1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static const struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44 }; 45 46 /*** private data structures ***/ 47 48 struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54 }; 55 56 struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87 #ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90 #endif 91 struct kref ref; 92 }; 93 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/clk.h> 96 97 struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106 }; 107 108 /*** runtime pm ***/ 109 static int clk_pm_runtime_get(struct clk_core *core) 110 { 111 if (!core->rpm_enabled) 112 return 0; 113 114 return pm_runtime_resume_and_get(core->dev); 115 } 116 117 static void clk_pm_runtime_put(struct clk_core *core) 118 { 119 if (!core->rpm_enabled) 120 return; 121 122 pm_runtime_put_sync(core->dev); 123 } 124 125 /*** locking ***/ 126 static void clk_prepare_lock(void) 127 { 128 if (!mutex_trylock(&prepare_lock)) { 129 if (prepare_owner == current) { 130 prepare_refcnt++; 131 return; 132 } 133 mutex_lock(&prepare_lock); 134 } 135 WARN_ON_ONCE(prepare_owner != NULL); 136 WARN_ON_ONCE(prepare_refcnt != 0); 137 prepare_owner = current; 138 prepare_refcnt = 1; 139 } 140 141 static void clk_prepare_unlock(void) 142 { 143 WARN_ON_ONCE(prepare_owner != current); 144 WARN_ON_ONCE(prepare_refcnt == 0); 145 146 if (--prepare_refcnt) 147 return; 148 prepare_owner = NULL; 149 mutex_unlock(&prepare_lock); 150 } 151 152 static unsigned long clk_enable_lock(void) 153 __acquires(enable_lock) 154 { 155 unsigned long flags; 156 157 /* 158 * On UP systems, spin_trylock_irqsave() always returns true, even if 159 * we already hold the lock. So, in that case, we rely only on 160 * reference counting. 161 */ 162 if (!IS_ENABLED(CONFIG_SMP) || 163 !spin_trylock_irqsave(&enable_lock, flags)) { 164 if (enable_owner == current) { 165 enable_refcnt++; 166 __acquire(enable_lock); 167 if (!IS_ENABLED(CONFIG_SMP)) 168 local_save_flags(flags); 169 return flags; 170 } 171 spin_lock_irqsave(&enable_lock, flags); 172 } 173 WARN_ON_ONCE(enable_owner != NULL); 174 WARN_ON_ONCE(enable_refcnt != 0); 175 enable_owner = current; 176 enable_refcnt = 1; 177 return flags; 178 } 179 180 static void clk_enable_unlock(unsigned long flags) 181 __releases(enable_lock) 182 { 183 WARN_ON_ONCE(enable_owner != current); 184 WARN_ON_ONCE(enable_refcnt == 0); 185 186 if (--enable_refcnt) { 187 __release(enable_lock); 188 return; 189 } 190 enable_owner = NULL; 191 spin_unlock_irqrestore(&enable_lock, flags); 192 } 193 194 static bool clk_core_rate_is_protected(struct clk_core *core) 195 { 196 return core->protect_count; 197 } 198 199 static bool clk_core_is_prepared(struct clk_core *core) 200 { 201 bool ret = false; 202 203 /* 204 * .is_prepared is optional for clocks that can prepare 205 * fall back to software usage counter if it is missing 206 */ 207 if (!core->ops->is_prepared) 208 return core->prepare_count; 209 210 if (!clk_pm_runtime_get(core)) { 211 ret = core->ops->is_prepared(core->hw); 212 clk_pm_runtime_put(core); 213 } 214 215 return ret; 216 } 217 218 static bool clk_core_is_enabled(struct clk_core *core) 219 { 220 bool ret = false; 221 222 /* 223 * .is_enabled is only mandatory for clocks that gate 224 * fall back to software usage counter if .is_enabled is missing 225 */ 226 if (!core->ops->is_enabled) 227 return core->enable_count; 228 229 /* 230 * Check if clock controller's device is runtime active before 231 * calling .is_enabled callback. If not, assume that clock is 232 * disabled, because we might be called from atomic context, from 233 * which pm_runtime_get() is not allowed. 234 * This function is called mainly from clk_disable_unused_subtree, 235 * which ensures proper runtime pm activation of controller before 236 * taking enable spinlock, but the below check is needed if one tries 237 * to call it from other places. 238 */ 239 if (core->rpm_enabled) { 240 pm_runtime_get_noresume(core->dev); 241 if (!pm_runtime_active(core->dev)) { 242 ret = false; 243 goto done; 244 } 245 } 246 247 /* 248 * This could be called with the enable lock held, or from atomic 249 * context. If the parent isn't enabled already, we can't do 250 * anything here. We can also assume this clock isn't enabled. 251 */ 252 if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent) 253 if (!clk_core_is_enabled(core->parent)) { 254 ret = false; 255 goto done; 256 } 257 258 ret = core->ops->is_enabled(core->hw); 259 done: 260 if (core->rpm_enabled) 261 pm_runtime_put(core->dev); 262 263 return ret; 264 } 265 266 /*** helper functions ***/ 267 268 const char *__clk_get_name(const struct clk *clk) 269 { 270 return !clk ? NULL : clk->core->name; 271 } 272 EXPORT_SYMBOL_GPL(__clk_get_name); 273 274 const char *clk_hw_get_name(const struct clk_hw *hw) 275 { 276 return hw->core->name; 277 } 278 EXPORT_SYMBOL_GPL(clk_hw_get_name); 279 280 struct clk_hw *__clk_get_hw(struct clk *clk) 281 { 282 return !clk ? NULL : clk->core->hw; 283 } 284 EXPORT_SYMBOL_GPL(__clk_get_hw); 285 286 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 287 { 288 return hw->core->num_parents; 289 } 290 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 291 292 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 293 { 294 return hw->core->parent ? hw->core->parent->hw : NULL; 295 } 296 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 297 298 static struct clk_core *__clk_lookup_subtree(const char *name, 299 struct clk_core *core) 300 { 301 struct clk_core *child; 302 struct clk_core *ret; 303 304 if (!strcmp(core->name, name)) 305 return core; 306 307 hlist_for_each_entry(child, &core->children, child_node) { 308 ret = __clk_lookup_subtree(name, child); 309 if (ret) 310 return ret; 311 } 312 313 return NULL; 314 } 315 316 static struct clk_core *clk_core_lookup(const char *name) 317 { 318 struct clk_core *root_clk; 319 struct clk_core *ret; 320 321 if (!name) 322 return NULL; 323 324 /* search the 'proper' clk tree first */ 325 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 326 ret = __clk_lookup_subtree(name, root_clk); 327 if (ret) 328 return ret; 329 } 330 331 /* if not found, then search the orphan tree */ 332 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 333 ret = __clk_lookup_subtree(name, root_clk); 334 if (ret) 335 return ret; 336 } 337 338 return NULL; 339 } 340 341 #ifdef CONFIG_OF 342 static int of_parse_clkspec(const struct device_node *np, int index, 343 const char *name, struct of_phandle_args *out_args); 344 static struct clk_hw * 345 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 346 #else 347 static inline int of_parse_clkspec(const struct device_node *np, int index, 348 const char *name, 349 struct of_phandle_args *out_args) 350 { 351 return -ENOENT; 352 } 353 static inline struct clk_hw * 354 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 355 { 356 return ERR_PTR(-ENOENT); 357 } 358 #endif 359 360 /** 361 * clk_core_get - Find the clk_core parent of a clk 362 * @core: clk to find parent of 363 * @p_index: parent index to search for 364 * 365 * This is the preferred method for clk providers to find the parent of a 366 * clk when that parent is external to the clk controller. The parent_names 367 * array is indexed and treated as a local name matching a string in the device 368 * node's 'clock-names' property or as the 'con_id' matching the device's 369 * dev_name() in a clk_lookup. This allows clk providers to use their own 370 * namespace instead of looking for a globally unique parent string. 371 * 372 * For example the following DT snippet would allow a clock registered by the 373 * clock-controller@c001 that has a clk_init_data::parent_data array 374 * with 'xtal' in the 'name' member to find the clock provided by the 375 * clock-controller@f00abcd without needing to get the globally unique name of 376 * the xtal clk. 377 * 378 * parent: clock-controller@f00abcd { 379 * reg = <0xf00abcd 0xabcd>; 380 * #clock-cells = <0>; 381 * }; 382 * 383 * clock-controller@c001 { 384 * reg = <0xc001 0xf00d>; 385 * clocks = <&parent>; 386 * clock-names = "xtal"; 387 * #clock-cells = <1>; 388 * }; 389 * 390 * Returns: -ENOENT when the provider can't be found or the clk doesn't 391 * exist in the provider or the name can't be found in the DT node or 392 * in a clkdev lookup. NULL when the provider knows about the clk but it 393 * isn't provided on this system. 394 * A valid clk_core pointer when the clk can be found in the provider. 395 */ 396 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 397 { 398 const char *name = core->parents[p_index].fw_name; 399 int index = core->parents[p_index].index; 400 struct clk_hw *hw = ERR_PTR(-ENOENT); 401 struct device *dev = core->dev; 402 const char *dev_id = dev ? dev_name(dev) : NULL; 403 struct device_node *np = core->of_node; 404 struct of_phandle_args clkspec; 405 406 if (np && (name || index >= 0) && 407 !of_parse_clkspec(np, index, name, &clkspec)) { 408 hw = of_clk_get_hw_from_clkspec(&clkspec); 409 of_node_put(clkspec.np); 410 } else if (name) { 411 /* 412 * If the DT search above couldn't find the provider fallback to 413 * looking up via clkdev based clk_lookups. 414 */ 415 hw = clk_find_hw(dev_id, name); 416 } 417 418 if (IS_ERR(hw)) 419 return ERR_CAST(hw); 420 421 return hw->core; 422 } 423 424 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 425 { 426 struct clk_parent_map *entry = &core->parents[index]; 427 struct clk_core *parent; 428 429 if (entry->hw) { 430 parent = entry->hw->core; 431 } else { 432 parent = clk_core_get(core, index); 433 if (PTR_ERR(parent) == -ENOENT && entry->name) 434 parent = clk_core_lookup(entry->name); 435 } 436 437 /* 438 * We have a direct reference but it isn't registered yet? 439 * Orphan it and let clk_reparent() update the orphan status 440 * when the parent is registered. 441 */ 442 if (!parent) 443 parent = ERR_PTR(-EPROBE_DEFER); 444 445 /* Only cache it if it's not an error */ 446 if (!IS_ERR(parent)) 447 entry->core = parent; 448 } 449 450 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 451 u8 index) 452 { 453 if (!core || index >= core->num_parents || !core->parents) 454 return NULL; 455 456 if (!core->parents[index].core) 457 clk_core_fill_parent_index(core, index); 458 459 return core->parents[index].core; 460 } 461 462 struct clk_hw * 463 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 464 { 465 struct clk_core *parent; 466 467 parent = clk_core_get_parent_by_index(hw->core, index); 468 469 return !parent ? NULL : parent->hw; 470 } 471 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 472 473 unsigned int __clk_get_enable_count(struct clk *clk) 474 { 475 return !clk ? 0 : clk->core->enable_count; 476 } 477 478 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 479 { 480 if (!core) 481 return 0; 482 483 if (!core->num_parents || core->parent) 484 return core->rate; 485 486 /* 487 * Clk must have a parent because num_parents > 0 but the parent isn't 488 * known yet. Best to return 0 as the rate of this clk until we can 489 * properly recalc the rate based on the parent's rate. 490 */ 491 return 0; 492 } 493 494 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 495 { 496 return clk_core_get_rate_nolock(hw->core); 497 } 498 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 499 500 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 501 { 502 if (!core) 503 return 0; 504 505 return core->accuracy; 506 } 507 508 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 509 { 510 return hw->core->flags; 511 } 512 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 513 514 bool clk_hw_is_prepared(const struct clk_hw *hw) 515 { 516 return clk_core_is_prepared(hw->core); 517 } 518 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 519 520 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 521 { 522 return clk_core_rate_is_protected(hw->core); 523 } 524 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 525 526 bool clk_hw_is_enabled(const struct clk_hw *hw) 527 { 528 return clk_core_is_enabled(hw->core); 529 } 530 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 531 532 bool __clk_is_enabled(struct clk *clk) 533 { 534 if (!clk) 535 return false; 536 537 return clk_core_is_enabled(clk->core); 538 } 539 EXPORT_SYMBOL_GPL(__clk_is_enabled); 540 541 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 542 unsigned long best, unsigned long flags) 543 { 544 if (flags & CLK_MUX_ROUND_CLOSEST) 545 return abs(now - rate) < abs(best - rate); 546 547 return now <= rate && now > best; 548 } 549 550 static void clk_core_init_rate_req(struct clk_core * const core, 551 struct clk_rate_request *req, 552 unsigned long rate); 553 554 static int clk_core_round_rate_nolock(struct clk_core *core, 555 struct clk_rate_request *req); 556 557 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent) 558 { 559 struct clk_core *tmp; 560 unsigned int i; 561 562 /* Optimize for the case where the parent is already the parent. */ 563 if (core->parent == parent) 564 return true; 565 566 for (i = 0; i < core->num_parents; i++) { 567 tmp = clk_core_get_parent_by_index(core, i); 568 if (!tmp) 569 continue; 570 571 if (tmp == parent) 572 return true; 573 } 574 575 return false; 576 } 577 578 static void 579 clk_core_forward_rate_req(struct clk_core *core, 580 const struct clk_rate_request *old_req, 581 struct clk_core *parent, 582 struct clk_rate_request *req, 583 unsigned long parent_rate) 584 { 585 if (WARN_ON(!clk_core_has_parent(core, parent))) 586 return; 587 588 clk_core_init_rate_req(parent, req, parent_rate); 589 590 if (req->min_rate < old_req->min_rate) 591 req->min_rate = old_req->min_rate; 592 593 if (req->max_rate > old_req->max_rate) 594 req->max_rate = old_req->max_rate; 595 } 596 597 int clk_mux_determine_rate_flags(struct clk_hw *hw, 598 struct clk_rate_request *req, 599 unsigned long flags) 600 { 601 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 602 int i, num_parents, ret; 603 unsigned long best = 0; 604 605 /* if NO_REPARENT flag set, pass through to current parent */ 606 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 607 parent = core->parent; 608 if (core->flags & CLK_SET_RATE_PARENT) { 609 struct clk_rate_request parent_req; 610 611 if (!parent) { 612 req->rate = 0; 613 return 0; 614 } 615 616 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate); 617 618 trace_clk_rate_request_start(&parent_req); 619 620 ret = clk_core_round_rate_nolock(parent, &parent_req); 621 if (ret) 622 return ret; 623 624 trace_clk_rate_request_done(&parent_req); 625 626 best = parent_req.rate; 627 } else if (parent) { 628 best = clk_core_get_rate_nolock(parent); 629 } else { 630 best = clk_core_get_rate_nolock(core); 631 } 632 633 goto out; 634 } 635 636 /* find the parent that can provide the fastest rate <= rate */ 637 num_parents = core->num_parents; 638 for (i = 0; i < num_parents; i++) { 639 unsigned long parent_rate; 640 641 parent = clk_core_get_parent_by_index(core, i); 642 if (!parent) 643 continue; 644 645 if (core->flags & CLK_SET_RATE_PARENT) { 646 struct clk_rate_request parent_req; 647 648 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate); 649 650 trace_clk_rate_request_start(&parent_req); 651 652 ret = clk_core_round_rate_nolock(parent, &parent_req); 653 if (ret) 654 continue; 655 656 trace_clk_rate_request_done(&parent_req); 657 658 parent_rate = parent_req.rate; 659 } else { 660 parent_rate = clk_core_get_rate_nolock(parent); 661 } 662 663 if (mux_is_better_rate(req->rate, parent_rate, 664 best, flags)) { 665 best_parent = parent; 666 best = parent_rate; 667 } 668 } 669 670 if (!best_parent) 671 return -EINVAL; 672 673 out: 674 if (best_parent) 675 req->best_parent_hw = best_parent->hw; 676 req->best_parent_rate = best; 677 req->rate = best; 678 679 return 0; 680 } 681 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 682 683 struct clk *__clk_lookup(const char *name) 684 { 685 struct clk_core *core = clk_core_lookup(name); 686 687 return !core ? NULL : core->hw->clk; 688 } 689 690 static void clk_core_get_boundaries(struct clk_core *core, 691 unsigned long *min_rate, 692 unsigned long *max_rate) 693 { 694 struct clk *clk_user; 695 696 lockdep_assert_held(&prepare_lock); 697 698 *min_rate = core->min_rate; 699 *max_rate = core->max_rate; 700 701 hlist_for_each_entry(clk_user, &core->clks, clks_node) 702 *min_rate = max(*min_rate, clk_user->min_rate); 703 704 hlist_for_each_entry(clk_user, &core->clks, clks_node) 705 *max_rate = min(*max_rate, clk_user->max_rate); 706 } 707 708 /* 709 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk 710 * @hw: the hw clk we want to get the range from 711 * @min_rate: pointer to the variable that will hold the minimum 712 * @max_rate: pointer to the variable that will hold the maximum 713 * 714 * Fills the @min_rate and @max_rate variables with the minimum and 715 * maximum that clock can reach. 716 */ 717 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate, 718 unsigned long *max_rate) 719 { 720 clk_core_get_boundaries(hw->core, min_rate, max_rate); 721 } 722 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range); 723 724 static bool clk_core_check_boundaries(struct clk_core *core, 725 unsigned long min_rate, 726 unsigned long max_rate) 727 { 728 struct clk *user; 729 730 lockdep_assert_held(&prepare_lock); 731 732 if (min_rate > core->max_rate || max_rate < core->min_rate) 733 return false; 734 735 hlist_for_each_entry(user, &core->clks, clks_node) 736 if (min_rate > user->max_rate || max_rate < user->min_rate) 737 return false; 738 739 return true; 740 } 741 742 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 743 unsigned long max_rate) 744 { 745 hw->core->min_rate = min_rate; 746 hw->core->max_rate = max_rate; 747 } 748 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 749 750 /* 751 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 752 * @hw: mux type clk to determine rate on 753 * @req: rate request, also used to return preferred parent and frequencies 754 * 755 * Helper for finding best parent to provide a given frequency. This can be used 756 * directly as a determine_rate callback (e.g. for a mux), or from a more 757 * complex clock that may combine a mux with other operations. 758 * 759 * Returns: 0 on success, -EERROR value on error 760 */ 761 int __clk_mux_determine_rate(struct clk_hw *hw, 762 struct clk_rate_request *req) 763 { 764 return clk_mux_determine_rate_flags(hw, req, 0); 765 } 766 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 767 768 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 769 struct clk_rate_request *req) 770 { 771 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 772 } 773 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 774 775 /*** clk api ***/ 776 777 static void clk_core_rate_unprotect(struct clk_core *core) 778 { 779 lockdep_assert_held(&prepare_lock); 780 781 if (!core) 782 return; 783 784 if (WARN(core->protect_count == 0, 785 "%s already unprotected\n", core->name)) 786 return; 787 788 if (--core->protect_count > 0) 789 return; 790 791 clk_core_rate_unprotect(core->parent); 792 } 793 794 static int clk_core_rate_nuke_protect(struct clk_core *core) 795 { 796 int ret; 797 798 lockdep_assert_held(&prepare_lock); 799 800 if (!core) 801 return -EINVAL; 802 803 if (core->protect_count == 0) 804 return 0; 805 806 ret = core->protect_count; 807 core->protect_count = 1; 808 clk_core_rate_unprotect(core); 809 810 return ret; 811 } 812 813 /** 814 * clk_rate_exclusive_put - release exclusivity over clock rate control 815 * @clk: the clk over which the exclusivity is released 816 * 817 * clk_rate_exclusive_put() completes a critical section during which a clock 818 * consumer cannot tolerate any other consumer making any operation on the 819 * clock which could result in a rate change or rate glitch. Exclusive clocks 820 * cannot have their rate changed, either directly or indirectly due to changes 821 * further up the parent chain of clocks. As a result, clocks up parent chain 822 * also get under exclusive control of the calling consumer. 823 * 824 * If exlusivity is claimed more than once on clock, even by the same consumer, 825 * the rate effectively gets locked as exclusivity can't be preempted. 826 * 827 * Calls to clk_rate_exclusive_put() must be balanced with calls to 828 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 829 * error status. 830 */ 831 void clk_rate_exclusive_put(struct clk *clk) 832 { 833 if (!clk) 834 return; 835 836 clk_prepare_lock(); 837 838 /* 839 * if there is something wrong with this consumer protect count, stop 840 * here before messing with the provider 841 */ 842 if (WARN_ON(clk->exclusive_count <= 0)) 843 goto out; 844 845 clk_core_rate_unprotect(clk->core); 846 clk->exclusive_count--; 847 out: 848 clk_prepare_unlock(); 849 } 850 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 851 852 static void clk_core_rate_protect(struct clk_core *core) 853 { 854 lockdep_assert_held(&prepare_lock); 855 856 if (!core) 857 return; 858 859 if (core->protect_count == 0) 860 clk_core_rate_protect(core->parent); 861 862 core->protect_count++; 863 } 864 865 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 866 { 867 lockdep_assert_held(&prepare_lock); 868 869 if (!core) 870 return; 871 872 if (count == 0) 873 return; 874 875 clk_core_rate_protect(core); 876 core->protect_count = count; 877 } 878 879 /** 880 * clk_rate_exclusive_get - get exclusivity over the clk rate control 881 * @clk: the clk over which the exclusity of rate control is requested 882 * 883 * clk_rate_exclusive_get() begins a critical section during which a clock 884 * consumer cannot tolerate any other consumer making any operation on the 885 * clock which could result in a rate change or rate glitch. Exclusive clocks 886 * cannot have their rate changed, either directly or indirectly due to changes 887 * further up the parent chain of clocks. As a result, clocks up parent chain 888 * also get under exclusive control of the calling consumer. 889 * 890 * If exlusivity is claimed more than once on clock, even by the same consumer, 891 * the rate effectively gets locked as exclusivity can't be preempted. 892 * 893 * Calls to clk_rate_exclusive_get() should be balanced with calls to 894 * clk_rate_exclusive_put(). Calls to this function may sleep. 895 * Returns 0 on success, -EERROR otherwise 896 */ 897 int clk_rate_exclusive_get(struct clk *clk) 898 { 899 if (!clk) 900 return 0; 901 902 clk_prepare_lock(); 903 clk_core_rate_protect(clk->core); 904 clk->exclusive_count++; 905 clk_prepare_unlock(); 906 907 return 0; 908 } 909 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 910 911 static void clk_core_unprepare(struct clk_core *core) 912 { 913 lockdep_assert_held(&prepare_lock); 914 915 if (!core) 916 return; 917 918 if (WARN(core->prepare_count == 0, 919 "%s already unprepared\n", core->name)) 920 return; 921 922 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 923 "Unpreparing critical %s\n", core->name)) 924 return; 925 926 if (core->flags & CLK_SET_RATE_GATE) 927 clk_core_rate_unprotect(core); 928 929 if (--core->prepare_count > 0) 930 return; 931 932 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 933 934 trace_clk_unprepare(core); 935 936 if (core->ops->unprepare) 937 core->ops->unprepare(core->hw); 938 939 trace_clk_unprepare_complete(core); 940 clk_core_unprepare(core->parent); 941 clk_pm_runtime_put(core); 942 } 943 944 static void clk_core_unprepare_lock(struct clk_core *core) 945 { 946 clk_prepare_lock(); 947 clk_core_unprepare(core); 948 clk_prepare_unlock(); 949 } 950 951 /** 952 * clk_unprepare - undo preparation of a clock source 953 * @clk: the clk being unprepared 954 * 955 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 956 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 957 * if the operation may sleep. One example is a clk which is accessed over 958 * I2c. In the complex case a clk gate operation may require a fast and a slow 959 * part. It is this reason that clk_unprepare and clk_disable are not mutually 960 * exclusive. In fact clk_disable must be called before clk_unprepare. 961 */ 962 void clk_unprepare(struct clk *clk) 963 { 964 if (IS_ERR_OR_NULL(clk)) 965 return; 966 967 clk_core_unprepare_lock(clk->core); 968 } 969 EXPORT_SYMBOL_GPL(clk_unprepare); 970 971 static int clk_core_prepare(struct clk_core *core) 972 { 973 int ret = 0; 974 975 lockdep_assert_held(&prepare_lock); 976 977 if (!core) 978 return 0; 979 980 if (core->prepare_count == 0) { 981 ret = clk_pm_runtime_get(core); 982 if (ret) 983 return ret; 984 985 ret = clk_core_prepare(core->parent); 986 if (ret) 987 goto runtime_put; 988 989 trace_clk_prepare(core); 990 991 if (core->ops->prepare) 992 ret = core->ops->prepare(core->hw); 993 994 trace_clk_prepare_complete(core); 995 996 if (ret) 997 goto unprepare; 998 } 999 1000 core->prepare_count++; 1001 1002 /* 1003 * CLK_SET_RATE_GATE is a special case of clock protection 1004 * Instead of a consumer claiming exclusive rate control, it is 1005 * actually the provider which prevents any consumer from making any 1006 * operation which could result in a rate change or rate glitch while 1007 * the clock is prepared. 1008 */ 1009 if (core->flags & CLK_SET_RATE_GATE) 1010 clk_core_rate_protect(core); 1011 1012 return 0; 1013 unprepare: 1014 clk_core_unprepare(core->parent); 1015 runtime_put: 1016 clk_pm_runtime_put(core); 1017 return ret; 1018 } 1019 1020 static int clk_core_prepare_lock(struct clk_core *core) 1021 { 1022 int ret; 1023 1024 clk_prepare_lock(); 1025 ret = clk_core_prepare(core); 1026 clk_prepare_unlock(); 1027 1028 return ret; 1029 } 1030 1031 /** 1032 * clk_prepare - prepare a clock source 1033 * @clk: the clk being prepared 1034 * 1035 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 1036 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 1037 * operation may sleep. One example is a clk which is accessed over I2c. In 1038 * the complex case a clk ungate operation may require a fast and a slow part. 1039 * It is this reason that clk_prepare and clk_enable are not mutually 1040 * exclusive. In fact clk_prepare must be called before clk_enable. 1041 * Returns 0 on success, -EERROR otherwise. 1042 */ 1043 int clk_prepare(struct clk *clk) 1044 { 1045 if (!clk) 1046 return 0; 1047 1048 return clk_core_prepare_lock(clk->core); 1049 } 1050 EXPORT_SYMBOL_GPL(clk_prepare); 1051 1052 static void clk_core_disable(struct clk_core *core) 1053 { 1054 lockdep_assert_held(&enable_lock); 1055 1056 if (!core) 1057 return; 1058 1059 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 1060 return; 1061 1062 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 1063 "Disabling critical %s\n", core->name)) 1064 return; 1065 1066 if (--core->enable_count > 0) 1067 return; 1068 1069 trace_clk_disable(core); 1070 1071 if (core->ops->disable) 1072 core->ops->disable(core->hw); 1073 1074 trace_clk_disable_complete(core); 1075 1076 clk_core_disable(core->parent); 1077 } 1078 1079 static void clk_core_disable_lock(struct clk_core *core) 1080 { 1081 unsigned long flags; 1082 1083 flags = clk_enable_lock(); 1084 clk_core_disable(core); 1085 clk_enable_unlock(flags); 1086 } 1087 1088 /** 1089 * clk_disable - gate a clock 1090 * @clk: the clk being gated 1091 * 1092 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 1093 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 1094 * clk if the operation is fast and will never sleep. One example is a 1095 * SoC-internal clk which is controlled via simple register writes. In the 1096 * complex case a clk gate operation may require a fast and a slow part. It is 1097 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 1098 * In fact clk_disable must be called before clk_unprepare. 1099 */ 1100 void clk_disable(struct clk *clk) 1101 { 1102 if (IS_ERR_OR_NULL(clk)) 1103 return; 1104 1105 clk_core_disable_lock(clk->core); 1106 } 1107 EXPORT_SYMBOL_GPL(clk_disable); 1108 1109 static int clk_core_enable(struct clk_core *core) 1110 { 1111 int ret = 0; 1112 1113 lockdep_assert_held(&enable_lock); 1114 1115 if (!core) 1116 return 0; 1117 1118 if (WARN(core->prepare_count == 0, 1119 "Enabling unprepared %s\n", core->name)) 1120 return -ESHUTDOWN; 1121 1122 if (core->enable_count == 0) { 1123 ret = clk_core_enable(core->parent); 1124 1125 if (ret) 1126 return ret; 1127 1128 trace_clk_enable(core); 1129 1130 if (core->ops->enable) 1131 ret = core->ops->enable(core->hw); 1132 1133 trace_clk_enable_complete(core); 1134 1135 if (ret) { 1136 clk_core_disable(core->parent); 1137 return ret; 1138 } 1139 } 1140 1141 core->enable_count++; 1142 return 0; 1143 } 1144 1145 static int clk_core_enable_lock(struct clk_core *core) 1146 { 1147 unsigned long flags; 1148 int ret; 1149 1150 flags = clk_enable_lock(); 1151 ret = clk_core_enable(core); 1152 clk_enable_unlock(flags); 1153 1154 return ret; 1155 } 1156 1157 /** 1158 * clk_gate_restore_context - restore context for poweroff 1159 * @hw: the clk_hw pointer of clock whose state is to be restored 1160 * 1161 * The clock gate restore context function enables or disables 1162 * the gate clocks based on the enable_count. This is done in cases 1163 * where the clock context is lost and based on the enable_count 1164 * the clock either needs to be enabled/disabled. This 1165 * helps restore the state of gate clocks. 1166 */ 1167 void clk_gate_restore_context(struct clk_hw *hw) 1168 { 1169 struct clk_core *core = hw->core; 1170 1171 if (core->enable_count) 1172 core->ops->enable(hw); 1173 else 1174 core->ops->disable(hw); 1175 } 1176 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1177 1178 static int clk_core_save_context(struct clk_core *core) 1179 { 1180 struct clk_core *child; 1181 int ret = 0; 1182 1183 hlist_for_each_entry(child, &core->children, child_node) { 1184 ret = clk_core_save_context(child); 1185 if (ret < 0) 1186 return ret; 1187 } 1188 1189 if (core->ops && core->ops->save_context) 1190 ret = core->ops->save_context(core->hw); 1191 1192 return ret; 1193 } 1194 1195 static void clk_core_restore_context(struct clk_core *core) 1196 { 1197 struct clk_core *child; 1198 1199 if (core->ops && core->ops->restore_context) 1200 core->ops->restore_context(core->hw); 1201 1202 hlist_for_each_entry(child, &core->children, child_node) 1203 clk_core_restore_context(child); 1204 } 1205 1206 /** 1207 * clk_save_context - save clock context for poweroff 1208 * 1209 * Saves the context of the clock register for powerstates in which the 1210 * contents of the registers will be lost. Occurs deep within the suspend 1211 * code. Returns 0 on success. 1212 */ 1213 int clk_save_context(void) 1214 { 1215 struct clk_core *clk; 1216 int ret; 1217 1218 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1219 ret = clk_core_save_context(clk); 1220 if (ret < 0) 1221 return ret; 1222 } 1223 1224 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1225 ret = clk_core_save_context(clk); 1226 if (ret < 0) 1227 return ret; 1228 } 1229 1230 return 0; 1231 } 1232 EXPORT_SYMBOL_GPL(clk_save_context); 1233 1234 /** 1235 * clk_restore_context - restore clock context after poweroff 1236 * 1237 * Restore the saved clock context upon resume. 1238 * 1239 */ 1240 void clk_restore_context(void) 1241 { 1242 struct clk_core *core; 1243 1244 hlist_for_each_entry(core, &clk_root_list, child_node) 1245 clk_core_restore_context(core); 1246 1247 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1248 clk_core_restore_context(core); 1249 } 1250 EXPORT_SYMBOL_GPL(clk_restore_context); 1251 1252 /** 1253 * clk_enable - ungate a clock 1254 * @clk: the clk being ungated 1255 * 1256 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1257 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1258 * if the operation will never sleep. One example is a SoC-internal clk which 1259 * is controlled via simple register writes. In the complex case a clk ungate 1260 * operation may require a fast and a slow part. It is this reason that 1261 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1262 * must be called before clk_enable. Returns 0 on success, -EERROR 1263 * otherwise. 1264 */ 1265 int clk_enable(struct clk *clk) 1266 { 1267 if (!clk) 1268 return 0; 1269 1270 return clk_core_enable_lock(clk->core); 1271 } 1272 EXPORT_SYMBOL_GPL(clk_enable); 1273 1274 /** 1275 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it. 1276 * @clk: clock source 1277 * 1278 * Returns true if clk_prepare() implicitly enables the clock, effectively 1279 * making clk_enable()/clk_disable() no-ops, false otherwise. 1280 * 1281 * This is of interest mainly to power management code where actually 1282 * disabling the clock also requires unpreparing it to have any material 1283 * effect. 1284 * 1285 * Regardless of the value returned here, the caller must always invoke 1286 * clk_enable() or clk_prepare_enable() and counterparts for usage counts 1287 * to be right. 1288 */ 1289 bool clk_is_enabled_when_prepared(struct clk *clk) 1290 { 1291 return clk && !(clk->core->ops->enable && clk->core->ops->disable); 1292 } 1293 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared); 1294 1295 static int clk_core_prepare_enable(struct clk_core *core) 1296 { 1297 int ret; 1298 1299 ret = clk_core_prepare_lock(core); 1300 if (ret) 1301 return ret; 1302 1303 ret = clk_core_enable_lock(core); 1304 if (ret) 1305 clk_core_unprepare_lock(core); 1306 1307 return ret; 1308 } 1309 1310 static void clk_core_disable_unprepare(struct clk_core *core) 1311 { 1312 clk_core_disable_lock(core); 1313 clk_core_unprepare_lock(core); 1314 } 1315 1316 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1317 { 1318 struct clk_core *child; 1319 1320 lockdep_assert_held(&prepare_lock); 1321 1322 hlist_for_each_entry(child, &core->children, child_node) 1323 clk_unprepare_unused_subtree(child); 1324 1325 if (core->prepare_count) 1326 return; 1327 1328 if (core->flags & CLK_IGNORE_UNUSED) 1329 return; 1330 1331 if (clk_pm_runtime_get(core)) 1332 return; 1333 1334 if (clk_core_is_prepared(core)) { 1335 trace_clk_unprepare(core); 1336 if (core->ops->unprepare_unused) 1337 core->ops->unprepare_unused(core->hw); 1338 else if (core->ops->unprepare) 1339 core->ops->unprepare(core->hw); 1340 trace_clk_unprepare_complete(core); 1341 } 1342 1343 clk_pm_runtime_put(core); 1344 } 1345 1346 static void __init clk_disable_unused_subtree(struct clk_core *core) 1347 { 1348 struct clk_core *child; 1349 unsigned long flags; 1350 1351 lockdep_assert_held(&prepare_lock); 1352 1353 hlist_for_each_entry(child, &core->children, child_node) 1354 clk_disable_unused_subtree(child); 1355 1356 if (core->flags & CLK_OPS_PARENT_ENABLE) 1357 clk_core_prepare_enable(core->parent); 1358 1359 if (clk_pm_runtime_get(core)) 1360 goto unprepare_out; 1361 1362 flags = clk_enable_lock(); 1363 1364 if (core->enable_count) 1365 goto unlock_out; 1366 1367 if (core->flags & CLK_IGNORE_UNUSED) 1368 goto unlock_out; 1369 1370 /* 1371 * some gate clocks have special needs during the disable-unused 1372 * sequence. call .disable_unused if available, otherwise fall 1373 * back to .disable 1374 */ 1375 if (clk_core_is_enabled(core)) { 1376 trace_clk_disable(core); 1377 if (core->ops->disable_unused) 1378 core->ops->disable_unused(core->hw); 1379 else if (core->ops->disable) 1380 core->ops->disable(core->hw); 1381 trace_clk_disable_complete(core); 1382 } 1383 1384 unlock_out: 1385 clk_enable_unlock(flags); 1386 clk_pm_runtime_put(core); 1387 unprepare_out: 1388 if (core->flags & CLK_OPS_PARENT_ENABLE) 1389 clk_core_disable_unprepare(core->parent); 1390 } 1391 1392 static bool clk_ignore_unused __initdata; 1393 static int __init clk_ignore_unused_setup(char *__unused) 1394 { 1395 clk_ignore_unused = true; 1396 return 1; 1397 } 1398 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1399 1400 static int __init clk_disable_unused(void) 1401 { 1402 struct clk_core *core; 1403 1404 if (clk_ignore_unused) { 1405 pr_warn("clk: Not disabling unused clocks\n"); 1406 return 0; 1407 } 1408 1409 clk_prepare_lock(); 1410 1411 hlist_for_each_entry(core, &clk_root_list, child_node) 1412 clk_disable_unused_subtree(core); 1413 1414 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1415 clk_disable_unused_subtree(core); 1416 1417 hlist_for_each_entry(core, &clk_root_list, child_node) 1418 clk_unprepare_unused_subtree(core); 1419 1420 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1421 clk_unprepare_unused_subtree(core); 1422 1423 clk_prepare_unlock(); 1424 1425 return 0; 1426 } 1427 late_initcall_sync(clk_disable_unused); 1428 1429 static int clk_core_determine_round_nolock(struct clk_core *core, 1430 struct clk_rate_request *req) 1431 { 1432 long rate; 1433 1434 lockdep_assert_held(&prepare_lock); 1435 1436 if (!core) 1437 return 0; 1438 1439 /* 1440 * Some clock providers hand-craft their clk_rate_requests and 1441 * might not fill min_rate and max_rate. 1442 * 1443 * If it's the case, clamping the rate is equivalent to setting 1444 * the rate to 0 which is bad. Skip the clamping but complain so 1445 * that it gets fixed, hopefully. 1446 */ 1447 if (!req->min_rate && !req->max_rate) 1448 pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n", 1449 __func__, core->name); 1450 else 1451 req->rate = clamp(req->rate, req->min_rate, req->max_rate); 1452 1453 /* 1454 * At this point, core protection will be disabled 1455 * - if the provider is not protected at all 1456 * - if the calling consumer is the only one which has exclusivity 1457 * over the provider 1458 */ 1459 if (clk_core_rate_is_protected(core)) { 1460 req->rate = core->rate; 1461 } else if (core->ops->determine_rate) { 1462 return core->ops->determine_rate(core->hw, req); 1463 } else if (core->ops->round_rate) { 1464 rate = core->ops->round_rate(core->hw, req->rate, 1465 &req->best_parent_rate); 1466 if (rate < 0) 1467 return rate; 1468 1469 req->rate = rate; 1470 } else { 1471 return -EINVAL; 1472 } 1473 1474 return 0; 1475 } 1476 1477 static void clk_core_init_rate_req(struct clk_core * const core, 1478 struct clk_rate_request *req, 1479 unsigned long rate) 1480 { 1481 struct clk_core *parent; 1482 1483 if (WARN_ON(!req)) 1484 return; 1485 1486 memset(req, 0, sizeof(*req)); 1487 req->max_rate = ULONG_MAX; 1488 1489 if (!core) 1490 return; 1491 1492 req->core = core; 1493 req->rate = rate; 1494 clk_core_get_boundaries(core, &req->min_rate, &req->max_rate); 1495 1496 parent = core->parent; 1497 if (parent) { 1498 req->best_parent_hw = parent->hw; 1499 req->best_parent_rate = parent->rate; 1500 } else { 1501 req->best_parent_hw = NULL; 1502 req->best_parent_rate = 0; 1503 } 1504 } 1505 1506 /** 1507 * clk_hw_init_rate_request - Initializes a clk_rate_request 1508 * @hw: the clk for which we want to submit a rate request 1509 * @req: the clk_rate_request structure we want to initialise 1510 * @rate: the rate which is to be requested 1511 * 1512 * Initializes a clk_rate_request structure to submit to 1513 * __clk_determine_rate() or similar functions. 1514 */ 1515 void clk_hw_init_rate_request(const struct clk_hw *hw, 1516 struct clk_rate_request *req, 1517 unsigned long rate) 1518 { 1519 if (WARN_ON(!hw || !req)) 1520 return; 1521 1522 clk_core_init_rate_req(hw->core, req, rate); 1523 } 1524 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request); 1525 1526 /** 1527 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent 1528 * @hw: the original clock that got the rate request 1529 * @old_req: the original clk_rate_request structure we want to forward 1530 * @parent: the clk we want to forward @old_req to 1531 * @req: the clk_rate_request structure we want to initialise 1532 * @parent_rate: The rate which is to be requested to @parent 1533 * 1534 * Initializes a clk_rate_request structure to submit to a clock parent 1535 * in __clk_determine_rate() or similar functions. 1536 */ 1537 void clk_hw_forward_rate_request(const struct clk_hw *hw, 1538 const struct clk_rate_request *old_req, 1539 const struct clk_hw *parent, 1540 struct clk_rate_request *req, 1541 unsigned long parent_rate) 1542 { 1543 if (WARN_ON(!hw || !old_req || !parent || !req)) 1544 return; 1545 1546 clk_core_forward_rate_req(hw->core, old_req, 1547 parent->core, req, 1548 parent_rate); 1549 } 1550 1551 static bool clk_core_can_round(struct clk_core * const core) 1552 { 1553 return core->ops->determine_rate || core->ops->round_rate; 1554 } 1555 1556 static int clk_core_round_rate_nolock(struct clk_core *core, 1557 struct clk_rate_request *req) 1558 { 1559 int ret; 1560 1561 lockdep_assert_held(&prepare_lock); 1562 1563 if (!core) { 1564 req->rate = 0; 1565 return 0; 1566 } 1567 1568 if (clk_core_can_round(core)) 1569 return clk_core_determine_round_nolock(core, req); 1570 1571 if (core->flags & CLK_SET_RATE_PARENT) { 1572 struct clk_rate_request parent_req; 1573 1574 clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate); 1575 1576 trace_clk_rate_request_start(&parent_req); 1577 1578 ret = clk_core_round_rate_nolock(core->parent, &parent_req); 1579 if (ret) 1580 return ret; 1581 1582 trace_clk_rate_request_done(&parent_req); 1583 1584 req->best_parent_rate = parent_req.rate; 1585 req->rate = parent_req.rate; 1586 1587 return 0; 1588 } 1589 1590 req->rate = core->rate; 1591 return 0; 1592 } 1593 1594 /** 1595 * __clk_determine_rate - get the closest rate actually supported by a clock 1596 * @hw: determine the rate of this clock 1597 * @req: target rate request 1598 * 1599 * Useful for clk_ops such as .set_rate and .determine_rate. 1600 */ 1601 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1602 { 1603 if (!hw) { 1604 req->rate = 0; 1605 return 0; 1606 } 1607 1608 return clk_core_round_rate_nolock(hw->core, req); 1609 } 1610 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1611 1612 /** 1613 * clk_hw_round_rate() - round the given rate for a hw clk 1614 * @hw: the hw clk for which we are rounding a rate 1615 * @rate: the rate which is to be rounded 1616 * 1617 * Takes in a rate as input and rounds it to a rate that the clk can actually 1618 * use. 1619 * 1620 * Context: prepare_lock must be held. 1621 * For clk providers to call from within clk_ops such as .round_rate, 1622 * .determine_rate. 1623 * 1624 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1625 * else returns the parent rate. 1626 */ 1627 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1628 { 1629 int ret; 1630 struct clk_rate_request req; 1631 1632 clk_core_init_rate_req(hw->core, &req, rate); 1633 1634 trace_clk_rate_request_start(&req); 1635 1636 ret = clk_core_round_rate_nolock(hw->core, &req); 1637 if (ret) 1638 return 0; 1639 1640 trace_clk_rate_request_done(&req); 1641 1642 return req.rate; 1643 } 1644 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1645 1646 /** 1647 * clk_round_rate - round the given rate for a clk 1648 * @clk: the clk for which we are rounding a rate 1649 * @rate: the rate which is to be rounded 1650 * 1651 * Takes in a rate as input and rounds it to a rate that the clk can actually 1652 * use which is then returned. If clk doesn't support round_rate operation 1653 * then the parent rate is returned. 1654 */ 1655 long clk_round_rate(struct clk *clk, unsigned long rate) 1656 { 1657 struct clk_rate_request req; 1658 int ret; 1659 1660 if (!clk) 1661 return 0; 1662 1663 clk_prepare_lock(); 1664 1665 if (clk->exclusive_count) 1666 clk_core_rate_unprotect(clk->core); 1667 1668 clk_core_init_rate_req(clk->core, &req, rate); 1669 1670 trace_clk_rate_request_start(&req); 1671 1672 ret = clk_core_round_rate_nolock(clk->core, &req); 1673 1674 trace_clk_rate_request_done(&req); 1675 1676 if (clk->exclusive_count) 1677 clk_core_rate_protect(clk->core); 1678 1679 clk_prepare_unlock(); 1680 1681 if (ret) 1682 return ret; 1683 1684 return req.rate; 1685 } 1686 EXPORT_SYMBOL_GPL(clk_round_rate); 1687 1688 /** 1689 * __clk_notify - call clk notifier chain 1690 * @core: clk that is changing rate 1691 * @msg: clk notifier type (see include/linux/clk.h) 1692 * @old_rate: old clk rate 1693 * @new_rate: new clk rate 1694 * 1695 * Triggers a notifier call chain on the clk rate-change notification 1696 * for 'clk'. Passes a pointer to the struct clk and the previous 1697 * and current rates to the notifier callback. Intended to be called by 1698 * internal clock code only. Returns NOTIFY_DONE from the last driver 1699 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1700 * a driver returns that. 1701 */ 1702 static int __clk_notify(struct clk_core *core, unsigned long msg, 1703 unsigned long old_rate, unsigned long new_rate) 1704 { 1705 struct clk_notifier *cn; 1706 struct clk_notifier_data cnd; 1707 int ret = NOTIFY_DONE; 1708 1709 cnd.old_rate = old_rate; 1710 cnd.new_rate = new_rate; 1711 1712 list_for_each_entry(cn, &clk_notifier_list, node) { 1713 if (cn->clk->core == core) { 1714 cnd.clk = cn->clk; 1715 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1716 &cnd); 1717 if (ret & NOTIFY_STOP_MASK) 1718 return ret; 1719 } 1720 } 1721 1722 return ret; 1723 } 1724 1725 /** 1726 * __clk_recalc_accuracies 1727 * @core: first clk in the subtree 1728 * 1729 * Walks the subtree of clks starting with clk and recalculates accuracies as 1730 * it goes. Note that if a clk does not implement the .recalc_accuracy 1731 * callback then it is assumed that the clock will take on the accuracy of its 1732 * parent. 1733 */ 1734 static void __clk_recalc_accuracies(struct clk_core *core) 1735 { 1736 unsigned long parent_accuracy = 0; 1737 struct clk_core *child; 1738 1739 lockdep_assert_held(&prepare_lock); 1740 1741 if (core->parent) 1742 parent_accuracy = core->parent->accuracy; 1743 1744 if (core->ops->recalc_accuracy) 1745 core->accuracy = core->ops->recalc_accuracy(core->hw, 1746 parent_accuracy); 1747 else 1748 core->accuracy = parent_accuracy; 1749 1750 hlist_for_each_entry(child, &core->children, child_node) 1751 __clk_recalc_accuracies(child); 1752 } 1753 1754 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1755 { 1756 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1757 __clk_recalc_accuracies(core); 1758 1759 return clk_core_get_accuracy_no_lock(core); 1760 } 1761 1762 /** 1763 * clk_get_accuracy - return the accuracy of clk 1764 * @clk: the clk whose accuracy is being returned 1765 * 1766 * Simply returns the cached accuracy of the clk, unless 1767 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1768 * issued. 1769 * If clk is NULL then returns 0. 1770 */ 1771 long clk_get_accuracy(struct clk *clk) 1772 { 1773 long accuracy; 1774 1775 if (!clk) 1776 return 0; 1777 1778 clk_prepare_lock(); 1779 accuracy = clk_core_get_accuracy_recalc(clk->core); 1780 clk_prepare_unlock(); 1781 1782 return accuracy; 1783 } 1784 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1785 1786 static unsigned long clk_recalc(struct clk_core *core, 1787 unsigned long parent_rate) 1788 { 1789 unsigned long rate = parent_rate; 1790 1791 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1792 rate = core->ops->recalc_rate(core->hw, parent_rate); 1793 clk_pm_runtime_put(core); 1794 } 1795 return rate; 1796 } 1797 1798 /** 1799 * __clk_recalc_rates 1800 * @core: first clk in the subtree 1801 * @update_req: Whether req_rate should be updated with the new rate 1802 * @msg: notification type (see include/linux/clk.h) 1803 * 1804 * Walks the subtree of clks starting with clk and recalculates rates as it 1805 * goes. Note that if a clk does not implement the .recalc_rate callback then 1806 * it is assumed that the clock will take on the rate of its parent. 1807 * 1808 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1809 * if necessary. 1810 */ 1811 static void __clk_recalc_rates(struct clk_core *core, bool update_req, 1812 unsigned long msg) 1813 { 1814 unsigned long old_rate; 1815 unsigned long parent_rate = 0; 1816 struct clk_core *child; 1817 1818 lockdep_assert_held(&prepare_lock); 1819 1820 old_rate = core->rate; 1821 1822 if (core->parent) 1823 parent_rate = core->parent->rate; 1824 1825 core->rate = clk_recalc(core, parent_rate); 1826 if (update_req) 1827 core->req_rate = core->rate; 1828 1829 /* 1830 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1831 * & ABORT_RATE_CHANGE notifiers 1832 */ 1833 if (core->notifier_count && msg) 1834 __clk_notify(core, msg, old_rate, core->rate); 1835 1836 hlist_for_each_entry(child, &core->children, child_node) 1837 __clk_recalc_rates(child, update_req, msg); 1838 } 1839 1840 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1841 { 1842 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1843 __clk_recalc_rates(core, false, 0); 1844 1845 return clk_core_get_rate_nolock(core); 1846 } 1847 1848 /** 1849 * clk_get_rate - return the rate of clk 1850 * @clk: the clk whose rate is being returned 1851 * 1852 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1853 * is set, which means a recalc_rate will be issued. Can be called regardless of 1854 * the clock enabledness. If clk is NULL, or if an error occurred, then returns 1855 * 0. 1856 */ 1857 unsigned long clk_get_rate(struct clk *clk) 1858 { 1859 unsigned long rate; 1860 1861 if (!clk) 1862 return 0; 1863 1864 clk_prepare_lock(); 1865 rate = clk_core_get_rate_recalc(clk->core); 1866 clk_prepare_unlock(); 1867 1868 return rate; 1869 } 1870 EXPORT_SYMBOL_GPL(clk_get_rate); 1871 1872 static int clk_fetch_parent_index(struct clk_core *core, 1873 struct clk_core *parent) 1874 { 1875 int i; 1876 1877 if (!parent) 1878 return -EINVAL; 1879 1880 for (i = 0; i < core->num_parents; i++) { 1881 /* Found it first try! */ 1882 if (core->parents[i].core == parent) 1883 return i; 1884 1885 /* Something else is here, so keep looking */ 1886 if (core->parents[i].core) 1887 continue; 1888 1889 /* Maybe core hasn't been cached but the hw is all we know? */ 1890 if (core->parents[i].hw) { 1891 if (core->parents[i].hw == parent->hw) 1892 break; 1893 1894 /* Didn't match, but we're expecting a clk_hw */ 1895 continue; 1896 } 1897 1898 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1899 if (parent == clk_core_get(core, i)) 1900 break; 1901 1902 /* Fallback to comparing globally unique names */ 1903 if (core->parents[i].name && 1904 !strcmp(parent->name, core->parents[i].name)) 1905 break; 1906 } 1907 1908 if (i == core->num_parents) 1909 return -EINVAL; 1910 1911 core->parents[i].core = parent; 1912 return i; 1913 } 1914 1915 /** 1916 * clk_hw_get_parent_index - return the index of the parent clock 1917 * @hw: clk_hw associated with the clk being consumed 1918 * 1919 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1920 * clock does not have a current parent. 1921 */ 1922 int clk_hw_get_parent_index(struct clk_hw *hw) 1923 { 1924 struct clk_hw *parent = clk_hw_get_parent(hw); 1925 1926 if (WARN_ON(parent == NULL)) 1927 return -EINVAL; 1928 1929 return clk_fetch_parent_index(hw->core, parent->core); 1930 } 1931 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1932 1933 /* 1934 * Update the orphan status of @core and all its children. 1935 */ 1936 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1937 { 1938 struct clk_core *child; 1939 1940 core->orphan = is_orphan; 1941 1942 hlist_for_each_entry(child, &core->children, child_node) 1943 clk_core_update_orphan_status(child, is_orphan); 1944 } 1945 1946 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1947 { 1948 bool was_orphan = core->orphan; 1949 1950 hlist_del(&core->child_node); 1951 1952 if (new_parent) { 1953 bool becomes_orphan = new_parent->orphan; 1954 1955 /* avoid duplicate POST_RATE_CHANGE notifications */ 1956 if (new_parent->new_child == core) 1957 new_parent->new_child = NULL; 1958 1959 hlist_add_head(&core->child_node, &new_parent->children); 1960 1961 if (was_orphan != becomes_orphan) 1962 clk_core_update_orphan_status(core, becomes_orphan); 1963 } else { 1964 hlist_add_head(&core->child_node, &clk_orphan_list); 1965 if (!was_orphan) 1966 clk_core_update_orphan_status(core, true); 1967 } 1968 1969 core->parent = new_parent; 1970 } 1971 1972 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1973 struct clk_core *parent) 1974 { 1975 unsigned long flags; 1976 struct clk_core *old_parent = core->parent; 1977 1978 /* 1979 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1980 * 1981 * 2. Migrate prepare state between parents and prevent race with 1982 * clk_enable(). 1983 * 1984 * If the clock is not prepared, then a race with 1985 * clk_enable/disable() is impossible since we already have the 1986 * prepare lock (future calls to clk_enable() need to be preceded by 1987 * a clk_prepare()). 1988 * 1989 * If the clock is prepared, migrate the prepared state to the new 1990 * parent and also protect against a race with clk_enable() by 1991 * forcing the clock and the new parent on. This ensures that all 1992 * future calls to clk_enable() are practically NOPs with respect to 1993 * hardware and software states. 1994 * 1995 * See also: Comment for clk_set_parent() below. 1996 */ 1997 1998 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1999 if (core->flags & CLK_OPS_PARENT_ENABLE) { 2000 clk_core_prepare_enable(old_parent); 2001 clk_core_prepare_enable(parent); 2002 } 2003 2004 /* migrate prepare count if > 0 */ 2005 if (core->prepare_count) { 2006 clk_core_prepare_enable(parent); 2007 clk_core_enable_lock(core); 2008 } 2009 2010 /* update the clk tree topology */ 2011 flags = clk_enable_lock(); 2012 clk_reparent(core, parent); 2013 clk_enable_unlock(flags); 2014 2015 return old_parent; 2016 } 2017 2018 static void __clk_set_parent_after(struct clk_core *core, 2019 struct clk_core *parent, 2020 struct clk_core *old_parent) 2021 { 2022 /* 2023 * Finish the migration of prepare state and undo the changes done 2024 * for preventing a race with clk_enable(). 2025 */ 2026 if (core->prepare_count) { 2027 clk_core_disable_lock(core); 2028 clk_core_disable_unprepare(old_parent); 2029 } 2030 2031 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 2032 if (core->flags & CLK_OPS_PARENT_ENABLE) { 2033 clk_core_disable_unprepare(parent); 2034 clk_core_disable_unprepare(old_parent); 2035 } 2036 } 2037 2038 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 2039 u8 p_index) 2040 { 2041 unsigned long flags; 2042 int ret = 0; 2043 struct clk_core *old_parent; 2044 2045 old_parent = __clk_set_parent_before(core, parent); 2046 2047 trace_clk_set_parent(core, parent); 2048 2049 /* change clock input source */ 2050 if (parent && core->ops->set_parent) 2051 ret = core->ops->set_parent(core->hw, p_index); 2052 2053 trace_clk_set_parent_complete(core, parent); 2054 2055 if (ret) { 2056 flags = clk_enable_lock(); 2057 clk_reparent(core, old_parent); 2058 clk_enable_unlock(flags); 2059 2060 __clk_set_parent_after(core, old_parent, parent); 2061 2062 return ret; 2063 } 2064 2065 __clk_set_parent_after(core, parent, old_parent); 2066 2067 return 0; 2068 } 2069 2070 /** 2071 * __clk_speculate_rates 2072 * @core: first clk in the subtree 2073 * @parent_rate: the "future" rate of clk's parent 2074 * 2075 * Walks the subtree of clks starting with clk, speculating rates as it 2076 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 2077 * 2078 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 2079 * pre-rate change notifications and returns early if no clks in the 2080 * subtree have subscribed to the notifications. Note that if a clk does not 2081 * implement the .recalc_rate callback then it is assumed that the clock will 2082 * take on the rate of its parent. 2083 */ 2084 static int __clk_speculate_rates(struct clk_core *core, 2085 unsigned long parent_rate) 2086 { 2087 struct clk_core *child; 2088 unsigned long new_rate; 2089 int ret = NOTIFY_DONE; 2090 2091 lockdep_assert_held(&prepare_lock); 2092 2093 new_rate = clk_recalc(core, parent_rate); 2094 2095 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 2096 if (core->notifier_count) 2097 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 2098 2099 if (ret & NOTIFY_STOP_MASK) { 2100 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 2101 __func__, core->name, ret); 2102 goto out; 2103 } 2104 2105 hlist_for_each_entry(child, &core->children, child_node) { 2106 ret = __clk_speculate_rates(child, new_rate); 2107 if (ret & NOTIFY_STOP_MASK) 2108 break; 2109 } 2110 2111 out: 2112 return ret; 2113 } 2114 2115 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 2116 struct clk_core *new_parent, u8 p_index) 2117 { 2118 struct clk_core *child; 2119 2120 core->new_rate = new_rate; 2121 core->new_parent = new_parent; 2122 core->new_parent_index = p_index; 2123 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 2124 core->new_child = NULL; 2125 if (new_parent && new_parent != core->parent) 2126 new_parent->new_child = core; 2127 2128 hlist_for_each_entry(child, &core->children, child_node) { 2129 child->new_rate = clk_recalc(child, new_rate); 2130 clk_calc_subtree(child, child->new_rate, NULL, 0); 2131 } 2132 } 2133 2134 /* 2135 * calculate the new rates returning the topmost clock that has to be 2136 * changed. 2137 */ 2138 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 2139 unsigned long rate) 2140 { 2141 struct clk_core *top = core; 2142 struct clk_core *old_parent, *parent; 2143 unsigned long best_parent_rate = 0; 2144 unsigned long new_rate; 2145 unsigned long min_rate; 2146 unsigned long max_rate; 2147 int p_index = 0; 2148 long ret; 2149 2150 /* sanity */ 2151 if (IS_ERR_OR_NULL(core)) 2152 return NULL; 2153 2154 /* save parent rate, if it exists */ 2155 parent = old_parent = core->parent; 2156 if (parent) 2157 best_parent_rate = parent->rate; 2158 2159 clk_core_get_boundaries(core, &min_rate, &max_rate); 2160 2161 /* find the closest rate and parent clk/rate */ 2162 if (clk_core_can_round(core)) { 2163 struct clk_rate_request req; 2164 2165 clk_core_init_rate_req(core, &req, rate); 2166 2167 trace_clk_rate_request_start(&req); 2168 2169 ret = clk_core_determine_round_nolock(core, &req); 2170 if (ret < 0) 2171 return NULL; 2172 2173 trace_clk_rate_request_done(&req); 2174 2175 best_parent_rate = req.best_parent_rate; 2176 new_rate = req.rate; 2177 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 2178 2179 if (new_rate < min_rate || new_rate > max_rate) 2180 return NULL; 2181 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 2182 /* pass-through clock without adjustable parent */ 2183 core->new_rate = core->rate; 2184 return NULL; 2185 } else { 2186 /* pass-through clock with adjustable parent */ 2187 top = clk_calc_new_rates(parent, rate); 2188 new_rate = parent->new_rate; 2189 goto out; 2190 } 2191 2192 /* some clocks must be gated to change parent */ 2193 if (parent != old_parent && 2194 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 2195 pr_debug("%s: %s not gated but wants to reparent\n", 2196 __func__, core->name); 2197 return NULL; 2198 } 2199 2200 /* try finding the new parent index */ 2201 if (parent && core->num_parents > 1) { 2202 p_index = clk_fetch_parent_index(core, parent); 2203 if (p_index < 0) { 2204 pr_debug("%s: clk %s can not be parent of clk %s\n", 2205 __func__, parent->name, core->name); 2206 return NULL; 2207 } 2208 } 2209 2210 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 2211 best_parent_rate != parent->rate) 2212 top = clk_calc_new_rates(parent, best_parent_rate); 2213 2214 out: 2215 clk_calc_subtree(core, new_rate, parent, p_index); 2216 2217 return top; 2218 } 2219 2220 /* 2221 * Notify about rate changes in a subtree. Always walk down the whole tree 2222 * so that in case of an error we can walk down the whole tree again and 2223 * abort the change. 2224 */ 2225 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2226 unsigned long event) 2227 { 2228 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2229 int ret = NOTIFY_DONE; 2230 2231 if (core->rate == core->new_rate) 2232 return NULL; 2233 2234 if (core->notifier_count) { 2235 ret = __clk_notify(core, event, core->rate, core->new_rate); 2236 if (ret & NOTIFY_STOP_MASK) 2237 fail_clk = core; 2238 } 2239 2240 hlist_for_each_entry(child, &core->children, child_node) { 2241 /* Skip children who will be reparented to another clock */ 2242 if (child->new_parent && child->new_parent != core) 2243 continue; 2244 tmp_clk = clk_propagate_rate_change(child, event); 2245 if (tmp_clk) 2246 fail_clk = tmp_clk; 2247 } 2248 2249 /* handle the new child who might not be in core->children yet */ 2250 if (core->new_child) { 2251 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2252 if (tmp_clk) 2253 fail_clk = tmp_clk; 2254 } 2255 2256 return fail_clk; 2257 } 2258 2259 /* 2260 * walk down a subtree and set the new rates notifying the rate 2261 * change on the way 2262 */ 2263 static void clk_change_rate(struct clk_core *core) 2264 { 2265 struct clk_core *child; 2266 struct hlist_node *tmp; 2267 unsigned long old_rate; 2268 unsigned long best_parent_rate = 0; 2269 bool skip_set_rate = false; 2270 struct clk_core *old_parent; 2271 struct clk_core *parent = NULL; 2272 2273 old_rate = core->rate; 2274 2275 if (core->new_parent) { 2276 parent = core->new_parent; 2277 best_parent_rate = core->new_parent->rate; 2278 } else if (core->parent) { 2279 parent = core->parent; 2280 best_parent_rate = core->parent->rate; 2281 } 2282 2283 if (clk_pm_runtime_get(core)) 2284 return; 2285 2286 if (core->flags & CLK_SET_RATE_UNGATE) { 2287 clk_core_prepare(core); 2288 clk_core_enable_lock(core); 2289 } 2290 2291 if (core->new_parent && core->new_parent != core->parent) { 2292 old_parent = __clk_set_parent_before(core, core->new_parent); 2293 trace_clk_set_parent(core, core->new_parent); 2294 2295 if (core->ops->set_rate_and_parent) { 2296 skip_set_rate = true; 2297 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2298 best_parent_rate, 2299 core->new_parent_index); 2300 } else if (core->ops->set_parent) { 2301 core->ops->set_parent(core->hw, core->new_parent_index); 2302 } 2303 2304 trace_clk_set_parent_complete(core, core->new_parent); 2305 __clk_set_parent_after(core, core->new_parent, old_parent); 2306 } 2307 2308 if (core->flags & CLK_OPS_PARENT_ENABLE) 2309 clk_core_prepare_enable(parent); 2310 2311 trace_clk_set_rate(core, core->new_rate); 2312 2313 if (!skip_set_rate && core->ops->set_rate) 2314 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2315 2316 trace_clk_set_rate_complete(core, core->new_rate); 2317 2318 core->rate = clk_recalc(core, best_parent_rate); 2319 2320 if (core->flags & CLK_SET_RATE_UNGATE) { 2321 clk_core_disable_lock(core); 2322 clk_core_unprepare(core); 2323 } 2324 2325 if (core->flags & CLK_OPS_PARENT_ENABLE) 2326 clk_core_disable_unprepare(parent); 2327 2328 if (core->notifier_count && old_rate != core->rate) 2329 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2330 2331 if (core->flags & CLK_RECALC_NEW_RATES) 2332 (void)clk_calc_new_rates(core, core->new_rate); 2333 2334 /* 2335 * Use safe iteration, as change_rate can actually swap parents 2336 * for certain clock types. 2337 */ 2338 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2339 /* Skip children who will be reparented to another clock */ 2340 if (child->new_parent && child->new_parent != core) 2341 continue; 2342 clk_change_rate(child); 2343 } 2344 2345 /* handle the new child who might not be in core->children yet */ 2346 if (core->new_child) 2347 clk_change_rate(core->new_child); 2348 2349 clk_pm_runtime_put(core); 2350 } 2351 2352 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2353 unsigned long req_rate) 2354 { 2355 int ret, cnt; 2356 struct clk_rate_request req; 2357 2358 lockdep_assert_held(&prepare_lock); 2359 2360 if (!core) 2361 return 0; 2362 2363 /* simulate what the rate would be if it could be freely set */ 2364 cnt = clk_core_rate_nuke_protect(core); 2365 if (cnt < 0) 2366 return cnt; 2367 2368 clk_core_init_rate_req(core, &req, req_rate); 2369 2370 trace_clk_rate_request_start(&req); 2371 2372 ret = clk_core_round_rate_nolock(core, &req); 2373 2374 trace_clk_rate_request_done(&req); 2375 2376 /* restore the protection */ 2377 clk_core_rate_restore_protect(core, cnt); 2378 2379 return ret ? 0 : req.rate; 2380 } 2381 2382 static int clk_core_set_rate_nolock(struct clk_core *core, 2383 unsigned long req_rate) 2384 { 2385 struct clk_core *top, *fail_clk; 2386 unsigned long rate; 2387 int ret; 2388 2389 if (!core) 2390 return 0; 2391 2392 rate = clk_core_req_round_rate_nolock(core, req_rate); 2393 2394 /* bail early if nothing to do */ 2395 if (rate == clk_core_get_rate_nolock(core)) 2396 return 0; 2397 2398 /* fail on a direct rate set of a protected provider */ 2399 if (clk_core_rate_is_protected(core)) 2400 return -EBUSY; 2401 2402 /* calculate new rates and get the topmost changed clock */ 2403 top = clk_calc_new_rates(core, req_rate); 2404 if (!top) 2405 return -EINVAL; 2406 2407 ret = clk_pm_runtime_get(core); 2408 if (ret) 2409 return ret; 2410 2411 /* notify that we are about to change rates */ 2412 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2413 if (fail_clk) { 2414 pr_debug("%s: failed to set %s rate\n", __func__, 2415 fail_clk->name); 2416 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2417 ret = -EBUSY; 2418 goto err; 2419 } 2420 2421 /* change the rates */ 2422 clk_change_rate(top); 2423 2424 core->req_rate = req_rate; 2425 err: 2426 clk_pm_runtime_put(core); 2427 2428 return ret; 2429 } 2430 2431 /** 2432 * clk_set_rate - specify a new rate for clk 2433 * @clk: the clk whose rate is being changed 2434 * @rate: the new rate for clk 2435 * 2436 * In the simplest case clk_set_rate will only adjust the rate of clk. 2437 * 2438 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2439 * propagate up to clk's parent; whether or not this happens depends on the 2440 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2441 * after calling .round_rate then upstream parent propagation is ignored. If 2442 * *parent_rate comes back with a new rate for clk's parent then we propagate 2443 * up to clk's parent and set its rate. Upward propagation will continue 2444 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2445 * .round_rate stops requesting changes to clk's parent_rate. 2446 * 2447 * Rate changes are accomplished via tree traversal that also recalculates the 2448 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2449 * 2450 * Returns 0 on success, -EERROR otherwise. 2451 */ 2452 int clk_set_rate(struct clk *clk, unsigned long rate) 2453 { 2454 int ret; 2455 2456 if (!clk) 2457 return 0; 2458 2459 /* prevent racing with updates to the clock topology */ 2460 clk_prepare_lock(); 2461 2462 if (clk->exclusive_count) 2463 clk_core_rate_unprotect(clk->core); 2464 2465 ret = clk_core_set_rate_nolock(clk->core, rate); 2466 2467 if (clk->exclusive_count) 2468 clk_core_rate_protect(clk->core); 2469 2470 clk_prepare_unlock(); 2471 2472 return ret; 2473 } 2474 EXPORT_SYMBOL_GPL(clk_set_rate); 2475 2476 /** 2477 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2478 * @clk: the clk whose rate is being changed 2479 * @rate: the new rate for clk 2480 * 2481 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2482 * within a critical section 2483 * 2484 * This can be used initially to ensure that at least 1 consumer is 2485 * satisfied when several consumers are competing for exclusivity over the 2486 * same clock provider. 2487 * 2488 * The exclusivity is not applied if setting the rate failed. 2489 * 2490 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2491 * clk_rate_exclusive_put(). 2492 * 2493 * Returns 0 on success, -EERROR otherwise. 2494 */ 2495 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2496 { 2497 int ret; 2498 2499 if (!clk) 2500 return 0; 2501 2502 /* prevent racing with updates to the clock topology */ 2503 clk_prepare_lock(); 2504 2505 /* 2506 * The temporary protection removal is not here, on purpose 2507 * This function is meant to be used instead of clk_rate_protect, 2508 * so before the consumer code path protect the clock provider 2509 */ 2510 2511 ret = clk_core_set_rate_nolock(clk->core, rate); 2512 if (!ret) { 2513 clk_core_rate_protect(clk->core); 2514 clk->exclusive_count++; 2515 } 2516 2517 clk_prepare_unlock(); 2518 2519 return ret; 2520 } 2521 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2522 2523 static int clk_set_rate_range_nolock(struct clk *clk, 2524 unsigned long min, 2525 unsigned long max) 2526 { 2527 int ret = 0; 2528 unsigned long old_min, old_max, rate; 2529 2530 lockdep_assert_held(&prepare_lock); 2531 2532 if (!clk) 2533 return 0; 2534 2535 trace_clk_set_rate_range(clk->core, min, max); 2536 2537 if (min > max) { 2538 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2539 __func__, clk->core->name, clk->dev_id, clk->con_id, 2540 min, max); 2541 return -EINVAL; 2542 } 2543 2544 if (clk->exclusive_count) 2545 clk_core_rate_unprotect(clk->core); 2546 2547 /* Save the current values in case we need to rollback the change */ 2548 old_min = clk->min_rate; 2549 old_max = clk->max_rate; 2550 clk->min_rate = min; 2551 clk->max_rate = max; 2552 2553 if (!clk_core_check_boundaries(clk->core, min, max)) { 2554 ret = -EINVAL; 2555 goto out; 2556 } 2557 2558 rate = clk->core->req_rate; 2559 if (clk->core->flags & CLK_GET_RATE_NOCACHE) 2560 rate = clk_core_get_rate_recalc(clk->core); 2561 2562 /* 2563 * Since the boundaries have been changed, let's give the 2564 * opportunity to the provider to adjust the clock rate based on 2565 * the new boundaries. 2566 * 2567 * We also need to handle the case where the clock is currently 2568 * outside of the boundaries. Clamping the last requested rate 2569 * to the current minimum and maximum will also handle this. 2570 * 2571 * FIXME: 2572 * There is a catch. It may fail for the usual reason (clock 2573 * broken, clock protected, etc) but also because: 2574 * - round_rate() was not favorable and fell on the wrong 2575 * side of the boundary 2576 * - the determine_rate() callback does not really check for 2577 * this corner case when determining the rate 2578 */ 2579 rate = clamp(rate, min, max); 2580 ret = clk_core_set_rate_nolock(clk->core, rate); 2581 if (ret) { 2582 /* rollback the changes */ 2583 clk->min_rate = old_min; 2584 clk->max_rate = old_max; 2585 } 2586 2587 out: 2588 if (clk->exclusive_count) 2589 clk_core_rate_protect(clk->core); 2590 2591 return ret; 2592 } 2593 2594 /** 2595 * clk_set_rate_range - set a rate range for a clock source 2596 * @clk: clock source 2597 * @min: desired minimum clock rate in Hz, inclusive 2598 * @max: desired maximum clock rate in Hz, inclusive 2599 * 2600 * Return: 0 for success or negative errno on failure. 2601 */ 2602 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2603 { 2604 int ret; 2605 2606 if (!clk) 2607 return 0; 2608 2609 clk_prepare_lock(); 2610 2611 ret = clk_set_rate_range_nolock(clk, min, max); 2612 2613 clk_prepare_unlock(); 2614 2615 return ret; 2616 } 2617 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2618 2619 /** 2620 * clk_set_min_rate - set a minimum clock rate for a clock source 2621 * @clk: clock source 2622 * @rate: desired minimum clock rate in Hz, inclusive 2623 * 2624 * Returns success (0) or negative errno. 2625 */ 2626 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2627 { 2628 if (!clk) 2629 return 0; 2630 2631 trace_clk_set_min_rate(clk->core, rate); 2632 2633 return clk_set_rate_range(clk, rate, clk->max_rate); 2634 } 2635 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2636 2637 /** 2638 * clk_set_max_rate - set a maximum clock rate for a clock source 2639 * @clk: clock source 2640 * @rate: desired maximum clock rate in Hz, inclusive 2641 * 2642 * Returns success (0) or negative errno. 2643 */ 2644 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2645 { 2646 if (!clk) 2647 return 0; 2648 2649 trace_clk_set_max_rate(clk->core, rate); 2650 2651 return clk_set_rate_range(clk, clk->min_rate, rate); 2652 } 2653 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2654 2655 /** 2656 * clk_get_parent - return the parent of a clk 2657 * @clk: the clk whose parent gets returned 2658 * 2659 * Simply returns clk->parent. Returns NULL if clk is NULL. 2660 */ 2661 struct clk *clk_get_parent(struct clk *clk) 2662 { 2663 struct clk *parent; 2664 2665 if (!clk) 2666 return NULL; 2667 2668 clk_prepare_lock(); 2669 /* TODO: Create a per-user clk and change callers to call clk_put */ 2670 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2671 clk_prepare_unlock(); 2672 2673 return parent; 2674 } 2675 EXPORT_SYMBOL_GPL(clk_get_parent); 2676 2677 static struct clk_core *__clk_init_parent(struct clk_core *core) 2678 { 2679 u8 index = 0; 2680 2681 if (core->num_parents > 1 && core->ops->get_parent) 2682 index = core->ops->get_parent(core->hw); 2683 2684 return clk_core_get_parent_by_index(core, index); 2685 } 2686 2687 static void clk_core_reparent(struct clk_core *core, 2688 struct clk_core *new_parent) 2689 { 2690 clk_reparent(core, new_parent); 2691 __clk_recalc_accuracies(core); 2692 __clk_recalc_rates(core, true, POST_RATE_CHANGE); 2693 } 2694 2695 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2696 { 2697 if (!hw) 2698 return; 2699 2700 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2701 } 2702 2703 /** 2704 * clk_has_parent - check if a clock is a possible parent for another 2705 * @clk: clock source 2706 * @parent: parent clock source 2707 * 2708 * This function can be used in drivers that need to check that a clock can be 2709 * the parent of another without actually changing the parent. 2710 * 2711 * Returns true if @parent is a possible parent for @clk, false otherwise. 2712 */ 2713 bool clk_has_parent(const struct clk *clk, const struct clk *parent) 2714 { 2715 /* NULL clocks should be nops, so return success if either is NULL. */ 2716 if (!clk || !parent) 2717 return true; 2718 2719 return clk_core_has_parent(clk->core, parent->core); 2720 } 2721 EXPORT_SYMBOL_GPL(clk_has_parent); 2722 2723 static int clk_core_set_parent_nolock(struct clk_core *core, 2724 struct clk_core *parent) 2725 { 2726 int ret = 0; 2727 int p_index = 0; 2728 unsigned long p_rate = 0; 2729 2730 lockdep_assert_held(&prepare_lock); 2731 2732 if (!core) 2733 return 0; 2734 2735 if (core->parent == parent) 2736 return 0; 2737 2738 /* verify ops for multi-parent clks */ 2739 if (core->num_parents > 1 && !core->ops->set_parent) 2740 return -EPERM; 2741 2742 /* check that we are allowed to re-parent if the clock is in use */ 2743 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2744 return -EBUSY; 2745 2746 if (clk_core_rate_is_protected(core)) 2747 return -EBUSY; 2748 2749 /* try finding the new parent index */ 2750 if (parent) { 2751 p_index = clk_fetch_parent_index(core, parent); 2752 if (p_index < 0) { 2753 pr_debug("%s: clk %s can not be parent of clk %s\n", 2754 __func__, parent->name, core->name); 2755 return p_index; 2756 } 2757 p_rate = parent->rate; 2758 } 2759 2760 ret = clk_pm_runtime_get(core); 2761 if (ret) 2762 return ret; 2763 2764 /* propagate PRE_RATE_CHANGE notifications */ 2765 ret = __clk_speculate_rates(core, p_rate); 2766 2767 /* abort if a driver objects */ 2768 if (ret & NOTIFY_STOP_MASK) 2769 goto runtime_put; 2770 2771 /* do the re-parent */ 2772 ret = __clk_set_parent(core, parent, p_index); 2773 2774 /* propagate rate an accuracy recalculation accordingly */ 2775 if (ret) { 2776 __clk_recalc_rates(core, true, ABORT_RATE_CHANGE); 2777 } else { 2778 __clk_recalc_rates(core, true, POST_RATE_CHANGE); 2779 __clk_recalc_accuracies(core); 2780 } 2781 2782 runtime_put: 2783 clk_pm_runtime_put(core); 2784 2785 return ret; 2786 } 2787 2788 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2789 { 2790 return clk_core_set_parent_nolock(hw->core, parent->core); 2791 } 2792 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2793 2794 /** 2795 * clk_set_parent - switch the parent of a mux clk 2796 * @clk: the mux clk whose input we are switching 2797 * @parent: the new input to clk 2798 * 2799 * Re-parent clk to use parent as its new input source. If clk is in 2800 * prepared state, the clk will get enabled for the duration of this call. If 2801 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2802 * that, the reparenting is glitchy in hardware, etc), use the 2803 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2804 * 2805 * After successfully changing clk's parent clk_set_parent will update the 2806 * clk topology, sysfs topology and propagate rate recalculation via 2807 * __clk_recalc_rates. 2808 * 2809 * Returns 0 on success, -EERROR otherwise. 2810 */ 2811 int clk_set_parent(struct clk *clk, struct clk *parent) 2812 { 2813 int ret; 2814 2815 if (!clk) 2816 return 0; 2817 2818 clk_prepare_lock(); 2819 2820 if (clk->exclusive_count) 2821 clk_core_rate_unprotect(clk->core); 2822 2823 ret = clk_core_set_parent_nolock(clk->core, 2824 parent ? parent->core : NULL); 2825 2826 if (clk->exclusive_count) 2827 clk_core_rate_protect(clk->core); 2828 2829 clk_prepare_unlock(); 2830 2831 return ret; 2832 } 2833 EXPORT_SYMBOL_GPL(clk_set_parent); 2834 2835 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2836 { 2837 int ret = -EINVAL; 2838 2839 lockdep_assert_held(&prepare_lock); 2840 2841 if (!core) 2842 return 0; 2843 2844 if (clk_core_rate_is_protected(core)) 2845 return -EBUSY; 2846 2847 trace_clk_set_phase(core, degrees); 2848 2849 if (core->ops->set_phase) { 2850 ret = core->ops->set_phase(core->hw, degrees); 2851 if (!ret) 2852 core->phase = degrees; 2853 } 2854 2855 trace_clk_set_phase_complete(core, degrees); 2856 2857 return ret; 2858 } 2859 2860 /** 2861 * clk_set_phase - adjust the phase shift of a clock signal 2862 * @clk: clock signal source 2863 * @degrees: number of degrees the signal is shifted 2864 * 2865 * Shifts the phase of a clock signal by the specified 2866 * degrees. Returns 0 on success, -EERROR otherwise. 2867 * 2868 * This function makes no distinction about the input or reference 2869 * signal that we adjust the clock signal phase against. For example 2870 * phase locked-loop clock signal generators we may shift phase with 2871 * respect to feedback clock signal input, but for other cases the 2872 * clock phase may be shifted with respect to some other, unspecified 2873 * signal. 2874 * 2875 * Additionally the concept of phase shift does not propagate through 2876 * the clock tree hierarchy, which sets it apart from clock rates and 2877 * clock accuracy. A parent clock phase attribute does not have an 2878 * impact on the phase attribute of a child clock. 2879 */ 2880 int clk_set_phase(struct clk *clk, int degrees) 2881 { 2882 int ret; 2883 2884 if (!clk) 2885 return 0; 2886 2887 /* sanity check degrees */ 2888 degrees %= 360; 2889 if (degrees < 0) 2890 degrees += 360; 2891 2892 clk_prepare_lock(); 2893 2894 if (clk->exclusive_count) 2895 clk_core_rate_unprotect(clk->core); 2896 2897 ret = clk_core_set_phase_nolock(clk->core, degrees); 2898 2899 if (clk->exclusive_count) 2900 clk_core_rate_protect(clk->core); 2901 2902 clk_prepare_unlock(); 2903 2904 return ret; 2905 } 2906 EXPORT_SYMBOL_GPL(clk_set_phase); 2907 2908 static int clk_core_get_phase(struct clk_core *core) 2909 { 2910 int ret; 2911 2912 lockdep_assert_held(&prepare_lock); 2913 if (!core->ops->get_phase) 2914 return 0; 2915 2916 /* Always try to update cached phase if possible */ 2917 ret = core->ops->get_phase(core->hw); 2918 if (ret >= 0) 2919 core->phase = ret; 2920 2921 return ret; 2922 } 2923 2924 /** 2925 * clk_get_phase - return the phase shift of a clock signal 2926 * @clk: clock signal source 2927 * 2928 * Returns the phase shift of a clock node in degrees, otherwise returns 2929 * -EERROR. 2930 */ 2931 int clk_get_phase(struct clk *clk) 2932 { 2933 int ret; 2934 2935 if (!clk) 2936 return 0; 2937 2938 clk_prepare_lock(); 2939 ret = clk_core_get_phase(clk->core); 2940 clk_prepare_unlock(); 2941 2942 return ret; 2943 } 2944 EXPORT_SYMBOL_GPL(clk_get_phase); 2945 2946 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2947 { 2948 /* Assume a default value of 50% */ 2949 core->duty.num = 1; 2950 core->duty.den = 2; 2951 } 2952 2953 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2954 2955 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2956 { 2957 struct clk_duty *duty = &core->duty; 2958 int ret = 0; 2959 2960 if (!core->ops->get_duty_cycle) 2961 return clk_core_update_duty_cycle_parent_nolock(core); 2962 2963 ret = core->ops->get_duty_cycle(core->hw, duty); 2964 if (ret) 2965 goto reset; 2966 2967 /* Don't trust the clock provider too much */ 2968 if (duty->den == 0 || duty->num > duty->den) { 2969 ret = -EINVAL; 2970 goto reset; 2971 } 2972 2973 return 0; 2974 2975 reset: 2976 clk_core_reset_duty_cycle_nolock(core); 2977 return ret; 2978 } 2979 2980 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2981 { 2982 int ret = 0; 2983 2984 if (core->parent && 2985 core->flags & CLK_DUTY_CYCLE_PARENT) { 2986 ret = clk_core_update_duty_cycle_nolock(core->parent); 2987 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2988 } else { 2989 clk_core_reset_duty_cycle_nolock(core); 2990 } 2991 2992 return ret; 2993 } 2994 2995 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2996 struct clk_duty *duty); 2997 2998 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2999 struct clk_duty *duty) 3000 { 3001 int ret; 3002 3003 lockdep_assert_held(&prepare_lock); 3004 3005 if (clk_core_rate_is_protected(core)) 3006 return -EBUSY; 3007 3008 trace_clk_set_duty_cycle(core, duty); 3009 3010 if (!core->ops->set_duty_cycle) 3011 return clk_core_set_duty_cycle_parent_nolock(core, duty); 3012 3013 ret = core->ops->set_duty_cycle(core->hw, duty); 3014 if (!ret) 3015 memcpy(&core->duty, duty, sizeof(*duty)); 3016 3017 trace_clk_set_duty_cycle_complete(core, duty); 3018 3019 return ret; 3020 } 3021 3022 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 3023 struct clk_duty *duty) 3024 { 3025 int ret = 0; 3026 3027 if (core->parent && 3028 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 3029 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 3030 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 3031 } 3032 3033 return ret; 3034 } 3035 3036 /** 3037 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 3038 * @clk: clock signal source 3039 * @num: numerator of the duty cycle ratio to be applied 3040 * @den: denominator of the duty cycle ratio to be applied 3041 * 3042 * Apply the duty cycle ratio if the ratio is valid and the clock can 3043 * perform this operation 3044 * 3045 * Returns (0) on success, a negative errno otherwise. 3046 */ 3047 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 3048 { 3049 int ret; 3050 struct clk_duty duty; 3051 3052 if (!clk) 3053 return 0; 3054 3055 /* sanity check the ratio */ 3056 if (den == 0 || num > den) 3057 return -EINVAL; 3058 3059 duty.num = num; 3060 duty.den = den; 3061 3062 clk_prepare_lock(); 3063 3064 if (clk->exclusive_count) 3065 clk_core_rate_unprotect(clk->core); 3066 3067 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 3068 3069 if (clk->exclusive_count) 3070 clk_core_rate_protect(clk->core); 3071 3072 clk_prepare_unlock(); 3073 3074 return ret; 3075 } 3076 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 3077 3078 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 3079 unsigned int scale) 3080 { 3081 struct clk_duty *duty = &core->duty; 3082 int ret; 3083 3084 clk_prepare_lock(); 3085 3086 ret = clk_core_update_duty_cycle_nolock(core); 3087 if (!ret) 3088 ret = mult_frac(scale, duty->num, duty->den); 3089 3090 clk_prepare_unlock(); 3091 3092 return ret; 3093 } 3094 3095 /** 3096 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 3097 * @clk: clock signal source 3098 * @scale: scaling factor to be applied to represent the ratio as an integer 3099 * 3100 * Returns the duty cycle ratio of a clock node multiplied by the provided 3101 * scaling factor, or negative errno on error. 3102 */ 3103 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 3104 { 3105 if (!clk) 3106 return 0; 3107 3108 return clk_core_get_scaled_duty_cycle(clk->core, scale); 3109 } 3110 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 3111 3112 /** 3113 * clk_is_match - check if two clk's point to the same hardware clock 3114 * @p: clk compared against q 3115 * @q: clk compared against p 3116 * 3117 * Returns true if the two struct clk pointers both point to the same hardware 3118 * clock node. Put differently, returns true if struct clk *p and struct clk *q 3119 * share the same struct clk_core object. 3120 * 3121 * Returns false otherwise. Note that two NULL clks are treated as matching. 3122 */ 3123 bool clk_is_match(const struct clk *p, const struct clk *q) 3124 { 3125 /* trivial case: identical struct clk's or both NULL */ 3126 if (p == q) 3127 return true; 3128 3129 /* true if clk->core pointers match. Avoid dereferencing garbage */ 3130 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 3131 if (p->core == q->core) 3132 return true; 3133 3134 return false; 3135 } 3136 EXPORT_SYMBOL_GPL(clk_is_match); 3137 3138 /*** debugfs support ***/ 3139 3140 #ifdef CONFIG_DEBUG_FS 3141 #include <linux/debugfs.h> 3142 3143 static struct dentry *rootdir; 3144 static int inited = 0; 3145 static DEFINE_MUTEX(clk_debug_lock); 3146 static HLIST_HEAD(clk_debug_list); 3147 3148 static struct hlist_head *orphan_list[] = { 3149 &clk_orphan_list, 3150 NULL, 3151 }; 3152 3153 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 3154 int level) 3155 { 3156 int phase; 3157 3158 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ", 3159 level * 3 + 1, "", 3160 30 - level * 3, c->name, 3161 c->enable_count, c->prepare_count, c->protect_count, 3162 clk_core_get_rate_recalc(c), 3163 clk_core_get_accuracy_recalc(c)); 3164 3165 phase = clk_core_get_phase(c); 3166 if (phase >= 0) 3167 seq_printf(s, "%5d", phase); 3168 else 3169 seq_puts(s, "-----"); 3170 3171 seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000)); 3172 3173 if (c->ops->is_enabled) 3174 seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N'); 3175 else if (!c->ops->enable) 3176 seq_printf(s, " %9c\n", 'Y'); 3177 else 3178 seq_printf(s, " %9c\n", '?'); 3179 } 3180 3181 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 3182 int level) 3183 { 3184 struct clk_core *child; 3185 3186 clk_pm_runtime_get(c); 3187 clk_summary_show_one(s, c, level); 3188 clk_pm_runtime_put(c); 3189 3190 hlist_for_each_entry(child, &c->children, child_node) 3191 clk_summary_show_subtree(s, child, level + 1); 3192 } 3193 3194 static int clk_summary_show(struct seq_file *s, void *data) 3195 { 3196 struct clk_core *c; 3197 struct hlist_head **lists = (struct hlist_head **)s->private; 3198 3199 seq_puts(s, " enable prepare protect duty hardware\n"); 3200 seq_puts(s, " clock count count count rate accuracy phase cycle enable\n"); 3201 seq_puts(s, "-------------------------------------------------------------------------------------------------------\n"); 3202 3203 clk_prepare_lock(); 3204 3205 for (; *lists; lists++) 3206 hlist_for_each_entry(c, *lists, child_node) 3207 clk_summary_show_subtree(s, c, 0); 3208 3209 clk_prepare_unlock(); 3210 3211 return 0; 3212 } 3213 DEFINE_SHOW_ATTRIBUTE(clk_summary); 3214 3215 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 3216 { 3217 int phase; 3218 unsigned long min_rate, max_rate; 3219 3220 clk_core_get_boundaries(c, &min_rate, &max_rate); 3221 3222 /* This should be JSON format, i.e. elements separated with a comma */ 3223 seq_printf(s, "\"%s\": { ", c->name); 3224 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 3225 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 3226 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 3227 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 3228 seq_printf(s, "\"min_rate\": %lu,", min_rate); 3229 seq_printf(s, "\"max_rate\": %lu,", max_rate); 3230 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 3231 phase = clk_core_get_phase(c); 3232 if (phase >= 0) 3233 seq_printf(s, "\"phase\": %d,", phase); 3234 seq_printf(s, "\"duty_cycle\": %u", 3235 clk_core_get_scaled_duty_cycle(c, 100000)); 3236 } 3237 3238 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3239 { 3240 struct clk_core *child; 3241 3242 clk_dump_one(s, c, level); 3243 3244 hlist_for_each_entry(child, &c->children, child_node) { 3245 seq_putc(s, ','); 3246 clk_dump_subtree(s, child, level + 1); 3247 } 3248 3249 seq_putc(s, '}'); 3250 } 3251 3252 static int clk_dump_show(struct seq_file *s, void *data) 3253 { 3254 struct clk_core *c; 3255 bool first_node = true; 3256 struct hlist_head **lists = (struct hlist_head **)s->private; 3257 3258 seq_putc(s, '{'); 3259 clk_prepare_lock(); 3260 3261 for (; *lists; lists++) { 3262 hlist_for_each_entry(c, *lists, child_node) { 3263 if (!first_node) 3264 seq_putc(s, ','); 3265 first_node = false; 3266 clk_dump_subtree(s, c, 0); 3267 } 3268 } 3269 3270 clk_prepare_unlock(); 3271 3272 seq_puts(s, "}\n"); 3273 return 0; 3274 } 3275 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3276 3277 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3278 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3279 /* 3280 * This can be dangerous, therefore don't provide any real compile time 3281 * configuration option for this feature. 3282 * People who want to use this will need to modify the source code directly. 3283 */ 3284 static int clk_rate_set(void *data, u64 val) 3285 { 3286 struct clk_core *core = data; 3287 int ret; 3288 3289 clk_prepare_lock(); 3290 ret = clk_core_set_rate_nolock(core, val); 3291 clk_prepare_unlock(); 3292 3293 return ret; 3294 } 3295 3296 #define clk_rate_mode 0644 3297 3298 static int clk_prepare_enable_set(void *data, u64 val) 3299 { 3300 struct clk_core *core = data; 3301 int ret = 0; 3302 3303 if (val) 3304 ret = clk_prepare_enable(core->hw->clk); 3305 else 3306 clk_disable_unprepare(core->hw->clk); 3307 3308 return ret; 3309 } 3310 3311 static int clk_prepare_enable_get(void *data, u64 *val) 3312 { 3313 struct clk_core *core = data; 3314 3315 *val = core->enable_count && core->prepare_count; 3316 return 0; 3317 } 3318 3319 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3320 clk_prepare_enable_set, "%llu\n"); 3321 3322 #else 3323 #define clk_rate_set NULL 3324 #define clk_rate_mode 0444 3325 #endif 3326 3327 static int clk_rate_get(void *data, u64 *val) 3328 { 3329 struct clk_core *core = data; 3330 3331 clk_prepare_lock(); 3332 *val = clk_core_get_rate_recalc(core); 3333 clk_prepare_unlock(); 3334 3335 return 0; 3336 } 3337 3338 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3339 3340 static const struct { 3341 unsigned long flag; 3342 const char *name; 3343 } clk_flags[] = { 3344 #define ENTRY(f) { f, #f } 3345 ENTRY(CLK_SET_RATE_GATE), 3346 ENTRY(CLK_SET_PARENT_GATE), 3347 ENTRY(CLK_SET_RATE_PARENT), 3348 ENTRY(CLK_IGNORE_UNUSED), 3349 ENTRY(CLK_GET_RATE_NOCACHE), 3350 ENTRY(CLK_SET_RATE_NO_REPARENT), 3351 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3352 ENTRY(CLK_RECALC_NEW_RATES), 3353 ENTRY(CLK_SET_RATE_UNGATE), 3354 ENTRY(CLK_IS_CRITICAL), 3355 ENTRY(CLK_OPS_PARENT_ENABLE), 3356 ENTRY(CLK_DUTY_CYCLE_PARENT), 3357 #undef ENTRY 3358 }; 3359 3360 static int clk_flags_show(struct seq_file *s, void *data) 3361 { 3362 struct clk_core *core = s->private; 3363 unsigned long flags = core->flags; 3364 unsigned int i; 3365 3366 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3367 if (flags & clk_flags[i].flag) { 3368 seq_printf(s, "%s\n", clk_flags[i].name); 3369 flags &= ~clk_flags[i].flag; 3370 } 3371 } 3372 if (flags) { 3373 /* Unknown flags */ 3374 seq_printf(s, "0x%lx\n", flags); 3375 } 3376 3377 return 0; 3378 } 3379 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3380 3381 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3382 unsigned int i, char terminator) 3383 { 3384 struct clk_core *parent; 3385 3386 /* 3387 * Go through the following options to fetch a parent's name. 3388 * 3389 * 1. Fetch the registered parent clock and use its name 3390 * 2. Use the global (fallback) name if specified 3391 * 3. Use the local fw_name if provided 3392 * 4. Fetch parent clock's clock-output-name if DT index was set 3393 * 3394 * This may still fail in some cases, such as when the parent is 3395 * specified directly via a struct clk_hw pointer, but it isn't 3396 * registered (yet). 3397 */ 3398 parent = clk_core_get_parent_by_index(core, i); 3399 if (parent) 3400 seq_puts(s, parent->name); 3401 else if (core->parents[i].name) 3402 seq_puts(s, core->parents[i].name); 3403 else if (core->parents[i].fw_name) 3404 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3405 else if (core->parents[i].index >= 0) 3406 seq_puts(s, 3407 of_clk_get_parent_name(core->of_node, 3408 core->parents[i].index)); 3409 else 3410 seq_puts(s, "(missing)"); 3411 3412 seq_putc(s, terminator); 3413 } 3414 3415 static int possible_parents_show(struct seq_file *s, void *data) 3416 { 3417 struct clk_core *core = s->private; 3418 int i; 3419 3420 for (i = 0; i < core->num_parents - 1; i++) 3421 possible_parent_show(s, core, i, ' '); 3422 3423 possible_parent_show(s, core, i, '\n'); 3424 3425 return 0; 3426 } 3427 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3428 3429 static int current_parent_show(struct seq_file *s, void *data) 3430 { 3431 struct clk_core *core = s->private; 3432 3433 if (core->parent) 3434 seq_printf(s, "%s\n", core->parent->name); 3435 3436 return 0; 3437 } 3438 DEFINE_SHOW_ATTRIBUTE(current_parent); 3439 3440 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3441 static ssize_t current_parent_write(struct file *file, const char __user *ubuf, 3442 size_t count, loff_t *ppos) 3443 { 3444 struct seq_file *s = file->private_data; 3445 struct clk_core *core = s->private; 3446 struct clk_core *parent; 3447 u8 idx; 3448 int err; 3449 3450 err = kstrtou8_from_user(ubuf, count, 0, &idx); 3451 if (err < 0) 3452 return err; 3453 3454 parent = clk_core_get_parent_by_index(core, idx); 3455 if (!parent) 3456 return -ENOENT; 3457 3458 clk_prepare_lock(); 3459 err = clk_core_set_parent_nolock(core, parent); 3460 clk_prepare_unlock(); 3461 if (err) 3462 return err; 3463 3464 return count; 3465 } 3466 3467 static const struct file_operations current_parent_rw_fops = { 3468 .open = current_parent_open, 3469 .write = current_parent_write, 3470 .read = seq_read, 3471 .llseek = seq_lseek, 3472 .release = single_release, 3473 }; 3474 #endif 3475 3476 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3477 { 3478 struct clk_core *core = s->private; 3479 struct clk_duty *duty = &core->duty; 3480 3481 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3482 3483 return 0; 3484 } 3485 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3486 3487 static int clk_min_rate_show(struct seq_file *s, void *data) 3488 { 3489 struct clk_core *core = s->private; 3490 unsigned long min_rate, max_rate; 3491 3492 clk_prepare_lock(); 3493 clk_core_get_boundaries(core, &min_rate, &max_rate); 3494 clk_prepare_unlock(); 3495 seq_printf(s, "%lu\n", min_rate); 3496 3497 return 0; 3498 } 3499 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3500 3501 static int clk_max_rate_show(struct seq_file *s, void *data) 3502 { 3503 struct clk_core *core = s->private; 3504 unsigned long min_rate, max_rate; 3505 3506 clk_prepare_lock(); 3507 clk_core_get_boundaries(core, &min_rate, &max_rate); 3508 clk_prepare_unlock(); 3509 seq_printf(s, "%lu\n", max_rate); 3510 3511 return 0; 3512 } 3513 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3514 3515 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3516 { 3517 struct dentry *root; 3518 3519 if (!core || !pdentry) 3520 return; 3521 3522 root = debugfs_create_dir(core->name, pdentry); 3523 core->dentry = root; 3524 3525 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3526 &clk_rate_fops); 3527 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3528 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3529 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3530 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3531 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3532 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3533 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3534 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3535 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3536 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3537 &clk_duty_cycle_fops); 3538 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3539 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3540 &clk_prepare_enable_fops); 3541 3542 if (core->num_parents > 1) 3543 debugfs_create_file("clk_parent", 0644, root, core, 3544 ¤t_parent_rw_fops); 3545 else 3546 #endif 3547 if (core->num_parents > 0) 3548 debugfs_create_file("clk_parent", 0444, root, core, 3549 ¤t_parent_fops); 3550 3551 if (core->num_parents > 1) 3552 debugfs_create_file("clk_possible_parents", 0444, root, core, 3553 &possible_parents_fops); 3554 3555 if (core->ops->debug_init) 3556 core->ops->debug_init(core->hw, core->dentry); 3557 } 3558 3559 /** 3560 * clk_debug_register - add a clk node to the debugfs clk directory 3561 * @core: the clk being added to the debugfs clk directory 3562 * 3563 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3564 * initialized. Otherwise it bails out early since the debugfs clk directory 3565 * will be created lazily by clk_debug_init as part of a late_initcall. 3566 */ 3567 static void clk_debug_register(struct clk_core *core) 3568 { 3569 mutex_lock(&clk_debug_lock); 3570 hlist_add_head(&core->debug_node, &clk_debug_list); 3571 if (inited) 3572 clk_debug_create_one(core, rootdir); 3573 mutex_unlock(&clk_debug_lock); 3574 } 3575 3576 /** 3577 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3578 * @core: the clk being removed from the debugfs clk directory 3579 * 3580 * Dynamically removes a clk and all its child nodes from the 3581 * debugfs clk directory if clk->dentry points to debugfs created by 3582 * clk_debug_register in __clk_core_init. 3583 */ 3584 static void clk_debug_unregister(struct clk_core *core) 3585 { 3586 mutex_lock(&clk_debug_lock); 3587 hlist_del_init(&core->debug_node); 3588 debugfs_remove_recursive(core->dentry); 3589 core->dentry = NULL; 3590 mutex_unlock(&clk_debug_lock); 3591 } 3592 3593 /** 3594 * clk_debug_init - lazily populate the debugfs clk directory 3595 * 3596 * clks are often initialized very early during boot before memory can be 3597 * dynamically allocated and well before debugfs is setup. This function 3598 * populates the debugfs clk directory once at boot-time when we know that 3599 * debugfs is setup. It should only be called once at boot-time, all other clks 3600 * added dynamically will be done so with clk_debug_register. 3601 */ 3602 static int __init clk_debug_init(void) 3603 { 3604 struct clk_core *core; 3605 3606 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3607 pr_warn("\n"); 3608 pr_warn("********************************************************************\n"); 3609 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3610 pr_warn("** **\n"); 3611 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n"); 3612 pr_warn("** **\n"); 3613 pr_warn("** This means that this kernel is built to expose clk operations **\n"); 3614 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n"); 3615 pr_warn("** to userspace, which may compromise security on your system. **\n"); 3616 pr_warn("** **\n"); 3617 pr_warn("** If you see this message and you are not debugging the **\n"); 3618 pr_warn("** kernel, report this immediately to your vendor! **\n"); 3619 pr_warn("** **\n"); 3620 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3621 pr_warn("********************************************************************\n"); 3622 #endif 3623 3624 rootdir = debugfs_create_dir("clk", NULL); 3625 3626 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3627 &clk_summary_fops); 3628 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3629 &clk_dump_fops); 3630 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3631 &clk_summary_fops); 3632 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3633 &clk_dump_fops); 3634 3635 mutex_lock(&clk_debug_lock); 3636 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3637 clk_debug_create_one(core, rootdir); 3638 3639 inited = 1; 3640 mutex_unlock(&clk_debug_lock); 3641 3642 return 0; 3643 } 3644 late_initcall(clk_debug_init); 3645 #else 3646 static inline void clk_debug_register(struct clk_core *core) { } 3647 static inline void clk_debug_unregister(struct clk_core *core) 3648 { 3649 } 3650 #endif 3651 3652 static void clk_core_reparent_orphans_nolock(void) 3653 { 3654 struct clk_core *orphan; 3655 struct hlist_node *tmp2; 3656 3657 /* 3658 * walk the list of orphan clocks and reparent any that newly finds a 3659 * parent. 3660 */ 3661 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3662 struct clk_core *parent = __clk_init_parent(orphan); 3663 3664 /* 3665 * We need to use __clk_set_parent_before() and _after() to 3666 * properly migrate any prepare/enable count of the orphan 3667 * clock. This is important for CLK_IS_CRITICAL clocks, which 3668 * are enabled during init but might not have a parent yet. 3669 */ 3670 if (parent) { 3671 /* update the clk tree topology */ 3672 __clk_set_parent_before(orphan, parent); 3673 __clk_set_parent_after(orphan, parent, NULL); 3674 __clk_recalc_accuracies(orphan); 3675 __clk_recalc_rates(orphan, true, 0); 3676 3677 /* 3678 * __clk_init_parent() will set the initial req_rate to 3679 * 0 if the clock doesn't have clk_ops::recalc_rate and 3680 * is an orphan when it's registered. 3681 * 3682 * 'req_rate' is used by clk_set_rate_range() and 3683 * clk_put() to trigger a clk_set_rate() call whenever 3684 * the boundaries are modified. Let's make sure 3685 * 'req_rate' is set to something non-zero so that 3686 * clk_set_rate_range() doesn't drop the frequency. 3687 */ 3688 orphan->req_rate = orphan->rate; 3689 } 3690 } 3691 } 3692 3693 /** 3694 * __clk_core_init - initialize the data structures in a struct clk_core 3695 * @core: clk_core being initialized 3696 * 3697 * Initializes the lists in struct clk_core, queries the hardware for the 3698 * parent and rate and sets them both. 3699 */ 3700 static int __clk_core_init(struct clk_core *core) 3701 { 3702 int ret; 3703 struct clk_core *parent; 3704 unsigned long rate; 3705 int phase; 3706 3707 clk_prepare_lock(); 3708 3709 /* 3710 * Set hw->core after grabbing the prepare_lock to synchronize with 3711 * callers of clk_core_fill_parent_index() where we treat hw->core 3712 * being NULL as the clk not being registered yet. This is crucial so 3713 * that clks aren't parented until their parent is fully registered. 3714 */ 3715 core->hw->core = core; 3716 3717 ret = clk_pm_runtime_get(core); 3718 if (ret) 3719 goto unlock; 3720 3721 /* check to see if a clock with this name is already registered */ 3722 if (clk_core_lookup(core->name)) { 3723 pr_debug("%s: clk %s already initialized\n", 3724 __func__, core->name); 3725 ret = -EEXIST; 3726 goto out; 3727 } 3728 3729 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3730 if (core->ops->set_rate && 3731 !((core->ops->round_rate || core->ops->determine_rate) && 3732 core->ops->recalc_rate)) { 3733 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3734 __func__, core->name); 3735 ret = -EINVAL; 3736 goto out; 3737 } 3738 3739 if (core->ops->set_parent && !core->ops->get_parent) { 3740 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3741 __func__, core->name); 3742 ret = -EINVAL; 3743 goto out; 3744 } 3745 3746 if (core->num_parents > 1 && !core->ops->get_parent) { 3747 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3748 __func__, core->name); 3749 ret = -EINVAL; 3750 goto out; 3751 } 3752 3753 if (core->ops->set_rate_and_parent && 3754 !(core->ops->set_parent && core->ops->set_rate)) { 3755 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3756 __func__, core->name); 3757 ret = -EINVAL; 3758 goto out; 3759 } 3760 3761 /* 3762 * optional platform-specific magic 3763 * 3764 * The .init callback is not used by any of the basic clock types, but 3765 * exists for weird hardware that must perform initialization magic for 3766 * CCF to get an accurate view of clock for any other callbacks. It may 3767 * also be used needs to perform dynamic allocations. Such allocation 3768 * must be freed in the terminate() callback. 3769 * This callback shall not be used to initialize the parameters state, 3770 * such as rate, parent, etc ... 3771 * 3772 * If it exist, this callback should called before any other callback of 3773 * the clock 3774 */ 3775 if (core->ops->init) { 3776 ret = core->ops->init(core->hw); 3777 if (ret) 3778 goto out; 3779 } 3780 3781 parent = core->parent = __clk_init_parent(core); 3782 3783 /* 3784 * Populate core->parent if parent has already been clk_core_init'd. If 3785 * parent has not yet been clk_core_init'd then place clk in the orphan 3786 * list. If clk doesn't have any parents then place it in the root 3787 * clk list. 3788 * 3789 * Every time a new clk is clk_init'd then we walk the list of orphan 3790 * clocks and re-parent any that are children of the clock currently 3791 * being clk_init'd. 3792 */ 3793 if (parent) { 3794 hlist_add_head(&core->child_node, &parent->children); 3795 core->orphan = parent->orphan; 3796 } else if (!core->num_parents) { 3797 hlist_add_head(&core->child_node, &clk_root_list); 3798 core->orphan = false; 3799 } else { 3800 hlist_add_head(&core->child_node, &clk_orphan_list); 3801 core->orphan = true; 3802 } 3803 3804 /* 3805 * Set clk's accuracy. The preferred method is to use 3806 * .recalc_accuracy. For simple clocks and lazy developers the default 3807 * fallback is to use the parent's accuracy. If a clock doesn't have a 3808 * parent (or is orphaned) then accuracy is set to zero (perfect 3809 * clock). 3810 */ 3811 if (core->ops->recalc_accuracy) 3812 core->accuracy = core->ops->recalc_accuracy(core->hw, 3813 clk_core_get_accuracy_no_lock(parent)); 3814 else if (parent) 3815 core->accuracy = parent->accuracy; 3816 else 3817 core->accuracy = 0; 3818 3819 /* 3820 * Set clk's phase by clk_core_get_phase() caching the phase. 3821 * Since a phase is by definition relative to its parent, just 3822 * query the current clock phase, or just assume it's in phase. 3823 */ 3824 phase = clk_core_get_phase(core); 3825 if (phase < 0) { 3826 ret = phase; 3827 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 3828 core->name); 3829 goto out; 3830 } 3831 3832 /* 3833 * Set clk's duty cycle. 3834 */ 3835 clk_core_update_duty_cycle_nolock(core); 3836 3837 /* 3838 * Set clk's rate. The preferred method is to use .recalc_rate. For 3839 * simple clocks and lazy developers the default fallback is to use the 3840 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3841 * then rate is set to zero. 3842 */ 3843 if (core->ops->recalc_rate) 3844 rate = core->ops->recalc_rate(core->hw, 3845 clk_core_get_rate_nolock(parent)); 3846 else if (parent) 3847 rate = parent->rate; 3848 else 3849 rate = 0; 3850 core->rate = core->req_rate = rate; 3851 3852 /* 3853 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3854 * don't get accidentally disabled when walking the orphan tree and 3855 * reparenting clocks 3856 */ 3857 if (core->flags & CLK_IS_CRITICAL) { 3858 ret = clk_core_prepare(core); 3859 if (ret) { 3860 pr_warn("%s: critical clk '%s' failed to prepare\n", 3861 __func__, core->name); 3862 goto out; 3863 } 3864 3865 ret = clk_core_enable_lock(core); 3866 if (ret) { 3867 pr_warn("%s: critical clk '%s' failed to enable\n", 3868 __func__, core->name); 3869 clk_core_unprepare(core); 3870 goto out; 3871 } 3872 } 3873 3874 clk_core_reparent_orphans_nolock(); 3875 3876 kref_init(&core->ref); 3877 out: 3878 clk_pm_runtime_put(core); 3879 unlock: 3880 if (ret) { 3881 hlist_del_init(&core->child_node); 3882 core->hw->core = NULL; 3883 } 3884 3885 clk_prepare_unlock(); 3886 3887 if (!ret) 3888 clk_debug_register(core); 3889 3890 return ret; 3891 } 3892 3893 /** 3894 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3895 * @core: clk to add consumer to 3896 * @clk: consumer to link to a clk 3897 */ 3898 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3899 { 3900 clk_prepare_lock(); 3901 hlist_add_head(&clk->clks_node, &core->clks); 3902 clk_prepare_unlock(); 3903 } 3904 3905 /** 3906 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3907 * @clk: consumer to unlink 3908 */ 3909 static void clk_core_unlink_consumer(struct clk *clk) 3910 { 3911 lockdep_assert_held(&prepare_lock); 3912 hlist_del(&clk->clks_node); 3913 } 3914 3915 /** 3916 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3917 * @core: clk to allocate a consumer for 3918 * @dev_id: string describing device name 3919 * @con_id: connection ID string on device 3920 * 3921 * Returns: clk consumer left unlinked from the consumer list 3922 */ 3923 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3924 const char *con_id) 3925 { 3926 struct clk *clk; 3927 3928 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3929 if (!clk) 3930 return ERR_PTR(-ENOMEM); 3931 3932 clk->core = core; 3933 clk->dev_id = dev_id; 3934 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3935 clk->max_rate = ULONG_MAX; 3936 3937 return clk; 3938 } 3939 3940 /** 3941 * free_clk - Free a clk consumer 3942 * @clk: clk consumer to free 3943 * 3944 * Note, this assumes the clk has been unlinked from the clk_core consumer 3945 * list. 3946 */ 3947 static void free_clk(struct clk *clk) 3948 { 3949 kfree_const(clk->con_id); 3950 kfree(clk); 3951 } 3952 3953 /** 3954 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3955 * a clk_hw 3956 * @dev: clk consumer device 3957 * @hw: clk_hw associated with the clk being consumed 3958 * @dev_id: string describing device name 3959 * @con_id: connection ID string on device 3960 * 3961 * This is the main function used to create a clk pointer for use by clk 3962 * consumers. It connects a consumer to the clk_core and clk_hw structures 3963 * used by the framework and clk provider respectively. 3964 */ 3965 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3966 const char *dev_id, const char *con_id) 3967 { 3968 struct clk *clk; 3969 struct clk_core *core; 3970 3971 /* This is to allow this function to be chained to others */ 3972 if (IS_ERR_OR_NULL(hw)) 3973 return ERR_CAST(hw); 3974 3975 core = hw->core; 3976 clk = alloc_clk(core, dev_id, con_id); 3977 if (IS_ERR(clk)) 3978 return clk; 3979 clk->dev = dev; 3980 3981 if (!try_module_get(core->owner)) { 3982 free_clk(clk); 3983 return ERR_PTR(-ENOENT); 3984 } 3985 3986 kref_get(&core->ref); 3987 clk_core_link_consumer(core, clk); 3988 3989 return clk; 3990 } 3991 3992 /** 3993 * clk_hw_get_clk - get clk consumer given an clk_hw 3994 * @hw: clk_hw associated with the clk being consumed 3995 * @con_id: connection ID string on device 3996 * 3997 * Returns: new clk consumer 3998 * This is the function to be used by providers which need 3999 * to get a consumer clk and act on the clock element 4000 * Calls to this function must be balanced with calls clk_put() 4001 */ 4002 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id) 4003 { 4004 struct device *dev = hw->core->dev; 4005 const char *name = dev ? dev_name(dev) : NULL; 4006 4007 return clk_hw_create_clk(dev, hw, name, con_id); 4008 } 4009 EXPORT_SYMBOL(clk_hw_get_clk); 4010 4011 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 4012 { 4013 const char *dst; 4014 4015 if (!src) { 4016 if (must_exist) 4017 return -EINVAL; 4018 return 0; 4019 } 4020 4021 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 4022 if (!dst) 4023 return -ENOMEM; 4024 4025 return 0; 4026 } 4027 4028 static int clk_core_populate_parent_map(struct clk_core *core, 4029 const struct clk_init_data *init) 4030 { 4031 u8 num_parents = init->num_parents; 4032 const char * const *parent_names = init->parent_names; 4033 const struct clk_hw **parent_hws = init->parent_hws; 4034 const struct clk_parent_data *parent_data = init->parent_data; 4035 int i, ret = 0; 4036 struct clk_parent_map *parents, *parent; 4037 4038 if (!num_parents) 4039 return 0; 4040 4041 /* 4042 * Avoid unnecessary string look-ups of clk_core's possible parents by 4043 * having a cache of names/clk_hw pointers to clk_core pointers. 4044 */ 4045 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 4046 core->parents = parents; 4047 if (!parents) 4048 return -ENOMEM; 4049 4050 /* Copy everything over because it might be __initdata */ 4051 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 4052 parent->index = -1; 4053 if (parent_names) { 4054 /* throw a WARN if any entries are NULL */ 4055 WARN(!parent_names[i], 4056 "%s: invalid NULL in %s's .parent_names\n", 4057 __func__, core->name); 4058 ret = clk_cpy_name(&parent->name, parent_names[i], 4059 true); 4060 } else if (parent_data) { 4061 parent->hw = parent_data[i].hw; 4062 parent->index = parent_data[i].index; 4063 ret = clk_cpy_name(&parent->fw_name, 4064 parent_data[i].fw_name, false); 4065 if (!ret) 4066 ret = clk_cpy_name(&parent->name, 4067 parent_data[i].name, 4068 false); 4069 } else if (parent_hws) { 4070 parent->hw = parent_hws[i]; 4071 } else { 4072 ret = -EINVAL; 4073 WARN(1, "Must specify parents if num_parents > 0\n"); 4074 } 4075 4076 if (ret) { 4077 do { 4078 kfree_const(parents[i].name); 4079 kfree_const(parents[i].fw_name); 4080 } while (--i >= 0); 4081 kfree(parents); 4082 4083 return ret; 4084 } 4085 } 4086 4087 return 0; 4088 } 4089 4090 static void clk_core_free_parent_map(struct clk_core *core) 4091 { 4092 int i = core->num_parents; 4093 4094 if (!core->num_parents) 4095 return; 4096 4097 while (--i >= 0) { 4098 kfree_const(core->parents[i].name); 4099 kfree_const(core->parents[i].fw_name); 4100 } 4101 4102 kfree(core->parents); 4103 } 4104 4105 static struct clk * 4106 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 4107 { 4108 int ret; 4109 struct clk_core *core; 4110 const struct clk_init_data *init = hw->init; 4111 4112 /* 4113 * The init data is not supposed to be used outside of registration path. 4114 * Set it to NULL so that provider drivers can't use it either and so that 4115 * we catch use of hw->init early on in the core. 4116 */ 4117 hw->init = NULL; 4118 4119 core = kzalloc(sizeof(*core), GFP_KERNEL); 4120 if (!core) { 4121 ret = -ENOMEM; 4122 goto fail_out; 4123 } 4124 4125 core->name = kstrdup_const(init->name, GFP_KERNEL); 4126 if (!core->name) { 4127 ret = -ENOMEM; 4128 goto fail_name; 4129 } 4130 4131 if (WARN_ON(!init->ops)) { 4132 ret = -EINVAL; 4133 goto fail_ops; 4134 } 4135 core->ops = init->ops; 4136 4137 if (dev && pm_runtime_enabled(dev)) 4138 core->rpm_enabled = true; 4139 core->dev = dev; 4140 core->of_node = np; 4141 if (dev && dev->driver) 4142 core->owner = dev->driver->owner; 4143 core->hw = hw; 4144 core->flags = init->flags; 4145 core->num_parents = init->num_parents; 4146 core->min_rate = 0; 4147 core->max_rate = ULONG_MAX; 4148 4149 ret = clk_core_populate_parent_map(core, init); 4150 if (ret) 4151 goto fail_parents; 4152 4153 INIT_HLIST_HEAD(&core->clks); 4154 4155 /* 4156 * Don't call clk_hw_create_clk() here because that would pin the 4157 * provider module to itself and prevent it from ever being removed. 4158 */ 4159 hw->clk = alloc_clk(core, NULL, NULL); 4160 if (IS_ERR(hw->clk)) { 4161 ret = PTR_ERR(hw->clk); 4162 goto fail_create_clk; 4163 } 4164 4165 clk_core_link_consumer(core, hw->clk); 4166 4167 ret = __clk_core_init(core); 4168 if (!ret) 4169 return hw->clk; 4170 4171 clk_prepare_lock(); 4172 clk_core_unlink_consumer(hw->clk); 4173 clk_prepare_unlock(); 4174 4175 free_clk(hw->clk); 4176 hw->clk = NULL; 4177 4178 fail_create_clk: 4179 clk_core_free_parent_map(core); 4180 fail_parents: 4181 fail_ops: 4182 kfree_const(core->name); 4183 fail_name: 4184 kfree(core); 4185 fail_out: 4186 return ERR_PTR(ret); 4187 } 4188 4189 /** 4190 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 4191 * @dev: Device to get device node of 4192 * 4193 * Return: device node pointer of @dev, or the device node pointer of 4194 * @dev->parent if dev doesn't have a device node, or NULL if neither 4195 * @dev or @dev->parent have a device node. 4196 */ 4197 static struct device_node *dev_or_parent_of_node(struct device *dev) 4198 { 4199 struct device_node *np; 4200 4201 if (!dev) 4202 return NULL; 4203 4204 np = dev_of_node(dev); 4205 if (!np) 4206 np = dev_of_node(dev->parent); 4207 4208 return np; 4209 } 4210 4211 /** 4212 * clk_register - allocate a new clock, register it and return an opaque cookie 4213 * @dev: device that is registering this clock 4214 * @hw: link to hardware-specific clock data 4215 * 4216 * clk_register is the *deprecated* interface for populating the clock tree with 4217 * new clock nodes. Use clk_hw_register() instead. 4218 * 4219 * Returns: a pointer to the newly allocated struct clk which 4220 * cannot be dereferenced by driver code but may be used in conjunction with the 4221 * rest of the clock API. In the event of an error clk_register will return an 4222 * error code; drivers must test for an error code after calling clk_register. 4223 */ 4224 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 4225 { 4226 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 4227 } 4228 EXPORT_SYMBOL_GPL(clk_register); 4229 4230 /** 4231 * clk_hw_register - register a clk_hw and return an error code 4232 * @dev: device that is registering this clock 4233 * @hw: link to hardware-specific clock data 4234 * 4235 * clk_hw_register is the primary interface for populating the clock tree with 4236 * new clock nodes. It returns an integer equal to zero indicating success or 4237 * less than zero indicating failure. Drivers must test for an error code after 4238 * calling clk_hw_register(). 4239 */ 4240 int clk_hw_register(struct device *dev, struct clk_hw *hw) 4241 { 4242 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 4243 hw)); 4244 } 4245 EXPORT_SYMBOL_GPL(clk_hw_register); 4246 4247 /* 4248 * of_clk_hw_register - register a clk_hw and return an error code 4249 * @node: device_node of device that is registering this clock 4250 * @hw: link to hardware-specific clock data 4251 * 4252 * of_clk_hw_register() is the primary interface for populating the clock tree 4253 * with new clock nodes when a struct device is not available, but a struct 4254 * device_node is. It returns an integer equal to zero indicating success or 4255 * less than zero indicating failure. Drivers must test for an error code after 4256 * calling of_clk_hw_register(). 4257 */ 4258 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 4259 { 4260 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 4261 } 4262 EXPORT_SYMBOL_GPL(of_clk_hw_register); 4263 4264 /* Free memory allocated for a clock. */ 4265 static void __clk_release(struct kref *ref) 4266 { 4267 struct clk_core *core = container_of(ref, struct clk_core, ref); 4268 4269 lockdep_assert_held(&prepare_lock); 4270 4271 clk_core_free_parent_map(core); 4272 kfree_const(core->name); 4273 kfree(core); 4274 } 4275 4276 /* 4277 * Empty clk_ops for unregistered clocks. These are used temporarily 4278 * after clk_unregister() was called on a clock and until last clock 4279 * consumer calls clk_put() and the struct clk object is freed. 4280 */ 4281 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 4282 { 4283 return -ENXIO; 4284 } 4285 4286 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 4287 { 4288 WARN_ON_ONCE(1); 4289 } 4290 4291 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 4292 unsigned long parent_rate) 4293 { 4294 return -ENXIO; 4295 } 4296 4297 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 4298 { 4299 return -ENXIO; 4300 } 4301 4302 static const struct clk_ops clk_nodrv_ops = { 4303 .enable = clk_nodrv_prepare_enable, 4304 .disable = clk_nodrv_disable_unprepare, 4305 .prepare = clk_nodrv_prepare_enable, 4306 .unprepare = clk_nodrv_disable_unprepare, 4307 .set_rate = clk_nodrv_set_rate, 4308 .set_parent = clk_nodrv_set_parent, 4309 }; 4310 4311 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4312 const struct clk_core *target) 4313 { 4314 int i; 4315 struct clk_core *child; 4316 4317 for (i = 0; i < root->num_parents; i++) 4318 if (root->parents[i].core == target) 4319 root->parents[i].core = NULL; 4320 4321 hlist_for_each_entry(child, &root->children, child_node) 4322 clk_core_evict_parent_cache_subtree(child, target); 4323 } 4324 4325 /* Remove this clk from all parent caches */ 4326 static void clk_core_evict_parent_cache(struct clk_core *core) 4327 { 4328 const struct hlist_head **lists; 4329 struct clk_core *root; 4330 4331 lockdep_assert_held(&prepare_lock); 4332 4333 for (lists = all_lists; *lists; lists++) 4334 hlist_for_each_entry(root, *lists, child_node) 4335 clk_core_evict_parent_cache_subtree(root, core); 4336 4337 } 4338 4339 /** 4340 * clk_unregister - unregister a currently registered clock 4341 * @clk: clock to unregister 4342 */ 4343 void clk_unregister(struct clk *clk) 4344 { 4345 unsigned long flags; 4346 const struct clk_ops *ops; 4347 4348 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4349 return; 4350 4351 clk_debug_unregister(clk->core); 4352 4353 clk_prepare_lock(); 4354 4355 ops = clk->core->ops; 4356 if (ops == &clk_nodrv_ops) { 4357 pr_err("%s: unregistered clock: %s\n", __func__, 4358 clk->core->name); 4359 goto unlock; 4360 } 4361 /* 4362 * Assign empty clock ops for consumers that might still hold 4363 * a reference to this clock. 4364 */ 4365 flags = clk_enable_lock(); 4366 clk->core->ops = &clk_nodrv_ops; 4367 clk_enable_unlock(flags); 4368 4369 if (ops->terminate) 4370 ops->terminate(clk->core->hw); 4371 4372 if (!hlist_empty(&clk->core->children)) { 4373 struct clk_core *child; 4374 struct hlist_node *t; 4375 4376 /* Reparent all children to the orphan list. */ 4377 hlist_for_each_entry_safe(child, t, &clk->core->children, 4378 child_node) 4379 clk_core_set_parent_nolock(child, NULL); 4380 } 4381 4382 clk_core_evict_parent_cache(clk->core); 4383 4384 hlist_del_init(&clk->core->child_node); 4385 4386 if (clk->core->prepare_count) 4387 pr_warn("%s: unregistering prepared clock: %s\n", 4388 __func__, clk->core->name); 4389 4390 if (clk->core->protect_count) 4391 pr_warn("%s: unregistering protected clock: %s\n", 4392 __func__, clk->core->name); 4393 4394 kref_put(&clk->core->ref, __clk_release); 4395 free_clk(clk); 4396 unlock: 4397 clk_prepare_unlock(); 4398 } 4399 EXPORT_SYMBOL_GPL(clk_unregister); 4400 4401 /** 4402 * clk_hw_unregister - unregister a currently registered clk_hw 4403 * @hw: hardware-specific clock data to unregister 4404 */ 4405 void clk_hw_unregister(struct clk_hw *hw) 4406 { 4407 clk_unregister(hw->clk); 4408 } 4409 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4410 4411 static void devm_clk_unregister_cb(struct device *dev, void *res) 4412 { 4413 clk_unregister(*(struct clk **)res); 4414 } 4415 4416 static void devm_clk_hw_unregister_cb(struct device *dev, void *res) 4417 { 4418 clk_hw_unregister(*(struct clk_hw **)res); 4419 } 4420 4421 /** 4422 * devm_clk_register - resource managed clk_register() 4423 * @dev: device that is registering this clock 4424 * @hw: link to hardware-specific clock data 4425 * 4426 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4427 * 4428 * Clocks returned from this function are automatically clk_unregister()ed on 4429 * driver detach. See clk_register() for more information. 4430 */ 4431 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4432 { 4433 struct clk *clk; 4434 struct clk **clkp; 4435 4436 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL); 4437 if (!clkp) 4438 return ERR_PTR(-ENOMEM); 4439 4440 clk = clk_register(dev, hw); 4441 if (!IS_ERR(clk)) { 4442 *clkp = clk; 4443 devres_add(dev, clkp); 4444 } else { 4445 devres_free(clkp); 4446 } 4447 4448 return clk; 4449 } 4450 EXPORT_SYMBOL_GPL(devm_clk_register); 4451 4452 /** 4453 * devm_clk_hw_register - resource managed clk_hw_register() 4454 * @dev: device that is registering this clock 4455 * @hw: link to hardware-specific clock data 4456 * 4457 * Managed clk_hw_register(). Clocks registered by this function are 4458 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4459 * for more information. 4460 */ 4461 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4462 { 4463 struct clk_hw **hwp; 4464 int ret; 4465 4466 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL); 4467 if (!hwp) 4468 return -ENOMEM; 4469 4470 ret = clk_hw_register(dev, hw); 4471 if (!ret) { 4472 *hwp = hw; 4473 devres_add(dev, hwp); 4474 } else { 4475 devres_free(hwp); 4476 } 4477 4478 return ret; 4479 } 4480 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4481 4482 static void devm_clk_release(struct device *dev, void *res) 4483 { 4484 clk_put(*(struct clk **)res); 4485 } 4486 4487 /** 4488 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk() 4489 * @dev: device that is registering this clock 4490 * @hw: clk_hw associated with the clk being consumed 4491 * @con_id: connection ID string on device 4492 * 4493 * Managed clk_hw_get_clk(). Clocks got with this function are 4494 * automatically clk_put() on driver detach. See clk_put() 4495 * for more information. 4496 */ 4497 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw, 4498 const char *con_id) 4499 { 4500 struct clk *clk; 4501 struct clk **clkp; 4502 4503 /* This should not happen because it would mean we have drivers 4504 * passing around clk_hw pointers instead of having the caller use 4505 * proper clk_get() style APIs 4506 */ 4507 WARN_ON_ONCE(dev != hw->core->dev); 4508 4509 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4510 if (!clkp) 4511 return ERR_PTR(-ENOMEM); 4512 4513 clk = clk_hw_get_clk(hw, con_id); 4514 if (!IS_ERR(clk)) { 4515 *clkp = clk; 4516 devres_add(dev, clkp); 4517 } else { 4518 devres_free(clkp); 4519 } 4520 4521 return clk; 4522 } 4523 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk); 4524 4525 /* 4526 * clkdev helpers 4527 */ 4528 4529 void __clk_put(struct clk *clk) 4530 { 4531 struct module *owner; 4532 4533 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4534 return; 4535 4536 clk_prepare_lock(); 4537 4538 /* 4539 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4540 * given user should be balanced with calls to clk_rate_exclusive_put() 4541 * and by that same consumer 4542 */ 4543 if (WARN_ON(clk->exclusive_count)) { 4544 /* We voiced our concern, let's sanitize the situation */ 4545 clk->core->protect_count -= (clk->exclusive_count - 1); 4546 clk_core_rate_unprotect(clk->core); 4547 clk->exclusive_count = 0; 4548 } 4549 4550 hlist_del(&clk->clks_node); 4551 4552 /* If we had any boundaries on that clock, let's drop them. */ 4553 if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX) 4554 clk_set_rate_range_nolock(clk, 0, ULONG_MAX); 4555 4556 owner = clk->core->owner; 4557 kref_put(&clk->core->ref, __clk_release); 4558 4559 clk_prepare_unlock(); 4560 4561 module_put(owner); 4562 4563 free_clk(clk); 4564 } 4565 4566 /*** clk rate change notifiers ***/ 4567 4568 /** 4569 * clk_notifier_register - add a clk rate change notifier 4570 * @clk: struct clk * to watch 4571 * @nb: struct notifier_block * with callback info 4572 * 4573 * Request notification when clk's rate changes. This uses an SRCU 4574 * notifier because we want it to block and notifier unregistrations are 4575 * uncommon. The callbacks associated with the notifier must not 4576 * re-enter into the clk framework by calling any top-level clk APIs; 4577 * this will cause a nested prepare_lock mutex. 4578 * 4579 * In all notification cases (pre, post and abort rate change) the original 4580 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4581 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4582 * 4583 * clk_notifier_register() must be called from non-atomic context. 4584 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4585 * allocation failure; otherwise, passes along the return value of 4586 * srcu_notifier_chain_register(). 4587 */ 4588 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4589 { 4590 struct clk_notifier *cn; 4591 int ret = -ENOMEM; 4592 4593 if (!clk || !nb) 4594 return -EINVAL; 4595 4596 clk_prepare_lock(); 4597 4598 /* search the list of notifiers for this clk */ 4599 list_for_each_entry(cn, &clk_notifier_list, node) 4600 if (cn->clk == clk) 4601 goto found; 4602 4603 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4604 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4605 if (!cn) 4606 goto out; 4607 4608 cn->clk = clk; 4609 srcu_init_notifier_head(&cn->notifier_head); 4610 4611 list_add(&cn->node, &clk_notifier_list); 4612 4613 found: 4614 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4615 4616 clk->core->notifier_count++; 4617 4618 out: 4619 clk_prepare_unlock(); 4620 4621 return ret; 4622 } 4623 EXPORT_SYMBOL_GPL(clk_notifier_register); 4624 4625 /** 4626 * clk_notifier_unregister - remove a clk rate change notifier 4627 * @clk: struct clk * 4628 * @nb: struct notifier_block * with callback info 4629 * 4630 * Request no further notification for changes to 'clk' and frees memory 4631 * allocated in clk_notifier_register. 4632 * 4633 * Returns -EINVAL if called with null arguments; otherwise, passes 4634 * along the return value of srcu_notifier_chain_unregister(). 4635 */ 4636 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4637 { 4638 struct clk_notifier *cn; 4639 int ret = -ENOENT; 4640 4641 if (!clk || !nb) 4642 return -EINVAL; 4643 4644 clk_prepare_lock(); 4645 4646 list_for_each_entry(cn, &clk_notifier_list, node) { 4647 if (cn->clk == clk) { 4648 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4649 4650 clk->core->notifier_count--; 4651 4652 /* XXX the notifier code should handle this better */ 4653 if (!cn->notifier_head.head) { 4654 srcu_cleanup_notifier_head(&cn->notifier_head); 4655 list_del(&cn->node); 4656 kfree(cn); 4657 } 4658 break; 4659 } 4660 } 4661 4662 clk_prepare_unlock(); 4663 4664 return ret; 4665 } 4666 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4667 4668 struct clk_notifier_devres { 4669 struct clk *clk; 4670 struct notifier_block *nb; 4671 }; 4672 4673 static void devm_clk_notifier_release(struct device *dev, void *res) 4674 { 4675 struct clk_notifier_devres *devres = res; 4676 4677 clk_notifier_unregister(devres->clk, devres->nb); 4678 } 4679 4680 int devm_clk_notifier_register(struct device *dev, struct clk *clk, 4681 struct notifier_block *nb) 4682 { 4683 struct clk_notifier_devres *devres; 4684 int ret; 4685 4686 devres = devres_alloc(devm_clk_notifier_release, 4687 sizeof(*devres), GFP_KERNEL); 4688 4689 if (!devres) 4690 return -ENOMEM; 4691 4692 ret = clk_notifier_register(clk, nb); 4693 if (!ret) { 4694 devres->clk = clk; 4695 devres->nb = nb; 4696 } else { 4697 devres_free(devres); 4698 } 4699 4700 return ret; 4701 } 4702 EXPORT_SYMBOL_GPL(devm_clk_notifier_register); 4703 4704 #ifdef CONFIG_OF 4705 static void clk_core_reparent_orphans(void) 4706 { 4707 clk_prepare_lock(); 4708 clk_core_reparent_orphans_nolock(); 4709 clk_prepare_unlock(); 4710 } 4711 4712 /** 4713 * struct of_clk_provider - Clock provider registration structure 4714 * @link: Entry in global list of clock providers 4715 * @node: Pointer to device tree node of clock provider 4716 * @get: Get clock callback. Returns NULL or a struct clk for the 4717 * given clock specifier 4718 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4719 * struct clk_hw for the given clock specifier 4720 * @data: context pointer to be passed into @get callback 4721 */ 4722 struct of_clk_provider { 4723 struct list_head link; 4724 4725 struct device_node *node; 4726 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4727 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4728 void *data; 4729 }; 4730 4731 extern struct of_device_id __clk_of_table; 4732 static const struct of_device_id __clk_of_table_sentinel 4733 __used __section("__clk_of_table_end"); 4734 4735 static LIST_HEAD(of_clk_providers); 4736 static DEFINE_MUTEX(of_clk_mutex); 4737 4738 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4739 void *data) 4740 { 4741 return data; 4742 } 4743 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4744 4745 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4746 { 4747 return data; 4748 } 4749 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4750 4751 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4752 { 4753 struct clk_onecell_data *clk_data = data; 4754 unsigned int idx = clkspec->args[0]; 4755 4756 if (idx >= clk_data->clk_num) { 4757 pr_err("%s: invalid clock index %u\n", __func__, idx); 4758 return ERR_PTR(-EINVAL); 4759 } 4760 4761 return clk_data->clks[idx]; 4762 } 4763 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4764 4765 struct clk_hw * 4766 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4767 { 4768 struct clk_hw_onecell_data *hw_data = data; 4769 unsigned int idx = clkspec->args[0]; 4770 4771 if (idx >= hw_data->num) { 4772 pr_err("%s: invalid index %u\n", __func__, idx); 4773 return ERR_PTR(-EINVAL); 4774 } 4775 4776 return hw_data->hws[idx]; 4777 } 4778 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4779 4780 /** 4781 * of_clk_add_provider() - Register a clock provider for a node 4782 * @np: Device node pointer associated with clock provider 4783 * @clk_src_get: callback for decoding clock 4784 * @data: context pointer for @clk_src_get callback. 4785 * 4786 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4787 */ 4788 int of_clk_add_provider(struct device_node *np, 4789 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4790 void *data), 4791 void *data) 4792 { 4793 struct of_clk_provider *cp; 4794 int ret; 4795 4796 if (!np) 4797 return 0; 4798 4799 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4800 if (!cp) 4801 return -ENOMEM; 4802 4803 cp->node = of_node_get(np); 4804 cp->data = data; 4805 cp->get = clk_src_get; 4806 4807 mutex_lock(&of_clk_mutex); 4808 list_add(&cp->link, &of_clk_providers); 4809 mutex_unlock(&of_clk_mutex); 4810 pr_debug("Added clock from %pOF\n", np); 4811 4812 clk_core_reparent_orphans(); 4813 4814 ret = of_clk_set_defaults(np, true); 4815 if (ret < 0) 4816 of_clk_del_provider(np); 4817 4818 fwnode_dev_initialized(&np->fwnode, true); 4819 4820 return ret; 4821 } 4822 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4823 4824 /** 4825 * of_clk_add_hw_provider() - Register a clock provider for a node 4826 * @np: Device node pointer associated with clock provider 4827 * @get: callback for decoding clk_hw 4828 * @data: context pointer for @get callback. 4829 */ 4830 int of_clk_add_hw_provider(struct device_node *np, 4831 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4832 void *data), 4833 void *data) 4834 { 4835 struct of_clk_provider *cp; 4836 int ret; 4837 4838 if (!np) 4839 return 0; 4840 4841 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4842 if (!cp) 4843 return -ENOMEM; 4844 4845 cp->node = of_node_get(np); 4846 cp->data = data; 4847 cp->get_hw = get; 4848 4849 mutex_lock(&of_clk_mutex); 4850 list_add(&cp->link, &of_clk_providers); 4851 mutex_unlock(&of_clk_mutex); 4852 pr_debug("Added clk_hw provider from %pOF\n", np); 4853 4854 clk_core_reparent_orphans(); 4855 4856 ret = of_clk_set_defaults(np, true); 4857 if (ret < 0) 4858 of_clk_del_provider(np); 4859 4860 fwnode_dev_initialized(&np->fwnode, true); 4861 4862 return ret; 4863 } 4864 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4865 4866 static void devm_of_clk_release_provider(struct device *dev, void *res) 4867 { 4868 of_clk_del_provider(*(struct device_node **)res); 4869 } 4870 4871 /* 4872 * We allow a child device to use its parent device as the clock provider node 4873 * for cases like MFD sub-devices where the child device driver wants to use 4874 * devm_*() APIs but not list the device in DT as a sub-node. 4875 */ 4876 static struct device_node *get_clk_provider_node(struct device *dev) 4877 { 4878 struct device_node *np, *parent_np; 4879 4880 np = dev->of_node; 4881 parent_np = dev->parent ? dev->parent->of_node : NULL; 4882 4883 if (!of_find_property(np, "#clock-cells", NULL)) 4884 if (of_find_property(parent_np, "#clock-cells", NULL)) 4885 np = parent_np; 4886 4887 return np; 4888 } 4889 4890 /** 4891 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4892 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4893 * @get: callback for decoding clk_hw 4894 * @data: context pointer for @get callback 4895 * 4896 * Registers clock provider for given device's node. If the device has no DT 4897 * node or if the device node lacks of clock provider information (#clock-cells) 4898 * then the parent device's node is scanned for this information. If parent node 4899 * has the #clock-cells then it is used in registration. Provider is 4900 * automatically released at device exit. 4901 * 4902 * Return: 0 on success or an errno on failure. 4903 */ 4904 int devm_of_clk_add_hw_provider(struct device *dev, 4905 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4906 void *data), 4907 void *data) 4908 { 4909 struct device_node **ptr, *np; 4910 int ret; 4911 4912 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4913 GFP_KERNEL); 4914 if (!ptr) 4915 return -ENOMEM; 4916 4917 np = get_clk_provider_node(dev); 4918 ret = of_clk_add_hw_provider(np, get, data); 4919 if (!ret) { 4920 *ptr = np; 4921 devres_add(dev, ptr); 4922 } else { 4923 devres_free(ptr); 4924 } 4925 4926 return ret; 4927 } 4928 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4929 4930 /** 4931 * of_clk_del_provider() - Remove a previously registered clock provider 4932 * @np: Device node pointer associated with clock provider 4933 */ 4934 void of_clk_del_provider(struct device_node *np) 4935 { 4936 struct of_clk_provider *cp; 4937 4938 if (!np) 4939 return; 4940 4941 mutex_lock(&of_clk_mutex); 4942 list_for_each_entry(cp, &of_clk_providers, link) { 4943 if (cp->node == np) { 4944 list_del(&cp->link); 4945 fwnode_dev_initialized(&np->fwnode, false); 4946 of_node_put(cp->node); 4947 kfree(cp); 4948 break; 4949 } 4950 } 4951 mutex_unlock(&of_clk_mutex); 4952 } 4953 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4954 4955 /** 4956 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4957 * @np: device node to parse clock specifier from 4958 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4959 * @name: clock name to find and parse. If name is NULL, the index is used 4960 * @out_args: Result of parsing the clock specifier 4961 * 4962 * Parses a device node's "clocks" and "clock-names" properties to find the 4963 * phandle and cells for the index or name that is desired. The resulting clock 4964 * specifier is placed into @out_args, or an errno is returned when there's a 4965 * parsing error. The @index argument is ignored if @name is non-NULL. 4966 * 4967 * Example: 4968 * 4969 * phandle1: clock-controller@1 { 4970 * #clock-cells = <2>; 4971 * } 4972 * 4973 * phandle2: clock-controller@2 { 4974 * #clock-cells = <1>; 4975 * } 4976 * 4977 * clock-consumer@3 { 4978 * clocks = <&phandle1 1 2 &phandle2 3>; 4979 * clock-names = "name1", "name2"; 4980 * } 4981 * 4982 * To get a device_node for `clock-controller@2' node you may call this 4983 * function a few different ways: 4984 * 4985 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4986 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4987 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4988 * 4989 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4990 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4991 * the "clock-names" property of @np. 4992 */ 4993 static int of_parse_clkspec(const struct device_node *np, int index, 4994 const char *name, struct of_phandle_args *out_args) 4995 { 4996 int ret = -ENOENT; 4997 4998 /* Walk up the tree of devices looking for a clock property that matches */ 4999 while (np) { 5000 /* 5001 * For named clocks, first look up the name in the 5002 * "clock-names" property. If it cannot be found, then index 5003 * will be an error code and of_parse_phandle_with_args() will 5004 * return -EINVAL. 5005 */ 5006 if (name) 5007 index = of_property_match_string(np, "clock-names", name); 5008 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 5009 index, out_args); 5010 if (!ret) 5011 break; 5012 if (name && index >= 0) 5013 break; 5014 5015 /* 5016 * No matching clock found on this node. If the parent node 5017 * has a "clock-ranges" property, then we can try one of its 5018 * clocks. 5019 */ 5020 np = np->parent; 5021 if (np && !of_get_property(np, "clock-ranges", NULL)) 5022 break; 5023 index = 0; 5024 } 5025 5026 return ret; 5027 } 5028 5029 static struct clk_hw * 5030 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 5031 struct of_phandle_args *clkspec) 5032 { 5033 struct clk *clk; 5034 5035 if (provider->get_hw) 5036 return provider->get_hw(clkspec, provider->data); 5037 5038 clk = provider->get(clkspec, provider->data); 5039 if (IS_ERR(clk)) 5040 return ERR_CAST(clk); 5041 return __clk_get_hw(clk); 5042 } 5043 5044 static struct clk_hw * 5045 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 5046 { 5047 struct of_clk_provider *provider; 5048 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 5049 5050 if (!clkspec) 5051 return ERR_PTR(-EINVAL); 5052 5053 mutex_lock(&of_clk_mutex); 5054 list_for_each_entry(provider, &of_clk_providers, link) { 5055 if (provider->node == clkspec->np) { 5056 hw = __of_clk_get_hw_from_provider(provider, clkspec); 5057 if (!IS_ERR(hw)) 5058 break; 5059 } 5060 } 5061 mutex_unlock(&of_clk_mutex); 5062 5063 return hw; 5064 } 5065 5066 /** 5067 * of_clk_get_from_provider() - Lookup a clock from a clock provider 5068 * @clkspec: pointer to a clock specifier data structure 5069 * 5070 * This function looks up a struct clk from the registered list of clock 5071 * providers, an input is a clock specifier data structure as returned 5072 * from the of_parse_phandle_with_args() function call. 5073 */ 5074 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 5075 { 5076 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 5077 5078 return clk_hw_create_clk(NULL, hw, NULL, __func__); 5079 } 5080 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 5081 5082 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 5083 const char *con_id) 5084 { 5085 int ret; 5086 struct clk_hw *hw; 5087 struct of_phandle_args clkspec; 5088 5089 ret = of_parse_clkspec(np, index, con_id, &clkspec); 5090 if (ret) 5091 return ERR_PTR(ret); 5092 5093 hw = of_clk_get_hw_from_clkspec(&clkspec); 5094 of_node_put(clkspec.np); 5095 5096 return hw; 5097 } 5098 5099 static struct clk *__of_clk_get(struct device_node *np, 5100 int index, const char *dev_id, 5101 const char *con_id) 5102 { 5103 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 5104 5105 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 5106 } 5107 5108 struct clk *of_clk_get(struct device_node *np, int index) 5109 { 5110 return __of_clk_get(np, index, np->full_name, NULL); 5111 } 5112 EXPORT_SYMBOL(of_clk_get); 5113 5114 /** 5115 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 5116 * @np: pointer to clock consumer node 5117 * @name: name of consumer's clock input, or NULL for the first clock reference 5118 * 5119 * This function parses the clocks and clock-names properties, 5120 * and uses them to look up the struct clk from the registered list of clock 5121 * providers. 5122 */ 5123 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 5124 { 5125 if (!np) 5126 return ERR_PTR(-ENOENT); 5127 5128 return __of_clk_get(np, 0, np->full_name, name); 5129 } 5130 EXPORT_SYMBOL(of_clk_get_by_name); 5131 5132 /** 5133 * of_clk_get_parent_count() - Count the number of clocks a device node has 5134 * @np: device node to count 5135 * 5136 * Returns: The number of clocks that are possible parents of this node 5137 */ 5138 unsigned int of_clk_get_parent_count(const struct device_node *np) 5139 { 5140 int count; 5141 5142 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 5143 if (count < 0) 5144 return 0; 5145 5146 return count; 5147 } 5148 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 5149 5150 const char *of_clk_get_parent_name(const struct device_node *np, int index) 5151 { 5152 struct of_phandle_args clkspec; 5153 struct property *prop; 5154 const char *clk_name; 5155 const __be32 *vp; 5156 u32 pv; 5157 int rc; 5158 int count; 5159 struct clk *clk; 5160 5161 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 5162 &clkspec); 5163 if (rc) 5164 return NULL; 5165 5166 index = clkspec.args_count ? clkspec.args[0] : 0; 5167 count = 0; 5168 5169 /* if there is an indices property, use it to transfer the index 5170 * specified into an array offset for the clock-output-names property. 5171 */ 5172 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 5173 if (index == pv) { 5174 index = count; 5175 break; 5176 } 5177 count++; 5178 } 5179 /* We went off the end of 'clock-indices' without finding it */ 5180 if (prop && !vp) 5181 return NULL; 5182 5183 if (of_property_read_string_index(clkspec.np, "clock-output-names", 5184 index, 5185 &clk_name) < 0) { 5186 /* 5187 * Best effort to get the name if the clock has been 5188 * registered with the framework. If the clock isn't 5189 * registered, we return the node name as the name of 5190 * the clock as long as #clock-cells = 0. 5191 */ 5192 clk = of_clk_get_from_provider(&clkspec); 5193 if (IS_ERR(clk)) { 5194 if (clkspec.args_count == 0) 5195 clk_name = clkspec.np->name; 5196 else 5197 clk_name = NULL; 5198 } else { 5199 clk_name = __clk_get_name(clk); 5200 clk_put(clk); 5201 } 5202 } 5203 5204 5205 of_node_put(clkspec.np); 5206 return clk_name; 5207 } 5208 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 5209 5210 /** 5211 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 5212 * number of parents 5213 * @np: Device node pointer associated with clock provider 5214 * @parents: pointer to char array that hold the parents' names 5215 * @size: size of the @parents array 5216 * 5217 * Return: number of parents for the clock node. 5218 */ 5219 int of_clk_parent_fill(struct device_node *np, const char **parents, 5220 unsigned int size) 5221 { 5222 unsigned int i = 0; 5223 5224 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 5225 i++; 5226 5227 return i; 5228 } 5229 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 5230 5231 struct clock_provider { 5232 void (*clk_init_cb)(struct device_node *); 5233 struct device_node *np; 5234 struct list_head node; 5235 }; 5236 5237 /* 5238 * This function looks for a parent clock. If there is one, then it 5239 * checks that the provider for this parent clock was initialized, in 5240 * this case the parent clock will be ready. 5241 */ 5242 static int parent_ready(struct device_node *np) 5243 { 5244 int i = 0; 5245 5246 while (true) { 5247 struct clk *clk = of_clk_get(np, i); 5248 5249 /* this parent is ready we can check the next one */ 5250 if (!IS_ERR(clk)) { 5251 clk_put(clk); 5252 i++; 5253 continue; 5254 } 5255 5256 /* at least one parent is not ready, we exit now */ 5257 if (PTR_ERR(clk) == -EPROBE_DEFER) 5258 return 0; 5259 5260 /* 5261 * Here we make assumption that the device tree is 5262 * written correctly. So an error means that there is 5263 * no more parent. As we didn't exit yet, then the 5264 * previous parent are ready. If there is no clock 5265 * parent, no need to wait for them, then we can 5266 * consider their absence as being ready 5267 */ 5268 return 1; 5269 } 5270 } 5271 5272 /** 5273 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5274 * @np: Device node pointer associated with clock provider 5275 * @index: clock index 5276 * @flags: pointer to top-level framework flags 5277 * 5278 * Detects if the clock-critical property exists and, if so, sets the 5279 * corresponding CLK_IS_CRITICAL flag. 5280 * 5281 * Do not use this function. It exists only for legacy Device Tree 5282 * bindings, such as the one-clock-per-node style that are outdated. 5283 * Those bindings typically put all clock data into .dts and the Linux 5284 * driver has no clock data, thus making it impossible to set this flag 5285 * correctly from the driver. Only those drivers may call 5286 * of_clk_detect_critical from their setup functions. 5287 * 5288 * Return: error code or zero on success 5289 */ 5290 int of_clk_detect_critical(struct device_node *np, int index, 5291 unsigned long *flags) 5292 { 5293 struct property *prop; 5294 const __be32 *cur; 5295 uint32_t idx; 5296 5297 if (!np || !flags) 5298 return -EINVAL; 5299 5300 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 5301 if (index == idx) 5302 *flags |= CLK_IS_CRITICAL; 5303 5304 return 0; 5305 } 5306 5307 /** 5308 * of_clk_init() - Scan and init clock providers from the DT 5309 * @matches: array of compatible values and init functions for providers. 5310 * 5311 * This function scans the device tree for matching clock providers 5312 * and calls their initialization functions. It also does it by trying 5313 * to follow the dependencies. 5314 */ 5315 void __init of_clk_init(const struct of_device_id *matches) 5316 { 5317 const struct of_device_id *match; 5318 struct device_node *np; 5319 struct clock_provider *clk_provider, *next; 5320 bool is_init_done; 5321 bool force = false; 5322 LIST_HEAD(clk_provider_list); 5323 5324 if (!matches) 5325 matches = &__clk_of_table; 5326 5327 /* First prepare the list of the clocks providers */ 5328 for_each_matching_node_and_match(np, matches, &match) { 5329 struct clock_provider *parent; 5330 5331 if (!of_device_is_available(np)) 5332 continue; 5333 5334 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5335 if (!parent) { 5336 list_for_each_entry_safe(clk_provider, next, 5337 &clk_provider_list, node) { 5338 list_del(&clk_provider->node); 5339 of_node_put(clk_provider->np); 5340 kfree(clk_provider); 5341 } 5342 of_node_put(np); 5343 return; 5344 } 5345 5346 parent->clk_init_cb = match->data; 5347 parent->np = of_node_get(np); 5348 list_add_tail(&parent->node, &clk_provider_list); 5349 } 5350 5351 while (!list_empty(&clk_provider_list)) { 5352 is_init_done = false; 5353 list_for_each_entry_safe(clk_provider, next, 5354 &clk_provider_list, node) { 5355 if (force || parent_ready(clk_provider->np)) { 5356 5357 /* Don't populate platform devices */ 5358 of_node_set_flag(clk_provider->np, 5359 OF_POPULATED); 5360 5361 clk_provider->clk_init_cb(clk_provider->np); 5362 of_clk_set_defaults(clk_provider->np, true); 5363 5364 list_del(&clk_provider->node); 5365 of_node_put(clk_provider->np); 5366 kfree(clk_provider); 5367 is_init_done = true; 5368 } 5369 } 5370 5371 /* 5372 * We didn't manage to initialize any of the 5373 * remaining providers during the last loop, so now we 5374 * initialize all the remaining ones unconditionally 5375 * in case the clock parent was not mandatory 5376 */ 5377 if (!is_init_done) 5378 force = true; 5379 } 5380 } 5381 #endif 5382