of notifiers for this clk */
2324 	list_for_each_entry(cn, &clk_notifier_list, node)
2325 		if (cn->clk == clk)
2326 			break;
2327 
2328 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2329 	if (cn->clk != clk) {
2330 		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2331 		if (!cn)
2332 			goto out;
2333 
2334 		cn->clk = clk;
2335 		srcu_init_notifier_head(&cn->notifier_head);
2336 
2337 		list_add(&cn->node, &clk_notifier_list);
2338 	}
2339 
2340 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2341 
2342 	clk->notifier_count++;
2343 
2344 out:
2345 	clk_prepare_unlock();
2346 
2347 	return ret;
2348 }
2349 EXPORT_SYMBOL_GPL(clk_notifier_register);
2350 
2351 /**
2352  * clk_notifier_unregister - remove a clk rate change notifier
2353  * @clk: struct clk *
2354  * @nb: struct notifier_block * with callback info
2355  *
2356  * Request no further notification for changes to 'clk' and frees memory
2357  * allocated in clk_notifier_register.
2358  *
2359  * Returns -EINVAL if called with null arguments; otherwise, passes
2360  * along the return value of srcu_notifier_chain_unregister().
2361  */
2362 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2363 {
2364 	struct clk_notifier *cn = NULL;
2365 	int ret = -EINVAL;
2366 
2367 	if (!clk || !nb)
2368 		return -EINVAL;
2369 
2370 	clk_prepare_lock();
2371 
2372 	list_for_each_entry(cn, &clk_notifier_list, node)
2373 		if (cn->clk == clk)
2374 			break;
2375 
2376 	if (cn->clk == clk) {
2377 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2378 
2379 		clk->notifier_count--;
2380 
2381 		/* XXX the notifier code should handle this better */
2382 		if (!cn->notifier_head.head) {
2383 			srcu_cleanup_notifier_head(&cn->notifier_head);
2384 			list_del(&cn->node);
2385 			kfree(cn);
2386 		}
2387 
2388 	} else {
2389 		ret = -ENOENT;
2390 	}
2391 
2392 	clk_prepare_unlock();
2393 
2394 	return ret;
2395 }
2396 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2397 
2398 #ifdef CONFIG_OF
2399 /**
2400  * struct of_clk_provider - Clock provider registration structure
2401  * @link: Entry in global list of clock providers
2402  * @node: Pointer to device tree node of clock provider
2403  * @get: Get clock callback.  Returns NULL or a struct clk for the
2404  *       given clock specifier
2405  * @data: context pointer to be passed into @get callback
2406  */
2407 struct of_clk_provider {
2408 	struct list_head link;
2409 
2410 	struct device_node *node;
2411 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2412 	void *data;
2413 };
2414 
2415 static const struct of_device_id __clk_of_table_sentinel
2416 	__used __section(__clk_of_table_end);
2417 
2418 static LIST_HEAD(of_clk_providers);
2419 static DEFINE_MUTEX(of_clk_mutex);
2420 
2421 /* of_clk_provider list locking helpers */
2422 void of_clk_lock(void)
2423 {
2424 	mutex_lock(&of_clk_mutex);
2425 }
2426 
2427 void of_clk_unlock(void)
2428 {
2429 	mutex_unlock(&of_clk_mutex);
2430 }
2431 
2432 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2433 				     void *data)
2434 {
2435 	return data;
2436 }
2437 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2438 
2439 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2440 {
2441 	struct clk_onecell_data *clk_data = data;
2442 	unsigned int idx = clkspec->args[0];
2443 
2444 	if (idx >= clk_data->clk_num) {
2445 		pr_err("%s: invalid clock index %d\n", __func__, idx);
2446 		return ERR_PTR(-EINVAL);
2447 	}
2448 
2449 	return clk_data->clks[idx];
2450 }
2451 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2452 
2453 /**
2454  * of_clk_add_provider() - Register a clock provider for a node
2455  * @np: Device node pointer associated with clock provider
2456  * @clk_src_get: callback for decoding clock
2457  * @data: context pointer for @clk_src_get callback.
2458  */
2459 int of_clk_add_provider(struct device_node *np,
2460 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2461 						   void *data),
2462 			void *data)
2463 {
2464 	struct of_clk_provider *cp;
2465 	int ret;
2466 
2467 	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2468 	if (!cp)
2469 		return -ENOMEM;
2470 
2471 	cp->node = of_node_get(np);
2472 	cp->data = data;
2473 	cp->get = clk_src_get;
2474 
2475 	mutex_lock(&of_clk_mutex);
2476 	list_add(&cp->link, &of_clk_providers);
2477 	mutex_unlock(&of_clk_mutex);
2478 	pr_debug("Added clock from %s\n", np->full_name);
2479 
2480 	ret = of_clk_set_defaults(np, true);
2481 	if (ret < 0)
2482 		of_clk_del_provider(np);
2483 
2484 	return ret;
2485 }
2486 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2487 
2488 /**
2489  * of_clk_del_provider() - Remove a previously registered clock provider
2490  * @np: Device node pointer associated with clock provider
2491  */
2492 void of_clk_del_provider(struct device_node *np)
2493 {
2494 	struct of_clk_provider *cp;
2495 
2496 	mutex_lock(&of_clk_mutex);
2497 	list_for_each_entry(cp, &of_clk_providers, link) {
2498 		if (cp->node == np) {
2499 			list_del(&cp->link);
2500 			of_node_put(cp->node);
2501 			kfree(cp);
2502 			break;
2503 		}
2504 	}
2505 	mutex_unlock(&of_clk_mutex);
2506 }
2507 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2508 
2509 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec)
2510 {
2511 	struct of_clk_provider *provider;
2512 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2513 
2514 	/* Check if we have such a provider in our array */
2515 	list_for_each_entry(provider, &of_clk_providers, link) {
2516 		if (provider->node == clkspec->np)
2517 			clk = provider->get(clkspec, provider->data);
2518 		if (!IS_ERR(clk))
2519 			break;
2520 	}
2521 
2522 	return clk;
2523 }
2524 
2525 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2526 {
2527 	struct clk *clk;
2528 
2529 	mutex_lock(&of_clk_mutex);
2530 	clk = __of_clk_get_from_provider(clkspec);
2531 	mutex_unlock(&of_clk_mutex);
2532 
2533 	return clk;
2534 }
2535 
2536 int of_clk_get_parent_count(struct device_node *np)
2537 {
2538 	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2539 }
2540 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2541 
2542 const char *of_clk_get_parent_name(struct device_node *np, int index)
2543 {
2544 	struct of_phandle_args clkspec;
2545 	struct property *prop;
2546 	const char *clk_name;
2547 	const __be32 *vp;
2548 	u32 pv;
2549 	int rc;
2550 	int count;
2551 
2552 	if (index < 0)
2553 		return NULL;
2554 
2555 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2556 					&clkspec);
2557 	if (rc)
2558 		return NULL;
2559 
2560 	index = clkspec.args_count ? clkspec.args[0] : 0;
2561 	count = 0;
2562 
2563 	/* if there is an indices property, use it to transfer the index
2564 	 * specified into an array offset for the clock-output-names property.
2565 	 */
2566 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
2567 		if (index == pv) {
2568 			index = count;
2569 			break;
2570 		}
2571 		count++;
2572 	}
2573 
2574 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
2575 					  index,
2576 					  &clk_name) < 0)
2577 		clk_name = clkspec.np->name;
2578 
2579 	of_node_put(clkspec.np);
2580 	return clk_name;
2581 }
2582 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2583 
2584 struct clock_provider {
2585 	of_clk_init_cb_t clk_init_cb;
2586 	struct device_node *np;
2587 	struct list_head node;
2588 };
2589 
2590 static LIST_HEAD(clk_provider_list);
2591 
2592 /*
2593  * This function looks for a parent clock. If there is one, then it
2594  * checks that the provider for this parent clock was initialized, in
2595  * this case the parent clock will be ready.
2596  */
2597 static int parent_ready(struct device_node *np)
2598 {
2599 	int i = 0;
2600 
2601 	while (true) {
2602 		struct clk *clk = of_clk_get(np, i);
2603 
2604 		/* this parent is ready we can check the next one */
2605 		if (!IS_ERR(clk)) {
2606 			clk_put(clk);
2607 			i++;
2608 			continue;
2609 		}
2610 
2611 		/* at least one parent is not ready, we exit now */
2612 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2613 			return 0;
2614 
2615 		/*
2616 		 * Here we make assumption that the device tree is
2617 		 * written correctly. So an error means that there is
2618 		 * no more parent. As we didn't exit yet, then the
2619 		 * previous parent are ready. If there is no clock
2620 		 * parent, no need to wait for them, then we can
2621 		 * consider their absence as being ready
2622 		 */
2623 		return 1;
2624 	}
2625 }
2626 
2627 /**
2628  * of_clk_init() - Scan and init clock providers from the DT
2629  * @matches: array of compatible values and init functions for providers.
2630  *
2631  * This function scans the device tree for matching clock providers
2632  * and calls their initialization functions. It also does it by trying
2633  * to follow the dependencies.
2634  */
2635 void __init of_clk_init(const struct of_device_id *matches)
2636 {
2637 	const struct of_device_id *match;
2638 	struct device_node *np;
2639 	struct clock_provider *clk_provider, *next;
2640 	bool is_init_done;
2641 	bool force = false;
2642 
2643 	if (!matches)
2644 		matches = &__clk_of_table;
2645 
2646 	/* First prepare the list of the clocks providers */
2647 	for_each_matching_node_and_match(np, matches, &match) {
2648 		struct clock_provider *parent =
2649 			kzalloc(sizeof(struct clock_provider),	GFP_KERNEL);
2650 
2651 		parent->clk_init_cb = match->data;
2652 		parent->np = np;
2653 		list_add_tail(&parent->node, &clk_provider_list);
2654 	}
2655 
2656 	while (!list_empty(&clk_provider_list)) {
2657 		is_init_done = false;
2658 		list_for_each_entry_safe(clk_provider, next,
2659 					&clk_provider_list, node) {
2660 			if (force || parent_ready(clk_provider->np)) {
2661 
2662 				clk_provider->clk_init_cb(clk_provider->np);
2663 				of_clk_set_defaults(clk_provider->np, true);
2664 
2665 				list_del(&clk_provider->node);
2666 				kfree(clk_provider);
2667 				is_init_done = true;
2668 			}
2669 		}
2670 
2671 		/*
2672 		 * We didn't manage to initialize any of the
2673 		 * remaining providers during the last loop, so now we
2674 		 * initialize all the remaining ones unconditionally
2675 		 * in case the clock parent was not mandatory
2676 		 */
2677 		if (!is_init_done)
2678 			force = true;
2679 	}
2680 }
2681 #endif
2682