1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 /* List of registered clks that use runtime PM */ 41 static HLIST_HEAD(clk_rpm_list); 42 static DEFINE_MUTEX(clk_rpm_list_lock); 43 44 static const struct hlist_head *all_lists[] = { 45 &clk_root_list, 46 &clk_orphan_list, 47 NULL, 48 }; 49 50 /*** private data structures ***/ 51 52 struct clk_parent_map { 53 const struct clk_hw *hw; 54 struct clk_core *core; 55 const char *fw_name; 56 const char *name; 57 int index; 58 }; 59 60 struct clk_core { 61 const char *name; 62 const struct clk_ops *ops; 63 struct clk_hw *hw; 64 struct module *owner; 65 struct device *dev; 66 struct hlist_node rpm_node; 67 struct device_node *of_node; 68 struct clk_core *parent; 69 struct clk_parent_map *parents; 70 u8 num_parents; 71 u8 new_parent_index; 72 unsigned long rate; 73 unsigned long req_rate; 74 unsigned long new_rate; 75 struct clk_core *new_parent; 76 struct clk_core *new_child; 77 unsigned long flags; 78 bool orphan; 79 bool rpm_enabled; 80 unsigned int enable_count; 81 unsigned int prepare_count; 82 unsigned int protect_count; 83 unsigned long min_rate; 84 unsigned long max_rate; 85 unsigned long accuracy; 86 int phase; 87 struct clk_duty duty; 88 struct hlist_head children; 89 struct hlist_node child_node; 90 struct hlist_head clks; 91 unsigned int notifier_count; 92 #ifdef CONFIG_DEBUG_FS 93 struct dentry *dentry; 94 struct hlist_node debug_node; 95 #endif 96 struct kref ref; 97 }; 98 99 #define CREATE_TRACE_POINTS 100 #include <trace/events/clk.h> 101 102 struct clk { 103 struct clk_core *core; 104 struct device *dev; 105 const char *dev_id; 106 const char *con_id; 107 unsigned long min_rate; 108 unsigned long max_rate; 109 unsigned int exclusive_count; 110 struct hlist_node clks_node; 111 }; 112 113 /*** runtime pm ***/ 114 static int clk_pm_runtime_get(struct clk_core *core) 115 { 116 if (!core->rpm_enabled) 117 return 0; 118 119 return pm_runtime_resume_and_get(core->dev); 120 } 121 122 static void clk_pm_runtime_put(struct clk_core *core) 123 { 124 if (!core->rpm_enabled) 125 return; 126 127 pm_runtime_put_sync(core->dev); 128 } 129 130 /** 131 * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices 132 * 133 * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so 134 * that disabling unused clks avoids a deadlock where a device is runtime PM 135 * resuming/suspending and the runtime PM callback is trying to grab the 136 * prepare_lock for something like clk_prepare_enable() while 137 * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime 138 * PM resume/suspend the device as well. 139 * 140 * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on 141 * success. Otherwise the lock is released on failure. 142 * 143 * Return: 0 on success, negative errno otherwise. 144 */ 145 static int clk_pm_runtime_get_all(void) 146 { 147 int ret; 148 struct clk_core *core, *failed; 149 150 /* 151 * Grab the list lock to prevent any new clks from being registered 152 * or unregistered until clk_pm_runtime_put_all(). 153 */ 154 mutex_lock(&clk_rpm_list_lock); 155 156 /* 157 * Runtime PM "get" all the devices that are needed for the clks 158 * currently registered. Do this without holding the prepare_lock, to 159 * avoid the deadlock. 160 */ 161 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) { 162 ret = clk_pm_runtime_get(core); 163 if (ret) { 164 failed = core; 165 pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n", 166 dev_name(failed->dev), failed->name); 167 goto err; 168 } 169 } 170 171 return 0; 172 173 err: 174 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) { 175 if (core == failed) 176 break; 177 178 clk_pm_runtime_put(core); 179 } 180 mutex_unlock(&clk_rpm_list_lock); 181 182 return ret; 183 } 184 185 /** 186 * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices 187 * 188 * Put the runtime PM references taken in clk_pm_runtime_get_all() and release 189 * the 'clk_rpm_list_lock'. 190 */ 191 static void clk_pm_runtime_put_all(void) 192 { 193 struct clk_core *core; 194 195 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) 196 clk_pm_runtime_put(core); 197 mutex_unlock(&clk_rpm_list_lock); 198 } 199 200 static void clk_pm_runtime_init(struct clk_core *core) 201 { 202 struct device *dev = core->dev; 203 204 if (dev && pm_runtime_enabled(dev)) { 205 core->rpm_enabled = true; 206 207 mutex_lock(&clk_rpm_list_lock); 208 hlist_add_head(&core->rpm_node, &clk_rpm_list); 209 mutex_unlock(&clk_rpm_list_lock); 210 } 211 } 212 213 /*** locking ***/ 214 static void clk_prepare_lock(void) 215 { 216 if (!mutex_trylock(&prepare_lock)) { 217 if (prepare_owner == current) { 218 prepare_refcnt++; 219 return; 220 } 221 mutex_lock(&prepare_lock); 222 } 223 WARN_ON_ONCE(prepare_owner != NULL); 224 WARN_ON_ONCE(prepare_refcnt != 0); 225 prepare_owner = current; 226 prepare_refcnt = 1; 227 } 228 229 static void clk_prepare_unlock(void) 230 { 231 WARN_ON_ONCE(prepare_owner != current); 232 WARN_ON_ONCE(prepare_refcnt == 0); 233 234 if (--prepare_refcnt) 235 return; 236 prepare_owner = NULL; 237 mutex_unlock(&prepare_lock); 238 } 239 240 static unsigned long clk_enable_lock(void) 241 __acquires(enable_lock) 242 { 243 unsigned long flags; 244 245 /* 246 * On UP systems, spin_trylock_irqsave() always returns true, even if 247 * we already hold the lock. So, in that case, we rely only on 248 * reference counting. 249 */ 250 if (!IS_ENABLED(CONFIG_SMP) || 251 !spin_trylock_irqsave(&enable_lock, flags)) { 252 if (enable_owner == current) { 253 enable_refcnt++; 254 __acquire(enable_lock); 255 if (!IS_ENABLED(CONFIG_SMP)) 256 local_save_flags(flags); 257 return flags; 258 } 259 spin_lock_irqsave(&enable_lock, flags); 260 } 261 WARN_ON_ONCE(enable_owner != NULL); 262 WARN_ON_ONCE(enable_refcnt != 0); 263 enable_owner = current; 264 enable_refcnt = 1; 265 return flags; 266 } 267 268 static void clk_enable_unlock(unsigned long flags) 269 __releases(enable_lock) 270 { 271 WARN_ON_ONCE(enable_owner != current); 272 WARN_ON_ONCE(enable_refcnt == 0); 273 274 if (--enable_refcnt) { 275 __release(enable_lock); 276 return; 277 } 278 enable_owner = NULL; 279 spin_unlock_irqrestore(&enable_lock, flags); 280 } 281 282 static bool clk_core_rate_is_protected(struct clk_core *core) 283 { 284 return core->protect_count; 285 } 286 287 static bool clk_core_is_prepared(struct clk_core *core) 288 { 289 bool ret = false; 290 291 /* 292 * .is_prepared is optional for clocks that can prepare 293 * fall back to software usage counter if it is missing 294 */ 295 if (!core->ops->is_prepared) 296 return core->prepare_count; 297 298 if (!clk_pm_runtime_get(core)) { 299 ret = core->ops->is_prepared(core->hw); 300 clk_pm_runtime_put(core); 301 } 302 303 return ret; 304 } 305 306 static bool clk_core_is_enabled(struct clk_core *core) 307 { 308 bool ret = false; 309 310 /* 311 * .is_enabled is only mandatory for clocks that gate 312 * fall back to software usage counter if .is_enabled is missing 313 */ 314 if (!core->ops->is_enabled) 315 return core->enable_count; 316 317 /* 318 * Check if clock controller's device is runtime active before 319 * calling .is_enabled callback. If not, assume that clock is 320 * disabled, because we might be called from atomic context, from 321 * which pm_runtime_get() is not allowed. 322 * This function is called mainly from clk_disable_unused_subtree, 323 * which ensures proper runtime pm activation of controller before 324 * taking enable spinlock, but the below check is needed if one tries 325 * to call it from other places. 326 */ 327 if (core->rpm_enabled) { 328 pm_runtime_get_noresume(core->dev); 329 if (!pm_runtime_active(core->dev)) { 330 ret = false; 331 goto done; 332 } 333 } 334 335 /* 336 * This could be called with the enable lock held, or from atomic 337 * context. If the parent isn't enabled already, we can't do 338 * anything here. We can also assume this clock isn't enabled. 339 */ 340 if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent) 341 if (!clk_core_is_enabled(core->parent)) { 342 ret = false; 343 goto done; 344 } 345 346 ret = core->ops->is_enabled(core->hw); 347 done: 348 if (core->rpm_enabled) 349 pm_runtime_put(core->dev); 350 351 return ret; 352 } 353 354 /*** helper functions ***/ 355 356 const char *__clk_get_name(const struct clk *clk) 357 { 358 return !clk ? NULL : clk->core->name; 359 } 360 EXPORT_SYMBOL_GPL(__clk_get_name); 361 362 const char *clk_hw_get_name(const struct clk_hw *hw) 363 { 364 return hw->core->name; 365 } 366 EXPORT_SYMBOL_GPL(clk_hw_get_name); 367 368 struct clk_hw *__clk_get_hw(struct clk *clk) 369 { 370 return !clk ? NULL : clk->core->hw; 371 } 372 EXPORT_SYMBOL_GPL(__clk_get_hw); 373 374 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 375 { 376 return hw->core->num_parents; 377 } 378 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 379 380 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 381 { 382 return hw->core->parent ? hw->core->parent->hw : NULL; 383 } 384 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 385 386 static struct clk_core *__clk_lookup_subtree(const char *name, 387 struct clk_core *core) 388 { 389 struct clk_core *child; 390 struct clk_core *ret; 391 392 if (!strcmp(core->name, name)) 393 return core; 394 395 hlist_for_each_entry(child, &core->children, child_node) { 396 ret = __clk_lookup_subtree(name, child); 397 if (ret) 398 return ret; 399 } 400 401 return NULL; 402 } 403 404 static struct clk_core *clk_core_lookup(const char *name) 405 { 406 struct clk_core *root_clk; 407 struct clk_core *ret; 408 409 if (!name) 410 return NULL; 411 412 /* search the 'proper' clk tree first */ 413 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 414 ret = __clk_lookup_subtree(name, root_clk); 415 if (ret) 416 return ret; 417 } 418 419 /* if not found, then search the orphan tree */ 420 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 421 ret = __clk_lookup_subtree(name, root_clk); 422 if (ret) 423 return ret; 424 } 425 426 return NULL; 427 } 428 429 #ifdef CONFIG_OF 430 static int of_parse_clkspec(const struct device_node *np, int index, 431 const char *name, struct of_phandle_args *out_args); 432 static struct clk_hw * 433 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 434 #else 435 static inline int of_parse_clkspec(const struct device_node *np, int index, 436 const char *name, 437 struct of_phandle_args *out_args) 438 { 439 return -ENOENT; 440 } 441 static inline struct clk_hw * 442 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 443 { 444 return ERR_PTR(-ENOENT); 445 } 446 #endif 447 448 /** 449 * clk_core_get - Find the clk_core parent of a clk 450 * @core: clk to find parent of 451 * @p_index: parent index to search for 452 * 453 * This is the preferred method for clk providers to find the parent of a 454 * clk when that parent is external to the clk controller. The parent_names 455 * array is indexed and treated as a local name matching a string in the device 456 * node's 'clock-names' property or as the 'con_id' matching the device's 457 * dev_name() in a clk_lookup. This allows clk providers to use their own 458 * namespace instead of looking for a globally unique parent string. 459 * 460 * For example the following DT snippet would allow a clock registered by the 461 * clock-controller@c001 that has a clk_init_data::parent_data array 462 * with 'xtal' in the 'name' member to find the clock provided by the 463 * clock-controller@f00abcd without needing to get the globally unique name of 464 * the xtal clk. 465 * 466 * parent: clock-controller@f00abcd { 467 * reg = <0xf00abcd 0xabcd>; 468 * #clock-cells = <0>; 469 * }; 470 * 471 * clock-controller@c001 { 472 * reg = <0xc001 0xf00d>; 473 * clocks = <&parent>; 474 * clock-names = "xtal"; 475 * #clock-cells = <1>; 476 * }; 477 * 478 * Returns: -ENOENT when the provider can't be found or the clk doesn't 479 * exist in the provider or the name can't be found in the DT node or 480 * in a clkdev lookup. NULL when the provider knows about the clk but it 481 * isn't provided on this system. 482 * A valid clk_core pointer when the clk can be found in the provider. 483 */ 484 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 485 { 486 const char *name = core->parents[p_index].fw_name; 487 int index = core->parents[p_index].index; 488 struct clk_hw *hw = ERR_PTR(-ENOENT); 489 struct device *dev = core->dev; 490 const char *dev_id = dev ? dev_name(dev) : NULL; 491 struct device_node *np = core->of_node; 492 struct of_phandle_args clkspec; 493 494 if (np && (name || index >= 0) && 495 !of_parse_clkspec(np, index, name, &clkspec)) { 496 hw = of_clk_get_hw_from_clkspec(&clkspec); 497 of_node_put(clkspec.np); 498 } else if (name) { 499 /* 500 * If the DT search above couldn't find the provider fallback to 501 * looking up via clkdev based clk_lookups. 502 */ 503 hw = clk_find_hw(dev_id, name); 504 } 505 506 if (IS_ERR(hw)) 507 return ERR_CAST(hw); 508 509 if (!hw) 510 return NULL; 511 512 return hw->core; 513 } 514 515 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 516 { 517 struct clk_parent_map *entry = &core->parents[index]; 518 struct clk_core *parent; 519 520 if (entry->hw) { 521 parent = entry->hw->core; 522 } else { 523 parent = clk_core_get(core, index); 524 if (PTR_ERR(parent) == -ENOENT && entry->name) 525 parent = clk_core_lookup(entry->name); 526 } 527 528 /* 529 * We have a direct reference but it isn't registered yet? 530 * Orphan it and let clk_reparent() update the orphan status 531 * when the parent is registered. 532 */ 533 if (!parent) 534 parent = ERR_PTR(-EPROBE_DEFER); 535 536 /* Only cache it if it's not an error */ 537 if (!IS_ERR(parent)) 538 entry->core = parent; 539 } 540 541 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 542 u8 index) 543 { 544 if (!core || index >= core->num_parents || !core->parents) 545 return NULL; 546 547 if (!core->parents[index].core) 548 clk_core_fill_parent_index(core, index); 549 550 return core->parents[index].core; 551 } 552 553 struct clk_hw * 554 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 555 { 556 struct clk_core *parent; 557 558 parent = clk_core_get_parent_by_index(hw->core, index); 559 560 return !parent ? NULL : parent->hw; 561 } 562 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 563 564 unsigned int __clk_get_enable_count(struct clk *clk) 565 { 566 return !clk ? 0 : clk->core->enable_count; 567 } 568 569 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 570 { 571 if (!core) 572 return 0; 573 574 if (!core->num_parents || core->parent) 575 return core->rate; 576 577 /* 578 * Clk must have a parent because num_parents > 0 but the parent isn't 579 * known yet. Best to return 0 as the rate of this clk until we can 580 * properly recalc the rate based on the parent's rate. 581 */ 582 return 0; 583 } 584 585 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 586 { 587 return clk_core_get_rate_nolock(hw->core); 588 } 589 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 590 591 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 592 { 593 if (!core) 594 return 0; 595 596 return core->accuracy; 597 } 598 599 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 600 { 601 return hw->core->flags; 602 } 603 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 604 605 bool clk_hw_is_prepared(const struct clk_hw *hw) 606 { 607 return clk_core_is_prepared(hw->core); 608 } 609 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 610 611 bool clk_hw_is_enabled(const struct clk_hw *hw) 612 { 613 return clk_core_is_enabled(hw->core); 614 } 615 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 616 617 bool __clk_is_enabled(struct clk *clk) 618 { 619 if (!clk) 620 return false; 621 622 return clk_core_is_enabled(clk->core); 623 } 624 EXPORT_SYMBOL_GPL(__clk_is_enabled); 625 626 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 627 unsigned long best, unsigned long flags) 628 { 629 if (flags & CLK_MUX_ROUND_CLOSEST) 630 return abs(now - rate) < abs(best - rate); 631 632 return now <= rate && now > best; 633 } 634 635 static void clk_core_init_rate_req(struct clk_core * const core, 636 struct clk_rate_request *req, 637 unsigned long rate); 638 639 static int clk_core_round_rate_nolock(struct clk_core *core, 640 struct clk_rate_request *req); 641 642 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent) 643 { 644 struct clk_core *tmp; 645 unsigned int i; 646 647 /* Optimize for the case where the parent is already the parent. */ 648 if (core->parent == parent) 649 return true; 650 651 for (i = 0; i < core->num_parents; i++) { 652 tmp = clk_core_get_parent_by_index(core, i); 653 if (!tmp) 654 continue; 655 656 if (tmp == parent) 657 return true; 658 } 659 660 return false; 661 } 662 663 static void 664 clk_core_forward_rate_req(struct clk_core *core, 665 const struct clk_rate_request *old_req, 666 struct clk_core *parent, 667 struct clk_rate_request *req, 668 unsigned long parent_rate) 669 { 670 if (WARN_ON(!clk_core_has_parent(core, parent))) 671 return; 672 673 clk_core_init_rate_req(parent, req, parent_rate); 674 675 if (req->min_rate < old_req->min_rate) 676 req->min_rate = old_req->min_rate; 677 678 if (req->max_rate > old_req->max_rate) 679 req->max_rate = old_req->max_rate; 680 } 681 682 static int 683 clk_core_determine_rate_no_reparent(struct clk_hw *hw, 684 struct clk_rate_request *req) 685 { 686 struct clk_core *core = hw->core; 687 struct clk_core *parent = core->parent; 688 unsigned long best; 689 int ret; 690 691 if (core->flags & CLK_SET_RATE_PARENT) { 692 struct clk_rate_request parent_req; 693 694 if (!parent) { 695 req->rate = 0; 696 return 0; 697 } 698 699 clk_core_forward_rate_req(core, req, parent, &parent_req, 700 req->rate); 701 702 trace_clk_rate_request_start(&parent_req); 703 704 ret = clk_core_round_rate_nolock(parent, &parent_req); 705 if (ret) 706 return ret; 707 708 trace_clk_rate_request_done(&parent_req); 709 710 best = parent_req.rate; 711 } else if (parent) { 712 best = clk_core_get_rate_nolock(parent); 713 } else { 714 best = clk_core_get_rate_nolock(core); 715 } 716 717 req->best_parent_rate = best; 718 req->rate = best; 719 720 return 0; 721 } 722 723 int clk_mux_determine_rate_flags(struct clk_hw *hw, 724 struct clk_rate_request *req, 725 unsigned long flags) 726 { 727 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 728 int i, num_parents, ret; 729 unsigned long best = 0; 730 731 /* if NO_REPARENT flag set, pass through to current parent */ 732 if (core->flags & CLK_SET_RATE_NO_REPARENT) 733 return clk_core_determine_rate_no_reparent(hw, req); 734 735 /* find the parent that can provide the fastest rate <= rate */ 736 num_parents = core->num_parents; 737 for (i = 0; i < num_parents; i++) { 738 unsigned long parent_rate; 739 740 parent = clk_core_get_parent_by_index(core, i); 741 if (!parent) 742 continue; 743 744 if (core->flags & CLK_SET_RATE_PARENT) { 745 struct clk_rate_request parent_req; 746 747 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate); 748 749 trace_clk_rate_request_start(&parent_req); 750 751 ret = clk_core_round_rate_nolock(parent, &parent_req); 752 if (ret) 753 continue; 754 755 trace_clk_rate_request_done(&parent_req); 756 757 parent_rate = parent_req.rate; 758 } else { 759 parent_rate = clk_core_get_rate_nolock(parent); 760 } 761 762 if (mux_is_better_rate(req->rate, parent_rate, 763 best, flags)) { 764 best_parent = parent; 765 best = parent_rate; 766 } 767 } 768 769 if (!best_parent) 770 return -EINVAL; 771 772 req->best_parent_hw = best_parent->hw; 773 req->best_parent_rate = best; 774 req->rate = best; 775 776 return 0; 777 } 778 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 779 780 struct clk *__clk_lookup(const char *name) 781 { 782 struct clk_core *core = clk_core_lookup(name); 783 784 return !core ? NULL : core->hw->clk; 785 } 786 787 static void clk_core_get_boundaries(struct clk_core *core, 788 unsigned long *min_rate, 789 unsigned long *max_rate) 790 { 791 struct clk *clk_user; 792 793 lockdep_assert_held(&prepare_lock); 794 795 *min_rate = core->min_rate; 796 *max_rate = core->max_rate; 797 798 hlist_for_each_entry(clk_user, &core->clks, clks_node) 799 *min_rate = max(*min_rate, clk_user->min_rate); 800 801 hlist_for_each_entry(clk_user, &core->clks, clks_node) 802 *max_rate = min(*max_rate, clk_user->max_rate); 803 } 804 805 /* 806 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk 807 * @hw: the hw clk we want to get the range from 808 * @min_rate: pointer to the variable that will hold the minimum 809 * @max_rate: pointer to the variable that will hold the maximum 810 * 811 * Fills the @min_rate and @max_rate variables with the minimum and 812 * maximum that clock can reach. 813 */ 814 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate, 815 unsigned long *max_rate) 816 { 817 clk_core_get_boundaries(hw->core, min_rate, max_rate); 818 } 819 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range); 820 821 static bool clk_core_check_boundaries(struct clk_core *core, 822 unsigned long min_rate, 823 unsigned long max_rate) 824 { 825 struct clk *user; 826 827 lockdep_assert_held(&prepare_lock); 828 829 if (min_rate > core->max_rate || max_rate < core->min_rate) 830 return false; 831 832 hlist_for_each_entry(user, &core->clks, clks_node) 833 if (min_rate > user->max_rate || max_rate < user->min_rate) 834 return false; 835 836 return true; 837 } 838 839 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 840 unsigned long max_rate) 841 { 842 hw->core->min_rate = min_rate; 843 hw->core->max_rate = max_rate; 844 } 845 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 846 847 /* 848 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 849 * @hw: mux type clk to determine rate on 850 * @req: rate request, also used to return preferred parent and frequencies 851 * 852 * Helper for finding best parent to provide a given frequency. This can be used 853 * directly as a determine_rate callback (e.g. for a mux), or from a more 854 * complex clock that may combine a mux with other operations. 855 * 856 * Returns: 0 on success, -EERROR value on error 857 */ 858 int __clk_mux_determine_rate(struct clk_hw *hw, 859 struct clk_rate_request *req) 860 { 861 return clk_mux_determine_rate_flags(hw, req, 0); 862 } 863 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 864 865 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 866 struct clk_rate_request *req) 867 { 868 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 869 } 870 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 871 872 /* 873 * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent 874 * @hw: mux type clk to determine rate on 875 * @req: rate request, also used to return preferred frequency 876 * 877 * Helper for finding best parent rate to provide a given frequency. 878 * This can be used directly as a determine_rate callback (e.g. for a 879 * mux), or from a more complex clock that may combine a mux with other 880 * operations. 881 * 882 * Returns: 0 on success, -EERROR value on error 883 */ 884 int clk_hw_determine_rate_no_reparent(struct clk_hw *hw, 885 struct clk_rate_request *req) 886 { 887 return clk_core_determine_rate_no_reparent(hw, req); 888 } 889 EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent); 890 891 /*** clk api ***/ 892 893 static void clk_core_rate_unprotect(struct clk_core *core) 894 { 895 lockdep_assert_held(&prepare_lock); 896 897 if (!core) 898 return; 899 900 if (WARN(core->protect_count == 0, 901 "%s already unprotected\n", core->name)) 902 return; 903 904 if (--core->protect_count > 0) 905 return; 906 907 clk_core_rate_unprotect(core->parent); 908 } 909 910 static int clk_core_rate_nuke_protect(struct clk_core *core) 911 { 912 int ret; 913 914 lockdep_assert_held(&prepare_lock); 915 916 if (!core) 917 return -EINVAL; 918 919 if (core->protect_count == 0) 920 return 0; 921 922 ret = core->protect_count; 923 core->protect_count = 1; 924 clk_core_rate_unprotect(core); 925 926 return ret; 927 } 928 929 /** 930 * clk_rate_exclusive_put - release exclusivity over clock rate control 931 * @clk: the clk over which the exclusivity is released 932 * 933 * clk_rate_exclusive_put() completes a critical section during which a clock 934 * consumer cannot tolerate any other consumer making any operation on the 935 * clock which could result in a rate change or rate glitch. Exclusive clocks 936 * cannot have their rate changed, either directly or indirectly due to changes 937 * further up the parent chain of clocks. As a result, clocks up parent chain 938 * also get under exclusive control of the calling consumer. 939 * 940 * If exlusivity is claimed more than once on clock, even by the same consumer, 941 * the rate effectively gets locked as exclusivity can't be preempted. 942 * 943 * Calls to clk_rate_exclusive_put() must be balanced with calls to 944 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 945 * error status. 946 */ 947 void clk_rate_exclusive_put(struct clk *clk) 948 { 949 if (!clk) 950 return; 951 952 clk_prepare_lock(); 953 954 /* 955 * if there is something wrong with this consumer protect count, stop 956 * here before messing with the provider 957 */ 958 if (WARN_ON(clk->exclusive_count <= 0)) 959 goto out; 960 961 clk_core_rate_unprotect(clk->core); 962 clk->exclusive_count--; 963 out: 964 clk_prepare_unlock(); 965 } 966 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 967 968 static void clk_core_rate_protect(struct clk_core *core) 969 { 970 lockdep_assert_held(&prepare_lock); 971 972 if (!core) 973 return; 974 975 if (core->protect_count == 0) 976 clk_core_rate_protect(core->parent); 977 978 core->protect_count++; 979 } 980 981 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 982 { 983 lockdep_assert_held(&prepare_lock); 984 985 if (!core) 986 return; 987 988 if (count == 0) 989 return; 990 991 clk_core_rate_protect(core); 992 core->protect_count = count; 993 } 994 995 /** 996 * clk_rate_exclusive_get - get exclusivity over the clk rate control 997 * @clk: the clk over which the exclusity of rate control is requested 998 * 999 * clk_rate_exclusive_get() begins a critical section during which a clock 1000 * consumer cannot tolerate any other consumer making any operation on the 1001 * clock which could result in a rate change or rate glitch. Exclusive clocks 1002 * cannot have their rate changed, either directly or indirectly due to changes 1003 * further up the parent chain of clocks. As a result, clocks up parent chain 1004 * also get under exclusive control of the calling consumer. 1005 * 1006 * If exlusivity is claimed more than once on clock, even by the same consumer, 1007 * the rate effectively gets locked as exclusivity can't be preempted. 1008 * 1009 * Calls to clk_rate_exclusive_get() should be balanced with calls to 1010 * clk_rate_exclusive_put(). Calls to this function may sleep. 1011 * Returns 0 on success, -EERROR otherwise 1012 */ 1013 int clk_rate_exclusive_get(struct clk *clk) 1014 { 1015 if (!clk) 1016 return 0; 1017 1018 clk_prepare_lock(); 1019 clk_core_rate_protect(clk->core); 1020 clk->exclusive_count++; 1021 clk_prepare_unlock(); 1022 1023 return 0; 1024 } 1025 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 1026 1027 static void devm_clk_rate_exclusive_put(void *data) 1028 { 1029 struct clk *clk = data; 1030 1031 clk_rate_exclusive_put(clk); 1032 } 1033 1034 int devm_clk_rate_exclusive_get(struct device *dev, struct clk *clk) 1035 { 1036 int ret; 1037 1038 ret = clk_rate_exclusive_get(clk); 1039 if (ret) 1040 return ret; 1041 1042 return devm_add_action_or_reset(dev, devm_clk_rate_exclusive_put, clk); 1043 } 1044 EXPORT_SYMBOL_GPL(devm_clk_rate_exclusive_get); 1045 1046 static void clk_core_unprepare(struct clk_core *core) 1047 { 1048 lockdep_assert_held(&prepare_lock); 1049 1050 if (!core) 1051 return; 1052 1053 if (WARN(core->prepare_count == 0, 1054 "%s already unprepared\n", core->name)) 1055 return; 1056 1057 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 1058 "Unpreparing critical %s\n", core->name)) 1059 return; 1060 1061 if (core->flags & CLK_SET_RATE_GATE) 1062 clk_core_rate_unprotect(core); 1063 1064 if (--core->prepare_count > 0) 1065 return; 1066 1067 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 1068 1069 trace_clk_unprepare(core); 1070 1071 if (core->ops->unprepare) 1072 core->ops->unprepare(core->hw); 1073 1074 trace_clk_unprepare_complete(core); 1075 clk_core_unprepare(core->parent); 1076 clk_pm_runtime_put(core); 1077 } 1078 1079 static void clk_core_unprepare_lock(struct clk_core *core) 1080 { 1081 clk_prepare_lock(); 1082 clk_core_unprepare(core); 1083 clk_prepare_unlock(); 1084 } 1085 1086 /** 1087 * clk_unprepare - undo preparation of a clock source 1088 * @clk: the clk being unprepared 1089 * 1090 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 1091 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 1092 * if the operation may sleep. One example is a clk which is accessed over 1093 * I2c. In the complex case a clk gate operation may require a fast and a slow 1094 * part. It is this reason that clk_unprepare and clk_disable are not mutually 1095 * exclusive. In fact clk_disable must be called before clk_unprepare. 1096 */ 1097 void clk_unprepare(struct clk *clk) 1098 { 1099 if (IS_ERR_OR_NULL(clk)) 1100 return; 1101 1102 clk_core_unprepare_lock(clk->core); 1103 } 1104 EXPORT_SYMBOL_GPL(clk_unprepare); 1105 1106 static int clk_core_prepare(struct clk_core *core) 1107 { 1108 int ret = 0; 1109 1110 lockdep_assert_held(&prepare_lock); 1111 1112 if (!core) 1113 return 0; 1114 1115 if (core->prepare_count == 0) { 1116 ret = clk_pm_runtime_get(core); 1117 if (ret) 1118 return ret; 1119 1120 ret = clk_core_prepare(core->parent); 1121 if (ret) 1122 goto runtime_put; 1123 1124 trace_clk_prepare(core); 1125 1126 if (core->ops->prepare) 1127 ret = core->ops->prepare(core->hw); 1128 1129 trace_clk_prepare_complete(core); 1130 1131 if (ret) 1132 goto unprepare; 1133 } 1134 1135 core->prepare_count++; 1136 1137 /* 1138 * CLK_SET_RATE_GATE is a special case of clock protection 1139 * Instead of a consumer claiming exclusive rate control, it is 1140 * actually the provider which prevents any consumer from making any 1141 * operation which could result in a rate change or rate glitch while 1142 * the clock is prepared. 1143 */ 1144 if (core->flags & CLK_SET_RATE_GATE) 1145 clk_core_rate_protect(core); 1146 1147 return 0; 1148 unprepare: 1149 clk_core_unprepare(core->parent); 1150 runtime_put: 1151 clk_pm_runtime_put(core); 1152 return ret; 1153 } 1154 1155 static int clk_core_prepare_lock(struct clk_core *core) 1156 { 1157 int ret; 1158 1159 clk_prepare_lock(); 1160 ret = clk_core_prepare(core); 1161 clk_prepare_unlock(); 1162 1163 return ret; 1164 } 1165 1166 /** 1167 * clk_prepare - prepare a clock source 1168 * @clk: the clk being prepared 1169 * 1170 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 1171 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 1172 * operation may sleep. One example is a clk which is accessed over I2c. In 1173 * the complex case a clk ungate operation may require a fast and a slow part. 1174 * It is this reason that clk_prepare and clk_enable are not mutually 1175 * exclusive. In fact clk_prepare must be called before clk_enable. 1176 * Returns 0 on success, -EERROR otherwise. 1177 */ 1178 int clk_prepare(struct clk *clk) 1179 { 1180 if (!clk) 1181 return 0; 1182 1183 return clk_core_prepare_lock(clk->core); 1184 } 1185 EXPORT_SYMBOL_GPL(clk_prepare); 1186 1187 static void clk_core_disable(struct clk_core *core) 1188 { 1189 lockdep_assert_held(&enable_lock); 1190 1191 if (!core) 1192 return; 1193 1194 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 1195 return; 1196 1197 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 1198 "Disabling critical %s\n", core->name)) 1199 return; 1200 1201 if (--core->enable_count > 0) 1202 return; 1203 1204 trace_clk_disable(core); 1205 1206 if (core->ops->disable) 1207 core->ops->disable(core->hw); 1208 1209 trace_clk_disable_complete(core); 1210 1211 clk_core_disable(core->parent); 1212 } 1213 1214 static void clk_core_disable_lock(struct clk_core *core) 1215 { 1216 unsigned long flags; 1217 1218 flags = clk_enable_lock(); 1219 clk_core_disable(core); 1220 clk_enable_unlock(flags); 1221 } 1222 1223 /** 1224 * clk_disable - gate a clock 1225 * @clk: the clk being gated 1226 * 1227 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 1228 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 1229 * clk if the operation is fast and will never sleep. One example is a 1230 * SoC-internal clk which is controlled via simple register writes. In the 1231 * complex case a clk gate operation may require a fast and a slow part. It is 1232 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 1233 * In fact clk_disable must be called before clk_unprepare. 1234 */ 1235 void clk_disable(struct clk *clk) 1236 { 1237 if (IS_ERR_OR_NULL(clk)) 1238 return; 1239 1240 clk_core_disable_lock(clk->core); 1241 } 1242 EXPORT_SYMBOL_GPL(clk_disable); 1243 1244 static int clk_core_enable(struct clk_core *core) 1245 { 1246 int ret = 0; 1247 1248 lockdep_assert_held(&enable_lock); 1249 1250 if (!core) 1251 return 0; 1252 1253 if (WARN(core->prepare_count == 0, 1254 "Enabling unprepared %s\n", core->name)) 1255 return -ESHUTDOWN; 1256 1257 if (core->enable_count == 0) { 1258 ret = clk_core_enable(core->parent); 1259 1260 if (ret) 1261 return ret; 1262 1263 trace_clk_enable(core); 1264 1265 if (core->ops->enable) 1266 ret = core->ops->enable(core->hw); 1267 1268 trace_clk_enable_complete(core); 1269 1270 if (ret) { 1271 clk_core_disable(core->parent); 1272 return ret; 1273 } 1274 } 1275 1276 core->enable_count++; 1277 return 0; 1278 } 1279 1280 static int clk_core_enable_lock(struct clk_core *core) 1281 { 1282 unsigned long flags; 1283 int ret; 1284 1285 flags = clk_enable_lock(); 1286 ret = clk_core_enable(core); 1287 clk_enable_unlock(flags); 1288 1289 return ret; 1290 } 1291 1292 /** 1293 * clk_gate_restore_context - restore context for poweroff 1294 * @hw: the clk_hw pointer of clock whose state is to be restored 1295 * 1296 * The clock gate restore context function enables or disables 1297 * the gate clocks based on the enable_count. This is done in cases 1298 * where the clock context is lost and based on the enable_count 1299 * the clock either needs to be enabled/disabled. This 1300 * helps restore the state of gate clocks. 1301 */ 1302 void clk_gate_restore_context(struct clk_hw *hw) 1303 { 1304 struct clk_core *core = hw->core; 1305 1306 if (core->enable_count) 1307 core->ops->enable(hw); 1308 else 1309 core->ops->disable(hw); 1310 } 1311 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1312 1313 static int clk_core_save_context(struct clk_core *core) 1314 { 1315 struct clk_core *child; 1316 int ret = 0; 1317 1318 hlist_for_each_entry(child, &core->children, child_node) { 1319 ret = clk_core_save_context(child); 1320 if (ret < 0) 1321 return ret; 1322 } 1323 1324 if (core->ops && core->ops->save_context) 1325 ret = core->ops->save_context(core->hw); 1326 1327 return ret; 1328 } 1329 1330 static void clk_core_restore_context(struct clk_core *core) 1331 { 1332 struct clk_core *child; 1333 1334 if (core->ops && core->ops->restore_context) 1335 core->ops->restore_context(core->hw); 1336 1337 hlist_for_each_entry(child, &core->children, child_node) 1338 clk_core_restore_context(child); 1339 } 1340 1341 /** 1342 * clk_save_context - save clock context for poweroff 1343 * 1344 * Saves the context of the clock register for powerstates in which the 1345 * contents of the registers will be lost. Occurs deep within the suspend 1346 * code. Returns 0 on success. 1347 */ 1348 int clk_save_context(void) 1349 { 1350 struct clk_core *clk; 1351 int ret; 1352 1353 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1354 ret = clk_core_save_context(clk); 1355 if (ret < 0) 1356 return ret; 1357 } 1358 1359 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1360 ret = clk_core_save_context(clk); 1361 if (ret < 0) 1362 return ret; 1363 } 1364 1365 return 0; 1366 } 1367 EXPORT_SYMBOL_GPL(clk_save_context); 1368 1369 /** 1370 * clk_restore_context - restore clock context after poweroff 1371 * 1372 * Restore the saved clock context upon resume. 1373 * 1374 */ 1375 void clk_restore_context(void) 1376 { 1377 struct clk_core *core; 1378 1379 hlist_for_each_entry(core, &clk_root_list, child_node) 1380 clk_core_restore_context(core); 1381 1382 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1383 clk_core_restore_context(core); 1384 } 1385 EXPORT_SYMBOL_GPL(clk_restore_context); 1386 1387 /** 1388 * clk_enable - ungate a clock 1389 * @clk: the clk being ungated 1390 * 1391 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1392 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1393 * if the operation will never sleep. One example is a SoC-internal clk which 1394 * is controlled via simple register writes. In the complex case a clk ungate 1395 * operation may require a fast and a slow part. It is this reason that 1396 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1397 * must be called before clk_enable. Returns 0 on success, -EERROR 1398 * otherwise. 1399 */ 1400 int clk_enable(struct clk *clk) 1401 { 1402 if (!clk) 1403 return 0; 1404 1405 return clk_core_enable_lock(clk->core); 1406 } 1407 EXPORT_SYMBOL_GPL(clk_enable); 1408 1409 /** 1410 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it. 1411 * @clk: clock source 1412 * 1413 * Returns true if clk_prepare() implicitly enables the clock, effectively 1414 * making clk_enable()/clk_disable() no-ops, false otherwise. 1415 * 1416 * This is of interest mainly to power management code where actually 1417 * disabling the clock also requires unpreparing it to have any material 1418 * effect. 1419 * 1420 * Regardless of the value returned here, the caller must always invoke 1421 * clk_enable() or clk_prepare_enable() and counterparts for usage counts 1422 * to be right. 1423 */ 1424 bool clk_is_enabled_when_prepared(struct clk *clk) 1425 { 1426 return clk && !(clk->core->ops->enable && clk->core->ops->disable); 1427 } 1428 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared); 1429 1430 static int clk_core_prepare_enable(struct clk_core *core) 1431 { 1432 int ret; 1433 1434 ret = clk_core_prepare_lock(core); 1435 if (ret) 1436 return ret; 1437 1438 ret = clk_core_enable_lock(core); 1439 if (ret) 1440 clk_core_unprepare_lock(core); 1441 1442 return ret; 1443 } 1444 1445 static void clk_core_disable_unprepare(struct clk_core *core) 1446 { 1447 clk_core_disable_lock(core); 1448 clk_core_unprepare_lock(core); 1449 } 1450 1451 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1452 { 1453 struct clk_core *child; 1454 1455 lockdep_assert_held(&prepare_lock); 1456 1457 hlist_for_each_entry(child, &core->children, child_node) 1458 clk_unprepare_unused_subtree(child); 1459 1460 if (core->prepare_count) 1461 return; 1462 1463 if (core->flags & CLK_IGNORE_UNUSED) 1464 return; 1465 1466 if (clk_core_is_prepared(core)) { 1467 trace_clk_unprepare(core); 1468 if (core->ops->unprepare_unused) 1469 core->ops->unprepare_unused(core->hw); 1470 else if (core->ops->unprepare) 1471 core->ops->unprepare(core->hw); 1472 trace_clk_unprepare_complete(core); 1473 } 1474 } 1475 1476 static void __init clk_disable_unused_subtree(struct clk_core *core) 1477 { 1478 struct clk_core *child; 1479 unsigned long flags; 1480 1481 lockdep_assert_held(&prepare_lock); 1482 1483 hlist_for_each_entry(child, &core->children, child_node) 1484 clk_disable_unused_subtree(child); 1485 1486 if (core->flags & CLK_OPS_PARENT_ENABLE) 1487 clk_core_prepare_enable(core->parent); 1488 1489 flags = clk_enable_lock(); 1490 1491 if (core->enable_count) 1492 goto unlock_out; 1493 1494 if (core->flags & CLK_IGNORE_UNUSED) 1495 goto unlock_out; 1496 1497 /* 1498 * some gate clocks have special needs during the disable-unused 1499 * sequence. call .disable_unused if available, otherwise fall 1500 * back to .disable 1501 */ 1502 if (clk_core_is_enabled(core)) { 1503 trace_clk_disable(core); 1504 if (core->ops->disable_unused) 1505 core->ops->disable_unused(core->hw); 1506 else if (core->ops->disable) 1507 core->ops->disable(core->hw); 1508 trace_clk_disable_complete(core); 1509 } 1510 1511 unlock_out: 1512 clk_enable_unlock(flags); 1513 if (core->flags & CLK_OPS_PARENT_ENABLE) 1514 clk_core_disable_unprepare(core->parent); 1515 } 1516 1517 static bool clk_ignore_unused __initdata; 1518 static int __init clk_ignore_unused_setup(char *__unused) 1519 { 1520 clk_ignore_unused = true; 1521 return 1; 1522 } 1523 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1524 1525 static int __init clk_disable_unused(void) 1526 { 1527 struct clk_core *core; 1528 int ret; 1529 1530 if (clk_ignore_unused) { 1531 pr_warn("clk: Not disabling unused clocks\n"); 1532 return 0; 1533 } 1534 1535 pr_info("clk: Disabling unused clocks\n"); 1536 1537 ret = clk_pm_runtime_get_all(); 1538 if (ret) 1539 return ret; 1540 /* 1541 * Grab the prepare lock to keep the clk topology stable while iterating 1542 * over clks. 1543 */ 1544 clk_prepare_lock(); 1545 1546 hlist_for_each_entry(core, &clk_root_list, child_node) 1547 clk_disable_unused_subtree(core); 1548 1549 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1550 clk_disable_unused_subtree(core); 1551 1552 hlist_for_each_entry(core, &clk_root_list, child_node) 1553 clk_unprepare_unused_subtree(core); 1554 1555 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1556 clk_unprepare_unused_subtree(core); 1557 1558 clk_prepare_unlock(); 1559 1560 clk_pm_runtime_put_all(); 1561 1562 return 0; 1563 } 1564 late_initcall_sync(clk_disable_unused); 1565 1566 static int clk_core_determine_round_nolock(struct clk_core *core, 1567 struct clk_rate_request *req) 1568 { 1569 long rate; 1570 1571 lockdep_assert_held(&prepare_lock); 1572 1573 if (!core) 1574 return 0; 1575 1576 /* 1577 * Some clock providers hand-craft their clk_rate_requests and 1578 * might not fill min_rate and max_rate. 1579 * 1580 * If it's the case, clamping the rate is equivalent to setting 1581 * the rate to 0 which is bad. Skip the clamping but complain so 1582 * that it gets fixed, hopefully. 1583 */ 1584 if (!req->min_rate && !req->max_rate) 1585 pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n", 1586 __func__, core->name); 1587 else 1588 req->rate = clamp(req->rate, req->min_rate, req->max_rate); 1589 1590 /* 1591 * At this point, core protection will be disabled 1592 * - if the provider is not protected at all 1593 * - if the calling consumer is the only one which has exclusivity 1594 * over the provider 1595 */ 1596 if (clk_core_rate_is_protected(core)) { 1597 req->rate = core->rate; 1598 } else if (core->ops->determine_rate) { 1599 return core->ops->determine_rate(core->hw, req); 1600 } else if (core->ops->round_rate) { 1601 rate = core->ops->round_rate(core->hw, req->rate, 1602 &req->best_parent_rate); 1603 if (rate < 0) 1604 return rate; 1605 1606 req->rate = rate; 1607 } else { 1608 return -EINVAL; 1609 } 1610 1611 return 0; 1612 } 1613 1614 static void clk_core_init_rate_req(struct clk_core * const core, 1615 struct clk_rate_request *req, 1616 unsigned long rate) 1617 { 1618 struct clk_core *parent; 1619 1620 if (WARN_ON(!req)) 1621 return; 1622 1623 memset(req, 0, sizeof(*req)); 1624 req->max_rate = ULONG_MAX; 1625 1626 if (!core) 1627 return; 1628 1629 req->core = core; 1630 req->rate = rate; 1631 clk_core_get_boundaries(core, &req->min_rate, &req->max_rate); 1632 1633 parent = core->parent; 1634 if (parent) { 1635 req->best_parent_hw = parent->hw; 1636 req->best_parent_rate = parent->rate; 1637 } else { 1638 req->best_parent_hw = NULL; 1639 req->best_parent_rate = 0; 1640 } 1641 } 1642 1643 /** 1644 * clk_hw_init_rate_request - Initializes a clk_rate_request 1645 * @hw: the clk for which we want to submit a rate request 1646 * @req: the clk_rate_request structure we want to initialise 1647 * @rate: the rate which is to be requested 1648 * 1649 * Initializes a clk_rate_request structure to submit to 1650 * __clk_determine_rate() or similar functions. 1651 */ 1652 void clk_hw_init_rate_request(const struct clk_hw *hw, 1653 struct clk_rate_request *req, 1654 unsigned long rate) 1655 { 1656 if (WARN_ON(!hw || !req)) 1657 return; 1658 1659 clk_core_init_rate_req(hw->core, req, rate); 1660 } 1661 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request); 1662 1663 /** 1664 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent 1665 * @hw: the original clock that got the rate request 1666 * @old_req: the original clk_rate_request structure we want to forward 1667 * @parent: the clk we want to forward @old_req to 1668 * @req: the clk_rate_request structure we want to initialise 1669 * @parent_rate: The rate which is to be requested to @parent 1670 * 1671 * Initializes a clk_rate_request structure to submit to a clock parent 1672 * in __clk_determine_rate() or similar functions. 1673 */ 1674 void clk_hw_forward_rate_request(const struct clk_hw *hw, 1675 const struct clk_rate_request *old_req, 1676 const struct clk_hw *parent, 1677 struct clk_rate_request *req, 1678 unsigned long parent_rate) 1679 { 1680 if (WARN_ON(!hw || !old_req || !parent || !req)) 1681 return; 1682 1683 clk_core_forward_rate_req(hw->core, old_req, 1684 parent->core, req, 1685 parent_rate); 1686 } 1687 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request); 1688 1689 static bool clk_core_can_round(struct clk_core * const core) 1690 { 1691 return core->ops->determine_rate || core->ops->round_rate; 1692 } 1693 1694 static int clk_core_round_rate_nolock(struct clk_core *core, 1695 struct clk_rate_request *req) 1696 { 1697 int ret; 1698 1699 lockdep_assert_held(&prepare_lock); 1700 1701 if (!core) { 1702 req->rate = 0; 1703 return 0; 1704 } 1705 1706 if (clk_core_can_round(core)) 1707 return clk_core_determine_round_nolock(core, req); 1708 1709 if (core->flags & CLK_SET_RATE_PARENT) { 1710 struct clk_rate_request parent_req; 1711 1712 clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate); 1713 1714 trace_clk_rate_request_start(&parent_req); 1715 1716 ret = clk_core_round_rate_nolock(core->parent, &parent_req); 1717 if (ret) 1718 return ret; 1719 1720 trace_clk_rate_request_done(&parent_req); 1721 1722 req->best_parent_rate = parent_req.rate; 1723 req->rate = parent_req.rate; 1724 1725 return 0; 1726 } 1727 1728 req->rate = core->rate; 1729 return 0; 1730 } 1731 1732 /** 1733 * __clk_determine_rate - get the closest rate actually supported by a clock 1734 * @hw: determine the rate of this clock 1735 * @req: target rate request 1736 * 1737 * Useful for clk_ops such as .set_rate and .determine_rate. 1738 */ 1739 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1740 { 1741 if (!hw) { 1742 req->rate = 0; 1743 return 0; 1744 } 1745 1746 return clk_core_round_rate_nolock(hw->core, req); 1747 } 1748 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1749 1750 /** 1751 * clk_hw_round_rate() - round the given rate for a hw clk 1752 * @hw: the hw clk for which we are rounding a rate 1753 * @rate: the rate which is to be rounded 1754 * 1755 * Takes in a rate as input and rounds it to a rate that the clk can actually 1756 * use. 1757 * 1758 * Context: prepare_lock must be held. 1759 * For clk providers to call from within clk_ops such as .round_rate, 1760 * .determine_rate. 1761 * 1762 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1763 * else returns the parent rate. 1764 */ 1765 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1766 { 1767 int ret; 1768 struct clk_rate_request req; 1769 1770 clk_core_init_rate_req(hw->core, &req, rate); 1771 1772 trace_clk_rate_request_start(&req); 1773 1774 ret = clk_core_round_rate_nolock(hw->core, &req); 1775 if (ret) 1776 return 0; 1777 1778 trace_clk_rate_request_done(&req); 1779 1780 return req.rate; 1781 } 1782 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1783 1784 /** 1785 * clk_round_rate - round the given rate for a clk 1786 * @clk: the clk for which we are rounding a rate 1787 * @rate: the rate which is to be rounded 1788 * 1789 * Takes in a rate as input and rounds it to a rate that the clk can actually 1790 * use which is then returned. If clk doesn't support round_rate operation 1791 * then the parent rate is returned. 1792 */ 1793 long clk_round_rate(struct clk *clk, unsigned long rate) 1794 { 1795 struct clk_rate_request req; 1796 int ret; 1797 1798 if (!clk) 1799 return 0; 1800 1801 clk_prepare_lock(); 1802 1803 if (clk->exclusive_count) 1804 clk_core_rate_unprotect(clk->core); 1805 1806 clk_core_init_rate_req(clk->core, &req, rate); 1807 1808 trace_clk_rate_request_start(&req); 1809 1810 ret = clk_core_round_rate_nolock(clk->core, &req); 1811 1812 trace_clk_rate_request_done(&req); 1813 1814 if (clk->exclusive_count) 1815 clk_core_rate_protect(clk->core); 1816 1817 clk_prepare_unlock(); 1818 1819 if (ret) 1820 return ret; 1821 1822 return req.rate; 1823 } 1824 EXPORT_SYMBOL_GPL(clk_round_rate); 1825 1826 /** 1827 * __clk_notify - call clk notifier chain 1828 * @core: clk that is changing rate 1829 * @msg: clk notifier type (see include/linux/clk.h) 1830 * @old_rate: old clk rate 1831 * @new_rate: new clk rate 1832 * 1833 * Triggers a notifier call chain on the clk rate-change notification 1834 * for 'clk'. Passes a pointer to the struct clk and the previous 1835 * and current rates to the notifier callback. Intended to be called by 1836 * internal clock code only. Returns NOTIFY_DONE from the last driver 1837 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1838 * a driver returns that. 1839 */ 1840 static int __clk_notify(struct clk_core *core, unsigned long msg, 1841 unsigned long old_rate, unsigned long new_rate) 1842 { 1843 struct clk_notifier *cn; 1844 struct clk_notifier_data cnd; 1845 int ret = NOTIFY_DONE; 1846 1847 cnd.old_rate = old_rate; 1848 cnd.new_rate = new_rate; 1849 1850 list_for_each_entry(cn, &clk_notifier_list, node) { 1851 if (cn->clk->core == core) { 1852 cnd.clk = cn->clk; 1853 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1854 &cnd); 1855 if (ret & NOTIFY_STOP_MASK) 1856 return ret; 1857 } 1858 } 1859 1860 return ret; 1861 } 1862 1863 /** 1864 * __clk_recalc_accuracies 1865 * @core: first clk in the subtree 1866 * 1867 * Walks the subtree of clks starting with clk and recalculates accuracies as 1868 * it goes. Note that if a clk does not implement the .recalc_accuracy 1869 * callback then it is assumed that the clock will take on the accuracy of its 1870 * parent. 1871 */ 1872 static void __clk_recalc_accuracies(struct clk_core *core) 1873 { 1874 unsigned long parent_accuracy = 0; 1875 struct clk_core *child; 1876 1877 lockdep_assert_held(&prepare_lock); 1878 1879 if (core->parent) 1880 parent_accuracy = core->parent->accuracy; 1881 1882 if (core->ops->recalc_accuracy) 1883 core->accuracy = core->ops->recalc_accuracy(core->hw, 1884 parent_accuracy); 1885 else 1886 core->accuracy = parent_accuracy; 1887 1888 hlist_for_each_entry(child, &core->children, child_node) 1889 __clk_recalc_accuracies(child); 1890 } 1891 1892 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1893 { 1894 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1895 __clk_recalc_accuracies(core); 1896 1897 return clk_core_get_accuracy_no_lock(core); 1898 } 1899 1900 /** 1901 * clk_get_accuracy - return the accuracy of clk 1902 * @clk: the clk whose accuracy is being returned 1903 * 1904 * Simply returns the cached accuracy of the clk, unless 1905 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1906 * issued. 1907 * If clk is NULL then returns 0. 1908 */ 1909 long clk_get_accuracy(struct clk *clk) 1910 { 1911 long accuracy; 1912 1913 if (!clk) 1914 return 0; 1915 1916 clk_prepare_lock(); 1917 accuracy = clk_core_get_accuracy_recalc(clk->core); 1918 clk_prepare_unlock(); 1919 1920 return accuracy; 1921 } 1922 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1923 1924 static unsigned long clk_recalc(struct clk_core *core, 1925 unsigned long parent_rate) 1926 { 1927 unsigned long rate = parent_rate; 1928 1929 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1930 rate = core->ops->recalc_rate(core->hw, parent_rate); 1931 clk_pm_runtime_put(core); 1932 } 1933 return rate; 1934 } 1935 1936 /** 1937 * __clk_recalc_rates 1938 * @core: first clk in the subtree 1939 * @update_req: Whether req_rate should be updated with the new rate 1940 * @msg: notification type (see include/linux/clk.h) 1941 * 1942 * Walks the subtree of clks starting with clk and recalculates rates as it 1943 * goes. Note that if a clk does not implement the .recalc_rate callback then 1944 * it is assumed that the clock will take on the rate of its parent. 1945 * 1946 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1947 * if necessary. 1948 */ 1949 static void __clk_recalc_rates(struct clk_core *core, bool update_req, 1950 unsigned long msg) 1951 { 1952 unsigned long old_rate; 1953 unsigned long parent_rate = 0; 1954 struct clk_core *child; 1955 1956 lockdep_assert_held(&prepare_lock); 1957 1958 old_rate = core->rate; 1959 1960 if (core->parent) 1961 parent_rate = core->parent->rate; 1962 1963 core->rate = clk_recalc(core, parent_rate); 1964 if (update_req) 1965 core->req_rate = core->rate; 1966 1967 /* 1968 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1969 * & ABORT_RATE_CHANGE notifiers 1970 */ 1971 if (core->notifier_count && msg) 1972 __clk_notify(core, msg, old_rate, core->rate); 1973 1974 hlist_for_each_entry(child, &core->children, child_node) 1975 __clk_recalc_rates(child, update_req, msg); 1976 } 1977 1978 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1979 { 1980 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1981 __clk_recalc_rates(core, false, 0); 1982 1983 return clk_core_get_rate_nolock(core); 1984 } 1985 1986 /** 1987 * clk_get_rate - return the rate of clk 1988 * @clk: the clk whose rate is being returned 1989 * 1990 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1991 * is set, which means a recalc_rate will be issued. Can be called regardless of 1992 * the clock enabledness. If clk is NULL, or if an error occurred, then returns 1993 * 0. 1994 */ 1995 unsigned long clk_get_rate(struct clk *clk) 1996 { 1997 unsigned long rate; 1998 1999 if (!clk) 2000 return 0; 2001 2002 clk_prepare_lock(); 2003 rate = clk_core_get_rate_recalc(clk->core); 2004 clk_prepare_unlock(); 2005 2006 return rate; 2007 } 2008 EXPORT_SYMBOL_GPL(clk_get_rate); 2009 2010 static int clk_fetch_parent_index(struct clk_core *core, 2011 struct clk_core *parent) 2012 { 2013 int i; 2014 2015 if (!parent) 2016 return -EINVAL; 2017 2018 for (i = 0; i < core->num_parents; i++) { 2019 /* Found it first try! */ 2020 if (core->parents[i].core == parent) 2021 return i; 2022 2023 /* Something else is here, so keep looking */ 2024 if (core->parents[i].core) 2025 continue; 2026 2027 /* Maybe core hasn't been cached but the hw is all we know? */ 2028 if (core->parents[i].hw) { 2029 if (core->parents[i].hw == parent->hw) 2030 break; 2031 2032 /* Didn't match, but we're expecting a clk_hw */ 2033 continue; 2034 } 2035 2036 /* Maybe it hasn't been cached (clk_set_parent() path) */ 2037 if (parent == clk_core_get(core, i)) 2038 break; 2039 2040 /* Fallback to comparing globally unique names */ 2041 if (core->parents[i].name && 2042 !strcmp(parent->name, core->parents[i].name)) 2043 break; 2044 } 2045 2046 if (i == core->num_parents) 2047 return -EINVAL; 2048 2049 core->parents[i].core = parent; 2050 return i; 2051 } 2052 2053 /** 2054 * clk_hw_get_parent_index - return the index of the parent clock 2055 * @hw: clk_hw associated with the clk being consumed 2056 * 2057 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 2058 * clock does not have a current parent. 2059 */ 2060 int clk_hw_get_parent_index(struct clk_hw *hw) 2061 { 2062 struct clk_hw *parent = clk_hw_get_parent(hw); 2063 2064 if (WARN_ON(parent == NULL)) 2065 return -EINVAL; 2066 2067 return clk_fetch_parent_index(hw->core, parent->core); 2068 } 2069 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 2070 2071 /* 2072 * Update the orphan status of @core and all its children. 2073 */ 2074 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 2075 { 2076 struct clk_core *child; 2077 2078 core->orphan = is_orphan; 2079 2080 hlist_for_each_entry(child, &core->children, child_node) 2081 clk_core_update_orphan_status(child, is_orphan); 2082 } 2083 2084 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 2085 { 2086 bool was_orphan = core->orphan; 2087 2088 hlist_del(&core->child_node); 2089 2090 if (new_parent) { 2091 bool becomes_orphan = new_parent->orphan; 2092 2093 /* avoid duplicate POST_RATE_CHANGE notifications */ 2094 if (new_parent->new_child == core) 2095 new_parent->new_child = NULL; 2096 2097 hlist_add_head(&core->child_node, &new_parent->children); 2098 2099 if (was_orphan != becomes_orphan) 2100 clk_core_update_orphan_status(core, becomes_orphan); 2101 } else { 2102 hlist_add_head(&core->child_node, &clk_orphan_list); 2103 if (!was_orphan) 2104 clk_core_update_orphan_status(core, true); 2105 } 2106 2107 core->parent = new_parent; 2108 } 2109 2110 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 2111 struct clk_core *parent) 2112 { 2113 unsigned long flags; 2114 struct clk_core *old_parent = core->parent; 2115 2116 /* 2117 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 2118 * 2119 * 2. Migrate prepare state between parents and prevent race with 2120 * clk_enable(). 2121 * 2122 * If the clock is not prepared, then a race with 2123 * clk_enable/disable() is impossible since we already have the 2124 * prepare lock (future calls to clk_enable() need to be preceded by 2125 * a clk_prepare()). 2126 * 2127 * If the clock is prepared, migrate the prepared state to the new 2128 * parent and also protect against a race with clk_enable() by 2129 * forcing the clock and the new parent on. This ensures that all 2130 * future calls to clk_enable() are practically NOPs with respect to 2131 * hardware and software states. 2132 * 2133 * See also: Comment for clk_set_parent() below. 2134 */ 2135 2136 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 2137 if (core->flags & CLK_OPS_PARENT_ENABLE) { 2138 clk_core_prepare_enable(old_parent); 2139 clk_core_prepare_enable(parent); 2140 } 2141 2142 /* migrate prepare count if > 0 */ 2143 if (core->prepare_count) { 2144 clk_core_prepare_enable(parent); 2145 clk_core_enable_lock(core); 2146 } 2147 2148 /* update the clk tree topology */ 2149 flags = clk_enable_lock(); 2150 clk_reparent(core, parent); 2151 clk_enable_unlock(flags); 2152 2153 return old_parent; 2154 } 2155 2156 static void __clk_set_parent_after(struct clk_core *core, 2157 struct clk_core *parent, 2158 struct clk_core *old_parent) 2159 { 2160 /* 2161 * Finish the migration of prepare state and undo the changes done 2162 * for preventing a race with clk_enable(). 2163 */ 2164 if (core->prepare_count) { 2165 clk_core_disable_lock(core); 2166 clk_core_disable_unprepare(old_parent); 2167 } 2168 2169 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 2170 if (core->flags & CLK_OPS_PARENT_ENABLE) { 2171 clk_core_disable_unprepare(parent); 2172 clk_core_disable_unprepare(old_parent); 2173 } 2174 } 2175 2176 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 2177 u8 p_index) 2178 { 2179 unsigned long flags; 2180 int ret = 0; 2181 struct clk_core *old_parent; 2182 2183 old_parent = __clk_set_parent_before(core, parent); 2184 2185 trace_clk_set_parent(core, parent); 2186 2187 /* change clock input source */ 2188 if (parent && core->ops->set_parent) 2189 ret = core->ops->set_parent(core->hw, p_index); 2190 2191 trace_clk_set_parent_complete(core, parent); 2192 2193 if (ret) { 2194 flags = clk_enable_lock(); 2195 clk_reparent(core, old_parent); 2196 clk_enable_unlock(flags); 2197 2198 __clk_set_parent_after(core, old_parent, parent); 2199 2200 return ret; 2201 } 2202 2203 __clk_set_parent_after(core, parent, old_parent); 2204 2205 return 0; 2206 } 2207 2208 /** 2209 * __clk_speculate_rates 2210 * @core: first clk in the subtree 2211 * @parent_rate: the "future" rate of clk's parent 2212 * 2213 * Walks the subtree of clks starting with clk, speculating rates as it 2214 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 2215 * 2216 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 2217 * pre-rate change notifications and returns early if no clks in the 2218 * subtree have subscribed to the notifications. Note that if a clk does not 2219 * implement the .recalc_rate callback then it is assumed that the clock will 2220 * take on the rate of its parent. 2221 */ 2222 static int __clk_speculate_rates(struct clk_core *core, 2223 unsigned long parent_rate) 2224 { 2225 struct clk_core *child; 2226 unsigned long new_rate; 2227 int ret = NOTIFY_DONE; 2228 2229 lockdep_assert_held(&prepare_lock); 2230 2231 new_rate = clk_recalc(core, parent_rate); 2232 2233 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 2234 if (core->notifier_count) 2235 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 2236 2237 if (ret & NOTIFY_STOP_MASK) { 2238 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 2239 __func__, core->name, ret); 2240 goto out; 2241 } 2242 2243 hlist_for_each_entry(child, &core->children, child_node) { 2244 ret = __clk_speculate_rates(child, new_rate); 2245 if (ret & NOTIFY_STOP_MASK) 2246 break; 2247 } 2248 2249 out: 2250 return ret; 2251 } 2252 2253 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 2254 struct clk_core *new_parent, u8 p_index) 2255 { 2256 struct clk_core *child; 2257 2258 core->new_rate = new_rate; 2259 core->new_parent = new_parent; 2260 core->new_parent_index = p_index; 2261 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 2262 core->new_child = NULL; 2263 if (new_parent && new_parent != core->parent) 2264 new_parent->new_child = core; 2265 2266 hlist_for_each_entry(child, &core->children, child_node) { 2267 child->new_rate = clk_recalc(child, new_rate); 2268 clk_calc_subtree(child, child->new_rate, NULL, 0); 2269 } 2270 } 2271 2272 /* 2273 * calculate the new rates returning the topmost clock that has to be 2274 * changed. 2275 */ 2276 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 2277 unsigned long rate) 2278 { 2279 struct clk_core *top = core; 2280 struct clk_core *old_parent, *parent; 2281 unsigned long best_parent_rate = 0; 2282 unsigned long new_rate; 2283 unsigned long min_rate; 2284 unsigned long max_rate; 2285 int p_index = 0; 2286 long ret; 2287 2288 /* sanity */ 2289 if (IS_ERR_OR_NULL(core)) 2290 return NULL; 2291 2292 /* save parent rate, if it exists */ 2293 parent = old_parent = core->parent; 2294 if (parent) 2295 best_parent_rate = parent->rate; 2296 2297 clk_core_get_boundaries(core, &min_rate, &max_rate); 2298 2299 /* find the closest rate and parent clk/rate */ 2300 if (clk_core_can_round(core)) { 2301 struct clk_rate_request req; 2302 2303 clk_core_init_rate_req(core, &req, rate); 2304 2305 trace_clk_rate_request_start(&req); 2306 2307 ret = clk_core_determine_round_nolock(core, &req); 2308 if (ret < 0) 2309 return NULL; 2310 2311 trace_clk_rate_request_done(&req); 2312 2313 best_parent_rate = req.best_parent_rate; 2314 new_rate = req.rate; 2315 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 2316 2317 if (new_rate < min_rate || new_rate > max_rate) 2318 return NULL; 2319 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 2320 /* pass-through clock without adjustable parent */ 2321 core->new_rate = core->rate; 2322 return NULL; 2323 } else { 2324 /* pass-through clock with adjustable parent */ 2325 top = clk_calc_new_rates(parent, rate); 2326 new_rate = parent->new_rate; 2327 goto out; 2328 } 2329 2330 /* some clocks must be gated to change parent */ 2331 if (parent != old_parent && 2332 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 2333 pr_debug("%s: %s not gated but wants to reparent\n", 2334 __func__, core->name); 2335 return NULL; 2336 } 2337 2338 /* try finding the new parent index */ 2339 if (parent && core->num_parents > 1) { 2340 p_index = clk_fetch_parent_index(core, parent); 2341 if (p_index < 0) { 2342 pr_debug("%s: clk %s can not be parent of clk %s\n", 2343 __func__, parent->name, core->name); 2344 return NULL; 2345 } 2346 } 2347 2348 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 2349 best_parent_rate != parent->rate) 2350 top = clk_calc_new_rates(parent, best_parent_rate); 2351 2352 out: 2353 clk_calc_subtree(core, new_rate, parent, p_index); 2354 2355 return top; 2356 } 2357 2358 /* 2359 * Notify about rate changes in a subtree. Always walk down the whole tree 2360 * so that in case of an error we can walk down the whole tree again and 2361 * abort the change. 2362 */ 2363 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2364 unsigned long event) 2365 { 2366 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2367 int ret = NOTIFY_DONE; 2368 2369 if (core->rate == core->new_rate) 2370 return NULL; 2371 2372 if (core->notifier_count) { 2373 ret = __clk_notify(core, event, core->rate, core->new_rate); 2374 if (ret & NOTIFY_STOP_MASK) 2375 fail_clk = core; 2376 } 2377 2378 hlist_for_each_entry(child, &core->children, child_node) { 2379 /* Skip children who will be reparented to another clock */ 2380 if (child->new_parent && child->new_parent != core) 2381 continue; 2382 tmp_clk = clk_propagate_rate_change(child, event); 2383 if (tmp_clk) 2384 fail_clk = tmp_clk; 2385 } 2386 2387 /* handle the new child who might not be in core->children yet */ 2388 if (core->new_child) { 2389 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2390 if (tmp_clk) 2391 fail_clk = tmp_clk; 2392 } 2393 2394 return fail_clk; 2395 } 2396 2397 /* 2398 * walk down a subtree and set the new rates notifying the rate 2399 * change on the way 2400 */ 2401 static void clk_change_rate(struct clk_core *core) 2402 { 2403 struct clk_core *child; 2404 struct hlist_node *tmp; 2405 unsigned long old_rate; 2406 unsigned long best_parent_rate = 0; 2407 bool skip_set_rate = false; 2408 struct clk_core *old_parent; 2409 struct clk_core *parent = NULL; 2410 2411 old_rate = core->rate; 2412 2413 if (core->new_parent) { 2414 parent = core->new_parent; 2415 best_parent_rate = core->new_parent->rate; 2416 } else if (core->parent) { 2417 parent = core->parent; 2418 best_parent_rate = core->parent->rate; 2419 } 2420 2421 if (clk_pm_runtime_get(core)) 2422 return; 2423 2424 if (core->flags & CLK_SET_RATE_UNGATE) { 2425 clk_core_prepare(core); 2426 clk_core_enable_lock(core); 2427 } 2428 2429 if (core->new_parent && core->new_parent != core->parent) { 2430 old_parent = __clk_set_parent_before(core, core->new_parent); 2431 trace_clk_set_parent(core, core->new_parent); 2432 2433 if (core->ops->set_rate_and_parent) { 2434 skip_set_rate = true; 2435 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2436 best_parent_rate, 2437 core->new_parent_index); 2438 } else if (core->ops->set_parent) { 2439 core->ops->set_parent(core->hw, core->new_parent_index); 2440 } 2441 2442 trace_clk_set_parent_complete(core, core->new_parent); 2443 __clk_set_parent_after(core, core->new_parent, old_parent); 2444 } 2445 2446 if (core->flags & CLK_OPS_PARENT_ENABLE) 2447 clk_core_prepare_enable(parent); 2448 2449 trace_clk_set_rate(core, core->new_rate); 2450 2451 if (!skip_set_rate && core->ops->set_rate) 2452 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2453 2454 trace_clk_set_rate_complete(core, core->new_rate); 2455 2456 core->rate = clk_recalc(core, best_parent_rate); 2457 2458 if (core->flags & CLK_SET_RATE_UNGATE) { 2459 clk_core_disable_lock(core); 2460 clk_core_unprepare(core); 2461 } 2462 2463 if (core->flags & CLK_OPS_PARENT_ENABLE) 2464 clk_core_disable_unprepare(parent); 2465 2466 if (core->notifier_count && old_rate != core->rate) 2467 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2468 2469 if (core->flags & CLK_RECALC_NEW_RATES) 2470 (void)clk_calc_new_rates(core, core->new_rate); 2471 2472 /* 2473 * Use safe iteration, as change_rate can actually swap parents 2474 * for certain clock types. 2475 */ 2476 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2477 /* Skip children who will be reparented to another clock */ 2478 if (child->new_parent && child->new_parent != core) 2479 continue; 2480 clk_change_rate(child); 2481 } 2482 2483 /* handle the new child who might not be in core->children yet */ 2484 if (core->new_child) 2485 clk_change_rate(core->new_child); 2486 2487 clk_pm_runtime_put(core); 2488 } 2489 2490 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2491 unsigned long req_rate) 2492 { 2493 int ret, cnt; 2494 struct clk_rate_request req; 2495 2496 lockdep_assert_held(&prepare_lock); 2497 2498 if (!core) 2499 return 0; 2500 2501 /* simulate what the rate would be if it could be freely set */ 2502 cnt = clk_core_rate_nuke_protect(core); 2503 if (cnt < 0) 2504 return cnt; 2505 2506 clk_core_init_rate_req(core, &req, req_rate); 2507 2508 trace_clk_rate_request_start(&req); 2509 2510 ret = clk_core_round_rate_nolock(core, &req); 2511 2512 trace_clk_rate_request_done(&req); 2513 2514 /* restore the protection */ 2515 clk_core_rate_restore_protect(core, cnt); 2516 2517 return ret ? 0 : req.rate; 2518 } 2519 2520 static int clk_core_set_rate_nolock(struct clk_core *core, 2521 unsigned long req_rate) 2522 { 2523 struct clk_core *top, *fail_clk; 2524 unsigned long rate; 2525 int ret; 2526 2527 if (!core) 2528 return 0; 2529 2530 rate = clk_core_req_round_rate_nolock(core, req_rate); 2531 2532 /* bail early if nothing to do */ 2533 if (rate == clk_core_get_rate_recalc(core)) 2534 return 0; 2535 2536 /* fail on a direct rate set of a protected provider */ 2537 if (clk_core_rate_is_protected(core)) 2538 return -EBUSY; 2539 2540 /* calculate new rates and get the topmost changed clock */ 2541 top = clk_calc_new_rates(core, req_rate); 2542 if (!top) 2543 return -EINVAL; 2544 2545 ret = clk_pm_runtime_get(core); 2546 if (ret) 2547 return ret; 2548 2549 /* notify that we are about to change rates */ 2550 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2551 if (fail_clk) { 2552 pr_debug("%s: failed to set %s rate\n", __func__, 2553 fail_clk->name); 2554 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2555 ret = -EBUSY; 2556 goto err; 2557 } 2558 2559 /* change the rates */ 2560 clk_change_rate(top); 2561 2562 core->req_rate = req_rate; 2563 err: 2564 clk_pm_runtime_put(core); 2565 2566 return ret; 2567 } 2568 2569 /** 2570 * clk_set_rate - specify a new rate for clk 2571 * @clk: the clk whose rate is being changed 2572 * @rate: the new rate for clk 2573 * 2574 * In the simplest case clk_set_rate will only adjust the rate of clk. 2575 * 2576 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2577 * propagate up to clk's parent; whether or not this happens depends on the 2578 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2579 * after calling .round_rate then upstream parent propagation is ignored. If 2580 * *parent_rate comes back with a new rate for clk's parent then we propagate 2581 * up to clk's parent and set its rate. Upward propagation will continue 2582 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2583 * .round_rate stops requesting changes to clk's parent_rate. 2584 * 2585 * Rate changes are accomplished via tree traversal that also recalculates the 2586 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2587 * 2588 * Returns 0 on success, -EERROR otherwise. 2589 */ 2590 int clk_set_rate(struct clk *clk, unsigned long rate) 2591 { 2592 int ret; 2593 2594 if (!clk) 2595 return 0; 2596 2597 /* prevent racing with updates to the clock topology */ 2598 clk_prepare_lock(); 2599 2600 if (clk->exclusive_count) 2601 clk_core_rate_unprotect(clk->core); 2602 2603 ret = clk_core_set_rate_nolock(clk->core, rate); 2604 2605 if (clk->exclusive_count) 2606 clk_core_rate_protect(clk->core); 2607 2608 clk_prepare_unlock(); 2609 2610 return ret; 2611 } 2612 EXPORT_SYMBOL_GPL(clk_set_rate); 2613 2614 /** 2615 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2616 * @clk: the clk whose rate is being changed 2617 * @rate: the new rate for clk 2618 * 2619 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2620 * within a critical section 2621 * 2622 * This can be used initially to ensure that at least 1 consumer is 2623 * satisfied when several consumers are competing for exclusivity over the 2624 * same clock provider. 2625 * 2626 * The exclusivity is not applied if setting the rate failed. 2627 * 2628 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2629 * clk_rate_exclusive_put(). 2630 * 2631 * Returns 0 on success, -EERROR otherwise. 2632 */ 2633 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2634 { 2635 int ret; 2636 2637 if (!clk) 2638 return 0; 2639 2640 /* prevent racing with updates to the clock topology */ 2641 clk_prepare_lock(); 2642 2643 /* 2644 * The temporary protection removal is not here, on purpose 2645 * This function is meant to be used instead of clk_rate_protect, 2646 * so before the consumer code path protect the clock provider 2647 */ 2648 2649 ret = clk_core_set_rate_nolock(clk->core, rate); 2650 if (!ret) { 2651 clk_core_rate_protect(clk->core); 2652 clk->exclusive_count++; 2653 } 2654 2655 clk_prepare_unlock(); 2656 2657 return ret; 2658 } 2659 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2660 2661 static int clk_set_rate_range_nolock(struct clk *clk, 2662 unsigned long min, 2663 unsigned long max) 2664 { 2665 int ret = 0; 2666 unsigned long old_min, old_max, rate; 2667 2668 lockdep_assert_held(&prepare_lock); 2669 2670 if (!clk) 2671 return 0; 2672 2673 trace_clk_set_rate_range(clk->core, min, max); 2674 2675 if (min > max) { 2676 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2677 __func__, clk->core->name, clk->dev_id, clk->con_id, 2678 min, max); 2679 return -EINVAL; 2680 } 2681 2682 if (clk->exclusive_count) 2683 clk_core_rate_unprotect(clk->core); 2684 2685 /* Save the current values in case we need to rollback the change */ 2686 old_min = clk->min_rate; 2687 old_max = clk->max_rate; 2688 clk->min_rate = min; 2689 clk->max_rate = max; 2690 2691 if (!clk_core_check_boundaries(clk->core, min, max)) { 2692 ret = -EINVAL; 2693 goto out; 2694 } 2695 2696 rate = clk->core->req_rate; 2697 if (clk->core->flags & CLK_GET_RATE_NOCACHE) 2698 rate = clk_core_get_rate_recalc(clk->core); 2699 2700 /* 2701 * Since the boundaries have been changed, let's give the 2702 * opportunity to the provider to adjust the clock rate based on 2703 * the new boundaries. 2704 * 2705 * We also need to handle the case where the clock is currently 2706 * outside of the boundaries. Clamping the last requested rate 2707 * to the current minimum and maximum will also handle this. 2708 * 2709 * FIXME: 2710 * There is a catch. It may fail for the usual reason (clock 2711 * broken, clock protected, etc) but also because: 2712 * - round_rate() was not favorable and fell on the wrong 2713 * side of the boundary 2714 * - the determine_rate() callback does not really check for 2715 * this corner case when determining the rate 2716 */ 2717 rate = clamp(rate, min, max); 2718 ret = clk_core_set_rate_nolock(clk->core, rate); 2719 if (ret) { 2720 /* rollback the changes */ 2721 clk->min_rate = old_min; 2722 clk->max_rate = old_max; 2723 } 2724 2725 out: 2726 if (clk->exclusive_count) 2727 clk_core_rate_protect(clk->core); 2728 2729 return ret; 2730 } 2731 2732 /** 2733 * clk_set_rate_range - set a rate range for a clock source 2734 * @clk: clock source 2735 * @min: desired minimum clock rate in Hz, inclusive 2736 * @max: desired maximum clock rate in Hz, inclusive 2737 * 2738 * Return: 0 for success or negative errno on failure. 2739 */ 2740 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2741 { 2742 int ret; 2743 2744 if (!clk) 2745 return 0; 2746 2747 clk_prepare_lock(); 2748 2749 ret = clk_set_rate_range_nolock(clk, min, max); 2750 2751 clk_prepare_unlock(); 2752 2753 return ret; 2754 } 2755 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2756 2757 /** 2758 * clk_set_min_rate - set a minimum clock rate for a clock source 2759 * @clk: clock source 2760 * @rate: desired minimum clock rate in Hz, inclusive 2761 * 2762 * Returns success (0) or negative errno. 2763 */ 2764 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2765 { 2766 if (!clk) 2767 return 0; 2768 2769 trace_clk_set_min_rate(clk->core, rate); 2770 2771 return clk_set_rate_range(clk, rate, clk->max_rate); 2772 } 2773 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2774 2775 /** 2776 * clk_set_max_rate - set a maximum clock rate for a clock source 2777 * @clk: clock source 2778 * @rate: desired maximum clock rate in Hz, inclusive 2779 * 2780 * Returns success (0) or negative errno. 2781 */ 2782 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2783 { 2784 if (!clk) 2785 return 0; 2786 2787 trace_clk_set_max_rate(clk->core, rate); 2788 2789 return clk_set_rate_range(clk, clk->min_rate, rate); 2790 } 2791 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2792 2793 /** 2794 * clk_get_parent - return the parent of a clk 2795 * @clk: the clk whose parent gets returned 2796 * 2797 * Simply returns clk->parent. Returns NULL if clk is NULL. 2798 */ 2799 struct clk *clk_get_parent(struct clk *clk) 2800 { 2801 struct clk *parent; 2802 2803 if (!clk) 2804 return NULL; 2805 2806 clk_prepare_lock(); 2807 /* TODO: Create a per-user clk and change callers to call clk_put */ 2808 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2809 clk_prepare_unlock(); 2810 2811 return parent; 2812 } 2813 EXPORT_SYMBOL_GPL(clk_get_parent); 2814 2815 static struct clk_core *__clk_init_parent(struct clk_core *core) 2816 { 2817 u8 index = 0; 2818 2819 if (core->num_parents > 1 && core->ops->get_parent) 2820 index = core->ops->get_parent(core->hw); 2821 2822 return clk_core_get_parent_by_index(core, index); 2823 } 2824 2825 static void clk_core_reparent(struct clk_core *core, 2826 struct clk_core *new_parent) 2827 { 2828 clk_reparent(core, new_parent); 2829 __clk_recalc_accuracies(core); 2830 __clk_recalc_rates(core, true, POST_RATE_CHANGE); 2831 } 2832 2833 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2834 { 2835 if (!hw) 2836 return; 2837 2838 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2839 } 2840 2841 /** 2842 * clk_has_parent - check if a clock is a possible parent for another 2843 * @clk: clock source 2844 * @parent: parent clock source 2845 * 2846 * This function can be used in drivers that need to check that a clock can be 2847 * the parent of another without actually changing the parent. 2848 * 2849 * Returns true if @parent is a possible parent for @clk, false otherwise. 2850 */ 2851 bool clk_has_parent(const struct clk *clk, const struct clk *parent) 2852 { 2853 /* NULL clocks should be nops, so return success if either is NULL. */ 2854 if (!clk || !parent) 2855 return true; 2856 2857 return clk_core_has_parent(clk->core, parent->core); 2858 } 2859 EXPORT_SYMBOL_GPL(clk_has_parent); 2860 2861 static int clk_core_set_parent_nolock(struct clk_core *core, 2862 struct clk_core *parent) 2863 { 2864 int ret = 0; 2865 int p_index = 0; 2866 unsigned long p_rate = 0; 2867 2868 lockdep_assert_held(&prepare_lock); 2869 2870 if (!core) 2871 return 0; 2872 2873 if (core->parent == parent) 2874 return 0; 2875 2876 /* verify ops for multi-parent clks */ 2877 if (core->num_parents > 1 && !core->ops->set_parent) 2878 return -EPERM; 2879 2880 /* check that we are allowed to re-parent if the clock is in use */ 2881 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2882 return -EBUSY; 2883 2884 if (clk_core_rate_is_protected(core)) 2885 return -EBUSY; 2886 2887 /* try finding the new parent index */ 2888 if (parent) { 2889 p_index = clk_fetch_parent_index(core, parent); 2890 if (p_index < 0) { 2891 pr_debug("%s: clk %s can not be parent of clk %s\n", 2892 __func__, parent->name, core->name); 2893 return p_index; 2894 } 2895 p_rate = parent->rate; 2896 } 2897 2898 ret = clk_pm_runtime_get(core); 2899 if (ret) 2900 return ret; 2901 2902 /* propagate PRE_RATE_CHANGE notifications */ 2903 ret = __clk_speculate_rates(core, p_rate); 2904 2905 /* abort if a driver objects */ 2906 if (ret & NOTIFY_STOP_MASK) 2907 goto runtime_put; 2908 2909 /* do the re-parent */ 2910 ret = __clk_set_parent(core, parent, p_index); 2911 2912 /* propagate rate an accuracy recalculation accordingly */ 2913 if (ret) { 2914 __clk_recalc_rates(core, true, ABORT_RATE_CHANGE); 2915 } else { 2916 __clk_recalc_rates(core, true, POST_RATE_CHANGE); 2917 __clk_recalc_accuracies(core); 2918 } 2919 2920 runtime_put: 2921 clk_pm_runtime_put(core); 2922 2923 return ret; 2924 } 2925 2926 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2927 { 2928 return clk_core_set_parent_nolock(hw->core, parent->core); 2929 } 2930 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2931 2932 /** 2933 * clk_set_parent - switch the parent of a mux clk 2934 * @clk: the mux clk whose input we are switching 2935 * @parent: the new input to clk 2936 * 2937 * Re-parent clk to use parent as its new input source. If clk is in 2938 * prepared state, the clk will get enabled for the duration of this call. If 2939 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2940 * that, the reparenting is glitchy in hardware, etc), use the 2941 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2942 * 2943 * After successfully changing clk's parent clk_set_parent will update the 2944 * clk topology, sysfs topology and propagate rate recalculation via 2945 * __clk_recalc_rates. 2946 * 2947 * Returns 0 on success, -EERROR otherwise. 2948 */ 2949 int clk_set_parent(struct clk *clk, struct clk *parent) 2950 { 2951 int ret; 2952 2953 if (!clk) 2954 return 0; 2955 2956 clk_prepare_lock(); 2957 2958 if (clk->exclusive_count) 2959 clk_core_rate_unprotect(clk->core); 2960 2961 ret = clk_core_set_parent_nolock(clk->core, 2962 parent ? parent->core : NULL); 2963 2964 if (clk->exclusive_count) 2965 clk_core_rate_protect(clk->core); 2966 2967 clk_prepare_unlock(); 2968 2969 return ret; 2970 } 2971 EXPORT_SYMBOL_GPL(clk_set_parent); 2972 2973 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2974 { 2975 int ret = -EINVAL; 2976 2977 lockdep_assert_held(&prepare_lock); 2978 2979 if (!core) 2980 return 0; 2981 2982 if (clk_core_rate_is_protected(core)) 2983 return -EBUSY; 2984 2985 trace_clk_set_phase(core, degrees); 2986 2987 if (core->ops->set_phase) { 2988 ret = core->ops->set_phase(core->hw, degrees); 2989 if (!ret) 2990 core->phase = degrees; 2991 } 2992 2993 trace_clk_set_phase_complete(core, degrees); 2994 2995 return ret; 2996 } 2997 2998 /** 2999 * clk_set_phase - adjust the phase shift of a clock signal 3000 * @clk: clock signal source 3001 * @degrees: number of degrees the signal is shifted 3002 * 3003 * Shifts the phase of a clock signal by the specified 3004 * degrees. Returns 0 on success, -EERROR otherwise. 3005 * 3006 * This function makes no distinction about the input or reference 3007 * signal that we adjust the clock signal phase against. For example 3008 * phase locked-loop clock signal generators we may shift phase with 3009 * respect to feedback clock signal input, but for other cases the 3010 * clock phase may be shifted with respect to some other, unspecified 3011 * signal. 3012 * 3013 * Additionally the concept of phase shift does not propagate through 3014 * the clock tree hierarchy, which sets it apart from clock rates and 3015 * clock accuracy. A parent clock phase attribute does not have an 3016 * impact on the phase attribute of a child clock. 3017 */ 3018 int clk_set_phase(struct clk *clk, int degrees) 3019 { 3020 int ret; 3021 3022 if (!clk) 3023 return 0; 3024 3025 /* sanity check degrees */ 3026 degrees %= 360; 3027 if (degrees < 0) 3028 degrees += 360; 3029 3030 clk_prepare_lock(); 3031 3032 if (clk->exclusive_count) 3033 clk_core_rate_unprotect(clk->core); 3034 3035 ret = clk_core_set_phase_nolock(clk->core, degrees); 3036 3037 if (clk->exclusive_count) 3038 clk_core_rate_protect(clk->core); 3039 3040 clk_prepare_unlock(); 3041 3042 return ret; 3043 } 3044 EXPORT_SYMBOL_GPL(clk_set_phase); 3045 3046 static int clk_core_get_phase(struct clk_core *core) 3047 { 3048 int ret; 3049 3050 lockdep_assert_held(&prepare_lock); 3051 if (!core->ops->get_phase) 3052 return 0; 3053 3054 /* Always try to update cached phase if possible */ 3055 ret = core->ops->get_phase(core->hw); 3056 if (ret >= 0) 3057 core->phase = ret; 3058 3059 return ret; 3060 } 3061 3062 /** 3063 * clk_get_phase - return the phase shift of a clock signal 3064 * @clk: clock signal source 3065 * 3066 * Returns the phase shift of a clock node in degrees, otherwise returns 3067 * -EERROR. 3068 */ 3069 int clk_get_phase(struct clk *clk) 3070 { 3071 int ret; 3072 3073 if (!clk) 3074 return 0; 3075 3076 clk_prepare_lock(); 3077 ret = clk_core_get_phase(clk->core); 3078 clk_prepare_unlock(); 3079 3080 return ret; 3081 } 3082 EXPORT_SYMBOL_GPL(clk_get_phase); 3083 3084 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 3085 { 3086 /* Assume a default value of 50% */ 3087 core->duty.num = 1; 3088 core->duty.den = 2; 3089 } 3090 3091 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 3092 3093 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 3094 { 3095 struct clk_duty *duty = &core->duty; 3096 int ret = 0; 3097 3098 if (!core->ops->get_duty_cycle) 3099 return clk_core_update_duty_cycle_parent_nolock(core); 3100 3101 ret = core->ops->get_duty_cycle(core->hw, duty); 3102 if (ret) 3103 goto reset; 3104 3105 /* Don't trust the clock provider too much */ 3106 if (duty->den == 0 || duty->num > duty->den) { 3107 ret = -EINVAL; 3108 goto reset; 3109 } 3110 3111 return 0; 3112 3113 reset: 3114 clk_core_reset_duty_cycle_nolock(core); 3115 return ret; 3116 } 3117 3118 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 3119 { 3120 int ret = 0; 3121 3122 if (core->parent && 3123 core->flags & CLK_DUTY_CYCLE_PARENT) { 3124 ret = clk_core_update_duty_cycle_nolock(core->parent); 3125 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 3126 } else { 3127 clk_core_reset_duty_cycle_nolock(core); 3128 } 3129 3130 return ret; 3131 } 3132 3133 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 3134 struct clk_duty *duty); 3135 3136 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 3137 struct clk_duty *duty) 3138 { 3139 int ret; 3140 3141 lockdep_assert_held(&prepare_lock); 3142 3143 if (clk_core_rate_is_protected(core)) 3144 return -EBUSY; 3145 3146 trace_clk_set_duty_cycle(core, duty); 3147 3148 if (!core->ops->set_duty_cycle) 3149 return clk_core_set_duty_cycle_parent_nolock(core, duty); 3150 3151 ret = core->ops->set_duty_cycle(core->hw, duty); 3152 if (!ret) 3153 memcpy(&core->duty, duty, sizeof(*duty)); 3154 3155 trace_clk_set_duty_cycle_complete(core, duty); 3156 3157 return ret; 3158 } 3159 3160 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 3161 struct clk_duty *duty) 3162 { 3163 int ret = 0; 3164 3165 if (core->parent && 3166 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 3167 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 3168 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 3169 } 3170 3171 return ret; 3172 } 3173 3174 /** 3175 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 3176 * @clk: clock signal source 3177 * @num: numerator of the duty cycle ratio to be applied 3178 * @den: denominator of the duty cycle ratio to be applied 3179 * 3180 * Apply the duty cycle ratio if the ratio is valid and the clock can 3181 * perform this operation 3182 * 3183 * Returns (0) on success, a negative errno otherwise. 3184 */ 3185 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 3186 { 3187 int ret; 3188 struct clk_duty duty; 3189 3190 if (!clk) 3191 return 0; 3192 3193 /* sanity check the ratio */ 3194 if (den == 0 || num > den) 3195 return -EINVAL; 3196 3197 duty.num = num; 3198 duty.den = den; 3199 3200 clk_prepare_lock(); 3201 3202 if (clk->exclusive_count) 3203 clk_core_rate_unprotect(clk->core); 3204 3205 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 3206 3207 if (clk->exclusive_count) 3208 clk_core_rate_protect(clk->core); 3209 3210 clk_prepare_unlock(); 3211 3212 return ret; 3213 } 3214 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 3215 3216 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 3217 unsigned int scale) 3218 { 3219 struct clk_duty *duty = &core->duty; 3220 int ret; 3221 3222 clk_prepare_lock(); 3223 3224 ret = clk_core_update_duty_cycle_nolock(core); 3225 if (!ret) 3226 ret = mult_frac(scale, duty->num, duty->den); 3227 3228 clk_prepare_unlock(); 3229 3230 return ret; 3231 } 3232 3233 /** 3234 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 3235 * @clk: clock signal source 3236 * @scale: scaling factor to be applied to represent the ratio as an integer 3237 * 3238 * Returns the duty cycle ratio of a clock node multiplied by the provided 3239 * scaling factor, or negative errno on error. 3240 */ 3241 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 3242 { 3243 if (!clk) 3244 return 0; 3245 3246 return clk_core_get_scaled_duty_cycle(clk->core, scale); 3247 } 3248 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 3249 3250 /** 3251 * clk_is_match - check if two clk's point to the same hardware clock 3252 * @p: clk compared against q 3253 * @q: clk compared against p 3254 * 3255 * Returns true if the two struct clk pointers both point to the same hardware 3256 * clock node. Put differently, returns true if struct clk *p and struct clk *q 3257 * share the same struct clk_core object. 3258 * 3259 * Returns false otherwise. Note that two NULL clks are treated as matching. 3260 */ 3261 bool clk_is_match(const struct clk *p, const struct clk *q) 3262 { 3263 /* trivial case: identical struct clk's or both NULL */ 3264 if (p == q) 3265 return true; 3266 3267 /* true if clk->core pointers match. Avoid dereferencing garbage */ 3268 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 3269 if (p->core == q->core) 3270 return true; 3271 3272 return false; 3273 } 3274 EXPORT_SYMBOL_GPL(clk_is_match); 3275 3276 /*** debugfs support ***/ 3277 3278 #ifdef CONFIG_DEBUG_FS 3279 #include <linux/debugfs.h> 3280 3281 static struct dentry *rootdir; 3282 static int inited = 0; 3283 static DEFINE_MUTEX(clk_debug_lock); 3284 static HLIST_HEAD(clk_debug_list); 3285 3286 static struct hlist_head *orphan_list[] = { 3287 &clk_orphan_list, 3288 NULL, 3289 }; 3290 3291 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 3292 int level) 3293 { 3294 int phase; 3295 struct clk *clk_user; 3296 int multi_node = 0; 3297 3298 seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ", 3299 level * 3 + 1, "", 3300 35 - level * 3, c->name, 3301 c->enable_count, c->prepare_count, c->protect_count, 3302 clk_core_get_rate_recalc(c), 3303 clk_core_get_accuracy_recalc(c)); 3304 3305 phase = clk_core_get_phase(c); 3306 if (phase >= 0) 3307 seq_printf(s, "%-5d", phase); 3308 else 3309 seq_puts(s, "-----"); 3310 3311 seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000)); 3312 3313 if (c->ops->is_enabled) 3314 seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N'); 3315 else if (!c->ops->enable) 3316 seq_printf(s, " %5c ", 'Y'); 3317 else 3318 seq_printf(s, " %5c ", '?'); 3319 3320 hlist_for_each_entry(clk_user, &c->clks, clks_node) { 3321 seq_printf(s, "%*s%-*s %-25s\n", 3322 level * 3 + 2 + 105 * multi_node, "", 3323 30, 3324 clk_user->dev_id ? clk_user->dev_id : "deviceless", 3325 clk_user->con_id ? clk_user->con_id : "no_connection_id"); 3326 3327 multi_node = 1; 3328 } 3329 3330 } 3331 3332 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 3333 int level) 3334 { 3335 struct clk_core *child; 3336 3337 clk_summary_show_one(s, c, level); 3338 3339 hlist_for_each_entry(child, &c->children, child_node) 3340 clk_summary_show_subtree(s, child, level + 1); 3341 } 3342 3343 static int clk_summary_show(struct seq_file *s, void *data) 3344 { 3345 struct clk_core *c; 3346 struct hlist_head **lists = s->private; 3347 int ret; 3348 3349 seq_puts(s, " enable prepare protect duty hardware connection\n"); 3350 seq_puts(s, " clock count count count rate accuracy phase cycle enable consumer id\n"); 3351 seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n"); 3352 3353 ret = clk_pm_runtime_get_all(); 3354 if (ret) 3355 return ret; 3356 3357 clk_prepare_lock(); 3358 3359 for (; *lists; lists++) 3360 hlist_for_each_entry(c, *lists, child_node) 3361 clk_summary_show_subtree(s, c, 0); 3362 3363 clk_prepare_unlock(); 3364 clk_pm_runtime_put_all(); 3365 3366 return 0; 3367 } 3368 DEFINE_SHOW_ATTRIBUTE(clk_summary); 3369 3370 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 3371 { 3372 int phase; 3373 unsigned long min_rate, max_rate; 3374 3375 clk_core_get_boundaries(c, &min_rate, &max_rate); 3376 3377 /* This should be JSON format, i.e. elements separated with a comma */ 3378 seq_printf(s, "\"%s\": { ", c->name); 3379 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 3380 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 3381 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 3382 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 3383 seq_printf(s, "\"min_rate\": %lu,", min_rate); 3384 seq_printf(s, "\"max_rate\": %lu,", max_rate); 3385 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 3386 phase = clk_core_get_phase(c); 3387 if (phase >= 0) 3388 seq_printf(s, "\"phase\": %d,", phase); 3389 seq_printf(s, "\"duty_cycle\": %u", 3390 clk_core_get_scaled_duty_cycle(c, 100000)); 3391 } 3392 3393 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3394 { 3395 struct clk_core *child; 3396 3397 clk_dump_one(s, c, level); 3398 3399 hlist_for_each_entry(child, &c->children, child_node) { 3400 seq_putc(s, ','); 3401 clk_dump_subtree(s, child, level + 1); 3402 } 3403 3404 seq_putc(s, '}'); 3405 } 3406 3407 static int clk_dump_show(struct seq_file *s, void *data) 3408 { 3409 struct clk_core *c; 3410 bool first_node = true; 3411 struct hlist_head **lists = s->private; 3412 int ret; 3413 3414 ret = clk_pm_runtime_get_all(); 3415 if (ret) 3416 return ret; 3417 3418 seq_putc(s, '{'); 3419 3420 clk_prepare_lock(); 3421 3422 for (; *lists; lists++) { 3423 hlist_for_each_entry(c, *lists, child_node) { 3424 if (!first_node) 3425 seq_putc(s, ','); 3426 first_node = false; 3427 clk_dump_subtree(s, c, 0); 3428 } 3429 } 3430 3431 clk_prepare_unlock(); 3432 clk_pm_runtime_put_all(); 3433 3434 seq_puts(s, "}\n"); 3435 return 0; 3436 } 3437 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3438 3439 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3440 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3441 /* 3442 * This can be dangerous, therefore don't provide any real compile time 3443 * configuration option for this feature. 3444 * People who want to use this will need to modify the source code directly. 3445 */ 3446 static int clk_rate_set(void *data, u64 val) 3447 { 3448 struct clk_core *core = data; 3449 int ret; 3450 3451 clk_prepare_lock(); 3452 ret = clk_core_set_rate_nolock(core, val); 3453 clk_prepare_unlock(); 3454 3455 return ret; 3456 } 3457 3458 #define clk_rate_mode 0644 3459 3460 static int clk_phase_set(void *data, u64 val) 3461 { 3462 struct clk_core *core = data; 3463 int degrees = do_div(val, 360); 3464 int ret; 3465 3466 clk_prepare_lock(); 3467 ret = clk_core_set_phase_nolock(core, degrees); 3468 clk_prepare_unlock(); 3469 3470 return ret; 3471 } 3472 3473 #define clk_phase_mode 0644 3474 3475 static int clk_prepare_enable_set(void *data, u64 val) 3476 { 3477 struct clk_core *core = data; 3478 int ret = 0; 3479 3480 if (val) 3481 ret = clk_prepare_enable(core->hw->clk); 3482 else 3483 clk_disable_unprepare(core->hw->clk); 3484 3485 return ret; 3486 } 3487 3488 static int clk_prepare_enable_get(void *data, u64 *val) 3489 { 3490 struct clk_core *core = data; 3491 3492 *val = core->enable_count && core->prepare_count; 3493 return 0; 3494 } 3495 3496 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3497 clk_prepare_enable_set, "%llu\n"); 3498 3499 #else 3500 #define clk_rate_set NULL 3501 #define clk_rate_mode 0444 3502 3503 #define clk_phase_set NULL 3504 #define clk_phase_mode 0644 3505 #endif 3506 3507 static int clk_rate_get(void *data, u64 *val) 3508 { 3509 struct clk_core *core = data; 3510 3511 clk_prepare_lock(); 3512 *val = clk_core_get_rate_recalc(core); 3513 clk_prepare_unlock(); 3514 3515 return 0; 3516 } 3517 3518 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3519 3520 static int clk_phase_get(void *data, u64 *val) 3521 { 3522 struct clk_core *core = data; 3523 3524 *val = core->phase; 3525 return 0; 3526 } 3527 3528 DEFINE_DEBUGFS_ATTRIBUTE(clk_phase_fops, clk_phase_get, clk_phase_set, "%llu\n"); 3529 3530 static const struct { 3531 unsigned long flag; 3532 const char *name; 3533 } clk_flags[] = { 3534 #define ENTRY(f) { f, #f } 3535 ENTRY(CLK_SET_RATE_GATE), 3536 ENTRY(CLK_SET_PARENT_GATE), 3537 ENTRY(CLK_SET_RATE_PARENT), 3538 ENTRY(CLK_IGNORE_UNUSED), 3539 ENTRY(CLK_GET_RATE_NOCACHE), 3540 ENTRY(CLK_SET_RATE_NO_REPARENT), 3541 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3542 ENTRY(CLK_RECALC_NEW_RATES), 3543 ENTRY(CLK_SET_RATE_UNGATE), 3544 ENTRY(CLK_IS_CRITICAL), 3545 ENTRY(CLK_OPS_PARENT_ENABLE), 3546 ENTRY(CLK_DUTY_CYCLE_PARENT), 3547 #undef ENTRY 3548 }; 3549 3550 static int clk_flags_show(struct seq_file *s, void *data) 3551 { 3552 struct clk_core *core = s->private; 3553 unsigned long flags = core->flags; 3554 unsigned int i; 3555 3556 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3557 if (flags & clk_flags[i].flag) { 3558 seq_printf(s, "%s\n", clk_flags[i].name); 3559 flags &= ~clk_flags[i].flag; 3560 } 3561 } 3562 if (flags) { 3563 /* Unknown flags */ 3564 seq_printf(s, "0x%lx\n", flags); 3565 } 3566 3567 return 0; 3568 } 3569 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3570 3571 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3572 unsigned int i, char terminator) 3573 { 3574 struct clk_core *parent; 3575 const char *name = NULL; 3576 3577 /* 3578 * Go through the following options to fetch a parent's name. 3579 * 3580 * 1. Fetch the registered parent clock and use its name 3581 * 2. Use the global (fallback) name if specified 3582 * 3. Use the local fw_name if provided 3583 * 4. Fetch parent clock's clock-output-name if DT index was set 3584 * 3585 * This may still fail in some cases, such as when the parent is 3586 * specified directly via a struct clk_hw pointer, but it isn't 3587 * registered (yet). 3588 */ 3589 parent = clk_core_get_parent_by_index(core, i); 3590 if (parent) { 3591 seq_puts(s, parent->name); 3592 } else if (core->parents[i].name) { 3593 seq_puts(s, core->parents[i].name); 3594 } else if (core->parents[i].fw_name) { 3595 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3596 } else { 3597 if (core->parents[i].index >= 0) 3598 name = of_clk_get_parent_name(core->of_node, core->parents[i].index); 3599 if (!name) 3600 name = "(missing)"; 3601 3602 seq_puts(s, name); 3603 } 3604 3605 seq_putc(s, terminator); 3606 } 3607 3608 static int possible_parents_show(struct seq_file *s, void *data) 3609 { 3610 struct clk_core *core = s->private; 3611 int i; 3612 3613 for (i = 0; i < core->num_parents - 1; i++) 3614 possible_parent_show(s, core, i, ' '); 3615 3616 possible_parent_show(s, core, i, '\n'); 3617 3618 return 0; 3619 } 3620 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3621 3622 static int current_parent_show(struct seq_file *s, void *data) 3623 { 3624 struct clk_core *core = s->private; 3625 3626 if (core->parent) 3627 seq_printf(s, "%s\n", core->parent->name); 3628 3629 return 0; 3630 } 3631 DEFINE_SHOW_ATTRIBUTE(current_parent); 3632 3633 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3634 static ssize_t current_parent_write(struct file *file, const char __user *ubuf, 3635 size_t count, loff_t *ppos) 3636 { 3637 struct seq_file *s = file->private_data; 3638 struct clk_core *core = s->private; 3639 struct clk_core *parent; 3640 u8 idx; 3641 int err; 3642 3643 err = kstrtou8_from_user(ubuf, count, 0, &idx); 3644 if (err < 0) 3645 return err; 3646 3647 parent = clk_core_get_parent_by_index(core, idx); 3648 if (!parent) 3649 return -ENOENT; 3650 3651 clk_prepare_lock(); 3652 err = clk_core_set_parent_nolock(core, parent); 3653 clk_prepare_unlock(); 3654 if (err) 3655 return err; 3656 3657 return count; 3658 } 3659 3660 static const struct file_operations current_parent_rw_fops = { 3661 .open = current_parent_open, 3662 .write = current_parent_write, 3663 .read = seq_read, 3664 .llseek = seq_lseek, 3665 .release = single_release, 3666 }; 3667 #endif 3668 3669 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3670 { 3671 struct clk_core *core = s->private; 3672 struct clk_duty *duty = &core->duty; 3673 3674 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3675 3676 return 0; 3677 } 3678 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3679 3680 static int clk_min_rate_show(struct seq_file *s, void *data) 3681 { 3682 struct clk_core *core = s->private; 3683 unsigned long min_rate, max_rate; 3684 3685 clk_prepare_lock(); 3686 clk_core_get_boundaries(core, &min_rate, &max_rate); 3687 clk_prepare_unlock(); 3688 seq_printf(s, "%lu\n", min_rate); 3689 3690 return 0; 3691 } 3692 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3693 3694 static int clk_max_rate_show(struct seq_file *s, void *data) 3695 { 3696 struct clk_core *core = s->private; 3697 unsigned long min_rate, max_rate; 3698 3699 clk_prepare_lock(); 3700 clk_core_get_boundaries(core, &min_rate, &max_rate); 3701 clk_prepare_unlock(); 3702 seq_printf(s, "%lu\n", max_rate); 3703 3704 return 0; 3705 } 3706 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3707 3708 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3709 { 3710 struct dentry *root; 3711 3712 if (!core || !pdentry) 3713 return; 3714 3715 root = debugfs_create_dir(core->name, pdentry); 3716 core->dentry = root; 3717 3718 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3719 &clk_rate_fops); 3720 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3721 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3722 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3723 debugfs_create_file("clk_phase", clk_phase_mode, root, core, 3724 &clk_phase_fops); 3725 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3726 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3727 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3728 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3729 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3730 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3731 &clk_duty_cycle_fops); 3732 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3733 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3734 &clk_prepare_enable_fops); 3735 3736 if (core->num_parents > 1) 3737 debugfs_create_file("clk_parent", 0644, root, core, 3738 ¤t_parent_rw_fops); 3739 else 3740 #endif 3741 if (core->num_parents > 0) 3742 debugfs_create_file("clk_parent", 0444, root, core, 3743 ¤t_parent_fops); 3744 3745 if (core->num_parents > 1) 3746 debugfs_create_file("clk_possible_parents", 0444, root, core, 3747 &possible_parents_fops); 3748 3749 if (core->ops->debug_init) 3750 core->ops->debug_init(core->hw, core->dentry); 3751 } 3752 3753 /** 3754 * clk_debug_register - add a clk node to the debugfs clk directory 3755 * @core: the clk being added to the debugfs clk directory 3756 * 3757 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3758 * initialized. Otherwise it bails out early since the debugfs clk directory 3759 * will be created lazily by clk_debug_init as part of a late_initcall. 3760 */ 3761 static void clk_debug_register(struct clk_core *core) 3762 { 3763 mutex_lock(&clk_debug_lock); 3764 hlist_add_head(&core->debug_node, &clk_debug_list); 3765 if (inited) 3766 clk_debug_create_one(core, rootdir); 3767 mutex_unlock(&clk_debug_lock); 3768 } 3769 3770 /** 3771 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3772 * @core: the clk being removed from the debugfs clk directory 3773 * 3774 * Dynamically removes a clk and all its child nodes from the 3775 * debugfs clk directory if clk->dentry points to debugfs created by 3776 * clk_debug_register in __clk_core_init. 3777 */ 3778 static void clk_debug_unregister(struct clk_core *core) 3779 { 3780 mutex_lock(&clk_debug_lock); 3781 hlist_del_init(&core->debug_node); 3782 debugfs_remove_recursive(core->dentry); 3783 core->dentry = NULL; 3784 mutex_unlock(&clk_debug_lock); 3785 } 3786 3787 /** 3788 * clk_debug_init - lazily populate the debugfs clk directory 3789 * 3790 * clks are often initialized very early during boot before memory can be 3791 * dynamically allocated and well before debugfs is setup. This function 3792 * populates the debugfs clk directory once at boot-time when we know that 3793 * debugfs is setup. It should only be called once at boot-time, all other clks 3794 * added dynamically will be done so with clk_debug_register. 3795 */ 3796 static int __init clk_debug_init(void) 3797 { 3798 struct clk_core *core; 3799 3800 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3801 pr_warn("\n"); 3802 pr_warn("********************************************************************\n"); 3803 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3804 pr_warn("** **\n"); 3805 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n"); 3806 pr_warn("** **\n"); 3807 pr_warn("** This means that this kernel is built to expose clk operations **\n"); 3808 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n"); 3809 pr_warn("** to userspace, which may compromise security on your system. **\n"); 3810 pr_warn("** **\n"); 3811 pr_warn("** If you see this message and you are not debugging the **\n"); 3812 pr_warn("** kernel, report this immediately to your vendor! **\n"); 3813 pr_warn("** **\n"); 3814 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3815 pr_warn("********************************************************************\n"); 3816 #endif 3817 3818 rootdir = debugfs_create_dir("clk", NULL); 3819 3820 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3821 &clk_summary_fops); 3822 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3823 &clk_dump_fops); 3824 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3825 &clk_summary_fops); 3826 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3827 &clk_dump_fops); 3828 3829 mutex_lock(&clk_debug_lock); 3830 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3831 clk_debug_create_one(core, rootdir); 3832 3833 inited = 1; 3834 mutex_unlock(&clk_debug_lock); 3835 3836 return 0; 3837 } 3838 late_initcall(clk_debug_init); 3839 #else 3840 static inline void clk_debug_register(struct clk_core *core) { } 3841 static inline void clk_debug_unregister(struct clk_core *core) 3842 { 3843 } 3844 #endif 3845 3846 static void clk_core_reparent_orphans_nolock(void) 3847 { 3848 struct clk_core *orphan; 3849 struct hlist_node *tmp2; 3850 3851 /* 3852 * walk the list of orphan clocks and reparent any that newly finds a 3853 * parent. 3854 */ 3855 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3856 struct clk_core *parent = __clk_init_parent(orphan); 3857 3858 /* 3859 * We need to use __clk_set_parent_before() and _after() to 3860 * properly migrate any prepare/enable count of the orphan 3861 * clock. This is important for CLK_IS_CRITICAL clocks, which 3862 * are enabled during init but might not have a parent yet. 3863 */ 3864 if (parent) { 3865 /* update the clk tree topology */ 3866 __clk_set_parent_before(orphan, parent); 3867 __clk_set_parent_after(orphan, parent, NULL); 3868 __clk_recalc_accuracies(orphan); 3869 __clk_recalc_rates(orphan, true, 0); 3870 3871 /* 3872 * __clk_init_parent() will set the initial req_rate to 3873 * 0 if the clock doesn't have clk_ops::recalc_rate and 3874 * is an orphan when it's registered. 3875 * 3876 * 'req_rate' is used by clk_set_rate_range() and 3877 * clk_put() to trigger a clk_set_rate() call whenever 3878 * the boundaries are modified. Let's make sure 3879 * 'req_rate' is set to something non-zero so that 3880 * clk_set_rate_range() doesn't drop the frequency. 3881 */ 3882 orphan->req_rate = orphan->rate; 3883 } 3884 } 3885 } 3886 3887 /** 3888 * __clk_core_init - initialize the data structures in a struct clk_core 3889 * @core: clk_core being initialized 3890 * 3891 * Initializes the lists in struct clk_core, queries the hardware for the 3892 * parent and rate and sets them both. 3893 */ 3894 static int __clk_core_init(struct clk_core *core) 3895 { 3896 int ret; 3897 struct clk_core *parent; 3898 unsigned long rate; 3899 int phase; 3900 3901 clk_prepare_lock(); 3902 3903 /* 3904 * Set hw->core after grabbing the prepare_lock to synchronize with 3905 * callers of clk_core_fill_parent_index() where we treat hw->core 3906 * being NULL as the clk not being registered yet. This is crucial so 3907 * that clks aren't parented until their parent is fully registered. 3908 */ 3909 core->hw->core = core; 3910 3911 ret = clk_pm_runtime_get(core); 3912 if (ret) 3913 goto unlock; 3914 3915 /* check to see if a clock with this name is already registered */ 3916 if (clk_core_lookup(core->name)) { 3917 pr_debug("%s: clk %s already initialized\n", 3918 __func__, core->name); 3919 ret = -EEXIST; 3920 goto out; 3921 } 3922 3923 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3924 if (core->ops->set_rate && 3925 !((core->ops->round_rate || core->ops->determine_rate) && 3926 core->ops->recalc_rate)) { 3927 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3928 __func__, core->name); 3929 ret = -EINVAL; 3930 goto out; 3931 } 3932 3933 if (core->ops->set_parent && !core->ops->get_parent) { 3934 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3935 __func__, core->name); 3936 ret = -EINVAL; 3937 goto out; 3938 } 3939 3940 if (core->ops->set_parent && !core->ops->determine_rate) { 3941 pr_err("%s: %s must implement .set_parent & .determine_rate\n", 3942 __func__, core->name); 3943 ret = -EINVAL; 3944 goto out; 3945 } 3946 3947 if (core->num_parents > 1 && !core->ops->get_parent) { 3948 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3949 __func__, core->name); 3950 ret = -EINVAL; 3951 goto out; 3952 } 3953 3954 if (core->ops->set_rate_and_parent && 3955 !(core->ops->set_parent && core->ops->set_rate)) { 3956 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3957 __func__, core->name); 3958 ret = -EINVAL; 3959 goto out; 3960 } 3961 3962 /* 3963 * optional platform-specific magic 3964 * 3965 * The .init callback is not used by any of the basic clock types, but 3966 * exists for weird hardware that must perform initialization magic for 3967 * CCF to get an accurate view of clock for any other callbacks. It may 3968 * also be used needs to perform dynamic allocations. Such allocation 3969 * must be freed in the terminate() callback. 3970 * This callback shall not be used to initialize the parameters state, 3971 * such as rate, parent, etc ... 3972 * 3973 * If it exist, this callback should called before any other callback of 3974 * the clock 3975 */ 3976 if (core->ops->init) { 3977 ret = core->ops->init(core->hw); 3978 if (ret) 3979 goto out; 3980 } 3981 3982 parent = core->parent = __clk_init_parent(core); 3983 3984 /* 3985 * Populate core->parent if parent has already been clk_core_init'd. If 3986 * parent has not yet been clk_core_init'd then place clk in the orphan 3987 * list. If clk doesn't have any parents then place it in the root 3988 * clk list. 3989 * 3990 * Every time a new clk is clk_init'd then we walk the list of orphan 3991 * clocks and re-parent any that are children of the clock currently 3992 * being clk_init'd. 3993 */ 3994 if (parent) { 3995 hlist_add_head(&core->child_node, &parent->children); 3996 core->orphan = parent->orphan; 3997 } else if (!core->num_parents) { 3998 hlist_add_head(&core->child_node, &clk_root_list); 3999 core->orphan = false; 4000 } else { 4001 hlist_add_head(&core->child_node, &clk_orphan_list); 4002 core->orphan = true; 4003 } 4004 4005 /* 4006 * Set clk's accuracy. The preferred method is to use 4007 * .recalc_accuracy. For simple clocks and lazy developers the default 4008 * fallback is to use the parent's accuracy. If a clock doesn't have a 4009 * parent (or is orphaned) then accuracy is set to zero (perfect 4010 * clock). 4011 */ 4012 if (core->ops->recalc_accuracy) 4013 core->accuracy = core->ops->recalc_accuracy(core->hw, 4014 clk_core_get_accuracy_no_lock(parent)); 4015 else if (parent) 4016 core->accuracy = parent->accuracy; 4017 else 4018 core->accuracy = 0; 4019 4020 /* 4021 * Set clk's phase by clk_core_get_phase() caching the phase. 4022 * Since a phase is by definition relative to its parent, just 4023 * query the current clock phase, or just assume it's in phase. 4024 */ 4025 phase = clk_core_get_phase(core); 4026 if (phase < 0) { 4027 ret = phase; 4028 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 4029 core->name); 4030 goto out; 4031 } 4032 4033 /* 4034 * Set clk's duty cycle. 4035 */ 4036 clk_core_update_duty_cycle_nolock(core); 4037 4038 /* 4039 * Set clk's rate. The preferred method is to use .recalc_rate. For 4040 * simple clocks and lazy developers the default fallback is to use the 4041 * parent's rate. If a clock doesn't have a parent (or is orphaned) 4042 * then rate is set to zero. 4043 */ 4044 if (core->ops->recalc_rate) 4045 rate = core->ops->recalc_rate(core->hw, 4046 clk_core_get_rate_nolock(parent)); 4047 else if (parent) 4048 rate = parent->rate; 4049 else 4050 rate = 0; 4051 core->rate = core->req_rate = rate; 4052 4053 /* 4054 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 4055 * don't get accidentally disabled when walking the orphan tree and 4056 * reparenting clocks 4057 */ 4058 if (core->flags & CLK_IS_CRITICAL) { 4059 ret = clk_core_prepare(core); 4060 if (ret) { 4061 pr_warn("%s: critical clk '%s' failed to prepare\n", 4062 __func__, core->name); 4063 goto out; 4064 } 4065 4066 ret = clk_core_enable_lock(core); 4067 if (ret) { 4068 pr_warn("%s: critical clk '%s' failed to enable\n", 4069 __func__, core->name); 4070 clk_core_unprepare(core); 4071 goto out; 4072 } 4073 } 4074 4075 clk_core_reparent_orphans_nolock(); 4076 out: 4077 clk_pm_runtime_put(core); 4078 unlock: 4079 if (ret) { 4080 hlist_del_init(&core->child_node); 4081 core->hw->core = NULL; 4082 } 4083 4084 clk_prepare_unlock(); 4085 4086 if (!ret) 4087 clk_debug_register(core); 4088 4089 return ret; 4090 } 4091 4092 /** 4093 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 4094 * @core: clk to add consumer to 4095 * @clk: consumer to link to a clk 4096 */ 4097 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 4098 { 4099 clk_prepare_lock(); 4100 hlist_add_head(&clk->clks_node, &core->clks); 4101 clk_prepare_unlock(); 4102 } 4103 4104 /** 4105 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 4106 * @clk: consumer to unlink 4107 */ 4108 static void clk_core_unlink_consumer(struct clk *clk) 4109 { 4110 lockdep_assert_held(&prepare_lock); 4111 hlist_del(&clk->clks_node); 4112 } 4113 4114 /** 4115 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 4116 * @core: clk to allocate a consumer for 4117 * @dev_id: string describing device name 4118 * @con_id: connection ID string on device 4119 * 4120 * Returns: clk consumer left unlinked from the consumer list 4121 */ 4122 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 4123 const char *con_id) 4124 { 4125 struct clk *clk; 4126 4127 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 4128 if (!clk) 4129 return ERR_PTR(-ENOMEM); 4130 4131 clk->core = core; 4132 clk->dev_id = dev_id; 4133 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 4134 clk->max_rate = ULONG_MAX; 4135 4136 return clk; 4137 } 4138 4139 /** 4140 * free_clk - Free a clk consumer 4141 * @clk: clk consumer to free 4142 * 4143 * Note, this assumes the clk has been unlinked from the clk_core consumer 4144 * list. 4145 */ 4146 static void free_clk(struct clk *clk) 4147 { 4148 kfree_const(clk->con_id); 4149 kfree(clk); 4150 } 4151 4152 /** 4153 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 4154 * a clk_hw 4155 * @dev: clk consumer device 4156 * @hw: clk_hw associated with the clk being consumed 4157 * @dev_id: string describing device name 4158 * @con_id: connection ID string on device 4159 * 4160 * This is the main function used to create a clk pointer for use by clk 4161 * consumers. It connects a consumer to the clk_core and clk_hw structures 4162 * used by the framework and clk provider respectively. 4163 */ 4164 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 4165 const char *dev_id, const char *con_id) 4166 { 4167 struct clk *clk; 4168 struct clk_core *core; 4169 4170 /* This is to allow this function to be chained to others */ 4171 if (IS_ERR_OR_NULL(hw)) 4172 return ERR_CAST(hw); 4173 4174 core = hw->core; 4175 clk = alloc_clk(core, dev_id, con_id); 4176 if (IS_ERR(clk)) 4177 return clk; 4178 clk->dev = dev; 4179 4180 if (!try_module_get(core->owner)) { 4181 free_clk(clk); 4182 return ERR_PTR(-ENOENT); 4183 } 4184 4185 kref_get(&core->ref); 4186 clk_core_link_consumer(core, clk); 4187 4188 return clk; 4189 } 4190 4191 /** 4192 * clk_hw_get_clk - get clk consumer given an clk_hw 4193 * @hw: clk_hw associated with the clk being consumed 4194 * @con_id: connection ID string on device 4195 * 4196 * Returns: new clk consumer 4197 * This is the function to be used by providers which need 4198 * to get a consumer clk and act on the clock element 4199 * Calls to this function must be balanced with calls clk_put() 4200 */ 4201 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id) 4202 { 4203 struct device *dev = hw->core->dev; 4204 const char *name = dev ? dev_name(dev) : NULL; 4205 4206 return clk_hw_create_clk(dev, hw, name, con_id); 4207 } 4208 EXPORT_SYMBOL(clk_hw_get_clk); 4209 4210 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 4211 { 4212 const char *dst; 4213 4214 if (!src) { 4215 if (must_exist) 4216 return -EINVAL; 4217 return 0; 4218 } 4219 4220 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 4221 if (!dst) 4222 return -ENOMEM; 4223 4224 return 0; 4225 } 4226 4227 static int clk_core_populate_parent_map(struct clk_core *core, 4228 const struct clk_init_data *init) 4229 { 4230 u8 num_parents = init->num_parents; 4231 const char * const *parent_names = init->parent_names; 4232 const struct clk_hw **parent_hws = init->parent_hws; 4233 const struct clk_parent_data *parent_data = init->parent_data; 4234 int i, ret = 0; 4235 struct clk_parent_map *parents, *parent; 4236 4237 if (!num_parents) 4238 return 0; 4239 4240 /* 4241 * Avoid unnecessary string look-ups of clk_core's possible parents by 4242 * having a cache of names/clk_hw pointers to clk_core pointers. 4243 */ 4244 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 4245 core->parents = parents; 4246 if (!parents) 4247 return -ENOMEM; 4248 4249 /* Copy everything over because it might be __initdata */ 4250 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 4251 parent->index = -1; 4252 if (parent_names) { 4253 /* throw a WARN if any entries are NULL */ 4254 WARN(!parent_names[i], 4255 "%s: invalid NULL in %s's .parent_names\n", 4256 __func__, core->name); 4257 ret = clk_cpy_name(&parent->name, parent_names[i], 4258 true); 4259 } else if (parent_data) { 4260 parent->hw = parent_data[i].hw; 4261 parent->index = parent_data[i].index; 4262 ret = clk_cpy_name(&parent->fw_name, 4263 parent_data[i].fw_name, false); 4264 if (!ret) 4265 ret = clk_cpy_name(&parent->name, 4266 parent_data[i].name, 4267 false); 4268 } else if (parent_hws) { 4269 parent->hw = parent_hws[i]; 4270 } else { 4271 ret = -EINVAL; 4272 WARN(1, "Must specify parents if num_parents > 0\n"); 4273 } 4274 4275 if (ret) { 4276 do { 4277 kfree_const(parents[i].name); 4278 kfree_const(parents[i].fw_name); 4279 } while (--i >= 0); 4280 kfree(parents); 4281 4282 return ret; 4283 } 4284 } 4285 4286 return 0; 4287 } 4288 4289 static void clk_core_free_parent_map(struct clk_core *core) 4290 { 4291 int i = core->num_parents; 4292 4293 if (!core->num_parents) 4294 return; 4295 4296 while (--i >= 0) { 4297 kfree_const(core->parents[i].name); 4298 kfree_const(core->parents[i].fw_name); 4299 } 4300 4301 kfree(core->parents); 4302 } 4303 4304 /* Free memory allocated for a struct clk_core */ 4305 static void __clk_release(struct kref *ref) 4306 { 4307 struct clk_core *core = container_of(ref, struct clk_core, ref); 4308 4309 if (core->rpm_enabled) { 4310 mutex_lock(&clk_rpm_list_lock); 4311 hlist_del(&core->rpm_node); 4312 mutex_unlock(&clk_rpm_list_lock); 4313 } 4314 4315 clk_core_free_parent_map(core); 4316 kfree_const(core->name); 4317 kfree(core); 4318 } 4319 4320 static struct clk * 4321 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 4322 { 4323 int ret; 4324 struct clk_core *core; 4325 const struct clk_init_data *init = hw->init; 4326 4327 /* 4328 * The init data is not supposed to be used outside of registration path. 4329 * Set it to NULL so that provider drivers can't use it either and so that 4330 * we catch use of hw->init early on in the core. 4331 */ 4332 hw->init = NULL; 4333 4334 core = kzalloc(sizeof(*core), GFP_KERNEL); 4335 if (!core) { 4336 ret = -ENOMEM; 4337 goto fail_out; 4338 } 4339 4340 kref_init(&core->ref); 4341 4342 core->name = kstrdup_const(init->name, GFP_KERNEL); 4343 if (!core->name) { 4344 ret = -ENOMEM; 4345 goto fail_name; 4346 } 4347 4348 if (WARN_ON(!init->ops)) { 4349 ret = -EINVAL; 4350 goto fail_ops; 4351 } 4352 core->ops = init->ops; 4353 4354 core->dev = dev; 4355 clk_pm_runtime_init(core); 4356 core->of_node = np; 4357 if (dev && dev->driver) 4358 core->owner = dev->driver->owner; 4359 core->hw = hw; 4360 core->flags = init->flags; 4361 core->num_parents = init->num_parents; 4362 core->min_rate = 0; 4363 core->max_rate = ULONG_MAX; 4364 4365 ret = clk_core_populate_parent_map(core, init); 4366 if (ret) 4367 goto fail_parents; 4368 4369 INIT_HLIST_HEAD(&core->clks); 4370 4371 /* 4372 * Don't call clk_hw_create_clk() here because that would pin the 4373 * provider module to itself and prevent it from ever being removed. 4374 */ 4375 hw->clk = alloc_clk(core, NULL, NULL); 4376 if (IS_ERR(hw->clk)) { 4377 ret = PTR_ERR(hw->clk); 4378 goto fail_create_clk; 4379 } 4380 4381 clk_core_link_consumer(core, hw->clk); 4382 4383 ret = __clk_core_init(core); 4384 if (!ret) 4385 return hw->clk; 4386 4387 clk_prepare_lock(); 4388 clk_core_unlink_consumer(hw->clk); 4389 clk_prepare_unlock(); 4390 4391 free_clk(hw->clk); 4392 hw->clk = NULL; 4393 4394 fail_create_clk: 4395 fail_parents: 4396 fail_ops: 4397 fail_name: 4398 kref_put(&core->ref, __clk_release); 4399 fail_out: 4400 return ERR_PTR(ret); 4401 } 4402 4403 /** 4404 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 4405 * @dev: Device to get device node of 4406 * 4407 * Return: device node pointer of @dev, or the device node pointer of 4408 * @dev->parent if dev doesn't have a device node, or NULL if neither 4409 * @dev or @dev->parent have a device node. 4410 */ 4411 static struct device_node *dev_or_parent_of_node(struct device *dev) 4412 { 4413 struct device_node *np; 4414 4415 if (!dev) 4416 return NULL; 4417 4418 np = dev_of_node(dev); 4419 if (!np) 4420 np = dev_of_node(dev->parent); 4421 4422 return np; 4423 } 4424 4425 /** 4426 * clk_register - allocate a new clock, register it and return an opaque cookie 4427 * @dev: device that is registering this clock 4428 * @hw: link to hardware-specific clock data 4429 * 4430 * clk_register is the *deprecated* interface for populating the clock tree with 4431 * new clock nodes. Use clk_hw_register() instead. 4432 * 4433 * Returns: a pointer to the newly allocated struct clk which 4434 * cannot be dereferenced by driver code but may be used in conjunction with the 4435 * rest of the clock API. In the event of an error clk_register will return an 4436 * error code; drivers must test for an error code after calling clk_register. 4437 */ 4438 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 4439 { 4440 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 4441 } 4442 EXPORT_SYMBOL_GPL(clk_register); 4443 4444 /** 4445 * clk_hw_register - register a clk_hw and return an error code 4446 * @dev: device that is registering this clock 4447 * @hw: link to hardware-specific clock data 4448 * 4449 * clk_hw_register is the primary interface for populating the clock tree with 4450 * new clock nodes. It returns an integer equal to zero indicating success or 4451 * less than zero indicating failure. Drivers must test for an error code after 4452 * calling clk_hw_register(). 4453 */ 4454 int clk_hw_register(struct device *dev, struct clk_hw *hw) 4455 { 4456 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 4457 hw)); 4458 } 4459 EXPORT_SYMBOL_GPL(clk_hw_register); 4460 4461 /* 4462 * of_clk_hw_register - register a clk_hw and return an error code 4463 * @node: device_node of device that is registering this clock 4464 * @hw: link to hardware-specific clock data 4465 * 4466 * of_clk_hw_register() is the primary interface for populating the clock tree 4467 * with new clock nodes when a struct device is not available, but a struct 4468 * device_node is. It returns an integer equal to zero indicating success or 4469 * less than zero indicating failure. Drivers must test for an error code after 4470 * calling of_clk_hw_register(). 4471 */ 4472 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 4473 { 4474 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 4475 } 4476 EXPORT_SYMBOL_GPL(of_clk_hw_register); 4477 4478 /* 4479 * Empty clk_ops for unregistered clocks. These are used temporarily 4480 * after clk_unregister() was called on a clock and until last clock 4481 * consumer calls clk_put() and the struct clk object is freed. 4482 */ 4483 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 4484 { 4485 return -ENXIO; 4486 } 4487 4488 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 4489 { 4490 WARN_ON_ONCE(1); 4491 } 4492 4493 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 4494 unsigned long parent_rate) 4495 { 4496 return -ENXIO; 4497 } 4498 4499 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 4500 { 4501 return -ENXIO; 4502 } 4503 4504 static int clk_nodrv_determine_rate(struct clk_hw *hw, 4505 struct clk_rate_request *req) 4506 { 4507 return -ENXIO; 4508 } 4509 4510 static const struct clk_ops clk_nodrv_ops = { 4511 .enable = clk_nodrv_prepare_enable, 4512 .disable = clk_nodrv_disable_unprepare, 4513 .prepare = clk_nodrv_prepare_enable, 4514 .unprepare = clk_nodrv_disable_unprepare, 4515 .determine_rate = clk_nodrv_determine_rate, 4516 .set_rate = clk_nodrv_set_rate, 4517 .set_parent = clk_nodrv_set_parent, 4518 }; 4519 4520 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4521 const struct clk_core *target) 4522 { 4523 int i; 4524 struct clk_core *child; 4525 4526 for (i = 0; i < root->num_parents; i++) 4527 if (root->parents[i].core == target) 4528 root->parents[i].core = NULL; 4529 4530 hlist_for_each_entry(child, &root->children, child_node) 4531 clk_core_evict_parent_cache_subtree(child, target); 4532 } 4533 4534 /* Remove this clk from all parent caches */ 4535 static void clk_core_evict_parent_cache(struct clk_core *core) 4536 { 4537 const struct hlist_head **lists; 4538 struct clk_core *root; 4539 4540 lockdep_assert_held(&prepare_lock); 4541 4542 for (lists = all_lists; *lists; lists++) 4543 hlist_for_each_entry(root, *lists, child_node) 4544 clk_core_evict_parent_cache_subtree(root, core); 4545 4546 } 4547 4548 /** 4549 * clk_unregister - unregister a currently registered clock 4550 * @clk: clock to unregister 4551 */ 4552 void clk_unregister(struct clk *clk) 4553 { 4554 unsigned long flags; 4555 const struct clk_ops *ops; 4556 4557 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4558 return; 4559 4560 clk_debug_unregister(clk->core); 4561 4562 clk_prepare_lock(); 4563 4564 ops = clk->core->ops; 4565 if (ops == &clk_nodrv_ops) { 4566 pr_err("%s: unregistered clock: %s\n", __func__, 4567 clk->core->name); 4568 clk_prepare_unlock(); 4569 return; 4570 } 4571 /* 4572 * Assign empty clock ops for consumers that might still hold 4573 * a reference to this clock. 4574 */ 4575 flags = clk_enable_lock(); 4576 clk->core->ops = &clk_nodrv_ops; 4577 clk_enable_unlock(flags); 4578 4579 if (ops->terminate) 4580 ops->terminate(clk->core->hw); 4581 4582 if (!hlist_empty(&clk->core->children)) { 4583 struct clk_core *child; 4584 struct hlist_node *t; 4585 4586 /* Reparent all children to the orphan list. */ 4587 hlist_for_each_entry_safe(child, t, &clk->core->children, 4588 child_node) 4589 clk_core_set_parent_nolock(child, NULL); 4590 } 4591 4592 clk_core_evict_parent_cache(clk->core); 4593 4594 hlist_del_init(&clk->core->child_node); 4595 4596 if (clk->core->prepare_count) 4597 pr_warn("%s: unregistering prepared clock: %s\n", 4598 __func__, clk->core->name); 4599 4600 if (clk->core->protect_count) 4601 pr_warn("%s: unregistering protected clock: %s\n", 4602 __func__, clk->core->name); 4603 clk_prepare_unlock(); 4604 4605 kref_put(&clk->core->ref, __clk_release); 4606 free_clk(clk); 4607 } 4608 EXPORT_SYMBOL_GPL(clk_unregister); 4609 4610 /** 4611 * clk_hw_unregister - unregister a currently registered clk_hw 4612 * @hw: hardware-specific clock data to unregister 4613 */ 4614 void clk_hw_unregister(struct clk_hw *hw) 4615 { 4616 clk_unregister(hw->clk); 4617 } 4618 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4619 4620 static void devm_clk_unregister_cb(struct device *dev, void *res) 4621 { 4622 clk_unregister(*(struct clk **)res); 4623 } 4624 4625 static void devm_clk_hw_unregister_cb(struct device *dev, void *res) 4626 { 4627 clk_hw_unregister(*(struct clk_hw **)res); 4628 } 4629 4630 /** 4631 * devm_clk_register - resource managed clk_register() 4632 * @dev: device that is registering this clock 4633 * @hw: link to hardware-specific clock data 4634 * 4635 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4636 * 4637 * Clocks returned from this function are automatically clk_unregister()ed on 4638 * driver detach. See clk_register() for more information. 4639 */ 4640 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4641 { 4642 struct clk *clk; 4643 struct clk **clkp; 4644 4645 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL); 4646 if (!clkp) 4647 return ERR_PTR(-ENOMEM); 4648 4649 clk = clk_register(dev, hw); 4650 if (!IS_ERR(clk)) { 4651 *clkp = clk; 4652 devres_add(dev, clkp); 4653 } else { 4654 devres_free(clkp); 4655 } 4656 4657 return clk; 4658 } 4659 EXPORT_SYMBOL_GPL(devm_clk_register); 4660 4661 /** 4662 * devm_clk_hw_register - resource managed clk_hw_register() 4663 * @dev: device that is registering this clock 4664 * @hw: link to hardware-specific clock data 4665 * 4666 * Managed clk_hw_register(). Clocks registered by this function are 4667 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4668 * for more information. 4669 */ 4670 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4671 { 4672 struct clk_hw **hwp; 4673 int ret; 4674 4675 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL); 4676 if (!hwp) 4677 return -ENOMEM; 4678 4679 ret = clk_hw_register(dev, hw); 4680 if (!ret) { 4681 *hwp = hw; 4682 devres_add(dev, hwp); 4683 } else { 4684 devres_free(hwp); 4685 } 4686 4687 return ret; 4688 } 4689 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4690 4691 static void devm_clk_release(struct device *dev, void *res) 4692 { 4693 clk_put(*(struct clk **)res); 4694 } 4695 4696 /** 4697 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk() 4698 * @dev: device that is registering this clock 4699 * @hw: clk_hw associated with the clk being consumed 4700 * @con_id: connection ID string on device 4701 * 4702 * Managed clk_hw_get_clk(). Clocks got with this function are 4703 * automatically clk_put() on driver detach. See clk_put() 4704 * for more information. 4705 */ 4706 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw, 4707 const char *con_id) 4708 { 4709 struct clk *clk; 4710 struct clk **clkp; 4711 4712 /* This should not happen because it would mean we have drivers 4713 * passing around clk_hw pointers instead of having the caller use 4714 * proper clk_get() style APIs 4715 */ 4716 WARN_ON_ONCE(dev != hw->core->dev); 4717 4718 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4719 if (!clkp) 4720 return ERR_PTR(-ENOMEM); 4721 4722 clk = clk_hw_get_clk(hw, con_id); 4723 if (!IS_ERR(clk)) { 4724 *clkp = clk; 4725 devres_add(dev, clkp); 4726 } else { 4727 devres_free(clkp); 4728 } 4729 4730 return clk; 4731 } 4732 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk); 4733 4734 /* 4735 * clkdev helpers 4736 */ 4737 4738 void __clk_put(struct clk *clk) 4739 { 4740 struct module *owner; 4741 4742 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4743 return; 4744 4745 clk_prepare_lock(); 4746 4747 /* 4748 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4749 * given user should be balanced with calls to clk_rate_exclusive_put() 4750 * and by that same consumer 4751 */ 4752 if (WARN_ON(clk->exclusive_count)) { 4753 /* We voiced our concern, let's sanitize the situation */ 4754 clk->core->protect_count -= (clk->exclusive_count - 1); 4755 clk_core_rate_unprotect(clk->core); 4756 clk->exclusive_count = 0; 4757 } 4758 4759 clk_core_unlink_consumer(clk); 4760 4761 /* If we had any boundaries on that clock, let's drop them. */ 4762 if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX) 4763 clk_set_rate_range_nolock(clk, 0, ULONG_MAX); 4764 4765 clk_prepare_unlock(); 4766 4767 owner = clk->core->owner; 4768 kref_put(&clk->core->ref, __clk_release); 4769 module_put(owner); 4770 free_clk(clk); 4771 } 4772 4773 /*** clk rate change notifiers ***/ 4774 4775 /** 4776 * clk_notifier_register - add a clk rate change notifier 4777 * @clk: struct clk * to watch 4778 * @nb: struct notifier_block * with callback info 4779 * 4780 * Request notification when clk's rate changes. This uses an SRCU 4781 * notifier because we want it to block and notifier unregistrations are 4782 * uncommon. The callbacks associated with the notifier must not 4783 * re-enter into the clk framework by calling any top-level clk APIs; 4784 * this will cause a nested prepare_lock mutex. 4785 * 4786 * In all notification cases (pre, post and abort rate change) the original 4787 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4788 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4789 * 4790 * clk_notifier_register() must be called from non-atomic context. 4791 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4792 * allocation failure; otherwise, passes along the return value of 4793 * srcu_notifier_chain_register(). 4794 */ 4795 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4796 { 4797 struct clk_notifier *cn; 4798 int ret = -ENOMEM; 4799 4800 if (!clk || !nb) 4801 return -EINVAL; 4802 4803 clk_prepare_lock(); 4804 4805 /* search the list of notifiers for this clk */ 4806 list_for_each_entry(cn, &clk_notifier_list, node) 4807 if (cn->clk == clk) 4808 goto found; 4809 4810 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4811 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4812 if (!cn) 4813 goto out; 4814 4815 cn->clk = clk; 4816 srcu_init_notifier_head(&cn->notifier_head); 4817 4818 list_add(&cn->node, &clk_notifier_list); 4819 4820 found: 4821 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4822 4823 clk->core->notifier_count++; 4824 4825 out: 4826 clk_prepare_unlock(); 4827 4828 return ret; 4829 } 4830 EXPORT_SYMBOL_GPL(clk_notifier_register); 4831 4832 /** 4833 * clk_notifier_unregister - remove a clk rate change notifier 4834 * @clk: struct clk * 4835 * @nb: struct notifier_block * with callback info 4836 * 4837 * Request no further notification for changes to 'clk' and frees memory 4838 * allocated in clk_notifier_register. 4839 * 4840 * Returns -EINVAL if called with null arguments; otherwise, passes 4841 * along the return value of srcu_notifier_chain_unregister(). 4842 */ 4843 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4844 { 4845 struct clk_notifier *cn; 4846 int ret = -ENOENT; 4847 4848 if (!clk || !nb) 4849 return -EINVAL; 4850 4851 clk_prepare_lock(); 4852 4853 list_for_each_entry(cn, &clk_notifier_list, node) { 4854 if (cn->clk == clk) { 4855 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4856 4857 clk->core->notifier_count--; 4858 4859 /* XXX the notifier code should handle this better */ 4860 if (!cn->notifier_head.head) { 4861 srcu_cleanup_notifier_head(&cn->notifier_head); 4862 list_del(&cn->node); 4863 kfree(cn); 4864 } 4865 break; 4866 } 4867 } 4868 4869 clk_prepare_unlock(); 4870 4871 return ret; 4872 } 4873 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4874 4875 struct clk_notifier_devres { 4876 struct clk *clk; 4877 struct notifier_block *nb; 4878 }; 4879 4880 static void devm_clk_notifier_release(struct device *dev, void *res) 4881 { 4882 struct clk_notifier_devres *devres = res; 4883 4884 clk_notifier_unregister(devres->clk, devres->nb); 4885 } 4886 4887 int devm_clk_notifier_register(struct device *dev, struct clk *clk, 4888 struct notifier_block *nb) 4889 { 4890 struct clk_notifier_devres *devres; 4891 int ret; 4892 4893 devres = devres_alloc(devm_clk_notifier_release, 4894 sizeof(*devres), GFP_KERNEL); 4895 4896 if (!devres) 4897 return -ENOMEM; 4898 4899 ret = clk_notifier_register(clk, nb); 4900 if (!ret) { 4901 devres->clk = clk; 4902 devres->nb = nb; 4903 devres_add(dev, devres); 4904 } else { 4905 devres_free(devres); 4906 } 4907 4908 return ret; 4909 } 4910 EXPORT_SYMBOL_GPL(devm_clk_notifier_register); 4911 4912 #ifdef CONFIG_OF 4913 static void clk_core_reparent_orphans(void) 4914 { 4915 clk_prepare_lock(); 4916 clk_core_reparent_orphans_nolock(); 4917 clk_prepare_unlock(); 4918 } 4919 4920 /** 4921 * struct of_clk_provider - Clock provider registration structure 4922 * @link: Entry in global list of clock providers 4923 * @node: Pointer to device tree node of clock provider 4924 * @get: Get clock callback. Returns NULL or a struct clk for the 4925 * given clock specifier 4926 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4927 * struct clk_hw for the given clock specifier 4928 * @data: context pointer to be passed into @get callback 4929 */ 4930 struct of_clk_provider { 4931 struct list_head link; 4932 4933 struct device_node *node; 4934 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4935 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4936 void *data; 4937 }; 4938 4939 extern struct of_device_id __clk_of_table; 4940 static const struct of_device_id __clk_of_table_sentinel 4941 __used __section("__clk_of_table_end"); 4942 4943 static LIST_HEAD(of_clk_providers); 4944 static DEFINE_MUTEX(of_clk_mutex); 4945 4946 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4947 void *data) 4948 { 4949 return data; 4950 } 4951 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4952 4953 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4954 { 4955 return data; 4956 } 4957 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4958 4959 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4960 { 4961 struct clk_onecell_data *clk_data = data; 4962 unsigned int idx = clkspec->args[0]; 4963 4964 if (idx >= clk_data->clk_num) { 4965 pr_err("%s: invalid clock index %u\n", __func__, idx); 4966 return ERR_PTR(-EINVAL); 4967 } 4968 4969 return clk_data->clks[idx]; 4970 } 4971 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4972 4973 struct clk_hw * 4974 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4975 { 4976 struct clk_hw_onecell_data *hw_data = data; 4977 unsigned int idx = clkspec->args[0]; 4978 4979 if (idx >= hw_data->num) { 4980 pr_err("%s: invalid index %u\n", __func__, idx); 4981 return ERR_PTR(-EINVAL); 4982 } 4983 4984 return hw_data->hws[idx]; 4985 } 4986 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4987 4988 /** 4989 * of_clk_add_provider() - Register a clock provider for a node 4990 * @np: Device node pointer associated with clock provider 4991 * @clk_src_get: callback for decoding clock 4992 * @data: context pointer for @clk_src_get callback. 4993 * 4994 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4995 */ 4996 int of_clk_add_provider(struct device_node *np, 4997 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4998 void *data), 4999 void *data) 5000 { 5001 struct of_clk_provider *cp; 5002 int ret; 5003 5004 if (!np) 5005 return 0; 5006 5007 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 5008 if (!cp) 5009 return -ENOMEM; 5010 5011 cp->node = of_node_get(np); 5012 cp->data = data; 5013 cp->get = clk_src_get; 5014 5015 mutex_lock(&of_clk_mutex); 5016 list_add(&cp->link, &of_clk_providers); 5017 mutex_unlock(&of_clk_mutex); 5018 pr_debug("Added clock from %pOF\n", np); 5019 5020 clk_core_reparent_orphans(); 5021 5022 ret = of_clk_set_defaults(np, true); 5023 if (ret < 0) 5024 of_clk_del_provider(np); 5025 5026 fwnode_dev_initialized(&np->fwnode, true); 5027 5028 return ret; 5029 } 5030 EXPORT_SYMBOL_GPL(of_clk_add_provider); 5031 5032 /** 5033 * of_clk_add_hw_provider() - Register a clock provider for a node 5034 * @np: Device node pointer associated with clock provider 5035 * @get: callback for decoding clk_hw 5036 * @data: context pointer for @get callback. 5037 */ 5038 int of_clk_add_hw_provider(struct device_node *np, 5039 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 5040 void *data), 5041 void *data) 5042 { 5043 struct of_clk_provider *cp; 5044 int ret; 5045 5046 if (!np) 5047 return 0; 5048 5049 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 5050 if (!cp) 5051 return -ENOMEM; 5052 5053 cp->node = of_node_get(np); 5054 cp->data = data; 5055 cp->get_hw = get; 5056 5057 mutex_lock(&of_clk_mutex); 5058 list_add(&cp->link, &of_clk_providers); 5059 mutex_unlock(&of_clk_mutex); 5060 pr_debug("Added clk_hw provider from %pOF\n", np); 5061 5062 clk_core_reparent_orphans(); 5063 5064 ret = of_clk_set_defaults(np, true); 5065 if (ret < 0) 5066 of_clk_del_provider(np); 5067 5068 fwnode_dev_initialized(&np->fwnode, true); 5069 5070 return ret; 5071 } 5072 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 5073 5074 static void devm_of_clk_release_provider(struct device *dev, void *res) 5075 { 5076 of_clk_del_provider(*(struct device_node **)res); 5077 } 5078 5079 /* 5080 * We allow a child device to use its parent device as the clock provider node 5081 * for cases like MFD sub-devices where the child device driver wants to use 5082 * devm_*() APIs but not list the device in DT as a sub-node. 5083 */ 5084 static struct device_node *get_clk_provider_node(struct device *dev) 5085 { 5086 struct device_node *np, *parent_np; 5087 5088 np = dev->of_node; 5089 parent_np = dev->parent ? dev->parent->of_node : NULL; 5090 5091 if (!of_property_present(np, "#clock-cells")) 5092 if (of_property_present(parent_np, "#clock-cells")) 5093 np = parent_np; 5094 5095 return np; 5096 } 5097 5098 /** 5099 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 5100 * @dev: Device acting as the clock provider (used for DT node and lifetime) 5101 * @get: callback for decoding clk_hw 5102 * @data: context pointer for @get callback 5103 * 5104 * Registers clock provider for given device's node. If the device has no DT 5105 * node or if the device node lacks of clock provider information (#clock-cells) 5106 * then the parent device's node is scanned for this information. If parent node 5107 * has the #clock-cells then it is used in registration. Provider is 5108 * automatically released at device exit. 5109 * 5110 * Return: 0 on success or an errno on failure. 5111 */ 5112 int devm_of_clk_add_hw_provider(struct device *dev, 5113 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 5114 void *data), 5115 void *data) 5116 { 5117 struct device_node **ptr, *np; 5118 int ret; 5119 5120 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 5121 GFP_KERNEL); 5122 if (!ptr) 5123 return -ENOMEM; 5124 5125 np = get_clk_provider_node(dev); 5126 ret = of_clk_add_hw_provider(np, get, data); 5127 if (!ret) { 5128 *ptr = np; 5129 devres_add(dev, ptr); 5130 } else { 5131 devres_free(ptr); 5132 } 5133 5134 return ret; 5135 } 5136 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 5137 5138 /** 5139 * of_clk_del_provider() - Remove a previously registered clock provider 5140 * @np: Device node pointer associated with clock provider 5141 */ 5142 void of_clk_del_provider(struct device_node *np) 5143 { 5144 struct of_clk_provider *cp; 5145 5146 if (!np) 5147 return; 5148 5149 mutex_lock(&of_clk_mutex); 5150 list_for_each_entry(cp, &of_clk_providers, link) { 5151 if (cp->node == np) { 5152 list_del(&cp->link); 5153 fwnode_dev_initialized(&np->fwnode, false); 5154 of_node_put(cp->node); 5155 kfree(cp); 5156 break; 5157 } 5158 } 5159 mutex_unlock(&of_clk_mutex); 5160 } 5161 EXPORT_SYMBOL_GPL(of_clk_del_provider); 5162 5163 /** 5164 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 5165 * @np: device node to parse clock specifier from 5166 * @index: index of phandle to parse clock out of. If index < 0, @name is used 5167 * @name: clock name to find and parse. If name is NULL, the index is used 5168 * @out_args: Result of parsing the clock specifier 5169 * 5170 * Parses a device node's "clocks" and "clock-names" properties to find the 5171 * phandle and cells for the index or name that is desired. The resulting clock 5172 * specifier is placed into @out_args, or an errno is returned when there's a 5173 * parsing error. The @index argument is ignored if @name is non-NULL. 5174 * 5175 * Example: 5176 * 5177 * phandle1: clock-controller@1 { 5178 * #clock-cells = <2>; 5179 * } 5180 * 5181 * phandle2: clock-controller@2 { 5182 * #clock-cells = <1>; 5183 * } 5184 * 5185 * clock-consumer@3 { 5186 * clocks = <&phandle1 1 2 &phandle2 3>; 5187 * clock-names = "name1", "name2"; 5188 * } 5189 * 5190 * To get a device_node for `clock-controller@2' node you may call this 5191 * function a few different ways: 5192 * 5193 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 5194 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 5195 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 5196 * 5197 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 5198 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 5199 * the "clock-names" property of @np. 5200 */ 5201 static int of_parse_clkspec(const struct device_node *np, int index, 5202 const char *name, struct of_phandle_args *out_args) 5203 { 5204 int ret = -ENOENT; 5205 5206 /* Walk up the tree of devices looking for a clock property that matches */ 5207 while (np) { 5208 /* 5209 * For named clocks, first look up the name in the 5210 * "clock-names" property. If it cannot be found, then index 5211 * will be an error code and of_parse_phandle_with_args() will 5212 * return -EINVAL. 5213 */ 5214 if (name) 5215 index = of_property_match_string(np, "clock-names", name); 5216 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 5217 index, out_args); 5218 if (!ret) 5219 break; 5220 if (name && index >= 0) 5221 break; 5222 5223 /* 5224 * No matching clock found on this node. If the parent node 5225 * has a "clock-ranges" property, then we can try one of its 5226 * clocks. 5227 */ 5228 np = np->parent; 5229 if (np && !of_property_present(np, "clock-ranges")) 5230 break; 5231 index = 0; 5232 } 5233 5234 return ret; 5235 } 5236 5237 static struct clk_hw * 5238 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 5239 struct of_phandle_args *clkspec) 5240 { 5241 struct clk *clk; 5242 5243 if (provider->get_hw) 5244 return provider->get_hw(clkspec, provider->data); 5245 5246 clk = provider->get(clkspec, provider->data); 5247 if (IS_ERR(clk)) 5248 return ERR_CAST(clk); 5249 return __clk_get_hw(clk); 5250 } 5251 5252 static struct clk_hw * 5253 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 5254 { 5255 struct of_clk_provider *provider; 5256 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 5257 5258 if (!clkspec) 5259 return ERR_PTR(-EINVAL); 5260 5261 mutex_lock(&of_clk_mutex); 5262 list_for_each_entry(provider, &of_clk_providers, link) { 5263 if (provider->node == clkspec->np) { 5264 hw = __of_clk_get_hw_from_provider(provider, clkspec); 5265 if (!IS_ERR(hw)) 5266 break; 5267 } 5268 } 5269 mutex_unlock(&of_clk_mutex); 5270 5271 return hw; 5272 } 5273 5274 /** 5275 * of_clk_get_from_provider() - Lookup a clock from a clock provider 5276 * @clkspec: pointer to a clock specifier data structure 5277 * 5278 * This function looks up a struct clk from the registered list of clock 5279 * providers, an input is a clock specifier data structure as returned 5280 * from the of_parse_phandle_with_args() function call. 5281 */ 5282 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 5283 { 5284 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 5285 5286 return clk_hw_create_clk(NULL, hw, NULL, __func__); 5287 } 5288 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 5289 5290 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 5291 const char *con_id) 5292 { 5293 int ret; 5294 struct clk_hw *hw; 5295 struct of_phandle_args clkspec; 5296 5297 ret = of_parse_clkspec(np, index, con_id, &clkspec); 5298 if (ret) 5299 return ERR_PTR(ret); 5300 5301 hw = of_clk_get_hw_from_clkspec(&clkspec); 5302 of_node_put(clkspec.np); 5303 5304 return hw; 5305 } 5306 5307 static struct clk *__of_clk_get(struct device_node *np, 5308 int index, const char *dev_id, 5309 const char *con_id) 5310 { 5311 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 5312 5313 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 5314 } 5315 5316 struct clk *of_clk_get(struct device_node *np, int index) 5317 { 5318 return __of_clk_get(np, index, np->full_name, NULL); 5319 } 5320 EXPORT_SYMBOL(of_clk_get); 5321 5322 /** 5323 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 5324 * @np: pointer to clock consumer node 5325 * @name: name of consumer's clock input, or NULL for the first clock reference 5326 * 5327 * This function parses the clocks and clock-names properties, 5328 * and uses them to look up the struct clk from the registered list of clock 5329 * providers. 5330 */ 5331 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 5332 { 5333 if (!np) 5334 return ERR_PTR(-ENOENT); 5335 5336 return __of_clk_get(np, 0, np->full_name, name); 5337 } 5338 EXPORT_SYMBOL(of_clk_get_by_name); 5339 5340 /** 5341 * of_clk_get_parent_count() - Count the number of clocks a device node has 5342 * @np: device node to count 5343 * 5344 * Returns: The number of clocks that are possible parents of this node 5345 */ 5346 unsigned int of_clk_get_parent_count(const struct device_node *np) 5347 { 5348 int count; 5349 5350 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 5351 if (count < 0) 5352 return 0; 5353 5354 return count; 5355 } 5356 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 5357 5358 const char *of_clk_get_parent_name(const struct device_node *np, int index) 5359 { 5360 struct of_phandle_args clkspec; 5361 const char *clk_name; 5362 bool found = false; 5363 u32 pv; 5364 int rc; 5365 int count; 5366 struct clk *clk; 5367 5368 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 5369 &clkspec); 5370 if (rc) 5371 return NULL; 5372 5373 index = clkspec.args_count ? clkspec.args[0] : 0; 5374 count = 0; 5375 5376 /* if there is an indices property, use it to transfer the index 5377 * specified into an array offset for the clock-output-names property. 5378 */ 5379 of_property_for_each_u32(clkspec.np, "clock-indices", pv) { 5380 if (index == pv) { 5381 index = count; 5382 found = true; 5383 break; 5384 } 5385 count++; 5386 } 5387 /* We went off the end of 'clock-indices' without finding it */ 5388 if (of_property_present(clkspec.np, "clock-indices") && !found) 5389 return NULL; 5390 5391 if (of_property_read_string_index(clkspec.np, "clock-output-names", 5392 index, 5393 &clk_name) < 0) { 5394 /* 5395 * Best effort to get the name if the clock has been 5396 * registered with the framework. If the clock isn't 5397 * registered, we return the node name as the name of 5398 * the clock as long as #clock-cells = 0. 5399 */ 5400 clk = of_clk_get_from_provider(&clkspec); 5401 if (IS_ERR(clk)) { 5402 if (clkspec.args_count == 0) 5403 clk_name = clkspec.np->name; 5404 else 5405 clk_name = NULL; 5406 } else { 5407 clk_name = __clk_get_name(clk); 5408 clk_put(clk); 5409 } 5410 } 5411 5412 5413 of_node_put(clkspec.np); 5414 return clk_name; 5415 } 5416 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 5417 5418 /** 5419 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 5420 * number of parents 5421 * @np: Device node pointer associated with clock provider 5422 * @parents: pointer to char array that hold the parents' names 5423 * @size: size of the @parents array 5424 * 5425 * Return: number of parents for the clock node. 5426 */ 5427 int of_clk_parent_fill(struct device_node *np, const char **parents, 5428 unsigned int size) 5429 { 5430 unsigned int i = 0; 5431 5432 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 5433 i++; 5434 5435 return i; 5436 } 5437 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 5438 5439 struct clock_provider { 5440 void (*clk_init_cb)(struct device_node *); 5441 struct device_node *np; 5442 struct list_head node; 5443 }; 5444 5445 /* 5446 * This function looks for a parent clock. If there is one, then it 5447 * checks that the provider for this parent clock was initialized, in 5448 * this case the parent clock will be ready. 5449 */ 5450 static int parent_ready(struct device_node *np) 5451 { 5452 int i = 0; 5453 5454 while (true) { 5455 struct clk *clk = of_clk_get(np, i); 5456 5457 /* this parent is ready we can check the next one */ 5458 if (!IS_ERR(clk)) { 5459 clk_put(clk); 5460 i++; 5461 continue; 5462 } 5463 5464 /* at least one parent is not ready, we exit now */ 5465 if (PTR_ERR(clk) == -EPROBE_DEFER) 5466 return 0; 5467 5468 /* 5469 * Here we make assumption that the device tree is 5470 * written correctly. So an error means that there is 5471 * no more parent. As we didn't exit yet, then the 5472 * previous parent are ready. If there is no clock 5473 * parent, no need to wait for them, then we can 5474 * consider their absence as being ready 5475 */ 5476 return 1; 5477 } 5478 } 5479 5480 /** 5481 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5482 * @np: Device node pointer associated with clock provider 5483 * @index: clock index 5484 * @flags: pointer to top-level framework flags 5485 * 5486 * Detects if the clock-critical property exists and, if so, sets the 5487 * corresponding CLK_IS_CRITICAL flag. 5488 * 5489 * Do not use this function. It exists only for legacy Device Tree 5490 * bindings, such as the one-clock-per-node style that are outdated. 5491 * Those bindings typically put all clock data into .dts and the Linux 5492 * driver has no clock data, thus making it impossible to set this flag 5493 * correctly from the driver. Only those drivers may call 5494 * of_clk_detect_critical from their setup functions. 5495 * 5496 * Return: error code or zero on success 5497 */ 5498 int of_clk_detect_critical(struct device_node *np, int index, 5499 unsigned long *flags) 5500 { 5501 uint32_t idx; 5502 5503 if (!np || !flags) 5504 return -EINVAL; 5505 5506 of_property_for_each_u32(np, "clock-critical", idx) 5507 if (index == idx) 5508 *flags |= CLK_IS_CRITICAL; 5509 5510 return 0; 5511 } 5512 5513 /** 5514 * of_clk_init() - Scan and init clock providers from the DT 5515 * @matches: array of compatible values and init functions for providers. 5516 * 5517 * This function scans the device tree for matching clock providers 5518 * and calls their initialization functions. It also does it by trying 5519 * to follow the dependencies. 5520 */ 5521 void __init of_clk_init(const struct of_device_id *matches) 5522 { 5523 const struct of_device_id *match; 5524 struct device_node *np; 5525 struct clock_provider *clk_provider, *next; 5526 bool is_init_done; 5527 bool force = false; 5528 LIST_HEAD(clk_provider_list); 5529 5530 if (!matches) 5531 matches = &__clk_of_table; 5532 5533 /* First prepare the list of the clocks providers */ 5534 for_each_matching_node_and_match(np, matches, &match) { 5535 struct clock_provider *parent; 5536 5537 if (!of_device_is_available(np)) 5538 continue; 5539 5540 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5541 if (!parent) { 5542 list_for_each_entry_safe(clk_provider, next, 5543 &clk_provider_list, node) { 5544 list_del(&clk_provider->node); 5545 of_node_put(clk_provider->np); 5546 kfree(clk_provider); 5547 } 5548 of_node_put(np); 5549 return; 5550 } 5551 5552 parent->clk_init_cb = match->data; 5553 parent->np = of_node_get(np); 5554 list_add_tail(&parent->node, &clk_provider_list); 5555 } 5556 5557 while (!list_empty(&clk_provider_list)) { 5558 is_init_done = false; 5559 list_for_each_entry_safe(clk_provider, next, 5560 &clk_provider_list, node) { 5561 if (force || parent_ready(clk_provider->np)) { 5562 5563 /* Don't populate platform devices */ 5564 of_node_set_flag(clk_provider->np, 5565 OF_POPULATED); 5566 5567 clk_provider->clk_init_cb(clk_provider->np); 5568 of_clk_set_defaults(clk_provider->np, true); 5569 5570 list_del(&clk_provider->node); 5571 of_node_put(clk_provider->np); 5572 kfree(clk_provider); 5573 is_init_done = true; 5574 } 5575 } 5576 5577 /* 5578 * We didn't manage to initialize any of the 5579 * remaining providers during the last loop, so now we 5580 * initialize all the remaining ones unconditionally 5581 * in case the clock parent was not mandatory 5582 */ 5583 if (!is_init_done) 5584 force = true; 5585 } 5586 } 5587 #endif 5588