xref: /linux/drivers/clk/clk.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 /* List of registered clks that use runtime PM */
41 static HLIST_HEAD(clk_rpm_list);
42 static DEFINE_MUTEX(clk_rpm_list_lock);
43 
44 static const struct hlist_head *all_lists[] = {
45 	&clk_root_list,
46 	&clk_orphan_list,
47 	NULL,
48 };
49 
50 /***    private data structures    ***/
51 
52 struct clk_parent_map {
53 	const struct clk_hw	*hw;
54 	struct clk_core		*core;
55 	const char		*fw_name;
56 	const char		*name;
57 	int			index;
58 };
59 
60 struct clk_core {
61 	const char		*name;
62 	const struct clk_ops	*ops;
63 	struct clk_hw		*hw;
64 	struct module		*owner;
65 	struct device		*dev;
66 	struct hlist_node	rpm_node;
67 	struct device_node	*of_node;
68 	struct clk_core		*parent;
69 	struct clk_parent_map	*parents;
70 	u8			num_parents;
71 	u8			new_parent_index;
72 	unsigned long		rate;
73 	unsigned long		req_rate;
74 	unsigned long		new_rate;
75 	struct clk_core		*new_parent;
76 	struct clk_core		*new_child;
77 	unsigned long		flags;
78 	bool			orphan;
79 	bool			rpm_enabled;
80 	unsigned int		enable_count;
81 	unsigned int		prepare_count;
82 	unsigned int		protect_count;
83 	unsigned long		min_rate;
84 	unsigned long		max_rate;
85 	unsigned long		accuracy;
86 	int			phase;
87 	struct clk_duty		duty;
88 	struct hlist_head	children;
89 	struct hlist_node	child_node;
90 	struct hlist_head	clks;
91 	unsigned int		notifier_count;
92 #ifdef CONFIG_DEBUG_FS
93 	struct dentry		*dentry;
94 	struct hlist_node	debug_node;
95 #endif
96 	struct kref		ref;
97 };
98 
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/clk.h>
101 
102 struct clk {
103 	struct clk_core	*core;
104 	struct device *dev;
105 	const char *dev_id;
106 	const char *con_id;
107 	unsigned long min_rate;
108 	unsigned long max_rate;
109 	unsigned int exclusive_count;
110 	struct hlist_node clks_node;
111 };
112 
113 /***           runtime pm          ***/
114 static int clk_pm_runtime_get(struct clk_core *core)
115 {
116 	if (!core->rpm_enabled)
117 		return 0;
118 
119 	return pm_runtime_resume_and_get(core->dev);
120 }
121 
122 static void clk_pm_runtime_put(struct clk_core *core)
123 {
124 	if (!core->rpm_enabled)
125 		return;
126 
127 	pm_runtime_put_sync(core->dev);
128 }
129 
130 /**
131  * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices
132  *
133  * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so
134  * that disabling unused clks avoids a deadlock where a device is runtime PM
135  * resuming/suspending and the runtime PM callback is trying to grab the
136  * prepare_lock for something like clk_prepare_enable() while
137  * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime
138  * PM resume/suspend the device as well.
139  *
140  * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on
141  * success. Otherwise the lock is released on failure.
142  *
143  * Return: 0 on success, negative errno otherwise.
144  */
145 static int clk_pm_runtime_get_all(void)
146 {
147 	int ret;
148 	struct clk_core *core, *failed;
149 
150 	/*
151 	 * Grab the list lock to prevent any new clks from being registered
152 	 * or unregistered until clk_pm_runtime_put_all().
153 	 */
154 	mutex_lock(&clk_rpm_list_lock);
155 
156 	/*
157 	 * Runtime PM "get" all the devices that are needed for the clks
158 	 * currently registered. Do this without holding the prepare_lock, to
159 	 * avoid the deadlock.
160 	 */
161 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
162 		ret = clk_pm_runtime_get(core);
163 		if (ret) {
164 			failed = core;
165 			pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n",
166 			       dev_name(failed->dev), failed->name);
167 			goto err;
168 		}
169 	}
170 
171 	return 0;
172 
173 err:
174 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
175 		if (core == failed)
176 			break;
177 
178 		clk_pm_runtime_put(core);
179 	}
180 	mutex_unlock(&clk_rpm_list_lock);
181 
182 	return ret;
183 }
184 
185 /**
186  * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices
187  *
188  * Put the runtime PM references taken in clk_pm_runtime_get_all() and release
189  * the 'clk_rpm_list_lock'.
190  */
191 static void clk_pm_runtime_put_all(void)
192 {
193 	struct clk_core *core;
194 
195 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node)
196 		clk_pm_runtime_put(core);
197 	mutex_unlock(&clk_rpm_list_lock);
198 }
199 
200 static void clk_pm_runtime_init(struct clk_core *core)
201 {
202 	struct device *dev = core->dev;
203 
204 	if (dev && pm_runtime_enabled(dev)) {
205 		core->rpm_enabled = true;
206 
207 		mutex_lock(&clk_rpm_list_lock);
208 		hlist_add_head(&core->rpm_node, &clk_rpm_list);
209 		mutex_unlock(&clk_rpm_list_lock);
210 	}
211 }
212 
213 /***           locking             ***/
214 static void clk_prepare_lock(void)
215 {
216 	if (!mutex_trylock(&prepare_lock)) {
217 		if (prepare_owner == current) {
218 			prepare_refcnt++;
219 			return;
220 		}
221 		mutex_lock(&prepare_lock);
222 	}
223 	WARN_ON_ONCE(prepare_owner != NULL);
224 	WARN_ON_ONCE(prepare_refcnt != 0);
225 	prepare_owner = current;
226 	prepare_refcnt = 1;
227 }
228 
229 static void clk_prepare_unlock(void)
230 {
231 	WARN_ON_ONCE(prepare_owner != current);
232 	WARN_ON_ONCE(prepare_refcnt == 0);
233 
234 	if (--prepare_refcnt)
235 		return;
236 	prepare_owner = NULL;
237 	mutex_unlock(&prepare_lock);
238 }
239 
240 static unsigned long clk_enable_lock(void)
241 	__acquires(enable_lock)
242 {
243 	unsigned long flags;
244 
245 	/*
246 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
247 	 * we already hold the lock. So, in that case, we rely only on
248 	 * reference counting.
249 	 */
250 	if (!IS_ENABLED(CONFIG_SMP) ||
251 	    !spin_trylock_irqsave(&enable_lock, flags)) {
252 		if (enable_owner == current) {
253 			enable_refcnt++;
254 			__acquire(enable_lock);
255 			if (!IS_ENABLED(CONFIG_SMP))
256 				local_save_flags(flags);
257 			return flags;
258 		}
259 		spin_lock_irqsave(&enable_lock, flags);
260 	}
261 	WARN_ON_ONCE(enable_owner != NULL);
262 	WARN_ON_ONCE(enable_refcnt != 0);
263 	enable_owner = current;
264 	enable_refcnt = 1;
265 	return flags;
266 }
267 
268 static void clk_enable_unlock(unsigned long flags)
269 	__releases(enable_lock)
270 {
271 	WARN_ON_ONCE(enable_owner != current);
272 	WARN_ON_ONCE(enable_refcnt == 0);
273 
274 	if (--enable_refcnt) {
275 		__release(enable_lock);
276 		return;
277 	}
278 	enable_owner = NULL;
279 	spin_unlock_irqrestore(&enable_lock, flags);
280 }
281 
282 static bool clk_core_rate_is_protected(struct clk_core *core)
283 {
284 	return core->protect_count;
285 }
286 
287 static bool clk_core_is_prepared(struct clk_core *core)
288 {
289 	bool ret = false;
290 
291 	/*
292 	 * .is_prepared is optional for clocks that can prepare
293 	 * fall back to software usage counter if it is missing
294 	 */
295 	if (!core->ops->is_prepared)
296 		return core->prepare_count;
297 
298 	if (!clk_pm_runtime_get(core)) {
299 		ret = core->ops->is_prepared(core->hw);
300 		clk_pm_runtime_put(core);
301 	}
302 
303 	return ret;
304 }
305 
306 static bool clk_core_is_enabled(struct clk_core *core)
307 {
308 	bool ret = false;
309 
310 	/*
311 	 * .is_enabled is only mandatory for clocks that gate
312 	 * fall back to software usage counter if .is_enabled is missing
313 	 */
314 	if (!core->ops->is_enabled)
315 		return core->enable_count;
316 
317 	/*
318 	 * Check if clock controller's device is runtime active before
319 	 * calling .is_enabled callback. If not, assume that clock is
320 	 * disabled, because we might be called from atomic context, from
321 	 * which pm_runtime_get() is not allowed.
322 	 * This function is called mainly from clk_disable_unused_subtree,
323 	 * which ensures proper runtime pm activation of controller before
324 	 * taking enable spinlock, but the below check is needed if one tries
325 	 * to call it from other places.
326 	 */
327 	if (core->rpm_enabled) {
328 		pm_runtime_get_noresume(core->dev);
329 		if (!pm_runtime_active(core->dev)) {
330 			ret = false;
331 			goto done;
332 		}
333 	}
334 
335 	/*
336 	 * This could be called with the enable lock held, or from atomic
337 	 * context. If the parent isn't enabled already, we can't do
338 	 * anything here. We can also assume this clock isn't enabled.
339 	 */
340 	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
341 		if (!clk_core_is_enabled(core->parent)) {
342 			ret = false;
343 			goto done;
344 		}
345 
346 	ret = core->ops->is_enabled(core->hw);
347 done:
348 	if (core->rpm_enabled)
349 		pm_runtime_put(core->dev);
350 
351 	return ret;
352 }
353 
354 /***    helper functions   ***/
355 
356 const char *__clk_get_name(const struct clk *clk)
357 {
358 	return !clk ? NULL : clk->core->name;
359 }
360 EXPORT_SYMBOL_GPL(__clk_get_name);
361 
362 const char *clk_hw_get_name(const struct clk_hw *hw)
363 {
364 	return hw->core->name;
365 }
366 EXPORT_SYMBOL_GPL(clk_hw_get_name);
367 
368 struct clk_hw *__clk_get_hw(struct clk *clk)
369 {
370 	return !clk ? NULL : clk->core->hw;
371 }
372 EXPORT_SYMBOL_GPL(__clk_get_hw);
373 
374 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
375 {
376 	return hw->core->num_parents;
377 }
378 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
379 
380 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
381 {
382 	return hw->core->parent ? hw->core->parent->hw : NULL;
383 }
384 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
385 
386 static struct clk_core *__clk_lookup_subtree(const char *name,
387 					     struct clk_core *core)
388 {
389 	struct clk_core *child;
390 	struct clk_core *ret;
391 
392 	if (!strcmp(core->name, name))
393 		return core;
394 
395 	hlist_for_each_entry(child, &core->children, child_node) {
396 		ret = __clk_lookup_subtree(name, child);
397 		if (ret)
398 			return ret;
399 	}
400 
401 	return NULL;
402 }
403 
404 static struct clk_core *clk_core_lookup(const char *name)
405 {
406 	struct clk_core *root_clk;
407 	struct clk_core *ret;
408 
409 	if (!name)
410 		return NULL;
411 
412 	/* search the 'proper' clk tree first */
413 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
414 		ret = __clk_lookup_subtree(name, root_clk);
415 		if (ret)
416 			return ret;
417 	}
418 
419 	/* if not found, then search the orphan tree */
420 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
421 		ret = __clk_lookup_subtree(name, root_clk);
422 		if (ret)
423 			return ret;
424 	}
425 
426 	return NULL;
427 }
428 
429 #ifdef CONFIG_OF
430 static int of_parse_clkspec(const struct device_node *np, int index,
431 			    const char *name, struct of_phandle_args *out_args);
432 static struct clk_hw *
433 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
434 #else
435 static inline int of_parse_clkspec(const struct device_node *np, int index,
436 				   const char *name,
437 				   struct of_phandle_args *out_args)
438 {
439 	return -ENOENT;
440 }
441 static inline struct clk_hw *
442 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
443 {
444 	return ERR_PTR(-ENOENT);
445 }
446 #endif
447 
448 /**
449  * clk_core_get - Find the clk_core parent of a clk
450  * @core: clk to find parent of
451  * @p_index: parent index to search for
452  *
453  * This is the preferred method for clk providers to find the parent of a
454  * clk when that parent is external to the clk controller. The parent_names
455  * array is indexed and treated as a local name matching a string in the device
456  * node's 'clock-names' property or as the 'con_id' matching the device's
457  * dev_name() in a clk_lookup. This allows clk providers to use their own
458  * namespace instead of looking for a globally unique parent string.
459  *
460  * For example the following DT snippet would allow a clock registered by the
461  * clock-controller@c001 that has a clk_init_data::parent_data array
462  * with 'xtal' in the 'name' member to find the clock provided by the
463  * clock-controller@f00abcd without needing to get the globally unique name of
464  * the xtal clk.
465  *
466  *      parent: clock-controller@f00abcd {
467  *              reg = <0xf00abcd 0xabcd>;
468  *              #clock-cells = <0>;
469  *      };
470  *
471  *      clock-controller@c001 {
472  *              reg = <0xc001 0xf00d>;
473  *              clocks = <&parent>;
474  *              clock-names = "xtal";
475  *              #clock-cells = <1>;
476  *      };
477  *
478  * Returns: -ENOENT when the provider can't be found or the clk doesn't
479  * exist in the provider or the name can't be found in the DT node or
480  * in a clkdev lookup. NULL when the provider knows about the clk but it
481  * isn't provided on this system.
482  * A valid clk_core pointer when the clk can be found in the provider.
483  */
484 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
485 {
486 	const char *name = core->parents[p_index].fw_name;
487 	int index = core->parents[p_index].index;
488 	struct clk_hw *hw = ERR_PTR(-ENOENT);
489 	struct device *dev = core->dev;
490 	const char *dev_id = dev ? dev_name(dev) : NULL;
491 	struct device_node *np = core->of_node;
492 	struct of_phandle_args clkspec;
493 
494 	if (np && (name || index >= 0) &&
495 	    !of_parse_clkspec(np, index, name, &clkspec)) {
496 		hw = of_clk_get_hw_from_clkspec(&clkspec);
497 		of_node_put(clkspec.np);
498 	} else if (name) {
499 		/*
500 		 * If the DT search above couldn't find the provider fallback to
501 		 * looking up via clkdev based clk_lookups.
502 		 */
503 		hw = clk_find_hw(dev_id, name);
504 	}
505 
506 	if (IS_ERR(hw))
507 		return ERR_CAST(hw);
508 
509 	if (!hw)
510 		return NULL;
511 
512 	return hw->core;
513 }
514 
515 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
516 {
517 	struct clk_parent_map *entry = &core->parents[index];
518 	struct clk_core *parent;
519 
520 	if (entry->hw) {
521 		parent = entry->hw->core;
522 	} else {
523 		parent = clk_core_get(core, index);
524 		if (PTR_ERR(parent) == -ENOENT && entry->name)
525 			parent = clk_core_lookup(entry->name);
526 	}
527 
528 	/*
529 	 * We have a direct reference but it isn't registered yet?
530 	 * Orphan it and let clk_reparent() update the orphan status
531 	 * when the parent is registered.
532 	 */
533 	if (!parent)
534 		parent = ERR_PTR(-EPROBE_DEFER);
535 
536 	/* Only cache it if it's not an error */
537 	if (!IS_ERR(parent))
538 		entry->core = parent;
539 }
540 
541 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
542 							 u8 index)
543 {
544 	if (!core || index >= core->num_parents || !core->parents)
545 		return NULL;
546 
547 	if (!core->parents[index].core)
548 		clk_core_fill_parent_index(core, index);
549 
550 	return core->parents[index].core;
551 }
552 
553 struct clk_hw *
554 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
555 {
556 	struct clk_core *parent;
557 
558 	parent = clk_core_get_parent_by_index(hw->core, index);
559 
560 	return !parent ? NULL : parent->hw;
561 }
562 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
563 
564 unsigned int __clk_get_enable_count(struct clk *clk)
565 {
566 	return !clk ? 0 : clk->core->enable_count;
567 }
568 
569 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
570 {
571 	if (!core)
572 		return 0;
573 
574 	if (!core->num_parents || core->parent)
575 		return core->rate;
576 
577 	/*
578 	 * Clk must have a parent because num_parents > 0 but the parent isn't
579 	 * known yet. Best to return 0 as the rate of this clk until we can
580 	 * properly recalc the rate based on the parent's rate.
581 	 */
582 	return 0;
583 }
584 
585 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
586 {
587 	return clk_core_get_rate_nolock(hw->core);
588 }
589 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
590 
591 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
592 {
593 	if (!core)
594 		return 0;
595 
596 	return core->accuracy;
597 }
598 
599 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
600 {
601 	return hw->core->flags;
602 }
603 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
604 
605 bool clk_hw_is_prepared(const struct clk_hw *hw)
606 {
607 	return clk_core_is_prepared(hw->core);
608 }
609 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
610 
611 bool clk_hw_is_enabled(const struct clk_hw *hw)
612 {
613 	return clk_core_is_enabled(hw->core);
614 }
615 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
616 
617 bool __clk_is_enabled(struct clk *clk)
618 {
619 	if (!clk)
620 		return false;
621 
622 	return clk_core_is_enabled(clk->core);
623 }
624 EXPORT_SYMBOL_GPL(__clk_is_enabled);
625 
626 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
627 			   unsigned long best, unsigned long flags)
628 {
629 	if (flags & CLK_MUX_ROUND_CLOSEST)
630 		return abs(now - rate) < abs(best - rate);
631 
632 	return now <= rate && now > best;
633 }
634 
635 static void clk_core_init_rate_req(struct clk_core * const core,
636 				   struct clk_rate_request *req,
637 				   unsigned long rate);
638 
639 static int clk_core_round_rate_nolock(struct clk_core *core,
640 				      struct clk_rate_request *req);
641 
642 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
643 {
644 	struct clk_core *tmp;
645 	unsigned int i;
646 
647 	/* Optimize for the case where the parent is already the parent. */
648 	if (core->parent == parent)
649 		return true;
650 
651 	for (i = 0; i < core->num_parents; i++) {
652 		tmp = clk_core_get_parent_by_index(core, i);
653 		if (!tmp)
654 			continue;
655 
656 		if (tmp == parent)
657 			return true;
658 	}
659 
660 	return false;
661 }
662 
663 static void
664 clk_core_forward_rate_req(struct clk_core *core,
665 			  const struct clk_rate_request *old_req,
666 			  struct clk_core *parent,
667 			  struct clk_rate_request *req,
668 			  unsigned long parent_rate)
669 {
670 	if (WARN_ON(!clk_core_has_parent(core, parent)))
671 		return;
672 
673 	clk_core_init_rate_req(parent, req, parent_rate);
674 
675 	if (req->min_rate < old_req->min_rate)
676 		req->min_rate = old_req->min_rate;
677 
678 	if (req->max_rate > old_req->max_rate)
679 		req->max_rate = old_req->max_rate;
680 }
681 
682 static int
683 clk_core_determine_rate_no_reparent(struct clk_hw *hw,
684 				    struct clk_rate_request *req)
685 {
686 	struct clk_core *core = hw->core;
687 	struct clk_core *parent = core->parent;
688 	unsigned long best;
689 	int ret;
690 
691 	if (core->flags & CLK_SET_RATE_PARENT) {
692 		struct clk_rate_request parent_req;
693 
694 		if (!parent) {
695 			req->rate = 0;
696 			return 0;
697 		}
698 
699 		clk_core_forward_rate_req(core, req, parent, &parent_req,
700 					  req->rate);
701 
702 		trace_clk_rate_request_start(&parent_req);
703 
704 		ret = clk_core_round_rate_nolock(parent, &parent_req);
705 		if (ret)
706 			return ret;
707 
708 		trace_clk_rate_request_done(&parent_req);
709 
710 		best = parent_req.rate;
711 	} else if (parent) {
712 		best = clk_core_get_rate_nolock(parent);
713 	} else {
714 		best = clk_core_get_rate_nolock(core);
715 	}
716 
717 	req->best_parent_rate = best;
718 	req->rate = best;
719 
720 	return 0;
721 }
722 
723 int clk_mux_determine_rate_flags(struct clk_hw *hw,
724 				 struct clk_rate_request *req,
725 				 unsigned long flags)
726 {
727 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
728 	int i, num_parents, ret;
729 	unsigned long best = 0;
730 
731 	/* if NO_REPARENT flag set, pass through to current parent */
732 	if (core->flags & CLK_SET_RATE_NO_REPARENT)
733 		return clk_core_determine_rate_no_reparent(hw, req);
734 
735 	/* find the parent that can provide the fastest rate <= rate */
736 	num_parents = core->num_parents;
737 	for (i = 0; i < num_parents; i++) {
738 		unsigned long parent_rate;
739 
740 		parent = clk_core_get_parent_by_index(core, i);
741 		if (!parent)
742 			continue;
743 
744 		if (core->flags & CLK_SET_RATE_PARENT) {
745 			struct clk_rate_request parent_req;
746 
747 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
748 
749 			trace_clk_rate_request_start(&parent_req);
750 
751 			ret = clk_core_round_rate_nolock(parent, &parent_req);
752 			if (ret)
753 				continue;
754 
755 			trace_clk_rate_request_done(&parent_req);
756 
757 			parent_rate = parent_req.rate;
758 		} else {
759 			parent_rate = clk_core_get_rate_nolock(parent);
760 		}
761 
762 		if (mux_is_better_rate(req->rate, parent_rate,
763 				       best, flags)) {
764 			best_parent = parent;
765 			best = parent_rate;
766 		}
767 	}
768 
769 	if (!best_parent)
770 		return -EINVAL;
771 
772 	req->best_parent_hw = best_parent->hw;
773 	req->best_parent_rate = best;
774 	req->rate = best;
775 
776 	return 0;
777 }
778 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
779 
780 struct clk *__clk_lookup(const char *name)
781 {
782 	struct clk_core *core = clk_core_lookup(name);
783 
784 	return !core ? NULL : core->hw->clk;
785 }
786 
787 static void clk_core_get_boundaries(struct clk_core *core,
788 				    unsigned long *min_rate,
789 				    unsigned long *max_rate)
790 {
791 	struct clk *clk_user;
792 
793 	lockdep_assert_held(&prepare_lock);
794 
795 	*min_rate = core->min_rate;
796 	*max_rate = core->max_rate;
797 
798 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
799 		*min_rate = max(*min_rate, clk_user->min_rate);
800 
801 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
802 		*max_rate = min(*max_rate, clk_user->max_rate);
803 }
804 
805 /*
806  * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
807  * @hw: the hw clk we want to get the range from
808  * @min_rate: pointer to the variable that will hold the minimum
809  * @max_rate: pointer to the variable that will hold the maximum
810  *
811  * Fills the @min_rate and @max_rate variables with the minimum and
812  * maximum that clock can reach.
813  */
814 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
815 			   unsigned long *max_rate)
816 {
817 	clk_core_get_boundaries(hw->core, min_rate, max_rate);
818 }
819 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
820 
821 static bool clk_core_check_boundaries(struct clk_core *core,
822 				      unsigned long min_rate,
823 				      unsigned long max_rate)
824 {
825 	struct clk *user;
826 
827 	lockdep_assert_held(&prepare_lock);
828 
829 	if (min_rate > core->max_rate || max_rate < core->min_rate)
830 		return false;
831 
832 	hlist_for_each_entry(user, &core->clks, clks_node)
833 		if (min_rate > user->max_rate || max_rate < user->min_rate)
834 			return false;
835 
836 	return true;
837 }
838 
839 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
840 			   unsigned long max_rate)
841 {
842 	hw->core->min_rate = min_rate;
843 	hw->core->max_rate = max_rate;
844 }
845 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
846 
847 /*
848  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
849  * @hw: mux type clk to determine rate on
850  * @req: rate request, also used to return preferred parent and frequencies
851  *
852  * Helper for finding best parent to provide a given frequency. This can be used
853  * directly as a determine_rate callback (e.g. for a mux), or from a more
854  * complex clock that may combine a mux with other operations.
855  *
856  * Returns: 0 on success, -EERROR value on error
857  */
858 int __clk_mux_determine_rate(struct clk_hw *hw,
859 			     struct clk_rate_request *req)
860 {
861 	return clk_mux_determine_rate_flags(hw, req, 0);
862 }
863 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
864 
865 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
866 				     struct clk_rate_request *req)
867 {
868 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
869 }
870 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
871 
872 /*
873  * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
874  * @hw: mux type clk to determine rate on
875  * @req: rate request, also used to return preferred frequency
876  *
877  * Helper for finding best parent rate to provide a given frequency.
878  * This can be used directly as a determine_rate callback (e.g. for a
879  * mux), or from a more complex clock that may combine a mux with other
880  * operations.
881  *
882  * Returns: 0 on success, -EERROR value on error
883  */
884 int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
885 				      struct clk_rate_request *req)
886 {
887 	return clk_core_determine_rate_no_reparent(hw, req);
888 }
889 EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
890 
891 /***        clk api        ***/
892 
893 static void clk_core_rate_unprotect(struct clk_core *core)
894 {
895 	lockdep_assert_held(&prepare_lock);
896 
897 	if (!core)
898 		return;
899 
900 	if (WARN(core->protect_count == 0,
901 	    "%s already unprotected\n", core->name))
902 		return;
903 
904 	if (--core->protect_count > 0)
905 		return;
906 
907 	clk_core_rate_unprotect(core->parent);
908 }
909 
910 static int clk_core_rate_nuke_protect(struct clk_core *core)
911 {
912 	int ret;
913 
914 	lockdep_assert_held(&prepare_lock);
915 
916 	if (!core)
917 		return -EINVAL;
918 
919 	if (core->protect_count == 0)
920 		return 0;
921 
922 	ret = core->protect_count;
923 	core->protect_count = 1;
924 	clk_core_rate_unprotect(core);
925 
926 	return ret;
927 }
928 
929 /**
930  * clk_rate_exclusive_put - release exclusivity over clock rate control
931  * @clk: the clk over which the exclusivity is released
932  *
933  * clk_rate_exclusive_put() completes a critical section during which a clock
934  * consumer cannot tolerate any other consumer making any operation on the
935  * clock which could result in a rate change or rate glitch. Exclusive clocks
936  * cannot have their rate changed, either directly or indirectly due to changes
937  * further up the parent chain of clocks. As a result, clocks up parent chain
938  * also get under exclusive control of the calling consumer.
939  *
940  * If exlusivity is claimed more than once on clock, even by the same consumer,
941  * the rate effectively gets locked as exclusivity can't be preempted.
942  *
943  * Calls to clk_rate_exclusive_put() must be balanced with calls to
944  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
945  * error status.
946  */
947 void clk_rate_exclusive_put(struct clk *clk)
948 {
949 	if (!clk)
950 		return;
951 
952 	clk_prepare_lock();
953 
954 	/*
955 	 * if there is something wrong with this consumer protect count, stop
956 	 * here before messing with the provider
957 	 */
958 	if (WARN_ON(clk->exclusive_count <= 0))
959 		goto out;
960 
961 	clk_core_rate_unprotect(clk->core);
962 	clk->exclusive_count--;
963 out:
964 	clk_prepare_unlock();
965 }
966 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
967 
968 static void clk_core_rate_protect(struct clk_core *core)
969 {
970 	lockdep_assert_held(&prepare_lock);
971 
972 	if (!core)
973 		return;
974 
975 	if (core->protect_count == 0)
976 		clk_core_rate_protect(core->parent);
977 
978 	core->protect_count++;
979 }
980 
981 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
982 {
983 	lockdep_assert_held(&prepare_lock);
984 
985 	if (!core)
986 		return;
987 
988 	if (count == 0)
989 		return;
990 
991 	clk_core_rate_protect(core);
992 	core->protect_count = count;
993 }
994 
995 /**
996  * clk_rate_exclusive_get - get exclusivity over the clk rate control
997  * @clk: the clk over which the exclusity of rate control is requested
998  *
999  * clk_rate_exclusive_get() begins a critical section during which a clock
1000  * consumer cannot tolerate any other consumer making any operation on the
1001  * clock which could result in a rate change or rate glitch. Exclusive clocks
1002  * cannot have their rate changed, either directly or indirectly due to changes
1003  * further up the parent chain of clocks. As a result, clocks up parent chain
1004  * also get under exclusive control of the calling consumer.
1005  *
1006  * If exlusivity is claimed more than once on clock, even by the same consumer,
1007  * the rate effectively gets locked as exclusivity can't be preempted.
1008  *
1009  * Calls to clk_rate_exclusive_get() should be balanced with calls to
1010  * clk_rate_exclusive_put(). Calls to this function may sleep.
1011  * Returns 0 on success, -EERROR otherwise
1012  */
1013 int clk_rate_exclusive_get(struct clk *clk)
1014 {
1015 	if (!clk)
1016 		return 0;
1017 
1018 	clk_prepare_lock();
1019 	clk_core_rate_protect(clk->core);
1020 	clk->exclusive_count++;
1021 	clk_prepare_unlock();
1022 
1023 	return 0;
1024 }
1025 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
1026 
1027 static void devm_clk_rate_exclusive_put(void *data)
1028 {
1029 	struct clk *clk = data;
1030 
1031 	clk_rate_exclusive_put(clk);
1032 }
1033 
1034 int devm_clk_rate_exclusive_get(struct device *dev, struct clk *clk)
1035 {
1036 	int ret;
1037 
1038 	ret = clk_rate_exclusive_get(clk);
1039 	if (ret)
1040 		return ret;
1041 
1042 	return devm_add_action_or_reset(dev, devm_clk_rate_exclusive_put, clk);
1043 }
1044 EXPORT_SYMBOL_GPL(devm_clk_rate_exclusive_get);
1045 
1046 static void clk_core_unprepare(struct clk_core *core)
1047 {
1048 	lockdep_assert_held(&prepare_lock);
1049 
1050 	if (!core)
1051 		return;
1052 
1053 	if (WARN(core->prepare_count == 0,
1054 	    "%s already unprepared\n", core->name))
1055 		return;
1056 
1057 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
1058 	    "Unpreparing critical %s\n", core->name))
1059 		return;
1060 
1061 	if (core->flags & CLK_SET_RATE_GATE)
1062 		clk_core_rate_unprotect(core);
1063 
1064 	if (--core->prepare_count > 0)
1065 		return;
1066 
1067 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
1068 
1069 	trace_clk_unprepare(core);
1070 
1071 	if (core->ops->unprepare)
1072 		core->ops->unprepare(core->hw);
1073 
1074 	trace_clk_unprepare_complete(core);
1075 	clk_core_unprepare(core->parent);
1076 	clk_pm_runtime_put(core);
1077 }
1078 
1079 static void clk_core_unprepare_lock(struct clk_core *core)
1080 {
1081 	clk_prepare_lock();
1082 	clk_core_unprepare(core);
1083 	clk_prepare_unlock();
1084 }
1085 
1086 /**
1087  * clk_unprepare - undo preparation of a clock source
1088  * @clk: the clk being unprepared
1089  *
1090  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
1091  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
1092  * if the operation may sleep.  One example is a clk which is accessed over
1093  * I2c.  In the complex case a clk gate operation may require a fast and a slow
1094  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
1095  * exclusive.  In fact clk_disable must be called before clk_unprepare.
1096  */
1097 void clk_unprepare(struct clk *clk)
1098 {
1099 	if (IS_ERR_OR_NULL(clk))
1100 		return;
1101 
1102 	clk_core_unprepare_lock(clk->core);
1103 }
1104 EXPORT_SYMBOL_GPL(clk_unprepare);
1105 
1106 static int clk_core_prepare(struct clk_core *core)
1107 {
1108 	int ret = 0;
1109 
1110 	lockdep_assert_held(&prepare_lock);
1111 
1112 	if (!core)
1113 		return 0;
1114 
1115 	if (core->prepare_count == 0) {
1116 		ret = clk_pm_runtime_get(core);
1117 		if (ret)
1118 			return ret;
1119 
1120 		ret = clk_core_prepare(core->parent);
1121 		if (ret)
1122 			goto runtime_put;
1123 
1124 		trace_clk_prepare(core);
1125 
1126 		if (core->ops->prepare)
1127 			ret = core->ops->prepare(core->hw);
1128 
1129 		trace_clk_prepare_complete(core);
1130 
1131 		if (ret)
1132 			goto unprepare;
1133 	}
1134 
1135 	core->prepare_count++;
1136 
1137 	/*
1138 	 * CLK_SET_RATE_GATE is a special case of clock protection
1139 	 * Instead of a consumer claiming exclusive rate control, it is
1140 	 * actually the provider which prevents any consumer from making any
1141 	 * operation which could result in a rate change or rate glitch while
1142 	 * the clock is prepared.
1143 	 */
1144 	if (core->flags & CLK_SET_RATE_GATE)
1145 		clk_core_rate_protect(core);
1146 
1147 	return 0;
1148 unprepare:
1149 	clk_core_unprepare(core->parent);
1150 runtime_put:
1151 	clk_pm_runtime_put(core);
1152 	return ret;
1153 }
1154 
1155 static int clk_core_prepare_lock(struct clk_core *core)
1156 {
1157 	int ret;
1158 
1159 	clk_prepare_lock();
1160 	ret = clk_core_prepare(core);
1161 	clk_prepare_unlock();
1162 
1163 	return ret;
1164 }
1165 
1166 /**
1167  * clk_prepare - prepare a clock source
1168  * @clk: the clk being prepared
1169  *
1170  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1171  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1172  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1173  * the complex case a clk ungate operation may require a fast and a slow part.
1174  * It is this reason that clk_prepare and clk_enable are not mutually
1175  * exclusive.  In fact clk_prepare must be called before clk_enable.
1176  * Returns 0 on success, -EERROR otherwise.
1177  */
1178 int clk_prepare(struct clk *clk)
1179 {
1180 	if (!clk)
1181 		return 0;
1182 
1183 	return clk_core_prepare_lock(clk->core);
1184 }
1185 EXPORT_SYMBOL_GPL(clk_prepare);
1186 
1187 static void clk_core_disable(struct clk_core *core)
1188 {
1189 	lockdep_assert_held(&enable_lock);
1190 
1191 	if (!core)
1192 		return;
1193 
1194 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1195 		return;
1196 
1197 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1198 	    "Disabling critical %s\n", core->name))
1199 		return;
1200 
1201 	if (--core->enable_count > 0)
1202 		return;
1203 
1204 	trace_clk_disable(core);
1205 
1206 	if (core->ops->disable)
1207 		core->ops->disable(core->hw);
1208 
1209 	trace_clk_disable_complete(core);
1210 
1211 	clk_core_disable(core->parent);
1212 }
1213 
1214 static void clk_core_disable_lock(struct clk_core *core)
1215 {
1216 	unsigned long flags;
1217 
1218 	flags = clk_enable_lock();
1219 	clk_core_disable(core);
1220 	clk_enable_unlock(flags);
1221 }
1222 
1223 /**
1224  * clk_disable - gate a clock
1225  * @clk: the clk being gated
1226  *
1227  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1228  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1229  * clk if the operation is fast and will never sleep.  One example is a
1230  * SoC-internal clk which is controlled via simple register writes.  In the
1231  * complex case a clk gate operation may require a fast and a slow part.  It is
1232  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1233  * In fact clk_disable must be called before clk_unprepare.
1234  */
1235 void clk_disable(struct clk *clk)
1236 {
1237 	if (IS_ERR_OR_NULL(clk))
1238 		return;
1239 
1240 	clk_core_disable_lock(clk->core);
1241 }
1242 EXPORT_SYMBOL_GPL(clk_disable);
1243 
1244 static int clk_core_enable(struct clk_core *core)
1245 {
1246 	int ret = 0;
1247 
1248 	lockdep_assert_held(&enable_lock);
1249 
1250 	if (!core)
1251 		return 0;
1252 
1253 	if (WARN(core->prepare_count == 0,
1254 	    "Enabling unprepared %s\n", core->name))
1255 		return -ESHUTDOWN;
1256 
1257 	if (core->enable_count == 0) {
1258 		ret = clk_core_enable(core->parent);
1259 
1260 		if (ret)
1261 			return ret;
1262 
1263 		trace_clk_enable(core);
1264 
1265 		if (core->ops->enable)
1266 			ret = core->ops->enable(core->hw);
1267 
1268 		trace_clk_enable_complete(core);
1269 
1270 		if (ret) {
1271 			clk_core_disable(core->parent);
1272 			return ret;
1273 		}
1274 	}
1275 
1276 	core->enable_count++;
1277 	return 0;
1278 }
1279 
1280 static int clk_core_enable_lock(struct clk_core *core)
1281 {
1282 	unsigned long flags;
1283 	int ret;
1284 
1285 	flags = clk_enable_lock();
1286 	ret = clk_core_enable(core);
1287 	clk_enable_unlock(flags);
1288 
1289 	return ret;
1290 }
1291 
1292 /**
1293  * clk_gate_restore_context - restore context for poweroff
1294  * @hw: the clk_hw pointer of clock whose state is to be restored
1295  *
1296  * The clock gate restore context function enables or disables
1297  * the gate clocks based on the enable_count. This is done in cases
1298  * where the clock context is lost and based on the enable_count
1299  * the clock either needs to be enabled/disabled. This
1300  * helps restore the state of gate clocks.
1301  */
1302 void clk_gate_restore_context(struct clk_hw *hw)
1303 {
1304 	struct clk_core *core = hw->core;
1305 
1306 	if (core->enable_count)
1307 		core->ops->enable(hw);
1308 	else
1309 		core->ops->disable(hw);
1310 }
1311 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1312 
1313 static int clk_core_save_context(struct clk_core *core)
1314 {
1315 	struct clk_core *child;
1316 	int ret = 0;
1317 
1318 	hlist_for_each_entry(child, &core->children, child_node) {
1319 		ret = clk_core_save_context(child);
1320 		if (ret < 0)
1321 			return ret;
1322 	}
1323 
1324 	if (core->ops && core->ops->save_context)
1325 		ret = core->ops->save_context(core->hw);
1326 
1327 	return ret;
1328 }
1329 
1330 static void clk_core_restore_context(struct clk_core *core)
1331 {
1332 	struct clk_core *child;
1333 
1334 	if (core->ops && core->ops->restore_context)
1335 		core->ops->restore_context(core->hw);
1336 
1337 	hlist_for_each_entry(child, &core->children, child_node)
1338 		clk_core_restore_context(child);
1339 }
1340 
1341 /**
1342  * clk_save_context - save clock context for poweroff
1343  *
1344  * Saves the context of the clock register for powerstates in which the
1345  * contents of the registers will be lost. Occurs deep within the suspend
1346  * code.  Returns 0 on success.
1347  */
1348 int clk_save_context(void)
1349 {
1350 	struct clk_core *clk;
1351 	int ret;
1352 
1353 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1354 		ret = clk_core_save_context(clk);
1355 		if (ret < 0)
1356 			return ret;
1357 	}
1358 
1359 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1360 		ret = clk_core_save_context(clk);
1361 		if (ret < 0)
1362 			return ret;
1363 	}
1364 
1365 	return 0;
1366 }
1367 EXPORT_SYMBOL_GPL(clk_save_context);
1368 
1369 /**
1370  * clk_restore_context - restore clock context after poweroff
1371  *
1372  * Restore the saved clock context upon resume.
1373  *
1374  */
1375 void clk_restore_context(void)
1376 {
1377 	struct clk_core *core;
1378 
1379 	hlist_for_each_entry(core, &clk_root_list, child_node)
1380 		clk_core_restore_context(core);
1381 
1382 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1383 		clk_core_restore_context(core);
1384 }
1385 EXPORT_SYMBOL_GPL(clk_restore_context);
1386 
1387 /**
1388  * clk_enable - ungate a clock
1389  * @clk: the clk being ungated
1390  *
1391  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1392  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1393  * if the operation will never sleep.  One example is a SoC-internal clk which
1394  * is controlled via simple register writes.  In the complex case a clk ungate
1395  * operation may require a fast and a slow part.  It is this reason that
1396  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1397  * must be called before clk_enable.  Returns 0 on success, -EERROR
1398  * otherwise.
1399  */
1400 int clk_enable(struct clk *clk)
1401 {
1402 	if (!clk)
1403 		return 0;
1404 
1405 	return clk_core_enable_lock(clk->core);
1406 }
1407 EXPORT_SYMBOL_GPL(clk_enable);
1408 
1409 /**
1410  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1411  * @clk: clock source
1412  *
1413  * Returns true if clk_prepare() implicitly enables the clock, effectively
1414  * making clk_enable()/clk_disable() no-ops, false otherwise.
1415  *
1416  * This is of interest mainly to power management code where actually
1417  * disabling the clock also requires unpreparing it to have any material
1418  * effect.
1419  *
1420  * Regardless of the value returned here, the caller must always invoke
1421  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1422  * to be right.
1423  */
1424 bool clk_is_enabled_when_prepared(struct clk *clk)
1425 {
1426 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1427 }
1428 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1429 
1430 static int clk_core_prepare_enable(struct clk_core *core)
1431 {
1432 	int ret;
1433 
1434 	ret = clk_core_prepare_lock(core);
1435 	if (ret)
1436 		return ret;
1437 
1438 	ret = clk_core_enable_lock(core);
1439 	if (ret)
1440 		clk_core_unprepare_lock(core);
1441 
1442 	return ret;
1443 }
1444 
1445 static void clk_core_disable_unprepare(struct clk_core *core)
1446 {
1447 	clk_core_disable_lock(core);
1448 	clk_core_unprepare_lock(core);
1449 }
1450 
1451 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1452 {
1453 	struct clk_core *child;
1454 
1455 	lockdep_assert_held(&prepare_lock);
1456 
1457 	hlist_for_each_entry(child, &core->children, child_node)
1458 		clk_unprepare_unused_subtree(child);
1459 
1460 	if (core->prepare_count)
1461 		return;
1462 
1463 	if (core->flags & CLK_IGNORE_UNUSED)
1464 		return;
1465 
1466 	if (clk_core_is_prepared(core)) {
1467 		trace_clk_unprepare(core);
1468 		if (core->ops->unprepare_unused)
1469 			core->ops->unprepare_unused(core->hw);
1470 		else if (core->ops->unprepare)
1471 			core->ops->unprepare(core->hw);
1472 		trace_clk_unprepare_complete(core);
1473 	}
1474 }
1475 
1476 static void __init clk_disable_unused_subtree(struct clk_core *core)
1477 {
1478 	struct clk_core *child;
1479 	unsigned long flags;
1480 
1481 	lockdep_assert_held(&prepare_lock);
1482 
1483 	hlist_for_each_entry(child, &core->children, child_node)
1484 		clk_disable_unused_subtree(child);
1485 
1486 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1487 		clk_core_prepare_enable(core->parent);
1488 
1489 	flags = clk_enable_lock();
1490 
1491 	if (core->enable_count)
1492 		goto unlock_out;
1493 
1494 	if (core->flags & CLK_IGNORE_UNUSED)
1495 		goto unlock_out;
1496 
1497 	/*
1498 	 * some gate clocks have special needs during the disable-unused
1499 	 * sequence.  call .disable_unused if available, otherwise fall
1500 	 * back to .disable
1501 	 */
1502 	if (clk_core_is_enabled(core)) {
1503 		trace_clk_disable(core);
1504 		if (core->ops->disable_unused)
1505 			core->ops->disable_unused(core->hw);
1506 		else if (core->ops->disable)
1507 			core->ops->disable(core->hw);
1508 		trace_clk_disable_complete(core);
1509 	}
1510 
1511 unlock_out:
1512 	clk_enable_unlock(flags);
1513 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1514 		clk_core_disable_unprepare(core->parent);
1515 }
1516 
1517 static bool clk_ignore_unused __initdata;
1518 static int __init clk_ignore_unused_setup(char *__unused)
1519 {
1520 	clk_ignore_unused = true;
1521 	return 1;
1522 }
1523 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1524 
1525 static int __init clk_disable_unused(void)
1526 {
1527 	struct clk_core *core;
1528 	int ret;
1529 
1530 	if (clk_ignore_unused) {
1531 		pr_warn("clk: Not disabling unused clocks\n");
1532 		return 0;
1533 	}
1534 
1535 	pr_info("clk: Disabling unused clocks\n");
1536 
1537 	ret = clk_pm_runtime_get_all();
1538 	if (ret)
1539 		return ret;
1540 	/*
1541 	 * Grab the prepare lock to keep the clk topology stable while iterating
1542 	 * over clks.
1543 	 */
1544 	clk_prepare_lock();
1545 
1546 	hlist_for_each_entry(core, &clk_root_list, child_node)
1547 		clk_disable_unused_subtree(core);
1548 
1549 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1550 		clk_disable_unused_subtree(core);
1551 
1552 	hlist_for_each_entry(core, &clk_root_list, child_node)
1553 		clk_unprepare_unused_subtree(core);
1554 
1555 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1556 		clk_unprepare_unused_subtree(core);
1557 
1558 	clk_prepare_unlock();
1559 
1560 	clk_pm_runtime_put_all();
1561 
1562 	return 0;
1563 }
1564 late_initcall_sync(clk_disable_unused);
1565 
1566 static int clk_core_determine_round_nolock(struct clk_core *core,
1567 					   struct clk_rate_request *req)
1568 {
1569 	long rate;
1570 
1571 	lockdep_assert_held(&prepare_lock);
1572 
1573 	if (!core)
1574 		return 0;
1575 
1576 	/*
1577 	 * Some clock providers hand-craft their clk_rate_requests and
1578 	 * might not fill min_rate and max_rate.
1579 	 *
1580 	 * If it's the case, clamping the rate is equivalent to setting
1581 	 * the rate to 0 which is bad. Skip the clamping but complain so
1582 	 * that it gets fixed, hopefully.
1583 	 */
1584 	if (!req->min_rate && !req->max_rate)
1585 		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1586 			__func__, core->name);
1587 	else
1588 		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1589 
1590 	/*
1591 	 * At this point, core protection will be disabled
1592 	 * - if the provider is not protected at all
1593 	 * - if the calling consumer is the only one which has exclusivity
1594 	 *   over the provider
1595 	 */
1596 	if (clk_core_rate_is_protected(core)) {
1597 		req->rate = core->rate;
1598 	} else if (core->ops->determine_rate) {
1599 		return core->ops->determine_rate(core->hw, req);
1600 	} else if (core->ops->round_rate) {
1601 		rate = core->ops->round_rate(core->hw, req->rate,
1602 					     &req->best_parent_rate);
1603 		if (rate < 0)
1604 			return rate;
1605 
1606 		req->rate = rate;
1607 	} else {
1608 		return -EINVAL;
1609 	}
1610 
1611 	return 0;
1612 }
1613 
1614 static void clk_core_init_rate_req(struct clk_core * const core,
1615 				   struct clk_rate_request *req,
1616 				   unsigned long rate)
1617 {
1618 	struct clk_core *parent;
1619 
1620 	if (WARN_ON(!req))
1621 		return;
1622 
1623 	memset(req, 0, sizeof(*req));
1624 	req->max_rate = ULONG_MAX;
1625 
1626 	if (!core)
1627 		return;
1628 
1629 	req->core = core;
1630 	req->rate = rate;
1631 	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1632 
1633 	parent = core->parent;
1634 	if (parent) {
1635 		req->best_parent_hw = parent->hw;
1636 		req->best_parent_rate = parent->rate;
1637 	} else {
1638 		req->best_parent_hw = NULL;
1639 		req->best_parent_rate = 0;
1640 	}
1641 }
1642 
1643 /**
1644  * clk_hw_init_rate_request - Initializes a clk_rate_request
1645  * @hw: the clk for which we want to submit a rate request
1646  * @req: the clk_rate_request structure we want to initialise
1647  * @rate: the rate which is to be requested
1648  *
1649  * Initializes a clk_rate_request structure to submit to
1650  * __clk_determine_rate() or similar functions.
1651  */
1652 void clk_hw_init_rate_request(const struct clk_hw *hw,
1653 			      struct clk_rate_request *req,
1654 			      unsigned long rate)
1655 {
1656 	if (WARN_ON(!hw || !req))
1657 		return;
1658 
1659 	clk_core_init_rate_req(hw->core, req, rate);
1660 }
1661 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1662 
1663 /**
1664  * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1665  * @hw: the original clock that got the rate request
1666  * @old_req: the original clk_rate_request structure we want to forward
1667  * @parent: the clk we want to forward @old_req to
1668  * @req: the clk_rate_request structure we want to initialise
1669  * @parent_rate: The rate which is to be requested to @parent
1670  *
1671  * Initializes a clk_rate_request structure to submit to a clock parent
1672  * in __clk_determine_rate() or similar functions.
1673  */
1674 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1675 				 const struct clk_rate_request *old_req,
1676 				 const struct clk_hw *parent,
1677 				 struct clk_rate_request *req,
1678 				 unsigned long parent_rate)
1679 {
1680 	if (WARN_ON(!hw || !old_req || !parent || !req))
1681 		return;
1682 
1683 	clk_core_forward_rate_req(hw->core, old_req,
1684 				  parent->core, req,
1685 				  parent_rate);
1686 }
1687 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1688 
1689 static bool clk_core_can_round(struct clk_core * const core)
1690 {
1691 	return core->ops->determine_rate || core->ops->round_rate;
1692 }
1693 
1694 static int clk_core_round_rate_nolock(struct clk_core *core,
1695 				      struct clk_rate_request *req)
1696 {
1697 	int ret;
1698 
1699 	lockdep_assert_held(&prepare_lock);
1700 
1701 	if (!core) {
1702 		req->rate = 0;
1703 		return 0;
1704 	}
1705 
1706 	if (clk_core_can_round(core))
1707 		return clk_core_determine_round_nolock(core, req);
1708 
1709 	if (core->flags & CLK_SET_RATE_PARENT) {
1710 		struct clk_rate_request parent_req;
1711 
1712 		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1713 
1714 		trace_clk_rate_request_start(&parent_req);
1715 
1716 		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1717 		if (ret)
1718 			return ret;
1719 
1720 		trace_clk_rate_request_done(&parent_req);
1721 
1722 		req->best_parent_rate = parent_req.rate;
1723 		req->rate = parent_req.rate;
1724 
1725 		return 0;
1726 	}
1727 
1728 	req->rate = core->rate;
1729 	return 0;
1730 }
1731 
1732 /**
1733  * __clk_determine_rate - get the closest rate actually supported by a clock
1734  * @hw: determine the rate of this clock
1735  * @req: target rate request
1736  *
1737  * Useful for clk_ops such as .set_rate and .determine_rate.
1738  */
1739 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1740 {
1741 	if (!hw) {
1742 		req->rate = 0;
1743 		return 0;
1744 	}
1745 
1746 	return clk_core_round_rate_nolock(hw->core, req);
1747 }
1748 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1749 
1750 /**
1751  * clk_hw_round_rate() - round the given rate for a hw clk
1752  * @hw: the hw clk for which we are rounding a rate
1753  * @rate: the rate which is to be rounded
1754  *
1755  * Takes in a rate as input and rounds it to a rate that the clk can actually
1756  * use.
1757  *
1758  * Context: prepare_lock must be held.
1759  *          For clk providers to call from within clk_ops such as .round_rate,
1760  *          .determine_rate.
1761  *
1762  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1763  *         else returns the parent rate.
1764  */
1765 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1766 {
1767 	int ret;
1768 	struct clk_rate_request req;
1769 
1770 	clk_core_init_rate_req(hw->core, &req, rate);
1771 
1772 	trace_clk_rate_request_start(&req);
1773 
1774 	ret = clk_core_round_rate_nolock(hw->core, &req);
1775 	if (ret)
1776 		return 0;
1777 
1778 	trace_clk_rate_request_done(&req);
1779 
1780 	return req.rate;
1781 }
1782 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1783 
1784 /**
1785  * clk_round_rate - round the given rate for a clk
1786  * @clk: the clk for which we are rounding a rate
1787  * @rate: the rate which is to be rounded
1788  *
1789  * Takes in a rate as input and rounds it to a rate that the clk can actually
1790  * use which is then returned.  If clk doesn't support round_rate operation
1791  * then the parent rate is returned.
1792  */
1793 long clk_round_rate(struct clk *clk, unsigned long rate)
1794 {
1795 	struct clk_rate_request req;
1796 	int ret;
1797 
1798 	if (!clk)
1799 		return 0;
1800 
1801 	clk_prepare_lock();
1802 
1803 	if (clk->exclusive_count)
1804 		clk_core_rate_unprotect(clk->core);
1805 
1806 	clk_core_init_rate_req(clk->core, &req, rate);
1807 
1808 	trace_clk_rate_request_start(&req);
1809 
1810 	ret = clk_core_round_rate_nolock(clk->core, &req);
1811 
1812 	trace_clk_rate_request_done(&req);
1813 
1814 	if (clk->exclusive_count)
1815 		clk_core_rate_protect(clk->core);
1816 
1817 	clk_prepare_unlock();
1818 
1819 	if (ret)
1820 		return ret;
1821 
1822 	return req.rate;
1823 }
1824 EXPORT_SYMBOL_GPL(clk_round_rate);
1825 
1826 /**
1827  * __clk_notify - call clk notifier chain
1828  * @core: clk that is changing rate
1829  * @msg: clk notifier type (see include/linux/clk.h)
1830  * @old_rate: old clk rate
1831  * @new_rate: new clk rate
1832  *
1833  * Triggers a notifier call chain on the clk rate-change notification
1834  * for 'clk'.  Passes a pointer to the struct clk and the previous
1835  * and current rates to the notifier callback.  Intended to be called by
1836  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1837  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1838  * a driver returns that.
1839  */
1840 static int __clk_notify(struct clk_core *core, unsigned long msg,
1841 		unsigned long old_rate, unsigned long new_rate)
1842 {
1843 	struct clk_notifier *cn;
1844 	struct clk_notifier_data cnd;
1845 	int ret = NOTIFY_DONE;
1846 
1847 	cnd.old_rate = old_rate;
1848 	cnd.new_rate = new_rate;
1849 
1850 	list_for_each_entry(cn, &clk_notifier_list, node) {
1851 		if (cn->clk->core == core) {
1852 			cnd.clk = cn->clk;
1853 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1854 					&cnd);
1855 			if (ret & NOTIFY_STOP_MASK)
1856 				return ret;
1857 		}
1858 	}
1859 
1860 	return ret;
1861 }
1862 
1863 /**
1864  * __clk_recalc_accuracies
1865  * @core: first clk in the subtree
1866  *
1867  * Walks the subtree of clks starting with clk and recalculates accuracies as
1868  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1869  * callback then it is assumed that the clock will take on the accuracy of its
1870  * parent.
1871  */
1872 static void __clk_recalc_accuracies(struct clk_core *core)
1873 {
1874 	unsigned long parent_accuracy = 0;
1875 	struct clk_core *child;
1876 
1877 	lockdep_assert_held(&prepare_lock);
1878 
1879 	if (core->parent)
1880 		parent_accuracy = core->parent->accuracy;
1881 
1882 	if (core->ops->recalc_accuracy)
1883 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1884 							  parent_accuracy);
1885 	else
1886 		core->accuracy = parent_accuracy;
1887 
1888 	hlist_for_each_entry(child, &core->children, child_node)
1889 		__clk_recalc_accuracies(child);
1890 }
1891 
1892 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1893 {
1894 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1895 		__clk_recalc_accuracies(core);
1896 
1897 	return clk_core_get_accuracy_no_lock(core);
1898 }
1899 
1900 /**
1901  * clk_get_accuracy - return the accuracy of clk
1902  * @clk: the clk whose accuracy is being returned
1903  *
1904  * Simply returns the cached accuracy of the clk, unless
1905  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1906  * issued.
1907  * If clk is NULL then returns 0.
1908  */
1909 long clk_get_accuracy(struct clk *clk)
1910 {
1911 	long accuracy;
1912 
1913 	if (!clk)
1914 		return 0;
1915 
1916 	clk_prepare_lock();
1917 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1918 	clk_prepare_unlock();
1919 
1920 	return accuracy;
1921 }
1922 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1923 
1924 static unsigned long clk_recalc(struct clk_core *core,
1925 				unsigned long parent_rate)
1926 {
1927 	unsigned long rate = parent_rate;
1928 
1929 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1930 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1931 		clk_pm_runtime_put(core);
1932 	}
1933 	return rate;
1934 }
1935 
1936 /**
1937  * __clk_recalc_rates
1938  * @core: first clk in the subtree
1939  * @update_req: Whether req_rate should be updated with the new rate
1940  * @msg: notification type (see include/linux/clk.h)
1941  *
1942  * Walks the subtree of clks starting with clk and recalculates rates as it
1943  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1944  * it is assumed that the clock will take on the rate of its parent.
1945  *
1946  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1947  * if necessary.
1948  */
1949 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1950 			       unsigned long msg)
1951 {
1952 	unsigned long old_rate;
1953 	unsigned long parent_rate = 0;
1954 	struct clk_core *child;
1955 
1956 	lockdep_assert_held(&prepare_lock);
1957 
1958 	old_rate = core->rate;
1959 
1960 	if (core->parent)
1961 		parent_rate = core->parent->rate;
1962 
1963 	core->rate = clk_recalc(core, parent_rate);
1964 	if (update_req)
1965 		core->req_rate = core->rate;
1966 
1967 	/*
1968 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1969 	 * & ABORT_RATE_CHANGE notifiers
1970 	 */
1971 	if (core->notifier_count && msg)
1972 		__clk_notify(core, msg, old_rate, core->rate);
1973 
1974 	hlist_for_each_entry(child, &core->children, child_node)
1975 		__clk_recalc_rates(child, update_req, msg);
1976 }
1977 
1978 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1979 {
1980 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1981 		__clk_recalc_rates(core, false, 0);
1982 
1983 	return clk_core_get_rate_nolock(core);
1984 }
1985 
1986 /**
1987  * clk_get_rate - return the rate of clk
1988  * @clk: the clk whose rate is being returned
1989  *
1990  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1991  * is set, which means a recalc_rate will be issued. Can be called regardless of
1992  * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1993  * 0.
1994  */
1995 unsigned long clk_get_rate(struct clk *clk)
1996 {
1997 	unsigned long rate;
1998 
1999 	if (!clk)
2000 		return 0;
2001 
2002 	clk_prepare_lock();
2003 	rate = clk_core_get_rate_recalc(clk->core);
2004 	clk_prepare_unlock();
2005 
2006 	return rate;
2007 }
2008 EXPORT_SYMBOL_GPL(clk_get_rate);
2009 
2010 static int clk_fetch_parent_index(struct clk_core *core,
2011 				  struct clk_core *parent)
2012 {
2013 	int i;
2014 
2015 	if (!parent)
2016 		return -EINVAL;
2017 
2018 	for (i = 0; i < core->num_parents; i++) {
2019 		/* Found it first try! */
2020 		if (core->parents[i].core == parent)
2021 			return i;
2022 
2023 		/* Something else is here, so keep looking */
2024 		if (core->parents[i].core)
2025 			continue;
2026 
2027 		/* Maybe core hasn't been cached but the hw is all we know? */
2028 		if (core->parents[i].hw) {
2029 			if (core->parents[i].hw == parent->hw)
2030 				break;
2031 
2032 			/* Didn't match, but we're expecting a clk_hw */
2033 			continue;
2034 		}
2035 
2036 		/* Maybe it hasn't been cached (clk_set_parent() path) */
2037 		if (parent == clk_core_get(core, i))
2038 			break;
2039 
2040 		/* Fallback to comparing globally unique names */
2041 		if (core->parents[i].name &&
2042 		    !strcmp(parent->name, core->parents[i].name))
2043 			break;
2044 	}
2045 
2046 	if (i == core->num_parents)
2047 		return -EINVAL;
2048 
2049 	core->parents[i].core = parent;
2050 	return i;
2051 }
2052 
2053 /**
2054  * clk_hw_get_parent_index - return the index of the parent clock
2055  * @hw: clk_hw associated with the clk being consumed
2056  *
2057  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
2058  * clock does not have a current parent.
2059  */
2060 int clk_hw_get_parent_index(struct clk_hw *hw)
2061 {
2062 	struct clk_hw *parent = clk_hw_get_parent(hw);
2063 
2064 	if (WARN_ON(parent == NULL))
2065 		return -EINVAL;
2066 
2067 	return clk_fetch_parent_index(hw->core, parent->core);
2068 }
2069 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
2070 
2071 /*
2072  * Update the orphan status of @core and all its children.
2073  */
2074 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
2075 {
2076 	struct clk_core *child;
2077 
2078 	core->orphan = is_orphan;
2079 
2080 	hlist_for_each_entry(child, &core->children, child_node)
2081 		clk_core_update_orphan_status(child, is_orphan);
2082 }
2083 
2084 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
2085 {
2086 	bool was_orphan = core->orphan;
2087 
2088 	hlist_del(&core->child_node);
2089 
2090 	if (new_parent) {
2091 		bool becomes_orphan = new_parent->orphan;
2092 
2093 		/* avoid duplicate POST_RATE_CHANGE notifications */
2094 		if (new_parent->new_child == core)
2095 			new_parent->new_child = NULL;
2096 
2097 		hlist_add_head(&core->child_node, &new_parent->children);
2098 
2099 		if (was_orphan != becomes_orphan)
2100 			clk_core_update_orphan_status(core, becomes_orphan);
2101 	} else {
2102 		hlist_add_head(&core->child_node, &clk_orphan_list);
2103 		if (!was_orphan)
2104 			clk_core_update_orphan_status(core, true);
2105 	}
2106 
2107 	core->parent = new_parent;
2108 }
2109 
2110 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2111 					   struct clk_core *parent)
2112 {
2113 	unsigned long flags;
2114 	struct clk_core *old_parent = core->parent;
2115 
2116 	/*
2117 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2118 	 *
2119 	 * 2. Migrate prepare state between parents and prevent race with
2120 	 * clk_enable().
2121 	 *
2122 	 * If the clock is not prepared, then a race with
2123 	 * clk_enable/disable() is impossible since we already have the
2124 	 * prepare lock (future calls to clk_enable() need to be preceded by
2125 	 * a clk_prepare()).
2126 	 *
2127 	 * If the clock is prepared, migrate the prepared state to the new
2128 	 * parent and also protect against a race with clk_enable() by
2129 	 * forcing the clock and the new parent on.  This ensures that all
2130 	 * future calls to clk_enable() are practically NOPs with respect to
2131 	 * hardware and software states.
2132 	 *
2133 	 * See also: Comment for clk_set_parent() below.
2134 	 */
2135 
2136 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2137 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2138 		clk_core_prepare_enable(old_parent);
2139 		clk_core_prepare_enable(parent);
2140 	}
2141 
2142 	/* migrate prepare count if > 0 */
2143 	if (core->prepare_count) {
2144 		clk_core_prepare_enable(parent);
2145 		clk_core_enable_lock(core);
2146 	}
2147 
2148 	/* update the clk tree topology */
2149 	flags = clk_enable_lock();
2150 	clk_reparent(core, parent);
2151 	clk_enable_unlock(flags);
2152 
2153 	return old_parent;
2154 }
2155 
2156 static void __clk_set_parent_after(struct clk_core *core,
2157 				   struct clk_core *parent,
2158 				   struct clk_core *old_parent)
2159 {
2160 	/*
2161 	 * Finish the migration of prepare state and undo the changes done
2162 	 * for preventing a race with clk_enable().
2163 	 */
2164 	if (core->prepare_count) {
2165 		clk_core_disable_lock(core);
2166 		clk_core_disable_unprepare(old_parent);
2167 	}
2168 
2169 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2170 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2171 		clk_core_disable_unprepare(parent);
2172 		clk_core_disable_unprepare(old_parent);
2173 	}
2174 }
2175 
2176 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2177 			    u8 p_index)
2178 {
2179 	unsigned long flags;
2180 	int ret = 0;
2181 	struct clk_core *old_parent;
2182 
2183 	old_parent = __clk_set_parent_before(core, parent);
2184 
2185 	trace_clk_set_parent(core, parent);
2186 
2187 	/* change clock input source */
2188 	if (parent && core->ops->set_parent)
2189 		ret = core->ops->set_parent(core->hw, p_index);
2190 
2191 	trace_clk_set_parent_complete(core, parent);
2192 
2193 	if (ret) {
2194 		flags = clk_enable_lock();
2195 		clk_reparent(core, old_parent);
2196 		clk_enable_unlock(flags);
2197 
2198 		__clk_set_parent_after(core, old_parent, parent);
2199 
2200 		return ret;
2201 	}
2202 
2203 	__clk_set_parent_after(core, parent, old_parent);
2204 
2205 	return 0;
2206 }
2207 
2208 /**
2209  * __clk_speculate_rates
2210  * @core: first clk in the subtree
2211  * @parent_rate: the "future" rate of clk's parent
2212  *
2213  * Walks the subtree of clks starting with clk, speculating rates as it
2214  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2215  *
2216  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2217  * pre-rate change notifications and returns early if no clks in the
2218  * subtree have subscribed to the notifications.  Note that if a clk does not
2219  * implement the .recalc_rate callback then it is assumed that the clock will
2220  * take on the rate of its parent.
2221  */
2222 static int __clk_speculate_rates(struct clk_core *core,
2223 				 unsigned long parent_rate)
2224 {
2225 	struct clk_core *child;
2226 	unsigned long new_rate;
2227 	int ret = NOTIFY_DONE;
2228 
2229 	lockdep_assert_held(&prepare_lock);
2230 
2231 	new_rate = clk_recalc(core, parent_rate);
2232 
2233 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2234 	if (core->notifier_count)
2235 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2236 
2237 	if (ret & NOTIFY_STOP_MASK) {
2238 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2239 				__func__, core->name, ret);
2240 		goto out;
2241 	}
2242 
2243 	hlist_for_each_entry(child, &core->children, child_node) {
2244 		ret = __clk_speculate_rates(child, new_rate);
2245 		if (ret & NOTIFY_STOP_MASK)
2246 			break;
2247 	}
2248 
2249 out:
2250 	return ret;
2251 }
2252 
2253 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2254 			     struct clk_core *new_parent, u8 p_index)
2255 {
2256 	struct clk_core *child;
2257 
2258 	core->new_rate = new_rate;
2259 	core->new_parent = new_parent;
2260 	core->new_parent_index = p_index;
2261 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2262 	core->new_child = NULL;
2263 	if (new_parent && new_parent != core->parent)
2264 		new_parent->new_child = core;
2265 
2266 	hlist_for_each_entry(child, &core->children, child_node) {
2267 		child->new_rate = clk_recalc(child, new_rate);
2268 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2269 	}
2270 }
2271 
2272 /*
2273  * calculate the new rates returning the topmost clock that has to be
2274  * changed.
2275  */
2276 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2277 					   unsigned long rate)
2278 {
2279 	struct clk_core *top = core;
2280 	struct clk_core *old_parent, *parent;
2281 	unsigned long best_parent_rate = 0;
2282 	unsigned long new_rate;
2283 	unsigned long min_rate;
2284 	unsigned long max_rate;
2285 	int p_index = 0;
2286 	long ret;
2287 
2288 	/* sanity */
2289 	if (IS_ERR_OR_NULL(core))
2290 		return NULL;
2291 
2292 	/* save parent rate, if it exists */
2293 	parent = old_parent = core->parent;
2294 	if (parent)
2295 		best_parent_rate = parent->rate;
2296 
2297 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2298 
2299 	/* find the closest rate and parent clk/rate */
2300 	if (clk_core_can_round(core)) {
2301 		struct clk_rate_request req;
2302 
2303 		clk_core_init_rate_req(core, &req, rate);
2304 
2305 		trace_clk_rate_request_start(&req);
2306 
2307 		ret = clk_core_determine_round_nolock(core, &req);
2308 		if (ret < 0)
2309 			return NULL;
2310 
2311 		trace_clk_rate_request_done(&req);
2312 
2313 		best_parent_rate = req.best_parent_rate;
2314 		new_rate = req.rate;
2315 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2316 
2317 		if (new_rate < min_rate || new_rate > max_rate)
2318 			return NULL;
2319 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2320 		/* pass-through clock without adjustable parent */
2321 		core->new_rate = core->rate;
2322 		return NULL;
2323 	} else {
2324 		/* pass-through clock with adjustable parent */
2325 		top = clk_calc_new_rates(parent, rate);
2326 		new_rate = parent->new_rate;
2327 		goto out;
2328 	}
2329 
2330 	/* some clocks must be gated to change parent */
2331 	if (parent != old_parent &&
2332 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2333 		pr_debug("%s: %s not gated but wants to reparent\n",
2334 			 __func__, core->name);
2335 		return NULL;
2336 	}
2337 
2338 	/* try finding the new parent index */
2339 	if (parent && core->num_parents > 1) {
2340 		p_index = clk_fetch_parent_index(core, parent);
2341 		if (p_index < 0) {
2342 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2343 				 __func__, parent->name, core->name);
2344 			return NULL;
2345 		}
2346 	}
2347 
2348 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2349 	    best_parent_rate != parent->rate)
2350 		top = clk_calc_new_rates(parent, best_parent_rate);
2351 
2352 out:
2353 	clk_calc_subtree(core, new_rate, parent, p_index);
2354 
2355 	return top;
2356 }
2357 
2358 /*
2359  * Notify about rate changes in a subtree. Always walk down the whole tree
2360  * so that in case of an error we can walk down the whole tree again and
2361  * abort the change.
2362  */
2363 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2364 						  unsigned long event)
2365 {
2366 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2367 	int ret = NOTIFY_DONE;
2368 
2369 	if (core->rate == core->new_rate)
2370 		return NULL;
2371 
2372 	if (core->notifier_count) {
2373 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2374 		if (ret & NOTIFY_STOP_MASK)
2375 			fail_clk = core;
2376 	}
2377 
2378 	hlist_for_each_entry(child, &core->children, child_node) {
2379 		/* Skip children who will be reparented to another clock */
2380 		if (child->new_parent && child->new_parent != core)
2381 			continue;
2382 		tmp_clk = clk_propagate_rate_change(child, event);
2383 		if (tmp_clk)
2384 			fail_clk = tmp_clk;
2385 	}
2386 
2387 	/* handle the new child who might not be in core->children yet */
2388 	if (core->new_child) {
2389 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2390 		if (tmp_clk)
2391 			fail_clk = tmp_clk;
2392 	}
2393 
2394 	return fail_clk;
2395 }
2396 
2397 /*
2398  * walk down a subtree and set the new rates notifying the rate
2399  * change on the way
2400  */
2401 static void clk_change_rate(struct clk_core *core)
2402 {
2403 	struct clk_core *child;
2404 	struct hlist_node *tmp;
2405 	unsigned long old_rate;
2406 	unsigned long best_parent_rate = 0;
2407 	bool skip_set_rate = false;
2408 	struct clk_core *old_parent;
2409 	struct clk_core *parent = NULL;
2410 
2411 	old_rate = core->rate;
2412 
2413 	if (core->new_parent) {
2414 		parent = core->new_parent;
2415 		best_parent_rate = core->new_parent->rate;
2416 	} else if (core->parent) {
2417 		parent = core->parent;
2418 		best_parent_rate = core->parent->rate;
2419 	}
2420 
2421 	if (clk_pm_runtime_get(core))
2422 		return;
2423 
2424 	if (core->flags & CLK_SET_RATE_UNGATE) {
2425 		clk_core_prepare(core);
2426 		clk_core_enable_lock(core);
2427 	}
2428 
2429 	if (core->new_parent && core->new_parent != core->parent) {
2430 		old_parent = __clk_set_parent_before(core, core->new_parent);
2431 		trace_clk_set_parent(core, core->new_parent);
2432 
2433 		if (core->ops->set_rate_and_parent) {
2434 			skip_set_rate = true;
2435 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2436 					best_parent_rate,
2437 					core->new_parent_index);
2438 		} else if (core->ops->set_parent) {
2439 			core->ops->set_parent(core->hw, core->new_parent_index);
2440 		}
2441 
2442 		trace_clk_set_parent_complete(core, core->new_parent);
2443 		__clk_set_parent_after(core, core->new_parent, old_parent);
2444 	}
2445 
2446 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2447 		clk_core_prepare_enable(parent);
2448 
2449 	trace_clk_set_rate(core, core->new_rate);
2450 
2451 	if (!skip_set_rate && core->ops->set_rate)
2452 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2453 
2454 	trace_clk_set_rate_complete(core, core->new_rate);
2455 
2456 	core->rate = clk_recalc(core, best_parent_rate);
2457 
2458 	if (core->flags & CLK_SET_RATE_UNGATE) {
2459 		clk_core_disable_lock(core);
2460 		clk_core_unprepare(core);
2461 	}
2462 
2463 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2464 		clk_core_disable_unprepare(parent);
2465 
2466 	if (core->notifier_count && old_rate != core->rate)
2467 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2468 
2469 	if (core->flags & CLK_RECALC_NEW_RATES)
2470 		(void)clk_calc_new_rates(core, core->new_rate);
2471 
2472 	/*
2473 	 * Use safe iteration, as change_rate can actually swap parents
2474 	 * for certain clock types.
2475 	 */
2476 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2477 		/* Skip children who will be reparented to another clock */
2478 		if (child->new_parent && child->new_parent != core)
2479 			continue;
2480 		clk_change_rate(child);
2481 	}
2482 
2483 	/* handle the new child who might not be in core->children yet */
2484 	if (core->new_child)
2485 		clk_change_rate(core->new_child);
2486 
2487 	clk_pm_runtime_put(core);
2488 }
2489 
2490 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2491 						     unsigned long req_rate)
2492 {
2493 	int ret, cnt;
2494 	struct clk_rate_request req;
2495 
2496 	lockdep_assert_held(&prepare_lock);
2497 
2498 	if (!core)
2499 		return 0;
2500 
2501 	/* simulate what the rate would be if it could be freely set */
2502 	cnt = clk_core_rate_nuke_protect(core);
2503 	if (cnt < 0)
2504 		return cnt;
2505 
2506 	clk_core_init_rate_req(core, &req, req_rate);
2507 
2508 	trace_clk_rate_request_start(&req);
2509 
2510 	ret = clk_core_round_rate_nolock(core, &req);
2511 
2512 	trace_clk_rate_request_done(&req);
2513 
2514 	/* restore the protection */
2515 	clk_core_rate_restore_protect(core, cnt);
2516 
2517 	return ret ? 0 : req.rate;
2518 }
2519 
2520 static int clk_core_set_rate_nolock(struct clk_core *core,
2521 				    unsigned long req_rate)
2522 {
2523 	struct clk_core *top, *fail_clk;
2524 	unsigned long rate;
2525 	int ret;
2526 
2527 	if (!core)
2528 		return 0;
2529 
2530 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2531 
2532 	/* bail early if nothing to do */
2533 	if (rate == clk_core_get_rate_recalc(core))
2534 		return 0;
2535 
2536 	/* fail on a direct rate set of a protected provider */
2537 	if (clk_core_rate_is_protected(core))
2538 		return -EBUSY;
2539 
2540 	/* calculate new rates and get the topmost changed clock */
2541 	top = clk_calc_new_rates(core, req_rate);
2542 	if (!top)
2543 		return -EINVAL;
2544 
2545 	ret = clk_pm_runtime_get(core);
2546 	if (ret)
2547 		return ret;
2548 
2549 	/* notify that we are about to change rates */
2550 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2551 	if (fail_clk) {
2552 		pr_debug("%s: failed to set %s rate\n", __func__,
2553 				fail_clk->name);
2554 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2555 		ret = -EBUSY;
2556 		goto err;
2557 	}
2558 
2559 	/* change the rates */
2560 	clk_change_rate(top);
2561 
2562 	core->req_rate = req_rate;
2563 err:
2564 	clk_pm_runtime_put(core);
2565 
2566 	return ret;
2567 }
2568 
2569 /**
2570  * clk_set_rate - specify a new rate for clk
2571  * @clk: the clk whose rate is being changed
2572  * @rate: the new rate for clk
2573  *
2574  * In the simplest case clk_set_rate will only adjust the rate of clk.
2575  *
2576  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2577  * propagate up to clk's parent; whether or not this happens depends on the
2578  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2579  * after calling .round_rate then upstream parent propagation is ignored.  If
2580  * *parent_rate comes back with a new rate for clk's parent then we propagate
2581  * up to clk's parent and set its rate.  Upward propagation will continue
2582  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2583  * .round_rate stops requesting changes to clk's parent_rate.
2584  *
2585  * Rate changes are accomplished via tree traversal that also recalculates the
2586  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2587  *
2588  * Returns 0 on success, -EERROR otherwise.
2589  */
2590 int clk_set_rate(struct clk *clk, unsigned long rate)
2591 {
2592 	int ret;
2593 
2594 	if (!clk)
2595 		return 0;
2596 
2597 	/* prevent racing with updates to the clock topology */
2598 	clk_prepare_lock();
2599 
2600 	if (clk->exclusive_count)
2601 		clk_core_rate_unprotect(clk->core);
2602 
2603 	ret = clk_core_set_rate_nolock(clk->core, rate);
2604 
2605 	if (clk->exclusive_count)
2606 		clk_core_rate_protect(clk->core);
2607 
2608 	clk_prepare_unlock();
2609 
2610 	return ret;
2611 }
2612 EXPORT_SYMBOL_GPL(clk_set_rate);
2613 
2614 /**
2615  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2616  * @clk: the clk whose rate is being changed
2617  * @rate: the new rate for clk
2618  *
2619  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2620  * within a critical section
2621  *
2622  * This can be used initially to ensure that at least 1 consumer is
2623  * satisfied when several consumers are competing for exclusivity over the
2624  * same clock provider.
2625  *
2626  * The exclusivity is not applied if setting the rate failed.
2627  *
2628  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2629  * clk_rate_exclusive_put().
2630  *
2631  * Returns 0 on success, -EERROR otherwise.
2632  */
2633 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2634 {
2635 	int ret;
2636 
2637 	if (!clk)
2638 		return 0;
2639 
2640 	/* prevent racing with updates to the clock topology */
2641 	clk_prepare_lock();
2642 
2643 	/*
2644 	 * The temporary protection removal is not here, on purpose
2645 	 * This function is meant to be used instead of clk_rate_protect,
2646 	 * so before the consumer code path protect the clock provider
2647 	 */
2648 
2649 	ret = clk_core_set_rate_nolock(clk->core, rate);
2650 	if (!ret) {
2651 		clk_core_rate_protect(clk->core);
2652 		clk->exclusive_count++;
2653 	}
2654 
2655 	clk_prepare_unlock();
2656 
2657 	return ret;
2658 }
2659 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2660 
2661 static int clk_set_rate_range_nolock(struct clk *clk,
2662 				     unsigned long min,
2663 				     unsigned long max)
2664 {
2665 	int ret = 0;
2666 	unsigned long old_min, old_max, rate;
2667 
2668 	lockdep_assert_held(&prepare_lock);
2669 
2670 	if (!clk)
2671 		return 0;
2672 
2673 	trace_clk_set_rate_range(clk->core, min, max);
2674 
2675 	if (min > max) {
2676 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2677 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2678 		       min, max);
2679 		return -EINVAL;
2680 	}
2681 
2682 	if (clk->exclusive_count)
2683 		clk_core_rate_unprotect(clk->core);
2684 
2685 	/* Save the current values in case we need to rollback the change */
2686 	old_min = clk->min_rate;
2687 	old_max = clk->max_rate;
2688 	clk->min_rate = min;
2689 	clk->max_rate = max;
2690 
2691 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2692 		ret = -EINVAL;
2693 		goto out;
2694 	}
2695 
2696 	rate = clk->core->req_rate;
2697 	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2698 		rate = clk_core_get_rate_recalc(clk->core);
2699 
2700 	/*
2701 	 * Since the boundaries have been changed, let's give the
2702 	 * opportunity to the provider to adjust the clock rate based on
2703 	 * the new boundaries.
2704 	 *
2705 	 * We also need to handle the case where the clock is currently
2706 	 * outside of the boundaries. Clamping the last requested rate
2707 	 * to the current minimum and maximum will also handle this.
2708 	 *
2709 	 * FIXME:
2710 	 * There is a catch. It may fail for the usual reason (clock
2711 	 * broken, clock protected, etc) but also because:
2712 	 * - round_rate() was not favorable and fell on the wrong
2713 	 *   side of the boundary
2714 	 * - the determine_rate() callback does not really check for
2715 	 *   this corner case when determining the rate
2716 	 */
2717 	rate = clamp(rate, min, max);
2718 	ret = clk_core_set_rate_nolock(clk->core, rate);
2719 	if (ret) {
2720 		/* rollback the changes */
2721 		clk->min_rate = old_min;
2722 		clk->max_rate = old_max;
2723 	}
2724 
2725 out:
2726 	if (clk->exclusive_count)
2727 		clk_core_rate_protect(clk->core);
2728 
2729 	return ret;
2730 }
2731 
2732 /**
2733  * clk_set_rate_range - set a rate range for a clock source
2734  * @clk: clock source
2735  * @min: desired minimum clock rate in Hz, inclusive
2736  * @max: desired maximum clock rate in Hz, inclusive
2737  *
2738  * Return: 0 for success or negative errno on failure.
2739  */
2740 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2741 {
2742 	int ret;
2743 
2744 	if (!clk)
2745 		return 0;
2746 
2747 	clk_prepare_lock();
2748 
2749 	ret = clk_set_rate_range_nolock(clk, min, max);
2750 
2751 	clk_prepare_unlock();
2752 
2753 	return ret;
2754 }
2755 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2756 
2757 /**
2758  * clk_set_min_rate - set a minimum clock rate for a clock source
2759  * @clk: clock source
2760  * @rate: desired minimum clock rate in Hz, inclusive
2761  *
2762  * Returns success (0) or negative errno.
2763  */
2764 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2765 {
2766 	if (!clk)
2767 		return 0;
2768 
2769 	trace_clk_set_min_rate(clk->core, rate);
2770 
2771 	return clk_set_rate_range(clk, rate, clk->max_rate);
2772 }
2773 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2774 
2775 /**
2776  * clk_set_max_rate - set a maximum clock rate for a clock source
2777  * @clk: clock source
2778  * @rate: desired maximum clock rate in Hz, inclusive
2779  *
2780  * Returns success (0) or negative errno.
2781  */
2782 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2783 {
2784 	if (!clk)
2785 		return 0;
2786 
2787 	trace_clk_set_max_rate(clk->core, rate);
2788 
2789 	return clk_set_rate_range(clk, clk->min_rate, rate);
2790 }
2791 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2792 
2793 /**
2794  * clk_get_parent - return the parent of a clk
2795  * @clk: the clk whose parent gets returned
2796  *
2797  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2798  */
2799 struct clk *clk_get_parent(struct clk *clk)
2800 {
2801 	struct clk *parent;
2802 
2803 	if (!clk)
2804 		return NULL;
2805 
2806 	clk_prepare_lock();
2807 	/* TODO: Create a per-user clk and change callers to call clk_put */
2808 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2809 	clk_prepare_unlock();
2810 
2811 	return parent;
2812 }
2813 EXPORT_SYMBOL_GPL(clk_get_parent);
2814 
2815 static struct clk_core *__clk_init_parent(struct clk_core *core)
2816 {
2817 	u8 index = 0;
2818 
2819 	if (core->num_parents > 1 && core->ops->get_parent)
2820 		index = core->ops->get_parent(core->hw);
2821 
2822 	return clk_core_get_parent_by_index(core, index);
2823 }
2824 
2825 static void clk_core_reparent(struct clk_core *core,
2826 				  struct clk_core *new_parent)
2827 {
2828 	clk_reparent(core, new_parent);
2829 	__clk_recalc_accuracies(core);
2830 	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2831 }
2832 
2833 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2834 {
2835 	if (!hw)
2836 		return;
2837 
2838 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2839 }
2840 
2841 /**
2842  * clk_has_parent - check if a clock is a possible parent for another
2843  * @clk: clock source
2844  * @parent: parent clock source
2845  *
2846  * This function can be used in drivers that need to check that a clock can be
2847  * the parent of another without actually changing the parent.
2848  *
2849  * Returns true if @parent is a possible parent for @clk, false otherwise.
2850  */
2851 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2852 {
2853 	/* NULL clocks should be nops, so return success if either is NULL. */
2854 	if (!clk || !parent)
2855 		return true;
2856 
2857 	return clk_core_has_parent(clk->core, parent->core);
2858 }
2859 EXPORT_SYMBOL_GPL(clk_has_parent);
2860 
2861 static int clk_core_set_parent_nolock(struct clk_core *core,
2862 				      struct clk_core *parent)
2863 {
2864 	int ret = 0;
2865 	int p_index = 0;
2866 	unsigned long p_rate = 0;
2867 
2868 	lockdep_assert_held(&prepare_lock);
2869 
2870 	if (!core)
2871 		return 0;
2872 
2873 	if (core->parent == parent)
2874 		return 0;
2875 
2876 	/* verify ops for multi-parent clks */
2877 	if (core->num_parents > 1 && !core->ops->set_parent)
2878 		return -EPERM;
2879 
2880 	/* check that we are allowed to re-parent if the clock is in use */
2881 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2882 		return -EBUSY;
2883 
2884 	if (clk_core_rate_is_protected(core))
2885 		return -EBUSY;
2886 
2887 	/* try finding the new parent index */
2888 	if (parent) {
2889 		p_index = clk_fetch_parent_index(core, parent);
2890 		if (p_index < 0) {
2891 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2892 					__func__, parent->name, core->name);
2893 			return p_index;
2894 		}
2895 		p_rate = parent->rate;
2896 	}
2897 
2898 	ret = clk_pm_runtime_get(core);
2899 	if (ret)
2900 		return ret;
2901 
2902 	/* propagate PRE_RATE_CHANGE notifications */
2903 	ret = __clk_speculate_rates(core, p_rate);
2904 
2905 	/* abort if a driver objects */
2906 	if (ret & NOTIFY_STOP_MASK)
2907 		goto runtime_put;
2908 
2909 	/* do the re-parent */
2910 	ret = __clk_set_parent(core, parent, p_index);
2911 
2912 	/* propagate rate an accuracy recalculation accordingly */
2913 	if (ret) {
2914 		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2915 	} else {
2916 		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2917 		__clk_recalc_accuracies(core);
2918 	}
2919 
2920 runtime_put:
2921 	clk_pm_runtime_put(core);
2922 
2923 	return ret;
2924 }
2925 
2926 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2927 {
2928 	return clk_core_set_parent_nolock(hw->core, parent->core);
2929 }
2930 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2931 
2932 /**
2933  * clk_set_parent - switch the parent of a mux clk
2934  * @clk: the mux clk whose input we are switching
2935  * @parent: the new input to clk
2936  *
2937  * Re-parent clk to use parent as its new input source.  If clk is in
2938  * prepared state, the clk will get enabled for the duration of this call. If
2939  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2940  * that, the reparenting is glitchy in hardware, etc), use the
2941  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2942  *
2943  * After successfully changing clk's parent clk_set_parent will update the
2944  * clk topology, sysfs topology and propagate rate recalculation via
2945  * __clk_recalc_rates.
2946  *
2947  * Returns 0 on success, -EERROR otherwise.
2948  */
2949 int clk_set_parent(struct clk *clk, struct clk *parent)
2950 {
2951 	int ret;
2952 
2953 	if (!clk)
2954 		return 0;
2955 
2956 	clk_prepare_lock();
2957 
2958 	if (clk->exclusive_count)
2959 		clk_core_rate_unprotect(clk->core);
2960 
2961 	ret = clk_core_set_parent_nolock(clk->core,
2962 					 parent ? parent->core : NULL);
2963 
2964 	if (clk->exclusive_count)
2965 		clk_core_rate_protect(clk->core);
2966 
2967 	clk_prepare_unlock();
2968 
2969 	return ret;
2970 }
2971 EXPORT_SYMBOL_GPL(clk_set_parent);
2972 
2973 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2974 {
2975 	int ret = -EINVAL;
2976 
2977 	lockdep_assert_held(&prepare_lock);
2978 
2979 	if (!core)
2980 		return 0;
2981 
2982 	if (clk_core_rate_is_protected(core))
2983 		return -EBUSY;
2984 
2985 	trace_clk_set_phase(core, degrees);
2986 
2987 	if (core->ops->set_phase) {
2988 		ret = core->ops->set_phase(core->hw, degrees);
2989 		if (!ret)
2990 			core->phase = degrees;
2991 	}
2992 
2993 	trace_clk_set_phase_complete(core, degrees);
2994 
2995 	return ret;
2996 }
2997 
2998 /**
2999  * clk_set_phase - adjust the phase shift of a clock signal
3000  * @clk: clock signal source
3001  * @degrees: number of degrees the signal is shifted
3002  *
3003  * Shifts the phase of a clock signal by the specified
3004  * degrees. Returns 0 on success, -EERROR otherwise.
3005  *
3006  * This function makes no distinction about the input or reference
3007  * signal that we adjust the clock signal phase against. For example
3008  * phase locked-loop clock signal generators we may shift phase with
3009  * respect to feedback clock signal input, but for other cases the
3010  * clock phase may be shifted with respect to some other, unspecified
3011  * signal.
3012  *
3013  * Additionally the concept of phase shift does not propagate through
3014  * the clock tree hierarchy, which sets it apart from clock rates and
3015  * clock accuracy. A parent clock phase attribute does not have an
3016  * impact on the phase attribute of a child clock.
3017  */
3018 int clk_set_phase(struct clk *clk, int degrees)
3019 {
3020 	int ret;
3021 
3022 	if (!clk)
3023 		return 0;
3024 
3025 	/* sanity check degrees */
3026 	degrees %= 360;
3027 	if (degrees < 0)
3028 		degrees += 360;
3029 
3030 	clk_prepare_lock();
3031 
3032 	if (clk->exclusive_count)
3033 		clk_core_rate_unprotect(clk->core);
3034 
3035 	ret = clk_core_set_phase_nolock(clk->core, degrees);
3036 
3037 	if (clk->exclusive_count)
3038 		clk_core_rate_protect(clk->core);
3039 
3040 	clk_prepare_unlock();
3041 
3042 	return ret;
3043 }
3044 EXPORT_SYMBOL_GPL(clk_set_phase);
3045 
3046 static int clk_core_get_phase(struct clk_core *core)
3047 {
3048 	int ret;
3049 
3050 	lockdep_assert_held(&prepare_lock);
3051 	if (!core->ops->get_phase)
3052 		return 0;
3053 
3054 	/* Always try to update cached phase if possible */
3055 	ret = core->ops->get_phase(core->hw);
3056 	if (ret >= 0)
3057 		core->phase = ret;
3058 
3059 	return ret;
3060 }
3061 
3062 /**
3063  * clk_get_phase - return the phase shift of a clock signal
3064  * @clk: clock signal source
3065  *
3066  * Returns the phase shift of a clock node in degrees, otherwise returns
3067  * -EERROR.
3068  */
3069 int clk_get_phase(struct clk *clk)
3070 {
3071 	int ret;
3072 
3073 	if (!clk)
3074 		return 0;
3075 
3076 	clk_prepare_lock();
3077 	ret = clk_core_get_phase(clk->core);
3078 	clk_prepare_unlock();
3079 
3080 	return ret;
3081 }
3082 EXPORT_SYMBOL_GPL(clk_get_phase);
3083 
3084 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
3085 {
3086 	/* Assume a default value of 50% */
3087 	core->duty.num = 1;
3088 	core->duty.den = 2;
3089 }
3090 
3091 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
3092 
3093 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
3094 {
3095 	struct clk_duty *duty = &core->duty;
3096 	int ret = 0;
3097 
3098 	if (!core->ops->get_duty_cycle)
3099 		return clk_core_update_duty_cycle_parent_nolock(core);
3100 
3101 	ret = core->ops->get_duty_cycle(core->hw, duty);
3102 	if (ret)
3103 		goto reset;
3104 
3105 	/* Don't trust the clock provider too much */
3106 	if (duty->den == 0 || duty->num > duty->den) {
3107 		ret = -EINVAL;
3108 		goto reset;
3109 	}
3110 
3111 	return 0;
3112 
3113 reset:
3114 	clk_core_reset_duty_cycle_nolock(core);
3115 	return ret;
3116 }
3117 
3118 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3119 {
3120 	int ret = 0;
3121 
3122 	if (core->parent &&
3123 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
3124 		ret = clk_core_update_duty_cycle_nolock(core->parent);
3125 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3126 	} else {
3127 		clk_core_reset_duty_cycle_nolock(core);
3128 	}
3129 
3130 	return ret;
3131 }
3132 
3133 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3134 						 struct clk_duty *duty);
3135 
3136 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3137 					  struct clk_duty *duty)
3138 {
3139 	int ret;
3140 
3141 	lockdep_assert_held(&prepare_lock);
3142 
3143 	if (clk_core_rate_is_protected(core))
3144 		return -EBUSY;
3145 
3146 	trace_clk_set_duty_cycle(core, duty);
3147 
3148 	if (!core->ops->set_duty_cycle)
3149 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3150 
3151 	ret = core->ops->set_duty_cycle(core->hw, duty);
3152 	if (!ret)
3153 		memcpy(&core->duty, duty, sizeof(*duty));
3154 
3155 	trace_clk_set_duty_cycle_complete(core, duty);
3156 
3157 	return ret;
3158 }
3159 
3160 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3161 						 struct clk_duty *duty)
3162 {
3163 	int ret = 0;
3164 
3165 	if (core->parent &&
3166 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3167 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3168 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3169 	}
3170 
3171 	return ret;
3172 }
3173 
3174 /**
3175  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3176  * @clk: clock signal source
3177  * @num: numerator of the duty cycle ratio to be applied
3178  * @den: denominator of the duty cycle ratio to be applied
3179  *
3180  * Apply the duty cycle ratio if the ratio is valid and the clock can
3181  * perform this operation
3182  *
3183  * Returns (0) on success, a negative errno otherwise.
3184  */
3185 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3186 {
3187 	int ret;
3188 	struct clk_duty duty;
3189 
3190 	if (!clk)
3191 		return 0;
3192 
3193 	/* sanity check the ratio */
3194 	if (den == 0 || num > den)
3195 		return -EINVAL;
3196 
3197 	duty.num = num;
3198 	duty.den = den;
3199 
3200 	clk_prepare_lock();
3201 
3202 	if (clk->exclusive_count)
3203 		clk_core_rate_unprotect(clk->core);
3204 
3205 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3206 
3207 	if (clk->exclusive_count)
3208 		clk_core_rate_protect(clk->core);
3209 
3210 	clk_prepare_unlock();
3211 
3212 	return ret;
3213 }
3214 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3215 
3216 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3217 					  unsigned int scale)
3218 {
3219 	struct clk_duty *duty = &core->duty;
3220 	int ret;
3221 
3222 	clk_prepare_lock();
3223 
3224 	ret = clk_core_update_duty_cycle_nolock(core);
3225 	if (!ret)
3226 		ret = mult_frac(scale, duty->num, duty->den);
3227 
3228 	clk_prepare_unlock();
3229 
3230 	return ret;
3231 }
3232 
3233 /**
3234  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3235  * @clk: clock signal source
3236  * @scale: scaling factor to be applied to represent the ratio as an integer
3237  *
3238  * Returns the duty cycle ratio of a clock node multiplied by the provided
3239  * scaling factor, or negative errno on error.
3240  */
3241 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3242 {
3243 	if (!clk)
3244 		return 0;
3245 
3246 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3247 }
3248 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3249 
3250 /**
3251  * clk_is_match - check if two clk's point to the same hardware clock
3252  * @p: clk compared against q
3253  * @q: clk compared against p
3254  *
3255  * Returns true if the two struct clk pointers both point to the same hardware
3256  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3257  * share the same struct clk_core object.
3258  *
3259  * Returns false otherwise. Note that two NULL clks are treated as matching.
3260  */
3261 bool clk_is_match(const struct clk *p, const struct clk *q)
3262 {
3263 	/* trivial case: identical struct clk's or both NULL */
3264 	if (p == q)
3265 		return true;
3266 
3267 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3268 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3269 		if (p->core == q->core)
3270 			return true;
3271 
3272 	return false;
3273 }
3274 EXPORT_SYMBOL_GPL(clk_is_match);
3275 
3276 /***        debugfs support        ***/
3277 
3278 #ifdef CONFIG_DEBUG_FS
3279 #include <linux/debugfs.h>
3280 
3281 static struct dentry *rootdir;
3282 static int inited = 0;
3283 static DEFINE_MUTEX(clk_debug_lock);
3284 static HLIST_HEAD(clk_debug_list);
3285 
3286 static struct hlist_head *orphan_list[] = {
3287 	&clk_orphan_list,
3288 	NULL,
3289 };
3290 
3291 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3292 				 int level)
3293 {
3294 	int phase;
3295 	struct clk *clk_user;
3296 	int multi_node = 0;
3297 
3298 	seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ",
3299 		   level * 3 + 1, "",
3300 		   35 - level * 3, c->name,
3301 		   c->enable_count, c->prepare_count, c->protect_count,
3302 		   clk_core_get_rate_recalc(c),
3303 		   clk_core_get_accuracy_recalc(c));
3304 
3305 	phase = clk_core_get_phase(c);
3306 	if (phase >= 0)
3307 		seq_printf(s, "%-5d", phase);
3308 	else
3309 		seq_puts(s, "-----");
3310 
3311 	seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000));
3312 
3313 	if (c->ops->is_enabled)
3314 		seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N');
3315 	else if (!c->ops->enable)
3316 		seq_printf(s, " %5c ", 'Y');
3317 	else
3318 		seq_printf(s, " %5c ", '?');
3319 
3320 	hlist_for_each_entry(clk_user, &c->clks, clks_node) {
3321 		seq_printf(s, "%*s%-*s  %-25s\n",
3322 			   level * 3 + 2 + 105 * multi_node, "",
3323 			   30,
3324 			   clk_user->dev_id ? clk_user->dev_id : "deviceless",
3325 			   clk_user->con_id ? clk_user->con_id : "no_connection_id");
3326 
3327 		multi_node = 1;
3328 	}
3329 
3330 }
3331 
3332 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3333 				     int level)
3334 {
3335 	struct clk_core *child;
3336 
3337 	clk_summary_show_one(s, c, level);
3338 
3339 	hlist_for_each_entry(child, &c->children, child_node)
3340 		clk_summary_show_subtree(s, child, level + 1);
3341 }
3342 
3343 static int clk_summary_show(struct seq_file *s, void *data)
3344 {
3345 	struct clk_core *c;
3346 	struct hlist_head **lists = s->private;
3347 	int ret;
3348 
3349 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware                            connection\n");
3350 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable   consumer                         id\n");
3351 	seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n");
3352 
3353 	ret = clk_pm_runtime_get_all();
3354 	if (ret)
3355 		return ret;
3356 
3357 	clk_prepare_lock();
3358 
3359 	for (; *lists; lists++)
3360 		hlist_for_each_entry(c, *lists, child_node)
3361 			clk_summary_show_subtree(s, c, 0);
3362 
3363 	clk_prepare_unlock();
3364 	clk_pm_runtime_put_all();
3365 
3366 	return 0;
3367 }
3368 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3369 
3370 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3371 {
3372 	int phase;
3373 	unsigned long min_rate, max_rate;
3374 
3375 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3376 
3377 	/* This should be JSON format, i.e. elements separated with a comma */
3378 	seq_printf(s, "\"%s\": { ", c->name);
3379 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3380 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3381 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3382 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3383 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3384 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3385 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3386 	phase = clk_core_get_phase(c);
3387 	if (phase >= 0)
3388 		seq_printf(s, "\"phase\": %d,", phase);
3389 	seq_printf(s, "\"duty_cycle\": %u",
3390 		   clk_core_get_scaled_duty_cycle(c, 100000));
3391 }
3392 
3393 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3394 {
3395 	struct clk_core *child;
3396 
3397 	clk_dump_one(s, c, level);
3398 
3399 	hlist_for_each_entry(child, &c->children, child_node) {
3400 		seq_putc(s, ',');
3401 		clk_dump_subtree(s, child, level + 1);
3402 	}
3403 
3404 	seq_putc(s, '}');
3405 }
3406 
3407 static int clk_dump_show(struct seq_file *s, void *data)
3408 {
3409 	struct clk_core *c;
3410 	bool first_node = true;
3411 	struct hlist_head **lists = s->private;
3412 	int ret;
3413 
3414 	ret = clk_pm_runtime_get_all();
3415 	if (ret)
3416 		return ret;
3417 
3418 	seq_putc(s, '{');
3419 
3420 	clk_prepare_lock();
3421 
3422 	for (; *lists; lists++) {
3423 		hlist_for_each_entry(c, *lists, child_node) {
3424 			if (!first_node)
3425 				seq_putc(s, ',');
3426 			first_node = false;
3427 			clk_dump_subtree(s, c, 0);
3428 		}
3429 	}
3430 
3431 	clk_prepare_unlock();
3432 	clk_pm_runtime_put_all();
3433 
3434 	seq_puts(s, "}\n");
3435 	return 0;
3436 }
3437 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3438 
3439 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3440 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3441 /*
3442  * This can be dangerous, therefore don't provide any real compile time
3443  * configuration option for this feature.
3444  * People who want to use this will need to modify the source code directly.
3445  */
3446 static int clk_rate_set(void *data, u64 val)
3447 {
3448 	struct clk_core *core = data;
3449 	int ret;
3450 
3451 	clk_prepare_lock();
3452 	ret = clk_core_set_rate_nolock(core, val);
3453 	clk_prepare_unlock();
3454 
3455 	return ret;
3456 }
3457 
3458 #define clk_rate_mode	0644
3459 
3460 static int clk_phase_set(void *data, u64 val)
3461 {
3462 	struct clk_core *core = data;
3463 	int degrees = do_div(val, 360);
3464 	int ret;
3465 
3466 	clk_prepare_lock();
3467 	ret = clk_core_set_phase_nolock(core, degrees);
3468 	clk_prepare_unlock();
3469 
3470 	return ret;
3471 }
3472 
3473 #define clk_phase_mode	0644
3474 
3475 static int clk_prepare_enable_set(void *data, u64 val)
3476 {
3477 	struct clk_core *core = data;
3478 	int ret = 0;
3479 
3480 	if (val)
3481 		ret = clk_prepare_enable(core->hw->clk);
3482 	else
3483 		clk_disable_unprepare(core->hw->clk);
3484 
3485 	return ret;
3486 }
3487 
3488 static int clk_prepare_enable_get(void *data, u64 *val)
3489 {
3490 	struct clk_core *core = data;
3491 
3492 	*val = core->enable_count && core->prepare_count;
3493 	return 0;
3494 }
3495 
3496 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3497 			 clk_prepare_enable_set, "%llu\n");
3498 
3499 #else
3500 #define clk_rate_set	NULL
3501 #define clk_rate_mode	0444
3502 
3503 #define clk_phase_set	NULL
3504 #define clk_phase_mode	0644
3505 #endif
3506 
3507 static int clk_rate_get(void *data, u64 *val)
3508 {
3509 	struct clk_core *core = data;
3510 
3511 	clk_prepare_lock();
3512 	*val = clk_core_get_rate_recalc(core);
3513 	clk_prepare_unlock();
3514 
3515 	return 0;
3516 }
3517 
3518 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3519 
3520 static int clk_phase_get(void *data, u64 *val)
3521 {
3522 	struct clk_core *core = data;
3523 
3524 	*val = core->phase;
3525 	return 0;
3526 }
3527 
3528 DEFINE_DEBUGFS_ATTRIBUTE(clk_phase_fops, clk_phase_get, clk_phase_set, "%llu\n");
3529 
3530 static const struct {
3531 	unsigned long flag;
3532 	const char *name;
3533 } clk_flags[] = {
3534 #define ENTRY(f) { f, #f }
3535 	ENTRY(CLK_SET_RATE_GATE),
3536 	ENTRY(CLK_SET_PARENT_GATE),
3537 	ENTRY(CLK_SET_RATE_PARENT),
3538 	ENTRY(CLK_IGNORE_UNUSED),
3539 	ENTRY(CLK_GET_RATE_NOCACHE),
3540 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3541 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3542 	ENTRY(CLK_RECALC_NEW_RATES),
3543 	ENTRY(CLK_SET_RATE_UNGATE),
3544 	ENTRY(CLK_IS_CRITICAL),
3545 	ENTRY(CLK_OPS_PARENT_ENABLE),
3546 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3547 #undef ENTRY
3548 };
3549 
3550 static int clk_flags_show(struct seq_file *s, void *data)
3551 {
3552 	struct clk_core *core = s->private;
3553 	unsigned long flags = core->flags;
3554 	unsigned int i;
3555 
3556 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3557 		if (flags & clk_flags[i].flag) {
3558 			seq_printf(s, "%s\n", clk_flags[i].name);
3559 			flags &= ~clk_flags[i].flag;
3560 		}
3561 	}
3562 	if (flags) {
3563 		/* Unknown flags */
3564 		seq_printf(s, "0x%lx\n", flags);
3565 	}
3566 
3567 	return 0;
3568 }
3569 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3570 
3571 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3572 				 unsigned int i, char terminator)
3573 {
3574 	struct clk_core *parent;
3575 	const char *name = NULL;
3576 
3577 	/*
3578 	 * Go through the following options to fetch a parent's name.
3579 	 *
3580 	 * 1. Fetch the registered parent clock and use its name
3581 	 * 2. Use the global (fallback) name if specified
3582 	 * 3. Use the local fw_name if provided
3583 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3584 	 *
3585 	 * This may still fail in some cases, such as when the parent is
3586 	 * specified directly via a struct clk_hw pointer, but it isn't
3587 	 * registered (yet).
3588 	 */
3589 	parent = clk_core_get_parent_by_index(core, i);
3590 	if (parent) {
3591 		seq_puts(s, parent->name);
3592 	} else if (core->parents[i].name) {
3593 		seq_puts(s, core->parents[i].name);
3594 	} else if (core->parents[i].fw_name) {
3595 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3596 	} else {
3597 		if (core->parents[i].index >= 0)
3598 			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3599 		if (!name)
3600 			name = "(missing)";
3601 
3602 		seq_puts(s, name);
3603 	}
3604 
3605 	seq_putc(s, terminator);
3606 }
3607 
3608 static int possible_parents_show(struct seq_file *s, void *data)
3609 {
3610 	struct clk_core *core = s->private;
3611 	int i;
3612 
3613 	for (i = 0; i < core->num_parents - 1; i++)
3614 		possible_parent_show(s, core, i, ' ');
3615 
3616 	possible_parent_show(s, core, i, '\n');
3617 
3618 	return 0;
3619 }
3620 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3621 
3622 static int current_parent_show(struct seq_file *s, void *data)
3623 {
3624 	struct clk_core *core = s->private;
3625 
3626 	if (core->parent)
3627 		seq_printf(s, "%s\n", core->parent->name);
3628 
3629 	return 0;
3630 }
3631 DEFINE_SHOW_ATTRIBUTE(current_parent);
3632 
3633 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3634 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3635 				    size_t count, loff_t *ppos)
3636 {
3637 	struct seq_file *s = file->private_data;
3638 	struct clk_core *core = s->private;
3639 	struct clk_core *parent;
3640 	u8 idx;
3641 	int err;
3642 
3643 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3644 	if (err < 0)
3645 		return err;
3646 
3647 	parent = clk_core_get_parent_by_index(core, idx);
3648 	if (!parent)
3649 		return -ENOENT;
3650 
3651 	clk_prepare_lock();
3652 	err = clk_core_set_parent_nolock(core, parent);
3653 	clk_prepare_unlock();
3654 	if (err)
3655 		return err;
3656 
3657 	return count;
3658 }
3659 
3660 static const struct file_operations current_parent_rw_fops = {
3661 	.open		= current_parent_open,
3662 	.write		= current_parent_write,
3663 	.read		= seq_read,
3664 	.llseek		= seq_lseek,
3665 	.release	= single_release,
3666 };
3667 #endif
3668 
3669 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3670 {
3671 	struct clk_core *core = s->private;
3672 	struct clk_duty *duty = &core->duty;
3673 
3674 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3675 
3676 	return 0;
3677 }
3678 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3679 
3680 static int clk_min_rate_show(struct seq_file *s, void *data)
3681 {
3682 	struct clk_core *core = s->private;
3683 	unsigned long min_rate, max_rate;
3684 
3685 	clk_prepare_lock();
3686 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3687 	clk_prepare_unlock();
3688 	seq_printf(s, "%lu\n", min_rate);
3689 
3690 	return 0;
3691 }
3692 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3693 
3694 static int clk_max_rate_show(struct seq_file *s, void *data)
3695 {
3696 	struct clk_core *core = s->private;
3697 	unsigned long min_rate, max_rate;
3698 
3699 	clk_prepare_lock();
3700 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3701 	clk_prepare_unlock();
3702 	seq_printf(s, "%lu\n", max_rate);
3703 
3704 	return 0;
3705 }
3706 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3707 
3708 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3709 {
3710 	struct dentry *root;
3711 
3712 	if (!core || !pdentry)
3713 		return;
3714 
3715 	root = debugfs_create_dir(core->name, pdentry);
3716 	core->dentry = root;
3717 
3718 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3719 			    &clk_rate_fops);
3720 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3721 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3722 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3723 	debugfs_create_file("clk_phase", clk_phase_mode, root, core,
3724 			    &clk_phase_fops);
3725 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3726 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3727 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3728 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3729 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3730 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3731 			    &clk_duty_cycle_fops);
3732 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3733 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3734 			    &clk_prepare_enable_fops);
3735 
3736 	if (core->num_parents > 1)
3737 		debugfs_create_file("clk_parent", 0644, root, core,
3738 				    &current_parent_rw_fops);
3739 	else
3740 #endif
3741 	if (core->num_parents > 0)
3742 		debugfs_create_file("clk_parent", 0444, root, core,
3743 				    &current_parent_fops);
3744 
3745 	if (core->num_parents > 1)
3746 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3747 				    &possible_parents_fops);
3748 
3749 	if (core->ops->debug_init)
3750 		core->ops->debug_init(core->hw, core->dentry);
3751 }
3752 
3753 /**
3754  * clk_debug_register - add a clk node to the debugfs clk directory
3755  * @core: the clk being added to the debugfs clk directory
3756  *
3757  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3758  * initialized.  Otherwise it bails out early since the debugfs clk directory
3759  * will be created lazily by clk_debug_init as part of a late_initcall.
3760  */
3761 static void clk_debug_register(struct clk_core *core)
3762 {
3763 	mutex_lock(&clk_debug_lock);
3764 	hlist_add_head(&core->debug_node, &clk_debug_list);
3765 	if (inited)
3766 		clk_debug_create_one(core, rootdir);
3767 	mutex_unlock(&clk_debug_lock);
3768 }
3769 
3770  /**
3771  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3772  * @core: the clk being removed from the debugfs clk directory
3773  *
3774  * Dynamically removes a clk and all its child nodes from the
3775  * debugfs clk directory if clk->dentry points to debugfs created by
3776  * clk_debug_register in __clk_core_init.
3777  */
3778 static void clk_debug_unregister(struct clk_core *core)
3779 {
3780 	mutex_lock(&clk_debug_lock);
3781 	hlist_del_init(&core->debug_node);
3782 	debugfs_remove_recursive(core->dentry);
3783 	core->dentry = NULL;
3784 	mutex_unlock(&clk_debug_lock);
3785 }
3786 
3787 /**
3788  * clk_debug_init - lazily populate the debugfs clk directory
3789  *
3790  * clks are often initialized very early during boot before memory can be
3791  * dynamically allocated and well before debugfs is setup. This function
3792  * populates the debugfs clk directory once at boot-time when we know that
3793  * debugfs is setup. It should only be called once at boot-time, all other clks
3794  * added dynamically will be done so with clk_debug_register.
3795  */
3796 static int __init clk_debug_init(void)
3797 {
3798 	struct clk_core *core;
3799 
3800 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3801 	pr_warn("\n");
3802 	pr_warn("********************************************************************\n");
3803 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3804 	pr_warn("**                                                                **\n");
3805 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3806 	pr_warn("**                                                                **\n");
3807 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3808 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3809 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3810 	pr_warn("**                                                                **\n");
3811 	pr_warn("** If you see this message and you are not debugging the          **\n");
3812 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3813 	pr_warn("**                                                                **\n");
3814 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3815 	pr_warn("********************************************************************\n");
3816 #endif
3817 
3818 	rootdir = debugfs_create_dir("clk", NULL);
3819 
3820 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3821 			    &clk_summary_fops);
3822 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3823 			    &clk_dump_fops);
3824 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3825 			    &clk_summary_fops);
3826 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3827 			    &clk_dump_fops);
3828 
3829 	mutex_lock(&clk_debug_lock);
3830 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3831 		clk_debug_create_one(core, rootdir);
3832 
3833 	inited = 1;
3834 	mutex_unlock(&clk_debug_lock);
3835 
3836 	return 0;
3837 }
3838 late_initcall(clk_debug_init);
3839 #else
3840 static inline void clk_debug_register(struct clk_core *core) { }
3841 static inline void clk_debug_unregister(struct clk_core *core)
3842 {
3843 }
3844 #endif
3845 
3846 static void clk_core_reparent_orphans_nolock(void)
3847 {
3848 	struct clk_core *orphan;
3849 	struct hlist_node *tmp2;
3850 
3851 	/*
3852 	 * walk the list of orphan clocks and reparent any that newly finds a
3853 	 * parent.
3854 	 */
3855 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3856 		struct clk_core *parent = __clk_init_parent(orphan);
3857 
3858 		/*
3859 		 * We need to use __clk_set_parent_before() and _after() to
3860 		 * properly migrate any prepare/enable count of the orphan
3861 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3862 		 * are enabled during init but might not have a parent yet.
3863 		 */
3864 		if (parent) {
3865 			/* update the clk tree topology */
3866 			__clk_set_parent_before(orphan, parent);
3867 			__clk_set_parent_after(orphan, parent, NULL);
3868 			__clk_recalc_accuracies(orphan);
3869 			__clk_recalc_rates(orphan, true, 0);
3870 
3871 			/*
3872 			 * __clk_init_parent() will set the initial req_rate to
3873 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3874 			 * is an orphan when it's registered.
3875 			 *
3876 			 * 'req_rate' is used by clk_set_rate_range() and
3877 			 * clk_put() to trigger a clk_set_rate() call whenever
3878 			 * the boundaries are modified. Let's make sure
3879 			 * 'req_rate' is set to something non-zero so that
3880 			 * clk_set_rate_range() doesn't drop the frequency.
3881 			 */
3882 			orphan->req_rate = orphan->rate;
3883 		}
3884 	}
3885 }
3886 
3887 /**
3888  * __clk_core_init - initialize the data structures in a struct clk_core
3889  * @core:	clk_core being initialized
3890  *
3891  * Initializes the lists in struct clk_core, queries the hardware for the
3892  * parent and rate and sets them both.
3893  */
3894 static int __clk_core_init(struct clk_core *core)
3895 {
3896 	int ret;
3897 	struct clk_core *parent;
3898 	unsigned long rate;
3899 	int phase;
3900 
3901 	clk_prepare_lock();
3902 
3903 	/*
3904 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3905 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3906 	 * being NULL as the clk not being registered yet. This is crucial so
3907 	 * that clks aren't parented until their parent is fully registered.
3908 	 */
3909 	core->hw->core = core;
3910 
3911 	ret = clk_pm_runtime_get(core);
3912 	if (ret)
3913 		goto unlock;
3914 
3915 	/* check to see if a clock with this name is already registered */
3916 	if (clk_core_lookup(core->name)) {
3917 		pr_debug("%s: clk %s already initialized\n",
3918 				__func__, core->name);
3919 		ret = -EEXIST;
3920 		goto out;
3921 	}
3922 
3923 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3924 	if (core->ops->set_rate &&
3925 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3926 	      core->ops->recalc_rate)) {
3927 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3928 		       __func__, core->name);
3929 		ret = -EINVAL;
3930 		goto out;
3931 	}
3932 
3933 	if (core->ops->set_parent && !core->ops->get_parent) {
3934 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3935 		       __func__, core->name);
3936 		ret = -EINVAL;
3937 		goto out;
3938 	}
3939 
3940 	if (core->ops->set_parent && !core->ops->determine_rate) {
3941 		pr_err("%s: %s must implement .set_parent & .determine_rate\n",
3942 			__func__, core->name);
3943 		ret = -EINVAL;
3944 		goto out;
3945 	}
3946 
3947 	if (core->num_parents > 1 && !core->ops->get_parent) {
3948 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3949 		       __func__, core->name);
3950 		ret = -EINVAL;
3951 		goto out;
3952 	}
3953 
3954 	if (core->ops->set_rate_and_parent &&
3955 			!(core->ops->set_parent && core->ops->set_rate)) {
3956 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3957 				__func__, core->name);
3958 		ret = -EINVAL;
3959 		goto out;
3960 	}
3961 
3962 	/*
3963 	 * optional platform-specific magic
3964 	 *
3965 	 * The .init callback is not used by any of the basic clock types, but
3966 	 * exists for weird hardware that must perform initialization magic for
3967 	 * CCF to get an accurate view of clock for any other callbacks. It may
3968 	 * also be used needs to perform dynamic allocations. Such allocation
3969 	 * must be freed in the terminate() callback.
3970 	 * This callback shall not be used to initialize the parameters state,
3971 	 * such as rate, parent, etc ...
3972 	 *
3973 	 * If it exist, this callback should called before any other callback of
3974 	 * the clock
3975 	 */
3976 	if (core->ops->init) {
3977 		ret = core->ops->init(core->hw);
3978 		if (ret)
3979 			goto out;
3980 	}
3981 
3982 	parent = core->parent = __clk_init_parent(core);
3983 
3984 	/*
3985 	 * Populate core->parent if parent has already been clk_core_init'd. If
3986 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3987 	 * list.  If clk doesn't have any parents then place it in the root
3988 	 * clk list.
3989 	 *
3990 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3991 	 * clocks and re-parent any that are children of the clock currently
3992 	 * being clk_init'd.
3993 	 */
3994 	if (parent) {
3995 		hlist_add_head(&core->child_node, &parent->children);
3996 		core->orphan = parent->orphan;
3997 	} else if (!core->num_parents) {
3998 		hlist_add_head(&core->child_node, &clk_root_list);
3999 		core->orphan = false;
4000 	} else {
4001 		hlist_add_head(&core->child_node, &clk_orphan_list);
4002 		core->orphan = true;
4003 	}
4004 
4005 	/*
4006 	 * Set clk's accuracy.  The preferred method is to use
4007 	 * .recalc_accuracy. For simple clocks and lazy developers the default
4008 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
4009 	 * parent (or is orphaned) then accuracy is set to zero (perfect
4010 	 * clock).
4011 	 */
4012 	if (core->ops->recalc_accuracy)
4013 		core->accuracy = core->ops->recalc_accuracy(core->hw,
4014 					clk_core_get_accuracy_no_lock(parent));
4015 	else if (parent)
4016 		core->accuracy = parent->accuracy;
4017 	else
4018 		core->accuracy = 0;
4019 
4020 	/*
4021 	 * Set clk's phase by clk_core_get_phase() caching the phase.
4022 	 * Since a phase is by definition relative to its parent, just
4023 	 * query the current clock phase, or just assume it's in phase.
4024 	 */
4025 	phase = clk_core_get_phase(core);
4026 	if (phase < 0) {
4027 		ret = phase;
4028 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
4029 			core->name);
4030 		goto out;
4031 	}
4032 
4033 	/*
4034 	 * Set clk's duty cycle.
4035 	 */
4036 	clk_core_update_duty_cycle_nolock(core);
4037 
4038 	/*
4039 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
4040 	 * simple clocks and lazy developers the default fallback is to use the
4041 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
4042 	 * then rate is set to zero.
4043 	 */
4044 	if (core->ops->recalc_rate)
4045 		rate = core->ops->recalc_rate(core->hw,
4046 				clk_core_get_rate_nolock(parent));
4047 	else if (parent)
4048 		rate = parent->rate;
4049 	else
4050 		rate = 0;
4051 	core->rate = core->req_rate = rate;
4052 
4053 	/*
4054 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
4055 	 * don't get accidentally disabled when walking the orphan tree and
4056 	 * reparenting clocks
4057 	 */
4058 	if (core->flags & CLK_IS_CRITICAL) {
4059 		ret = clk_core_prepare(core);
4060 		if (ret) {
4061 			pr_warn("%s: critical clk '%s' failed to prepare\n",
4062 			       __func__, core->name);
4063 			goto out;
4064 		}
4065 
4066 		ret = clk_core_enable_lock(core);
4067 		if (ret) {
4068 			pr_warn("%s: critical clk '%s' failed to enable\n",
4069 			       __func__, core->name);
4070 			clk_core_unprepare(core);
4071 			goto out;
4072 		}
4073 	}
4074 
4075 	clk_core_reparent_orphans_nolock();
4076 out:
4077 	clk_pm_runtime_put(core);
4078 unlock:
4079 	if (ret) {
4080 		hlist_del_init(&core->child_node);
4081 		core->hw->core = NULL;
4082 	}
4083 
4084 	clk_prepare_unlock();
4085 
4086 	if (!ret)
4087 		clk_debug_register(core);
4088 
4089 	return ret;
4090 }
4091 
4092 /**
4093  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
4094  * @core: clk to add consumer to
4095  * @clk: consumer to link to a clk
4096  */
4097 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
4098 {
4099 	clk_prepare_lock();
4100 	hlist_add_head(&clk->clks_node, &core->clks);
4101 	clk_prepare_unlock();
4102 }
4103 
4104 /**
4105  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
4106  * @clk: consumer to unlink
4107  */
4108 static void clk_core_unlink_consumer(struct clk *clk)
4109 {
4110 	lockdep_assert_held(&prepare_lock);
4111 	hlist_del(&clk->clks_node);
4112 }
4113 
4114 /**
4115  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
4116  * @core: clk to allocate a consumer for
4117  * @dev_id: string describing device name
4118  * @con_id: connection ID string on device
4119  *
4120  * Returns: clk consumer left unlinked from the consumer list
4121  */
4122 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
4123 			     const char *con_id)
4124 {
4125 	struct clk *clk;
4126 
4127 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
4128 	if (!clk)
4129 		return ERR_PTR(-ENOMEM);
4130 
4131 	clk->core = core;
4132 	clk->dev_id = dev_id;
4133 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
4134 	clk->max_rate = ULONG_MAX;
4135 
4136 	return clk;
4137 }
4138 
4139 /**
4140  * free_clk - Free a clk consumer
4141  * @clk: clk consumer to free
4142  *
4143  * Note, this assumes the clk has been unlinked from the clk_core consumer
4144  * list.
4145  */
4146 static void free_clk(struct clk *clk)
4147 {
4148 	kfree_const(clk->con_id);
4149 	kfree(clk);
4150 }
4151 
4152 /**
4153  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4154  * a clk_hw
4155  * @dev: clk consumer device
4156  * @hw: clk_hw associated with the clk being consumed
4157  * @dev_id: string describing device name
4158  * @con_id: connection ID string on device
4159  *
4160  * This is the main function used to create a clk pointer for use by clk
4161  * consumers. It connects a consumer to the clk_core and clk_hw structures
4162  * used by the framework and clk provider respectively.
4163  */
4164 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4165 			      const char *dev_id, const char *con_id)
4166 {
4167 	struct clk *clk;
4168 	struct clk_core *core;
4169 
4170 	/* This is to allow this function to be chained to others */
4171 	if (IS_ERR_OR_NULL(hw))
4172 		return ERR_CAST(hw);
4173 
4174 	core = hw->core;
4175 	clk = alloc_clk(core, dev_id, con_id);
4176 	if (IS_ERR(clk))
4177 		return clk;
4178 	clk->dev = dev;
4179 
4180 	if (!try_module_get(core->owner)) {
4181 		free_clk(clk);
4182 		return ERR_PTR(-ENOENT);
4183 	}
4184 
4185 	kref_get(&core->ref);
4186 	clk_core_link_consumer(core, clk);
4187 
4188 	return clk;
4189 }
4190 
4191 /**
4192  * clk_hw_get_clk - get clk consumer given an clk_hw
4193  * @hw: clk_hw associated with the clk being consumed
4194  * @con_id: connection ID string on device
4195  *
4196  * Returns: new clk consumer
4197  * This is the function to be used by providers which need
4198  * to get a consumer clk and act on the clock element
4199  * Calls to this function must be balanced with calls clk_put()
4200  */
4201 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4202 {
4203 	struct device *dev = hw->core->dev;
4204 	const char *name = dev ? dev_name(dev) : NULL;
4205 
4206 	return clk_hw_create_clk(dev, hw, name, con_id);
4207 }
4208 EXPORT_SYMBOL(clk_hw_get_clk);
4209 
4210 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4211 {
4212 	const char *dst;
4213 
4214 	if (!src) {
4215 		if (must_exist)
4216 			return -EINVAL;
4217 		return 0;
4218 	}
4219 
4220 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4221 	if (!dst)
4222 		return -ENOMEM;
4223 
4224 	return 0;
4225 }
4226 
4227 static int clk_core_populate_parent_map(struct clk_core *core,
4228 					const struct clk_init_data *init)
4229 {
4230 	u8 num_parents = init->num_parents;
4231 	const char * const *parent_names = init->parent_names;
4232 	const struct clk_hw **parent_hws = init->parent_hws;
4233 	const struct clk_parent_data *parent_data = init->parent_data;
4234 	int i, ret = 0;
4235 	struct clk_parent_map *parents, *parent;
4236 
4237 	if (!num_parents)
4238 		return 0;
4239 
4240 	/*
4241 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4242 	 * having a cache of names/clk_hw pointers to clk_core pointers.
4243 	 */
4244 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4245 	core->parents = parents;
4246 	if (!parents)
4247 		return -ENOMEM;
4248 
4249 	/* Copy everything over because it might be __initdata */
4250 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4251 		parent->index = -1;
4252 		if (parent_names) {
4253 			/* throw a WARN if any entries are NULL */
4254 			WARN(!parent_names[i],
4255 				"%s: invalid NULL in %s's .parent_names\n",
4256 				__func__, core->name);
4257 			ret = clk_cpy_name(&parent->name, parent_names[i],
4258 					   true);
4259 		} else if (parent_data) {
4260 			parent->hw = parent_data[i].hw;
4261 			parent->index = parent_data[i].index;
4262 			ret = clk_cpy_name(&parent->fw_name,
4263 					   parent_data[i].fw_name, false);
4264 			if (!ret)
4265 				ret = clk_cpy_name(&parent->name,
4266 						   parent_data[i].name,
4267 						   false);
4268 		} else if (parent_hws) {
4269 			parent->hw = parent_hws[i];
4270 		} else {
4271 			ret = -EINVAL;
4272 			WARN(1, "Must specify parents if num_parents > 0\n");
4273 		}
4274 
4275 		if (ret) {
4276 			do {
4277 				kfree_const(parents[i].name);
4278 				kfree_const(parents[i].fw_name);
4279 			} while (--i >= 0);
4280 			kfree(parents);
4281 
4282 			return ret;
4283 		}
4284 	}
4285 
4286 	return 0;
4287 }
4288 
4289 static void clk_core_free_parent_map(struct clk_core *core)
4290 {
4291 	int i = core->num_parents;
4292 
4293 	if (!core->num_parents)
4294 		return;
4295 
4296 	while (--i >= 0) {
4297 		kfree_const(core->parents[i].name);
4298 		kfree_const(core->parents[i].fw_name);
4299 	}
4300 
4301 	kfree(core->parents);
4302 }
4303 
4304 /* Free memory allocated for a struct clk_core */
4305 static void __clk_release(struct kref *ref)
4306 {
4307 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4308 
4309 	if (core->rpm_enabled) {
4310 		mutex_lock(&clk_rpm_list_lock);
4311 		hlist_del(&core->rpm_node);
4312 		mutex_unlock(&clk_rpm_list_lock);
4313 	}
4314 
4315 	clk_core_free_parent_map(core);
4316 	kfree_const(core->name);
4317 	kfree(core);
4318 }
4319 
4320 static struct clk *
4321 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4322 {
4323 	int ret;
4324 	struct clk_core *core;
4325 	const struct clk_init_data *init = hw->init;
4326 
4327 	/*
4328 	 * The init data is not supposed to be used outside of registration path.
4329 	 * Set it to NULL so that provider drivers can't use it either and so that
4330 	 * we catch use of hw->init early on in the core.
4331 	 */
4332 	hw->init = NULL;
4333 
4334 	core = kzalloc(sizeof(*core), GFP_KERNEL);
4335 	if (!core) {
4336 		ret = -ENOMEM;
4337 		goto fail_out;
4338 	}
4339 
4340 	kref_init(&core->ref);
4341 
4342 	core->name = kstrdup_const(init->name, GFP_KERNEL);
4343 	if (!core->name) {
4344 		ret = -ENOMEM;
4345 		goto fail_name;
4346 	}
4347 
4348 	if (WARN_ON(!init->ops)) {
4349 		ret = -EINVAL;
4350 		goto fail_ops;
4351 	}
4352 	core->ops = init->ops;
4353 
4354 	core->dev = dev;
4355 	clk_pm_runtime_init(core);
4356 	core->of_node = np;
4357 	if (dev && dev->driver)
4358 		core->owner = dev->driver->owner;
4359 	core->hw = hw;
4360 	core->flags = init->flags;
4361 	core->num_parents = init->num_parents;
4362 	core->min_rate = 0;
4363 	core->max_rate = ULONG_MAX;
4364 
4365 	ret = clk_core_populate_parent_map(core, init);
4366 	if (ret)
4367 		goto fail_parents;
4368 
4369 	INIT_HLIST_HEAD(&core->clks);
4370 
4371 	/*
4372 	 * Don't call clk_hw_create_clk() here because that would pin the
4373 	 * provider module to itself and prevent it from ever being removed.
4374 	 */
4375 	hw->clk = alloc_clk(core, NULL, NULL);
4376 	if (IS_ERR(hw->clk)) {
4377 		ret = PTR_ERR(hw->clk);
4378 		goto fail_create_clk;
4379 	}
4380 
4381 	clk_core_link_consumer(core, hw->clk);
4382 
4383 	ret = __clk_core_init(core);
4384 	if (!ret)
4385 		return hw->clk;
4386 
4387 	clk_prepare_lock();
4388 	clk_core_unlink_consumer(hw->clk);
4389 	clk_prepare_unlock();
4390 
4391 	free_clk(hw->clk);
4392 	hw->clk = NULL;
4393 
4394 fail_create_clk:
4395 fail_parents:
4396 fail_ops:
4397 fail_name:
4398 	kref_put(&core->ref, __clk_release);
4399 fail_out:
4400 	return ERR_PTR(ret);
4401 }
4402 
4403 /**
4404  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4405  * @dev: Device to get device node of
4406  *
4407  * Return: device node pointer of @dev, or the device node pointer of
4408  * @dev->parent if dev doesn't have a device node, or NULL if neither
4409  * @dev or @dev->parent have a device node.
4410  */
4411 static struct device_node *dev_or_parent_of_node(struct device *dev)
4412 {
4413 	struct device_node *np;
4414 
4415 	if (!dev)
4416 		return NULL;
4417 
4418 	np = dev_of_node(dev);
4419 	if (!np)
4420 		np = dev_of_node(dev->parent);
4421 
4422 	return np;
4423 }
4424 
4425 /**
4426  * clk_register - allocate a new clock, register it and return an opaque cookie
4427  * @dev: device that is registering this clock
4428  * @hw: link to hardware-specific clock data
4429  *
4430  * clk_register is the *deprecated* interface for populating the clock tree with
4431  * new clock nodes. Use clk_hw_register() instead.
4432  *
4433  * Returns: a pointer to the newly allocated struct clk which
4434  * cannot be dereferenced by driver code but may be used in conjunction with the
4435  * rest of the clock API.  In the event of an error clk_register will return an
4436  * error code; drivers must test for an error code after calling clk_register.
4437  */
4438 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4439 {
4440 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4441 }
4442 EXPORT_SYMBOL_GPL(clk_register);
4443 
4444 /**
4445  * clk_hw_register - register a clk_hw and return an error code
4446  * @dev: device that is registering this clock
4447  * @hw: link to hardware-specific clock data
4448  *
4449  * clk_hw_register is the primary interface for populating the clock tree with
4450  * new clock nodes. It returns an integer equal to zero indicating success or
4451  * less than zero indicating failure. Drivers must test for an error code after
4452  * calling clk_hw_register().
4453  */
4454 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4455 {
4456 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4457 			       hw));
4458 }
4459 EXPORT_SYMBOL_GPL(clk_hw_register);
4460 
4461 /*
4462  * of_clk_hw_register - register a clk_hw and return an error code
4463  * @node: device_node of device that is registering this clock
4464  * @hw: link to hardware-specific clock data
4465  *
4466  * of_clk_hw_register() is the primary interface for populating the clock tree
4467  * with new clock nodes when a struct device is not available, but a struct
4468  * device_node is. It returns an integer equal to zero indicating success or
4469  * less than zero indicating failure. Drivers must test for an error code after
4470  * calling of_clk_hw_register().
4471  */
4472 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4473 {
4474 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4475 }
4476 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4477 
4478 /*
4479  * Empty clk_ops for unregistered clocks. These are used temporarily
4480  * after clk_unregister() was called on a clock and until last clock
4481  * consumer calls clk_put() and the struct clk object is freed.
4482  */
4483 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4484 {
4485 	return -ENXIO;
4486 }
4487 
4488 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4489 {
4490 	WARN_ON_ONCE(1);
4491 }
4492 
4493 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4494 					unsigned long parent_rate)
4495 {
4496 	return -ENXIO;
4497 }
4498 
4499 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4500 {
4501 	return -ENXIO;
4502 }
4503 
4504 static int clk_nodrv_determine_rate(struct clk_hw *hw,
4505 				    struct clk_rate_request *req)
4506 {
4507 	return -ENXIO;
4508 }
4509 
4510 static const struct clk_ops clk_nodrv_ops = {
4511 	.enable		= clk_nodrv_prepare_enable,
4512 	.disable	= clk_nodrv_disable_unprepare,
4513 	.prepare	= clk_nodrv_prepare_enable,
4514 	.unprepare	= clk_nodrv_disable_unprepare,
4515 	.determine_rate	= clk_nodrv_determine_rate,
4516 	.set_rate	= clk_nodrv_set_rate,
4517 	.set_parent	= clk_nodrv_set_parent,
4518 };
4519 
4520 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4521 						const struct clk_core *target)
4522 {
4523 	int i;
4524 	struct clk_core *child;
4525 
4526 	for (i = 0; i < root->num_parents; i++)
4527 		if (root->parents[i].core == target)
4528 			root->parents[i].core = NULL;
4529 
4530 	hlist_for_each_entry(child, &root->children, child_node)
4531 		clk_core_evict_parent_cache_subtree(child, target);
4532 }
4533 
4534 /* Remove this clk from all parent caches */
4535 static void clk_core_evict_parent_cache(struct clk_core *core)
4536 {
4537 	const struct hlist_head **lists;
4538 	struct clk_core *root;
4539 
4540 	lockdep_assert_held(&prepare_lock);
4541 
4542 	for (lists = all_lists; *lists; lists++)
4543 		hlist_for_each_entry(root, *lists, child_node)
4544 			clk_core_evict_parent_cache_subtree(root, core);
4545 
4546 }
4547 
4548 /**
4549  * clk_unregister - unregister a currently registered clock
4550  * @clk: clock to unregister
4551  */
4552 void clk_unregister(struct clk *clk)
4553 {
4554 	unsigned long flags;
4555 	const struct clk_ops *ops;
4556 
4557 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4558 		return;
4559 
4560 	clk_debug_unregister(clk->core);
4561 
4562 	clk_prepare_lock();
4563 
4564 	ops = clk->core->ops;
4565 	if (ops == &clk_nodrv_ops) {
4566 		pr_err("%s: unregistered clock: %s\n", __func__,
4567 		       clk->core->name);
4568 		clk_prepare_unlock();
4569 		return;
4570 	}
4571 	/*
4572 	 * Assign empty clock ops for consumers that might still hold
4573 	 * a reference to this clock.
4574 	 */
4575 	flags = clk_enable_lock();
4576 	clk->core->ops = &clk_nodrv_ops;
4577 	clk_enable_unlock(flags);
4578 
4579 	if (ops->terminate)
4580 		ops->terminate(clk->core->hw);
4581 
4582 	if (!hlist_empty(&clk->core->children)) {
4583 		struct clk_core *child;
4584 		struct hlist_node *t;
4585 
4586 		/* Reparent all children to the orphan list. */
4587 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4588 					  child_node)
4589 			clk_core_set_parent_nolock(child, NULL);
4590 	}
4591 
4592 	clk_core_evict_parent_cache(clk->core);
4593 
4594 	hlist_del_init(&clk->core->child_node);
4595 
4596 	if (clk->core->prepare_count)
4597 		pr_warn("%s: unregistering prepared clock: %s\n",
4598 					__func__, clk->core->name);
4599 
4600 	if (clk->core->protect_count)
4601 		pr_warn("%s: unregistering protected clock: %s\n",
4602 					__func__, clk->core->name);
4603 	clk_prepare_unlock();
4604 
4605 	kref_put(&clk->core->ref, __clk_release);
4606 	free_clk(clk);
4607 }
4608 EXPORT_SYMBOL_GPL(clk_unregister);
4609 
4610 /**
4611  * clk_hw_unregister - unregister a currently registered clk_hw
4612  * @hw: hardware-specific clock data to unregister
4613  */
4614 void clk_hw_unregister(struct clk_hw *hw)
4615 {
4616 	clk_unregister(hw->clk);
4617 }
4618 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4619 
4620 static void devm_clk_unregister_cb(struct device *dev, void *res)
4621 {
4622 	clk_unregister(*(struct clk **)res);
4623 }
4624 
4625 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4626 {
4627 	clk_hw_unregister(*(struct clk_hw **)res);
4628 }
4629 
4630 /**
4631  * devm_clk_register - resource managed clk_register()
4632  * @dev: device that is registering this clock
4633  * @hw: link to hardware-specific clock data
4634  *
4635  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4636  *
4637  * Clocks returned from this function are automatically clk_unregister()ed on
4638  * driver detach. See clk_register() for more information.
4639  */
4640 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4641 {
4642 	struct clk *clk;
4643 	struct clk **clkp;
4644 
4645 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4646 	if (!clkp)
4647 		return ERR_PTR(-ENOMEM);
4648 
4649 	clk = clk_register(dev, hw);
4650 	if (!IS_ERR(clk)) {
4651 		*clkp = clk;
4652 		devres_add(dev, clkp);
4653 	} else {
4654 		devres_free(clkp);
4655 	}
4656 
4657 	return clk;
4658 }
4659 EXPORT_SYMBOL_GPL(devm_clk_register);
4660 
4661 /**
4662  * devm_clk_hw_register - resource managed clk_hw_register()
4663  * @dev: device that is registering this clock
4664  * @hw: link to hardware-specific clock data
4665  *
4666  * Managed clk_hw_register(). Clocks registered by this function are
4667  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4668  * for more information.
4669  */
4670 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4671 {
4672 	struct clk_hw **hwp;
4673 	int ret;
4674 
4675 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4676 	if (!hwp)
4677 		return -ENOMEM;
4678 
4679 	ret = clk_hw_register(dev, hw);
4680 	if (!ret) {
4681 		*hwp = hw;
4682 		devres_add(dev, hwp);
4683 	} else {
4684 		devres_free(hwp);
4685 	}
4686 
4687 	return ret;
4688 }
4689 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4690 
4691 static void devm_clk_release(struct device *dev, void *res)
4692 {
4693 	clk_put(*(struct clk **)res);
4694 }
4695 
4696 /**
4697  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4698  * @dev: device that is registering this clock
4699  * @hw: clk_hw associated with the clk being consumed
4700  * @con_id: connection ID string on device
4701  *
4702  * Managed clk_hw_get_clk(). Clocks got with this function are
4703  * automatically clk_put() on driver detach. See clk_put()
4704  * for more information.
4705  */
4706 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4707 				const char *con_id)
4708 {
4709 	struct clk *clk;
4710 	struct clk **clkp;
4711 
4712 	/* This should not happen because it would mean we have drivers
4713 	 * passing around clk_hw pointers instead of having the caller use
4714 	 * proper clk_get() style APIs
4715 	 */
4716 	WARN_ON_ONCE(dev != hw->core->dev);
4717 
4718 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4719 	if (!clkp)
4720 		return ERR_PTR(-ENOMEM);
4721 
4722 	clk = clk_hw_get_clk(hw, con_id);
4723 	if (!IS_ERR(clk)) {
4724 		*clkp = clk;
4725 		devres_add(dev, clkp);
4726 	} else {
4727 		devres_free(clkp);
4728 	}
4729 
4730 	return clk;
4731 }
4732 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4733 
4734 /*
4735  * clkdev helpers
4736  */
4737 
4738 void __clk_put(struct clk *clk)
4739 {
4740 	struct module *owner;
4741 
4742 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4743 		return;
4744 
4745 	clk_prepare_lock();
4746 
4747 	/*
4748 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4749 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4750 	 * and by that same consumer
4751 	 */
4752 	if (WARN_ON(clk->exclusive_count)) {
4753 		/* We voiced our concern, let's sanitize the situation */
4754 		clk->core->protect_count -= (clk->exclusive_count - 1);
4755 		clk_core_rate_unprotect(clk->core);
4756 		clk->exclusive_count = 0;
4757 	}
4758 
4759 	clk_core_unlink_consumer(clk);
4760 
4761 	/* If we had any boundaries on that clock, let's drop them. */
4762 	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4763 		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4764 
4765 	clk_prepare_unlock();
4766 
4767 	owner = clk->core->owner;
4768 	kref_put(&clk->core->ref, __clk_release);
4769 	module_put(owner);
4770 	free_clk(clk);
4771 }
4772 
4773 /***        clk rate change notifiers        ***/
4774 
4775 /**
4776  * clk_notifier_register - add a clk rate change notifier
4777  * @clk: struct clk * to watch
4778  * @nb: struct notifier_block * with callback info
4779  *
4780  * Request notification when clk's rate changes.  This uses an SRCU
4781  * notifier because we want it to block and notifier unregistrations are
4782  * uncommon.  The callbacks associated with the notifier must not
4783  * re-enter into the clk framework by calling any top-level clk APIs;
4784  * this will cause a nested prepare_lock mutex.
4785  *
4786  * In all notification cases (pre, post and abort rate change) the original
4787  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4788  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4789  *
4790  * clk_notifier_register() must be called from non-atomic context.
4791  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4792  * allocation failure; otherwise, passes along the return value of
4793  * srcu_notifier_chain_register().
4794  */
4795 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4796 {
4797 	struct clk_notifier *cn;
4798 	int ret = -ENOMEM;
4799 
4800 	if (!clk || !nb)
4801 		return -EINVAL;
4802 
4803 	clk_prepare_lock();
4804 
4805 	/* search the list of notifiers for this clk */
4806 	list_for_each_entry(cn, &clk_notifier_list, node)
4807 		if (cn->clk == clk)
4808 			goto found;
4809 
4810 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4811 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4812 	if (!cn)
4813 		goto out;
4814 
4815 	cn->clk = clk;
4816 	srcu_init_notifier_head(&cn->notifier_head);
4817 
4818 	list_add(&cn->node, &clk_notifier_list);
4819 
4820 found:
4821 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4822 
4823 	clk->core->notifier_count++;
4824 
4825 out:
4826 	clk_prepare_unlock();
4827 
4828 	return ret;
4829 }
4830 EXPORT_SYMBOL_GPL(clk_notifier_register);
4831 
4832 /**
4833  * clk_notifier_unregister - remove a clk rate change notifier
4834  * @clk: struct clk *
4835  * @nb: struct notifier_block * with callback info
4836  *
4837  * Request no further notification for changes to 'clk' and frees memory
4838  * allocated in clk_notifier_register.
4839  *
4840  * Returns -EINVAL if called with null arguments; otherwise, passes
4841  * along the return value of srcu_notifier_chain_unregister().
4842  */
4843 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4844 {
4845 	struct clk_notifier *cn;
4846 	int ret = -ENOENT;
4847 
4848 	if (!clk || !nb)
4849 		return -EINVAL;
4850 
4851 	clk_prepare_lock();
4852 
4853 	list_for_each_entry(cn, &clk_notifier_list, node) {
4854 		if (cn->clk == clk) {
4855 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4856 
4857 			clk->core->notifier_count--;
4858 
4859 			/* XXX the notifier code should handle this better */
4860 			if (!cn->notifier_head.head) {
4861 				srcu_cleanup_notifier_head(&cn->notifier_head);
4862 				list_del(&cn->node);
4863 				kfree(cn);
4864 			}
4865 			break;
4866 		}
4867 	}
4868 
4869 	clk_prepare_unlock();
4870 
4871 	return ret;
4872 }
4873 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4874 
4875 struct clk_notifier_devres {
4876 	struct clk *clk;
4877 	struct notifier_block *nb;
4878 };
4879 
4880 static void devm_clk_notifier_release(struct device *dev, void *res)
4881 {
4882 	struct clk_notifier_devres *devres = res;
4883 
4884 	clk_notifier_unregister(devres->clk, devres->nb);
4885 }
4886 
4887 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4888 			       struct notifier_block *nb)
4889 {
4890 	struct clk_notifier_devres *devres;
4891 	int ret;
4892 
4893 	devres = devres_alloc(devm_clk_notifier_release,
4894 			      sizeof(*devres), GFP_KERNEL);
4895 
4896 	if (!devres)
4897 		return -ENOMEM;
4898 
4899 	ret = clk_notifier_register(clk, nb);
4900 	if (!ret) {
4901 		devres->clk = clk;
4902 		devres->nb = nb;
4903 		devres_add(dev, devres);
4904 	} else {
4905 		devres_free(devres);
4906 	}
4907 
4908 	return ret;
4909 }
4910 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4911 
4912 #ifdef CONFIG_OF
4913 static void clk_core_reparent_orphans(void)
4914 {
4915 	clk_prepare_lock();
4916 	clk_core_reparent_orphans_nolock();
4917 	clk_prepare_unlock();
4918 }
4919 
4920 /**
4921  * struct of_clk_provider - Clock provider registration structure
4922  * @link: Entry in global list of clock providers
4923  * @node: Pointer to device tree node of clock provider
4924  * @get: Get clock callback.  Returns NULL or a struct clk for the
4925  *       given clock specifier
4926  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4927  *       struct clk_hw for the given clock specifier
4928  * @data: context pointer to be passed into @get callback
4929  */
4930 struct of_clk_provider {
4931 	struct list_head link;
4932 
4933 	struct device_node *node;
4934 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4935 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4936 	void *data;
4937 };
4938 
4939 extern struct of_device_id __clk_of_table;
4940 static const struct of_device_id __clk_of_table_sentinel
4941 	__used __section("__clk_of_table_end");
4942 
4943 static LIST_HEAD(of_clk_providers);
4944 static DEFINE_MUTEX(of_clk_mutex);
4945 
4946 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4947 				     void *data)
4948 {
4949 	return data;
4950 }
4951 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4952 
4953 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4954 {
4955 	return data;
4956 }
4957 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4958 
4959 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4960 {
4961 	struct clk_onecell_data *clk_data = data;
4962 	unsigned int idx = clkspec->args[0];
4963 
4964 	if (idx >= clk_data->clk_num) {
4965 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4966 		return ERR_PTR(-EINVAL);
4967 	}
4968 
4969 	return clk_data->clks[idx];
4970 }
4971 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4972 
4973 struct clk_hw *
4974 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4975 {
4976 	struct clk_hw_onecell_data *hw_data = data;
4977 	unsigned int idx = clkspec->args[0];
4978 
4979 	if (idx >= hw_data->num) {
4980 		pr_err("%s: invalid index %u\n", __func__, idx);
4981 		return ERR_PTR(-EINVAL);
4982 	}
4983 
4984 	return hw_data->hws[idx];
4985 }
4986 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4987 
4988 /**
4989  * of_clk_add_provider() - Register a clock provider for a node
4990  * @np: Device node pointer associated with clock provider
4991  * @clk_src_get: callback for decoding clock
4992  * @data: context pointer for @clk_src_get callback.
4993  *
4994  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4995  */
4996 int of_clk_add_provider(struct device_node *np,
4997 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4998 						   void *data),
4999 			void *data)
5000 {
5001 	struct of_clk_provider *cp;
5002 	int ret;
5003 
5004 	if (!np)
5005 		return 0;
5006 
5007 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5008 	if (!cp)
5009 		return -ENOMEM;
5010 
5011 	cp->node = of_node_get(np);
5012 	cp->data = data;
5013 	cp->get = clk_src_get;
5014 
5015 	mutex_lock(&of_clk_mutex);
5016 	list_add(&cp->link, &of_clk_providers);
5017 	mutex_unlock(&of_clk_mutex);
5018 	pr_debug("Added clock from %pOF\n", np);
5019 
5020 	clk_core_reparent_orphans();
5021 
5022 	ret = of_clk_set_defaults(np, true);
5023 	if (ret < 0)
5024 		of_clk_del_provider(np);
5025 
5026 	fwnode_dev_initialized(&np->fwnode, true);
5027 
5028 	return ret;
5029 }
5030 EXPORT_SYMBOL_GPL(of_clk_add_provider);
5031 
5032 /**
5033  * of_clk_add_hw_provider() - Register a clock provider for a node
5034  * @np: Device node pointer associated with clock provider
5035  * @get: callback for decoding clk_hw
5036  * @data: context pointer for @get callback.
5037  */
5038 int of_clk_add_hw_provider(struct device_node *np,
5039 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5040 						 void *data),
5041 			   void *data)
5042 {
5043 	struct of_clk_provider *cp;
5044 	int ret;
5045 
5046 	if (!np)
5047 		return 0;
5048 
5049 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5050 	if (!cp)
5051 		return -ENOMEM;
5052 
5053 	cp->node = of_node_get(np);
5054 	cp->data = data;
5055 	cp->get_hw = get;
5056 
5057 	mutex_lock(&of_clk_mutex);
5058 	list_add(&cp->link, &of_clk_providers);
5059 	mutex_unlock(&of_clk_mutex);
5060 	pr_debug("Added clk_hw provider from %pOF\n", np);
5061 
5062 	clk_core_reparent_orphans();
5063 
5064 	ret = of_clk_set_defaults(np, true);
5065 	if (ret < 0)
5066 		of_clk_del_provider(np);
5067 
5068 	fwnode_dev_initialized(&np->fwnode, true);
5069 
5070 	return ret;
5071 }
5072 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
5073 
5074 static void devm_of_clk_release_provider(struct device *dev, void *res)
5075 {
5076 	of_clk_del_provider(*(struct device_node **)res);
5077 }
5078 
5079 /*
5080  * We allow a child device to use its parent device as the clock provider node
5081  * for cases like MFD sub-devices where the child device driver wants to use
5082  * devm_*() APIs but not list the device in DT as a sub-node.
5083  */
5084 static struct device_node *get_clk_provider_node(struct device *dev)
5085 {
5086 	struct device_node *np, *parent_np;
5087 
5088 	np = dev->of_node;
5089 	parent_np = dev->parent ? dev->parent->of_node : NULL;
5090 
5091 	if (!of_property_present(np, "#clock-cells"))
5092 		if (of_property_present(parent_np, "#clock-cells"))
5093 			np = parent_np;
5094 
5095 	return np;
5096 }
5097 
5098 /**
5099  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
5100  * @dev: Device acting as the clock provider (used for DT node and lifetime)
5101  * @get: callback for decoding clk_hw
5102  * @data: context pointer for @get callback
5103  *
5104  * Registers clock provider for given device's node. If the device has no DT
5105  * node or if the device node lacks of clock provider information (#clock-cells)
5106  * then the parent device's node is scanned for this information. If parent node
5107  * has the #clock-cells then it is used in registration. Provider is
5108  * automatically released at device exit.
5109  *
5110  * Return: 0 on success or an errno on failure.
5111  */
5112 int devm_of_clk_add_hw_provider(struct device *dev,
5113 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5114 					      void *data),
5115 			void *data)
5116 {
5117 	struct device_node **ptr, *np;
5118 	int ret;
5119 
5120 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
5121 			   GFP_KERNEL);
5122 	if (!ptr)
5123 		return -ENOMEM;
5124 
5125 	np = get_clk_provider_node(dev);
5126 	ret = of_clk_add_hw_provider(np, get, data);
5127 	if (!ret) {
5128 		*ptr = np;
5129 		devres_add(dev, ptr);
5130 	} else {
5131 		devres_free(ptr);
5132 	}
5133 
5134 	return ret;
5135 }
5136 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
5137 
5138 /**
5139  * of_clk_del_provider() - Remove a previously registered clock provider
5140  * @np: Device node pointer associated with clock provider
5141  */
5142 void of_clk_del_provider(struct device_node *np)
5143 {
5144 	struct of_clk_provider *cp;
5145 
5146 	if (!np)
5147 		return;
5148 
5149 	mutex_lock(&of_clk_mutex);
5150 	list_for_each_entry(cp, &of_clk_providers, link) {
5151 		if (cp->node == np) {
5152 			list_del(&cp->link);
5153 			fwnode_dev_initialized(&np->fwnode, false);
5154 			of_node_put(cp->node);
5155 			kfree(cp);
5156 			break;
5157 		}
5158 	}
5159 	mutex_unlock(&of_clk_mutex);
5160 }
5161 EXPORT_SYMBOL_GPL(of_clk_del_provider);
5162 
5163 /**
5164  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5165  * @np: device node to parse clock specifier from
5166  * @index: index of phandle to parse clock out of. If index < 0, @name is used
5167  * @name: clock name to find and parse. If name is NULL, the index is used
5168  * @out_args: Result of parsing the clock specifier
5169  *
5170  * Parses a device node's "clocks" and "clock-names" properties to find the
5171  * phandle and cells for the index or name that is desired. The resulting clock
5172  * specifier is placed into @out_args, or an errno is returned when there's a
5173  * parsing error. The @index argument is ignored if @name is non-NULL.
5174  *
5175  * Example:
5176  *
5177  * phandle1: clock-controller@1 {
5178  *	#clock-cells = <2>;
5179  * }
5180  *
5181  * phandle2: clock-controller@2 {
5182  *	#clock-cells = <1>;
5183  * }
5184  *
5185  * clock-consumer@3 {
5186  *	clocks = <&phandle1 1 2 &phandle2 3>;
5187  *	clock-names = "name1", "name2";
5188  * }
5189  *
5190  * To get a device_node for `clock-controller@2' node you may call this
5191  * function a few different ways:
5192  *
5193  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5194  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5195  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5196  *
5197  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5198  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5199  * the "clock-names" property of @np.
5200  */
5201 static int of_parse_clkspec(const struct device_node *np, int index,
5202 			    const char *name, struct of_phandle_args *out_args)
5203 {
5204 	int ret = -ENOENT;
5205 
5206 	/* Walk up the tree of devices looking for a clock property that matches */
5207 	while (np) {
5208 		/*
5209 		 * For named clocks, first look up the name in the
5210 		 * "clock-names" property.  If it cannot be found, then index
5211 		 * will be an error code and of_parse_phandle_with_args() will
5212 		 * return -EINVAL.
5213 		 */
5214 		if (name)
5215 			index = of_property_match_string(np, "clock-names", name);
5216 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5217 						 index, out_args);
5218 		if (!ret)
5219 			break;
5220 		if (name && index >= 0)
5221 			break;
5222 
5223 		/*
5224 		 * No matching clock found on this node.  If the parent node
5225 		 * has a "clock-ranges" property, then we can try one of its
5226 		 * clocks.
5227 		 */
5228 		np = np->parent;
5229 		if (np && !of_property_present(np, "clock-ranges"))
5230 			break;
5231 		index = 0;
5232 	}
5233 
5234 	return ret;
5235 }
5236 
5237 static struct clk_hw *
5238 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5239 			      struct of_phandle_args *clkspec)
5240 {
5241 	struct clk *clk;
5242 
5243 	if (provider->get_hw)
5244 		return provider->get_hw(clkspec, provider->data);
5245 
5246 	clk = provider->get(clkspec, provider->data);
5247 	if (IS_ERR(clk))
5248 		return ERR_CAST(clk);
5249 	return __clk_get_hw(clk);
5250 }
5251 
5252 static struct clk_hw *
5253 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5254 {
5255 	struct of_clk_provider *provider;
5256 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5257 
5258 	if (!clkspec)
5259 		return ERR_PTR(-EINVAL);
5260 
5261 	mutex_lock(&of_clk_mutex);
5262 	list_for_each_entry(provider, &of_clk_providers, link) {
5263 		if (provider->node == clkspec->np) {
5264 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5265 			if (!IS_ERR(hw))
5266 				break;
5267 		}
5268 	}
5269 	mutex_unlock(&of_clk_mutex);
5270 
5271 	return hw;
5272 }
5273 
5274 /**
5275  * of_clk_get_from_provider() - Lookup a clock from a clock provider
5276  * @clkspec: pointer to a clock specifier data structure
5277  *
5278  * This function looks up a struct clk from the registered list of clock
5279  * providers, an input is a clock specifier data structure as returned
5280  * from the of_parse_phandle_with_args() function call.
5281  */
5282 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5283 {
5284 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5285 
5286 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5287 }
5288 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5289 
5290 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5291 			     const char *con_id)
5292 {
5293 	int ret;
5294 	struct clk_hw *hw;
5295 	struct of_phandle_args clkspec;
5296 
5297 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5298 	if (ret)
5299 		return ERR_PTR(ret);
5300 
5301 	hw = of_clk_get_hw_from_clkspec(&clkspec);
5302 	of_node_put(clkspec.np);
5303 
5304 	return hw;
5305 }
5306 
5307 static struct clk *__of_clk_get(struct device_node *np,
5308 				int index, const char *dev_id,
5309 				const char *con_id)
5310 {
5311 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5312 
5313 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5314 }
5315 
5316 struct clk *of_clk_get(struct device_node *np, int index)
5317 {
5318 	return __of_clk_get(np, index, np->full_name, NULL);
5319 }
5320 EXPORT_SYMBOL(of_clk_get);
5321 
5322 /**
5323  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5324  * @np: pointer to clock consumer node
5325  * @name: name of consumer's clock input, or NULL for the first clock reference
5326  *
5327  * This function parses the clocks and clock-names properties,
5328  * and uses them to look up the struct clk from the registered list of clock
5329  * providers.
5330  */
5331 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5332 {
5333 	if (!np)
5334 		return ERR_PTR(-ENOENT);
5335 
5336 	return __of_clk_get(np, 0, np->full_name, name);
5337 }
5338 EXPORT_SYMBOL(of_clk_get_by_name);
5339 
5340 /**
5341  * of_clk_get_parent_count() - Count the number of clocks a device node has
5342  * @np: device node to count
5343  *
5344  * Returns: The number of clocks that are possible parents of this node
5345  */
5346 unsigned int of_clk_get_parent_count(const struct device_node *np)
5347 {
5348 	int count;
5349 
5350 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5351 	if (count < 0)
5352 		return 0;
5353 
5354 	return count;
5355 }
5356 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5357 
5358 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5359 {
5360 	struct of_phandle_args clkspec;
5361 	const char *clk_name;
5362 	bool found = false;
5363 	u32 pv;
5364 	int rc;
5365 	int count;
5366 	struct clk *clk;
5367 
5368 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5369 					&clkspec);
5370 	if (rc)
5371 		return NULL;
5372 
5373 	index = clkspec.args_count ? clkspec.args[0] : 0;
5374 	count = 0;
5375 
5376 	/* if there is an indices property, use it to transfer the index
5377 	 * specified into an array offset for the clock-output-names property.
5378 	 */
5379 	of_property_for_each_u32(clkspec.np, "clock-indices", pv) {
5380 		if (index == pv) {
5381 			index = count;
5382 			found = true;
5383 			break;
5384 		}
5385 		count++;
5386 	}
5387 	/* We went off the end of 'clock-indices' without finding it */
5388 	if (of_property_present(clkspec.np, "clock-indices") && !found)
5389 		return NULL;
5390 
5391 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5392 					  index,
5393 					  &clk_name) < 0) {
5394 		/*
5395 		 * Best effort to get the name if the clock has been
5396 		 * registered with the framework. If the clock isn't
5397 		 * registered, we return the node name as the name of
5398 		 * the clock as long as #clock-cells = 0.
5399 		 */
5400 		clk = of_clk_get_from_provider(&clkspec);
5401 		if (IS_ERR(clk)) {
5402 			if (clkspec.args_count == 0)
5403 				clk_name = clkspec.np->name;
5404 			else
5405 				clk_name = NULL;
5406 		} else {
5407 			clk_name = __clk_get_name(clk);
5408 			clk_put(clk);
5409 		}
5410 	}
5411 
5412 
5413 	of_node_put(clkspec.np);
5414 	return clk_name;
5415 }
5416 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5417 
5418 /**
5419  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5420  * number of parents
5421  * @np: Device node pointer associated with clock provider
5422  * @parents: pointer to char array that hold the parents' names
5423  * @size: size of the @parents array
5424  *
5425  * Return: number of parents for the clock node.
5426  */
5427 int of_clk_parent_fill(struct device_node *np, const char **parents,
5428 		       unsigned int size)
5429 {
5430 	unsigned int i = 0;
5431 
5432 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5433 		i++;
5434 
5435 	return i;
5436 }
5437 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5438 
5439 struct clock_provider {
5440 	void (*clk_init_cb)(struct device_node *);
5441 	struct device_node *np;
5442 	struct list_head node;
5443 };
5444 
5445 /*
5446  * This function looks for a parent clock. If there is one, then it
5447  * checks that the provider for this parent clock was initialized, in
5448  * this case the parent clock will be ready.
5449  */
5450 static int parent_ready(struct device_node *np)
5451 {
5452 	int i = 0;
5453 
5454 	while (true) {
5455 		struct clk *clk = of_clk_get(np, i);
5456 
5457 		/* this parent is ready we can check the next one */
5458 		if (!IS_ERR(clk)) {
5459 			clk_put(clk);
5460 			i++;
5461 			continue;
5462 		}
5463 
5464 		/* at least one parent is not ready, we exit now */
5465 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5466 			return 0;
5467 
5468 		/*
5469 		 * Here we make assumption that the device tree is
5470 		 * written correctly. So an error means that there is
5471 		 * no more parent. As we didn't exit yet, then the
5472 		 * previous parent are ready. If there is no clock
5473 		 * parent, no need to wait for them, then we can
5474 		 * consider their absence as being ready
5475 		 */
5476 		return 1;
5477 	}
5478 }
5479 
5480 /**
5481  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5482  * @np: Device node pointer associated with clock provider
5483  * @index: clock index
5484  * @flags: pointer to top-level framework flags
5485  *
5486  * Detects if the clock-critical property exists and, if so, sets the
5487  * corresponding CLK_IS_CRITICAL flag.
5488  *
5489  * Do not use this function. It exists only for legacy Device Tree
5490  * bindings, such as the one-clock-per-node style that are outdated.
5491  * Those bindings typically put all clock data into .dts and the Linux
5492  * driver has no clock data, thus making it impossible to set this flag
5493  * correctly from the driver. Only those drivers may call
5494  * of_clk_detect_critical from their setup functions.
5495  *
5496  * Return: error code or zero on success
5497  */
5498 int of_clk_detect_critical(struct device_node *np, int index,
5499 			   unsigned long *flags)
5500 {
5501 	uint32_t idx;
5502 
5503 	if (!np || !flags)
5504 		return -EINVAL;
5505 
5506 	of_property_for_each_u32(np, "clock-critical", idx)
5507 		if (index == idx)
5508 			*flags |= CLK_IS_CRITICAL;
5509 
5510 	return 0;
5511 }
5512 
5513 /**
5514  * of_clk_init() - Scan and init clock providers from the DT
5515  * @matches: array of compatible values and init functions for providers.
5516  *
5517  * This function scans the device tree for matching clock providers
5518  * and calls their initialization functions. It also does it by trying
5519  * to follow the dependencies.
5520  */
5521 void __init of_clk_init(const struct of_device_id *matches)
5522 {
5523 	const struct of_device_id *match;
5524 	struct device_node *np;
5525 	struct clock_provider *clk_provider, *next;
5526 	bool is_init_done;
5527 	bool force = false;
5528 	LIST_HEAD(clk_provider_list);
5529 
5530 	if (!matches)
5531 		matches = &__clk_of_table;
5532 
5533 	/* First prepare the list of the clocks providers */
5534 	for_each_matching_node_and_match(np, matches, &match) {
5535 		struct clock_provider *parent;
5536 
5537 		if (!of_device_is_available(np))
5538 			continue;
5539 
5540 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5541 		if (!parent) {
5542 			list_for_each_entry_safe(clk_provider, next,
5543 						 &clk_provider_list, node) {
5544 				list_del(&clk_provider->node);
5545 				of_node_put(clk_provider->np);
5546 				kfree(clk_provider);
5547 			}
5548 			of_node_put(np);
5549 			return;
5550 		}
5551 
5552 		parent->clk_init_cb = match->data;
5553 		parent->np = of_node_get(np);
5554 		list_add_tail(&parent->node, &clk_provider_list);
5555 	}
5556 
5557 	while (!list_empty(&clk_provider_list)) {
5558 		is_init_done = false;
5559 		list_for_each_entry_safe(clk_provider, next,
5560 					&clk_provider_list, node) {
5561 			if (force || parent_ready(clk_provider->np)) {
5562 
5563 				/* Don't populate platform devices */
5564 				of_node_set_flag(clk_provider->np,
5565 						 OF_POPULATED);
5566 
5567 				clk_provider->clk_init_cb(clk_provider->np);
5568 				of_clk_set_defaults(clk_provider->np, true);
5569 
5570 				list_del(&clk_provider->node);
5571 				of_node_put(clk_provider->np);
5572 				kfree(clk_provider);
5573 				is_init_done = true;
5574 			}
5575 		}
5576 
5577 		/*
5578 		 * We didn't manage to initialize any of the
5579 		 * remaining providers during the last loop, so now we
5580 		 * initialize all the remaining ones unconditionally
5581 		 * in case the clock parent was not mandatory
5582 		 */
5583 		if (!is_init_done)
5584 			force = true;
5585 	}
5586 }
5587 #endif
5588