xref: /linux/drivers/clk/clk.c (revision 7effbd18e496a954540fb6319db0d87d28a70496)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static const struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	if (!core->rpm_enabled)
112 		return 0;
113 
114 	return pm_runtime_resume_and_get(core->dev);
115 }
116 
117 static void clk_pm_runtime_put(struct clk_core *core)
118 {
119 	if (!core->rpm_enabled)
120 		return;
121 
122 	pm_runtime_put_sync(core->dev);
123 }
124 
125 /***           locking             ***/
126 static void clk_prepare_lock(void)
127 {
128 	if (!mutex_trylock(&prepare_lock)) {
129 		if (prepare_owner == current) {
130 			prepare_refcnt++;
131 			return;
132 		}
133 		mutex_lock(&prepare_lock);
134 	}
135 	WARN_ON_ONCE(prepare_owner != NULL);
136 	WARN_ON_ONCE(prepare_refcnt != 0);
137 	prepare_owner = current;
138 	prepare_refcnt = 1;
139 }
140 
141 static void clk_prepare_unlock(void)
142 {
143 	WARN_ON_ONCE(prepare_owner != current);
144 	WARN_ON_ONCE(prepare_refcnt == 0);
145 
146 	if (--prepare_refcnt)
147 		return;
148 	prepare_owner = NULL;
149 	mutex_unlock(&prepare_lock);
150 }
151 
152 static unsigned long clk_enable_lock(void)
153 	__acquires(enable_lock)
154 {
155 	unsigned long flags;
156 
157 	/*
158 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
159 	 * we already hold the lock. So, in that case, we rely only on
160 	 * reference counting.
161 	 */
162 	if (!IS_ENABLED(CONFIG_SMP) ||
163 	    !spin_trylock_irqsave(&enable_lock, flags)) {
164 		if (enable_owner == current) {
165 			enable_refcnt++;
166 			__acquire(enable_lock);
167 			if (!IS_ENABLED(CONFIG_SMP))
168 				local_save_flags(flags);
169 			return flags;
170 		}
171 		spin_lock_irqsave(&enable_lock, flags);
172 	}
173 	WARN_ON_ONCE(enable_owner != NULL);
174 	WARN_ON_ONCE(enable_refcnt != 0);
175 	enable_owner = current;
176 	enable_refcnt = 1;
177 	return flags;
178 }
179 
180 static void clk_enable_unlock(unsigned long flags)
181 	__releases(enable_lock)
182 {
183 	WARN_ON_ONCE(enable_owner != current);
184 	WARN_ON_ONCE(enable_refcnt == 0);
185 
186 	if (--enable_refcnt) {
187 		__release(enable_lock);
188 		return;
189 	}
190 	enable_owner = NULL;
191 	spin_unlock_irqrestore(&enable_lock, flags);
192 }
193 
194 static bool clk_core_rate_is_protected(struct clk_core *core)
195 {
196 	return core->protect_count;
197 }
198 
199 static bool clk_core_is_prepared(struct clk_core *core)
200 {
201 	bool ret = false;
202 
203 	/*
204 	 * .is_prepared is optional for clocks that can prepare
205 	 * fall back to software usage counter if it is missing
206 	 */
207 	if (!core->ops->is_prepared)
208 		return core->prepare_count;
209 
210 	if (!clk_pm_runtime_get(core)) {
211 		ret = core->ops->is_prepared(core->hw);
212 		clk_pm_runtime_put(core);
213 	}
214 
215 	return ret;
216 }
217 
218 static bool clk_core_is_enabled(struct clk_core *core)
219 {
220 	bool ret = false;
221 
222 	/*
223 	 * .is_enabled is only mandatory for clocks that gate
224 	 * fall back to software usage counter if .is_enabled is missing
225 	 */
226 	if (!core->ops->is_enabled)
227 		return core->enable_count;
228 
229 	/*
230 	 * Check if clock controller's device is runtime active before
231 	 * calling .is_enabled callback. If not, assume that clock is
232 	 * disabled, because we might be called from atomic context, from
233 	 * which pm_runtime_get() is not allowed.
234 	 * This function is called mainly from clk_disable_unused_subtree,
235 	 * which ensures proper runtime pm activation of controller before
236 	 * taking enable spinlock, but the below check is needed if one tries
237 	 * to call it from other places.
238 	 */
239 	if (core->rpm_enabled) {
240 		pm_runtime_get_noresume(core->dev);
241 		if (!pm_runtime_active(core->dev)) {
242 			ret = false;
243 			goto done;
244 		}
245 	}
246 
247 	/*
248 	 * This could be called with the enable lock held, or from atomic
249 	 * context. If the parent isn't enabled already, we can't do
250 	 * anything here. We can also assume this clock isn't enabled.
251 	 */
252 	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
253 		if (!clk_core_is_enabled(core->parent)) {
254 			ret = false;
255 			goto done;
256 		}
257 
258 	ret = core->ops->is_enabled(core->hw);
259 done:
260 	if (core->rpm_enabled)
261 		pm_runtime_put(core->dev);
262 
263 	return ret;
264 }
265 
266 /***    helper functions   ***/
267 
268 const char *__clk_get_name(const struct clk *clk)
269 {
270 	return !clk ? NULL : clk->core->name;
271 }
272 EXPORT_SYMBOL_GPL(__clk_get_name);
273 
274 const char *clk_hw_get_name(const struct clk_hw *hw)
275 {
276 	return hw->core->name;
277 }
278 EXPORT_SYMBOL_GPL(clk_hw_get_name);
279 
280 struct clk_hw *__clk_get_hw(struct clk *clk)
281 {
282 	return !clk ? NULL : clk->core->hw;
283 }
284 EXPORT_SYMBOL_GPL(__clk_get_hw);
285 
286 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
287 {
288 	return hw->core->num_parents;
289 }
290 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
291 
292 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
293 {
294 	return hw->core->parent ? hw->core->parent->hw : NULL;
295 }
296 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
297 
298 static struct clk_core *__clk_lookup_subtree(const char *name,
299 					     struct clk_core *core)
300 {
301 	struct clk_core *child;
302 	struct clk_core *ret;
303 
304 	if (!strcmp(core->name, name))
305 		return core;
306 
307 	hlist_for_each_entry(child, &core->children, child_node) {
308 		ret = __clk_lookup_subtree(name, child);
309 		if (ret)
310 			return ret;
311 	}
312 
313 	return NULL;
314 }
315 
316 static struct clk_core *clk_core_lookup(const char *name)
317 {
318 	struct clk_core *root_clk;
319 	struct clk_core *ret;
320 
321 	if (!name)
322 		return NULL;
323 
324 	/* search the 'proper' clk tree first */
325 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
326 		ret = __clk_lookup_subtree(name, root_clk);
327 		if (ret)
328 			return ret;
329 	}
330 
331 	/* if not found, then search the orphan tree */
332 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
333 		ret = __clk_lookup_subtree(name, root_clk);
334 		if (ret)
335 			return ret;
336 	}
337 
338 	return NULL;
339 }
340 
341 #ifdef CONFIG_OF
342 static int of_parse_clkspec(const struct device_node *np, int index,
343 			    const char *name, struct of_phandle_args *out_args);
344 static struct clk_hw *
345 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
346 #else
347 static inline int of_parse_clkspec(const struct device_node *np, int index,
348 				   const char *name,
349 				   struct of_phandle_args *out_args)
350 {
351 	return -ENOENT;
352 }
353 static inline struct clk_hw *
354 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
355 {
356 	return ERR_PTR(-ENOENT);
357 }
358 #endif
359 
360 /**
361  * clk_core_get - Find the clk_core parent of a clk
362  * @core: clk to find parent of
363  * @p_index: parent index to search for
364  *
365  * This is the preferred method for clk providers to find the parent of a
366  * clk when that parent is external to the clk controller. The parent_names
367  * array is indexed and treated as a local name matching a string in the device
368  * node's 'clock-names' property or as the 'con_id' matching the device's
369  * dev_name() in a clk_lookup. This allows clk providers to use their own
370  * namespace instead of looking for a globally unique parent string.
371  *
372  * For example the following DT snippet would allow a clock registered by the
373  * clock-controller@c001 that has a clk_init_data::parent_data array
374  * with 'xtal' in the 'name' member to find the clock provided by the
375  * clock-controller@f00abcd without needing to get the globally unique name of
376  * the xtal clk.
377  *
378  *      parent: clock-controller@f00abcd {
379  *              reg = <0xf00abcd 0xabcd>;
380  *              #clock-cells = <0>;
381  *      };
382  *
383  *      clock-controller@c001 {
384  *              reg = <0xc001 0xf00d>;
385  *              clocks = <&parent>;
386  *              clock-names = "xtal";
387  *              #clock-cells = <1>;
388  *      };
389  *
390  * Returns: -ENOENT when the provider can't be found or the clk doesn't
391  * exist in the provider or the name can't be found in the DT node or
392  * in a clkdev lookup. NULL when the provider knows about the clk but it
393  * isn't provided on this system.
394  * A valid clk_core pointer when the clk can be found in the provider.
395  */
396 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
397 {
398 	const char *name = core->parents[p_index].fw_name;
399 	int index = core->parents[p_index].index;
400 	struct clk_hw *hw = ERR_PTR(-ENOENT);
401 	struct device *dev = core->dev;
402 	const char *dev_id = dev ? dev_name(dev) : NULL;
403 	struct device_node *np = core->of_node;
404 	struct of_phandle_args clkspec;
405 
406 	if (np && (name || index >= 0) &&
407 	    !of_parse_clkspec(np, index, name, &clkspec)) {
408 		hw = of_clk_get_hw_from_clkspec(&clkspec);
409 		of_node_put(clkspec.np);
410 	} else if (name) {
411 		/*
412 		 * If the DT search above couldn't find the provider fallback to
413 		 * looking up via clkdev based clk_lookups.
414 		 */
415 		hw = clk_find_hw(dev_id, name);
416 	}
417 
418 	if (IS_ERR(hw))
419 		return ERR_CAST(hw);
420 
421 	return hw->core;
422 }
423 
424 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
425 {
426 	struct clk_parent_map *entry = &core->parents[index];
427 	struct clk_core *parent;
428 
429 	if (entry->hw) {
430 		parent = entry->hw->core;
431 	} else {
432 		parent = clk_core_get(core, index);
433 		if (PTR_ERR(parent) == -ENOENT && entry->name)
434 			parent = clk_core_lookup(entry->name);
435 	}
436 
437 	/*
438 	 * We have a direct reference but it isn't registered yet?
439 	 * Orphan it and let clk_reparent() update the orphan status
440 	 * when the parent is registered.
441 	 */
442 	if (!parent)
443 		parent = ERR_PTR(-EPROBE_DEFER);
444 
445 	/* Only cache it if it's not an error */
446 	if (!IS_ERR(parent))
447 		entry->core = parent;
448 }
449 
450 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
451 							 u8 index)
452 {
453 	if (!core || index >= core->num_parents || !core->parents)
454 		return NULL;
455 
456 	if (!core->parents[index].core)
457 		clk_core_fill_parent_index(core, index);
458 
459 	return core->parents[index].core;
460 }
461 
462 struct clk_hw *
463 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
464 {
465 	struct clk_core *parent;
466 
467 	parent = clk_core_get_parent_by_index(hw->core, index);
468 
469 	return !parent ? NULL : parent->hw;
470 }
471 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
472 
473 unsigned int __clk_get_enable_count(struct clk *clk)
474 {
475 	return !clk ? 0 : clk->core->enable_count;
476 }
477 
478 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
479 {
480 	if (!core)
481 		return 0;
482 
483 	if (!core->num_parents || core->parent)
484 		return core->rate;
485 
486 	/*
487 	 * Clk must have a parent because num_parents > 0 but the parent isn't
488 	 * known yet. Best to return 0 as the rate of this clk until we can
489 	 * properly recalc the rate based on the parent's rate.
490 	 */
491 	return 0;
492 }
493 
494 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
495 {
496 	return clk_core_get_rate_nolock(hw->core);
497 }
498 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
499 
500 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
501 {
502 	if (!core)
503 		return 0;
504 
505 	return core->accuracy;
506 }
507 
508 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
509 {
510 	return hw->core->flags;
511 }
512 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
513 
514 bool clk_hw_is_prepared(const struct clk_hw *hw)
515 {
516 	return clk_core_is_prepared(hw->core);
517 }
518 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
519 
520 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
521 {
522 	return clk_core_rate_is_protected(hw->core);
523 }
524 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
525 
526 bool clk_hw_is_enabled(const struct clk_hw *hw)
527 {
528 	return clk_core_is_enabled(hw->core);
529 }
530 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
531 
532 bool __clk_is_enabled(struct clk *clk)
533 {
534 	if (!clk)
535 		return false;
536 
537 	return clk_core_is_enabled(clk->core);
538 }
539 EXPORT_SYMBOL_GPL(__clk_is_enabled);
540 
541 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
542 			   unsigned long best, unsigned long flags)
543 {
544 	if (flags & CLK_MUX_ROUND_CLOSEST)
545 		return abs(now - rate) < abs(best - rate);
546 
547 	return now <= rate && now > best;
548 }
549 
550 static void clk_core_init_rate_req(struct clk_core * const core,
551 				   struct clk_rate_request *req,
552 				   unsigned long rate);
553 
554 static int clk_core_round_rate_nolock(struct clk_core *core,
555 				      struct clk_rate_request *req);
556 
557 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
558 {
559 	struct clk_core *tmp;
560 	unsigned int i;
561 
562 	/* Optimize for the case where the parent is already the parent. */
563 	if (core->parent == parent)
564 		return true;
565 
566 	for (i = 0; i < core->num_parents; i++) {
567 		tmp = clk_core_get_parent_by_index(core, i);
568 		if (!tmp)
569 			continue;
570 
571 		if (tmp == parent)
572 			return true;
573 	}
574 
575 	return false;
576 }
577 
578 static void
579 clk_core_forward_rate_req(struct clk_core *core,
580 			  const struct clk_rate_request *old_req,
581 			  struct clk_core *parent,
582 			  struct clk_rate_request *req,
583 			  unsigned long parent_rate)
584 {
585 	if (WARN_ON(!clk_core_has_parent(core, parent)))
586 		return;
587 
588 	clk_core_init_rate_req(parent, req, parent_rate);
589 
590 	if (req->min_rate < old_req->min_rate)
591 		req->min_rate = old_req->min_rate;
592 
593 	if (req->max_rate > old_req->max_rate)
594 		req->max_rate = old_req->max_rate;
595 }
596 
597 int clk_mux_determine_rate_flags(struct clk_hw *hw,
598 				 struct clk_rate_request *req,
599 				 unsigned long flags)
600 {
601 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
602 	int i, num_parents, ret;
603 	unsigned long best = 0;
604 
605 	/* if NO_REPARENT flag set, pass through to current parent */
606 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
607 		parent = core->parent;
608 		if (core->flags & CLK_SET_RATE_PARENT) {
609 			struct clk_rate_request parent_req;
610 
611 			if (!parent) {
612 				req->rate = 0;
613 				return 0;
614 			}
615 
616 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
617 
618 			trace_clk_rate_request_start(&parent_req);
619 
620 			ret = clk_core_round_rate_nolock(parent, &parent_req);
621 			if (ret)
622 				return ret;
623 
624 			trace_clk_rate_request_done(&parent_req);
625 
626 			best = parent_req.rate;
627 		} else if (parent) {
628 			best = clk_core_get_rate_nolock(parent);
629 		} else {
630 			best = clk_core_get_rate_nolock(core);
631 		}
632 
633 		goto out;
634 	}
635 
636 	/* find the parent that can provide the fastest rate <= rate */
637 	num_parents = core->num_parents;
638 	for (i = 0; i < num_parents; i++) {
639 		unsigned long parent_rate;
640 
641 		parent = clk_core_get_parent_by_index(core, i);
642 		if (!parent)
643 			continue;
644 
645 		if (core->flags & CLK_SET_RATE_PARENT) {
646 			struct clk_rate_request parent_req;
647 
648 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
649 
650 			trace_clk_rate_request_start(&parent_req);
651 
652 			ret = clk_core_round_rate_nolock(parent, &parent_req);
653 			if (ret)
654 				continue;
655 
656 			trace_clk_rate_request_done(&parent_req);
657 
658 			parent_rate = parent_req.rate;
659 		} else {
660 			parent_rate = clk_core_get_rate_nolock(parent);
661 		}
662 
663 		if (mux_is_better_rate(req->rate, parent_rate,
664 				       best, flags)) {
665 			best_parent = parent;
666 			best = parent_rate;
667 		}
668 	}
669 
670 	if (!best_parent)
671 		return -EINVAL;
672 
673 out:
674 	if (best_parent)
675 		req->best_parent_hw = best_parent->hw;
676 	req->best_parent_rate = best;
677 	req->rate = best;
678 
679 	return 0;
680 }
681 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
682 
683 struct clk *__clk_lookup(const char *name)
684 {
685 	struct clk_core *core = clk_core_lookup(name);
686 
687 	return !core ? NULL : core->hw->clk;
688 }
689 
690 static void clk_core_get_boundaries(struct clk_core *core,
691 				    unsigned long *min_rate,
692 				    unsigned long *max_rate)
693 {
694 	struct clk *clk_user;
695 
696 	lockdep_assert_held(&prepare_lock);
697 
698 	*min_rate = core->min_rate;
699 	*max_rate = core->max_rate;
700 
701 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
702 		*min_rate = max(*min_rate, clk_user->min_rate);
703 
704 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
705 		*max_rate = min(*max_rate, clk_user->max_rate);
706 }
707 
708 /*
709  * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
710  * @hw: the hw clk we want to get the range from
711  * @min_rate: pointer to the variable that will hold the minimum
712  * @max_rate: pointer to the variable that will hold the maximum
713  *
714  * Fills the @min_rate and @max_rate variables with the minimum and
715  * maximum that clock can reach.
716  */
717 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
718 			   unsigned long *max_rate)
719 {
720 	clk_core_get_boundaries(hw->core, min_rate, max_rate);
721 }
722 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
723 
724 static bool clk_core_check_boundaries(struct clk_core *core,
725 				      unsigned long min_rate,
726 				      unsigned long max_rate)
727 {
728 	struct clk *user;
729 
730 	lockdep_assert_held(&prepare_lock);
731 
732 	if (min_rate > core->max_rate || max_rate < core->min_rate)
733 		return false;
734 
735 	hlist_for_each_entry(user, &core->clks, clks_node)
736 		if (min_rate > user->max_rate || max_rate < user->min_rate)
737 			return false;
738 
739 	return true;
740 }
741 
742 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
743 			   unsigned long max_rate)
744 {
745 	hw->core->min_rate = min_rate;
746 	hw->core->max_rate = max_rate;
747 }
748 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
749 
750 /*
751  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
752  * @hw: mux type clk to determine rate on
753  * @req: rate request, also used to return preferred parent and frequencies
754  *
755  * Helper for finding best parent to provide a given frequency. This can be used
756  * directly as a determine_rate callback (e.g. for a mux), or from a more
757  * complex clock that may combine a mux with other operations.
758  *
759  * Returns: 0 on success, -EERROR value on error
760  */
761 int __clk_mux_determine_rate(struct clk_hw *hw,
762 			     struct clk_rate_request *req)
763 {
764 	return clk_mux_determine_rate_flags(hw, req, 0);
765 }
766 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
767 
768 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
769 				     struct clk_rate_request *req)
770 {
771 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
772 }
773 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
774 
775 /***        clk api        ***/
776 
777 static void clk_core_rate_unprotect(struct clk_core *core)
778 {
779 	lockdep_assert_held(&prepare_lock);
780 
781 	if (!core)
782 		return;
783 
784 	if (WARN(core->protect_count == 0,
785 	    "%s already unprotected\n", core->name))
786 		return;
787 
788 	if (--core->protect_count > 0)
789 		return;
790 
791 	clk_core_rate_unprotect(core->parent);
792 }
793 
794 static int clk_core_rate_nuke_protect(struct clk_core *core)
795 {
796 	int ret;
797 
798 	lockdep_assert_held(&prepare_lock);
799 
800 	if (!core)
801 		return -EINVAL;
802 
803 	if (core->protect_count == 0)
804 		return 0;
805 
806 	ret = core->protect_count;
807 	core->protect_count = 1;
808 	clk_core_rate_unprotect(core);
809 
810 	return ret;
811 }
812 
813 /**
814  * clk_rate_exclusive_put - release exclusivity over clock rate control
815  * @clk: the clk over which the exclusivity is released
816  *
817  * clk_rate_exclusive_put() completes a critical section during which a clock
818  * consumer cannot tolerate any other consumer making any operation on the
819  * clock which could result in a rate change or rate glitch. Exclusive clocks
820  * cannot have their rate changed, either directly or indirectly due to changes
821  * further up the parent chain of clocks. As a result, clocks up parent chain
822  * also get under exclusive control of the calling consumer.
823  *
824  * If exlusivity is claimed more than once on clock, even by the same consumer,
825  * the rate effectively gets locked as exclusivity can't be preempted.
826  *
827  * Calls to clk_rate_exclusive_put() must be balanced with calls to
828  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
829  * error status.
830  */
831 void clk_rate_exclusive_put(struct clk *clk)
832 {
833 	if (!clk)
834 		return;
835 
836 	clk_prepare_lock();
837 
838 	/*
839 	 * if there is something wrong with this consumer protect count, stop
840 	 * here before messing with the provider
841 	 */
842 	if (WARN_ON(clk->exclusive_count <= 0))
843 		goto out;
844 
845 	clk_core_rate_unprotect(clk->core);
846 	clk->exclusive_count--;
847 out:
848 	clk_prepare_unlock();
849 }
850 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
851 
852 static void clk_core_rate_protect(struct clk_core *core)
853 {
854 	lockdep_assert_held(&prepare_lock);
855 
856 	if (!core)
857 		return;
858 
859 	if (core->protect_count == 0)
860 		clk_core_rate_protect(core->parent);
861 
862 	core->protect_count++;
863 }
864 
865 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
866 {
867 	lockdep_assert_held(&prepare_lock);
868 
869 	if (!core)
870 		return;
871 
872 	if (count == 0)
873 		return;
874 
875 	clk_core_rate_protect(core);
876 	core->protect_count = count;
877 }
878 
879 /**
880  * clk_rate_exclusive_get - get exclusivity over the clk rate control
881  * @clk: the clk over which the exclusity of rate control is requested
882  *
883  * clk_rate_exclusive_get() begins a critical section during which a clock
884  * consumer cannot tolerate any other consumer making any operation on the
885  * clock which could result in a rate change or rate glitch. Exclusive clocks
886  * cannot have their rate changed, either directly or indirectly due to changes
887  * further up the parent chain of clocks. As a result, clocks up parent chain
888  * also get under exclusive control of the calling consumer.
889  *
890  * If exlusivity is claimed more than once on clock, even by the same consumer,
891  * the rate effectively gets locked as exclusivity can't be preempted.
892  *
893  * Calls to clk_rate_exclusive_get() should be balanced with calls to
894  * clk_rate_exclusive_put(). Calls to this function may sleep.
895  * Returns 0 on success, -EERROR otherwise
896  */
897 int clk_rate_exclusive_get(struct clk *clk)
898 {
899 	if (!clk)
900 		return 0;
901 
902 	clk_prepare_lock();
903 	clk_core_rate_protect(clk->core);
904 	clk->exclusive_count++;
905 	clk_prepare_unlock();
906 
907 	return 0;
908 }
909 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
910 
911 static void clk_core_unprepare(struct clk_core *core)
912 {
913 	lockdep_assert_held(&prepare_lock);
914 
915 	if (!core)
916 		return;
917 
918 	if (WARN(core->prepare_count == 0,
919 	    "%s already unprepared\n", core->name))
920 		return;
921 
922 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
923 	    "Unpreparing critical %s\n", core->name))
924 		return;
925 
926 	if (core->flags & CLK_SET_RATE_GATE)
927 		clk_core_rate_unprotect(core);
928 
929 	if (--core->prepare_count > 0)
930 		return;
931 
932 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
933 
934 	trace_clk_unprepare(core);
935 
936 	if (core->ops->unprepare)
937 		core->ops->unprepare(core->hw);
938 
939 	trace_clk_unprepare_complete(core);
940 	clk_core_unprepare(core->parent);
941 	clk_pm_runtime_put(core);
942 }
943 
944 static void clk_core_unprepare_lock(struct clk_core *core)
945 {
946 	clk_prepare_lock();
947 	clk_core_unprepare(core);
948 	clk_prepare_unlock();
949 }
950 
951 /**
952  * clk_unprepare - undo preparation of a clock source
953  * @clk: the clk being unprepared
954  *
955  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
956  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
957  * if the operation may sleep.  One example is a clk which is accessed over
958  * I2c.  In the complex case a clk gate operation may require a fast and a slow
959  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
960  * exclusive.  In fact clk_disable must be called before clk_unprepare.
961  */
962 void clk_unprepare(struct clk *clk)
963 {
964 	if (IS_ERR_OR_NULL(clk))
965 		return;
966 
967 	clk_core_unprepare_lock(clk->core);
968 }
969 EXPORT_SYMBOL_GPL(clk_unprepare);
970 
971 static int clk_core_prepare(struct clk_core *core)
972 {
973 	int ret = 0;
974 
975 	lockdep_assert_held(&prepare_lock);
976 
977 	if (!core)
978 		return 0;
979 
980 	if (core->prepare_count == 0) {
981 		ret = clk_pm_runtime_get(core);
982 		if (ret)
983 			return ret;
984 
985 		ret = clk_core_prepare(core->parent);
986 		if (ret)
987 			goto runtime_put;
988 
989 		trace_clk_prepare(core);
990 
991 		if (core->ops->prepare)
992 			ret = core->ops->prepare(core->hw);
993 
994 		trace_clk_prepare_complete(core);
995 
996 		if (ret)
997 			goto unprepare;
998 	}
999 
1000 	core->prepare_count++;
1001 
1002 	/*
1003 	 * CLK_SET_RATE_GATE is a special case of clock protection
1004 	 * Instead of a consumer claiming exclusive rate control, it is
1005 	 * actually the provider which prevents any consumer from making any
1006 	 * operation which could result in a rate change or rate glitch while
1007 	 * the clock is prepared.
1008 	 */
1009 	if (core->flags & CLK_SET_RATE_GATE)
1010 		clk_core_rate_protect(core);
1011 
1012 	return 0;
1013 unprepare:
1014 	clk_core_unprepare(core->parent);
1015 runtime_put:
1016 	clk_pm_runtime_put(core);
1017 	return ret;
1018 }
1019 
1020 static int clk_core_prepare_lock(struct clk_core *core)
1021 {
1022 	int ret;
1023 
1024 	clk_prepare_lock();
1025 	ret = clk_core_prepare(core);
1026 	clk_prepare_unlock();
1027 
1028 	return ret;
1029 }
1030 
1031 /**
1032  * clk_prepare - prepare a clock source
1033  * @clk: the clk being prepared
1034  *
1035  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1036  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1037  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1038  * the complex case a clk ungate operation may require a fast and a slow part.
1039  * It is this reason that clk_prepare and clk_enable are not mutually
1040  * exclusive.  In fact clk_prepare must be called before clk_enable.
1041  * Returns 0 on success, -EERROR otherwise.
1042  */
1043 int clk_prepare(struct clk *clk)
1044 {
1045 	if (!clk)
1046 		return 0;
1047 
1048 	return clk_core_prepare_lock(clk->core);
1049 }
1050 EXPORT_SYMBOL_GPL(clk_prepare);
1051 
1052 static void clk_core_disable(struct clk_core *core)
1053 {
1054 	lockdep_assert_held(&enable_lock);
1055 
1056 	if (!core)
1057 		return;
1058 
1059 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1060 		return;
1061 
1062 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1063 	    "Disabling critical %s\n", core->name))
1064 		return;
1065 
1066 	if (--core->enable_count > 0)
1067 		return;
1068 
1069 	trace_clk_disable(core);
1070 
1071 	if (core->ops->disable)
1072 		core->ops->disable(core->hw);
1073 
1074 	trace_clk_disable_complete(core);
1075 
1076 	clk_core_disable(core->parent);
1077 }
1078 
1079 static void clk_core_disable_lock(struct clk_core *core)
1080 {
1081 	unsigned long flags;
1082 
1083 	flags = clk_enable_lock();
1084 	clk_core_disable(core);
1085 	clk_enable_unlock(flags);
1086 }
1087 
1088 /**
1089  * clk_disable - gate a clock
1090  * @clk: the clk being gated
1091  *
1092  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1093  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1094  * clk if the operation is fast and will never sleep.  One example is a
1095  * SoC-internal clk which is controlled via simple register writes.  In the
1096  * complex case a clk gate operation may require a fast and a slow part.  It is
1097  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1098  * In fact clk_disable must be called before clk_unprepare.
1099  */
1100 void clk_disable(struct clk *clk)
1101 {
1102 	if (IS_ERR_OR_NULL(clk))
1103 		return;
1104 
1105 	clk_core_disable_lock(clk->core);
1106 }
1107 EXPORT_SYMBOL_GPL(clk_disable);
1108 
1109 static int clk_core_enable(struct clk_core *core)
1110 {
1111 	int ret = 0;
1112 
1113 	lockdep_assert_held(&enable_lock);
1114 
1115 	if (!core)
1116 		return 0;
1117 
1118 	if (WARN(core->prepare_count == 0,
1119 	    "Enabling unprepared %s\n", core->name))
1120 		return -ESHUTDOWN;
1121 
1122 	if (core->enable_count == 0) {
1123 		ret = clk_core_enable(core->parent);
1124 
1125 		if (ret)
1126 			return ret;
1127 
1128 		trace_clk_enable(core);
1129 
1130 		if (core->ops->enable)
1131 			ret = core->ops->enable(core->hw);
1132 
1133 		trace_clk_enable_complete(core);
1134 
1135 		if (ret) {
1136 			clk_core_disable(core->parent);
1137 			return ret;
1138 		}
1139 	}
1140 
1141 	core->enable_count++;
1142 	return 0;
1143 }
1144 
1145 static int clk_core_enable_lock(struct clk_core *core)
1146 {
1147 	unsigned long flags;
1148 	int ret;
1149 
1150 	flags = clk_enable_lock();
1151 	ret = clk_core_enable(core);
1152 	clk_enable_unlock(flags);
1153 
1154 	return ret;
1155 }
1156 
1157 /**
1158  * clk_gate_restore_context - restore context for poweroff
1159  * @hw: the clk_hw pointer of clock whose state is to be restored
1160  *
1161  * The clock gate restore context function enables or disables
1162  * the gate clocks based on the enable_count. This is done in cases
1163  * where the clock context is lost and based on the enable_count
1164  * the clock either needs to be enabled/disabled. This
1165  * helps restore the state of gate clocks.
1166  */
1167 void clk_gate_restore_context(struct clk_hw *hw)
1168 {
1169 	struct clk_core *core = hw->core;
1170 
1171 	if (core->enable_count)
1172 		core->ops->enable(hw);
1173 	else
1174 		core->ops->disable(hw);
1175 }
1176 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1177 
1178 static int clk_core_save_context(struct clk_core *core)
1179 {
1180 	struct clk_core *child;
1181 	int ret = 0;
1182 
1183 	hlist_for_each_entry(child, &core->children, child_node) {
1184 		ret = clk_core_save_context(child);
1185 		if (ret < 0)
1186 			return ret;
1187 	}
1188 
1189 	if (core->ops && core->ops->save_context)
1190 		ret = core->ops->save_context(core->hw);
1191 
1192 	return ret;
1193 }
1194 
1195 static void clk_core_restore_context(struct clk_core *core)
1196 {
1197 	struct clk_core *child;
1198 
1199 	if (core->ops && core->ops->restore_context)
1200 		core->ops->restore_context(core->hw);
1201 
1202 	hlist_for_each_entry(child, &core->children, child_node)
1203 		clk_core_restore_context(child);
1204 }
1205 
1206 /**
1207  * clk_save_context - save clock context for poweroff
1208  *
1209  * Saves the context of the clock register for powerstates in which the
1210  * contents of the registers will be lost. Occurs deep within the suspend
1211  * code.  Returns 0 on success.
1212  */
1213 int clk_save_context(void)
1214 {
1215 	struct clk_core *clk;
1216 	int ret;
1217 
1218 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1219 		ret = clk_core_save_context(clk);
1220 		if (ret < 0)
1221 			return ret;
1222 	}
1223 
1224 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1225 		ret = clk_core_save_context(clk);
1226 		if (ret < 0)
1227 			return ret;
1228 	}
1229 
1230 	return 0;
1231 }
1232 EXPORT_SYMBOL_GPL(clk_save_context);
1233 
1234 /**
1235  * clk_restore_context - restore clock context after poweroff
1236  *
1237  * Restore the saved clock context upon resume.
1238  *
1239  */
1240 void clk_restore_context(void)
1241 {
1242 	struct clk_core *core;
1243 
1244 	hlist_for_each_entry(core, &clk_root_list, child_node)
1245 		clk_core_restore_context(core);
1246 
1247 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1248 		clk_core_restore_context(core);
1249 }
1250 EXPORT_SYMBOL_GPL(clk_restore_context);
1251 
1252 /**
1253  * clk_enable - ungate a clock
1254  * @clk: the clk being ungated
1255  *
1256  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1257  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1258  * if the operation will never sleep.  One example is a SoC-internal clk which
1259  * is controlled via simple register writes.  In the complex case a clk ungate
1260  * operation may require a fast and a slow part.  It is this reason that
1261  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1262  * must be called before clk_enable.  Returns 0 on success, -EERROR
1263  * otherwise.
1264  */
1265 int clk_enable(struct clk *clk)
1266 {
1267 	if (!clk)
1268 		return 0;
1269 
1270 	return clk_core_enable_lock(clk->core);
1271 }
1272 EXPORT_SYMBOL_GPL(clk_enable);
1273 
1274 /**
1275  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1276  * @clk: clock source
1277  *
1278  * Returns true if clk_prepare() implicitly enables the clock, effectively
1279  * making clk_enable()/clk_disable() no-ops, false otherwise.
1280  *
1281  * This is of interest mainly to power management code where actually
1282  * disabling the clock also requires unpreparing it to have any material
1283  * effect.
1284  *
1285  * Regardless of the value returned here, the caller must always invoke
1286  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1287  * to be right.
1288  */
1289 bool clk_is_enabled_when_prepared(struct clk *clk)
1290 {
1291 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1292 }
1293 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1294 
1295 static int clk_core_prepare_enable(struct clk_core *core)
1296 {
1297 	int ret;
1298 
1299 	ret = clk_core_prepare_lock(core);
1300 	if (ret)
1301 		return ret;
1302 
1303 	ret = clk_core_enable_lock(core);
1304 	if (ret)
1305 		clk_core_unprepare_lock(core);
1306 
1307 	return ret;
1308 }
1309 
1310 static void clk_core_disable_unprepare(struct clk_core *core)
1311 {
1312 	clk_core_disable_lock(core);
1313 	clk_core_unprepare_lock(core);
1314 }
1315 
1316 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1317 {
1318 	struct clk_core *child;
1319 
1320 	lockdep_assert_held(&prepare_lock);
1321 
1322 	hlist_for_each_entry(child, &core->children, child_node)
1323 		clk_unprepare_unused_subtree(child);
1324 
1325 	if (core->prepare_count)
1326 		return;
1327 
1328 	if (core->flags & CLK_IGNORE_UNUSED)
1329 		return;
1330 
1331 	if (clk_pm_runtime_get(core))
1332 		return;
1333 
1334 	if (clk_core_is_prepared(core)) {
1335 		trace_clk_unprepare(core);
1336 		if (core->ops->unprepare_unused)
1337 			core->ops->unprepare_unused(core->hw);
1338 		else if (core->ops->unprepare)
1339 			core->ops->unprepare(core->hw);
1340 		trace_clk_unprepare_complete(core);
1341 	}
1342 
1343 	clk_pm_runtime_put(core);
1344 }
1345 
1346 static void __init clk_disable_unused_subtree(struct clk_core *core)
1347 {
1348 	struct clk_core *child;
1349 	unsigned long flags;
1350 
1351 	lockdep_assert_held(&prepare_lock);
1352 
1353 	hlist_for_each_entry(child, &core->children, child_node)
1354 		clk_disable_unused_subtree(child);
1355 
1356 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1357 		clk_core_prepare_enable(core->parent);
1358 
1359 	if (clk_pm_runtime_get(core))
1360 		goto unprepare_out;
1361 
1362 	flags = clk_enable_lock();
1363 
1364 	if (core->enable_count)
1365 		goto unlock_out;
1366 
1367 	if (core->flags & CLK_IGNORE_UNUSED)
1368 		goto unlock_out;
1369 
1370 	/*
1371 	 * some gate clocks have special needs during the disable-unused
1372 	 * sequence.  call .disable_unused if available, otherwise fall
1373 	 * back to .disable
1374 	 */
1375 	if (clk_core_is_enabled(core)) {
1376 		trace_clk_disable(core);
1377 		if (core->ops->disable_unused)
1378 			core->ops->disable_unused(core->hw);
1379 		else if (core->ops->disable)
1380 			core->ops->disable(core->hw);
1381 		trace_clk_disable_complete(core);
1382 	}
1383 
1384 unlock_out:
1385 	clk_enable_unlock(flags);
1386 	clk_pm_runtime_put(core);
1387 unprepare_out:
1388 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1389 		clk_core_disable_unprepare(core->parent);
1390 }
1391 
1392 static bool clk_ignore_unused __initdata;
1393 static int __init clk_ignore_unused_setup(char *__unused)
1394 {
1395 	clk_ignore_unused = true;
1396 	return 1;
1397 }
1398 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1399 
1400 static int __init clk_disable_unused(void)
1401 {
1402 	struct clk_core *core;
1403 
1404 	if (clk_ignore_unused) {
1405 		pr_warn("clk: Not disabling unused clocks\n");
1406 		return 0;
1407 	}
1408 
1409 	clk_prepare_lock();
1410 
1411 	hlist_for_each_entry(core, &clk_root_list, child_node)
1412 		clk_disable_unused_subtree(core);
1413 
1414 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1415 		clk_disable_unused_subtree(core);
1416 
1417 	hlist_for_each_entry(core, &clk_root_list, child_node)
1418 		clk_unprepare_unused_subtree(core);
1419 
1420 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1421 		clk_unprepare_unused_subtree(core);
1422 
1423 	clk_prepare_unlock();
1424 
1425 	return 0;
1426 }
1427 late_initcall_sync(clk_disable_unused);
1428 
1429 static int clk_core_determine_round_nolock(struct clk_core *core,
1430 					   struct clk_rate_request *req)
1431 {
1432 	long rate;
1433 
1434 	lockdep_assert_held(&prepare_lock);
1435 
1436 	if (!core)
1437 		return 0;
1438 
1439 	/*
1440 	 * Some clock providers hand-craft their clk_rate_requests and
1441 	 * might not fill min_rate and max_rate.
1442 	 *
1443 	 * If it's the case, clamping the rate is equivalent to setting
1444 	 * the rate to 0 which is bad. Skip the clamping but complain so
1445 	 * that it gets fixed, hopefully.
1446 	 */
1447 	if (!req->min_rate && !req->max_rate)
1448 		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1449 			__func__, core->name);
1450 	else
1451 		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1452 
1453 	/*
1454 	 * At this point, core protection will be disabled
1455 	 * - if the provider is not protected at all
1456 	 * - if the calling consumer is the only one which has exclusivity
1457 	 *   over the provider
1458 	 */
1459 	if (clk_core_rate_is_protected(core)) {
1460 		req->rate = core->rate;
1461 	} else if (core->ops->determine_rate) {
1462 		return core->ops->determine_rate(core->hw, req);
1463 	} else if (core->ops->round_rate) {
1464 		rate = core->ops->round_rate(core->hw, req->rate,
1465 					     &req->best_parent_rate);
1466 		if (rate < 0)
1467 			return rate;
1468 
1469 		req->rate = rate;
1470 	} else {
1471 		return -EINVAL;
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 static void clk_core_init_rate_req(struct clk_core * const core,
1478 				   struct clk_rate_request *req,
1479 				   unsigned long rate)
1480 {
1481 	struct clk_core *parent;
1482 
1483 	if (WARN_ON(!req))
1484 		return;
1485 
1486 	memset(req, 0, sizeof(*req));
1487 	req->max_rate = ULONG_MAX;
1488 
1489 	if (!core)
1490 		return;
1491 
1492 	req->core = core;
1493 	req->rate = rate;
1494 	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1495 
1496 	parent = core->parent;
1497 	if (parent) {
1498 		req->best_parent_hw = parent->hw;
1499 		req->best_parent_rate = parent->rate;
1500 	} else {
1501 		req->best_parent_hw = NULL;
1502 		req->best_parent_rate = 0;
1503 	}
1504 }
1505 
1506 /**
1507  * clk_hw_init_rate_request - Initializes a clk_rate_request
1508  * @hw: the clk for which we want to submit a rate request
1509  * @req: the clk_rate_request structure we want to initialise
1510  * @rate: the rate which is to be requested
1511  *
1512  * Initializes a clk_rate_request structure to submit to
1513  * __clk_determine_rate() or similar functions.
1514  */
1515 void clk_hw_init_rate_request(const struct clk_hw *hw,
1516 			      struct clk_rate_request *req,
1517 			      unsigned long rate)
1518 {
1519 	if (WARN_ON(!hw || !req))
1520 		return;
1521 
1522 	clk_core_init_rate_req(hw->core, req, rate);
1523 }
1524 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1525 
1526 /**
1527  * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1528  * @hw: the original clock that got the rate request
1529  * @old_req: the original clk_rate_request structure we want to forward
1530  * @parent: the clk we want to forward @old_req to
1531  * @req: the clk_rate_request structure we want to initialise
1532  * @parent_rate: The rate which is to be requested to @parent
1533  *
1534  * Initializes a clk_rate_request structure to submit to a clock parent
1535  * in __clk_determine_rate() or similar functions.
1536  */
1537 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1538 				 const struct clk_rate_request *old_req,
1539 				 const struct clk_hw *parent,
1540 				 struct clk_rate_request *req,
1541 				 unsigned long parent_rate)
1542 {
1543 	if (WARN_ON(!hw || !old_req || !parent || !req))
1544 		return;
1545 
1546 	clk_core_forward_rate_req(hw->core, old_req,
1547 				  parent->core, req,
1548 				  parent_rate);
1549 }
1550 
1551 static bool clk_core_can_round(struct clk_core * const core)
1552 {
1553 	return core->ops->determine_rate || core->ops->round_rate;
1554 }
1555 
1556 static int clk_core_round_rate_nolock(struct clk_core *core,
1557 				      struct clk_rate_request *req)
1558 {
1559 	int ret;
1560 
1561 	lockdep_assert_held(&prepare_lock);
1562 
1563 	if (!core) {
1564 		req->rate = 0;
1565 		return 0;
1566 	}
1567 
1568 	if (clk_core_can_round(core))
1569 		return clk_core_determine_round_nolock(core, req);
1570 
1571 	if (core->flags & CLK_SET_RATE_PARENT) {
1572 		struct clk_rate_request parent_req;
1573 
1574 		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1575 
1576 		trace_clk_rate_request_start(&parent_req);
1577 
1578 		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1579 		if (ret)
1580 			return ret;
1581 
1582 		trace_clk_rate_request_done(&parent_req);
1583 
1584 		req->best_parent_rate = parent_req.rate;
1585 		req->rate = parent_req.rate;
1586 
1587 		return 0;
1588 	}
1589 
1590 	req->rate = core->rate;
1591 	return 0;
1592 }
1593 
1594 /**
1595  * __clk_determine_rate - get the closest rate actually supported by a clock
1596  * @hw: determine the rate of this clock
1597  * @req: target rate request
1598  *
1599  * Useful for clk_ops such as .set_rate and .determine_rate.
1600  */
1601 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1602 {
1603 	if (!hw) {
1604 		req->rate = 0;
1605 		return 0;
1606 	}
1607 
1608 	return clk_core_round_rate_nolock(hw->core, req);
1609 }
1610 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1611 
1612 /**
1613  * clk_hw_round_rate() - round the given rate for a hw clk
1614  * @hw: the hw clk for which we are rounding a rate
1615  * @rate: the rate which is to be rounded
1616  *
1617  * Takes in a rate as input and rounds it to a rate that the clk can actually
1618  * use.
1619  *
1620  * Context: prepare_lock must be held.
1621  *          For clk providers to call from within clk_ops such as .round_rate,
1622  *          .determine_rate.
1623  *
1624  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1625  *         else returns the parent rate.
1626  */
1627 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1628 {
1629 	int ret;
1630 	struct clk_rate_request req;
1631 
1632 	clk_core_init_rate_req(hw->core, &req, rate);
1633 
1634 	trace_clk_rate_request_start(&req);
1635 
1636 	ret = clk_core_round_rate_nolock(hw->core, &req);
1637 	if (ret)
1638 		return 0;
1639 
1640 	trace_clk_rate_request_done(&req);
1641 
1642 	return req.rate;
1643 }
1644 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1645 
1646 /**
1647  * clk_round_rate - round the given rate for a clk
1648  * @clk: the clk for which we are rounding a rate
1649  * @rate: the rate which is to be rounded
1650  *
1651  * Takes in a rate as input and rounds it to a rate that the clk can actually
1652  * use which is then returned.  If clk doesn't support round_rate operation
1653  * then the parent rate is returned.
1654  */
1655 long clk_round_rate(struct clk *clk, unsigned long rate)
1656 {
1657 	struct clk_rate_request req;
1658 	int ret;
1659 
1660 	if (!clk)
1661 		return 0;
1662 
1663 	clk_prepare_lock();
1664 
1665 	if (clk->exclusive_count)
1666 		clk_core_rate_unprotect(clk->core);
1667 
1668 	clk_core_init_rate_req(clk->core, &req, rate);
1669 
1670 	trace_clk_rate_request_start(&req);
1671 
1672 	ret = clk_core_round_rate_nolock(clk->core, &req);
1673 
1674 	trace_clk_rate_request_done(&req);
1675 
1676 	if (clk->exclusive_count)
1677 		clk_core_rate_protect(clk->core);
1678 
1679 	clk_prepare_unlock();
1680 
1681 	if (ret)
1682 		return ret;
1683 
1684 	return req.rate;
1685 }
1686 EXPORT_SYMBOL_GPL(clk_round_rate);
1687 
1688 /**
1689  * __clk_notify - call clk notifier chain
1690  * @core: clk that is changing rate
1691  * @msg: clk notifier type (see include/linux/clk.h)
1692  * @old_rate: old clk rate
1693  * @new_rate: new clk rate
1694  *
1695  * Triggers a notifier call chain on the clk rate-change notification
1696  * for 'clk'.  Passes a pointer to the struct clk and the previous
1697  * and current rates to the notifier callback.  Intended to be called by
1698  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1699  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1700  * a driver returns that.
1701  */
1702 static int __clk_notify(struct clk_core *core, unsigned long msg,
1703 		unsigned long old_rate, unsigned long new_rate)
1704 {
1705 	struct clk_notifier *cn;
1706 	struct clk_notifier_data cnd;
1707 	int ret = NOTIFY_DONE;
1708 
1709 	cnd.old_rate = old_rate;
1710 	cnd.new_rate = new_rate;
1711 
1712 	list_for_each_entry(cn, &clk_notifier_list, node) {
1713 		if (cn->clk->core == core) {
1714 			cnd.clk = cn->clk;
1715 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1716 					&cnd);
1717 			if (ret & NOTIFY_STOP_MASK)
1718 				return ret;
1719 		}
1720 	}
1721 
1722 	return ret;
1723 }
1724 
1725 /**
1726  * __clk_recalc_accuracies
1727  * @core: first clk in the subtree
1728  *
1729  * Walks the subtree of clks starting with clk and recalculates accuracies as
1730  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1731  * callback then it is assumed that the clock will take on the accuracy of its
1732  * parent.
1733  */
1734 static void __clk_recalc_accuracies(struct clk_core *core)
1735 {
1736 	unsigned long parent_accuracy = 0;
1737 	struct clk_core *child;
1738 
1739 	lockdep_assert_held(&prepare_lock);
1740 
1741 	if (core->parent)
1742 		parent_accuracy = core->parent->accuracy;
1743 
1744 	if (core->ops->recalc_accuracy)
1745 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1746 							  parent_accuracy);
1747 	else
1748 		core->accuracy = parent_accuracy;
1749 
1750 	hlist_for_each_entry(child, &core->children, child_node)
1751 		__clk_recalc_accuracies(child);
1752 }
1753 
1754 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1755 {
1756 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1757 		__clk_recalc_accuracies(core);
1758 
1759 	return clk_core_get_accuracy_no_lock(core);
1760 }
1761 
1762 /**
1763  * clk_get_accuracy - return the accuracy of clk
1764  * @clk: the clk whose accuracy is being returned
1765  *
1766  * Simply returns the cached accuracy of the clk, unless
1767  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1768  * issued.
1769  * If clk is NULL then returns 0.
1770  */
1771 long clk_get_accuracy(struct clk *clk)
1772 {
1773 	long accuracy;
1774 
1775 	if (!clk)
1776 		return 0;
1777 
1778 	clk_prepare_lock();
1779 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1780 	clk_prepare_unlock();
1781 
1782 	return accuracy;
1783 }
1784 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1785 
1786 static unsigned long clk_recalc(struct clk_core *core,
1787 				unsigned long parent_rate)
1788 {
1789 	unsigned long rate = parent_rate;
1790 
1791 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1792 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1793 		clk_pm_runtime_put(core);
1794 	}
1795 	return rate;
1796 }
1797 
1798 /**
1799  * __clk_recalc_rates
1800  * @core: first clk in the subtree
1801  * @update_req: Whether req_rate should be updated with the new rate
1802  * @msg: notification type (see include/linux/clk.h)
1803  *
1804  * Walks the subtree of clks starting with clk and recalculates rates as it
1805  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1806  * it is assumed that the clock will take on the rate of its parent.
1807  *
1808  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1809  * if necessary.
1810  */
1811 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1812 			       unsigned long msg)
1813 {
1814 	unsigned long old_rate;
1815 	unsigned long parent_rate = 0;
1816 	struct clk_core *child;
1817 
1818 	lockdep_assert_held(&prepare_lock);
1819 
1820 	old_rate = core->rate;
1821 
1822 	if (core->parent)
1823 		parent_rate = core->parent->rate;
1824 
1825 	core->rate = clk_recalc(core, parent_rate);
1826 	if (update_req)
1827 		core->req_rate = core->rate;
1828 
1829 	/*
1830 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1831 	 * & ABORT_RATE_CHANGE notifiers
1832 	 */
1833 	if (core->notifier_count && msg)
1834 		__clk_notify(core, msg, old_rate, core->rate);
1835 
1836 	hlist_for_each_entry(child, &core->children, child_node)
1837 		__clk_recalc_rates(child, update_req, msg);
1838 }
1839 
1840 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1841 {
1842 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1843 		__clk_recalc_rates(core, false, 0);
1844 
1845 	return clk_core_get_rate_nolock(core);
1846 }
1847 
1848 /**
1849  * clk_get_rate - return the rate of clk
1850  * @clk: the clk whose rate is being returned
1851  *
1852  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1853  * is set, which means a recalc_rate will be issued. Can be called regardless of
1854  * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1855  * 0.
1856  */
1857 unsigned long clk_get_rate(struct clk *clk)
1858 {
1859 	unsigned long rate;
1860 
1861 	if (!clk)
1862 		return 0;
1863 
1864 	clk_prepare_lock();
1865 	rate = clk_core_get_rate_recalc(clk->core);
1866 	clk_prepare_unlock();
1867 
1868 	return rate;
1869 }
1870 EXPORT_SYMBOL_GPL(clk_get_rate);
1871 
1872 static int clk_fetch_parent_index(struct clk_core *core,
1873 				  struct clk_core *parent)
1874 {
1875 	int i;
1876 
1877 	if (!parent)
1878 		return -EINVAL;
1879 
1880 	for (i = 0; i < core->num_parents; i++) {
1881 		/* Found it first try! */
1882 		if (core->parents[i].core == parent)
1883 			return i;
1884 
1885 		/* Something else is here, so keep looking */
1886 		if (core->parents[i].core)
1887 			continue;
1888 
1889 		/* Maybe core hasn't been cached but the hw is all we know? */
1890 		if (core->parents[i].hw) {
1891 			if (core->parents[i].hw == parent->hw)
1892 				break;
1893 
1894 			/* Didn't match, but we're expecting a clk_hw */
1895 			continue;
1896 		}
1897 
1898 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1899 		if (parent == clk_core_get(core, i))
1900 			break;
1901 
1902 		/* Fallback to comparing globally unique names */
1903 		if (core->parents[i].name &&
1904 		    !strcmp(parent->name, core->parents[i].name))
1905 			break;
1906 	}
1907 
1908 	if (i == core->num_parents)
1909 		return -EINVAL;
1910 
1911 	core->parents[i].core = parent;
1912 	return i;
1913 }
1914 
1915 /**
1916  * clk_hw_get_parent_index - return the index of the parent clock
1917  * @hw: clk_hw associated with the clk being consumed
1918  *
1919  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1920  * clock does not have a current parent.
1921  */
1922 int clk_hw_get_parent_index(struct clk_hw *hw)
1923 {
1924 	struct clk_hw *parent = clk_hw_get_parent(hw);
1925 
1926 	if (WARN_ON(parent == NULL))
1927 		return -EINVAL;
1928 
1929 	return clk_fetch_parent_index(hw->core, parent->core);
1930 }
1931 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1932 
1933 /*
1934  * Update the orphan status of @core and all its children.
1935  */
1936 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1937 {
1938 	struct clk_core *child;
1939 
1940 	core->orphan = is_orphan;
1941 
1942 	hlist_for_each_entry(child, &core->children, child_node)
1943 		clk_core_update_orphan_status(child, is_orphan);
1944 }
1945 
1946 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1947 {
1948 	bool was_orphan = core->orphan;
1949 
1950 	hlist_del(&core->child_node);
1951 
1952 	if (new_parent) {
1953 		bool becomes_orphan = new_parent->orphan;
1954 
1955 		/* avoid duplicate POST_RATE_CHANGE notifications */
1956 		if (new_parent->new_child == core)
1957 			new_parent->new_child = NULL;
1958 
1959 		hlist_add_head(&core->child_node, &new_parent->children);
1960 
1961 		if (was_orphan != becomes_orphan)
1962 			clk_core_update_orphan_status(core, becomes_orphan);
1963 	} else {
1964 		hlist_add_head(&core->child_node, &clk_orphan_list);
1965 		if (!was_orphan)
1966 			clk_core_update_orphan_status(core, true);
1967 	}
1968 
1969 	core->parent = new_parent;
1970 }
1971 
1972 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1973 					   struct clk_core *parent)
1974 {
1975 	unsigned long flags;
1976 	struct clk_core *old_parent = core->parent;
1977 
1978 	/*
1979 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1980 	 *
1981 	 * 2. Migrate prepare state between parents and prevent race with
1982 	 * clk_enable().
1983 	 *
1984 	 * If the clock is not prepared, then a race with
1985 	 * clk_enable/disable() is impossible since we already have the
1986 	 * prepare lock (future calls to clk_enable() need to be preceded by
1987 	 * a clk_prepare()).
1988 	 *
1989 	 * If the clock is prepared, migrate the prepared state to the new
1990 	 * parent and also protect against a race with clk_enable() by
1991 	 * forcing the clock and the new parent on.  This ensures that all
1992 	 * future calls to clk_enable() are practically NOPs with respect to
1993 	 * hardware and software states.
1994 	 *
1995 	 * See also: Comment for clk_set_parent() below.
1996 	 */
1997 
1998 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1999 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2000 		clk_core_prepare_enable(old_parent);
2001 		clk_core_prepare_enable(parent);
2002 	}
2003 
2004 	/* migrate prepare count if > 0 */
2005 	if (core->prepare_count) {
2006 		clk_core_prepare_enable(parent);
2007 		clk_core_enable_lock(core);
2008 	}
2009 
2010 	/* update the clk tree topology */
2011 	flags = clk_enable_lock();
2012 	clk_reparent(core, parent);
2013 	clk_enable_unlock(flags);
2014 
2015 	return old_parent;
2016 }
2017 
2018 static void __clk_set_parent_after(struct clk_core *core,
2019 				   struct clk_core *parent,
2020 				   struct clk_core *old_parent)
2021 {
2022 	/*
2023 	 * Finish the migration of prepare state and undo the changes done
2024 	 * for preventing a race with clk_enable().
2025 	 */
2026 	if (core->prepare_count) {
2027 		clk_core_disable_lock(core);
2028 		clk_core_disable_unprepare(old_parent);
2029 	}
2030 
2031 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2032 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2033 		clk_core_disable_unprepare(parent);
2034 		clk_core_disable_unprepare(old_parent);
2035 	}
2036 }
2037 
2038 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2039 			    u8 p_index)
2040 {
2041 	unsigned long flags;
2042 	int ret = 0;
2043 	struct clk_core *old_parent;
2044 
2045 	old_parent = __clk_set_parent_before(core, parent);
2046 
2047 	trace_clk_set_parent(core, parent);
2048 
2049 	/* change clock input source */
2050 	if (parent && core->ops->set_parent)
2051 		ret = core->ops->set_parent(core->hw, p_index);
2052 
2053 	trace_clk_set_parent_complete(core, parent);
2054 
2055 	if (ret) {
2056 		flags = clk_enable_lock();
2057 		clk_reparent(core, old_parent);
2058 		clk_enable_unlock(flags);
2059 
2060 		__clk_set_parent_after(core, old_parent, parent);
2061 
2062 		return ret;
2063 	}
2064 
2065 	__clk_set_parent_after(core, parent, old_parent);
2066 
2067 	return 0;
2068 }
2069 
2070 /**
2071  * __clk_speculate_rates
2072  * @core: first clk in the subtree
2073  * @parent_rate: the "future" rate of clk's parent
2074  *
2075  * Walks the subtree of clks starting with clk, speculating rates as it
2076  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2077  *
2078  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2079  * pre-rate change notifications and returns early if no clks in the
2080  * subtree have subscribed to the notifications.  Note that if a clk does not
2081  * implement the .recalc_rate callback then it is assumed that the clock will
2082  * take on the rate of its parent.
2083  */
2084 static int __clk_speculate_rates(struct clk_core *core,
2085 				 unsigned long parent_rate)
2086 {
2087 	struct clk_core *child;
2088 	unsigned long new_rate;
2089 	int ret = NOTIFY_DONE;
2090 
2091 	lockdep_assert_held(&prepare_lock);
2092 
2093 	new_rate = clk_recalc(core, parent_rate);
2094 
2095 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2096 	if (core->notifier_count)
2097 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2098 
2099 	if (ret & NOTIFY_STOP_MASK) {
2100 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2101 				__func__, core->name, ret);
2102 		goto out;
2103 	}
2104 
2105 	hlist_for_each_entry(child, &core->children, child_node) {
2106 		ret = __clk_speculate_rates(child, new_rate);
2107 		if (ret & NOTIFY_STOP_MASK)
2108 			break;
2109 	}
2110 
2111 out:
2112 	return ret;
2113 }
2114 
2115 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2116 			     struct clk_core *new_parent, u8 p_index)
2117 {
2118 	struct clk_core *child;
2119 
2120 	core->new_rate = new_rate;
2121 	core->new_parent = new_parent;
2122 	core->new_parent_index = p_index;
2123 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2124 	core->new_child = NULL;
2125 	if (new_parent && new_parent != core->parent)
2126 		new_parent->new_child = core;
2127 
2128 	hlist_for_each_entry(child, &core->children, child_node) {
2129 		child->new_rate = clk_recalc(child, new_rate);
2130 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2131 	}
2132 }
2133 
2134 /*
2135  * calculate the new rates returning the topmost clock that has to be
2136  * changed.
2137  */
2138 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2139 					   unsigned long rate)
2140 {
2141 	struct clk_core *top = core;
2142 	struct clk_core *old_parent, *parent;
2143 	unsigned long best_parent_rate = 0;
2144 	unsigned long new_rate;
2145 	unsigned long min_rate;
2146 	unsigned long max_rate;
2147 	int p_index = 0;
2148 	long ret;
2149 
2150 	/* sanity */
2151 	if (IS_ERR_OR_NULL(core))
2152 		return NULL;
2153 
2154 	/* save parent rate, if it exists */
2155 	parent = old_parent = core->parent;
2156 	if (parent)
2157 		best_parent_rate = parent->rate;
2158 
2159 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2160 
2161 	/* find the closest rate and parent clk/rate */
2162 	if (clk_core_can_round(core)) {
2163 		struct clk_rate_request req;
2164 
2165 		clk_core_init_rate_req(core, &req, rate);
2166 
2167 		trace_clk_rate_request_start(&req);
2168 
2169 		ret = clk_core_determine_round_nolock(core, &req);
2170 		if (ret < 0)
2171 			return NULL;
2172 
2173 		trace_clk_rate_request_done(&req);
2174 
2175 		best_parent_rate = req.best_parent_rate;
2176 		new_rate = req.rate;
2177 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2178 
2179 		if (new_rate < min_rate || new_rate > max_rate)
2180 			return NULL;
2181 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2182 		/* pass-through clock without adjustable parent */
2183 		core->new_rate = core->rate;
2184 		return NULL;
2185 	} else {
2186 		/* pass-through clock with adjustable parent */
2187 		top = clk_calc_new_rates(parent, rate);
2188 		new_rate = parent->new_rate;
2189 		goto out;
2190 	}
2191 
2192 	/* some clocks must be gated to change parent */
2193 	if (parent != old_parent &&
2194 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2195 		pr_debug("%s: %s not gated but wants to reparent\n",
2196 			 __func__, core->name);
2197 		return NULL;
2198 	}
2199 
2200 	/* try finding the new parent index */
2201 	if (parent && core->num_parents > 1) {
2202 		p_index = clk_fetch_parent_index(core, parent);
2203 		if (p_index < 0) {
2204 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2205 				 __func__, parent->name, core->name);
2206 			return NULL;
2207 		}
2208 	}
2209 
2210 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2211 	    best_parent_rate != parent->rate)
2212 		top = clk_calc_new_rates(parent, best_parent_rate);
2213 
2214 out:
2215 	clk_calc_subtree(core, new_rate, parent, p_index);
2216 
2217 	return top;
2218 }
2219 
2220 /*
2221  * Notify about rate changes in a subtree. Always walk down the whole tree
2222  * so that in case of an error we can walk down the whole tree again and
2223  * abort the change.
2224  */
2225 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2226 						  unsigned long event)
2227 {
2228 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2229 	int ret = NOTIFY_DONE;
2230 
2231 	if (core->rate == core->new_rate)
2232 		return NULL;
2233 
2234 	if (core->notifier_count) {
2235 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2236 		if (ret & NOTIFY_STOP_MASK)
2237 			fail_clk = core;
2238 	}
2239 
2240 	hlist_for_each_entry(child, &core->children, child_node) {
2241 		/* Skip children who will be reparented to another clock */
2242 		if (child->new_parent && child->new_parent != core)
2243 			continue;
2244 		tmp_clk = clk_propagate_rate_change(child, event);
2245 		if (tmp_clk)
2246 			fail_clk = tmp_clk;
2247 	}
2248 
2249 	/* handle the new child who might not be in core->children yet */
2250 	if (core->new_child) {
2251 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2252 		if (tmp_clk)
2253 			fail_clk = tmp_clk;
2254 	}
2255 
2256 	return fail_clk;
2257 }
2258 
2259 /*
2260  * walk down a subtree and set the new rates notifying the rate
2261  * change on the way
2262  */
2263 static void clk_change_rate(struct clk_core *core)
2264 {
2265 	struct clk_core *child;
2266 	struct hlist_node *tmp;
2267 	unsigned long old_rate;
2268 	unsigned long best_parent_rate = 0;
2269 	bool skip_set_rate = false;
2270 	struct clk_core *old_parent;
2271 	struct clk_core *parent = NULL;
2272 
2273 	old_rate = core->rate;
2274 
2275 	if (core->new_parent) {
2276 		parent = core->new_parent;
2277 		best_parent_rate = core->new_parent->rate;
2278 	} else if (core->parent) {
2279 		parent = core->parent;
2280 		best_parent_rate = core->parent->rate;
2281 	}
2282 
2283 	if (clk_pm_runtime_get(core))
2284 		return;
2285 
2286 	if (core->flags & CLK_SET_RATE_UNGATE) {
2287 		clk_core_prepare(core);
2288 		clk_core_enable_lock(core);
2289 	}
2290 
2291 	if (core->new_parent && core->new_parent != core->parent) {
2292 		old_parent = __clk_set_parent_before(core, core->new_parent);
2293 		trace_clk_set_parent(core, core->new_parent);
2294 
2295 		if (core->ops->set_rate_and_parent) {
2296 			skip_set_rate = true;
2297 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2298 					best_parent_rate,
2299 					core->new_parent_index);
2300 		} else if (core->ops->set_parent) {
2301 			core->ops->set_parent(core->hw, core->new_parent_index);
2302 		}
2303 
2304 		trace_clk_set_parent_complete(core, core->new_parent);
2305 		__clk_set_parent_after(core, core->new_parent, old_parent);
2306 	}
2307 
2308 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2309 		clk_core_prepare_enable(parent);
2310 
2311 	trace_clk_set_rate(core, core->new_rate);
2312 
2313 	if (!skip_set_rate && core->ops->set_rate)
2314 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2315 
2316 	trace_clk_set_rate_complete(core, core->new_rate);
2317 
2318 	core->rate = clk_recalc(core, best_parent_rate);
2319 
2320 	if (core->flags & CLK_SET_RATE_UNGATE) {
2321 		clk_core_disable_lock(core);
2322 		clk_core_unprepare(core);
2323 	}
2324 
2325 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2326 		clk_core_disable_unprepare(parent);
2327 
2328 	if (core->notifier_count && old_rate != core->rate)
2329 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2330 
2331 	if (core->flags & CLK_RECALC_NEW_RATES)
2332 		(void)clk_calc_new_rates(core, core->new_rate);
2333 
2334 	/*
2335 	 * Use safe iteration, as change_rate can actually swap parents
2336 	 * for certain clock types.
2337 	 */
2338 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2339 		/* Skip children who will be reparented to another clock */
2340 		if (child->new_parent && child->new_parent != core)
2341 			continue;
2342 		clk_change_rate(child);
2343 	}
2344 
2345 	/* handle the new child who might not be in core->children yet */
2346 	if (core->new_child)
2347 		clk_change_rate(core->new_child);
2348 
2349 	clk_pm_runtime_put(core);
2350 }
2351 
2352 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2353 						     unsigned long req_rate)
2354 {
2355 	int ret, cnt;
2356 	struct clk_rate_request req;
2357 
2358 	lockdep_assert_held(&prepare_lock);
2359 
2360 	if (!core)
2361 		return 0;
2362 
2363 	/* simulate what the rate would be if it could be freely set */
2364 	cnt = clk_core_rate_nuke_protect(core);
2365 	if (cnt < 0)
2366 		return cnt;
2367 
2368 	clk_core_init_rate_req(core, &req, req_rate);
2369 
2370 	trace_clk_rate_request_start(&req);
2371 
2372 	ret = clk_core_round_rate_nolock(core, &req);
2373 
2374 	trace_clk_rate_request_done(&req);
2375 
2376 	/* restore the protection */
2377 	clk_core_rate_restore_protect(core, cnt);
2378 
2379 	return ret ? 0 : req.rate;
2380 }
2381 
2382 static int clk_core_set_rate_nolock(struct clk_core *core,
2383 				    unsigned long req_rate)
2384 {
2385 	struct clk_core *top, *fail_clk;
2386 	unsigned long rate;
2387 	int ret;
2388 
2389 	if (!core)
2390 		return 0;
2391 
2392 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2393 
2394 	/* bail early if nothing to do */
2395 	if (rate == clk_core_get_rate_nolock(core))
2396 		return 0;
2397 
2398 	/* fail on a direct rate set of a protected provider */
2399 	if (clk_core_rate_is_protected(core))
2400 		return -EBUSY;
2401 
2402 	/* calculate new rates and get the topmost changed clock */
2403 	top = clk_calc_new_rates(core, req_rate);
2404 	if (!top)
2405 		return -EINVAL;
2406 
2407 	ret = clk_pm_runtime_get(core);
2408 	if (ret)
2409 		return ret;
2410 
2411 	/* notify that we are about to change rates */
2412 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2413 	if (fail_clk) {
2414 		pr_debug("%s: failed to set %s rate\n", __func__,
2415 				fail_clk->name);
2416 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2417 		ret = -EBUSY;
2418 		goto err;
2419 	}
2420 
2421 	/* change the rates */
2422 	clk_change_rate(top);
2423 
2424 	core->req_rate = req_rate;
2425 err:
2426 	clk_pm_runtime_put(core);
2427 
2428 	return ret;
2429 }
2430 
2431 /**
2432  * clk_set_rate - specify a new rate for clk
2433  * @clk: the clk whose rate is being changed
2434  * @rate: the new rate for clk
2435  *
2436  * In the simplest case clk_set_rate will only adjust the rate of clk.
2437  *
2438  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2439  * propagate up to clk's parent; whether or not this happens depends on the
2440  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2441  * after calling .round_rate then upstream parent propagation is ignored.  If
2442  * *parent_rate comes back with a new rate for clk's parent then we propagate
2443  * up to clk's parent and set its rate.  Upward propagation will continue
2444  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2445  * .round_rate stops requesting changes to clk's parent_rate.
2446  *
2447  * Rate changes are accomplished via tree traversal that also recalculates the
2448  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2449  *
2450  * Returns 0 on success, -EERROR otherwise.
2451  */
2452 int clk_set_rate(struct clk *clk, unsigned long rate)
2453 {
2454 	int ret;
2455 
2456 	if (!clk)
2457 		return 0;
2458 
2459 	/* prevent racing with updates to the clock topology */
2460 	clk_prepare_lock();
2461 
2462 	if (clk->exclusive_count)
2463 		clk_core_rate_unprotect(clk->core);
2464 
2465 	ret = clk_core_set_rate_nolock(clk->core, rate);
2466 
2467 	if (clk->exclusive_count)
2468 		clk_core_rate_protect(clk->core);
2469 
2470 	clk_prepare_unlock();
2471 
2472 	return ret;
2473 }
2474 EXPORT_SYMBOL_GPL(clk_set_rate);
2475 
2476 /**
2477  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2478  * @clk: the clk whose rate is being changed
2479  * @rate: the new rate for clk
2480  *
2481  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2482  * within a critical section
2483  *
2484  * This can be used initially to ensure that at least 1 consumer is
2485  * satisfied when several consumers are competing for exclusivity over the
2486  * same clock provider.
2487  *
2488  * The exclusivity is not applied if setting the rate failed.
2489  *
2490  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2491  * clk_rate_exclusive_put().
2492  *
2493  * Returns 0 on success, -EERROR otherwise.
2494  */
2495 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2496 {
2497 	int ret;
2498 
2499 	if (!clk)
2500 		return 0;
2501 
2502 	/* prevent racing with updates to the clock topology */
2503 	clk_prepare_lock();
2504 
2505 	/*
2506 	 * The temporary protection removal is not here, on purpose
2507 	 * This function is meant to be used instead of clk_rate_protect,
2508 	 * so before the consumer code path protect the clock provider
2509 	 */
2510 
2511 	ret = clk_core_set_rate_nolock(clk->core, rate);
2512 	if (!ret) {
2513 		clk_core_rate_protect(clk->core);
2514 		clk->exclusive_count++;
2515 	}
2516 
2517 	clk_prepare_unlock();
2518 
2519 	return ret;
2520 }
2521 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2522 
2523 static int clk_set_rate_range_nolock(struct clk *clk,
2524 				     unsigned long min,
2525 				     unsigned long max)
2526 {
2527 	int ret = 0;
2528 	unsigned long old_min, old_max, rate;
2529 
2530 	lockdep_assert_held(&prepare_lock);
2531 
2532 	if (!clk)
2533 		return 0;
2534 
2535 	trace_clk_set_rate_range(clk->core, min, max);
2536 
2537 	if (min > max) {
2538 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2539 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2540 		       min, max);
2541 		return -EINVAL;
2542 	}
2543 
2544 	if (clk->exclusive_count)
2545 		clk_core_rate_unprotect(clk->core);
2546 
2547 	/* Save the current values in case we need to rollback the change */
2548 	old_min = clk->min_rate;
2549 	old_max = clk->max_rate;
2550 	clk->min_rate = min;
2551 	clk->max_rate = max;
2552 
2553 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2554 		ret = -EINVAL;
2555 		goto out;
2556 	}
2557 
2558 	rate = clk->core->req_rate;
2559 	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2560 		rate = clk_core_get_rate_recalc(clk->core);
2561 
2562 	/*
2563 	 * Since the boundaries have been changed, let's give the
2564 	 * opportunity to the provider to adjust the clock rate based on
2565 	 * the new boundaries.
2566 	 *
2567 	 * We also need to handle the case where the clock is currently
2568 	 * outside of the boundaries. Clamping the last requested rate
2569 	 * to the current minimum and maximum will also handle this.
2570 	 *
2571 	 * FIXME:
2572 	 * There is a catch. It may fail for the usual reason (clock
2573 	 * broken, clock protected, etc) but also because:
2574 	 * - round_rate() was not favorable and fell on the wrong
2575 	 *   side of the boundary
2576 	 * - the determine_rate() callback does not really check for
2577 	 *   this corner case when determining the rate
2578 	 */
2579 	rate = clamp(rate, min, max);
2580 	ret = clk_core_set_rate_nolock(clk->core, rate);
2581 	if (ret) {
2582 		/* rollback the changes */
2583 		clk->min_rate = old_min;
2584 		clk->max_rate = old_max;
2585 	}
2586 
2587 out:
2588 	if (clk->exclusive_count)
2589 		clk_core_rate_protect(clk->core);
2590 
2591 	return ret;
2592 }
2593 
2594 /**
2595  * clk_set_rate_range - set a rate range for a clock source
2596  * @clk: clock source
2597  * @min: desired minimum clock rate in Hz, inclusive
2598  * @max: desired maximum clock rate in Hz, inclusive
2599  *
2600  * Return: 0 for success or negative errno on failure.
2601  */
2602 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2603 {
2604 	int ret;
2605 
2606 	if (!clk)
2607 		return 0;
2608 
2609 	clk_prepare_lock();
2610 
2611 	ret = clk_set_rate_range_nolock(clk, min, max);
2612 
2613 	clk_prepare_unlock();
2614 
2615 	return ret;
2616 }
2617 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2618 
2619 /**
2620  * clk_set_min_rate - set a minimum clock rate for a clock source
2621  * @clk: clock source
2622  * @rate: desired minimum clock rate in Hz, inclusive
2623  *
2624  * Returns success (0) or negative errno.
2625  */
2626 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2627 {
2628 	if (!clk)
2629 		return 0;
2630 
2631 	trace_clk_set_min_rate(clk->core, rate);
2632 
2633 	return clk_set_rate_range(clk, rate, clk->max_rate);
2634 }
2635 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2636 
2637 /**
2638  * clk_set_max_rate - set a maximum clock rate for a clock source
2639  * @clk: clock source
2640  * @rate: desired maximum clock rate in Hz, inclusive
2641  *
2642  * Returns success (0) or negative errno.
2643  */
2644 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2645 {
2646 	if (!clk)
2647 		return 0;
2648 
2649 	trace_clk_set_max_rate(clk->core, rate);
2650 
2651 	return clk_set_rate_range(clk, clk->min_rate, rate);
2652 }
2653 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2654 
2655 /**
2656  * clk_get_parent - return the parent of a clk
2657  * @clk: the clk whose parent gets returned
2658  *
2659  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2660  */
2661 struct clk *clk_get_parent(struct clk *clk)
2662 {
2663 	struct clk *parent;
2664 
2665 	if (!clk)
2666 		return NULL;
2667 
2668 	clk_prepare_lock();
2669 	/* TODO: Create a per-user clk and change callers to call clk_put */
2670 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2671 	clk_prepare_unlock();
2672 
2673 	return parent;
2674 }
2675 EXPORT_SYMBOL_GPL(clk_get_parent);
2676 
2677 static struct clk_core *__clk_init_parent(struct clk_core *core)
2678 {
2679 	u8 index = 0;
2680 
2681 	if (core->num_parents > 1 && core->ops->get_parent)
2682 		index = core->ops->get_parent(core->hw);
2683 
2684 	return clk_core_get_parent_by_index(core, index);
2685 }
2686 
2687 static void clk_core_reparent(struct clk_core *core,
2688 				  struct clk_core *new_parent)
2689 {
2690 	clk_reparent(core, new_parent);
2691 	__clk_recalc_accuracies(core);
2692 	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2693 }
2694 
2695 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2696 {
2697 	if (!hw)
2698 		return;
2699 
2700 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2701 }
2702 
2703 /**
2704  * clk_has_parent - check if a clock is a possible parent for another
2705  * @clk: clock source
2706  * @parent: parent clock source
2707  *
2708  * This function can be used in drivers that need to check that a clock can be
2709  * the parent of another without actually changing the parent.
2710  *
2711  * Returns true if @parent is a possible parent for @clk, false otherwise.
2712  */
2713 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2714 {
2715 	/* NULL clocks should be nops, so return success if either is NULL. */
2716 	if (!clk || !parent)
2717 		return true;
2718 
2719 	return clk_core_has_parent(clk->core, parent->core);
2720 }
2721 EXPORT_SYMBOL_GPL(clk_has_parent);
2722 
2723 static int clk_core_set_parent_nolock(struct clk_core *core,
2724 				      struct clk_core *parent)
2725 {
2726 	int ret = 0;
2727 	int p_index = 0;
2728 	unsigned long p_rate = 0;
2729 
2730 	lockdep_assert_held(&prepare_lock);
2731 
2732 	if (!core)
2733 		return 0;
2734 
2735 	if (core->parent == parent)
2736 		return 0;
2737 
2738 	/* verify ops for multi-parent clks */
2739 	if (core->num_parents > 1 && !core->ops->set_parent)
2740 		return -EPERM;
2741 
2742 	/* check that we are allowed to re-parent if the clock is in use */
2743 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2744 		return -EBUSY;
2745 
2746 	if (clk_core_rate_is_protected(core))
2747 		return -EBUSY;
2748 
2749 	/* try finding the new parent index */
2750 	if (parent) {
2751 		p_index = clk_fetch_parent_index(core, parent);
2752 		if (p_index < 0) {
2753 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2754 					__func__, parent->name, core->name);
2755 			return p_index;
2756 		}
2757 		p_rate = parent->rate;
2758 	}
2759 
2760 	ret = clk_pm_runtime_get(core);
2761 	if (ret)
2762 		return ret;
2763 
2764 	/* propagate PRE_RATE_CHANGE notifications */
2765 	ret = __clk_speculate_rates(core, p_rate);
2766 
2767 	/* abort if a driver objects */
2768 	if (ret & NOTIFY_STOP_MASK)
2769 		goto runtime_put;
2770 
2771 	/* do the re-parent */
2772 	ret = __clk_set_parent(core, parent, p_index);
2773 
2774 	/* propagate rate an accuracy recalculation accordingly */
2775 	if (ret) {
2776 		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2777 	} else {
2778 		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2779 		__clk_recalc_accuracies(core);
2780 	}
2781 
2782 runtime_put:
2783 	clk_pm_runtime_put(core);
2784 
2785 	return ret;
2786 }
2787 
2788 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2789 {
2790 	return clk_core_set_parent_nolock(hw->core, parent->core);
2791 }
2792 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2793 
2794 /**
2795  * clk_set_parent - switch the parent of a mux clk
2796  * @clk: the mux clk whose input we are switching
2797  * @parent: the new input to clk
2798  *
2799  * Re-parent clk to use parent as its new input source.  If clk is in
2800  * prepared state, the clk will get enabled for the duration of this call. If
2801  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2802  * that, the reparenting is glitchy in hardware, etc), use the
2803  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2804  *
2805  * After successfully changing clk's parent clk_set_parent will update the
2806  * clk topology, sysfs topology and propagate rate recalculation via
2807  * __clk_recalc_rates.
2808  *
2809  * Returns 0 on success, -EERROR otherwise.
2810  */
2811 int clk_set_parent(struct clk *clk, struct clk *parent)
2812 {
2813 	int ret;
2814 
2815 	if (!clk)
2816 		return 0;
2817 
2818 	clk_prepare_lock();
2819 
2820 	if (clk->exclusive_count)
2821 		clk_core_rate_unprotect(clk->core);
2822 
2823 	ret = clk_core_set_parent_nolock(clk->core,
2824 					 parent ? parent->core : NULL);
2825 
2826 	if (clk->exclusive_count)
2827 		clk_core_rate_protect(clk->core);
2828 
2829 	clk_prepare_unlock();
2830 
2831 	return ret;
2832 }
2833 EXPORT_SYMBOL_GPL(clk_set_parent);
2834 
2835 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2836 {
2837 	int ret = -EINVAL;
2838 
2839 	lockdep_assert_held(&prepare_lock);
2840 
2841 	if (!core)
2842 		return 0;
2843 
2844 	if (clk_core_rate_is_protected(core))
2845 		return -EBUSY;
2846 
2847 	trace_clk_set_phase(core, degrees);
2848 
2849 	if (core->ops->set_phase) {
2850 		ret = core->ops->set_phase(core->hw, degrees);
2851 		if (!ret)
2852 			core->phase = degrees;
2853 	}
2854 
2855 	trace_clk_set_phase_complete(core, degrees);
2856 
2857 	return ret;
2858 }
2859 
2860 /**
2861  * clk_set_phase - adjust the phase shift of a clock signal
2862  * @clk: clock signal source
2863  * @degrees: number of degrees the signal is shifted
2864  *
2865  * Shifts the phase of a clock signal by the specified
2866  * degrees. Returns 0 on success, -EERROR otherwise.
2867  *
2868  * This function makes no distinction about the input or reference
2869  * signal that we adjust the clock signal phase against. For example
2870  * phase locked-loop clock signal generators we may shift phase with
2871  * respect to feedback clock signal input, but for other cases the
2872  * clock phase may be shifted with respect to some other, unspecified
2873  * signal.
2874  *
2875  * Additionally the concept of phase shift does not propagate through
2876  * the clock tree hierarchy, which sets it apart from clock rates and
2877  * clock accuracy. A parent clock phase attribute does not have an
2878  * impact on the phase attribute of a child clock.
2879  */
2880 int clk_set_phase(struct clk *clk, int degrees)
2881 {
2882 	int ret;
2883 
2884 	if (!clk)
2885 		return 0;
2886 
2887 	/* sanity check degrees */
2888 	degrees %= 360;
2889 	if (degrees < 0)
2890 		degrees += 360;
2891 
2892 	clk_prepare_lock();
2893 
2894 	if (clk->exclusive_count)
2895 		clk_core_rate_unprotect(clk->core);
2896 
2897 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2898 
2899 	if (clk->exclusive_count)
2900 		clk_core_rate_protect(clk->core);
2901 
2902 	clk_prepare_unlock();
2903 
2904 	return ret;
2905 }
2906 EXPORT_SYMBOL_GPL(clk_set_phase);
2907 
2908 static int clk_core_get_phase(struct clk_core *core)
2909 {
2910 	int ret;
2911 
2912 	lockdep_assert_held(&prepare_lock);
2913 	if (!core->ops->get_phase)
2914 		return 0;
2915 
2916 	/* Always try to update cached phase if possible */
2917 	ret = core->ops->get_phase(core->hw);
2918 	if (ret >= 0)
2919 		core->phase = ret;
2920 
2921 	return ret;
2922 }
2923 
2924 /**
2925  * clk_get_phase - return the phase shift of a clock signal
2926  * @clk: clock signal source
2927  *
2928  * Returns the phase shift of a clock node in degrees, otherwise returns
2929  * -EERROR.
2930  */
2931 int clk_get_phase(struct clk *clk)
2932 {
2933 	int ret;
2934 
2935 	if (!clk)
2936 		return 0;
2937 
2938 	clk_prepare_lock();
2939 	ret = clk_core_get_phase(clk->core);
2940 	clk_prepare_unlock();
2941 
2942 	return ret;
2943 }
2944 EXPORT_SYMBOL_GPL(clk_get_phase);
2945 
2946 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2947 {
2948 	/* Assume a default value of 50% */
2949 	core->duty.num = 1;
2950 	core->duty.den = 2;
2951 }
2952 
2953 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2954 
2955 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2956 {
2957 	struct clk_duty *duty = &core->duty;
2958 	int ret = 0;
2959 
2960 	if (!core->ops->get_duty_cycle)
2961 		return clk_core_update_duty_cycle_parent_nolock(core);
2962 
2963 	ret = core->ops->get_duty_cycle(core->hw, duty);
2964 	if (ret)
2965 		goto reset;
2966 
2967 	/* Don't trust the clock provider too much */
2968 	if (duty->den == 0 || duty->num > duty->den) {
2969 		ret = -EINVAL;
2970 		goto reset;
2971 	}
2972 
2973 	return 0;
2974 
2975 reset:
2976 	clk_core_reset_duty_cycle_nolock(core);
2977 	return ret;
2978 }
2979 
2980 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2981 {
2982 	int ret = 0;
2983 
2984 	if (core->parent &&
2985 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2986 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2987 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2988 	} else {
2989 		clk_core_reset_duty_cycle_nolock(core);
2990 	}
2991 
2992 	return ret;
2993 }
2994 
2995 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2996 						 struct clk_duty *duty);
2997 
2998 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2999 					  struct clk_duty *duty)
3000 {
3001 	int ret;
3002 
3003 	lockdep_assert_held(&prepare_lock);
3004 
3005 	if (clk_core_rate_is_protected(core))
3006 		return -EBUSY;
3007 
3008 	trace_clk_set_duty_cycle(core, duty);
3009 
3010 	if (!core->ops->set_duty_cycle)
3011 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3012 
3013 	ret = core->ops->set_duty_cycle(core->hw, duty);
3014 	if (!ret)
3015 		memcpy(&core->duty, duty, sizeof(*duty));
3016 
3017 	trace_clk_set_duty_cycle_complete(core, duty);
3018 
3019 	return ret;
3020 }
3021 
3022 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3023 						 struct clk_duty *duty)
3024 {
3025 	int ret = 0;
3026 
3027 	if (core->parent &&
3028 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3029 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3030 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3031 	}
3032 
3033 	return ret;
3034 }
3035 
3036 /**
3037  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3038  * @clk: clock signal source
3039  * @num: numerator of the duty cycle ratio to be applied
3040  * @den: denominator of the duty cycle ratio to be applied
3041  *
3042  * Apply the duty cycle ratio if the ratio is valid and the clock can
3043  * perform this operation
3044  *
3045  * Returns (0) on success, a negative errno otherwise.
3046  */
3047 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3048 {
3049 	int ret;
3050 	struct clk_duty duty;
3051 
3052 	if (!clk)
3053 		return 0;
3054 
3055 	/* sanity check the ratio */
3056 	if (den == 0 || num > den)
3057 		return -EINVAL;
3058 
3059 	duty.num = num;
3060 	duty.den = den;
3061 
3062 	clk_prepare_lock();
3063 
3064 	if (clk->exclusive_count)
3065 		clk_core_rate_unprotect(clk->core);
3066 
3067 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3068 
3069 	if (clk->exclusive_count)
3070 		clk_core_rate_protect(clk->core);
3071 
3072 	clk_prepare_unlock();
3073 
3074 	return ret;
3075 }
3076 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3077 
3078 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3079 					  unsigned int scale)
3080 {
3081 	struct clk_duty *duty = &core->duty;
3082 	int ret;
3083 
3084 	clk_prepare_lock();
3085 
3086 	ret = clk_core_update_duty_cycle_nolock(core);
3087 	if (!ret)
3088 		ret = mult_frac(scale, duty->num, duty->den);
3089 
3090 	clk_prepare_unlock();
3091 
3092 	return ret;
3093 }
3094 
3095 /**
3096  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3097  * @clk: clock signal source
3098  * @scale: scaling factor to be applied to represent the ratio as an integer
3099  *
3100  * Returns the duty cycle ratio of a clock node multiplied by the provided
3101  * scaling factor, or negative errno on error.
3102  */
3103 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3104 {
3105 	if (!clk)
3106 		return 0;
3107 
3108 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3109 }
3110 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3111 
3112 /**
3113  * clk_is_match - check if two clk's point to the same hardware clock
3114  * @p: clk compared against q
3115  * @q: clk compared against p
3116  *
3117  * Returns true if the two struct clk pointers both point to the same hardware
3118  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3119  * share the same struct clk_core object.
3120  *
3121  * Returns false otherwise. Note that two NULL clks are treated as matching.
3122  */
3123 bool clk_is_match(const struct clk *p, const struct clk *q)
3124 {
3125 	/* trivial case: identical struct clk's or both NULL */
3126 	if (p == q)
3127 		return true;
3128 
3129 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3130 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3131 		if (p->core == q->core)
3132 			return true;
3133 
3134 	return false;
3135 }
3136 EXPORT_SYMBOL_GPL(clk_is_match);
3137 
3138 /***        debugfs support        ***/
3139 
3140 #ifdef CONFIG_DEBUG_FS
3141 #include <linux/debugfs.h>
3142 
3143 static struct dentry *rootdir;
3144 static int inited = 0;
3145 static DEFINE_MUTEX(clk_debug_lock);
3146 static HLIST_HEAD(clk_debug_list);
3147 
3148 static struct hlist_head *orphan_list[] = {
3149 	&clk_orphan_list,
3150 	NULL,
3151 };
3152 
3153 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3154 				 int level)
3155 {
3156 	int phase;
3157 
3158 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3159 		   level * 3 + 1, "",
3160 		   30 - level * 3, c->name,
3161 		   c->enable_count, c->prepare_count, c->protect_count,
3162 		   clk_core_get_rate_recalc(c),
3163 		   clk_core_get_accuracy_recalc(c));
3164 
3165 	phase = clk_core_get_phase(c);
3166 	if (phase >= 0)
3167 		seq_printf(s, "%5d", phase);
3168 	else
3169 		seq_puts(s, "-----");
3170 
3171 	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
3172 
3173 	if (c->ops->is_enabled)
3174 		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
3175 	else if (!c->ops->enable)
3176 		seq_printf(s, " %9c\n", 'Y');
3177 	else
3178 		seq_printf(s, " %9c\n", '?');
3179 }
3180 
3181 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3182 				     int level)
3183 {
3184 	struct clk_core *child;
3185 
3186 	clk_pm_runtime_get(c);
3187 	clk_summary_show_one(s, c, level);
3188 	clk_pm_runtime_put(c);
3189 
3190 	hlist_for_each_entry(child, &c->children, child_node)
3191 		clk_summary_show_subtree(s, child, level + 1);
3192 }
3193 
3194 static int clk_summary_show(struct seq_file *s, void *data)
3195 {
3196 	struct clk_core *c;
3197 	struct hlist_head **lists = (struct hlist_head **)s->private;
3198 
3199 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
3200 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
3201 	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3202 
3203 	clk_prepare_lock();
3204 
3205 	for (; *lists; lists++)
3206 		hlist_for_each_entry(c, *lists, child_node)
3207 			clk_summary_show_subtree(s, c, 0);
3208 
3209 	clk_prepare_unlock();
3210 
3211 	return 0;
3212 }
3213 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3214 
3215 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3216 {
3217 	int phase;
3218 	unsigned long min_rate, max_rate;
3219 
3220 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3221 
3222 	/* This should be JSON format, i.e. elements separated with a comma */
3223 	seq_printf(s, "\"%s\": { ", c->name);
3224 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3225 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3226 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3227 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3228 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3229 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3230 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3231 	phase = clk_core_get_phase(c);
3232 	if (phase >= 0)
3233 		seq_printf(s, "\"phase\": %d,", phase);
3234 	seq_printf(s, "\"duty_cycle\": %u",
3235 		   clk_core_get_scaled_duty_cycle(c, 100000));
3236 }
3237 
3238 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3239 {
3240 	struct clk_core *child;
3241 
3242 	clk_dump_one(s, c, level);
3243 
3244 	hlist_for_each_entry(child, &c->children, child_node) {
3245 		seq_putc(s, ',');
3246 		clk_dump_subtree(s, child, level + 1);
3247 	}
3248 
3249 	seq_putc(s, '}');
3250 }
3251 
3252 static int clk_dump_show(struct seq_file *s, void *data)
3253 {
3254 	struct clk_core *c;
3255 	bool first_node = true;
3256 	struct hlist_head **lists = (struct hlist_head **)s->private;
3257 
3258 	seq_putc(s, '{');
3259 	clk_prepare_lock();
3260 
3261 	for (; *lists; lists++) {
3262 		hlist_for_each_entry(c, *lists, child_node) {
3263 			if (!first_node)
3264 				seq_putc(s, ',');
3265 			first_node = false;
3266 			clk_dump_subtree(s, c, 0);
3267 		}
3268 	}
3269 
3270 	clk_prepare_unlock();
3271 
3272 	seq_puts(s, "}\n");
3273 	return 0;
3274 }
3275 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3276 
3277 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3278 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3279 /*
3280  * This can be dangerous, therefore don't provide any real compile time
3281  * configuration option for this feature.
3282  * People who want to use this will need to modify the source code directly.
3283  */
3284 static int clk_rate_set(void *data, u64 val)
3285 {
3286 	struct clk_core *core = data;
3287 	int ret;
3288 
3289 	clk_prepare_lock();
3290 	ret = clk_core_set_rate_nolock(core, val);
3291 	clk_prepare_unlock();
3292 
3293 	return ret;
3294 }
3295 
3296 #define clk_rate_mode	0644
3297 
3298 static int clk_prepare_enable_set(void *data, u64 val)
3299 {
3300 	struct clk_core *core = data;
3301 	int ret = 0;
3302 
3303 	if (val)
3304 		ret = clk_prepare_enable(core->hw->clk);
3305 	else
3306 		clk_disable_unprepare(core->hw->clk);
3307 
3308 	return ret;
3309 }
3310 
3311 static int clk_prepare_enable_get(void *data, u64 *val)
3312 {
3313 	struct clk_core *core = data;
3314 
3315 	*val = core->enable_count && core->prepare_count;
3316 	return 0;
3317 }
3318 
3319 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3320 			 clk_prepare_enable_set, "%llu\n");
3321 
3322 #else
3323 #define clk_rate_set	NULL
3324 #define clk_rate_mode	0444
3325 #endif
3326 
3327 static int clk_rate_get(void *data, u64 *val)
3328 {
3329 	struct clk_core *core = data;
3330 
3331 	clk_prepare_lock();
3332 	*val = clk_core_get_rate_recalc(core);
3333 	clk_prepare_unlock();
3334 
3335 	return 0;
3336 }
3337 
3338 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3339 
3340 static const struct {
3341 	unsigned long flag;
3342 	const char *name;
3343 } clk_flags[] = {
3344 #define ENTRY(f) { f, #f }
3345 	ENTRY(CLK_SET_RATE_GATE),
3346 	ENTRY(CLK_SET_PARENT_GATE),
3347 	ENTRY(CLK_SET_RATE_PARENT),
3348 	ENTRY(CLK_IGNORE_UNUSED),
3349 	ENTRY(CLK_GET_RATE_NOCACHE),
3350 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3351 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3352 	ENTRY(CLK_RECALC_NEW_RATES),
3353 	ENTRY(CLK_SET_RATE_UNGATE),
3354 	ENTRY(CLK_IS_CRITICAL),
3355 	ENTRY(CLK_OPS_PARENT_ENABLE),
3356 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3357 #undef ENTRY
3358 };
3359 
3360 static int clk_flags_show(struct seq_file *s, void *data)
3361 {
3362 	struct clk_core *core = s->private;
3363 	unsigned long flags = core->flags;
3364 	unsigned int i;
3365 
3366 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3367 		if (flags & clk_flags[i].flag) {
3368 			seq_printf(s, "%s\n", clk_flags[i].name);
3369 			flags &= ~clk_flags[i].flag;
3370 		}
3371 	}
3372 	if (flags) {
3373 		/* Unknown flags */
3374 		seq_printf(s, "0x%lx\n", flags);
3375 	}
3376 
3377 	return 0;
3378 }
3379 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3380 
3381 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3382 				 unsigned int i, char terminator)
3383 {
3384 	struct clk_core *parent;
3385 
3386 	/*
3387 	 * Go through the following options to fetch a parent's name.
3388 	 *
3389 	 * 1. Fetch the registered parent clock and use its name
3390 	 * 2. Use the global (fallback) name if specified
3391 	 * 3. Use the local fw_name if provided
3392 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3393 	 *
3394 	 * This may still fail in some cases, such as when the parent is
3395 	 * specified directly via a struct clk_hw pointer, but it isn't
3396 	 * registered (yet).
3397 	 */
3398 	parent = clk_core_get_parent_by_index(core, i);
3399 	if (parent)
3400 		seq_puts(s, parent->name);
3401 	else if (core->parents[i].name)
3402 		seq_puts(s, core->parents[i].name);
3403 	else if (core->parents[i].fw_name)
3404 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3405 	else if (core->parents[i].index >= 0)
3406 		seq_puts(s,
3407 			 of_clk_get_parent_name(core->of_node,
3408 						core->parents[i].index));
3409 	else
3410 		seq_puts(s, "(missing)");
3411 
3412 	seq_putc(s, terminator);
3413 }
3414 
3415 static int possible_parents_show(struct seq_file *s, void *data)
3416 {
3417 	struct clk_core *core = s->private;
3418 	int i;
3419 
3420 	for (i = 0; i < core->num_parents - 1; i++)
3421 		possible_parent_show(s, core, i, ' ');
3422 
3423 	possible_parent_show(s, core, i, '\n');
3424 
3425 	return 0;
3426 }
3427 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3428 
3429 static int current_parent_show(struct seq_file *s, void *data)
3430 {
3431 	struct clk_core *core = s->private;
3432 
3433 	if (core->parent)
3434 		seq_printf(s, "%s\n", core->parent->name);
3435 
3436 	return 0;
3437 }
3438 DEFINE_SHOW_ATTRIBUTE(current_parent);
3439 
3440 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3441 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3442 				    size_t count, loff_t *ppos)
3443 {
3444 	struct seq_file *s = file->private_data;
3445 	struct clk_core *core = s->private;
3446 	struct clk_core *parent;
3447 	u8 idx;
3448 	int err;
3449 
3450 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3451 	if (err < 0)
3452 		return err;
3453 
3454 	parent = clk_core_get_parent_by_index(core, idx);
3455 	if (!parent)
3456 		return -ENOENT;
3457 
3458 	clk_prepare_lock();
3459 	err = clk_core_set_parent_nolock(core, parent);
3460 	clk_prepare_unlock();
3461 	if (err)
3462 		return err;
3463 
3464 	return count;
3465 }
3466 
3467 static const struct file_operations current_parent_rw_fops = {
3468 	.open		= current_parent_open,
3469 	.write		= current_parent_write,
3470 	.read		= seq_read,
3471 	.llseek		= seq_lseek,
3472 	.release	= single_release,
3473 };
3474 #endif
3475 
3476 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3477 {
3478 	struct clk_core *core = s->private;
3479 	struct clk_duty *duty = &core->duty;
3480 
3481 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3482 
3483 	return 0;
3484 }
3485 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3486 
3487 static int clk_min_rate_show(struct seq_file *s, void *data)
3488 {
3489 	struct clk_core *core = s->private;
3490 	unsigned long min_rate, max_rate;
3491 
3492 	clk_prepare_lock();
3493 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3494 	clk_prepare_unlock();
3495 	seq_printf(s, "%lu\n", min_rate);
3496 
3497 	return 0;
3498 }
3499 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3500 
3501 static int clk_max_rate_show(struct seq_file *s, void *data)
3502 {
3503 	struct clk_core *core = s->private;
3504 	unsigned long min_rate, max_rate;
3505 
3506 	clk_prepare_lock();
3507 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3508 	clk_prepare_unlock();
3509 	seq_printf(s, "%lu\n", max_rate);
3510 
3511 	return 0;
3512 }
3513 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3514 
3515 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3516 {
3517 	struct dentry *root;
3518 
3519 	if (!core || !pdentry)
3520 		return;
3521 
3522 	root = debugfs_create_dir(core->name, pdentry);
3523 	core->dentry = root;
3524 
3525 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3526 			    &clk_rate_fops);
3527 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3528 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3529 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3530 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3531 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3532 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3533 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3534 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3535 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3536 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3537 			    &clk_duty_cycle_fops);
3538 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3539 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3540 			    &clk_prepare_enable_fops);
3541 
3542 	if (core->num_parents > 1)
3543 		debugfs_create_file("clk_parent", 0644, root, core,
3544 				    &current_parent_rw_fops);
3545 	else
3546 #endif
3547 	if (core->num_parents > 0)
3548 		debugfs_create_file("clk_parent", 0444, root, core,
3549 				    &current_parent_fops);
3550 
3551 	if (core->num_parents > 1)
3552 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3553 				    &possible_parents_fops);
3554 
3555 	if (core->ops->debug_init)
3556 		core->ops->debug_init(core->hw, core->dentry);
3557 }
3558 
3559 /**
3560  * clk_debug_register - add a clk node to the debugfs clk directory
3561  * @core: the clk being added to the debugfs clk directory
3562  *
3563  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3564  * initialized.  Otherwise it bails out early since the debugfs clk directory
3565  * will be created lazily by clk_debug_init as part of a late_initcall.
3566  */
3567 static void clk_debug_register(struct clk_core *core)
3568 {
3569 	mutex_lock(&clk_debug_lock);
3570 	hlist_add_head(&core->debug_node, &clk_debug_list);
3571 	if (inited)
3572 		clk_debug_create_one(core, rootdir);
3573 	mutex_unlock(&clk_debug_lock);
3574 }
3575 
3576  /**
3577  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3578  * @core: the clk being removed from the debugfs clk directory
3579  *
3580  * Dynamically removes a clk and all its child nodes from the
3581  * debugfs clk directory if clk->dentry points to debugfs created by
3582  * clk_debug_register in __clk_core_init.
3583  */
3584 static void clk_debug_unregister(struct clk_core *core)
3585 {
3586 	mutex_lock(&clk_debug_lock);
3587 	hlist_del_init(&core->debug_node);
3588 	debugfs_remove_recursive(core->dentry);
3589 	core->dentry = NULL;
3590 	mutex_unlock(&clk_debug_lock);
3591 }
3592 
3593 /**
3594  * clk_debug_init - lazily populate the debugfs clk directory
3595  *
3596  * clks are often initialized very early during boot before memory can be
3597  * dynamically allocated and well before debugfs is setup. This function
3598  * populates the debugfs clk directory once at boot-time when we know that
3599  * debugfs is setup. It should only be called once at boot-time, all other clks
3600  * added dynamically will be done so with clk_debug_register.
3601  */
3602 static int __init clk_debug_init(void)
3603 {
3604 	struct clk_core *core;
3605 
3606 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3607 	pr_warn("\n");
3608 	pr_warn("********************************************************************\n");
3609 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3610 	pr_warn("**                                                                **\n");
3611 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3612 	pr_warn("**                                                                **\n");
3613 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3614 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3615 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3616 	pr_warn("**                                                                **\n");
3617 	pr_warn("** If you see this message and you are not debugging the          **\n");
3618 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3619 	pr_warn("**                                                                **\n");
3620 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3621 	pr_warn("********************************************************************\n");
3622 #endif
3623 
3624 	rootdir = debugfs_create_dir("clk", NULL);
3625 
3626 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3627 			    &clk_summary_fops);
3628 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3629 			    &clk_dump_fops);
3630 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3631 			    &clk_summary_fops);
3632 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3633 			    &clk_dump_fops);
3634 
3635 	mutex_lock(&clk_debug_lock);
3636 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3637 		clk_debug_create_one(core, rootdir);
3638 
3639 	inited = 1;
3640 	mutex_unlock(&clk_debug_lock);
3641 
3642 	return 0;
3643 }
3644 late_initcall(clk_debug_init);
3645 #else
3646 static inline void clk_debug_register(struct clk_core *core) { }
3647 static inline void clk_debug_unregister(struct clk_core *core)
3648 {
3649 }
3650 #endif
3651 
3652 static void clk_core_reparent_orphans_nolock(void)
3653 {
3654 	struct clk_core *orphan;
3655 	struct hlist_node *tmp2;
3656 
3657 	/*
3658 	 * walk the list of orphan clocks and reparent any that newly finds a
3659 	 * parent.
3660 	 */
3661 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3662 		struct clk_core *parent = __clk_init_parent(orphan);
3663 
3664 		/*
3665 		 * We need to use __clk_set_parent_before() and _after() to
3666 		 * properly migrate any prepare/enable count of the orphan
3667 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3668 		 * are enabled during init but might not have a parent yet.
3669 		 */
3670 		if (parent) {
3671 			/* update the clk tree topology */
3672 			__clk_set_parent_before(orphan, parent);
3673 			__clk_set_parent_after(orphan, parent, NULL);
3674 			__clk_recalc_accuracies(orphan);
3675 			__clk_recalc_rates(orphan, true, 0);
3676 
3677 			/*
3678 			 * __clk_init_parent() will set the initial req_rate to
3679 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3680 			 * is an orphan when it's registered.
3681 			 *
3682 			 * 'req_rate' is used by clk_set_rate_range() and
3683 			 * clk_put() to trigger a clk_set_rate() call whenever
3684 			 * the boundaries are modified. Let's make sure
3685 			 * 'req_rate' is set to something non-zero so that
3686 			 * clk_set_rate_range() doesn't drop the frequency.
3687 			 */
3688 			orphan->req_rate = orphan->rate;
3689 		}
3690 	}
3691 }
3692 
3693 /**
3694  * __clk_core_init - initialize the data structures in a struct clk_core
3695  * @core:	clk_core being initialized
3696  *
3697  * Initializes the lists in struct clk_core, queries the hardware for the
3698  * parent and rate and sets them both.
3699  */
3700 static int __clk_core_init(struct clk_core *core)
3701 {
3702 	int ret;
3703 	struct clk_core *parent;
3704 	unsigned long rate;
3705 	int phase;
3706 
3707 	clk_prepare_lock();
3708 
3709 	/*
3710 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3711 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3712 	 * being NULL as the clk not being registered yet. This is crucial so
3713 	 * that clks aren't parented until their parent is fully registered.
3714 	 */
3715 	core->hw->core = core;
3716 
3717 	ret = clk_pm_runtime_get(core);
3718 	if (ret)
3719 		goto unlock;
3720 
3721 	/* check to see if a clock with this name is already registered */
3722 	if (clk_core_lookup(core->name)) {
3723 		pr_debug("%s: clk %s already initialized\n",
3724 				__func__, core->name);
3725 		ret = -EEXIST;
3726 		goto out;
3727 	}
3728 
3729 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3730 	if (core->ops->set_rate &&
3731 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3732 	      core->ops->recalc_rate)) {
3733 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3734 		       __func__, core->name);
3735 		ret = -EINVAL;
3736 		goto out;
3737 	}
3738 
3739 	if (core->ops->set_parent && !core->ops->get_parent) {
3740 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3741 		       __func__, core->name);
3742 		ret = -EINVAL;
3743 		goto out;
3744 	}
3745 
3746 	if (core->num_parents > 1 && !core->ops->get_parent) {
3747 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3748 		       __func__, core->name);
3749 		ret = -EINVAL;
3750 		goto out;
3751 	}
3752 
3753 	if (core->ops->set_rate_and_parent &&
3754 			!(core->ops->set_parent && core->ops->set_rate)) {
3755 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3756 				__func__, core->name);
3757 		ret = -EINVAL;
3758 		goto out;
3759 	}
3760 
3761 	/*
3762 	 * optional platform-specific magic
3763 	 *
3764 	 * The .init callback is not used by any of the basic clock types, but
3765 	 * exists for weird hardware that must perform initialization magic for
3766 	 * CCF to get an accurate view of clock for any other callbacks. It may
3767 	 * also be used needs to perform dynamic allocations. Such allocation
3768 	 * must be freed in the terminate() callback.
3769 	 * This callback shall not be used to initialize the parameters state,
3770 	 * such as rate, parent, etc ...
3771 	 *
3772 	 * If it exist, this callback should called before any other callback of
3773 	 * the clock
3774 	 */
3775 	if (core->ops->init) {
3776 		ret = core->ops->init(core->hw);
3777 		if (ret)
3778 			goto out;
3779 	}
3780 
3781 	parent = core->parent = __clk_init_parent(core);
3782 
3783 	/*
3784 	 * Populate core->parent if parent has already been clk_core_init'd. If
3785 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3786 	 * list.  If clk doesn't have any parents then place it in the root
3787 	 * clk list.
3788 	 *
3789 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3790 	 * clocks and re-parent any that are children of the clock currently
3791 	 * being clk_init'd.
3792 	 */
3793 	if (parent) {
3794 		hlist_add_head(&core->child_node, &parent->children);
3795 		core->orphan = parent->orphan;
3796 	} else if (!core->num_parents) {
3797 		hlist_add_head(&core->child_node, &clk_root_list);
3798 		core->orphan = false;
3799 	} else {
3800 		hlist_add_head(&core->child_node, &clk_orphan_list);
3801 		core->orphan = true;
3802 	}
3803 
3804 	/*
3805 	 * Set clk's accuracy.  The preferred method is to use
3806 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3807 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3808 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3809 	 * clock).
3810 	 */
3811 	if (core->ops->recalc_accuracy)
3812 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3813 					clk_core_get_accuracy_no_lock(parent));
3814 	else if (parent)
3815 		core->accuracy = parent->accuracy;
3816 	else
3817 		core->accuracy = 0;
3818 
3819 	/*
3820 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3821 	 * Since a phase is by definition relative to its parent, just
3822 	 * query the current clock phase, or just assume it's in phase.
3823 	 */
3824 	phase = clk_core_get_phase(core);
3825 	if (phase < 0) {
3826 		ret = phase;
3827 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3828 			core->name);
3829 		goto out;
3830 	}
3831 
3832 	/*
3833 	 * Set clk's duty cycle.
3834 	 */
3835 	clk_core_update_duty_cycle_nolock(core);
3836 
3837 	/*
3838 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3839 	 * simple clocks and lazy developers the default fallback is to use the
3840 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3841 	 * then rate is set to zero.
3842 	 */
3843 	if (core->ops->recalc_rate)
3844 		rate = core->ops->recalc_rate(core->hw,
3845 				clk_core_get_rate_nolock(parent));
3846 	else if (parent)
3847 		rate = parent->rate;
3848 	else
3849 		rate = 0;
3850 	core->rate = core->req_rate = rate;
3851 
3852 	/*
3853 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3854 	 * don't get accidentally disabled when walking the orphan tree and
3855 	 * reparenting clocks
3856 	 */
3857 	if (core->flags & CLK_IS_CRITICAL) {
3858 		ret = clk_core_prepare(core);
3859 		if (ret) {
3860 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3861 			       __func__, core->name);
3862 			goto out;
3863 		}
3864 
3865 		ret = clk_core_enable_lock(core);
3866 		if (ret) {
3867 			pr_warn("%s: critical clk '%s' failed to enable\n",
3868 			       __func__, core->name);
3869 			clk_core_unprepare(core);
3870 			goto out;
3871 		}
3872 	}
3873 
3874 	clk_core_reparent_orphans_nolock();
3875 
3876 	kref_init(&core->ref);
3877 out:
3878 	clk_pm_runtime_put(core);
3879 unlock:
3880 	if (ret) {
3881 		hlist_del_init(&core->child_node);
3882 		core->hw->core = NULL;
3883 	}
3884 
3885 	clk_prepare_unlock();
3886 
3887 	if (!ret)
3888 		clk_debug_register(core);
3889 
3890 	return ret;
3891 }
3892 
3893 /**
3894  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3895  * @core: clk to add consumer to
3896  * @clk: consumer to link to a clk
3897  */
3898 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3899 {
3900 	clk_prepare_lock();
3901 	hlist_add_head(&clk->clks_node, &core->clks);
3902 	clk_prepare_unlock();
3903 }
3904 
3905 /**
3906  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3907  * @clk: consumer to unlink
3908  */
3909 static void clk_core_unlink_consumer(struct clk *clk)
3910 {
3911 	lockdep_assert_held(&prepare_lock);
3912 	hlist_del(&clk->clks_node);
3913 }
3914 
3915 /**
3916  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3917  * @core: clk to allocate a consumer for
3918  * @dev_id: string describing device name
3919  * @con_id: connection ID string on device
3920  *
3921  * Returns: clk consumer left unlinked from the consumer list
3922  */
3923 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3924 			     const char *con_id)
3925 {
3926 	struct clk *clk;
3927 
3928 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3929 	if (!clk)
3930 		return ERR_PTR(-ENOMEM);
3931 
3932 	clk->core = core;
3933 	clk->dev_id = dev_id;
3934 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3935 	clk->max_rate = ULONG_MAX;
3936 
3937 	return clk;
3938 }
3939 
3940 /**
3941  * free_clk - Free a clk consumer
3942  * @clk: clk consumer to free
3943  *
3944  * Note, this assumes the clk has been unlinked from the clk_core consumer
3945  * list.
3946  */
3947 static void free_clk(struct clk *clk)
3948 {
3949 	kfree_const(clk->con_id);
3950 	kfree(clk);
3951 }
3952 
3953 /**
3954  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3955  * a clk_hw
3956  * @dev: clk consumer device
3957  * @hw: clk_hw associated with the clk being consumed
3958  * @dev_id: string describing device name
3959  * @con_id: connection ID string on device
3960  *
3961  * This is the main function used to create a clk pointer for use by clk
3962  * consumers. It connects a consumer to the clk_core and clk_hw structures
3963  * used by the framework and clk provider respectively.
3964  */
3965 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3966 			      const char *dev_id, const char *con_id)
3967 {
3968 	struct clk *clk;
3969 	struct clk_core *core;
3970 
3971 	/* This is to allow this function to be chained to others */
3972 	if (IS_ERR_OR_NULL(hw))
3973 		return ERR_CAST(hw);
3974 
3975 	core = hw->core;
3976 	clk = alloc_clk(core, dev_id, con_id);
3977 	if (IS_ERR(clk))
3978 		return clk;
3979 	clk->dev = dev;
3980 
3981 	if (!try_module_get(core->owner)) {
3982 		free_clk(clk);
3983 		return ERR_PTR(-ENOENT);
3984 	}
3985 
3986 	kref_get(&core->ref);
3987 	clk_core_link_consumer(core, clk);
3988 
3989 	return clk;
3990 }
3991 
3992 /**
3993  * clk_hw_get_clk - get clk consumer given an clk_hw
3994  * @hw: clk_hw associated with the clk being consumed
3995  * @con_id: connection ID string on device
3996  *
3997  * Returns: new clk consumer
3998  * This is the function to be used by providers which need
3999  * to get a consumer clk and act on the clock element
4000  * Calls to this function must be balanced with calls clk_put()
4001  */
4002 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4003 {
4004 	struct device *dev = hw->core->dev;
4005 	const char *name = dev ? dev_name(dev) : NULL;
4006 
4007 	return clk_hw_create_clk(dev, hw, name, con_id);
4008 }
4009 EXPORT_SYMBOL(clk_hw_get_clk);
4010 
4011 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4012 {
4013 	const char *dst;
4014 
4015 	if (!src) {
4016 		if (must_exist)
4017 			return -EINVAL;
4018 		return 0;
4019 	}
4020 
4021 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4022 	if (!dst)
4023 		return -ENOMEM;
4024 
4025 	return 0;
4026 }
4027 
4028 static int clk_core_populate_parent_map(struct clk_core *core,
4029 					const struct clk_init_data *init)
4030 {
4031 	u8 num_parents = init->num_parents;
4032 	const char * const *parent_names = init->parent_names;
4033 	const struct clk_hw **parent_hws = init->parent_hws;
4034 	const struct clk_parent_data *parent_data = init->parent_data;
4035 	int i, ret = 0;
4036 	struct clk_parent_map *parents, *parent;
4037 
4038 	if (!num_parents)
4039 		return 0;
4040 
4041 	/*
4042 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4043 	 * having a cache of names/clk_hw pointers to clk_core pointers.
4044 	 */
4045 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4046 	core->parents = parents;
4047 	if (!parents)
4048 		return -ENOMEM;
4049 
4050 	/* Copy everything over because it might be __initdata */
4051 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4052 		parent->index = -1;
4053 		if (parent_names) {
4054 			/* throw a WARN if any entries are NULL */
4055 			WARN(!parent_names[i],
4056 				"%s: invalid NULL in %s's .parent_names\n",
4057 				__func__, core->name);
4058 			ret = clk_cpy_name(&parent->name, parent_names[i],
4059 					   true);
4060 		} else if (parent_data) {
4061 			parent->hw = parent_data[i].hw;
4062 			parent->index = parent_data[i].index;
4063 			ret = clk_cpy_name(&parent->fw_name,
4064 					   parent_data[i].fw_name, false);
4065 			if (!ret)
4066 				ret = clk_cpy_name(&parent->name,
4067 						   parent_data[i].name,
4068 						   false);
4069 		} else if (parent_hws) {
4070 			parent->hw = parent_hws[i];
4071 		} else {
4072 			ret = -EINVAL;
4073 			WARN(1, "Must specify parents if num_parents > 0\n");
4074 		}
4075 
4076 		if (ret) {
4077 			do {
4078 				kfree_const(parents[i].name);
4079 				kfree_const(parents[i].fw_name);
4080 			} while (--i >= 0);
4081 			kfree(parents);
4082 
4083 			return ret;
4084 		}
4085 	}
4086 
4087 	return 0;
4088 }
4089 
4090 static void clk_core_free_parent_map(struct clk_core *core)
4091 {
4092 	int i = core->num_parents;
4093 
4094 	if (!core->num_parents)
4095 		return;
4096 
4097 	while (--i >= 0) {
4098 		kfree_const(core->parents[i].name);
4099 		kfree_const(core->parents[i].fw_name);
4100 	}
4101 
4102 	kfree(core->parents);
4103 }
4104 
4105 static struct clk *
4106 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4107 {
4108 	int ret;
4109 	struct clk_core *core;
4110 	const struct clk_init_data *init = hw->init;
4111 
4112 	/*
4113 	 * The init data is not supposed to be used outside of registration path.
4114 	 * Set it to NULL so that provider drivers can't use it either and so that
4115 	 * we catch use of hw->init early on in the core.
4116 	 */
4117 	hw->init = NULL;
4118 
4119 	core = kzalloc(sizeof(*core), GFP_KERNEL);
4120 	if (!core) {
4121 		ret = -ENOMEM;
4122 		goto fail_out;
4123 	}
4124 
4125 	core->name = kstrdup_const(init->name, GFP_KERNEL);
4126 	if (!core->name) {
4127 		ret = -ENOMEM;
4128 		goto fail_name;
4129 	}
4130 
4131 	if (WARN_ON(!init->ops)) {
4132 		ret = -EINVAL;
4133 		goto fail_ops;
4134 	}
4135 	core->ops = init->ops;
4136 
4137 	if (dev && pm_runtime_enabled(dev))
4138 		core->rpm_enabled = true;
4139 	core->dev = dev;
4140 	core->of_node = np;
4141 	if (dev && dev->driver)
4142 		core->owner = dev->driver->owner;
4143 	core->hw = hw;
4144 	core->flags = init->flags;
4145 	core->num_parents = init->num_parents;
4146 	core->min_rate = 0;
4147 	core->max_rate = ULONG_MAX;
4148 
4149 	ret = clk_core_populate_parent_map(core, init);
4150 	if (ret)
4151 		goto fail_parents;
4152 
4153 	INIT_HLIST_HEAD(&core->clks);
4154 
4155 	/*
4156 	 * Don't call clk_hw_create_clk() here because that would pin the
4157 	 * provider module to itself and prevent it from ever being removed.
4158 	 */
4159 	hw->clk = alloc_clk(core, NULL, NULL);
4160 	if (IS_ERR(hw->clk)) {
4161 		ret = PTR_ERR(hw->clk);
4162 		goto fail_create_clk;
4163 	}
4164 
4165 	clk_core_link_consumer(core, hw->clk);
4166 
4167 	ret = __clk_core_init(core);
4168 	if (!ret)
4169 		return hw->clk;
4170 
4171 	clk_prepare_lock();
4172 	clk_core_unlink_consumer(hw->clk);
4173 	clk_prepare_unlock();
4174 
4175 	free_clk(hw->clk);
4176 	hw->clk = NULL;
4177 
4178 fail_create_clk:
4179 	clk_core_free_parent_map(core);
4180 fail_parents:
4181 fail_ops:
4182 	kfree_const(core->name);
4183 fail_name:
4184 	kfree(core);
4185 fail_out:
4186 	return ERR_PTR(ret);
4187 }
4188 
4189 /**
4190  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4191  * @dev: Device to get device node of
4192  *
4193  * Return: device node pointer of @dev, or the device node pointer of
4194  * @dev->parent if dev doesn't have a device node, or NULL if neither
4195  * @dev or @dev->parent have a device node.
4196  */
4197 static struct device_node *dev_or_parent_of_node(struct device *dev)
4198 {
4199 	struct device_node *np;
4200 
4201 	if (!dev)
4202 		return NULL;
4203 
4204 	np = dev_of_node(dev);
4205 	if (!np)
4206 		np = dev_of_node(dev->parent);
4207 
4208 	return np;
4209 }
4210 
4211 /**
4212  * clk_register - allocate a new clock, register it and return an opaque cookie
4213  * @dev: device that is registering this clock
4214  * @hw: link to hardware-specific clock data
4215  *
4216  * clk_register is the *deprecated* interface for populating the clock tree with
4217  * new clock nodes. Use clk_hw_register() instead.
4218  *
4219  * Returns: a pointer to the newly allocated struct clk which
4220  * cannot be dereferenced by driver code but may be used in conjunction with the
4221  * rest of the clock API.  In the event of an error clk_register will return an
4222  * error code; drivers must test for an error code after calling clk_register.
4223  */
4224 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4225 {
4226 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4227 }
4228 EXPORT_SYMBOL_GPL(clk_register);
4229 
4230 /**
4231  * clk_hw_register - register a clk_hw and return an error code
4232  * @dev: device that is registering this clock
4233  * @hw: link to hardware-specific clock data
4234  *
4235  * clk_hw_register is the primary interface for populating the clock tree with
4236  * new clock nodes. It returns an integer equal to zero indicating success or
4237  * less than zero indicating failure. Drivers must test for an error code after
4238  * calling clk_hw_register().
4239  */
4240 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4241 {
4242 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4243 			       hw));
4244 }
4245 EXPORT_SYMBOL_GPL(clk_hw_register);
4246 
4247 /*
4248  * of_clk_hw_register - register a clk_hw and return an error code
4249  * @node: device_node of device that is registering this clock
4250  * @hw: link to hardware-specific clock data
4251  *
4252  * of_clk_hw_register() is the primary interface for populating the clock tree
4253  * with new clock nodes when a struct device is not available, but a struct
4254  * device_node is. It returns an integer equal to zero indicating success or
4255  * less than zero indicating failure. Drivers must test for an error code after
4256  * calling of_clk_hw_register().
4257  */
4258 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4259 {
4260 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4261 }
4262 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4263 
4264 /* Free memory allocated for a clock. */
4265 static void __clk_release(struct kref *ref)
4266 {
4267 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4268 
4269 	lockdep_assert_held(&prepare_lock);
4270 
4271 	clk_core_free_parent_map(core);
4272 	kfree_const(core->name);
4273 	kfree(core);
4274 }
4275 
4276 /*
4277  * Empty clk_ops for unregistered clocks. These are used temporarily
4278  * after clk_unregister() was called on a clock and until last clock
4279  * consumer calls clk_put() and the struct clk object is freed.
4280  */
4281 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4282 {
4283 	return -ENXIO;
4284 }
4285 
4286 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4287 {
4288 	WARN_ON_ONCE(1);
4289 }
4290 
4291 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4292 					unsigned long parent_rate)
4293 {
4294 	return -ENXIO;
4295 }
4296 
4297 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4298 {
4299 	return -ENXIO;
4300 }
4301 
4302 static const struct clk_ops clk_nodrv_ops = {
4303 	.enable		= clk_nodrv_prepare_enable,
4304 	.disable	= clk_nodrv_disable_unprepare,
4305 	.prepare	= clk_nodrv_prepare_enable,
4306 	.unprepare	= clk_nodrv_disable_unprepare,
4307 	.set_rate	= clk_nodrv_set_rate,
4308 	.set_parent	= clk_nodrv_set_parent,
4309 };
4310 
4311 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4312 						const struct clk_core *target)
4313 {
4314 	int i;
4315 	struct clk_core *child;
4316 
4317 	for (i = 0; i < root->num_parents; i++)
4318 		if (root->parents[i].core == target)
4319 			root->parents[i].core = NULL;
4320 
4321 	hlist_for_each_entry(child, &root->children, child_node)
4322 		clk_core_evict_parent_cache_subtree(child, target);
4323 }
4324 
4325 /* Remove this clk from all parent caches */
4326 static void clk_core_evict_parent_cache(struct clk_core *core)
4327 {
4328 	const struct hlist_head **lists;
4329 	struct clk_core *root;
4330 
4331 	lockdep_assert_held(&prepare_lock);
4332 
4333 	for (lists = all_lists; *lists; lists++)
4334 		hlist_for_each_entry(root, *lists, child_node)
4335 			clk_core_evict_parent_cache_subtree(root, core);
4336 
4337 }
4338 
4339 /**
4340  * clk_unregister - unregister a currently registered clock
4341  * @clk: clock to unregister
4342  */
4343 void clk_unregister(struct clk *clk)
4344 {
4345 	unsigned long flags;
4346 	const struct clk_ops *ops;
4347 
4348 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4349 		return;
4350 
4351 	clk_debug_unregister(clk->core);
4352 
4353 	clk_prepare_lock();
4354 
4355 	ops = clk->core->ops;
4356 	if (ops == &clk_nodrv_ops) {
4357 		pr_err("%s: unregistered clock: %s\n", __func__,
4358 		       clk->core->name);
4359 		goto unlock;
4360 	}
4361 	/*
4362 	 * Assign empty clock ops for consumers that might still hold
4363 	 * a reference to this clock.
4364 	 */
4365 	flags = clk_enable_lock();
4366 	clk->core->ops = &clk_nodrv_ops;
4367 	clk_enable_unlock(flags);
4368 
4369 	if (ops->terminate)
4370 		ops->terminate(clk->core->hw);
4371 
4372 	if (!hlist_empty(&clk->core->children)) {
4373 		struct clk_core *child;
4374 		struct hlist_node *t;
4375 
4376 		/* Reparent all children to the orphan list. */
4377 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4378 					  child_node)
4379 			clk_core_set_parent_nolock(child, NULL);
4380 	}
4381 
4382 	clk_core_evict_parent_cache(clk->core);
4383 
4384 	hlist_del_init(&clk->core->child_node);
4385 
4386 	if (clk->core->prepare_count)
4387 		pr_warn("%s: unregistering prepared clock: %s\n",
4388 					__func__, clk->core->name);
4389 
4390 	if (clk->core->protect_count)
4391 		pr_warn("%s: unregistering protected clock: %s\n",
4392 					__func__, clk->core->name);
4393 
4394 	kref_put(&clk->core->ref, __clk_release);
4395 	free_clk(clk);
4396 unlock:
4397 	clk_prepare_unlock();
4398 }
4399 EXPORT_SYMBOL_GPL(clk_unregister);
4400 
4401 /**
4402  * clk_hw_unregister - unregister a currently registered clk_hw
4403  * @hw: hardware-specific clock data to unregister
4404  */
4405 void clk_hw_unregister(struct clk_hw *hw)
4406 {
4407 	clk_unregister(hw->clk);
4408 }
4409 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4410 
4411 static void devm_clk_unregister_cb(struct device *dev, void *res)
4412 {
4413 	clk_unregister(*(struct clk **)res);
4414 }
4415 
4416 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4417 {
4418 	clk_hw_unregister(*(struct clk_hw **)res);
4419 }
4420 
4421 /**
4422  * devm_clk_register - resource managed clk_register()
4423  * @dev: device that is registering this clock
4424  * @hw: link to hardware-specific clock data
4425  *
4426  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4427  *
4428  * Clocks returned from this function are automatically clk_unregister()ed on
4429  * driver detach. See clk_register() for more information.
4430  */
4431 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4432 {
4433 	struct clk *clk;
4434 	struct clk **clkp;
4435 
4436 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4437 	if (!clkp)
4438 		return ERR_PTR(-ENOMEM);
4439 
4440 	clk = clk_register(dev, hw);
4441 	if (!IS_ERR(clk)) {
4442 		*clkp = clk;
4443 		devres_add(dev, clkp);
4444 	} else {
4445 		devres_free(clkp);
4446 	}
4447 
4448 	return clk;
4449 }
4450 EXPORT_SYMBOL_GPL(devm_clk_register);
4451 
4452 /**
4453  * devm_clk_hw_register - resource managed clk_hw_register()
4454  * @dev: device that is registering this clock
4455  * @hw: link to hardware-specific clock data
4456  *
4457  * Managed clk_hw_register(). Clocks registered by this function are
4458  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4459  * for more information.
4460  */
4461 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4462 {
4463 	struct clk_hw **hwp;
4464 	int ret;
4465 
4466 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4467 	if (!hwp)
4468 		return -ENOMEM;
4469 
4470 	ret = clk_hw_register(dev, hw);
4471 	if (!ret) {
4472 		*hwp = hw;
4473 		devres_add(dev, hwp);
4474 	} else {
4475 		devres_free(hwp);
4476 	}
4477 
4478 	return ret;
4479 }
4480 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4481 
4482 static void devm_clk_release(struct device *dev, void *res)
4483 {
4484 	clk_put(*(struct clk **)res);
4485 }
4486 
4487 /**
4488  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4489  * @dev: device that is registering this clock
4490  * @hw: clk_hw associated with the clk being consumed
4491  * @con_id: connection ID string on device
4492  *
4493  * Managed clk_hw_get_clk(). Clocks got with this function are
4494  * automatically clk_put() on driver detach. See clk_put()
4495  * for more information.
4496  */
4497 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4498 				const char *con_id)
4499 {
4500 	struct clk *clk;
4501 	struct clk **clkp;
4502 
4503 	/* This should not happen because it would mean we have drivers
4504 	 * passing around clk_hw pointers instead of having the caller use
4505 	 * proper clk_get() style APIs
4506 	 */
4507 	WARN_ON_ONCE(dev != hw->core->dev);
4508 
4509 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4510 	if (!clkp)
4511 		return ERR_PTR(-ENOMEM);
4512 
4513 	clk = clk_hw_get_clk(hw, con_id);
4514 	if (!IS_ERR(clk)) {
4515 		*clkp = clk;
4516 		devres_add(dev, clkp);
4517 	} else {
4518 		devres_free(clkp);
4519 	}
4520 
4521 	return clk;
4522 }
4523 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4524 
4525 /*
4526  * clkdev helpers
4527  */
4528 
4529 void __clk_put(struct clk *clk)
4530 {
4531 	struct module *owner;
4532 
4533 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4534 		return;
4535 
4536 	clk_prepare_lock();
4537 
4538 	/*
4539 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4540 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4541 	 * and by that same consumer
4542 	 */
4543 	if (WARN_ON(clk->exclusive_count)) {
4544 		/* We voiced our concern, let's sanitize the situation */
4545 		clk->core->protect_count -= (clk->exclusive_count - 1);
4546 		clk_core_rate_unprotect(clk->core);
4547 		clk->exclusive_count = 0;
4548 	}
4549 
4550 	hlist_del(&clk->clks_node);
4551 
4552 	/* If we had any boundaries on that clock, let's drop them. */
4553 	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4554 		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4555 
4556 	owner = clk->core->owner;
4557 	kref_put(&clk->core->ref, __clk_release);
4558 
4559 	clk_prepare_unlock();
4560 
4561 	module_put(owner);
4562 
4563 	free_clk(clk);
4564 }
4565 
4566 /***        clk rate change notifiers        ***/
4567 
4568 /**
4569  * clk_notifier_register - add a clk rate change notifier
4570  * @clk: struct clk * to watch
4571  * @nb: struct notifier_block * with callback info
4572  *
4573  * Request notification when clk's rate changes.  This uses an SRCU
4574  * notifier because we want it to block and notifier unregistrations are
4575  * uncommon.  The callbacks associated with the notifier must not
4576  * re-enter into the clk framework by calling any top-level clk APIs;
4577  * this will cause a nested prepare_lock mutex.
4578  *
4579  * In all notification cases (pre, post and abort rate change) the original
4580  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4581  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4582  *
4583  * clk_notifier_register() must be called from non-atomic context.
4584  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4585  * allocation failure; otherwise, passes along the return value of
4586  * srcu_notifier_chain_register().
4587  */
4588 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4589 {
4590 	struct clk_notifier *cn;
4591 	int ret = -ENOMEM;
4592 
4593 	if (!clk || !nb)
4594 		return -EINVAL;
4595 
4596 	clk_prepare_lock();
4597 
4598 	/* search the list of notifiers for this clk */
4599 	list_for_each_entry(cn, &clk_notifier_list, node)
4600 		if (cn->clk == clk)
4601 			goto found;
4602 
4603 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4604 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4605 	if (!cn)
4606 		goto out;
4607 
4608 	cn->clk = clk;
4609 	srcu_init_notifier_head(&cn->notifier_head);
4610 
4611 	list_add(&cn->node, &clk_notifier_list);
4612 
4613 found:
4614 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4615 
4616 	clk->core->notifier_count++;
4617 
4618 out:
4619 	clk_prepare_unlock();
4620 
4621 	return ret;
4622 }
4623 EXPORT_SYMBOL_GPL(clk_notifier_register);
4624 
4625 /**
4626  * clk_notifier_unregister - remove a clk rate change notifier
4627  * @clk: struct clk *
4628  * @nb: struct notifier_block * with callback info
4629  *
4630  * Request no further notification for changes to 'clk' and frees memory
4631  * allocated in clk_notifier_register.
4632  *
4633  * Returns -EINVAL if called with null arguments; otherwise, passes
4634  * along the return value of srcu_notifier_chain_unregister().
4635  */
4636 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4637 {
4638 	struct clk_notifier *cn;
4639 	int ret = -ENOENT;
4640 
4641 	if (!clk || !nb)
4642 		return -EINVAL;
4643 
4644 	clk_prepare_lock();
4645 
4646 	list_for_each_entry(cn, &clk_notifier_list, node) {
4647 		if (cn->clk == clk) {
4648 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4649 
4650 			clk->core->notifier_count--;
4651 
4652 			/* XXX the notifier code should handle this better */
4653 			if (!cn->notifier_head.head) {
4654 				srcu_cleanup_notifier_head(&cn->notifier_head);
4655 				list_del(&cn->node);
4656 				kfree(cn);
4657 			}
4658 			break;
4659 		}
4660 	}
4661 
4662 	clk_prepare_unlock();
4663 
4664 	return ret;
4665 }
4666 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4667 
4668 struct clk_notifier_devres {
4669 	struct clk *clk;
4670 	struct notifier_block *nb;
4671 };
4672 
4673 static void devm_clk_notifier_release(struct device *dev, void *res)
4674 {
4675 	struct clk_notifier_devres *devres = res;
4676 
4677 	clk_notifier_unregister(devres->clk, devres->nb);
4678 }
4679 
4680 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4681 			       struct notifier_block *nb)
4682 {
4683 	struct clk_notifier_devres *devres;
4684 	int ret;
4685 
4686 	devres = devres_alloc(devm_clk_notifier_release,
4687 			      sizeof(*devres), GFP_KERNEL);
4688 
4689 	if (!devres)
4690 		return -ENOMEM;
4691 
4692 	ret = clk_notifier_register(clk, nb);
4693 	if (!ret) {
4694 		devres->clk = clk;
4695 		devres->nb = nb;
4696 	} else {
4697 		devres_free(devres);
4698 	}
4699 
4700 	return ret;
4701 }
4702 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4703 
4704 #ifdef CONFIG_OF
4705 static void clk_core_reparent_orphans(void)
4706 {
4707 	clk_prepare_lock();
4708 	clk_core_reparent_orphans_nolock();
4709 	clk_prepare_unlock();
4710 }
4711 
4712 /**
4713  * struct of_clk_provider - Clock provider registration structure
4714  * @link: Entry in global list of clock providers
4715  * @node: Pointer to device tree node of clock provider
4716  * @get: Get clock callback.  Returns NULL or a struct clk for the
4717  *       given clock specifier
4718  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4719  *       struct clk_hw for the given clock specifier
4720  * @data: context pointer to be passed into @get callback
4721  */
4722 struct of_clk_provider {
4723 	struct list_head link;
4724 
4725 	struct device_node *node;
4726 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4727 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4728 	void *data;
4729 };
4730 
4731 extern struct of_device_id __clk_of_table;
4732 static const struct of_device_id __clk_of_table_sentinel
4733 	__used __section("__clk_of_table_end");
4734 
4735 static LIST_HEAD(of_clk_providers);
4736 static DEFINE_MUTEX(of_clk_mutex);
4737 
4738 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4739 				     void *data)
4740 {
4741 	return data;
4742 }
4743 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4744 
4745 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4746 {
4747 	return data;
4748 }
4749 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4750 
4751 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4752 {
4753 	struct clk_onecell_data *clk_data = data;
4754 	unsigned int idx = clkspec->args[0];
4755 
4756 	if (idx >= clk_data->clk_num) {
4757 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4758 		return ERR_PTR(-EINVAL);
4759 	}
4760 
4761 	return clk_data->clks[idx];
4762 }
4763 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4764 
4765 struct clk_hw *
4766 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4767 {
4768 	struct clk_hw_onecell_data *hw_data = data;
4769 	unsigned int idx = clkspec->args[0];
4770 
4771 	if (idx >= hw_data->num) {
4772 		pr_err("%s: invalid index %u\n", __func__, idx);
4773 		return ERR_PTR(-EINVAL);
4774 	}
4775 
4776 	return hw_data->hws[idx];
4777 }
4778 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4779 
4780 /**
4781  * of_clk_add_provider() - Register a clock provider for a node
4782  * @np: Device node pointer associated with clock provider
4783  * @clk_src_get: callback for decoding clock
4784  * @data: context pointer for @clk_src_get callback.
4785  *
4786  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4787  */
4788 int of_clk_add_provider(struct device_node *np,
4789 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4790 						   void *data),
4791 			void *data)
4792 {
4793 	struct of_clk_provider *cp;
4794 	int ret;
4795 
4796 	if (!np)
4797 		return 0;
4798 
4799 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4800 	if (!cp)
4801 		return -ENOMEM;
4802 
4803 	cp->node = of_node_get(np);
4804 	cp->data = data;
4805 	cp->get = clk_src_get;
4806 
4807 	mutex_lock(&of_clk_mutex);
4808 	list_add(&cp->link, &of_clk_providers);
4809 	mutex_unlock(&of_clk_mutex);
4810 	pr_debug("Added clock from %pOF\n", np);
4811 
4812 	clk_core_reparent_orphans();
4813 
4814 	ret = of_clk_set_defaults(np, true);
4815 	if (ret < 0)
4816 		of_clk_del_provider(np);
4817 
4818 	fwnode_dev_initialized(&np->fwnode, true);
4819 
4820 	return ret;
4821 }
4822 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4823 
4824 /**
4825  * of_clk_add_hw_provider() - Register a clock provider for a node
4826  * @np: Device node pointer associated with clock provider
4827  * @get: callback for decoding clk_hw
4828  * @data: context pointer for @get callback.
4829  */
4830 int of_clk_add_hw_provider(struct device_node *np,
4831 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4832 						 void *data),
4833 			   void *data)
4834 {
4835 	struct of_clk_provider *cp;
4836 	int ret;
4837 
4838 	if (!np)
4839 		return 0;
4840 
4841 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4842 	if (!cp)
4843 		return -ENOMEM;
4844 
4845 	cp->node = of_node_get(np);
4846 	cp->data = data;
4847 	cp->get_hw = get;
4848 
4849 	mutex_lock(&of_clk_mutex);
4850 	list_add(&cp->link, &of_clk_providers);
4851 	mutex_unlock(&of_clk_mutex);
4852 	pr_debug("Added clk_hw provider from %pOF\n", np);
4853 
4854 	clk_core_reparent_orphans();
4855 
4856 	ret = of_clk_set_defaults(np, true);
4857 	if (ret < 0)
4858 		of_clk_del_provider(np);
4859 
4860 	fwnode_dev_initialized(&np->fwnode, true);
4861 
4862 	return ret;
4863 }
4864 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4865 
4866 static void devm_of_clk_release_provider(struct device *dev, void *res)
4867 {
4868 	of_clk_del_provider(*(struct device_node **)res);
4869 }
4870 
4871 /*
4872  * We allow a child device to use its parent device as the clock provider node
4873  * for cases like MFD sub-devices where the child device driver wants to use
4874  * devm_*() APIs but not list the device in DT as a sub-node.
4875  */
4876 static struct device_node *get_clk_provider_node(struct device *dev)
4877 {
4878 	struct device_node *np, *parent_np;
4879 
4880 	np = dev->of_node;
4881 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4882 
4883 	if (!of_find_property(np, "#clock-cells", NULL))
4884 		if (of_find_property(parent_np, "#clock-cells", NULL))
4885 			np = parent_np;
4886 
4887 	return np;
4888 }
4889 
4890 /**
4891  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4892  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4893  * @get: callback for decoding clk_hw
4894  * @data: context pointer for @get callback
4895  *
4896  * Registers clock provider for given device's node. If the device has no DT
4897  * node or if the device node lacks of clock provider information (#clock-cells)
4898  * then the parent device's node is scanned for this information. If parent node
4899  * has the #clock-cells then it is used in registration. Provider is
4900  * automatically released at device exit.
4901  *
4902  * Return: 0 on success or an errno on failure.
4903  */
4904 int devm_of_clk_add_hw_provider(struct device *dev,
4905 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4906 					      void *data),
4907 			void *data)
4908 {
4909 	struct device_node **ptr, *np;
4910 	int ret;
4911 
4912 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4913 			   GFP_KERNEL);
4914 	if (!ptr)
4915 		return -ENOMEM;
4916 
4917 	np = get_clk_provider_node(dev);
4918 	ret = of_clk_add_hw_provider(np, get, data);
4919 	if (!ret) {
4920 		*ptr = np;
4921 		devres_add(dev, ptr);
4922 	} else {
4923 		devres_free(ptr);
4924 	}
4925 
4926 	return ret;
4927 }
4928 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4929 
4930 /**
4931  * of_clk_del_provider() - Remove a previously registered clock provider
4932  * @np: Device node pointer associated with clock provider
4933  */
4934 void of_clk_del_provider(struct device_node *np)
4935 {
4936 	struct of_clk_provider *cp;
4937 
4938 	if (!np)
4939 		return;
4940 
4941 	mutex_lock(&of_clk_mutex);
4942 	list_for_each_entry(cp, &of_clk_providers, link) {
4943 		if (cp->node == np) {
4944 			list_del(&cp->link);
4945 			fwnode_dev_initialized(&np->fwnode, false);
4946 			of_node_put(cp->node);
4947 			kfree(cp);
4948 			break;
4949 		}
4950 	}
4951 	mutex_unlock(&of_clk_mutex);
4952 }
4953 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4954 
4955 /**
4956  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4957  * @np: device node to parse clock specifier from
4958  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4959  * @name: clock name to find and parse. If name is NULL, the index is used
4960  * @out_args: Result of parsing the clock specifier
4961  *
4962  * Parses a device node's "clocks" and "clock-names" properties to find the
4963  * phandle and cells for the index or name that is desired. The resulting clock
4964  * specifier is placed into @out_args, or an errno is returned when there's a
4965  * parsing error. The @index argument is ignored if @name is non-NULL.
4966  *
4967  * Example:
4968  *
4969  * phandle1: clock-controller@1 {
4970  *	#clock-cells = <2>;
4971  * }
4972  *
4973  * phandle2: clock-controller@2 {
4974  *	#clock-cells = <1>;
4975  * }
4976  *
4977  * clock-consumer@3 {
4978  *	clocks = <&phandle1 1 2 &phandle2 3>;
4979  *	clock-names = "name1", "name2";
4980  * }
4981  *
4982  * To get a device_node for `clock-controller@2' node you may call this
4983  * function a few different ways:
4984  *
4985  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4986  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4987  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4988  *
4989  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4990  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4991  * the "clock-names" property of @np.
4992  */
4993 static int of_parse_clkspec(const struct device_node *np, int index,
4994 			    const char *name, struct of_phandle_args *out_args)
4995 {
4996 	int ret = -ENOENT;
4997 
4998 	/* Walk up the tree of devices looking for a clock property that matches */
4999 	while (np) {
5000 		/*
5001 		 * For named clocks, first look up the name in the
5002 		 * "clock-names" property.  If it cannot be found, then index
5003 		 * will be an error code and of_parse_phandle_with_args() will
5004 		 * return -EINVAL.
5005 		 */
5006 		if (name)
5007 			index = of_property_match_string(np, "clock-names", name);
5008 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5009 						 index, out_args);
5010 		if (!ret)
5011 			break;
5012 		if (name && index >= 0)
5013 			break;
5014 
5015 		/*
5016 		 * No matching clock found on this node.  If the parent node
5017 		 * has a "clock-ranges" property, then we can try one of its
5018 		 * clocks.
5019 		 */
5020 		np = np->parent;
5021 		if (np && !of_get_property(np, "clock-ranges", NULL))
5022 			break;
5023 		index = 0;
5024 	}
5025 
5026 	return ret;
5027 }
5028 
5029 static struct clk_hw *
5030 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5031 			      struct of_phandle_args *clkspec)
5032 {
5033 	struct clk *clk;
5034 
5035 	if (provider->get_hw)
5036 		return provider->get_hw(clkspec, provider->data);
5037 
5038 	clk = provider->get(clkspec, provider->data);
5039 	if (IS_ERR(clk))
5040 		return ERR_CAST(clk);
5041 	return __clk_get_hw(clk);
5042 }
5043 
5044 static struct clk_hw *
5045 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5046 {
5047 	struct of_clk_provider *provider;
5048 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5049 
5050 	if (!clkspec)
5051 		return ERR_PTR(-EINVAL);
5052 
5053 	mutex_lock(&of_clk_mutex);
5054 	list_for_each_entry(provider, &of_clk_providers, link) {
5055 		if (provider->node == clkspec->np) {
5056 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5057 			if (!IS_ERR(hw))
5058 				break;
5059 		}
5060 	}
5061 	mutex_unlock(&of_clk_mutex);
5062 
5063 	return hw;
5064 }
5065 
5066 /**
5067  * of_clk_get_from_provider() - Lookup a clock from a clock provider
5068  * @clkspec: pointer to a clock specifier data structure
5069  *
5070  * This function looks up a struct clk from the registered list of clock
5071  * providers, an input is a clock specifier data structure as returned
5072  * from the of_parse_phandle_with_args() function call.
5073  */
5074 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5075 {
5076 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5077 
5078 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5079 }
5080 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5081 
5082 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5083 			     const char *con_id)
5084 {
5085 	int ret;
5086 	struct clk_hw *hw;
5087 	struct of_phandle_args clkspec;
5088 
5089 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5090 	if (ret)
5091 		return ERR_PTR(ret);
5092 
5093 	hw = of_clk_get_hw_from_clkspec(&clkspec);
5094 	of_node_put(clkspec.np);
5095 
5096 	return hw;
5097 }
5098 
5099 static struct clk *__of_clk_get(struct device_node *np,
5100 				int index, const char *dev_id,
5101 				const char *con_id)
5102 {
5103 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5104 
5105 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5106 }
5107 
5108 struct clk *of_clk_get(struct device_node *np, int index)
5109 {
5110 	return __of_clk_get(np, index, np->full_name, NULL);
5111 }
5112 EXPORT_SYMBOL(of_clk_get);
5113 
5114 /**
5115  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5116  * @np: pointer to clock consumer node
5117  * @name: name of consumer's clock input, or NULL for the first clock reference
5118  *
5119  * This function parses the clocks and clock-names properties,
5120  * and uses them to look up the struct clk from the registered list of clock
5121  * providers.
5122  */
5123 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5124 {
5125 	if (!np)
5126 		return ERR_PTR(-ENOENT);
5127 
5128 	return __of_clk_get(np, 0, np->full_name, name);
5129 }
5130 EXPORT_SYMBOL(of_clk_get_by_name);
5131 
5132 /**
5133  * of_clk_get_parent_count() - Count the number of clocks a device node has
5134  * @np: device node to count
5135  *
5136  * Returns: The number of clocks that are possible parents of this node
5137  */
5138 unsigned int of_clk_get_parent_count(const struct device_node *np)
5139 {
5140 	int count;
5141 
5142 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5143 	if (count < 0)
5144 		return 0;
5145 
5146 	return count;
5147 }
5148 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5149 
5150 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5151 {
5152 	struct of_phandle_args clkspec;
5153 	struct property *prop;
5154 	const char *clk_name;
5155 	const __be32 *vp;
5156 	u32 pv;
5157 	int rc;
5158 	int count;
5159 	struct clk *clk;
5160 
5161 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5162 					&clkspec);
5163 	if (rc)
5164 		return NULL;
5165 
5166 	index = clkspec.args_count ? clkspec.args[0] : 0;
5167 	count = 0;
5168 
5169 	/* if there is an indices property, use it to transfer the index
5170 	 * specified into an array offset for the clock-output-names property.
5171 	 */
5172 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5173 		if (index == pv) {
5174 			index = count;
5175 			break;
5176 		}
5177 		count++;
5178 	}
5179 	/* We went off the end of 'clock-indices' without finding it */
5180 	if (prop && !vp)
5181 		return NULL;
5182 
5183 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5184 					  index,
5185 					  &clk_name) < 0) {
5186 		/*
5187 		 * Best effort to get the name if the clock has been
5188 		 * registered with the framework. If the clock isn't
5189 		 * registered, we return the node name as the name of
5190 		 * the clock as long as #clock-cells = 0.
5191 		 */
5192 		clk = of_clk_get_from_provider(&clkspec);
5193 		if (IS_ERR(clk)) {
5194 			if (clkspec.args_count == 0)
5195 				clk_name = clkspec.np->name;
5196 			else
5197 				clk_name = NULL;
5198 		} else {
5199 			clk_name = __clk_get_name(clk);
5200 			clk_put(clk);
5201 		}
5202 	}
5203 
5204 
5205 	of_node_put(clkspec.np);
5206 	return clk_name;
5207 }
5208 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5209 
5210 /**
5211  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5212  * number of parents
5213  * @np: Device node pointer associated with clock provider
5214  * @parents: pointer to char array that hold the parents' names
5215  * @size: size of the @parents array
5216  *
5217  * Return: number of parents for the clock node.
5218  */
5219 int of_clk_parent_fill(struct device_node *np, const char **parents,
5220 		       unsigned int size)
5221 {
5222 	unsigned int i = 0;
5223 
5224 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5225 		i++;
5226 
5227 	return i;
5228 }
5229 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5230 
5231 struct clock_provider {
5232 	void (*clk_init_cb)(struct device_node *);
5233 	struct device_node *np;
5234 	struct list_head node;
5235 };
5236 
5237 /*
5238  * This function looks for a parent clock. If there is one, then it
5239  * checks that the provider for this parent clock was initialized, in
5240  * this case the parent clock will be ready.
5241  */
5242 static int parent_ready(struct device_node *np)
5243 {
5244 	int i = 0;
5245 
5246 	while (true) {
5247 		struct clk *clk = of_clk_get(np, i);
5248 
5249 		/* this parent is ready we can check the next one */
5250 		if (!IS_ERR(clk)) {
5251 			clk_put(clk);
5252 			i++;
5253 			continue;
5254 		}
5255 
5256 		/* at least one parent is not ready, we exit now */
5257 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5258 			return 0;
5259 
5260 		/*
5261 		 * Here we make assumption that the device tree is
5262 		 * written correctly. So an error means that there is
5263 		 * no more parent. As we didn't exit yet, then the
5264 		 * previous parent are ready. If there is no clock
5265 		 * parent, no need to wait for them, then we can
5266 		 * consider their absence as being ready
5267 		 */
5268 		return 1;
5269 	}
5270 }
5271 
5272 /**
5273  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5274  * @np: Device node pointer associated with clock provider
5275  * @index: clock index
5276  * @flags: pointer to top-level framework flags
5277  *
5278  * Detects if the clock-critical property exists and, if so, sets the
5279  * corresponding CLK_IS_CRITICAL flag.
5280  *
5281  * Do not use this function. It exists only for legacy Device Tree
5282  * bindings, such as the one-clock-per-node style that are outdated.
5283  * Those bindings typically put all clock data into .dts and the Linux
5284  * driver has no clock data, thus making it impossible to set this flag
5285  * correctly from the driver. Only those drivers may call
5286  * of_clk_detect_critical from their setup functions.
5287  *
5288  * Return: error code or zero on success
5289  */
5290 int of_clk_detect_critical(struct device_node *np, int index,
5291 			   unsigned long *flags)
5292 {
5293 	struct property *prop;
5294 	const __be32 *cur;
5295 	uint32_t idx;
5296 
5297 	if (!np || !flags)
5298 		return -EINVAL;
5299 
5300 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5301 		if (index == idx)
5302 			*flags |= CLK_IS_CRITICAL;
5303 
5304 	return 0;
5305 }
5306 
5307 /**
5308  * of_clk_init() - Scan and init clock providers from the DT
5309  * @matches: array of compatible values and init functions for providers.
5310  *
5311  * This function scans the device tree for matching clock providers
5312  * and calls their initialization functions. It also does it by trying
5313  * to follow the dependencies.
5314  */
5315 void __init of_clk_init(const struct of_device_id *matches)
5316 {
5317 	const struct of_device_id *match;
5318 	struct device_node *np;
5319 	struct clock_provider *clk_provider, *next;
5320 	bool is_init_done;
5321 	bool force = false;
5322 	LIST_HEAD(clk_provider_list);
5323 
5324 	if (!matches)
5325 		matches = &__clk_of_table;
5326 
5327 	/* First prepare the list of the clocks providers */
5328 	for_each_matching_node_and_match(np, matches, &match) {
5329 		struct clock_provider *parent;
5330 
5331 		if (!of_device_is_available(np))
5332 			continue;
5333 
5334 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5335 		if (!parent) {
5336 			list_for_each_entry_safe(clk_provider, next,
5337 						 &clk_provider_list, node) {
5338 				list_del(&clk_provider->node);
5339 				of_node_put(clk_provider->np);
5340 				kfree(clk_provider);
5341 			}
5342 			of_node_put(np);
5343 			return;
5344 		}
5345 
5346 		parent->clk_init_cb = match->data;
5347 		parent->np = of_node_get(np);
5348 		list_add_tail(&parent->node, &clk_provider_list);
5349 	}
5350 
5351 	while (!list_empty(&clk_provider_list)) {
5352 		is_init_done = false;
5353 		list_for_each_entry_safe(clk_provider, next,
5354 					&clk_provider_list, node) {
5355 			if (force || parent_ready(clk_provider->np)) {
5356 
5357 				/* Don't populate platform devices */
5358 				of_node_set_flag(clk_provider->np,
5359 						 OF_POPULATED);
5360 
5361 				clk_provider->clk_init_cb(clk_provider->np);
5362 				of_clk_set_defaults(clk_provider->np, true);
5363 
5364 				list_del(&clk_provider->node);
5365 				of_node_put(clk_provider->np);
5366 				kfree(clk_provider);
5367 				is_init_done = true;
5368 			}
5369 		}
5370 
5371 		/*
5372 		 * We didn't manage to initialize any of the
5373 		 * remaining providers during the last loop, so now we
5374 		 * initialize all the remaining ones unconditionally
5375 		 * in case the clock parent was not mandatory
5376 		 */
5377 		if (!is_init_done)
5378 			force = true;
5379 	}
5380 }
5381 #endif
5382