1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 /*** private data structures ***/ 41 42 struct clk_parent_map { 43 const struct clk_hw *hw; 44 struct clk_core *core; 45 const char *fw_name; 46 const char *name; 47 int index; 48 }; 49 50 struct clk_core { 51 const char *name; 52 const struct clk_ops *ops; 53 struct clk_hw *hw; 54 struct module *owner; 55 struct device *dev; 56 struct device_node *of_node; 57 struct clk_core *parent; 58 struct clk_parent_map *parents; 59 u8 num_parents; 60 u8 new_parent_index; 61 unsigned long rate; 62 unsigned long req_rate; 63 unsigned long new_rate; 64 struct clk_core *new_parent; 65 struct clk_core *new_child; 66 unsigned long flags; 67 bool orphan; 68 bool rpm_enabled; 69 unsigned int enable_count; 70 unsigned int prepare_count; 71 unsigned int protect_count; 72 unsigned long min_rate; 73 unsigned long max_rate; 74 unsigned long accuracy; 75 int phase; 76 struct clk_duty duty; 77 struct hlist_head children; 78 struct hlist_node child_node; 79 struct hlist_head clks; 80 unsigned int notifier_count; 81 #ifdef CONFIG_DEBUG_FS 82 struct dentry *dentry; 83 struct hlist_node debug_node; 84 #endif 85 struct kref ref; 86 }; 87 88 #define CREATE_TRACE_POINTS 89 #include <trace/events/clk.h> 90 91 struct clk { 92 struct clk_core *core; 93 struct device *dev; 94 const char *dev_id; 95 const char *con_id; 96 unsigned long min_rate; 97 unsigned long max_rate; 98 unsigned int exclusive_count; 99 struct hlist_node clks_node; 100 }; 101 102 /*** runtime pm ***/ 103 static int clk_pm_runtime_get(struct clk_core *core) 104 { 105 int ret; 106 107 if (!core->rpm_enabled) 108 return 0; 109 110 ret = pm_runtime_get_sync(core->dev); 111 return ret < 0 ? ret : 0; 112 } 113 114 static void clk_pm_runtime_put(struct clk_core *core) 115 { 116 if (!core->rpm_enabled) 117 return; 118 119 pm_runtime_put_sync(core->dev); 120 } 121 122 /*** locking ***/ 123 static void clk_prepare_lock(void) 124 { 125 if (!mutex_trylock(&prepare_lock)) { 126 if (prepare_owner == current) { 127 prepare_refcnt++; 128 return; 129 } 130 mutex_lock(&prepare_lock); 131 } 132 WARN_ON_ONCE(prepare_owner != NULL); 133 WARN_ON_ONCE(prepare_refcnt != 0); 134 prepare_owner = current; 135 prepare_refcnt = 1; 136 } 137 138 static void clk_prepare_unlock(void) 139 { 140 WARN_ON_ONCE(prepare_owner != current); 141 WARN_ON_ONCE(prepare_refcnt == 0); 142 143 if (--prepare_refcnt) 144 return; 145 prepare_owner = NULL; 146 mutex_unlock(&prepare_lock); 147 } 148 149 static unsigned long clk_enable_lock(void) 150 __acquires(enable_lock) 151 { 152 unsigned long flags; 153 154 /* 155 * On UP systems, spin_trylock_irqsave() always returns true, even if 156 * we already hold the lock. So, in that case, we rely only on 157 * reference counting. 158 */ 159 if (!IS_ENABLED(CONFIG_SMP) || 160 !spin_trylock_irqsave(&enable_lock, flags)) { 161 if (enable_owner == current) { 162 enable_refcnt++; 163 __acquire(enable_lock); 164 if (!IS_ENABLED(CONFIG_SMP)) 165 local_save_flags(flags); 166 return flags; 167 } 168 spin_lock_irqsave(&enable_lock, flags); 169 } 170 WARN_ON_ONCE(enable_owner != NULL); 171 WARN_ON_ONCE(enable_refcnt != 0); 172 enable_owner = current; 173 enable_refcnt = 1; 174 return flags; 175 } 176 177 static void clk_enable_unlock(unsigned long flags) 178 __releases(enable_lock) 179 { 180 WARN_ON_ONCE(enable_owner != current); 181 WARN_ON_ONCE(enable_refcnt == 0); 182 183 if (--enable_refcnt) { 184 __release(enable_lock); 185 return; 186 } 187 enable_owner = NULL; 188 spin_unlock_irqrestore(&enable_lock, flags); 189 } 190 191 static bool clk_core_rate_is_protected(struct clk_core *core) 192 { 193 return core->protect_count; 194 } 195 196 static bool clk_core_is_prepared(struct clk_core *core) 197 { 198 bool ret = false; 199 200 /* 201 * .is_prepared is optional for clocks that can prepare 202 * fall back to software usage counter if it is missing 203 */ 204 if (!core->ops->is_prepared) 205 return core->prepare_count; 206 207 if (!clk_pm_runtime_get(core)) { 208 ret = core->ops->is_prepared(core->hw); 209 clk_pm_runtime_put(core); 210 } 211 212 return ret; 213 } 214 215 static bool clk_core_is_enabled(struct clk_core *core) 216 { 217 bool ret = false; 218 219 /* 220 * .is_enabled is only mandatory for clocks that gate 221 * fall back to software usage counter if .is_enabled is missing 222 */ 223 if (!core->ops->is_enabled) 224 return core->enable_count; 225 226 /* 227 * Check if clock controller's device is runtime active before 228 * calling .is_enabled callback. If not, assume that clock is 229 * disabled, because we might be called from atomic context, from 230 * which pm_runtime_get() is not allowed. 231 * This function is called mainly from clk_disable_unused_subtree, 232 * which ensures proper runtime pm activation of controller before 233 * taking enable spinlock, but the below check is needed if one tries 234 * to call it from other places. 235 */ 236 if (core->rpm_enabled) { 237 pm_runtime_get_noresume(core->dev); 238 if (!pm_runtime_active(core->dev)) { 239 ret = false; 240 goto done; 241 } 242 } 243 244 ret = core->ops->is_enabled(core->hw); 245 done: 246 if (core->rpm_enabled) 247 pm_runtime_put(core->dev); 248 249 return ret; 250 } 251 252 /*** helper functions ***/ 253 254 const char *__clk_get_name(const struct clk *clk) 255 { 256 return !clk ? NULL : clk->core->name; 257 } 258 EXPORT_SYMBOL_GPL(__clk_get_name); 259 260 const char *clk_hw_get_name(const struct clk_hw *hw) 261 { 262 return hw->core->name; 263 } 264 EXPORT_SYMBOL_GPL(clk_hw_get_name); 265 266 struct clk_hw *__clk_get_hw(struct clk *clk) 267 { 268 return !clk ? NULL : clk->core->hw; 269 } 270 EXPORT_SYMBOL_GPL(__clk_get_hw); 271 272 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 273 { 274 return hw->core->num_parents; 275 } 276 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 277 278 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 279 { 280 return hw->core->parent ? hw->core->parent->hw : NULL; 281 } 282 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 283 284 static struct clk_core *__clk_lookup_subtree(const char *name, 285 struct clk_core *core) 286 { 287 struct clk_core *child; 288 struct clk_core *ret; 289 290 if (!strcmp(core->name, name)) 291 return core; 292 293 hlist_for_each_entry(child, &core->children, child_node) { 294 ret = __clk_lookup_subtree(name, child); 295 if (ret) 296 return ret; 297 } 298 299 return NULL; 300 } 301 302 static struct clk_core *clk_core_lookup(const char *name) 303 { 304 struct clk_core *root_clk; 305 struct clk_core *ret; 306 307 if (!name) 308 return NULL; 309 310 /* search the 'proper' clk tree first */ 311 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 312 ret = __clk_lookup_subtree(name, root_clk); 313 if (ret) 314 return ret; 315 } 316 317 /* if not found, then search the orphan tree */ 318 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 319 ret = __clk_lookup_subtree(name, root_clk); 320 if (ret) 321 return ret; 322 } 323 324 return NULL; 325 } 326 327 #ifdef CONFIG_OF 328 static int of_parse_clkspec(const struct device_node *np, int index, 329 const char *name, struct of_phandle_args *out_args); 330 static struct clk_hw * 331 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 332 #else 333 static inline int of_parse_clkspec(const struct device_node *np, int index, 334 const char *name, 335 struct of_phandle_args *out_args) 336 { 337 return -ENOENT; 338 } 339 static inline struct clk_hw * 340 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 341 { 342 return ERR_PTR(-ENOENT); 343 } 344 #endif 345 346 /** 347 * clk_core_get - Find the clk_core parent of a clk 348 * @core: clk to find parent of 349 * @p_index: parent index to search for 350 * 351 * This is the preferred method for clk providers to find the parent of a 352 * clk when that parent is external to the clk controller. The parent_names 353 * array is indexed and treated as a local name matching a string in the device 354 * node's 'clock-names' property or as the 'con_id' matching the device's 355 * dev_name() in a clk_lookup. This allows clk providers to use their own 356 * namespace instead of looking for a globally unique parent string. 357 * 358 * For example the following DT snippet would allow a clock registered by the 359 * clock-controller@c001 that has a clk_init_data::parent_data array 360 * with 'xtal' in the 'name' member to find the clock provided by the 361 * clock-controller@f00abcd without needing to get the globally unique name of 362 * the xtal clk. 363 * 364 * parent: clock-controller@f00abcd { 365 * reg = <0xf00abcd 0xabcd>; 366 * #clock-cells = <0>; 367 * }; 368 * 369 * clock-controller@c001 { 370 * reg = <0xc001 0xf00d>; 371 * clocks = <&parent>; 372 * clock-names = "xtal"; 373 * #clock-cells = <1>; 374 * }; 375 * 376 * Returns: -ENOENT when the provider can't be found or the clk doesn't 377 * exist in the provider or the name can't be found in the DT node or 378 * in a clkdev lookup. NULL when the provider knows about the clk but it 379 * isn't provided on this system. 380 * A valid clk_core pointer when the clk can be found in the provider. 381 */ 382 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 383 { 384 const char *name = core->parents[p_index].fw_name; 385 int index = core->parents[p_index].index; 386 struct clk_hw *hw = ERR_PTR(-ENOENT); 387 struct device *dev = core->dev; 388 const char *dev_id = dev ? dev_name(dev) : NULL; 389 struct device_node *np = core->of_node; 390 struct of_phandle_args clkspec; 391 392 if (np && (name || index >= 0) && 393 !of_parse_clkspec(np, index, name, &clkspec)) { 394 hw = of_clk_get_hw_from_clkspec(&clkspec); 395 of_node_put(clkspec.np); 396 } else if (name) { 397 /* 398 * If the DT search above couldn't find the provider fallback to 399 * looking up via clkdev based clk_lookups. 400 */ 401 hw = clk_find_hw(dev_id, name); 402 } 403 404 if (IS_ERR(hw)) 405 return ERR_CAST(hw); 406 407 return hw->core; 408 } 409 410 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 411 { 412 struct clk_parent_map *entry = &core->parents[index]; 413 struct clk_core *parent = ERR_PTR(-ENOENT); 414 415 if (entry->hw) { 416 parent = entry->hw->core; 417 /* 418 * We have a direct reference but it isn't registered yet? 419 * Orphan it and let clk_reparent() update the orphan status 420 * when the parent is registered. 421 */ 422 if (!parent) 423 parent = ERR_PTR(-EPROBE_DEFER); 424 } else { 425 parent = clk_core_get(core, index); 426 if (IS_ERR(parent) && PTR_ERR(parent) == -ENOENT && entry->name) 427 parent = clk_core_lookup(entry->name); 428 } 429 430 /* Only cache it if it's not an error */ 431 if (!IS_ERR(parent)) 432 entry->core = parent; 433 } 434 435 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 436 u8 index) 437 { 438 if (!core || index >= core->num_parents || !core->parents) 439 return NULL; 440 441 if (!core->parents[index].core) 442 clk_core_fill_parent_index(core, index); 443 444 return core->parents[index].core; 445 } 446 447 struct clk_hw * 448 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 449 { 450 struct clk_core *parent; 451 452 parent = clk_core_get_parent_by_index(hw->core, index); 453 454 return !parent ? NULL : parent->hw; 455 } 456 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 457 458 unsigned int __clk_get_enable_count(struct clk *clk) 459 { 460 return !clk ? 0 : clk->core->enable_count; 461 } 462 463 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 464 { 465 if (!core) 466 return 0; 467 468 if (!core->num_parents || core->parent) 469 return core->rate; 470 471 /* 472 * Clk must have a parent because num_parents > 0 but the parent isn't 473 * known yet. Best to return 0 as the rate of this clk until we can 474 * properly recalc the rate based on the parent's rate. 475 */ 476 return 0; 477 } 478 479 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 480 { 481 return clk_core_get_rate_nolock(hw->core); 482 } 483 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 484 485 static unsigned long __clk_get_accuracy(struct clk_core *core) 486 { 487 if (!core) 488 return 0; 489 490 return core->accuracy; 491 } 492 493 unsigned long __clk_get_flags(struct clk *clk) 494 { 495 return !clk ? 0 : clk->core->flags; 496 } 497 EXPORT_SYMBOL_GPL(__clk_get_flags); 498 499 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 500 { 501 return hw->core->flags; 502 } 503 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 504 505 bool clk_hw_is_prepared(const struct clk_hw *hw) 506 { 507 return clk_core_is_prepared(hw->core); 508 } 509 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 510 511 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 512 { 513 return clk_core_rate_is_protected(hw->core); 514 } 515 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 516 517 bool clk_hw_is_enabled(const struct clk_hw *hw) 518 { 519 return clk_core_is_enabled(hw->core); 520 } 521 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 522 523 bool __clk_is_enabled(struct clk *clk) 524 { 525 if (!clk) 526 return false; 527 528 return clk_core_is_enabled(clk->core); 529 } 530 EXPORT_SYMBOL_GPL(__clk_is_enabled); 531 532 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 533 unsigned long best, unsigned long flags) 534 { 535 if (flags & CLK_MUX_ROUND_CLOSEST) 536 return abs(now - rate) < abs(best - rate); 537 538 return now <= rate && now > best; 539 } 540 541 int clk_mux_determine_rate_flags(struct clk_hw *hw, 542 struct clk_rate_request *req, 543 unsigned long flags) 544 { 545 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 546 int i, num_parents, ret; 547 unsigned long best = 0; 548 struct clk_rate_request parent_req = *req; 549 550 /* if NO_REPARENT flag set, pass through to current parent */ 551 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 552 parent = core->parent; 553 if (core->flags & CLK_SET_RATE_PARENT) { 554 ret = __clk_determine_rate(parent ? parent->hw : NULL, 555 &parent_req); 556 if (ret) 557 return ret; 558 559 best = parent_req.rate; 560 } else if (parent) { 561 best = clk_core_get_rate_nolock(parent); 562 } else { 563 best = clk_core_get_rate_nolock(core); 564 } 565 566 goto out; 567 } 568 569 /* find the parent that can provide the fastest rate <= rate */ 570 num_parents = core->num_parents; 571 for (i = 0; i < num_parents; i++) { 572 parent = clk_core_get_parent_by_index(core, i); 573 if (!parent) 574 continue; 575 576 if (core->flags & CLK_SET_RATE_PARENT) { 577 parent_req = *req; 578 ret = __clk_determine_rate(parent->hw, &parent_req); 579 if (ret) 580 continue; 581 } else { 582 parent_req.rate = clk_core_get_rate_nolock(parent); 583 } 584 585 if (mux_is_better_rate(req->rate, parent_req.rate, 586 best, flags)) { 587 best_parent = parent; 588 best = parent_req.rate; 589 } 590 } 591 592 if (!best_parent) 593 return -EINVAL; 594 595 out: 596 if (best_parent) 597 req->best_parent_hw = best_parent->hw; 598 req->best_parent_rate = best; 599 req->rate = best; 600 601 return 0; 602 } 603 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 604 605 struct clk *__clk_lookup(const char *name) 606 { 607 struct clk_core *core = clk_core_lookup(name); 608 609 return !core ? NULL : core->hw->clk; 610 } 611 612 static void clk_core_get_boundaries(struct clk_core *core, 613 unsigned long *min_rate, 614 unsigned long *max_rate) 615 { 616 struct clk *clk_user; 617 618 *min_rate = core->min_rate; 619 *max_rate = core->max_rate; 620 621 hlist_for_each_entry(clk_user, &core->clks, clks_node) 622 *min_rate = max(*min_rate, clk_user->min_rate); 623 624 hlist_for_each_entry(clk_user, &core->clks, clks_node) 625 *max_rate = min(*max_rate, clk_user->max_rate); 626 } 627 628 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 629 unsigned long max_rate) 630 { 631 hw->core->min_rate = min_rate; 632 hw->core->max_rate = max_rate; 633 } 634 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 635 636 /* 637 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 638 * @hw: mux type clk to determine rate on 639 * @req: rate request, also used to return preferred parent and frequencies 640 * 641 * Helper for finding best parent to provide a given frequency. This can be used 642 * directly as a determine_rate callback (e.g. for a mux), or from a more 643 * complex clock that may combine a mux with other operations. 644 * 645 * Returns: 0 on success, -EERROR value on error 646 */ 647 int __clk_mux_determine_rate(struct clk_hw *hw, 648 struct clk_rate_request *req) 649 { 650 return clk_mux_determine_rate_flags(hw, req, 0); 651 } 652 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 653 654 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 655 struct clk_rate_request *req) 656 { 657 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 658 } 659 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 660 661 /*** clk api ***/ 662 663 static void clk_core_rate_unprotect(struct clk_core *core) 664 { 665 lockdep_assert_held(&prepare_lock); 666 667 if (!core) 668 return; 669 670 if (WARN(core->protect_count == 0, 671 "%s already unprotected\n", core->name)) 672 return; 673 674 if (--core->protect_count > 0) 675 return; 676 677 clk_core_rate_unprotect(core->parent); 678 } 679 680 static int clk_core_rate_nuke_protect(struct clk_core *core) 681 { 682 int ret; 683 684 lockdep_assert_held(&prepare_lock); 685 686 if (!core) 687 return -EINVAL; 688 689 if (core->protect_count == 0) 690 return 0; 691 692 ret = core->protect_count; 693 core->protect_count = 1; 694 clk_core_rate_unprotect(core); 695 696 return ret; 697 } 698 699 /** 700 * clk_rate_exclusive_put - release exclusivity over clock rate control 701 * @clk: the clk over which the exclusivity is released 702 * 703 * clk_rate_exclusive_put() completes a critical section during which a clock 704 * consumer cannot tolerate any other consumer making any operation on the 705 * clock which could result in a rate change or rate glitch. Exclusive clocks 706 * cannot have their rate changed, either directly or indirectly due to changes 707 * further up the parent chain of clocks. As a result, clocks up parent chain 708 * also get under exclusive control of the calling consumer. 709 * 710 * If exlusivity is claimed more than once on clock, even by the same consumer, 711 * the rate effectively gets locked as exclusivity can't be preempted. 712 * 713 * Calls to clk_rate_exclusive_put() must be balanced with calls to 714 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 715 * error status. 716 */ 717 void clk_rate_exclusive_put(struct clk *clk) 718 { 719 if (!clk) 720 return; 721 722 clk_prepare_lock(); 723 724 /* 725 * if there is something wrong with this consumer protect count, stop 726 * here before messing with the provider 727 */ 728 if (WARN_ON(clk->exclusive_count <= 0)) 729 goto out; 730 731 clk_core_rate_unprotect(clk->core); 732 clk->exclusive_count--; 733 out: 734 clk_prepare_unlock(); 735 } 736 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 737 738 static void clk_core_rate_protect(struct clk_core *core) 739 { 740 lockdep_assert_held(&prepare_lock); 741 742 if (!core) 743 return; 744 745 if (core->protect_count == 0) 746 clk_core_rate_protect(core->parent); 747 748 core->protect_count++; 749 } 750 751 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 752 { 753 lockdep_assert_held(&prepare_lock); 754 755 if (!core) 756 return; 757 758 if (count == 0) 759 return; 760 761 clk_core_rate_protect(core); 762 core->protect_count = count; 763 } 764 765 /** 766 * clk_rate_exclusive_get - get exclusivity over the clk rate control 767 * @clk: the clk over which the exclusity of rate control is requested 768 * 769 * clk_rate_exlusive_get() begins a critical section during which a clock 770 * consumer cannot tolerate any other consumer making any operation on the 771 * clock which could result in a rate change or rate glitch. Exclusive clocks 772 * cannot have their rate changed, either directly or indirectly due to changes 773 * further up the parent chain of clocks. As a result, clocks up parent chain 774 * also get under exclusive control of the calling consumer. 775 * 776 * If exlusivity is claimed more than once on clock, even by the same consumer, 777 * the rate effectively gets locked as exclusivity can't be preempted. 778 * 779 * Calls to clk_rate_exclusive_get() should be balanced with calls to 780 * clk_rate_exclusive_put(). Calls to this function may sleep. 781 * Returns 0 on success, -EERROR otherwise 782 */ 783 int clk_rate_exclusive_get(struct clk *clk) 784 { 785 if (!clk) 786 return 0; 787 788 clk_prepare_lock(); 789 clk_core_rate_protect(clk->core); 790 clk->exclusive_count++; 791 clk_prepare_unlock(); 792 793 return 0; 794 } 795 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 796 797 static void clk_core_unprepare(struct clk_core *core) 798 { 799 lockdep_assert_held(&prepare_lock); 800 801 if (!core) 802 return; 803 804 if (WARN(core->prepare_count == 0, 805 "%s already unprepared\n", core->name)) 806 return; 807 808 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 809 "Unpreparing critical %s\n", core->name)) 810 return; 811 812 if (core->flags & CLK_SET_RATE_GATE) 813 clk_core_rate_unprotect(core); 814 815 if (--core->prepare_count > 0) 816 return; 817 818 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 819 820 trace_clk_unprepare(core); 821 822 if (core->ops->unprepare) 823 core->ops->unprepare(core->hw); 824 825 clk_pm_runtime_put(core); 826 827 trace_clk_unprepare_complete(core); 828 clk_core_unprepare(core->parent); 829 } 830 831 static void clk_core_unprepare_lock(struct clk_core *core) 832 { 833 clk_prepare_lock(); 834 clk_core_unprepare(core); 835 clk_prepare_unlock(); 836 } 837 838 /** 839 * clk_unprepare - undo preparation of a clock source 840 * @clk: the clk being unprepared 841 * 842 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 843 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 844 * if the operation may sleep. One example is a clk which is accessed over 845 * I2c. In the complex case a clk gate operation may require a fast and a slow 846 * part. It is this reason that clk_unprepare and clk_disable are not mutually 847 * exclusive. In fact clk_disable must be called before clk_unprepare. 848 */ 849 void clk_unprepare(struct clk *clk) 850 { 851 if (IS_ERR_OR_NULL(clk)) 852 return; 853 854 clk_core_unprepare_lock(clk->core); 855 } 856 EXPORT_SYMBOL_GPL(clk_unprepare); 857 858 static int clk_core_prepare(struct clk_core *core) 859 { 860 int ret = 0; 861 862 lockdep_assert_held(&prepare_lock); 863 864 if (!core) 865 return 0; 866 867 if (core->prepare_count == 0) { 868 ret = clk_pm_runtime_get(core); 869 if (ret) 870 return ret; 871 872 ret = clk_core_prepare(core->parent); 873 if (ret) 874 goto runtime_put; 875 876 trace_clk_prepare(core); 877 878 if (core->ops->prepare) 879 ret = core->ops->prepare(core->hw); 880 881 trace_clk_prepare_complete(core); 882 883 if (ret) 884 goto unprepare; 885 } 886 887 core->prepare_count++; 888 889 /* 890 * CLK_SET_RATE_GATE is a special case of clock protection 891 * Instead of a consumer claiming exclusive rate control, it is 892 * actually the provider which prevents any consumer from making any 893 * operation which could result in a rate change or rate glitch while 894 * the clock is prepared. 895 */ 896 if (core->flags & CLK_SET_RATE_GATE) 897 clk_core_rate_protect(core); 898 899 return 0; 900 unprepare: 901 clk_core_unprepare(core->parent); 902 runtime_put: 903 clk_pm_runtime_put(core); 904 return ret; 905 } 906 907 static int clk_core_prepare_lock(struct clk_core *core) 908 { 909 int ret; 910 911 clk_prepare_lock(); 912 ret = clk_core_prepare(core); 913 clk_prepare_unlock(); 914 915 return ret; 916 } 917 918 /** 919 * clk_prepare - prepare a clock source 920 * @clk: the clk being prepared 921 * 922 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 923 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 924 * operation may sleep. One example is a clk which is accessed over I2c. In 925 * the complex case a clk ungate operation may require a fast and a slow part. 926 * It is this reason that clk_prepare and clk_enable are not mutually 927 * exclusive. In fact clk_prepare must be called before clk_enable. 928 * Returns 0 on success, -EERROR otherwise. 929 */ 930 int clk_prepare(struct clk *clk) 931 { 932 if (!clk) 933 return 0; 934 935 return clk_core_prepare_lock(clk->core); 936 } 937 EXPORT_SYMBOL_GPL(clk_prepare); 938 939 static void clk_core_disable(struct clk_core *core) 940 { 941 lockdep_assert_held(&enable_lock); 942 943 if (!core) 944 return; 945 946 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 947 return; 948 949 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 950 "Disabling critical %s\n", core->name)) 951 return; 952 953 if (--core->enable_count > 0) 954 return; 955 956 trace_clk_disable_rcuidle(core); 957 958 if (core->ops->disable) 959 core->ops->disable(core->hw); 960 961 trace_clk_disable_complete_rcuidle(core); 962 963 clk_core_disable(core->parent); 964 } 965 966 static void clk_core_disable_lock(struct clk_core *core) 967 { 968 unsigned long flags; 969 970 flags = clk_enable_lock(); 971 clk_core_disable(core); 972 clk_enable_unlock(flags); 973 } 974 975 /** 976 * clk_disable - gate a clock 977 * @clk: the clk being gated 978 * 979 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 980 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 981 * clk if the operation is fast and will never sleep. One example is a 982 * SoC-internal clk which is controlled via simple register writes. In the 983 * complex case a clk gate operation may require a fast and a slow part. It is 984 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 985 * In fact clk_disable must be called before clk_unprepare. 986 */ 987 void clk_disable(struct clk *clk) 988 { 989 if (IS_ERR_OR_NULL(clk)) 990 return; 991 992 clk_core_disable_lock(clk->core); 993 } 994 EXPORT_SYMBOL_GPL(clk_disable); 995 996 static int clk_core_enable(struct clk_core *core) 997 { 998 int ret = 0; 999 1000 lockdep_assert_held(&enable_lock); 1001 1002 if (!core) 1003 return 0; 1004 1005 if (WARN(core->prepare_count == 0, 1006 "Enabling unprepared %s\n", core->name)) 1007 return -ESHUTDOWN; 1008 1009 if (core->enable_count == 0) { 1010 ret = clk_core_enable(core->parent); 1011 1012 if (ret) 1013 return ret; 1014 1015 trace_clk_enable_rcuidle(core); 1016 1017 if (core->ops->enable) 1018 ret = core->ops->enable(core->hw); 1019 1020 trace_clk_enable_complete_rcuidle(core); 1021 1022 if (ret) { 1023 clk_core_disable(core->parent); 1024 return ret; 1025 } 1026 } 1027 1028 core->enable_count++; 1029 return 0; 1030 } 1031 1032 static int clk_core_enable_lock(struct clk_core *core) 1033 { 1034 unsigned long flags; 1035 int ret; 1036 1037 flags = clk_enable_lock(); 1038 ret = clk_core_enable(core); 1039 clk_enable_unlock(flags); 1040 1041 return ret; 1042 } 1043 1044 /** 1045 * clk_gate_restore_context - restore context for poweroff 1046 * @hw: the clk_hw pointer of clock whose state is to be restored 1047 * 1048 * The clock gate restore context function enables or disables 1049 * the gate clocks based on the enable_count. This is done in cases 1050 * where the clock context is lost and based on the enable_count 1051 * the clock either needs to be enabled/disabled. This 1052 * helps restore the state of gate clocks. 1053 */ 1054 void clk_gate_restore_context(struct clk_hw *hw) 1055 { 1056 struct clk_core *core = hw->core; 1057 1058 if (core->enable_count) 1059 core->ops->enable(hw); 1060 else 1061 core->ops->disable(hw); 1062 } 1063 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1064 1065 static int clk_core_save_context(struct clk_core *core) 1066 { 1067 struct clk_core *child; 1068 int ret = 0; 1069 1070 hlist_for_each_entry(child, &core->children, child_node) { 1071 ret = clk_core_save_context(child); 1072 if (ret < 0) 1073 return ret; 1074 } 1075 1076 if (core->ops && core->ops->save_context) 1077 ret = core->ops->save_context(core->hw); 1078 1079 return ret; 1080 } 1081 1082 static void clk_core_restore_context(struct clk_core *core) 1083 { 1084 struct clk_core *child; 1085 1086 if (core->ops && core->ops->restore_context) 1087 core->ops->restore_context(core->hw); 1088 1089 hlist_for_each_entry(child, &core->children, child_node) 1090 clk_core_restore_context(child); 1091 } 1092 1093 /** 1094 * clk_save_context - save clock context for poweroff 1095 * 1096 * Saves the context of the clock register for powerstates in which the 1097 * contents of the registers will be lost. Occurs deep within the suspend 1098 * code. Returns 0 on success. 1099 */ 1100 int clk_save_context(void) 1101 { 1102 struct clk_core *clk; 1103 int ret; 1104 1105 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1106 ret = clk_core_save_context(clk); 1107 if (ret < 0) 1108 return ret; 1109 } 1110 1111 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1112 ret = clk_core_save_context(clk); 1113 if (ret < 0) 1114 return ret; 1115 } 1116 1117 return 0; 1118 } 1119 EXPORT_SYMBOL_GPL(clk_save_context); 1120 1121 /** 1122 * clk_restore_context - restore clock context after poweroff 1123 * 1124 * Restore the saved clock context upon resume. 1125 * 1126 */ 1127 void clk_restore_context(void) 1128 { 1129 struct clk_core *core; 1130 1131 hlist_for_each_entry(core, &clk_root_list, child_node) 1132 clk_core_restore_context(core); 1133 1134 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1135 clk_core_restore_context(core); 1136 } 1137 EXPORT_SYMBOL_GPL(clk_restore_context); 1138 1139 /** 1140 * clk_enable - ungate a clock 1141 * @clk: the clk being ungated 1142 * 1143 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1144 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1145 * if the operation will never sleep. One example is a SoC-internal clk which 1146 * is controlled via simple register writes. In the complex case a clk ungate 1147 * operation may require a fast and a slow part. It is this reason that 1148 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1149 * must be called before clk_enable. Returns 0 on success, -EERROR 1150 * otherwise. 1151 */ 1152 int clk_enable(struct clk *clk) 1153 { 1154 if (!clk) 1155 return 0; 1156 1157 return clk_core_enable_lock(clk->core); 1158 } 1159 EXPORT_SYMBOL_GPL(clk_enable); 1160 1161 static int clk_core_prepare_enable(struct clk_core *core) 1162 { 1163 int ret; 1164 1165 ret = clk_core_prepare_lock(core); 1166 if (ret) 1167 return ret; 1168 1169 ret = clk_core_enable_lock(core); 1170 if (ret) 1171 clk_core_unprepare_lock(core); 1172 1173 return ret; 1174 } 1175 1176 static void clk_core_disable_unprepare(struct clk_core *core) 1177 { 1178 clk_core_disable_lock(core); 1179 clk_core_unprepare_lock(core); 1180 } 1181 1182 static void clk_unprepare_unused_subtree(struct clk_core *core) 1183 { 1184 struct clk_core *child; 1185 1186 lockdep_assert_held(&prepare_lock); 1187 1188 hlist_for_each_entry(child, &core->children, child_node) 1189 clk_unprepare_unused_subtree(child); 1190 1191 if (core->prepare_count) 1192 return; 1193 1194 if (core->flags & CLK_IGNORE_UNUSED) 1195 return; 1196 1197 if (clk_pm_runtime_get(core)) 1198 return; 1199 1200 if (clk_core_is_prepared(core)) { 1201 trace_clk_unprepare(core); 1202 if (core->ops->unprepare_unused) 1203 core->ops->unprepare_unused(core->hw); 1204 else if (core->ops->unprepare) 1205 core->ops->unprepare(core->hw); 1206 trace_clk_unprepare_complete(core); 1207 } 1208 1209 clk_pm_runtime_put(core); 1210 } 1211 1212 static void clk_disable_unused_subtree(struct clk_core *core) 1213 { 1214 struct clk_core *child; 1215 unsigned long flags; 1216 1217 lockdep_assert_held(&prepare_lock); 1218 1219 hlist_for_each_entry(child, &core->children, child_node) 1220 clk_disable_unused_subtree(child); 1221 1222 if (core->flags & CLK_OPS_PARENT_ENABLE) 1223 clk_core_prepare_enable(core->parent); 1224 1225 if (clk_pm_runtime_get(core)) 1226 goto unprepare_out; 1227 1228 flags = clk_enable_lock(); 1229 1230 if (core->enable_count) 1231 goto unlock_out; 1232 1233 if (core->flags & CLK_IGNORE_UNUSED) 1234 goto unlock_out; 1235 1236 /* 1237 * some gate clocks have special needs during the disable-unused 1238 * sequence. call .disable_unused if available, otherwise fall 1239 * back to .disable 1240 */ 1241 if (clk_core_is_enabled(core)) { 1242 trace_clk_disable(core); 1243 if (core->ops->disable_unused) 1244 core->ops->disable_unused(core->hw); 1245 else if (core->ops->disable) 1246 core->ops->disable(core->hw); 1247 trace_clk_disable_complete(core); 1248 } 1249 1250 unlock_out: 1251 clk_enable_unlock(flags); 1252 clk_pm_runtime_put(core); 1253 unprepare_out: 1254 if (core->flags & CLK_OPS_PARENT_ENABLE) 1255 clk_core_disable_unprepare(core->parent); 1256 } 1257 1258 static bool clk_ignore_unused; 1259 static int __init clk_ignore_unused_setup(char *__unused) 1260 { 1261 clk_ignore_unused = true; 1262 return 1; 1263 } 1264 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1265 1266 static int clk_disable_unused(void) 1267 { 1268 struct clk_core *core; 1269 1270 if (clk_ignore_unused) { 1271 pr_warn("clk: Not disabling unused clocks\n"); 1272 return 0; 1273 } 1274 1275 clk_prepare_lock(); 1276 1277 hlist_for_each_entry(core, &clk_root_list, child_node) 1278 clk_disable_unused_subtree(core); 1279 1280 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1281 clk_disable_unused_subtree(core); 1282 1283 hlist_for_each_entry(core, &clk_root_list, child_node) 1284 clk_unprepare_unused_subtree(core); 1285 1286 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1287 clk_unprepare_unused_subtree(core); 1288 1289 clk_prepare_unlock(); 1290 1291 return 0; 1292 } 1293 late_initcall_sync(clk_disable_unused); 1294 1295 static int clk_core_determine_round_nolock(struct clk_core *core, 1296 struct clk_rate_request *req) 1297 { 1298 long rate; 1299 1300 lockdep_assert_held(&prepare_lock); 1301 1302 if (!core) 1303 return 0; 1304 1305 /* 1306 * At this point, core protection will be disabled if 1307 * - if the provider is not protected at all 1308 * - if the calling consumer is the only one which has exclusivity 1309 * over the provider 1310 */ 1311 if (clk_core_rate_is_protected(core)) { 1312 req->rate = core->rate; 1313 } else if (core->ops->determine_rate) { 1314 return core->ops->determine_rate(core->hw, req); 1315 } else if (core->ops->round_rate) { 1316 rate = core->ops->round_rate(core->hw, req->rate, 1317 &req->best_parent_rate); 1318 if (rate < 0) 1319 return rate; 1320 1321 req->rate = rate; 1322 } else { 1323 return -EINVAL; 1324 } 1325 1326 return 0; 1327 } 1328 1329 static void clk_core_init_rate_req(struct clk_core * const core, 1330 struct clk_rate_request *req) 1331 { 1332 struct clk_core *parent; 1333 1334 if (WARN_ON(!core || !req)) 1335 return; 1336 1337 parent = core->parent; 1338 if (parent) { 1339 req->best_parent_hw = parent->hw; 1340 req->best_parent_rate = parent->rate; 1341 } else { 1342 req->best_parent_hw = NULL; 1343 req->best_parent_rate = 0; 1344 } 1345 } 1346 1347 static bool clk_core_can_round(struct clk_core * const core) 1348 { 1349 return core->ops->determine_rate || core->ops->round_rate; 1350 } 1351 1352 static int clk_core_round_rate_nolock(struct clk_core *core, 1353 struct clk_rate_request *req) 1354 { 1355 lockdep_assert_held(&prepare_lock); 1356 1357 if (!core) { 1358 req->rate = 0; 1359 return 0; 1360 } 1361 1362 clk_core_init_rate_req(core, req); 1363 1364 if (clk_core_can_round(core)) 1365 return clk_core_determine_round_nolock(core, req); 1366 else if (core->flags & CLK_SET_RATE_PARENT) 1367 return clk_core_round_rate_nolock(core->parent, req); 1368 1369 req->rate = core->rate; 1370 return 0; 1371 } 1372 1373 /** 1374 * __clk_determine_rate - get the closest rate actually supported by a clock 1375 * @hw: determine the rate of this clock 1376 * @req: target rate request 1377 * 1378 * Useful for clk_ops such as .set_rate and .determine_rate. 1379 */ 1380 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1381 { 1382 if (!hw) { 1383 req->rate = 0; 1384 return 0; 1385 } 1386 1387 return clk_core_round_rate_nolock(hw->core, req); 1388 } 1389 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1390 1391 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1392 { 1393 int ret; 1394 struct clk_rate_request req; 1395 1396 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1397 req.rate = rate; 1398 1399 ret = clk_core_round_rate_nolock(hw->core, &req); 1400 if (ret) 1401 return 0; 1402 1403 return req.rate; 1404 } 1405 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1406 1407 /** 1408 * clk_round_rate - round the given rate for a clk 1409 * @clk: the clk for which we are rounding a rate 1410 * @rate: the rate which is to be rounded 1411 * 1412 * Takes in a rate as input and rounds it to a rate that the clk can actually 1413 * use which is then returned. If clk doesn't support round_rate operation 1414 * then the parent rate is returned. 1415 */ 1416 long clk_round_rate(struct clk *clk, unsigned long rate) 1417 { 1418 struct clk_rate_request req; 1419 int ret; 1420 1421 if (!clk) 1422 return 0; 1423 1424 clk_prepare_lock(); 1425 1426 if (clk->exclusive_count) 1427 clk_core_rate_unprotect(clk->core); 1428 1429 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1430 req.rate = rate; 1431 1432 ret = clk_core_round_rate_nolock(clk->core, &req); 1433 1434 if (clk->exclusive_count) 1435 clk_core_rate_protect(clk->core); 1436 1437 clk_prepare_unlock(); 1438 1439 if (ret) 1440 return ret; 1441 1442 return req.rate; 1443 } 1444 EXPORT_SYMBOL_GPL(clk_round_rate); 1445 1446 /** 1447 * __clk_notify - call clk notifier chain 1448 * @core: clk that is changing rate 1449 * @msg: clk notifier type (see include/linux/clk.h) 1450 * @old_rate: old clk rate 1451 * @new_rate: new clk rate 1452 * 1453 * Triggers a notifier call chain on the clk rate-change notification 1454 * for 'clk'. Passes a pointer to the struct clk and the previous 1455 * and current rates to the notifier callback. Intended to be called by 1456 * internal clock code only. Returns NOTIFY_DONE from the last driver 1457 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1458 * a driver returns that. 1459 */ 1460 static int __clk_notify(struct clk_core *core, unsigned long msg, 1461 unsigned long old_rate, unsigned long new_rate) 1462 { 1463 struct clk_notifier *cn; 1464 struct clk_notifier_data cnd; 1465 int ret = NOTIFY_DONE; 1466 1467 cnd.old_rate = old_rate; 1468 cnd.new_rate = new_rate; 1469 1470 list_for_each_entry(cn, &clk_notifier_list, node) { 1471 if (cn->clk->core == core) { 1472 cnd.clk = cn->clk; 1473 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1474 &cnd); 1475 if (ret & NOTIFY_STOP_MASK) 1476 return ret; 1477 } 1478 } 1479 1480 return ret; 1481 } 1482 1483 /** 1484 * __clk_recalc_accuracies 1485 * @core: first clk in the subtree 1486 * 1487 * Walks the subtree of clks starting with clk and recalculates accuracies as 1488 * it goes. Note that if a clk does not implement the .recalc_accuracy 1489 * callback then it is assumed that the clock will take on the accuracy of its 1490 * parent. 1491 */ 1492 static void __clk_recalc_accuracies(struct clk_core *core) 1493 { 1494 unsigned long parent_accuracy = 0; 1495 struct clk_core *child; 1496 1497 lockdep_assert_held(&prepare_lock); 1498 1499 if (core->parent) 1500 parent_accuracy = core->parent->accuracy; 1501 1502 if (core->ops->recalc_accuracy) 1503 core->accuracy = core->ops->recalc_accuracy(core->hw, 1504 parent_accuracy); 1505 else 1506 core->accuracy = parent_accuracy; 1507 1508 hlist_for_each_entry(child, &core->children, child_node) 1509 __clk_recalc_accuracies(child); 1510 } 1511 1512 static long clk_core_get_accuracy(struct clk_core *core) 1513 { 1514 unsigned long accuracy; 1515 1516 clk_prepare_lock(); 1517 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1518 __clk_recalc_accuracies(core); 1519 1520 accuracy = __clk_get_accuracy(core); 1521 clk_prepare_unlock(); 1522 1523 return accuracy; 1524 } 1525 1526 /** 1527 * clk_get_accuracy - return the accuracy of clk 1528 * @clk: the clk whose accuracy is being returned 1529 * 1530 * Simply returns the cached accuracy of the clk, unless 1531 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1532 * issued. 1533 * If clk is NULL then returns 0. 1534 */ 1535 long clk_get_accuracy(struct clk *clk) 1536 { 1537 if (!clk) 1538 return 0; 1539 1540 return clk_core_get_accuracy(clk->core); 1541 } 1542 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1543 1544 static unsigned long clk_recalc(struct clk_core *core, 1545 unsigned long parent_rate) 1546 { 1547 unsigned long rate = parent_rate; 1548 1549 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1550 rate = core->ops->recalc_rate(core->hw, parent_rate); 1551 clk_pm_runtime_put(core); 1552 } 1553 return rate; 1554 } 1555 1556 /** 1557 * __clk_recalc_rates 1558 * @core: first clk in the subtree 1559 * @msg: notification type (see include/linux/clk.h) 1560 * 1561 * Walks the subtree of clks starting with clk and recalculates rates as it 1562 * goes. Note that if a clk does not implement the .recalc_rate callback then 1563 * it is assumed that the clock will take on the rate of its parent. 1564 * 1565 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1566 * if necessary. 1567 */ 1568 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1569 { 1570 unsigned long old_rate; 1571 unsigned long parent_rate = 0; 1572 struct clk_core *child; 1573 1574 lockdep_assert_held(&prepare_lock); 1575 1576 old_rate = core->rate; 1577 1578 if (core->parent) 1579 parent_rate = core->parent->rate; 1580 1581 core->rate = clk_recalc(core, parent_rate); 1582 1583 /* 1584 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1585 * & ABORT_RATE_CHANGE notifiers 1586 */ 1587 if (core->notifier_count && msg) 1588 __clk_notify(core, msg, old_rate, core->rate); 1589 1590 hlist_for_each_entry(child, &core->children, child_node) 1591 __clk_recalc_rates(child, msg); 1592 } 1593 1594 static unsigned long clk_core_get_rate(struct clk_core *core) 1595 { 1596 unsigned long rate; 1597 1598 clk_prepare_lock(); 1599 1600 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1601 __clk_recalc_rates(core, 0); 1602 1603 rate = clk_core_get_rate_nolock(core); 1604 clk_prepare_unlock(); 1605 1606 return rate; 1607 } 1608 1609 /** 1610 * clk_get_rate - return the rate of clk 1611 * @clk: the clk whose rate is being returned 1612 * 1613 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1614 * is set, which means a recalc_rate will be issued. 1615 * If clk is NULL then returns 0. 1616 */ 1617 unsigned long clk_get_rate(struct clk *clk) 1618 { 1619 if (!clk) 1620 return 0; 1621 1622 return clk_core_get_rate(clk->core); 1623 } 1624 EXPORT_SYMBOL_GPL(clk_get_rate); 1625 1626 static int clk_fetch_parent_index(struct clk_core *core, 1627 struct clk_core *parent) 1628 { 1629 int i; 1630 1631 if (!parent) 1632 return -EINVAL; 1633 1634 for (i = 0; i < core->num_parents; i++) { 1635 /* Found it first try! */ 1636 if (core->parents[i].core == parent) 1637 return i; 1638 1639 /* Something else is here, so keep looking */ 1640 if (core->parents[i].core) 1641 continue; 1642 1643 /* Maybe core hasn't been cached but the hw is all we know? */ 1644 if (core->parents[i].hw) { 1645 if (core->parents[i].hw == parent->hw) 1646 break; 1647 1648 /* Didn't match, but we're expecting a clk_hw */ 1649 continue; 1650 } 1651 1652 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1653 if (parent == clk_core_get(core, i)) 1654 break; 1655 1656 /* Fallback to comparing globally unique names */ 1657 if (core->parents[i].name && 1658 !strcmp(parent->name, core->parents[i].name)) 1659 break; 1660 } 1661 1662 if (i == core->num_parents) 1663 return -EINVAL; 1664 1665 core->parents[i].core = parent; 1666 return i; 1667 } 1668 1669 /* 1670 * Update the orphan status of @core and all its children. 1671 */ 1672 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1673 { 1674 struct clk_core *child; 1675 1676 core->orphan = is_orphan; 1677 1678 hlist_for_each_entry(child, &core->children, child_node) 1679 clk_core_update_orphan_status(child, is_orphan); 1680 } 1681 1682 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1683 { 1684 bool was_orphan = core->orphan; 1685 1686 hlist_del(&core->child_node); 1687 1688 if (new_parent) { 1689 bool becomes_orphan = new_parent->orphan; 1690 1691 /* avoid duplicate POST_RATE_CHANGE notifications */ 1692 if (new_parent->new_child == core) 1693 new_parent->new_child = NULL; 1694 1695 hlist_add_head(&core->child_node, &new_parent->children); 1696 1697 if (was_orphan != becomes_orphan) 1698 clk_core_update_orphan_status(core, becomes_orphan); 1699 } else { 1700 hlist_add_head(&core->child_node, &clk_orphan_list); 1701 if (!was_orphan) 1702 clk_core_update_orphan_status(core, true); 1703 } 1704 1705 core->parent = new_parent; 1706 } 1707 1708 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1709 struct clk_core *parent) 1710 { 1711 unsigned long flags; 1712 struct clk_core *old_parent = core->parent; 1713 1714 /* 1715 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1716 * 1717 * 2. Migrate prepare state between parents and prevent race with 1718 * clk_enable(). 1719 * 1720 * If the clock is not prepared, then a race with 1721 * clk_enable/disable() is impossible since we already have the 1722 * prepare lock (future calls to clk_enable() need to be preceded by 1723 * a clk_prepare()). 1724 * 1725 * If the clock is prepared, migrate the prepared state to the new 1726 * parent and also protect against a race with clk_enable() by 1727 * forcing the clock and the new parent on. This ensures that all 1728 * future calls to clk_enable() are practically NOPs with respect to 1729 * hardware and software states. 1730 * 1731 * See also: Comment for clk_set_parent() below. 1732 */ 1733 1734 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1735 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1736 clk_core_prepare_enable(old_parent); 1737 clk_core_prepare_enable(parent); 1738 } 1739 1740 /* migrate prepare count if > 0 */ 1741 if (core->prepare_count) { 1742 clk_core_prepare_enable(parent); 1743 clk_core_enable_lock(core); 1744 } 1745 1746 /* update the clk tree topology */ 1747 flags = clk_enable_lock(); 1748 clk_reparent(core, parent); 1749 clk_enable_unlock(flags); 1750 1751 return old_parent; 1752 } 1753 1754 static void __clk_set_parent_after(struct clk_core *core, 1755 struct clk_core *parent, 1756 struct clk_core *old_parent) 1757 { 1758 /* 1759 * Finish the migration of prepare state and undo the changes done 1760 * for preventing a race with clk_enable(). 1761 */ 1762 if (core->prepare_count) { 1763 clk_core_disable_lock(core); 1764 clk_core_disable_unprepare(old_parent); 1765 } 1766 1767 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1768 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1769 clk_core_disable_unprepare(parent); 1770 clk_core_disable_unprepare(old_parent); 1771 } 1772 } 1773 1774 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1775 u8 p_index) 1776 { 1777 unsigned long flags; 1778 int ret = 0; 1779 struct clk_core *old_parent; 1780 1781 old_parent = __clk_set_parent_before(core, parent); 1782 1783 trace_clk_set_parent(core, parent); 1784 1785 /* change clock input source */ 1786 if (parent && core->ops->set_parent) 1787 ret = core->ops->set_parent(core->hw, p_index); 1788 1789 trace_clk_set_parent_complete(core, parent); 1790 1791 if (ret) { 1792 flags = clk_enable_lock(); 1793 clk_reparent(core, old_parent); 1794 clk_enable_unlock(flags); 1795 __clk_set_parent_after(core, old_parent, parent); 1796 1797 return ret; 1798 } 1799 1800 __clk_set_parent_after(core, parent, old_parent); 1801 1802 return 0; 1803 } 1804 1805 /** 1806 * __clk_speculate_rates 1807 * @core: first clk in the subtree 1808 * @parent_rate: the "future" rate of clk's parent 1809 * 1810 * Walks the subtree of clks starting with clk, speculating rates as it 1811 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1812 * 1813 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1814 * pre-rate change notifications and returns early if no clks in the 1815 * subtree have subscribed to the notifications. Note that if a clk does not 1816 * implement the .recalc_rate callback then it is assumed that the clock will 1817 * take on the rate of its parent. 1818 */ 1819 static int __clk_speculate_rates(struct clk_core *core, 1820 unsigned long parent_rate) 1821 { 1822 struct clk_core *child; 1823 unsigned long new_rate; 1824 int ret = NOTIFY_DONE; 1825 1826 lockdep_assert_held(&prepare_lock); 1827 1828 new_rate = clk_recalc(core, parent_rate); 1829 1830 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1831 if (core->notifier_count) 1832 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1833 1834 if (ret & NOTIFY_STOP_MASK) { 1835 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1836 __func__, core->name, ret); 1837 goto out; 1838 } 1839 1840 hlist_for_each_entry(child, &core->children, child_node) { 1841 ret = __clk_speculate_rates(child, new_rate); 1842 if (ret & NOTIFY_STOP_MASK) 1843 break; 1844 } 1845 1846 out: 1847 return ret; 1848 } 1849 1850 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1851 struct clk_core *new_parent, u8 p_index) 1852 { 1853 struct clk_core *child; 1854 1855 core->new_rate = new_rate; 1856 core->new_parent = new_parent; 1857 core->new_parent_index = p_index; 1858 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1859 core->new_child = NULL; 1860 if (new_parent && new_parent != core->parent) 1861 new_parent->new_child = core; 1862 1863 hlist_for_each_entry(child, &core->children, child_node) { 1864 child->new_rate = clk_recalc(child, new_rate); 1865 clk_calc_subtree(child, child->new_rate, NULL, 0); 1866 } 1867 } 1868 1869 /* 1870 * calculate the new rates returning the topmost clock that has to be 1871 * changed. 1872 */ 1873 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1874 unsigned long rate) 1875 { 1876 struct clk_core *top = core; 1877 struct clk_core *old_parent, *parent; 1878 unsigned long best_parent_rate = 0; 1879 unsigned long new_rate; 1880 unsigned long min_rate; 1881 unsigned long max_rate; 1882 int p_index = 0; 1883 long ret; 1884 1885 /* sanity */ 1886 if (IS_ERR_OR_NULL(core)) 1887 return NULL; 1888 1889 /* save parent rate, if it exists */ 1890 parent = old_parent = core->parent; 1891 if (parent) 1892 best_parent_rate = parent->rate; 1893 1894 clk_core_get_boundaries(core, &min_rate, &max_rate); 1895 1896 /* find the closest rate and parent clk/rate */ 1897 if (clk_core_can_round(core)) { 1898 struct clk_rate_request req; 1899 1900 req.rate = rate; 1901 req.min_rate = min_rate; 1902 req.max_rate = max_rate; 1903 1904 clk_core_init_rate_req(core, &req); 1905 1906 ret = clk_core_determine_round_nolock(core, &req); 1907 if (ret < 0) 1908 return NULL; 1909 1910 best_parent_rate = req.best_parent_rate; 1911 new_rate = req.rate; 1912 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1913 1914 if (new_rate < min_rate || new_rate > max_rate) 1915 return NULL; 1916 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1917 /* pass-through clock without adjustable parent */ 1918 core->new_rate = core->rate; 1919 return NULL; 1920 } else { 1921 /* pass-through clock with adjustable parent */ 1922 top = clk_calc_new_rates(parent, rate); 1923 new_rate = parent->new_rate; 1924 goto out; 1925 } 1926 1927 /* some clocks must be gated to change parent */ 1928 if (parent != old_parent && 1929 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1930 pr_debug("%s: %s not gated but wants to reparent\n", 1931 __func__, core->name); 1932 return NULL; 1933 } 1934 1935 /* try finding the new parent index */ 1936 if (parent && core->num_parents > 1) { 1937 p_index = clk_fetch_parent_index(core, parent); 1938 if (p_index < 0) { 1939 pr_debug("%s: clk %s can not be parent of clk %s\n", 1940 __func__, parent->name, core->name); 1941 return NULL; 1942 } 1943 } 1944 1945 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1946 best_parent_rate != parent->rate) 1947 top = clk_calc_new_rates(parent, best_parent_rate); 1948 1949 out: 1950 clk_calc_subtree(core, new_rate, parent, p_index); 1951 1952 return top; 1953 } 1954 1955 /* 1956 * Notify about rate changes in a subtree. Always walk down the whole tree 1957 * so that in case of an error we can walk down the whole tree again and 1958 * abort the change. 1959 */ 1960 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1961 unsigned long event) 1962 { 1963 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1964 int ret = NOTIFY_DONE; 1965 1966 if (core->rate == core->new_rate) 1967 return NULL; 1968 1969 if (core->notifier_count) { 1970 ret = __clk_notify(core, event, core->rate, core->new_rate); 1971 if (ret & NOTIFY_STOP_MASK) 1972 fail_clk = core; 1973 } 1974 1975 hlist_for_each_entry(child, &core->children, child_node) { 1976 /* Skip children who will be reparented to another clock */ 1977 if (child->new_parent && child->new_parent != core) 1978 continue; 1979 tmp_clk = clk_propagate_rate_change(child, event); 1980 if (tmp_clk) 1981 fail_clk = tmp_clk; 1982 } 1983 1984 /* handle the new child who might not be in core->children yet */ 1985 if (core->new_child) { 1986 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1987 if (tmp_clk) 1988 fail_clk = tmp_clk; 1989 } 1990 1991 return fail_clk; 1992 } 1993 1994 /* 1995 * walk down a subtree and set the new rates notifying the rate 1996 * change on the way 1997 */ 1998 static void clk_change_rate(struct clk_core *core) 1999 { 2000 struct clk_core *child; 2001 struct hlist_node *tmp; 2002 unsigned long old_rate; 2003 unsigned long best_parent_rate = 0; 2004 bool skip_set_rate = false; 2005 struct clk_core *old_parent; 2006 struct clk_core *parent = NULL; 2007 2008 old_rate = core->rate; 2009 2010 if (core->new_parent) { 2011 parent = core->new_parent; 2012 best_parent_rate = core->new_parent->rate; 2013 } else if (core->parent) { 2014 parent = core->parent; 2015 best_parent_rate = core->parent->rate; 2016 } 2017 2018 if (clk_pm_runtime_get(core)) 2019 return; 2020 2021 if (core->flags & CLK_SET_RATE_UNGATE) { 2022 unsigned long flags; 2023 2024 clk_core_prepare(core); 2025 flags = clk_enable_lock(); 2026 clk_core_enable(core); 2027 clk_enable_unlock(flags); 2028 } 2029 2030 if (core->new_parent && core->new_parent != core->parent) { 2031 old_parent = __clk_set_parent_before(core, core->new_parent); 2032 trace_clk_set_parent(core, core->new_parent); 2033 2034 if (core->ops->set_rate_and_parent) { 2035 skip_set_rate = true; 2036 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2037 best_parent_rate, 2038 core->new_parent_index); 2039 } else if (core->ops->set_parent) { 2040 core->ops->set_parent(core->hw, core->new_parent_index); 2041 } 2042 2043 trace_clk_set_parent_complete(core, core->new_parent); 2044 __clk_set_parent_after(core, core->new_parent, old_parent); 2045 } 2046 2047 if (core->flags & CLK_OPS_PARENT_ENABLE) 2048 clk_core_prepare_enable(parent); 2049 2050 trace_clk_set_rate(core, core->new_rate); 2051 2052 if (!skip_set_rate && core->ops->set_rate) 2053 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2054 2055 trace_clk_set_rate_complete(core, core->new_rate); 2056 2057 core->rate = clk_recalc(core, best_parent_rate); 2058 2059 if (core->flags & CLK_SET_RATE_UNGATE) { 2060 unsigned long flags; 2061 2062 flags = clk_enable_lock(); 2063 clk_core_disable(core); 2064 clk_enable_unlock(flags); 2065 clk_core_unprepare(core); 2066 } 2067 2068 if (core->flags & CLK_OPS_PARENT_ENABLE) 2069 clk_core_disable_unprepare(parent); 2070 2071 if (core->notifier_count && old_rate != core->rate) 2072 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2073 2074 if (core->flags & CLK_RECALC_NEW_RATES) 2075 (void)clk_calc_new_rates(core, core->new_rate); 2076 2077 /* 2078 * Use safe iteration, as change_rate can actually swap parents 2079 * for certain clock types. 2080 */ 2081 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2082 /* Skip children who will be reparented to another clock */ 2083 if (child->new_parent && child->new_parent != core) 2084 continue; 2085 clk_change_rate(child); 2086 } 2087 2088 /* handle the new child who might not be in core->children yet */ 2089 if (core->new_child) 2090 clk_change_rate(core->new_child); 2091 2092 clk_pm_runtime_put(core); 2093 } 2094 2095 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2096 unsigned long req_rate) 2097 { 2098 int ret, cnt; 2099 struct clk_rate_request req; 2100 2101 lockdep_assert_held(&prepare_lock); 2102 2103 if (!core) 2104 return 0; 2105 2106 /* simulate what the rate would be if it could be freely set */ 2107 cnt = clk_core_rate_nuke_protect(core); 2108 if (cnt < 0) 2109 return cnt; 2110 2111 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2112 req.rate = req_rate; 2113 2114 ret = clk_core_round_rate_nolock(core, &req); 2115 2116 /* restore the protection */ 2117 clk_core_rate_restore_protect(core, cnt); 2118 2119 return ret ? 0 : req.rate; 2120 } 2121 2122 static int clk_core_set_rate_nolock(struct clk_core *core, 2123 unsigned long req_rate) 2124 { 2125 struct clk_core *top, *fail_clk; 2126 unsigned long rate; 2127 int ret = 0; 2128 2129 if (!core) 2130 return 0; 2131 2132 rate = clk_core_req_round_rate_nolock(core, req_rate); 2133 2134 /* bail early if nothing to do */ 2135 if (rate == clk_core_get_rate_nolock(core)) 2136 return 0; 2137 2138 /* fail on a direct rate set of a protected provider */ 2139 if (clk_core_rate_is_protected(core)) 2140 return -EBUSY; 2141 2142 /* calculate new rates and get the topmost changed clock */ 2143 top = clk_calc_new_rates(core, req_rate); 2144 if (!top) 2145 return -EINVAL; 2146 2147 ret = clk_pm_runtime_get(core); 2148 if (ret) 2149 return ret; 2150 2151 /* notify that we are about to change rates */ 2152 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2153 if (fail_clk) { 2154 pr_debug("%s: failed to set %s rate\n", __func__, 2155 fail_clk->name); 2156 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2157 ret = -EBUSY; 2158 goto err; 2159 } 2160 2161 /* change the rates */ 2162 clk_change_rate(top); 2163 2164 core->req_rate = req_rate; 2165 err: 2166 clk_pm_runtime_put(core); 2167 2168 return ret; 2169 } 2170 2171 /** 2172 * clk_set_rate - specify a new rate for clk 2173 * @clk: the clk whose rate is being changed 2174 * @rate: the new rate for clk 2175 * 2176 * In the simplest case clk_set_rate will only adjust the rate of clk. 2177 * 2178 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2179 * propagate up to clk's parent; whether or not this happens depends on the 2180 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2181 * after calling .round_rate then upstream parent propagation is ignored. If 2182 * *parent_rate comes back with a new rate for clk's parent then we propagate 2183 * up to clk's parent and set its rate. Upward propagation will continue 2184 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2185 * .round_rate stops requesting changes to clk's parent_rate. 2186 * 2187 * Rate changes are accomplished via tree traversal that also recalculates the 2188 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2189 * 2190 * Returns 0 on success, -EERROR otherwise. 2191 */ 2192 int clk_set_rate(struct clk *clk, unsigned long rate) 2193 { 2194 int ret; 2195 2196 if (!clk) 2197 return 0; 2198 2199 /* prevent racing with updates to the clock topology */ 2200 clk_prepare_lock(); 2201 2202 if (clk->exclusive_count) 2203 clk_core_rate_unprotect(clk->core); 2204 2205 ret = clk_core_set_rate_nolock(clk->core, rate); 2206 2207 if (clk->exclusive_count) 2208 clk_core_rate_protect(clk->core); 2209 2210 clk_prepare_unlock(); 2211 2212 return ret; 2213 } 2214 EXPORT_SYMBOL_GPL(clk_set_rate); 2215 2216 /** 2217 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2218 * @clk: the clk whose rate is being changed 2219 * @rate: the new rate for clk 2220 * 2221 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2222 * within a critical section 2223 * 2224 * This can be used initially to ensure that at least 1 consumer is 2225 * satisfied when several consumers are competing for exclusivity over the 2226 * same clock provider. 2227 * 2228 * The exclusivity is not applied if setting the rate failed. 2229 * 2230 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2231 * clk_rate_exclusive_put(). 2232 * 2233 * Returns 0 on success, -EERROR otherwise. 2234 */ 2235 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2236 { 2237 int ret; 2238 2239 if (!clk) 2240 return 0; 2241 2242 /* prevent racing with updates to the clock topology */ 2243 clk_prepare_lock(); 2244 2245 /* 2246 * The temporary protection removal is not here, on purpose 2247 * This function is meant to be used instead of clk_rate_protect, 2248 * so before the consumer code path protect the clock provider 2249 */ 2250 2251 ret = clk_core_set_rate_nolock(clk->core, rate); 2252 if (!ret) { 2253 clk_core_rate_protect(clk->core); 2254 clk->exclusive_count++; 2255 } 2256 2257 clk_prepare_unlock(); 2258 2259 return ret; 2260 } 2261 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2262 2263 /** 2264 * clk_set_rate_range - set a rate range for a clock source 2265 * @clk: clock source 2266 * @min: desired minimum clock rate in Hz, inclusive 2267 * @max: desired maximum clock rate in Hz, inclusive 2268 * 2269 * Returns success (0) or negative errno. 2270 */ 2271 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2272 { 2273 int ret = 0; 2274 unsigned long old_min, old_max, rate; 2275 2276 if (!clk) 2277 return 0; 2278 2279 if (min > max) { 2280 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2281 __func__, clk->core->name, clk->dev_id, clk->con_id, 2282 min, max); 2283 return -EINVAL; 2284 } 2285 2286 clk_prepare_lock(); 2287 2288 if (clk->exclusive_count) 2289 clk_core_rate_unprotect(clk->core); 2290 2291 /* Save the current values in case we need to rollback the change */ 2292 old_min = clk->min_rate; 2293 old_max = clk->max_rate; 2294 clk->min_rate = min; 2295 clk->max_rate = max; 2296 2297 rate = clk_core_get_rate_nolock(clk->core); 2298 if (rate < min || rate > max) { 2299 /* 2300 * FIXME: 2301 * We are in bit of trouble here, current rate is outside the 2302 * the requested range. We are going try to request appropriate 2303 * range boundary but there is a catch. It may fail for the 2304 * usual reason (clock broken, clock protected, etc) but also 2305 * because: 2306 * - round_rate() was not favorable and fell on the wrong 2307 * side of the boundary 2308 * - the determine_rate() callback does not really check for 2309 * this corner case when determining the rate 2310 */ 2311 2312 if (rate < min) 2313 rate = min; 2314 else 2315 rate = max; 2316 2317 ret = clk_core_set_rate_nolock(clk->core, rate); 2318 if (ret) { 2319 /* rollback the changes */ 2320 clk->min_rate = old_min; 2321 clk->max_rate = old_max; 2322 } 2323 } 2324 2325 if (clk->exclusive_count) 2326 clk_core_rate_protect(clk->core); 2327 2328 clk_prepare_unlock(); 2329 2330 return ret; 2331 } 2332 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2333 2334 /** 2335 * clk_set_min_rate - set a minimum clock rate for a clock source 2336 * @clk: clock source 2337 * @rate: desired minimum clock rate in Hz, inclusive 2338 * 2339 * Returns success (0) or negative errno. 2340 */ 2341 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2342 { 2343 if (!clk) 2344 return 0; 2345 2346 return clk_set_rate_range(clk, rate, clk->max_rate); 2347 } 2348 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2349 2350 /** 2351 * clk_set_max_rate - set a maximum clock rate for a clock source 2352 * @clk: clock source 2353 * @rate: desired maximum clock rate in Hz, inclusive 2354 * 2355 * Returns success (0) or negative errno. 2356 */ 2357 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2358 { 2359 if (!clk) 2360 return 0; 2361 2362 return clk_set_rate_range(clk, clk->min_rate, rate); 2363 } 2364 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2365 2366 /** 2367 * clk_get_parent - return the parent of a clk 2368 * @clk: the clk whose parent gets returned 2369 * 2370 * Simply returns clk->parent. Returns NULL if clk is NULL. 2371 */ 2372 struct clk *clk_get_parent(struct clk *clk) 2373 { 2374 struct clk *parent; 2375 2376 if (!clk) 2377 return NULL; 2378 2379 clk_prepare_lock(); 2380 /* TODO: Create a per-user clk and change callers to call clk_put */ 2381 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2382 clk_prepare_unlock(); 2383 2384 return parent; 2385 } 2386 EXPORT_SYMBOL_GPL(clk_get_parent); 2387 2388 static struct clk_core *__clk_init_parent(struct clk_core *core) 2389 { 2390 u8 index = 0; 2391 2392 if (core->num_parents > 1 && core->ops->get_parent) 2393 index = core->ops->get_parent(core->hw); 2394 2395 return clk_core_get_parent_by_index(core, index); 2396 } 2397 2398 static void clk_core_reparent(struct clk_core *core, 2399 struct clk_core *new_parent) 2400 { 2401 clk_reparent(core, new_parent); 2402 __clk_recalc_accuracies(core); 2403 __clk_recalc_rates(core, POST_RATE_CHANGE); 2404 } 2405 2406 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2407 { 2408 if (!hw) 2409 return; 2410 2411 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2412 } 2413 2414 /** 2415 * clk_has_parent - check if a clock is a possible parent for another 2416 * @clk: clock source 2417 * @parent: parent clock source 2418 * 2419 * This function can be used in drivers that need to check that a clock can be 2420 * the parent of another without actually changing the parent. 2421 * 2422 * Returns true if @parent is a possible parent for @clk, false otherwise. 2423 */ 2424 bool clk_has_parent(struct clk *clk, struct clk *parent) 2425 { 2426 struct clk_core *core, *parent_core; 2427 int i; 2428 2429 /* NULL clocks should be nops, so return success if either is NULL. */ 2430 if (!clk || !parent) 2431 return true; 2432 2433 core = clk->core; 2434 parent_core = parent->core; 2435 2436 /* Optimize for the case where the parent is already the parent. */ 2437 if (core->parent == parent_core) 2438 return true; 2439 2440 for (i = 0; i < core->num_parents; i++) 2441 if (!strcmp(core->parents[i].name, parent_core->name)) 2442 return true; 2443 2444 return false; 2445 } 2446 EXPORT_SYMBOL_GPL(clk_has_parent); 2447 2448 static int clk_core_set_parent_nolock(struct clk_core *core, 2449 struct clk_core *parent) 2450 { 2451 int ret = 0; 2452 int p_index = 0; 2453 unsigned long p_rate = 0; 2454 2455 lockdep_assert_held(&prepare_lock); 2456 2457 if (!core) 2458 return 0; 2459 2460 if (core->parent == parent) 2461 return 0; 2462 2463 /* verify ops for for multi-parent clks */ 2464 if (core->num_parents > 1 && !core->ops->set_parent) 2465 return -EPERM; 2466 2467 /* check that we are allowed to re-parent if the clock is in use */ 2468 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2469 return -EBUSY; 2470 2471 if (clk_core_rate_is_protected(core)) 2472 return -EBUSY; 2473 2474 /* try finding the new parent index */ 2475 if (parent) { 2476 p_index = clk_fetch_parent_index(core, parent); 2477 if (p_index < 0) { 2478 pr_debug("%s: clk %s can not be parent of clk %s\n", 2479 __func__, parent->name, core->name); 2480 return p_index; 2481 } 2482 p_rate = parent->rate; 2483 } 2484 2485 ret = clk_pm_runtime_get(core); 2486 if (ret) 2487 return ret; 2488 2489 /* propagate PRE_RATE_CHANGE notifications */ 2490 ret = __clk_speculate_rates(core, p_rate); 2491 2492 /* abort if a driver objects */ 2493 if (ret & NOTIFY_STOP_MASK) 2494 goto runtime_put; 2495 2496 /* do the re-parent */ 2497 ret = __clk_set_parent(core, parent, p_index); 2498 2499 /* propagate rate an accuracy recalculation accordingly */ 2500 if (ret) { 2501 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2502 } else { 2503 __clk_recalc_rates(core, POST_RATE_CHANGE); 2504 __clk_recalc_accuracies(core); 2505 } 2506 2507 runtime_put: 2508 clk_pm_runtime_put(core); 2509 2510 return ret; 2511 } 2512 2513 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2514 { 2515 return clk_core_set_parent_nolock(hw->core, parent->core); 2516 } 2517 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2518 2519 /** 2520 * clk_set_parent - switch the parent of a mux clk 2521 * @clk: the mux clk whose input we are switching 2522 * @parent: the new input to clk 2523 * 2524 * Re-parent clk to use parent as its new input source. If clk is in 2525 * prepared state, the clk will get enabled for the duration of this call. If 2526 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2527 * that, the reparenting is glitchy in hardware, etc), use the 2528 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2529 * 2530 * After successfully changing clk's parent clk_set_parent will update the 2531 * clk topology, sysfs topology and propagate rate recalculation via 2532 * __clk_recalc_rates. 2533 * 2534 * Returns 0 on success, -EERROR otherwise. 2535 */ 2536 int clk_set_parent(struct clk *clk, struct clk *parent) 2537 { 2538 int ret; 2539 2540 if (!clk) 2541 return 0; 2542 2543 clk_prepare_lock(); 2544 2545 if (clk->exclusive_count) 2546 clk_core_rate_unprotect(clk->core); 2547 2548 ret = clk_core_set_parent_nolock(clk->core, 2549 parent ? parent->core : NULL); 2550 2551 if (clk->exclusive_count) 2552 clk_core_rate_protect(clk->core); 2553 2554 clk_prepare_unlock(); 2555 2556 return ret; 2557 } 2558 EXPORT_SYMBOL_GPL(clk_set_parent); 2559 2560 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2561 { 2562 int ret = -EINVAL; 2563 2564 lockdep_assert_held(&prepare_lock); 2565 2566 if (!core) 2567 return 0; 2568 2569 if (clk_core_rate_is_protected(core)) 2570 return -EBUSY; 2571 2572 trace_clk_set_phase(core, degrees); 2573 2574 if (core->ops->set_phase) { 2575 ret = core->ops->set_phase(core->hw, degrees); 2576 if (!ret) 2577 core->phase = degrees; 2578 } 2579 2580 trace_clk_set_phase_complete(core, degrees); 2581 2582 return ret; 2583 } 2584 2585 /** 2586 * clk_set_phase - adjust the phase shift of a clock signal 2587 * @clk: clock signal source 2588 * @degrees: number of degrees the signal is shifted 2589 * 2590 * Shifts the phase of a clock signal by the specified 2591 * degrees. Returns 0 on success, -EERROR otherwise. 2592 * 2593 * This function makes no distinction about the input or reference 2594 * signal that we adjust the clock signal phase against. For example 2595 * phase locked-loop clock signal generators we may shift phase with 2596 * respect to feedback clock signal input, but for other cases the 2597 * clock phase may be shifted with respect to some other, unspecified 2598 * signal. 2599 * 2600 * Additionally the concept of phase shift does not propagate through 2601 * the clock tree hierarchy, which sets it apart from clock rates and 2602 * clock accuracy. A parent clock phase attribute does not have an 2603 * impact on the phase attribute of a child clock. 2604 */ 2605 int clk_set_phase(struct clk *clk, int degrees) 2606 { 2607 int ret; 2608 2609 if (!clk) 2610 return 0; 2611 2612 /* sanity check degrees */ 2613 degrees %= 360; 2614 if (degrees < 0) 2615 degrees += 360; 2616 2617 clk_prepare_lock(); 2618 2619 if (clk->exclusive_count) 2620 clk_core_rate_unprotect(clk->core); 2621 2622 ret = clk_core_set_phase_nolock(clk->core, degrees); 2623 2624 if (clk->exclusive_count) 2625 clk_core_rate_protect(clk->core); 2626 2627 clk_prepare_unlock(); 2628 2629 return ret; 2630 } 2631 EXPORT_SYMBOL_GPL(clk_set_phase); 2632 2633 static int clk_core_get_phase(struct clk_core *core) 2634 { 2635 int ret; 2636 2637 clk_prepare_lock(); 2638 /* Always try to update cached phase if possible */ 2639 if (core->ops->get_phase) 2640 core->phase = core->ops->get_phase(core->hw); 2641 ret = core->phase; 2642 clk_prepare_unlock(); 2643 2644 return ret; 2645 } 2646 2647 /** 2648 * clk_get_phase - return the phase shift of a clock signal 2649 * @clk: clock signal source 2650 * 2651 * Returns the phase shift of a clock node in degrees, otherwise returns 2652 * -EERROR. 2653 */ 2654 int clk_get_phase(struct clk *clk) 2655 { 2656 if (!clk) 2657 return 0; 2658 2659 return clk_core_get_phase(clk->core); 2660 } 2661 EXPORT_SYMBOL_GPL(clk_get_phase); 2662 2663 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2664 { 2665 /* Assume a default value of 50% */ 2666 core->duty.num = 1; 2667 core->duty.den = 2; 2668 } 2669 2670 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2671 2672 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2673 { 2674 struct clk_duty *duty = &core->duty; 2675 int ret = 0; 2676 2677 if (!core->ops->get_duty_cycle) 2678 return clk_core_update_duty_cycle_parent_nolock(core); 2679 2680 ret = core->ops->get_duty_cycle(core->hw, duty); 2681 if (ret) 2682 goto reset; 2683 2684 /* Don't trust the clock provider too much */ 2685 if (duty->den == 0 || duty->num > duty->den) { 2686 ret = -EINVAL; 2687 goto reset; 2688 } 2689 2690 return 0; 2691 2692 reset: 2693 clk_core_reset_duty_cycle_nolock(core); 2694 return ret; 2695 } 2696 2697 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2698 { 2699 int ret = 0; 2700 2701 if (core->parent && 2702 core->flags & CLK_DUTY_CYCLE_PARENT) { 2703 ret = clk_core_update_duty_cycle_nolock(core->parent); 2704 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2705 } else { 2706 clk_core_reset_duty_cycle_nolock(core); 2707 } 2708 2709 return ret; 2710 } 2711 2712 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2713 struct clk_duty *duty); 2714 2715 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2716 struct clk_duty *duty) 2717 { 2718 int ret; 2719 2720 lockdep_assert_held(&prepare_lock); 2721 2722 if (clk_core_rate_is_protected(core)) 2723 return -EBUSY; 2724 2725 trace_clk_set_duty_cycle(core, duty); 2726 2727 if (!core->ops->set_duty_cycle) 2728 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2729 2730 ret = core->ops->set_duty_cycle(core->hw, duty); 2731 if (!ret) 2732 memcpy(&core->duty, duty, sizeof(*duty)); 2733 2734 trace_clk_set_duty_cycle_complete(core, duty); 2735 2736 return ret; 2737 } 2738 2739 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2740 struct clk_duty *duty) 2741 { 2742 int ret = 0; 2743 2744 if (core->parent && 2745 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2746 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2747 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2748 } 2749 2750 return ret; 2751 } 2752 2753 /** 2754 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2755 * @clk: clock signal source 2756 * @num: numerator of the duty cycle ratio to be applied 2757 * @den: denominator of the duty cycle ratio to be applied 2758 * 2759 * Apply the duty cycle ratio if the ratio is valid and the clock can 2760 * perform this operation 2761 * 2762 * Returns (0) on success, a negative errno otherwise. 2763 */ 2764 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2765 { 2766 int ret; 2767 struct clk_duty duty; 2768 2769 if (!clk) 2770 return 0; 2771 2772 /* sanity check the ratio */ 2773 if (den == 0 || num > den) 2774 return -EINVAL; 2775 2776 duty.num = num; 2777 duty.den = den; 2778 2779 clk_prepare_lock(); 2780 2781 if (clk->exclusive_count) 2782 clk_core_rate_unprotect(clk->core); 2783 2784 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2785 2786 if (clk->exclusive_count) 2787 clk_core_rate_protect(clk->core); 2788 2789 clk_prepare_unlock(); 2790 2791 return ret; 2792 } 2793 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2794 2795 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2796 unsigned int scale) 2797 { 2798 struct clk_duty *duty = &core->duty; 2799 int ret; 2800 2801 clk_prepare_lock(); 2802 2803 ret = clk_core_update_duty_cycle_nolock(core); 2804 if (!ret) 2805 ret = mult_frac(scale, duty->num, duty->den); 2806 2807 clk_prepare_unlock(); 2808 2809 return ret; 2810 } 2811 2812 /** 2813 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2814 * @clk: clock signal source 2815 * @scale: scaling factor to be applied to represent the ratio as an integer 2816 * 2817 * Returns the duty cycle ratio of a clock node multiplied by the provided 2818 * scaling factor, or negative errno on error. 2819 */ 2820 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2821 { 2822 if (!clk) 2823 return 0; 2824 2825 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2826 } 2827 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2828 2829 /** 2830 * clk_is_match - check if two clk's point to the same hardware clock 2831 * @p: clk compared against q 2832 * @q: clk compared against p 2833 * 2834 * Returns true if the two struct clk pointers both point to the same hardware 2835 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2836 * share the same struct clk_core object. 2837 * 2838 * Returns false otherwise. Note that two NULL clks are treated as matching. 2839 */ 2840 bool clk_is_match(const struct clk *p, const struct clk *q) 2841 { 2842 /* trivial case: identical struct clk's or both NULL */ 2843 if (p == q) 2844 return true; 2845 2846 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2847 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2848 if (p->core == q->core) 2849 return true; 2850 2851 return false; 2852 } 2853 EXPORT_SYMBOL_GPL(clk_is_match); 2854 2855 /*** debugfs support ***/ 2856 2857 #ifdef CONFIG_DEBUG_FS 2858 #include <linux/debugfs.h> 2859 2860 static struct dentry *rootdir; 2861 static int inited = 0; 2862 static DEFINE_MUTEX(clk_debug_lock); 2863 static HLIST_HEAD(clk_debug_list); 2864 2865 static struct hlist_head *all_lists[] = { 2866 &clk_root_list, 2867 &clk_orphan_list, 2868 NULL, 2869 }; 2870 2871 static struct hlist_head *orphan_list[] = { 2872 &clk_orphan_list, 2873 NULL, 2874 }; 2875 2876 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2877 int level) 2878 { 2879 if (!c) 2880 return; 2881 2882 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n", 2883 level * 3 + 1, "", 2884 30 - level * 3, c->name, 2885 c->enable_count, c->prepare_count, c->protect_count, 2886 clk_core_get_rate(c), clk_core_get_accuracy(c), 2887 clk_core_get_phase(c), 2888 clk_core_get_scaled_duty_cycle(c, 100000)); 2889 } 2890 2891 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2892 int level) 2893 { 2894 struct clk_core *child; 2895 2896 if (!c) 2897 return; 2898 2899 clk_summary_show_one(s, c, level); 2900 2901 hlist_for_each_entry(child, &c->children, child_node) 2902 clk_summary_show_subtree(s, child, level + 1); 2903 } 2904 2905 static int clk_summary_show(struct seq_file *s, void *data) 2906 { 2907 struct clk_core *c; 2908 struct hlist_head **lists = (struct hlist_head **)s->private; 2909 2910 seq_puts(s, " enable prepare protect duty\n"); 2911 seq_puts(s, " clock count count count rate accuracy phase cycle\n"); 2912 seq_puts(s, "---------------------------------------------------------------------------------------------\n"); 2913 2914 clk_prepare_lock(); 2915 2916 for (; *lists; lists++) 2917 hlist_for_each_entry(c, *lists, child_node) 2918 clk_summary_show_subtree(s, c, 0); 2919 2920 clk_prepare_unlock(); 2921 2922 return 0; 2923 } 2924 DEFINE_SHOW_ATTRIBUTE(clk_summary); 2925 2926 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2927 { 2928 if (!c) 2929 return; 2930 2931 /* This should be JSON format, i.e. elements separated with a comma */ 2932 seq_printf(s, "\"%s\": { ", c->name); 2933 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2934 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2935 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2936 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2937 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2938 seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c)); 2939 seq_printf(s, "\"duty_cycle\": %u", 2940 clk_core_get_scaled_duty_cycle(c, 100000)); 2941 } 2942 2943 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2944 { 2945 struct clk_core *child; 2946 2947 if (!c) 2948 return; 2949 2950 clk_dump_one(s, c, level); 2951 2952 hlist_for_each_entry(child, &c->children, child_node) { 2953 seq_putc(s, ','); 2954 clk_dump_subtree(s, child, level + 1); 2955 } 2956 2957 seq_putc(s, '}'); 2958 } 2959 2960 static int clk_dump_show(struct seq_file *s, void *data) 2961 { 2962 struct clk_core *c; 2963 bool first_node = true; 2964 struct hlist_head **lists = (struct hlist_head **)s->private; 2965 2966 seq_putc(s, '{'); 2967 clk_prepare_lock(); 2968 2969 for (; *lists; lists++) { 2970 hlist_for_each_entry(c, *lists, child_node) { 2971 if (!first_node) 2972 seq_putc(s, ','); 2973 first_node = false; 2974 clk_dump_subtree(s, c, 0); 2975 } 2976 } 2977 2978 clk_prepare_unlock(); 2979 2980 seq_puts(s, "}\n"); 2981 return 0; 2982 } 2983 DEFINE_SHOW_ATTRIBUTE(clk_dump); 2984 2985 static const struct { 2986 unsigned long flag; 2987 const char *name; 2988 } clk_flags[] = { 2989 #define ENTRY(f) { f, #f } 2990 ENTRY(CLK_SET_RATE_GATE), 2991 ENTRY(CLK_SET_PARENT_GATE), 2992 ENTRY(CLK_SET_RATE_PARENT), 2993 ENTRY(CLK_IGNORE_UNUSED), 2994 ENTRY(CLK_GET_RATE_NOCACHE), 2995 ENTRY(CLK_SET_RATE_NO_REPARENT), 2996 ENTRY(CLK_GET_ACCURACY_NOCACHE), 2997 ENTRY(CLK_RECALC_NEW_RATES), 2998 ENTRY(CLK_SET_RATE_UNGATE), 2999 ENTRY(CLK_IS_CRITICAL), 3000 ENTRY(CLK_OPS_PARENT_ENABLE), 3001 ENTRY(CLK_DUTY_CYCLE_PARENT), 3002 #undef ENTRY 3003 }; 3004 3005 static int clk_flags_show(struct seq_file *s, void *data) 3006 { 3007 struct clk_core *core = s->private; 3008 unsigned long flags = core->flags; 3009 unsigned int i; 3010 3011 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3012 if (flags & clk_flags[i].flag) { 3013 seq_printf(s, "%s\n", clk_flags[i].name); 3014 flags &= ~clk_flags[i].flag; 3015 } 3016 } 3017 if (flags) { 3018 /* Unknown flags */ 3019 seq_printf(s, "0x%lx\n", flags); 3020 } 3021 3022 return 0; 3023 } 3024 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3025 3026 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3027 unsigned int i, char terminator) 3028 { 3029 struct clk_core *parent; 3030 3031 /* 3032 * Go through the following options to fetch a parent's name. 3033 * 3034 * 1. Fetch the registered parent clock and use its name 3035 * 2. Use the global (fallback) name if specified 3036 * 3. Use the local fw_name if provided 3037 * 4. Fetch parent clock's clock-output-name if DT index was set 3038 * 3039 * This may still fail in some cases, such as when the parent is 3040 * specified directly via a struct clk_hw pointer, but it isn't 3041 * registered (yet). 3042 */ 3043 parent = clk_core_get_parent_by_index(core, i); 3044 if (parent) 3045 seq_printf(s, "%s", parent->name); 3046 else if (core->parents[i].name) 3047 seq_printf(s, "%s", core->parents[i].name); 3048 else if (core->parents[i].fw_name) 3049 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3050 else if (core->parents[i].index >= 0) 3051 seq_printf(s, "%s", 3052 of_clk_get_parent_name(core->of_node, 3053 core->parents[i].index)); 3054 else 3055 seq_puts(s, "(missing)"); 3056 3057 seq_putc(s, terminator); 3058 } 3059 3060 static int possible_parents_show(struct seq_file *s, void *data) 3061 { 3062 struct clk_core *core = s->private; 3063 int i; 3064 3065 for (i = 0; i < core->num_parents - 1; i++) 3066 possible_parent_show(s, core, i, ' '); 3067 3068 possible_parent_show(s, core, i, '\n'); 3069 3070 return 0; 3071 } 3072 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3073 3074 static int current_parent_show(struct seq_file *s, void *data) 3075 { 3076 struct clk_core *core = s->private; 3077 3078 if (core->parent) 3079 seq_printf(s, "%s\n", core->parent->name); 3080 3081 return 0; 3082 } 3083 DEFINE_SHOW_ATTRIBUTE(current_parent); 3084 3085 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3086 { 3087 struct clk_core *core = s->private; 3088 struct clk_duty *duty = &core->duty; 3089 3090 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3091 3092 return 0; 3093 } 3094 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3095 3096 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3097 { 3098 struct dentry *root; 3099 3100 if (!core || !pdentry) 3101 return; 3102 3103 root = debugfs_create_dir(core->name, pdentry); 3104 core->dentry = root; 3105 3106 debugfs_create_ulong("clk_rate", 0444, root, &core->rate); 3107 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3108 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3109 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3110 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3111 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3112 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3113 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3114 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3115 &clk_duty_cycle_fops); 3116 3117 if (core->num_parents > 0) 3118 debugfs_create_file("clk_parent", 0444, root, core, 3119 ¤t_parent_fops); 3120 3121 if (core->num_parents > 1) 3122 debugfs_create_file("clk_possible_parents", 0444, root, core, 3123 &possible_parents_fops); 3124 3125 if (core->ops->debug_init) 3126 core->ops->debug_init(core->hw, core->dentry); 3127 } 3128 3129 /** 3130 * clk_debug_register - add a clk node to the debugfs clk directory 3131 * @core: the clk being added to the debugfs clk directory 3132 * 3133 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3134 * initialized. Otherwise it bails out early since the debugfs clk directory 3135 * will be created lazily by clk_debug_init as part of a late_initcall. 3136 */ 3137 static void clk_debug_register(struct clk_core *core) 3138 { 3139 mutex_lock(&clk_debug_lock); 3140 hlist_add_head(&core->debug_node, &clk_debug_list); 3141 if (inited) 3142 clk_debug_create_one(core, rootdir); 3143 mutex_unlock(&clk_debug_lock); 3144 } 3145 3146 /** 3147 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3148 * @core: the clk being removed from the debugfs clk directory 3149 * 3150 * Dynamically removes a clk and all its child nodes from the 3151 * debugfs clk directory if clk->dentry points to debugfs created by 3152 * clk_debug_register in __clk_core_init. 3153 */ 3154 static void clk_debug_unregister(struct clk_core *core) 3155 { 3156 mutex_lock(&clk_debug_lock); 3157 hlist_del_init(&core->debug_node); 3158 debugfs_remove_recursive(core->dentry); 3159 core->dentry = NULL; 3160 mutex_unlock(&clk_debug_lock); 3161 } 3162 3163 /** 3164 * clk_debug_init - lazily populate the debugfs clk directory 3165 * 3166 * clks are often initialized very early during boot before memory can be 3167 * dynamically allocated and well before debugfs is setup. This function 3168 * populates the debugfs clk directory once at boot-time when we know that 3169 * debugfs is setup. It should only be called once at boot-time, all other clks 3170 * added dynamically will be done so with clk_debug_register. 3171 */ 3172 static int __init clk_debug_init(void) 3173 { 3174 struct clk_core *core; 3175 3176 rootdir = debugfs_create_dir("clk", NULL); 3177 3178 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3179 &clk_summary_fops); 3180 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3181 &clk_dump_fops); 3182 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3183 &clk_summary_fops); 3184 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3185 &clk_dump_fops); 3186 3187 mutex_lock(&clk_debug_lock); 3188 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3189 clk_debug_create_one(core, rootdir); 3190 3191 inited = 1; 3192 mutex_unlock(&clk_debug_lock); 3193 3194 return 0; 3195 } 3196 late_initcall(clk_debug_init); 3197 #else 3198 static inline void clk_debug_register(struct clk_core *core) { } 3199 static inline void clk_debug_reparent(struct clk_core *core, 3200 struct clk_core *new_parent) 3201 { 3202 } 3203 static inline void clk_debug_unregister(struct clk_core *core) 3204 { 3205 } 3206 #endif 3207 3208 /** 3209 * __clk_core_init - initialize the data structures in a struct clk_core 3210 * @core: clk_core being initialized 3211 * 3212 * Initializes the lists in struct clk_core, queries the hardware for the 3213 * parent and rate and sets them both. 3214 */ 3215 static int __clk_core_init(struct clk_core *core) 3216 { 3217 int ret; 3218 struct clk_core *orphan; 3219 struct hlist_node *tmp2; 3220 unsigned long rate; 3221 3222 if (!core) 3223 return -EINVAL; 3224 3225 clk_prepare_lock(); 3226 3227 ret = clk_pm_runtime_get(core); 3228 if (ret) 3229 goto unlock; 3230 3231 /* check to see if a clock with this name is already registered */ 3232 if (clk_core_lookup(core->name)) { 3233 pr_debug("%s: clk %s already initialized\n", 3234 __func__, core->name); 3235 ret = -EEXIST; 3236 goto out; 3237 } 3238 3239 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3240 if (core->ops->set_rate && 3241 !((core->ops->round_rate || core->ops->determine_rate) && 3242 core->ops->recalc_rate)) { 3243 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3244 __func__, core->name); 3245 ret = -EINVAL; 3246 goto out; 3247 } 3248 3249 if (core->ops->set_parent && !core->ops->get_parent) { 3250 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3251 __func__, core->name); 3252 ret = -EINVAL; 3253 goto out; 3254 } 3255 3256 if (core->num_parents > 1 && !core->ops->get_parent) { 3257 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3258 __func__, core->name); 3259 ret = -EINVAL; 3260 goto out; 3261 } 3262 3263 if (core->ops->set_rate_and_parent && 3264 !(core->ops->set_parent && core->ops->set_rate)) { 3265 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3266 __func__, core->name); 3267 ret = -EINVAL; 3268 goto out; 3269 } 3270 3271 core->parent = __clk_init_parent(core); 3272 3273 /* 3274 * Populate core->parent if parent has already been clk_core_init'd. If 3275 * parent has not yet been clk_core_init'd then place clk in the orphan 3276 * list. If clk doesn't have any parents then place it in the root 3277 * clk list. 3278 * 3279 * Every time a new clk is clk_init'd then we walk the list of orphan 3280 * clocks and re-parent any that are children of the clock currently 3281 * being clk_init'd. 3282 */ 3283 if (core->parent) { 3284 hlist_add_head(&core->child_node, 3285 &core->parent->children); 3286 core->orphan = core->parent->orphan; 3287 } else if (!core->num_parents) { 3288 hlist_add_head(&core->child_node, &clk_root_list); 3289 core->orphan = false; 3290 } else { 3291 hlist_add_head(&core->child_node, &clk_orphan_list); 3292 core->orphan = true; 3293 } 3294 3295 /* 3296 * optional platform-specific magic 3297 * 3298 * The .init callback is not used by any of the basic clock types, but 3299 * exists for weird hardware that must perform initialization magic. 3300 * Please consider other ways of solving initialization problems before 3301 * using this callback, as its use is discouraged. 3302 */ 3303 if (core->ops->init) 3304 core->ops->init(core->hw); 3305 3306 /* 3307 * Set clk's accuracy. The preferred method is to use 3308 * .recalc_accuracy. For simple clocks and lazy developers the default 3309 * fallback is to use the parent's accuracy. If a clock doesn't have a 3310 * parent (or is orphaned) then accuracy is set to zero (perfect 3311 * clock). 3312 */ 3313 if (core->ops->recalc_accuracy) 3314 core->accuracy = core->ops->recalc_accuracy(core->hw, 3315 __clk_get_accuracy(core->parent)); 3316 else if (core->parent) 3317 core->accuracy = core->parent->accuracy; 3318 else 3319 core->accuracy = 0; 3320 3321 /* 3322 * Set clk's phase. 3323 * Since a phase is by definition relative to its parent, just 3324 * query the current clock phase, or just assume it's in phase. 3325 */ 3326 if (core->ops->get_phase) 3327 core->phase = core->ops->get_phase(core->hw); 3328 else 3329 core->phase = 0; 3330 3331 /* 3332 * Set clk's duty cycle. 3333 */ 3334 clk_core_update_duty_cycle_nolock(core); 3335 3336 /* 3337 * Set clk's rate. The preferred method is to use .recalc_rate. For 3338 * simple clocks and lazy developers the default fallback is to use the 3339 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3340 * then rate is set to zero. 3341 */ 3342 if (core->ops->recalc_rate) 3343 rate = core->ops->recalc_rate(core->hw, 3344 clk_core_get_rate_nolock(core->parent)); 3345 else if (core->parent) 3346 rate = core->parent->rate; 3347 else 3348 rate = 0; 3349 core->rate = core->req_rate = rate; 3350 3351 /* 3352 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3353 * don't get accidentally disabled when walking the orphan tree and 3354 * reparenting clocks 3355 */ 3356 if (core->flags & CLK_IS_CRITICAL) { 3357 unsigned long flags; 3358 3359 clk_core_prepare(core); 3360 3361 flags = clk_enable_lock(); 3362 clk_core_enable(core); 3363 clk_enable_unlock(flags); 3364 } 3365 3366 /* 3367 * walk the list of orphan clocks and reparent any that newly finds a 3368 * parent. 3369 */ 3370 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3371 struct clk_core *parent = __clk_init_parent(orphan); 3372 3373 /* 3374 * We need to use __clk_set_parent_before() and _after() to 3375 * to properly migrate any prepare/enable count of the orphan 3376 * clock. This is important for CLK_IS_CRITICAL clocks, which 3377 * are enabled during init but might not have a parent yet. 3378 */ 3379 if (parent) { 3380 /* update the clk tree topology */ 3381 __clk_set_parent_before(orphan, parent); 3382 __clk_set_parent_after(orphan, parent, NULL); 3383 __clk_recalc_accuracies(orphan); 3384 __clk_recalc_rates(orphan, 0); 3385 } 3386 } 3387 3388 kref_init(&core->ref); 3389 out: 3390 clk_pm_runtime_put(core); 3391 unlock: 3392 clk_prepare_unlock(); 3393 3394 if (!ret) 3395 clk_debug_register(core); 3396 3397 return ret; 3398 } 3399 3400 /** 3401 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3402 * @core: clk to add consumer to 3403 * @clk: consumer to link to a clk 3404 */ 3405 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3406 { 3407 clk_prepare_lock(); 3408 hlist_add_head(&clk->clks_node, &core->clks); 3409 clk_prepare_unlock(); 3410 } 3411 3412 /** 3413 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3414 * @clk: consumer to unlink 3415 */ 3416 static void clk_core_unlink_consumer(struct clk *clk) 3417 { 3418 lockdep_assert_held(&prepare_lock); 3419 hlist_del(&clk->clks_node); 3420 } 3421 3422 /** 3423 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3424 * @core: clk to allocate a consumer for 3425 * @dev_id: string describing device name 3426 * @con_id: connection ID string on device 3427 * 3428 * Returns: clk consumer left unlinked from the consumer list 3429 */ 3430 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3431 const char *con_id) 3432 { 3433 struct clk *clk; 3434 3435 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3436 if (!clk) 3437 return ERR_PTR(-ENOMEM); 3438 3439 clk->core = core; 3440 clk->dev_id = dev_id; 3441 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3442 clk->max_rate = ULONG_MAX; 3443 3444 return clk; 3445 } 3446 3447 /** 3448 * free_clk - Free a clk consumer 3449 * @clk: clk consumer to free 3450 * 3451 * Note, this assumes the clk has been unlinked from the clk_core consumer 3452 * list. 3453 */ 3454 static void free_clk(struct clk *clk) 3455 { 3456 kfree_const(clk->con_id); 3457 kfree(clk); 3458 } 3459 3460 /** 3461 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3462 * a clk_hw 3463 * @dev: clk consumer device 3464 * @hw: clk_hw associated with the clk being consumed 3465 * @dev_id: string describing device name 3466 * @con_id: connection ID string on device 3467 * 3468 * This is the main function used to create a clk pointer for use by clk 3469 * consumers. It connects a consumer to the clk_core and clk_hw structures 3470 * used by the framework and clk provider respectively. 3471 */ 3472 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3473 const char *dev_id, const char *con_id) 3474 { 3475 struct clk *clk; 3476 struct clk_core *core; 3477 3478 /* This is to allow this function to be chained to others */ 3479 if (IS_ERR_OR_NULL(hw)) 3480 return ERR_CAST(hw); 3481 3482 core = hw->core; 3483 clk = alloc_clk(core, dev_id, con_id); 3484 if (IS_ERR(clk)) 3485 return clk; 3486 clk->dev = dev; 3487 3488 if (!try_module_get(core->owner)) { 3489 free_clk(clk); 3490 return ERR_PTR(-ENOENT); 3491 } 3492 3493 kref_get(&core->ref); 3494 clk_core_link_consumer(core, clk); 3495 3496 return clk; 3497 } 3498 3499 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3500 { 3501 const char *dst; 3502 3503 if (!src) { 3504 if (must_exist) 3505 return -EINVAL; 3506 return 0; 3507 } 3508 3509 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3510 if (!dst) 3511 return -ENOMEM; 3512 3513 return 0; 3514 } 3515 3516 static int clk_core_populate_parent_map(struct clk_core *core) 3517 { 3518 const struct clk_init_data *init = core->hw->init; 3519 u8 num_parents = init->num_parents; 3520 const char * const *parent_names = init->parent_names; 3521 const struct clk_hw **parent_hws = init->parent_hws; 3522 const struct clk_parent_data *parent_data = init->parent_data; 3523 int i, ret = 0; 3524 struct clk_parent_map *parents, *parent; 3525 3526 if (!num_parents) 3527 return 0; 3528 3529 /* 3530 * Avoid unnecessary string look-ups of clk_core's possible parents by 3531 * having a cache of names/clk_hw pointers to clk_core pointers. 3532 */ 3533 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3534 core->parents = parents; 3535 if (!parents) 3536 return -ENOMEM; 3537 3538 /* Copy everything over because it might be __initdata */ 3539 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3540 parent->index = -1; 3541 if (parent_names) { 3542 /* throw a WARN if any entries are NULL */ 3543 WARN(!parent_names[i], 3544 "%s: invalid NULL in %s's .parent_names\n", 3545 __func__, core->name); 3546 ret = clk_cpy_name(&parent->name, parent_names[i], 3547 true); 3548 } else if (parent_data) { 3549 parent->hw = parent_data[i].hw; 3550 parent->index = parent_data[i].index; 3551 ret = clk_cpy_name(&parent->fw_name, 3552 parent_data[i].fw_name, false); 3553 if (!ret) 3554 ret = clk_cpy_name(&parent->name, 3555 parent_data[i].name, 3556 false); 3557 } else if (parent_hws) { 3558 parent->hw = parent_hws[i]; 3559 } else { 3560 ret = -EINVAL; 3561 WARN(1, "Must specify parents if num_parents > 0\n"); 3562 } 3563 3564 if (ret) { 3565 do { 3566 kfree_const(parents[i].name); 3567 kfree_const(parents[i].fw_name); 3568 } while (--i >= 0); 3569 kfree(parents); 3570 3571 return ret; 3572 } 3573 } 3574 3575 return 0; 3576 } 3577 3578 static void clk_core_free_parent_map(struct clk_core *core) 3579 { 3580 int i = core->num_parents; 3581 3582 if (!core->num_parents) 3583 return; 3584 3585 while (--i >= 0) { 3586 kfree_const(core->parents[i].name); 3587 kfree_const(core->parents[i].fw_name); 3588 } 3589 3590 kfree(core->parents); 3591 } 3592 3593 static struct clk * 3594 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3595 { 3596 int ret; 3597 struct clk_core *core; 3598 3599 core = kzalloc(sizeof(*core), GFP_KERNEL); 3600 if (!core) { 3601 ret = -ENOMEM; 3602 goto fail_out; 3603 } 3604 3605 core->name = kstrdup_const(hw->init->name, GFP_KERNEL); 3606 if (!core->name) { 3607 ret = -ENOMEM; 3608 goto fail_name; 3609 } 3610 3611 if (WARN_ON(!hw->init->ops)) { 3612 ret = -EINVAL; 3613 goto fail_ops; 3614 } 3615 core->ops = hw->init->ops; 3616 3617 if (dev && pm_runtime_enabled(dev)) 3618 core->rpm_enabled = true; 3619 core->dev = dev; 3620 core->of_node = np; 3621 if (dev && dev->driver) 3622 core->owner = dev->driver->owner; 3623 core->hw = hw; 3624 core->flags = hw->init->flags; 3625 core->num_parents = hw->init->num_parents; 3626 core->min_rate = 0; 3627 core->max_rate = ULONG_MAX; 3628 hw->core = core; 3629 3630 ret = clk_core_populate_parent_map(core); 3631 if (ret) 3632 goto fail_parents; 3633 3634 INIT_HLIST_HEAD(&core->clks); 3635 3636 /* 3637 * Don't call clk_hw_create_clk() here because that would pin the 3638 * provider module to itself and prevent it from ever being removed. 3639 */ 3640 hw->clk = alloc_clk(core, NULL, NULL); 3641 if (IS_ERR(hw->clk)) { 3642 ret = PTR_ERR(hw->clk); 3643 goto fail_create_clk; 3644 } 3645 3646 clk_core_link_consumer(hw->core, hw->clk); 3647 3648 ret = __clk_core_init(core); 3649 if (!ret) 3650 return hw->clk; 3651 3652 clk_prepare_lock(); 3653 clk_core_unlink_consumer(hw->clk); 3654 clk_prepare_unlock(); 3655 3656 free_clk(hw->clk); 3657 hw->clk = NULL; 3658 3659 fail_create_clk: 3660 clk_core_free_parent_map(core); 3661 fail_parents: 3662 fail_ops: 3663 kfree_const(core->name); 3664 fail_name: 3665 kfree(core); 3666 fail_out: 3667 return ERR_PTR(ret); 3668 } 3669 3670 /** 3671 * clk_register - allocate a new clock, register it and return an opaque cookie 3672 * @dev: device that is registering this clock 3673 * @hw: link to hardware-specific clock data 3674 * 3675 * clk_register is the *deprecated* interface for populating the clock tree with 3676 * new clock nodes. Use clk_hw_register() instead. 3677 * 3678 * Returns: a pointer to the newly allocated struct clk which 3679 * cannot be dereferenced by driver code but may be used in conjunction with the 3680 * rest of the clock API. In the event of an error clk_register will return an 3681 * error code; drivers must test for an error code after calling clk_register. 3682 */ 3683 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3684 { 3685 return __clk_register(dev, dev_of_node(dev), hw); 3686 } 3687 EXPORT_SYMBOL_GPL(clk_register); 3688 3689 /** 3690 * clk_hw_register - register a clk_hw and return an error code 3691 * @dev: device that is registering this clock 3692 * @hw: link to hardware-specific clock data 3693 * 3694 * clk_hw_register is the primary interface for populating the clock tree with 3695 * new clock nodes. It returns an integer equal to zero indicating success or 3696 * less than zero indicating failure. Drivers must test for an error code after 3697 * calling clk_hw_register(). 3698 */ 3699 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3700 { 3701 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_of_node(dev), hw)); 3702 } 3703 EXPORT_SYMBOL_GPL(clk_hw_register); 3704 3705 /* 3706 * of_clk_hw_register - register a clk_hw and return an error code 3707 * @node: device_node of device that is registering this clock 3708 * @hw: link to hardware-specific clock data 3709 * 3710 * of_clk_hw_register() is the primary interface for populating the clock tree 3711 * with new clock nodes when a struct device is not available, but a struct 3712 * device_node is. It returns an integer equal to zero indicating success or 3713 * less than zero indicating failure. Drivers must test for an error code after 3714 * calling of_clk_hw_register(). 3715 */ 3716 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 3717 { 3718 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 3719 } 3720 EXPORT_SYMBOL_GPL(of_clk_hw_register); 3721 3722 /* Free memory allocated for a clock. */ 3723 static void __clk_release(struct kref *ref) 3724 { 3725 struct clk_core *core = container_of(ref, struct clk_core, ref); 3726 3727 lockdep_assert_held(&prepare_lock); 3728 3729 clk_core_free_parent_map(core); 3730 kfree_const(core->name); 3731 kfree(core); 3732 } 3733 3734 /* 3735 * Empty clk_ops for unregistered clocks. These are used temporarily 3736 * after clk_unregister() was called on a clock and until last clock 3737 * consumer calls clk_put() and the struct clk object is freed. 3738 */ 3739 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3740 { 3741 return -ENXIO; 3742 } 3743 3744 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3745 { 3746 WARN_ON_ONCE(1); 3747 } 3748 3749 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3750 unsigned long parent_rate) 3751 { 3752 return -ENXIO; 3753 } 3754 3755 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3756 { 3757 return -ENXIO; 3758 } 3759 3760 static const struct clk_ops clk_nodrv_ops = { 3761 .enable = clk_nodrv_prepare_enable, 3762 .disable = clk_nodrv_disable_unprepare, 3763 .prepare = clk_nodrv_prepare_enable, 3764 .unprepare = clk_nodrv_disable_unprepare, 3765 .set_rate = clk_nodrv_set_rate, 3766 .set_parent = clk_nodrv_set_parent, 3767 }; 3768 3769 /** 3770 * clk_unregister - unregister a currently registered clock 3771 * @clk: clock to unregister 3772 */ 3773 void clk_unregister(struct clk *clk) 3774 { 3775 unsigned long flags; 3776 3777 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3778 return; 3779 3780 clk_debug_unregister(clk->core); 3781 3782 clk_prepare_lock(); 3783 3784 if (clk->core->ops == &clk_nodrv_ops) { 3785 pr_err("%s: unregistered clock: %s\n", __func__, 3786 clk->core->name); 3787 goto unlock; 3788 } 3789 /* 3790 * Assign empty clock ops for consumers that might still hold 3791 * a reference to this clock. 3792 */ 3793 flags = clk_enable_lock(); 3794 clk->core->ops = &clk_nodrv_ops; 3795 clk_enable_unlock(flags); 3796 3797 if (!hlist_empty(&clk->core->children)) { 3798 struct clk_core *child; 3799 struct hlist_node *t; 3800 3801 /* Reparent all children to the orphan list. */ 3802 hlist_for_each_entry_safe(child, t, &clk->core->children, 3803 child_node) 3804 clk_core_set_parent_nolock(child, NULL); 3805 } 3806 3807 hlist_del_init(&clk->core->child_node); 3808 3809 if (clk->core->prepare_count) 3810 pr_warn("%s: unregistering prepared clock: %s\n", 3811 __func__, clk->core->name); 3812 3813 if (clk->core->protect_count) 3814 pr_warn("%s: unregistering protected clock: %s\n", 3815 __func__, clk->core->name); 3816 3817 kref_put(&clk->core->ref, __clk_release); 3818 unlock: 3819 clk_prepare_unlock(); 3820 } 3821 EXPORT_SYMBOL_GPL(clk_unregister); 3822 3823 /** 3824 * clk_hw_unregister - unregister a currently registered clk_hw 3825 * @hw: hardware-specific clock data to unregister 3826 */ 3827 void clk_hw_unregister(struct clk_hw *hw) 3828 { 3829 clk_unregister(hw->clk); 3830 } 3831 EXPORT_SYMBOL_GPL(clk_hw_unregister); 3832 3833 static void devm_clk_release(struct device *dev, void *res) 3834 { 3835 clk_unregister(*(struct clk **)res); 3836 } 3837 3838 static void devm_clk_hw_release(struct device *dev, void *res) 3839 { 3840 clk_hw_unregister(*(struct clk_hw **)res); 3841 } 3842 3843 /** 3844 * devm_clk_register - resource managed clk_register() 3845 * @dev: device that is registering this clock 3846 * @hw: link to hardware-specific clock data 3847 * 3848 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 3849 * 3850 * Clocks returned from this function are automatically clk_unregister()ed on 3851 * driver detach. See clk_register() for more information. 3852 */ 3853 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 3854 { 3855 struct clk *clk; 3856 struct clk **clkp; 3857 3858 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 3859 if (!clkp) 3860 return ERR_PTR(-ENOMEM); 3861 3862 clk = clk_register(dev, hw); 3863 if (!IS_ERR(clk)) { 3864 *clkp = clk; 3865 devres_add(dev, clkp); 3866 } else { 3867 devres_free(clkp); 3868 } 3869 3870 return clk; 3871 } 3872 EXPORT_SYMBOL_GPL(devm_clk_register); 3873 3874 /** 3875 * devm_clk_hw_register - resource managed clk_hw_register() 3876 * @dev: device that is registering this clock 3877 * @hw: link to hardware-specific clock data 3878 * 3879 * Managed clk_hw_register(). Clocks registered by this function are 3880 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 3881 * for more information. 3882 */ 3883 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 3884 { 3885 struct clk_hw **hwp; 3886 int ret; 3887 3888 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 3889 if (!hwp) 3890 return -ENOMEM; 3891 3892 ret = clk_hw_register(dev, hw); 3893 if (!ret) { 3894 *hwp = hw; 3895 devres_add(dev, hwp); 3896 } else { 3897 devres_free(hwp); 3898 } 3899 3900 return ret; 3901 } 3902 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 3903 3904 static int devm_clk_match(struct device *dev, void *res, void *data) 3905 { 3906 struct clk *c = res; 3907 if (WARN_ON(!c)) 3908 return 0; 3909 return c == data; 3910 } 3911 3912 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 3913 { 3914 struct clk_hw *hw = res; 3915 3916 if (WARN_ON(!hw)) 3917 return 0; 3918 return hw == data; 3919 } 3920 3921 /** 3922 * devm_clk_unregister - resource managed clk_unregister() 3923 * @clk: clock to unregister 3924 * 3925 * Deallocate a clock allocated with devm_clk_register(). Normally 3926 * this function will not need to be called and the resource management 3927 * code will ensure that the resource is freed. 3928 */ 3929 void devm_clk_unregister(struct device *dev, struct clk *clk) 3930 { 3931 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 3932 } 3933 EXPORT_SYMBOL_GPL(devm_clk_unregister); 3934 3935 /** 3936 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 3937 * @dev: device that is unregistering the hardware-specific clock data 3938 * @hw: link to hardware-specific clock data 3939 * 3940 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 3941 * this function will not need to be called and the resource management 3942 * code will ensure that the resource is freed. 3943 */ 3944 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 3945 { 3946 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 3947 hw)); 3948 } 3949 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 3950 3951 /* 3952 * clkdev helpers 3953 */ 3954 3955 void __clk_put(struct clk *clk) 3956 { 3957 struct module *owner; 3958 3959 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3960 return; 3961 3962 clk_prepare_lock(); 3963 3964 /* 3965 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 3966 * given user should be balanced with calls to clk_rate_exclusive_put() 3967 * and by that same consumer 3968 */ 3969 if (WARN_ON(clk->exclusive_count)) { 3970 /* We voiced our concern, let's sanitize the situation */ 3971 clk->core->protect_count -= (clk->exclusive_count - 1); 3972 clk_core_rate_unprotect(clk->core); 3973 clk->exclusive_count = 0; 3974 } 3975 3976 hlist_del(&clk->clks_node); 3977 if (clk->min_rate > clk->core->req_rate || 3978 clk->max_rate < clk->core->req_rate) 3979 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 3980 3981 owner = clk->core->owner; 3982 kref_put(&clk->core->ref, __clk_release); 3983 3984 clk_prepare_unlock(); 3985 3986 module_put(owner); 3987 3988 free_clk(clk); 3989 } 3990 3991 /*** clk rate change notifiers ***/ 3992 3993 /** 3994 * clk_notifier_register - add a clk rate change notifier 3995 * @clk: struct clk * to watch 3996 * @nb: struct notifier_block * with callback info 3997 * 3998 * Request notification when clk's rate changes. This uses an SRCU 3999 * notifier because we want it to block and notifier unregistrations are 4000 * uncommon. The callbacks associated with the notifier must not 4001 * re-enter into the clk framework by calling any top-level clk APIs; 4002 * this will cause a nested prepare_lock mutex. 4003 * 4004 * In all notification cases (pre, post and abort rate change) the original 4005 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4006 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4007 * 4008 * clk_notifier_register() must be called from non-atomic context. 4009 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4010 * allocation failure; otherwise, passes along the return value of 4011 * srcu_notifier_chain_register(). 4012 */ 4013 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4014 { 4015 struct clk_notifier *cn; 4016 int ret = -ENOMEM; 4017 4018 if (!clk || !nb) 4019 return -EINVAL; 4020 4021 clk_prepare_lock(); 4022 4023 /* search the list of notifiers for this clk */ 4024 list_for_each_entry(cn, &clk_notifier_list, node) 4025 if (cn->clk == clk) 4026 break; 4027 4028 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4029 if (cn->clk != clk) { 4030 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4031 if (!cn) 4032 goto out; 4033 4034 cn->clk = clk; 4035 srcu_init_notifier_head(&cn->notifier_head); 4036 4037 list_add(&cn->node, &clk_notifier_list); 4038 } 4039 4040 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4041 4042 clk->core->notifier_count++; 4043 4044 out: 4045 clk_prepare_unlock(); 4046 4047 return ret; 4048 } 4049 EXPORT_SYMBOL_GPL(clk_notifier_register); 4050 4051 /** 4052 * clk_notifier_unregister - remove a clk rate change notifier 4053 * @clk: struct clk * 4054 * @nb: struct notifier_block * with callback info 4055 * 4056 * Request no further notification for changes to 'clk' and frees memory 4057 * allocated in clk_notifier_register. 4058 * 4059 * Returns -EINVAL if called with null arguments; otherwise, passes 4060 * along the return value of srcu_notifier_chain_unregister(). 4061 */ 4062 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4063 { 4064 struct clk_notifier *cn = NULL; 4065 int ret = -EINVAL; 4066 4067 if (!clk || !nb) 4068 return -EINVAL; 4069 4070 clk_prepare_lock(); 4071 4072 list_for_each_entry(cn, &clk_notifier_list, node) 4073 if (cn->clk == clk) 4074 break; 4075 4076 if (cn->clk == clk) { 4077 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4078 4079 clk->core->notifier_count--; 4080 4081 /* XXX the notifier code should handle this better */ 4082 if (!cn->notifier_head.head) { 4083 srcu_cleanup_notifier_head(&cn->notifier_head); 4084 list_del(&cn->node); 4085 kfree(cn); 4086 } 4087 4088 } else { 4089 ret = -ENOENT; 4090 } 4091 4092 clk_prepare_unlock(); 4093 4094 return ret; 4095 } 4096 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4097 4098 #ifdef CONFIG_OF 4099 /** 4100 * struct of_clk_provider - Clock provider registration structure 4101 * @link: Entry in global list of clock providers 4102 * @node: Pointer to device tree node of clock provider 4103 * @get: Get clock callback. Returns NULL or a struct clk for the 4104 * given clock specifier 4105 * @data: context pointer to be passed into @get callback 4106 */ 4107 struct of_clk_provider { 4108 struct list_head link; 4109 4110 struct device_node *node; 4111 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4112 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4113 void *data; 4114 }; 4115 4116 extern struct of_device_id __clk_of_table; 4117 static const struct of_device_id __clk_of_table_sentinel 4118 __used __section(__clk_of_table_end); 4119 4120 static LIST_HEAD(of_clk_providers); 4121 static DEFINE_MUTEX(of_clk_mutex); 4122 4123 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4124 void *data) 4125 { 4126 return data; 4127 } 4128 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4129 4130 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4131 { 4132 return data; 4133 } 4134 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4135 4136 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4137 { 4138 struct clk_onecell_data *clk_data = data; 4139 unsigned int idx = clkspec->args[0]; 4140 4141 if (idx >= clk_data->clk_num) { 4142 pr_err("%s: invalid clock index %u\n", __func__, idx); 4143 return ERR_PTR(-EINVAL); 4144 } 4145 4146 return clk_data->clks[idx]; 4147 } 4148 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4149 4150 struct clk_hw * 4151 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4152 { 4153 struct clk_hw_onecell_data *hw_data = data; 4154 unsigned int idx = clkspec->args[0]; 4155 4156 if (idx >= hw_data->num) { 4157 pr_err("%s: invalid index %u\n", __func__, idx); 4158 return ERR_PTR(-EINVAL); 4159 } 4160 4161 return hw_data->hws[idx]; 4162 } 4163 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4164 4165 /** 4166 * of_clk_add_provider() - Register a clock provider for a node 4167 * @np: Device node pointer associated with clock provider 4168 * @clk_src_get: callback for decoding clock 4169 * @data: context pointer for @clk_src_get callback. 4170 * 4171 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4172 */ 4173 int of_clk_add_provider(struct device_node *np, 4174 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4175 void *data), 4176 void *data) 4177 { 4178 struct of_clk_provider *cp; 4179 int ret; 4180 4181 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4182 if (!cp) 4183 return -ENOMEM; 4184 4185 cp->node = of_node_get(np); 4186 cp->data = data; 4187 cp->get = clk_src_get; 4188 4189 mutex_lock(&of_clk_mutex); 4190 list_add(&cp->link, &of_clk_providers); 4191 mutex_unlock(&of_clk_mutex); 4192 pr_debug("Added clock from %pOF\n", np); 4193 4194 ret = of_clk_set_defaults(np, true); 4195 if (ret < 0) 4196 of_clk_del_provider(np); 4197 4198 return ret; 4199 } 4200 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4201 4202 /** 4203 * of_clk_add_hw_provider() - Register a clock provider for a node 4204 * @np: Device node pointer associated with clock provider 4205 * @get: callback for decoding clk_hw 4206 * @data: context pointer for @get callback. 4207 */ 4208 int of_clk_add_hw_provider(struct device_node *np, 4209 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4210 void *data), 4211 void *data) 4212 { 4213 struct of_clk_provider *cp; 4214 int ret; 4215 4216 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4217 if (!cp) 4218 return -ENOMEM; 4219 4220 cp->node = of_node_get(np); 4221 cp->data = data; 4222 cp->get_hw = get; 4223 4224 mutex_lock(&of_clk_mutex); 4225 list_add(&cp->link, &of_clk_providers); 4226 mutex_unlock(&of_clk_mutex); 4227 pr_debug("Added clk_hw provider from %pOF\n", np); 4228 4229 ret = of_clk_set_defaults(np, true); 4230 if (ret < 0) 4231 of_clk_del_provider(np); 4232 4233 return ret; 4234 } 4235 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4236 4237 static void devm_of_clk_release_provider(struct device *dev, void *res) 4238 { 4239 of_clk_del_provider(*(struct device_node **)res); 4240 } 4241 4242 /* 4243 * We allow a child device to use its parent device as the clock provider node 4244 * for cases like MFD sub-devices where the child device driver wants to use 4245 * devm_*() APIs but not list the device in DT as a sub-node. 4246 */ 4247 static struct device_node *get_clk_provider_node(struct device *dev) 4248 { 4249 struct device_node *np, *parent_np; 4250 4251 np = dev->of_node; 4252 parent_np = dev->parent ? dev->parent->of_node : NULL; 4253 4254 if (!of_find_property(np, "#clock-cells", NULL)) 4255 if (of_find_property(parent_np, "#clock-cells", NULL)) 4256 np = parent_np; 4257 4258 return np; 4259 } 4260 4261 /** 4262 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4263 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4264 * @get: callback for decoding clk_hw 4265 * @data: context pointer for @get callback 4266 * 4267 * Registers clock provider for given device's node. If the device has no DT 4268 * node or if the device node lacks of clock provider information (#clock-cells) 4269 * then the parent device's node is scanned for this information. If parent node 4270 * has the #clock-cells then it is used in registration. Provider is 4271 * automatically released at device exit. 4272 * 4273 * Return: 0 on success or an errno on failure. 4274 */ 4275 int devm_of_clk_add_hw_provider(struct device *dev, 4276 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4277 void *data), 4278 void *data) 4279 { 4280 struct device_node **ptr, *np; 4281 int ret; 4282 4283 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4284 GFP_KERNEL); 4285 if (!ptr) 4286 return -ENOMEM; 4287 4288 np = get_clk_provider_node(dev); 4289 ret = of_clk_add_hw_provider(np, get, data); 4290 if (!ret) { 4291 *ptr = np; 4292 devres_add(dev, ptr); 4293 } else { 4294 devres_free(ptr); 4295 } 4296 4297 return ret; 4298 } 4299 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4300 4301 /** 4302 * of_clk_del_provider() - Remove a previously registered clock provider 4303 * @np: Device node pointer associated with clock provider 4304 */ 4305 void of_clk_del_provider(struct device_node *np) 4306 { 4307 struct of_clk_provider *cp; 4308 4309 mutex_lock(&of_clk_mutex); 4310 list_for_each_entry(cp, &of_clk_providers, link) { 4311 if (cp->node == np) { 4312 list_del(&cp->link); 4313 of_node_put(cp->node); 4314 kfree(cp); 4315 break; 4316 } 4317 } 4318 mutex_unlock(&of_clk_mutex); 4319 } 4320 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4321 4322 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4323 { 4324 struct device_node **np = res; 4325 4326 if (WARN_ON(!np || !*np)) 4327 return 0; 4328 4329 return *np == data; 4330 } 4331 4332 /** 4333 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4334 * @dev: Device to whose lifetime the clock provider was bound 4335 */ 4336 void devm_of_clk_del_provider(struct device *dev) 4337 { 4338 int ret; 4339 struct device_node *np = get_clk_provider_node(dev); 4340 4341 ret = devres_release(dev, devm_of_clk_release_provider, 4342 devm_clk_provider_match, np); 4343 4344 WARN_ON(ret); 4345 } 4346 EXPORT_SYMBOL(devm_of_clk_del_provider); 4347 4348 /* 4349 * Beware the return values when np is valid, but no clock provider is found. 4350 * If name == NULL, the function returns -ENOENT. 4351 * If name != NULL, the function returns -EINVAL. This is because 4352 * of_parse_phandle_with_args() is called even if of_property_match_string() 4353 * returns an error. 4354 */ 4355 static int of_parse_clkspec(const struct device_node *np, int index, 4356 const char *name, struct of_phandle_args *out_args) 4357 { 4358 int ret = -ENOENT; 4359 4360 /* Walk up the tree of devices looking for a clock property that matches */ 4361 while (np) { 4362 /* 4363 * For named clocks, first look up the name in the 4364 * "clock-names" property. If it cannot be found, then index 4365 * will be an error code and of_parse_phandle_with_args() will 4366 * return -EINVAL. 4367 */ 4368 if (name) 4369 index = of_property_match_string(np, "clock-names", name); 4370 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4371 index, out_args); 4372 if (!ret) 4373 break; 4374 if (name && index >= 0) 4375 break; 4376 4377 /* 4378 * No matching clock found on this node. If the parent node 4379 * has a "clock-ranges" property, then we can try one of its 4380 * clocks. 4381 */ 4382 np = np->parent; 4383 if (np && !of_get_property(np, "clock-ranges", NULL)) 4384 break; 4385 index = 0; 4386 } 4387 4388 return ret; 4389 } 4390 4391 static struct clk_hw * 4392 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4393 struct of_phandle_args *clkspec) 4394 { 4395 struct clk *clk; 4396 4397 if (provider->get_hw) 4398 return provider->get_hw(clkspec, provider->data); 4399 4400 clk = provider->get(clkspec, provider->data); 4401 if (IS_ERR(clk)) 4402 return ERR_CAST(clk); 4403 return __clk_get_hw(clk); 4404 } 4405 4406 static struct clk_hw * 4407 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4408 { 4409 struct of_clk_provider *provider; 4410 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4411 4412 if (!clkspec) 4413 return ERR_PTR(-EINVAL); 4414 4415 mutex_lock(&of_clk_mutex); 4416 list_for_each_entry(provider, &of_clk_providers, link) { 4417 if (provider->node == clkspec->np) { 4418 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4419 if (!IS_ERR(hw)) 4420 break; 4421 } 4422 } 4423 mutex_unlock(&of_clk_mutex); 4424 4425 return hw; 4426 } 4427 4428 /** 4429 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4430 * @clkspec: pointer to a clock specifier data structure 4431 * 4432 * This function looks up a struct clk from the registered list of clock 4433 * providers, an input is a clock specifier data structure as returned 4434 * from the of_parse_phandle_with_args() function call. 4435 */ 4436 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4437 { 4438 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4439 4440 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4441 } 4442 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4443 4444 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4445 const char *con_id) 4446 { 4447 int ret; 4448 struct clk_hw *hw; 4449 struct of_phandle_args clkspec; 4450 4451 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4452 if (ret) 4453 return ERR_PTR(ret); 4454 4455 hw = of_clk_get_hw_from_clkspec(&clkspec); 4456 of_node_put(clkspec.np); 4457 4458 return hw; 4459 } 4460 4461 static struct clk *__of_clk_get(struct device_node *np, 4462 int index, const char *dev_id, 4463 const char *con_id) 4464 { 4465 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4466 4467 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4468 } 4469 4470 struct clk *of_clk_get(struct device_node *np, int index) 4471 { 4472 return __of_clk_get(np, index, np->full_name, NULL); 4473 } 4474 EXPORT_SYMBOL(of_clk_get); 4475 4476 /** 4477 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4478 * @np: pointer to clock consumer node 4479 * @name: name of consumer's clock input, or NULL for the first clock reference 4480 * 4481 * This function parses the clocks and clock-names properties, 4482 * and uses them to look up the struct clk from the registered list of clock 4483 * providers. 4484 */ 4485 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4486 { 4487 if (!np) 4488 return ERR_PTR(-ENOENT); 4489 4490 return __of_clk_get(np, 0, np->full_name, name); 4491 } 4492 EXPORT_SYMBOL(of_clk_get_by_name); 4493 4494 /** 4495 * of_clk_get_parent_count() - Count the number of clocks a device node has 4496 * @np: device node to count 4497 * 4498 * Returns: The number of clocks that are possible parents of this node 4499 */ 4500 unsigned int of_clk_get_parent_count(struct device_node *np) 4501 { 4502 int count; 4503 4504 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4505 if (count < 0) 4506 return 0; 4507 4508 return count; 4509 } 4510 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4511 4512 const char *of_clk_get_parent_name(struct device_node *np, int index) 4513 { 4514 struct of_phandle_args clkspec; 4515 struct property *prop; 4516 const char *clk_name; 4517 const __be32 *vp; 4518 u32 pv; 4519 int rc; 4520 int count; 4521 struct clk *clk; 4522 4523 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 4524 &clkspec); 4525 if (rc) 4526 return NULL; 4527 4528 index = clkspec.args_count ? clkspec.args[0] : 0; 4529 count = 0; 4530 4531 /* if there is an indices property, use it to transfer the index 4532 * specified into an array offset for the clock-output-names property. 4533 */ 4534 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 4535 if (index == pv) { 4536 index = count; 4537 break; 4538 } 4539 count++; 4540 } 4541 /* We went off the end of 'clock-indices' without finding it */ 4542 if (prop && !vp) 4543 return NULL; 4544 4545 if (of_property_read_string_index(clkspec.np, "clock-output-names", 4546 index, 4547 &clk_name) < 0) { 4548 /* 4549 * Best effort to get the name if the clock has been 4550 * registered with the framework. If the clock isn't 4551 * registered, we return the node name as the name of 4552 * the clock as long as #clock-cells = 0. 4553 */ 4554 clk = of_clk_get_from_provider(&clkspec); 4555 if (IS_ERR(clk)) { 4556 if (clkspec.args_count == 0) 4557 clk_name = clkspec.np->name; 4558 else 4559 clk_name = NULL; 4560 } else { 4561 clk_name = __clk_get_name(clk); 4562 clk_put(clk); 4563 } 4564 } 4565 4566 4567 of_node_put(clkspec.np); 4568 return clk_name; 4569 } 4570 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 4571 4572 /** 4573 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 4574 * number of parents 4575 * @np: Device node pointer associated with clock provider 4576 * @parents: pointer to char array that hold the parents' names 4577 * @size: size of the @parents array 4578 * 4579 * Return: number of parents for the clock node. 4580 */ 4581 int of_clk_parent_fill(struct device_node *np, const char **parents, 4582 unsigned int size) 4583 { 4584 unsigned int i = 0; 4585 4586 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 4587 i++; 4588 4589 return i; 4590 } 4591 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 4592 4593 struct clock_provider { 4594 void (*clk_init_cb)(struct device_node *); 4595 struct device_node *np; 4596 struct list_head node; 4597 }; 4598 4599 /* 4600 * This function looks for a parent clock. If there is one, then it 4601 * checks that the provider for this parent clock was initialized, in 4602 * this case the parent clock will be ready. 4603 */ 4604 static int parent_ready(struct device_node *np) 4605 { 4606 int i = 0; 4607 4608 while (true) { 4609 struct clk *clk = of_clk_get(np, i); 4610 4611 /* this parent is ready we can check the next one */ 4612 if (!IS_ERR(clk)) { 4613 clk_put(clk); 4614 i++; 4615 continue; 4616 } 4617 4618 /* at least one parent is not ready, we exit now */ 4619 if (PTR_ERR(clk) == -EPROBE_DEFER) 4620 return 0; 4621 4622 /* 4623 * Here we make assumption that the device tree is 4624 * written correctly. So an error means that there is 4625 * no more parent. As we didn't exit yet, then the 4626 * previous parent are ready. If there is no clock 4627 * parent, no need to wait for them, then we can 4628 * consider their absence as being ready 4629 */ 4630 return 1; 4631 } 4632 } 4633 4634 /** 4635 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 4636 * @np: Device node pointer associated with clock provider 4637 * @index: clock index 4638 * @flags: pointer to top-level framework flags 4639 * 4640 * Detects if the clock-critical property exists and, if so, sets the 4641 * corresponding CLK_IS_CRITICAL flag. 4642 * 4643 * Do not use this function. It exists only for legacy Device Tree 4644 * bindings, such as the one-clock-per-node style that are outdated. 4645 * Those bindings typically put all clock data into .dts and the Linux 4646 * driver has no clock data, thus making it impossible to set this flag 4647 * correctly from the driver. Only those drivers may call 4648 * of_clk_detect_critical from their setup functions. 4649 * 4650 * Return: error code or zero on success 4651 */ 4652 int of_clk_detect_critical(struct device_node *np, 4653 int index, unsigned long *flags) 4654 { 4655 struct property *prop; 4656 const __be32 *cur; 4657 uint32_t idx; 4658 4659 if (!np || !flags) 4660 return -EINVAL; 4661 4662 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 4663 if (index == idx) 4664 *flags |= CLK_IS_CRITICAL; 4665 4666 return 0; 4667 } 4668 4669 /** 4670 * of_clk_init() - Scan and init clock providers from the DT 4671 * @matches: array of compatible values and init functions for providers. 4672 * 4673 * This function scans the device tree for matching clock providers 4674 * and calls their initialization functions. It also does it by trying 4675 * to follow the dependencies. 4676 */ 4677 void __init of_clk_init(const struct of_device_id *matches) 4678 { 4679 const struct of_device_id *match; 4680 struct device_node *np; 4681 struct clock_provider *clk_provider, *next; 4682 bool is_init_done; 4683 bool force = false; 4684 LIST_HEAD(clk_provider_list); 4685 4686 if (!matches) 4687 matches = &__clk_of_table; 4688 4689 /* First prepare the list of the clocks providers */ 4690 for_each_matching_node_and_match(np, matches, &match) { 4691 struct clock_provider *parent; 4692 4693 if (!of_device_is_available(np)) 4694 continue; 4695 4696 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 4697 if (!parent) { 4698 list_for_each_entry_safe(clk_provider, next, 4699 &clk_provider_list, node) { 4700 list_del(&clk_provider->node); 4701 of_node_put(clk_provider->np); 4702 kfree(clk_provider); 4703 } 4704 of_node_put(np); 4705 return; 4706 } 4707 4708 parent->clk_init_cb = match->data; 4709 parent->np = of_node_get(np); 4710 list_add_tail(&parent->node, &clk_provider_list); 4711 } 4712 4713 while (!list_empty(&clk_provider_list)) { 4714 is_init_done = false; 4715 list_for_each_entry_safe(clk_provider, next, 4716 &clk_provider_list, node) { 4717 if (force || parent_ready(clk_provider->np)) { 4718 4719 /* Don't populate platform devices */ 4720 of_node_set_flag(clk_provider->np, 4721 OF_POPULATED); 4722 4723 clk_provider->clk_init_cb(clk_provider->np); 4724 of_clk_set_defaults(clk_provider->np, true); 4725 4726 list_del(&clk_provider->node); 4727 of_node_put(clk_provider->np); 4728 kfree(clk_provider); 4729 is_init_done = true; 4730 } 4731 } 4732 4733 /* 4734 * We didn't manage to initialize any of the 4735 * remaining providers during the last loop, so now we 4736 * initialize all the remaining ones unconditionally 4737 * in case the clock parent was not mandatory 4738 */ 4739 if (!is_init_done) 4740 force = true; 4741 } 4742 } 4743 #endif 4744