1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk/clk-conf.h> 10 #include <linux/clkdev.h> 11 #include <linux/clk.h> 12 #include <linux/clk-provider.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/hashtable.h> 16 #include <linux/init.h> 17 #include <linux/list.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/of.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/slab.h> 24 #include <linux/spinlock.h> 25 #include <linux/string.h> 26 #include <linux/stringhash.h> 27 28 #include "clk.h" 29 30 static DEFINE_SPINLOCK(enable_lock); 31 static DEFINE_MUTEX(prepare_lock); 32 33 static struct task_struct *prepare_owner; 34 static struct task_struct *enable_owner; 35 36 static int prepare_refcnt; 37 static int enable_refcnt; 38 39 #define CLK_HASH_BITS 9 40 static DEFINE_HASHTABLE(clk_hashtable, CLK_HASH_BITS); 41 42 static HLIST_HEAD(clk_root_list); 43 static HLIST_HEAD(clk_orphan_list); 44 static LIST_HEAD(clk_notifier_list); 45 46 /* List of registered clks that use runtime PM */ 47 static HLIST_HEAD(clk_rpm_list); 48 static DEFINE_MUTEX(clk_rpm_list_lock); 49 50 static const struct hlist_head *all_lists[] = { 51 &clk_root_list, 52 &clk_orphan_list, 53 NULL, 54 }; 55 56 /*** private data structures ***/ 57 58 struct clk_parent_map { 59 const struct clk_hw *hw; 60 struct clk_core *core; 61 const char *fw_name; 62 const char *name; 63 int index; 64 }; 65 66 struct clk_core { 67 const char *name; 68 const struct clk_ops *ops; 69 struct clk_hw *hw; 70 struct module *owner; 71 struct device *dev; 72 struct hlist_node rpm_node; 73 struct device_node *of_node; 74 struct clk_core *parent; 75 struct clk_parent_map *parents; 76 u8 num_parents; 77 u8 new_parent_index; 78 unsigned long rate; 79 unsigned long req_rate; 80 unsigned long new_rate; 81 struct clk_core *new_parent; 82 struct clk_core *new_child; 83 unsigned long flags; 84 bool orphan; 85 bool rpm_enabled; 86 unsigned int enable_count; 87 unsigned int prepare_count; 88 unsigned int protect_count; 89 unsigned long min_rate; 90 unsigned long max_rate; 91 unsigned long accuracy; 92 int phase; 93 struct clk_duty duty; 94 struct hlist_head children; 95 struct hlist_node child_node; 96 struct hlist_node hashtable_node; 97 struct hlist_head clks; 98 unsigned int notifier_count; 99 #ifdef CONFIG_DEBUG_FS 100 struct dentry *dentry; 101 struct hlist_node debug_node; 102 #endif 103 struct kref ref; 104 }; 105 106 #define CREATE_TRACE_POINTS 107 #include <trace/events/clk.h> 108 109 struct clk { 110 struct clk_core *core; 111 struct device *dev; 112 const char *dev_id; 113 const char *con_id; 114 unsigned long min_rate; 115 unsigned long max_rate; 116 unsigned int exclusive_count; 117 struct hlist_node clks_node; 118 }; 119 120 /*** runtime pm ***/ 121 static int clk_pm_runtime_get(struct clk_core *core) 122 { 123 if (!core->rpm_enabled) 124 return 0; 125 126 return pm_runtime_resume_and_get(core->dev); 127 } 128 129 static void clk_pm_runtime_put(struct clk_core *core) 130 { 131 if (!core->rpm_enabled) 132 return; 133 134 pm_runtime_put_sync(core->dev); 135 } 136 137 /** 138 * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices 139 * 140 * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so 141 * that disabling unused clks avoids a deadlock where a device is runtime PM 142 * resuming/suspending and the runtime PM callback is trying to grab the 143 * prepare_lock for something like clk_prepare_enable() while 144 * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime 145 * PM resume/suspend the device as well. 146 * 147 * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on 148 * success. Otherwise the lock is released on failure. 149 * 150 * Return: 0 on success, negative errno otherwise. 151 */ 152 static int clk_pm_runtime_get_all(void) 153 { 154 int ret; 155 struct clk_core *core, *failed; 156 157 /* 158 * Grab the list lock to prevent any new clks from being registered 159 * or unregistered until clk_pm_runtime_put_all(). 160 */ 161 mutex_lock(&clk_rpm_list_lock); 162 163 /* 164 * Runtime PM "get" all the devices that are needed for the clks 165 * currently registered. Do this without holding the prepare_lock, to 166 * avoid the deadlock. 167 */ 168 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) { 169 ret = clk_pm_runtime_get(core); 170 if (ret) { 171 failed = core; 172 pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n", 173 dev_name(failed->dev), failed->name); 174 goto err; 175 } 176 } 177 178 return 0; 179 180 err: 181 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) { 182 if (core == failed) 183 break; 184 185 clk_pm_runtime_put(core); 186 } 187 mutex_unlock(&clk_rpm_list_lock); 188 189 return ret; 190 } 191 192 /** 193 * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices 194 * 195 * Put the runtime PM references taken in clk_pm_runtime_get_all() and release 196 * the 'clk_rpm_list_lock'. 197 */ 198 static void clk_pm_runtime_put_all(void) 199 { 200 struct clk_core *core; 201 202 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) 203 clk_pm_runtime_put(core); 204 mutex_unlock(&clk_rpm_list_lock); 205 } 206 207 static void clk_pm_runtime_init(struct clk_core *core) 208 { 209 struct device *dev = core->dev; 210 211 if (dev && pm_runtime_enabled(dev)) { 212 core->rpm_enabled = true; 213 214 mutex_lock(&clk_rpm_list_lock); 215 hlist_add_head(&core->rpm_node, &clk_rpm_list); 216 mutex_unlock(&clk_rpm_list_lock); 217 } 218 } 219 220 /*** locking ***/ 221 static void clk_prepare_lock(void) 222 { 223 if (!mutex_trylock(&prepare_lock)) { 224 if (prepare_owner == current) { 225 prepare_refcnt++; 226 return; 227 } 228 mutex_lock(&prepare_lock); 229 } 230 WARN_ON_ONCE(prepare_owner != NULL); 231 WARN_ON_ONCE(prepare_refcnt != 0); 232 prepare_owner = current; 233 prepare_refcnt = 1; 234 } 235 236 static void clk_prepare_unlock(void) 237 { 238 WARN_ON_ONCE(prepare_owner != current); 239 WARN_ON_ONCE(prepare_refcnt == 0); 240 241 if (--prepare_refcnt) 242 return; 243 prepare_owner = NULL; 244 mutex_unlock(&prepare_lock); 245 } 246 247 static unsigned long clk_enable_lock(void) 248 __acquires(enable_lock) 249 { 250 unsigned long flags; 251 252 /* 253 * On UP systems, spin_trylock_irqsave() always returns true, even if 254 * we already hold the lock. So, in that case, we rely only on 255 * reference counting. 256 */ 257 if (!IS_ENABLED(CONFIG_SMP) || 258 !spin_trylock_irqsave(&enable_lock, flags)) { 259 if (enable_owner == current) { 260 enable_refcnt++; 261 __acquire(enable_lock); 262 if (!IS_ENABLED(CONFIG_SMP)) 263 local_save_flags(flags); 264 return flags; 265 } 266 spin_lock_irqsave(&enable_lock, flags); 267 } 268 WARN_ON_ONCE(enable_owner != NULL); 269 WARN_ON_ONCE(enable_refcnt != 0); 270 enable_owner = current; 271 enable_refcnt = 1; 272 return flags; 273 } 274 275 static void clk_enable_unlock(unsigned long flags) 276 __releases(enable_lock) 277 { 278 WARN_ON_ONCE(enable_owner != current); 279 WARN_ON_ONCE(enable_refcnt == 0); 280 281 if (--enable_refcnt) { 282 __release(enable_lock); 283 return; 284 } 285 enable_owner = NULL; 286 spin_unlock_irqrestore(&enable_lock, flags); 287 } 288 289 static bool clk_core_rate_is_protected(struct clk_core *core) 290 { 291 return core->protect_count; 292 } 293 294 static bool clk_core_is_prepared(struct clk_core *core) 295 { 296 bool ret = false; 297 298 /* 299 * .is_prepared is optional for clocks that can prepare 300 * fall back to software usage counter if it is missing 301 */ 302 if (!core->ops->is_prepared) 303 return core->prepare_count; 304 305 if (!clk_pm_runtime_get(core)) { 306 ret = core->ops->is_prepared(core->hw); 307 clk_pm_runtime_put(core); 308 } 309 310 return ret; 311 } 312 313 static bool clk_core_is_enabled(struct clk_core *core) 314 { 315 bool ret = false; 316 317 /* 318 * .is_enabled is only mandatory for clocks that gate 319 * fall back to software usage counter if .is_enabled is missing 320 */ 321 if (!core->ops->is_enabled) 322 return core->enable_count; 323 324 /* 325 * Check if clock controller's device is runtime active before 326 * calling .is_enabled callback. If not, assume that clock is 327 * disabled, because we might be called from atomic context, from 328 * which pm_runtime_get() is not allowed. 329 * This function is called mainly from clk_disable_unused_subtree, 330 * which ensures proper runtime pm activation of controller before 331 * taking enable spinlock, but the below check is needed if one tries 332 * to call it from other places. 333 */ 334 if (core->rpm_enabled) { 335 pm_runtime_get_noresume(core->dev); 336 if (!pm_runtime_active(core->dev)) { 337 ret = false; 338 goto done; 339 } 340 } 341 342 /* 343 * This could be called with the enable lock held, or from atomic 344 * context. If the parent isn't enabled already, we can't do 345 * anything here. We can also assume this clock isn't enabled. 346 */ 347 if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent) 348 if (!clk_core_is_enabled(core->parent)) { 349 ret = false; 350 goto done; 351 } 352 353 ret = core->ops->is_enabled(core->hw); 354 done: 355 if (core->rpm_enabled) 356 pm_runtime_put(core->dev); 357 358 return ret; 359 } 360 361 /*** helper functions ***/ 362 363 const char *__clk_get_name(const struct clk *clk) 364 { 365 return !clk ? NULL : clk->core->name; 366 } 367 EXPORT_SYMBOL_GPL(__clk_get_name); 368 369 const char *clk_hw_get_name(const struct clk_hw *hw) 370 { 371 return hw->core->name; 372 } 373 EXPORT_SYMBOL_GPL(clk_hw_get_name); 374 375 struct device *clk_hw_get_dev(const struct clk_hw *hw) 376 { 377 return hw->core->dev; 378 } 379 EXPORT_SYMBOL_GPL(clk_hw_get_dev); 380 381 struct device_node *clk_hw_get_of_node(const struct clk_hw *hw) 382 { 383 return hw->core->of_node; 384 } 385 EXPORT_SYMBOL_GPL(clk_hw_get_of_node); 386 387 struct clk_hw *__clk_get_hw(struct clk *clk) 388 { 389 return !clk ? NULL : clk->core->hw; 390 } 391 EXPORT_SYMBOL_GPL(__clk_get_hw); 392 393 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 394 { 395 return hw->core->num_parents; 396 } 397 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 398 399 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 400 { 401 return hw->core->parent ? hw->core->parent->hw : NULL; 402 } 403 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 404 405 static struct clk_core *clk_core_lookup(const char *name) 406 { 407 struct clk_core *core; 408 u32 hash; 409 410 if (!name) 411 return NULL; 412 413 hash = full_name_hash(NULL, name, strlen(name)); 414 415 /* search the hashtable */ 416 hash_for_each_possible(clk_hashtable, core, hashtable_node, hash) 417 if (!strcmp(core->name, name)) 418 return core; 419 420 return NULL; 421 } 422 423 #ifdef CONFIG_OF 424 static int of_parse_clkspec(const struct device_node *np, int index, 425 const char *name, struct of_phandle_args *out_args); 426 static struct clk_hw * 427 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 428 #else 429 static inline int of_parse_clkspec(const struct device_node *np, int index, 430 const char *name, 431 struct of_phandle_args *out_args) 432 { 433 return -ENOENT; 434 } 435 static inline struct clk_hw * 436 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 437 { 438 return ERR_PTR(-ENOENT); 439 } 440 #endif 441 442 /** 443 * clk_core_get - Find the clk_core parent of a clk 444 * @core: clk to find parent of 445 * @p_index: parent index to search for 446 * 447 * This is the preferred method for clk providers to find the parent of a 448 * clk when that parent is external to the clk controller. The parent_names 449 * array is indexed and treated as a local name matching a string in the device 450 * node's 'clock-names' property or as the 'con_id' matching the device's 451 * dev_name() in a clk_lookup. This allows clk providers to use their own 452 * namespace instead of looking for a globally unique parent string. 453 * 454 * For example the following DT snippet would allow a clock registered by the 455 * clock-controller@c001 that has a clk_init_data::parent_data array 456 * with 'xtal' in the 'name' member to find the clock provided by the 457 * clock-controller@f00abcd without needing to get the globally unique name of 458 * the xtal clk. 459 * 460 * parent: clock-controller@f00abcd { 461 * reg = <0xf00abcd 0xabcd>; 462 * #clock-cells = <0>; 463 * }; 464 * 465 * clock-controller@c001 { 466 * reg = <0xc001 0xf00d>; 467 * clocks = <&parent>; 468 * clock-names = "xtal"; 469 * #clock-cells = <1>; 470 * }; 471 * 472 * Returns: -ENOENT when the provider can't be found or the clk doesn't 473 * exist in the provider or the name can't be found in the DT node or 474 * in a clkdev lookup. NULL when the provider knows about the clk but it 475 * isn't provided on this system. 476 * A valid clk_core pointer when the clk can be found in the provider. 477 */ 478 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 479 { 480 const char *name = core->parents[p_index].fw_name; 481 int index = core->parents[p_index].index; 482 struct clk_hw *hw = ERR_PTR(-ENOENT); 483 struct device *dev = core->dev; 484 const char *dev_id = dev ? dev_name(dev) : NULL; 485 struct device_node *np = core->of_node; 486 struct of_phandle_args clkspec; 487 488 if (np && (name || index >= 0) && 489 !of_parse_clkspec(np, index, name, &clkspec)) { 490 hw = of_clk_get_hw_from_clkspec(&clkspec); 491 of_node_put(clkspec.np); 492 } else if (name) { 493 /* 494 * If the DT search above couldn't find the provider fallback to 495 * looking up via clkdev based clk_lookups. 496 */ 497 hw = clk_find_hw(dev_id, name); 498 } 499 500 if (IS_ERR(hw)) 501 return ERR_CAST(hw); 502 503 if (!hw) 504 return NULL; 505 506 return hw->core; 507 } 508 509 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 510 { 511 struct clk_parent_map *entry = &core->parents[index]; 512 struct clk_core *parent; 513 514 if (entry->hw) { 515 parent = entry->hw->core; 516 } else { 517 parent = clk_core_get(core, index); 518 if (PTR_ERR(parent) == -ENOENT && entry->name) 519 parent = clk_core_lookup(entry->name); 520 } 521 522 /* 523 * We have a direct reference but it isn't registered yet? 524 * Orphan it and let clk_reparent() update the orphan status 525 * when the parent is registered. 526 */ 527 if (!parent) 528 parent = ERR_PTR(-EPROBE_DEFER); 529 530 /* Only cache it if it's not an error */ 531 if (!IS_ERR(parent)) 532 entry->core = parent; 533 } 534 535 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 536 u8 index) 537 { 538 if (!core || index >= core->num_parents || !core->parents) 539 return NULL; 540 541 if (!core->parents[index].core) 542 clk_core_fill_parent_index(core, index); 543 544 return core->parents[index].core; 545 } 546 547 struct clk_hw * 548 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 549 { 550 struct clk_core *parent; 551 552 parent = clk_core_get_parent_by_index(hw->core, index); 553 554 return !parent ? NULL : parent->hw; 555 } 556 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 557 558 unsigned int __clk_get_enable_count(struct clk *clk) 559 { 560 return !clk ? 0 : clk->core->enable_count; 561 } 562 563 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 564 { 565 if (!core) 566 return 0; 567 568 if (!core->num_parents || core->parent) 569 return core->rate; 570 571 /* 572 * Clk must have a parent because num_parents > 0 but the parent isn't 573 * known yet. Best to return 0 as the rate of this clk until we can 574 * properly recalc the rate based on the parent's rate. 575 */ 576 return 0; 577 } 578 579 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 580 { 581 return clk_core_get_rate_nolock(hw->core); 582 } 583 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 584 585 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 586 { 587 if (!core) 588 return 0; 589 590 return core->accuracy; 591 } 592 593 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 594 { 595 return hw->core->flags; 596 } 597 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 598 599 bool clk_hw_is_prepared(const struct clk_hw *hw) 600 { 601 return clk_core_is_prepared(hw->core); 602 } 603 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 604 605 bool clk_hw_is_enabled(const struct clk_hw *hw) 606 { 607 return clk_core_is_enabled(hw->core); 608 } 609 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 610 611 bool __clk_is_enabled(struct clk *clk) 612 { 613 if (!clk) 614 return false; 615 616 return clk_core_is_enabled(clk->core); 617 } 618 EXPORT_SYMBOL_GPL(__clk_is_enabled); 619 620 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 621 unsigned long best, unsigned long flags) 622 { 623 if (flags & CLK_MUX_ROUND_CLOSEST) 624 return abs(now - rate) < abs(best - rate); 625 626 return now <= rate && now > best; 627 } 628 629 static void clk_core_init_rate_req(struct clk_core * const core, 630 struct clk_rate_request *req, 631 unsigned long rate); 632 633 static int clk_core_round_rate_nolock(struct clk_core *core, 634 struct clk_rate_request *req); 635 636 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent) 637 { 638 struct clk_core *tmp; 639 unsigned int i; 640 641 /* Optimize for the case where the parent is already the parent. */ 642 if (core->parent == parent) 643 return true; 644 645 for (i = 0; i < core->num_parents; i++) { 646 tmp = clk_core_get_parent_by_index(core, i); 647 if (!tmp) 648 continue; 649 650 if (tmp == parent) 651 return true; 652 } 653 654 return false; 655 } 656 657 static void 658 clk_core_forward_rate_req(struct clk_core *core, 659 const struct clk_rate_request *old_req, 660 struct clk_core *parent, 661 struct clk_rate_request *req, 662 unsigned long parent_rate) 663 { 664 if (WARN_ON(!clk_core_has_parent(core, parent))) 665 return; 666 667 clk_core_init_rate_req(parent, req, parent_rate); 668 669 if (req->min_rate < old_req->min_rate) 670 req->min_rate = old_req->min_rate; 671 672 if (req->max_rate > old_req->max_rate) 673 req->max_rate = old_req->max_rate; 674 } 675 676 static int 677 clk_core_determine_rate_no_reparent(struct clk_hw *hw, 678 struct clk_rate_request *req) 679 { 680 struct clk_core *core = hw->core; 681 struct clk_core *parent = core->parent; 682 unsigned long best; 683 int ret; 684 685 if (core->flags & CLK_SET_RATE_PARENT) { 686 struct clk_rate_request parent_req; 687 688 if (!parent) { 689 req->rate = 0; 690 return 0; 691 } 692 693 clk_core_forward_rate_req(core, req, parent, &parent_req, 694 req->rate); 695 696 trace_clk_rate_request_start(&parent_req); 697 698 ret = clk_core_round_rate_nolock(parent, &parent_req); 699 if (ret) 700 return ret; 701 702 trace_clk_rate_request_done(&parent_req); 703 704 best = parent_req.rate; 705 } else if (parent) { 706 best = clk_core_get_rate_nolock(parent); 707 } else { 708 best = clk_core_get_rate_nolock(core); 709 } 710 711 req->best_parent_rate = best; 712 req->rate = best; 713 714 return 0; 715 } 716 717 int clk_mux_determine_rate_flags(struct clk_hw *hw, 718 struct clk_rate_request *req, 719 unsigned long flags) 720 { 721 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 722 int i, num_parents, ret; 723 unsigned long best = 0; 724 725 /* if NO_REPARENT flag set, pass through to current parent */ 726 if (core->flags & CLK_SET_RATE_NO_REPARENT) 727 return clk_core_determine_rate_no_reparent(hw, req); 728 729 /* find the parent that can provide the fastest rate <= rate */ 730 num_parents = core->num_parents; 731 for (i = 0; i < num_parents; i++) { 732 unsigned long parent_rate; 733 734 parent = clk_core_get_parent_by_index(core, i); 735 if (!parent) 736 continue; 737 738 if (core->flags & CLK_SET_RATE_PARENT) { 739 struct clk_rate_request parent_req; 740 741 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate); 742 743 trace_clk_rate_request_start(&parent_req); 744 745 ret = clk_core_round_rate_nolock(parent, &parent_req); 746 if (ret) 747 continue; 748 749 trace_clk_rate_request_done(&parent_req); 750 751 parent_rate = parent_req.rate; 752 } else { 753 parent_rate = clk_core_get_rate_nolock(parent); 754 } 755 756 if (mux_is_better_rate(req->rate, parent_rate, 757 best, flags)) { 758 best_parent = parent; 759 best = parent_rate; 760 } 761 } 762 763 if (!best_parent) 764 return -EINVAL; 765 766 req->best_parent_hw = best_parent->hw; 767 req->best_parent_rate = best; 768 req->rate = best; 769 770 return 0; 771 } 772 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 773 774 struct clk *__clk_lookup(const char *name) 775 { 776 struct clk_core *core = clk_core_lookup(name); 777 778 return !core ? NULL : core->hw->clk; 779 } 780 781 static void clk_core_get_boundaries(struct clk_core *core, 782 unsigned long *min_rate, 783 unsigned long *max_rate) 784 { 785 struct clk *clk_user; 786 787 lockdep_assert_held(&prepare_lock); 788 789 *min_rate = core->min_rate; 790 *max_rate = core->max_rate; 791 792 hlist_for_each_entry(clk_user, &core->clks, clks_node) 793 *min_rate = max(*min_rate, clk_user->min_rate); 794 795 hlist_for_each_entry(clk_user, &core->clks, clks_node) 796 *max_rate = min(*max_rate, clk_user->max_rate); 797 } 798 799 /* 800 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk 801 * @hw: the hw clk we want to get the range from 802 * @min_rate: pointer to the variable that will hold the minimum 803 * @max_rate: pointer to the variable that will hold the maximum 804 * 805 * Fills the @min_rate and @max_rate variables with the minimum and 806 * maximum that clock can reach. 807 */ 808 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate, 809 unsigned long *max_rate) 810 { 811 clk_core_get_boundaries(hw->core, min_rate, max_rate); 812 } 813 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range); 814 815 static bool clk_core_check_boundaries(struct clk_core *core, 816 unsigned long min_rate, 817 unsigned long max_rate) 818 { 819 struct clk *user; 820 821 lockdep_assert_held(&prepare_lock); 822 823 if (min_rate > core->max_rate || max_rate < core->min_rate) 824 return false; 825 826 hlist_for_each_entry(user, &core->clks, clks_node) 827 if (min_rate > user->max_rate || max_rate < user->min_rate) 828 return false; 829 830 return true; 831 } 832 833 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 834 unsigned long max_rate) 835 { 836 hw->core->min_rate = min_rate; 837 hw->core->max_rate = max_rate; 838 } 839 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 840 841 /* 842 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 843 * @hw: mux type clk to determine rate on 844 * @req: rate request, also used to return preferred parent and frequencies 845 * 846 * Helper for finding best parent to provide a given frequency. This can be used 847 * directly as a determine_rate callback (e.g. for a mux), or from a more 848 * complex clock that may combine a mux with other operations. 849 * 850 * Returns: 0 on success, -EERROR value on error 851 */ 852 int __clk_mux_determine_rate(struct clk_hw *hw, 853 struct clk_rate_request *req) 854 { 855 return clk_mux_determine_rate_flags(hw, req, 0); 856 } 857 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 858 859 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 860 struct clk_rate_request *req) 861 { 862 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 863 } 864 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 865 866 /* 867 * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent 868 * @hw: mux type clk to determine rate on 869 * @req: rate request, also used to return preferred frequency 870 * 871 * Helper for finding best parent rate to provide a given frequency. 872 * This can be used directly as a determine_rate callback (e.g. for a 873 * mux), or from a more complex clock that may combine a mux with other 874 * operations. 875 * 876 * Returns: 0 on success, -EERROR value on error 877 */ 878 int clk_hw_determine_rate_no_reparent(struct clk_hw *hw, 879 struct clk_rate_request *req) 880 { 881 return clk_core_determine_rate_no_reparent(hw, req); 882 } 883 EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent); 884 885 /*** clk api ***/ 886 887 static void clk_core_rate_unprotect(struct clk_core *core) 888 { 889 lockdep_assert_held(&prepare_lock); 890 891 if (!core) 892 return; 893 894 if (WARN(core->protect_count == 0, 895 "%s already unprotected\n", core->name)) 896 return; 897 898 if (--core->protect_count > 0) 899 return; 900 901 clk_core_rate_unprotect(core->parent); 902 } 903 904 static int clk_core_rate_nuke_protect(struct clk_core *core) 905 { 906 int ret; 907 908 lockdep_assert_held(&prepare_lock); 909 910 if (!core) 911 return -EINVAL; 912 913 if (core->protect_count == 0) 914 return 0; 915 916 ret = core->protect_count; 917 core->protect_count = 1; 918 clk_core_rate_unprotect(core); 919 920 return ret; 921 } 922 923 /** 924 * clk_rate_exclusive_put - release exclusivity over clock rate control 925 * @clk: the clk over which the exclusivity is released 926 * 927 * clk_rate_exclusive_put() completes a critical section during which a clock 928 * consumer cannot tolerate any other consumer making any operation on the 929 * clock which could result in a rate change or rate glitch. Exclusive clocks 930 * cannot have their rate changed, either directly or indirectly due to changes 931 * further up the parent chain of clocks. As a result, clocks up parent chain 932 * also get under exclusive control of the calling consumer. 933 * 934 * If exlusivity is claimed more than once on clock, even by the same consumer, 935 * the rate effectively gets locked as exclusivity can't be preempted. 936 * 937 * Calls to clk_rate_exclusive_put() must be balanced with calls to 938 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 939 * error status. 940 */ 941 void clk_rate_exclusive_put(struct clk *clk) 942 { 943 if (!clk) 944 return; 945 946 clk_prepare_lock(); 947 948 /* 949 * if there is something wrong with this consumer protect count, stop 950 * here before messing with the provider 951 */ 952 if (WARN_ON(clk->exclusive_count <= 0)) 953 goto out; 954 955 clk_core_rate_unprotect(clk->core); 956 clk->exclusive_count--; 957 out: 958 clk_prepare_unlock(); 959 } 960 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 961 962 static void clk_core_rate_protect(struct clk_core *core) 963 { 964 lockdep_assert_held(&prepare_lock); 965 966 if (!core) 967 return; 968 969 if (core->protect_count == 0) 970 clk_core_rate_protect(core->parent); 971 972 core->protect_count++; 973 } 974 975 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 976 { 977 lockdep_assert_held(&prepare_lock); 978 979 if (!core) 980 return; 981 982 if (count == 0) 983 return; 984 985 clk_core_rate_protect(core); 986 core->protect_count = count; 987 } 988 989 /** 990 * clk_rate_exclusive_get - get exclusivity over the clk rate control 991 * @clk: the clk over which the exclusity of rate control is requested 992 * 993 * clk_rate_exclusive_get() begins a critical section during which a clock 994 * consumer cannot tolerate any other consumer making any operation on the 995 * clock which could result in a rate change or rate glitch. Exclusive clocks 996 * cannot have their rate changed, either directly or indirectly due to changes 997 * further up the parent chain of clocks. As a result, clocks up parent chain 998 * also get under exclusive control of the calling consumer. 999 * 1000 * If exlusivity is claimed more than once on clock, even by the same consumer, 1001 * the rate effectively gets locked as exclusivity can't be preempted. 1002 * 1003 * Calls to clk_rate_exclusive_get() should be balanced with calls to 1004 * clk_rate_exclusive_put(). Calls to this function may sleep. 1005 * Returns 0 on success, -EERROR otherwise 1006 */ 1007 int clk_rate_exclusive_get(struct clk *clk) 1008 { 1009 if (!clk) 1010 return 0; 1011 1012 clk_prepare_lock(); 1013 clk_core_rate_protect(clk->core); 1014 clk->exclusive_count++; 1015 clk_prepare_unlock(); 1016 1017 return 0; 1018 } 1019 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 1020 1021 static void devm_clk_rate_exclusive_put(void *data) 1022 { 1023 struct clk *clk = data; 1024 1025 clk_rate_exclusive_put(clk); 1026 } 1027 1028 int devm_clk_rate_exclusive_get(struct device *dev, struct clk *clk) 1029 { 1030 int ret; 1031 1032 ret = clk_rate_exclusive_get(clk); 1033 if (ret) 1034 return ret; 1035 1036 return devm_add_action_or_reset(dev, devm_clk_rate_exclusive_put, clk); 1037 } 1038 EXPORT_SYMBOL_GPL(devm_clk_rate_exclusive_get); 1039 1040 static void clk_core_unprepare(struct clk_core *core) 1041 { 1042 lockdep_assert_held(&prepare_lock); 1043 1044 if (!core) 1045 return; 1046 1047 if (WARN(core->prepare_count == 0, 1048 "%s already unprepared\n", core->name)) 1049 return; 1050 1051 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 1052 "Unpreparing critical %s\n", core->name)) 1053 return; 1054 1055 if (core->flags & CLK_SET_RATE_GATE) 1056 clk_core_rate_unprotect(core); 1057 1058 if (--core->prepare_count > 0) 1059 return; 1060 1061 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 1062 1063 trace_clk_unprepare(core); 1064 1065 if (core->ops->unprepare) 1066 core->ops->unprepare(core->hw); 1067 1068 trace_clk_unprepare_complete(core); 1069 clk_core_unprepare(core->parent); 1070 clk_pm_runtime_put(core); 1071 } 1072 1073 static void clk_core_unprepare_lock(struct clk_core *core) 1074 { 1075 clk_prepare_lock(); 1076 clk_core_unprepare(core); 1077 clk_prepare_unlock(); 1078 } 1079 1080 /** 1081 * clk_unprepare - undo preparation of a clock source 1082 * @clk: the clk being unprepared 1083 * 1084 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 1085 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 1086 * if the operation may sleep. One example is a clk which is accessed over 1087 * I2c. In the complex case a clk gate operation may require a fast and a slow 1088 * part. It is this reason that clk_unprepare and clk_disable are not mutually 1089 * exclusive. In fact clk_disable must be called before clk_unprepare. 1090 */ 1091 void clk_unprepare(struct clk *clk) 1092 { 1093 if (IS_ERR_OR_NULL(clk)) 1094 return; 1095 1096 clk_core_unprepare_lock(clk->core); 1097 } 1098 EXPORT_SYMBOL_GPL(clk_unprepare); 1099 1100 static int clk_core_prepare(struct clk_core *core) 1101 { 1102 int ret = 0; 1103 1104 lockdep_assert_held(&prepare_lock); 1105 1106 if (!core) 1107 return 0; 1108 1109 if (core->prepare_count == 0) { 1110 ret = clk_pm_runtime_get(core); 1111 if (ret) 1112 return ret; 1113 1114 ret = clk_core_prepare(core->parent); 1115 if (ret) 1116 goto runtime_put; 1117 1118 trace_clk_prepare(core); 1119 1120 if (core->ops->prepare) 1121 ret = core->ops->prepare(core->hw); 1122 1123 trace_clk_prepare_complete(core); 1124 1125 if (ret) 1126 goto unprepare; 1127 } 1128 1129 core->prepare_count++; 1130 1131 /* 1132 * CLK_SET_RATE_GATE is a special case of clock protection 1133 * Instead of a consumer claiming exclusive rate control, it is 1134 * actually the provider which prevents any consumer from making any 1135 * operation which could result in a rate change or rate glitch while 1136 * the clock is prepared. 1137 */ 1138 if (core->flags & CLK_SET_RATE_GATE) 1139 clk_core_rate_protect(core); 1140 1141 return 0; 1142 unprepare: 1143 clk_core_unprepare(core->parent); 1144 runtime_put: 1145 clk_pm_runtime_put(core); 1146 return ret; 1147 } 1148 1149 static int clk_core_prepare_lock(struct clk_core *core) 1150 { 1151 int ret; 1152 1153 clk_prepare_lock(); 1154 ret = clk_core_prepare(core); 1155 clk_prepare_unlock(); 1156 1157 return ret; 1158 } 1159 1160 /** 1161 * clk_prepare - prepare a clock source 1162 * @clk: the clk being prepared 1163 * 1164 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 1165 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 1166 * operation may sleep. One example is a clk which is accessed over I2c. In 1167 * the complex case a clk ungate operation may require a fast and a slow part. 1168 * It is this reason that clk_prepare and clk_enable are not mutually 1169 * exclusive. In fact clk_prepare must be called before clk_enable. 1170 * Returns 0 on success, -EERROR otherwise. 1171 */ 1172 int clk_prepare(struct clk *clk) 1173 { 1174 if (!clk) 1175 return 0; 1176 1177 return clk_core_prepare_lock(clk->core); 1178 } 1179 EXPORT_SYMBOL_GPL(clk_prepare); 1180 1181 static void clk_core_disable(struct clk_core *core) 1182 { 1183 lockdep_assert_held(&enable_lock); 1184 1185 if (!core) 1186 return; 1187 1188 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 1189 return; 1190 1191 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 1192 "Disabling critical %s\n", core->name)) 1193 return; 1194 1195 if (--core->enable_count > 0) 1196 return; 1197 1198 trace_clk_disable(core); 1199 1200 if (core->ops->disable) 1201 core->ops->disable(core->hw); 1202 1203 trace_clk_disable_complete(core); 1204 1205 clk_core_disable(core->parent); 1206 } 1207 1208 static void clk_core_disable_lock(struct clk_core *core) 1209 { 1210 unsigned long flags; 1211 1212 flags = clk_enable_lock(); 1213 clk_core_disable(core); 1214 clk_enable_unlock(flags); 1215 } 1216 1217 /** 1218 * clk_disable - gate a clock 1219 * @clk: the clk being gated 1220 * 1221 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 1222 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 1223 * clk if the operation is fast and will never sleep. One example is a 1224 * SoC-internal clk which is controlled via simple register writes. In the 1225 * complex case a clk gate operation may require a fast and a slow part. It is 1226 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 1227 * In fact clk_disable must be called before clk_unprepare. 1228 */ 1229 void clk_disable(struct clk *clk) 1230 { 1231 if (IS_ERR_OR_NULL(clk)) 1232 return; 1233 1234 clk_core_disable_lock(clk->core); 1235 } 1236 EXPORT_SYMBOL_GPL(clk_disable); 1237 1238 static int clk_core_enable(struct clk_core *core) 1239 { 1240 int ret = 0; 1241 1242 lockdep_assert_held(&enable_lock); 1243 1244 if (!core) 1245 return 0; 1246 1247 if (WARN(core->prepare_count == 0, 1248 "Enabling unprepared %s\n", core->name)) 1249 return -ESHUTDOWN; 1250 1251 if (core->enable_count == 0) { 1252 ret = clk_core_enable(core->parent); 1253 1254 if (ret) 1255 return ret; 1256 1257 trace_clk_enable(core); 1258 1259 if (core->ops->enable) 1260 ret = core->ops->enable(core->hw); 1261 1262 trace_clk_enable_complete(core); 1263 1264 if (ret) { 1265 clk_core_disable(core->parent); 1266 return ret; 1267 } 1268 } 1269 1270 core->enable_count++; 1271 return 0; 1272 } 1273 1274 static int clk_core_enable_lock(struct clk_core *core) 1275 { 1276 unsigned long flags; 1277 int ret; 1278 1279 flags = clk_enable_lock(); 1280 ret = clk_core_enable(core); 1281 clk_enable_unlock(flags); 1282 1283 return ret; 1284 } 1285 1286 /** 1287 * clk_gate_restore_context - restore context for poweroff 1288 * @hw: the clk_hw pointer of clock whose state is to be restored 1289 * 1290 * The clock gate restore context function enables or disables 1291 * the gate clocks based on the enable_count. This is done in cases 1292 * where the clock context is lost and based on the enable_count 1293 * the clock either needs to be enabled/disabled. This 1294 * helps restore the state of gate clocks. 1295 */ 1296 void clk_gate_restore_context(struct clk_hw *hw) 1297 { 1298 struct clk_core *core = hw->core; 1299 1300 if (core->enable_count) 1301 core->ops->enable(hw); 1302 else 1303 core->ops->disable(hw); 1304 } 1305 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1306 1307 static int clk_core_save_context(struct clk_core *core) 1308 { 1309 struct clk_core *child; 1310 int ret = 0; 1311 1312 hlist_for_each_entry(child, &core->children, child_node) { 1313 ret = clk_core_save_context(child); 1314 if (ret < 0) 1315 return ret; 1316 } 1317 1318 if (core->ops && core->ops->save_context) 1319 ret = core->ops->save_context(core->hw); 1320 1321 return ret; 1322 } 1323 1324 static void clk_core_restore_context(struct clk_core *core) 1325 { 1326 struct clk_core *child; 1327 1328 if (core->ops && core->ops->restore_context) 1329 core->ops->restore_context(core->hw); 1330 1331 hlist_for_each_entry(child, &core->children, child_node) 1332 clk_core_restore_context(child); 1333 } 1334 1335 /** 1336 * clk_save_context - save clock context for poweroff 1337 * 1338 * Saves the context of the clock register for powerstates in which the 1339 * contents of the registers will be lost. Occurs deep within the suspend 1340 * code. Returns 0 on success. 1341 */ 1342 int clk_save_context(void) 1343 { 1344 struct clk_core *clk; 1345 int ret; 1346 1347 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1348 ret = clk_core_save_context(clk); 1349 if (ret < 0) 1350 return ret; 1351 } 1352 1353 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1354 ret = clk_core_save_context(clk); 1355 if (ret < 0) 1356 return ret; 1357 } 1358 1359 return 0; 1360 } 1361 EXPORT_SYMBOL_GPL(clk_save_context); 1362 1363 /** 1364 * clk_restore_context - restore clock context after poweroff 1365 * 1366 * Restore the saved clock context upon resume. 1367 * 1368 */ 1369 void clk_restore_context(void) 1370 { 1371 struct clk_core *core; 1372 1373 hlist_for_each_entry(core, &clk_root_list, child_node) 1374 clk_core_restore_context(core); 1375 1376 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1377 clk_core_restore_context(core); 1378 } 1379 EXPORT_SYMBOL_GPL(clk_restore_context); 1380 1381 /** 1382 * clk_enable - ungate a clock 1383 * @clk: the clk being ungated 1384 * 1385 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1386 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1387 * if the operation will never sleep. One example is a SoC-internal clk which 1388 * is controlled via simple register writes. In the complex case a clk ungate 1389 * operation may require a fast and a slow part. It is this reason that 1390 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1391 * must be called before clk_enable. Returns 0 on success, -EERROR 1392 * otherwise. 1393 */ 1394 int clk_enable(struct clk *clk) 1395 { 1396 if (!clk) 1397 return 0; 1398 1399 return clk_core_enable_lock(clk->core); 1400 } 1401 EXPORT_SYMBOL_GPL(clk_enable); 1402 1403 /** 1404 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it. 1405 * @clk: clock source 1406 * 1407 * Returns true if clk_prepare() implicitly enables the clock, effectively 1408 * making clk_enable()/clk_disable() no-ops, false otherwise. 1409 * 1410 * This is of interest mainly to power management code where actually 1411 * disabling the clock also requires unpreparing it to have any material 1412 * effect. 1413 * 1414 * Regardless of the value returned here, the caller must always invoke 1415 * clk_enable() or clk_prepare_enable() and counterparts for usage counts 1416 * to be right. 1417 */ 1418 bool clk_is_enabled_when_prepared(struct clk *clk) 1419 { 1420 return clk && !(clk->core->ops->enable && clk->core->ops->disable); 1421 } 1422 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared); 1423 1424 static int clk_core_prepare_enable(struct clk_core *core) 1425 { 1426 int ret; 1427 1428 ret = clk_core_prepare_lock(core); 1429 if (ret) 1430 return ret; 1431 1432 ret = clk_core_enable_lock(core); 1433 if (ret) 1434 clk_core_unprepare_lock(core); 1435 1436 return ret; 1437 } 1438 1439 static void clk_core_disable_unprepare(struct clk_core *core) 1440 { 1441 clk_core_disable_lock(core); 1442 clk_core_unprepare_lock(core); 1443 } 1444 1445 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1446 { 1447 struct clk_core *child; 1448 1449 lockdep_assert_held(&prepare_lock); 1450 1451 hlist_for_each_entry(child, &core->children, child_node) 1452 clk_unprepare_unused_subtree(child); 1453 1454 if (core->prepare_count) 1455 return; 1456 1457 if (core->flags & CLK_IGNORE_UNUSED) 1458 return; 1459 1460 if (clk_core_is_prepared(core)) { 1461 trace_clk_unprepare(core); 1462 if (core->ops->unprepare_unused) 1463 core->ops->unprepare_unused(core->hw); 1464 else if (core->ops->unprepare) 1465 core->ops->unprepare(core->hw); 1466 trace_clk_unprepare_complete(core); 1467 } 1468 } 1469 1470 static void __init clk_disable_unused_subtree(struct clk_core *core) 1471 { 1472 struct clk_core *child; 1473 unsigned long flags; 1474 1475 lockdep_assert_held(&prepare_lock); 1476 1477 hlist_for_each_entry(child, &core->children, child_node) 1478 clk_disable_unused_subtree(child); 1479 1480 if (core->flags & CLK_OPS_PARENT_ENABLE) 1481 clk_core_prepare_enable(core->parent); 1482 1483 flags = clk_enable_lock(); 1484 1485 if (core->enable_count) 1486 goto unlock_out; 1487 1488 if (core->flags & CLK_IGNORE_UNUSED) 1489 goto unlock_out; 1490 1491 /* 1492 * some gate clocks have special needs during the disable-unused 1493 * sequence. call .disable_unused if available, otherwise fall 1494 * back to .disable 1495 */ 1496 if (clk_core_is_enabled(core)) { 1497 trace_clk_disable(core); 1498 if (core->ops->disable_unused) 1499 core->ops->disable_unused(core->hw); 1500 else if (core->ops->disable) 1501 core->ops->disable(core->hw); 1502 trace_clk_disable_complete(core); 1503 } 1504 1505 unlock_out: 1506 clk_enable_unlock(flags); 1507 if (core->flags & CLK_OPS_PARENT_ENABLE) 1508 clk_core_disable_unprepare(core->parent); 1509 } 1510 1511 static bool clk_ignore_unused __initdata; 1512 static int __init clk_ignore_unused_setup(char *__unused) 1513 { 1514 clk_ignore_unused = true; 1515 return 1; 1516 } 1517 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1518 1519 static int __init clk_disable_unused(void) 1520 { 1521 struct clk_core *core; 1522 int ret; 1523 1524 if (clk_ignore_unused) { 1525 pr_warn("clk: Not disabling unused clocks\n"); 1526 return 0; 1527 } 1528 1529 pr_info("clk: Disabling unused clocks\n"); 1530 1531 ret = clk_pm_runtime_get_all(); 1532 if (ret) 1533 return ret; 1534 /* 1535 * Grab the prepare lock to keep the clk topology stable while iterating 1536 * over clks. 1537 */ 1538 clk_prepare_lock(); 1539 1540 hlist_for_each_entry(core, &clk_root_list, child_node) 1541 clk_disable_unused_subtree(core); 1542 1543 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1544 clk_disable_unused_subtree(core); 1545 1546 hlist_for_each_entry(core, &clk_root_list, child_node) 1547 clk_unprepare_unused_subtree(core); 1548 1549 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1550 clk_unprepare_unused_subtree(core); 1551 1552 clk_prepare_unlock(); 1553 1554 clk_pm_runtime_put_all(); 1555 1556 return 0; 1557 } 1558 late_initcall_sync(clk_disable_unused); 1559 1560 static int clk_core_determine_round_nolock(struct clk_core *core, 1561 struct clk_rate_request *req) 1562 { 1563 long rate; 1564 1565 lockdep_assert_held(&prepare_lock); 1566 1567 if (!core) 1568 return 0; 1569 1570 /* 1571 * Some clock providers hand-craft their clk_rate_requests and 1572 * might not fill min_rate and max_rate. 1573 * 1574 * If it's the case, clamping the rate is equivalent to setting 1575 * the rate to 0 which is bad. Skip the clamping but complain so 1576 * that it gets fixed, hopefully. 1577 */ 1578 if (!req->min_rate && !req->max_rate) 1579 pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n", 1580 __func__, core->name); 1581 else 1582 req->rate = clamp(req->rate, req->min_rate, req->max_rate); 1583 1584 /* 1585 * At this point, core protection will be disabled 1586 * - if the provider is not protected at all 1587 * - if the calling consumer is the only one which has exclusivity 1588 * over the provider 1589 */ 1590 if (clk_core_rate_is_protected(core)) { 1591 req->rate = core->rate; 1592 } else if (core->ops->determine_rate) { 1593 return core->ops->determine_rate(core->hw, req); 1594 } else if (core->ops->round_rate) { 1595 rate = core->ops->round_rate(core->hw, req->rate, 1596 &req->best_parent_rate); 1597 if (rate < 0) 1598 return rate; 1599 1600 req->rate = rate; 1601 } else { 1602 return -EINVAL; 1603 } 1604 1605 return 0; 1606 } 1607 1608 static void clk_core_init_rate_req(struct clk_core * const core, 1609 struct clk_rate_request *req, 1610 unsigned long rate) 1611 { 1612 struct clk_core *parent; 1613 1614 if (WARN_ON(!req)) 1615 return; 1616 1617 memset(req, 0, sizeof(*req)); 1618 req->max_rate = ULONG_MAX; 1619 1620 if (!core) 1621 return; 1622 1623 req->core = core; 1624 req->rate = rate; 1625 clk_core_get_boundaries(core, &req->min_rate, &req->max_rate); 1626 1627 parent = core->parent; 1628 if (parent) { 1629 req->best_parent_hw = parent->hw; 1630 req->best_parent_rate = parent->rate; 1631 } else { 1632 req->best_parent_hw = NULL; 1633 req->best_parent_rate = 0; 1634 } 1635 } 1636 1637 /** 1638 * clk_hw_init_rate_request - Initializes a clk_rate_request 1639 * @hw: the clk for which we want to submit a rate request 1640 * @req: the clk_rate_request structure we want to initialise 1641 * @rate: the rate which is to be requested 1642 * 1643 * Initializes a clk_rate_request structure to submit to 1644 * __clk_determine_rate() or similar functions. 1645 */ 1646 void clk_hw_init_rate_request(const struct clk_hw *hw, 1647 struct clk_rate_request *req, 1648 unsigned long rate) 1649 { 1650 if (WARN_ON(!hw || !req)) 1651 return; 1652 1653 clk_core_init_rate_req(hw->core, req, rate); 1654 } 1655 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request); 1656 1657 /** 1658 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent 1659 * @hw: the original clock that got the rate request 1660 * @old_req: the original clk_rate_request structure we want to forward 1661 * @parent: the clk we want to forward @old_req to 1662 * @req: the clk_rate_request structure we want to initialise 1663 * @parent_rate: The rate which is to be requested to @parent 1664 * 1665 * Initializes a clk_rate_request structure to submit to a clock parent 1666 * in __clk_determine_rate() or similar functions. 1667 */ 1668 void clk_hw_forward_rate_request(const struct clk_hw *hw, 1669 const struct clk_rate_request *old_req, 1670 const struct clk_hw *parent, 1671 struct clk_rate_request *req, 1672 unsigned long parent_rate) 1673 { 1674 if (WARN_ON(!hw || !old_req || !parent || !req)) 1675 return; 1676 1677 clk_core_forward_rate_req(hw->core, old_req, 1678 parent->core, req, 1679 parent_rate); 1680 } 1681 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request); 1682 1683 static bool clk_core_can_round(struct clk_core * const core) 1684 { 1685 return core->ops->determine_rate || core->ops->round_rate; 1686 } 1687 1688 static int clk_core_round_rate_nolock(struct clk_core *core, 1689 struct clk_rate_request *req) 1690 { 1691 int ret; 1692 1693 lockdep_assert_held(&prepare_lock); 1694 1695 if (!core) { 1696 req->rate = 0; 1697 return 0; 1698 } 1699 1700 if (clk_core_can_round(core)) 1701 return clk_core_determine_round_nolock(core, req); 1702 1703 if (core->flags & CLK_SET_RATE_PARENT) { 1704 struct clk_rate_request parent_req; 1705 1706 clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate); 1707 1708 trace_clk_rate_request_start(&parent_req); 1709 1710 ret = clk_core_round_rate_nolock(core->parent, &parent_req); 1711 if (ret) 1712 return ret; 1713 1714 trace_clk_rate_request_done(&parent_req); 1715 1716 req->best_parent_rate = parent_req.rate; 1717 req->rate = parent_req.rate; 1718 1719 return 0; 1720 } 1721 1722 req->rate = core->rate; 1723 return 0; 1724 } 1725 1726 /** 1727 * __clk_determine_rate - get the closest rate actually supported by a clock 1728 * @hw: determine the rate of this clock 1729 * @req: target rate request 1730 * 1731 * Useful for clk_ops such as .set_rate and .determine_rate. 1732 */ 1733 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1734 { 1735 if (!hw) { 1736 req->rate = 0; 1737 return 0; 1738 } 1739 1740 return clk_core_round_rate_nolock(hw->core, req); 1741 } 1742 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1743 1744 /** 1745 * clk_hw_round_rate() - round the given rate for a hw clk 1746 * @hw: the hw clk for which we are rounding a rate 1747 * @rate: the rate which is to be rounded 1748 * 1749 * Takes in a rate as input and rounds it to a rate that the clk can actually 1750 * use. 1751 * 1752 * Context: prepare_lock must be held. 1753 * For clk providers to call from within clk_ops such as .round_rate, 1754 * .determine_rate. 1755 * 1756 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1757 * else returns the parent rate. 1758 */ 1759 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1760 { 1761 int ret; 1762 struct clk_rate_request req; 1763 1764 clk_core_init_rate_req(hw->core, &req, rate); 1765 1766 trace_clk_rate_request_start(&req); 1767 1768 ret = clk_core_round_rate_nolock(hw->core, &req); 1769 if (ret) 1770 return 0; 1771 1772 trace_clk_rate_request_done(&req); 1773 1774 return req.rate; 1775 } 1776 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1777 1778 /** 1779 * clk_round_rate - round the given rate for a clk 1780 * @clk: the clk for which we are rounding a rate 1781 * @rate: the rate which is to be rounded 1782 * 1783 * Takes in a rate as input and rounds it to a rate that the clk can actually 1784 * use which is then returned. If clk doesn't support round_rate operation 1785 * then the parent rate is returned. 1786 */ 1787 long clk_round_rate(struct clk *clk, unsigned long rate) 1788 { 1789 struct clk_rate_request req; 1790 int ret; 1791 1792 if (!clk) 1793 return 0; 1794 1795 clk_prepare_lock(); 1796 1797 if (clk->exclusive_count) 1798 clk_core_rate_unprotect(clk->core); 1799 1800 clk_core_init_rate_req(clk->core, &req, rate); 1801 1802 trace_clk_rate_request_start(&req); 1803 1804 ret = clk_core_round_rate_nolock(clk->core, &req); 1805 1806 trace_clk_rate_request_done(&req); 1807 1808 if (clk->exclusive_count) 1809 clk_core_rate_protect(clk->core); 1810 1811 clk_prepare_unlock(); 1812 1813 if (ret) 1814 return ret; 1815 1816 return req.rate; 1817 } 1818 EXPORT_SYMBOL_GPL(clk_round_rate); 1819 1820 /** 1821 * __clk_notify - call clk notifier chain 1822 * @core: clk that is changing rate 1823 * @msg: clk notifier type (see include/linux/clk.h) 1824 * @old_rate: old clk rate 1825 * @new_rate: new clk rate 1826 * 1827 * Triggers a notifier call chain on the clk rate-change notification 1828 * for 'clk'. Passes a pointer to the struct clk and the previous 1829 * and current rates to the notifier callback. Intended to be called by 1830 * internal clock code only. Returns NOTIFY_DONE from the last driver 1831 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1832 * a driver returns that. 1833 */ 1834 static int __clk_notify(struct clk_core *core, unsigned long msg, 1835 unsigned long old_rate, unsigned long new_rate) 1836 { 1837 struct clk_notifier *cn; 1838 struct clk_notifier_data cnd; 1839 int ret = NOTIFY_DONE; 1840 1841 cnd.old_rate = old_rate; 1842 cnd.new_rate = new_rate; 1843 1844 list_for_each_entry(cn, &clk_notifier_list, node) { 1845 if (cn->clk->core == core) { 1846 cnd.clk = cn->clk; 1847 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1848 &cnd); 1849 if (ret & NOTIFY_STOP_MASK) 1850 return ret; 1851 } 1852 } 1853 1854 return ret; 1855 } 1856 1857 /** 1858 * __clk_recalc_accuracies 1859 * @core: first clk in the subtree 1860 * 1861 * Walks the subtree of clks starting with clk and recalculates accuracies as 1862 * it goes. Note that if a clk does not implement the .recalc_accuracy 1863 * callback then it is assumed that the clock will take on the accuracy of its 1864 * parent. 1865 */ 1866 static void __clk_recalc_accuracies(struct clk_core *core) 1867 { 1868 unsigned long parent_accuracy = 0; 1869 struct clk_core *child; 1870 1871 lockdep_assert_held(&prepare_lock); 1872 1873 if (core->parent) 1874 parent_accuracy = core->parent->accuracy; 1875 1876 if (core->ops->recalc_accuracy) 1877 core->accuracy = core->ops->recalc_accuracy(core->hw, 1878 parent_accuracy); 1879 else 1880 core->accuracy = parent_accuracy; 1881 1882 hlist_for_each_entry(child, &core->children, child_node) 1883 __clk_recalc_accuracies(child); 1884 } 1885 1886 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1887 { 1888 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1889 __clk_recalc_accuracies(core); 1890 1891 return clk_core_get_accuracy_no_lock(core); 1892 } 1893 1894 /** 1895 * clk_get_accuracy - return the accuracy of clk 1896 * @clk: the clk whose accuracy is being returned 1897 * 1898 * Simply returns the cached accuracy of the clk, unless 1899 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1900 * issued. 1901 * If clk is NULL then returns 0. 1902 */ 1903 long clk_get_accuracy(struct clk *clk) 1904 { 1905 long accuracy; 1906 1907 if (!clk) 1908 return 0; 1909 1910 clk_prepare_lock(); 1911 accuracy = clk_core_get_accuracy_recalc(clk->core); 1912 clk_prepare_unlock(); 1913 1914 return accuracy; 1915 } 1916 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1917 1918 static unsigned long clk_recalc(struct clk_core *core, 1919 unsigned long parent_rate) 1920 { 1921 unsigned long rate = parent_rate; 1922 1923 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1924 rate = core->ops->recalc_rate(core->hw, parent_rate); 1925 clk_pm_runtime_put(core); 1926 } 1927 return rate; 1928 } 1929 1930 /** 1931 * __clk_recalc_rates 1932 * @core: first clk in the subtree 1933 * @update_req: Whether req_rate should be updated with the new rate 1934 * @msg: notification type (see include/linux/clk.h) 1935 * 1936 * Walks the subtree of clks starting with clk and recalculates rates as it 1937 * goes. Note that if a clk does not implement the .recalc_rate callback then 1938 * it is assumed that the clock will take on the rate of its parent. 1939 * 1940 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1941 * if necessary. 1942 */ 1943 static void __clk_recalc_rates(struct clk_core *core, bool update_req, 1944 unsigned long msg) 1945 { 1946 unsigned long old_rate; 1947 unsigned long parent_rate = 0; 1948 struct clk_core *child; 1949 1950 lockdep_assert_held(&prepare_lock); 1951 1952 old_rate = core->rate; 1953 1954 if (core->parent) 1955 parent_rate = core->parent->rate; 1956 1957 core->rate = clk_recalc(core, parent_rate); 1958 if (update_req) 1959 core->req_rate = core->rate; 1960 1961 /* 1962 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1963 * & ABORT_RATE_CHANGE notifiers 1964 */ 1965 if (core->notifier_count && msg) 1966 __clk_notify(core, msg, old_rate, core->rate); 1967 1968 hlist_for_each_entry(child, &core->children, child_node) 1969 __clk_recalc_rates(child, update_req, msg); 1970 } 1971 1972 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1973 { 1974 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1975 __clk_recalc_rates(core, false, 0); 1976 1977 return clk_core_get_rate_nolock(core); 1978 } 1979 1980 /** 1981 * clk_get_rate - return the rate of clk 1982 * @clk: the clk whose rate is being returned 1983 * 1984 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1985 * is set, which means a recalc_rate will be issued. Can be called regardless of 1986 * the clock enabledness. If clk is NULL, or if an error occurred, then returns 1987 * 0. 1988 */ 1989 unsigned long clk_get_rate(struct clk *clk) 1990 { 1991 unsigned long rate; 1992 1993 if (!clk) 1994 return 0; 1995 1996 clk_prepare_lock(); 1997 rate = clk_core_get_rate_recalc(clk->core); 1998 clk_prepare_unlock(); 1999 2000 return rate; 2001 } 2002 EXPORT_SYMBOL_GPL(clk_get_rate); 2003 2004 static int clk_fetch_parent_index(struct clk_core *core, 2005 struct clk_core *parent) 2006 { 2007 int i; 2008 2009 if (!parent) 2010 return -EINVAL; 2011 2012 for (i = 0; i < core->num_parents; i++) { 2013 /* Found it first try! */ 2014 if (core->parents[i].core == parent) 2015 return i; 2016 2017 /* Something else is here, so keep looking */ 2018 if (core->parents[i].core) 2019 continue; 2020 2021 /* Maybe core hasn't been cached but the hw is all we know? */ 2022 if (core->parents[i].hw) { 2023 if (core->parents[i].hw == parent->hw) 2024 break; 2025 2026 /* Didn't match, but we're expecting a clk_hw */ 2027 continue; 2028 } 2029 2030 /* Maybe it hasn't been cached (clk_set_parent() path) */ 2031 if (parent == clk_core_get(core, i)) 2032 break; 2033 2034 /* Fallback to comparing globally unique names */ 2035 if (core->parents[i].name && 2036 !strcmp(parent->name, core->parents[i].name)) 2037 break; 2038 } 2039 2040 if (i == core->num_parents) 2041 return -EINVAL; 2042 2043 core->parents[i].core = parent; 2044 return i; 2045 } 2046 2047 /** 2048 * clk_hw_get_parent_index - return the index of the parent clock 2049 * @hw: clk_hw associated with the clk being consumed 2050 * 2051 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 2052 * clock does not have a current parent. 2053 */ 2054 int clk_hw_get_parent_index(struct clk_hw *hw) 2055 { 2056 struct clk_hw *parent = clk_hw_get_parent(hw); 2057 2058 if (WARN_ON(parent == NULL)) 2059 return -EINVAL; 2060 2061 return clk_fetch_parent_index(hw->core, parent->core); 2062 } 2063 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 2064 2065 /* 2066 * Update the orphan status of @core and all its children. 2067 */ 2068 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 2069 { 2070 struct clk_core *child; 2071 2072 core->orphan = is_orphan; 2073 2074 hlist_for_each_entry(child, &core->children, child_node) 2075 clk_core_update_orphan_status(child, is_orphan); 2076 } 2077 2078 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 2079 { 2080 bool was_orphan = core->orphan; 2081 2082 hlist_del(&core->child_node); 2083 2084 if (new_parent) { 2085 bool becomes_orphan = new_parent->orphan; 2086 2087 /* avoid duplicate POST_RATE_CHANGE notifications */ 2088 if (new_parent->new_child == core) 2089 new_parent->new_child = NULL; 2090 2091 hlist_add_head(&core->child_node, &new_parent->children); 2092 2093 if (was_orphan != becomes_orphan) 2094 clk_core_update_orphan_status(core, becomes_orphan); 2095 } else { 2096 hlist_add_head(&core->child_node, &clk_orphan_list); 2097 if (!was_orphan) 2098 clk_core_update_orphan_status(core, true); 2099 } 2100 2101 core->parent = new_parent; 2102 } 2103 2104 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 2105 struct clk_core *parent) 2106 { 2107 unsigned long flags; 2108 struct clk_core *old_parent = core->parent; 2109 2110 /* 2111 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 2112 * 2113 * 2. Migrate prepare state between parents and prevent race with 2114 * clk_enable(). 2115 * 2116 * If the clock is not prepared, then a race with 2117 * clk_enable/disable() is impossible since we already have the 2118 * prepare lock (future calls to clk_enable() need to be preceded by 2119 * a clk_prepare()). 2120 * 2121 * If the clock is prepared, migrate the prepared state to the new 2122 * parent and also protect against a race with clk_enable() by 2123 * forcing the clock and the new parent on. This ensures that all 2124 * future calls to clk_enable() are practically NOPs with respect to 2125 * hardware and software states. 2126 * 2127 * See also: Comment for clk_set_parent() below. 2128 */ 2129 2130 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 2131 if (core->flags & CLK_OPS_PARENT_ENABLE) { 2132 clk_core_prepare_enable(old_parent); 2133 clk_core_prepare_enable(parent); 2134 } 2135 2136 /* migrate prepare count if > 0 */ 2137 if (core->prepare_count) { 2138 clk_core_prepare_enable(parent); 2139 clk_core_enable_lock(core); 2140 } 2141 2142 /* update the clk tree topology */ 2143 flags = clk_enable_lock(); 2144 clk_reparent(core, parent); 2145 clk_enable_unlock(flags); 2146 2147 return old_parent; 2148 } 2149 2150 static void __clk_set_parent_after(struct clk_core *core, 2151 struct clk_core *parent, 2152 struct clk_core *old_parent) 2153 { 2154 /* 2155 * Finish the migration of prepare state and undo the changes done 2156 * for preventing a race with clk_enable(). 2157 */ 2158 if (core->prepare_count) { 2159 clk_core_disable_lock(core); 2160 clk_core_disable_unprepare(old_parent); 2161 } 2162 2163 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 2164 if (core->flags & CLK_OPS_PARENT_ENABLE) { 2165 clk_core_disable_unprepare(parent); 2166 clk_core_disable_unprepare(old_parent); 2167 } 2168 } 2169 2170 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 2171 u8 p_index) 2172 { 2173 unsigned long flags; 2174 int ret = 0; 2175 struct clk_core *old_parent; 2176 2177 old_parent = __clk_set_parent_before(core, parent); 2178 2179 trace_clk_set_parent(core, parent); 2180 2181 /* change clock input source */ 2182 if (parent && core->ops->set_parent) 2183 ret = core->ops->set_parent(core->hw, p_index); 2184 2185 trace_clk_set_parent_complete(core, parent); 2186 2187 if (ret) { 2188 flags = clk_enable_lock(); 2189 clk_reparent(core, old_parent); 2190 clk_enable_unlock(flags); 2191 2192 __clk_set_parent_after(core, old_parent, parent); 2193 2194 return ret; 2195 } 2196 2197 __clk_set_parent_after(core, parent, old_parent); 2198 2199 return 0; 2200 } 2201 2202 /** 2203 * __clk_speculate_rates 2204 * @core: first clk in the subtree 2205 * @parent_rate: the "future" rate of clk's parent 2206 * 2207 * Walks the subtree of clks starting with clk, speculating rates as it 2208 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 2209 * 2210 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 2211 * pre-rate change notifications and returns early if no clks in the 2212 * subtree have subscribed to the notifications. Note that if a clk does not 2213 * implement the .recalc_rate callback then it is assumed that the clock will 2214 * take on the rate of its parent. 2215 */ 2216 static int __clk_speculate_rates(struct clk_core *core, 2217 unsigned long parent_rate) 2218 { 2219 struct clk_core *child; 2220 unsigned long new_rate; 2221 int ret = NOTIFY_DONE; 2222 2223 lockdep_assert_held(&prepare_lock); 2224 2225 new_rate = clk_recalc(core, parent_rate); 2226 2227 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 2228 if (core->notifier_count) 2229 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 2230 2231 if (ret & NOTIFY_STOP_MASK) { 2232 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 2233 __func__, core->name, ret); 2234 goto out; 2235 } 2236 2237 hlist_for_each_entry(child, &core->children, child_node) { 2238 ret = __clk_speculate_rates(child, new_rate); 2239 if (ret & NOTIFY_STOP_MASK) 2240 break; 2241 } 2242 2243 out: 2244 return ret; 2245 } 2246 2247 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 2248 struct clk_core *new_parent, u8 p_index) 2249 { 2250 struct clk_core *child; 2251 2252 core->new_rate = new_rate; 2253 core->new_parent = new_parent; 2254 core->new_parent_index = p_index; 2255 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 2256 core->new_child = NULL; 2257 if (new_parent && new_parent != core->parent) 2258 new_parent->new_child = core; 2259 2260 hlist_for_each_entry(child, &core->children, child_node) { 2261 child->new_rate = clk_recalc(child, new_rate); 2262 clk_calc_subtree(child, child->new_rate, NULL, 0); 2263 } 2264 } 2265 2266 /* 2267 * calculate the new rates returning the topmost clock that has to be 2268 * changed. 2269 */ 2270 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 2271 unsigned long rate) 2272 { 2273 struct clk_core *top = core; 2274 struct clk_core *old_parent, *parent; 2275 unsigned long best_parent_rate = 0; 2276 unsigned long new_rate; 2277 unsigned long min_rate; 2278 unsigned long max_rate; 2279 int p_index = 0; 2280 int ret; 2281 2282 /* sanity */ 2283 if (IS_ERR_OR_NULL(core)) 2284 return NULL; 2285 2286 /* save parent rate, if it exists */ 2287 parent = old_parent = core->parent; 2288 if (parent) 2289 best_parent_rate = parent->rate; 2290 2291 clk_core_get_boundaries(core, &min_rate, &max_rate); 2292 2293 /* find the closest rate and parent clk/rate */ 2294 if (clk_core_can_round(core)) { 2295 struct clk_rate_request req; 2296 2297 clk_core_init_rate_req(core, &req, rate); 2298 2299 trace_clk_rate_request_start(&req); 2300 2301 ret = clk_core_determine_round_nolock(core, &req); 2302 if (ret < 0) 2303 return NULL; 2304 2305 trace_clk_rate_request_done(&req); 2306 2307 best_parent_rate = req.best_parent_rate; 2308 new_rate = req.rate; 2309 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 2310 2311 if (new_rate < min_rate || new_rate > max_rate) 2312 return NULL; 2313 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 2314 /* pass-through clock without adjustable parent */ 2315 core->new_rate = core->rate; 2316 return NULL; 2317 } else { 2318 /* pass-through clock with adjustable parent */ 2319 top = clk_calc_new_rates(parent, rate); 2320 new_rate = parent->new_rate; 2321 goto out; 2322 } 2323 2324 /* some clocks must be gated to change parent */ 2325 if (parent != old_parent && 2326 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 2327 pr_debug("%s: %s not gated but wants to reparent\n", 2328 __func__, core->name); 2329 return NULL; 2330 } 2331 2332 /* try finding the new parent index */ 2333 if (parent && core->num_parents > 1) { 2334 p_index = clk_fetch_parent_index(core, parent); 2335 if (p_index < 0) { 2336 pr_debug("%s: clk %s can not be parent of clk %s\n", 2337 __func__, parent->name, core->name); 2338 return NULL; 2339 } 2340 } 2341 2342 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 2343 best_parent_rate != parent->rate) 2344 top = clk_calc_new_rates(parent, best_parent_rate); 2345 2346 out: 2347 clk_calc_subtree(core, new_rate, parent, p_index); 2348 2349 return top; 2350 } 2351 2352 /* 2353 * Notify about rate changes in a subtree. Always walk down the whole tree 2354 * so that in case of an error we can walk down the whole tree again and 2355 * abort the change. 2356 */ 2357 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2358 unsigned long event) 2359 { 2360 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2361 int ret = NOTIFY_DONE; 2362 2363 if (core->rate == core->new_rate) 2364 return NULL; 2365 2366 if (core->notifier_count) { 2367 ret = __clk_notify(core, event, core->rate, core->new_rate); 2368 if (ret & NOTIFY_STOP_MASK) 2369 fail_clk = core; 2370 } 2371 2372 hlist_for_each_entry(child, &core->children, child_node) { 2373 /* Skip children who will be reparented to another clock */ 2374 if (child->new_parent && child->new_parent != core) 2375 continue; 2376 tmp_clk = clk_propagate_rate_change(child, event); 2377 if (tmp_clk) 2378 fail_clk = tmp_clk; 2379 } 2380 2381 /* handle the new child who might not be in core->children yet */ 2382 if (core->new_child) { 2383 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2384 if (tmp_clk) 2385 fail_clk = tmp_clk; 2386 } 2387 2388 return fail_clk; 2389 } 2390 2391 /* 2392 * walk down a subtree and set the new rates notifying the rate 2393 * change on the way 2394 */ 2395 static void clk_change_rate(struct clk_core *core) 2396 { 2397 struct clk_core *child; 2398 struct hlist_node *tmp; 2399 unsigned long old_rate; 2400 unsigned long best_parent_rate = 0; 2401 bool skip_set_rate = false; 2402 struct clk_core *old_parent; 2403 struct clk_core *parent = NULL; 2404 2405 old_rate = core->rate; 2406 2407 if (core->new_parent) { 2408 parent = core->new_parent; 2409 best_parent_rate = core->new_parent->rate; 2410 } else if (core->parent) { 2411 parent = core->parent; 2412 best_parent_rate = core->parent->rate; 2413 } 2414 2415 if (clk_pm_runtime_get(core)) 2416 return; 2417 2418 if (core->flags & CLK_SET_RATE_UNGATE) { 2419 clk_core_prepare(core); 2420 clk_core_enable_lock(core); 2421 } 2422 2423 if (core->new_parent && core->new_parent != core->parent) { 2424 old_parent = __clk_set_parent_before(core, core->new_parent); 2425 trace_clk_set_parent(core, core->new_parent); 2426 2427 if (core->ops->set_rate_and_parent) { 2428 skip_set_rate = true; 2429 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2430 best_parent_rate, 2431 core->new_parent_index); 2432 } else if (core->ops->set_parent) { 2433 core->ops->set_parent(core->hw, core->new_parent_index); 2434 } 2435 2436 trace_clk_set_parent_complete(core, core->new_parent); 2437 __clk_set_parent_after(core, core->new_parent, old_parent); 2438 } 2439 2440 if (core->flags & CLK_OPS_PARENT_ENABLE) 2441 clk_core_prepare_enable(parent); 2442 2443 trace_clk_set_rate(core, core->new_rate); 2444 2445 if (!skip_set_rate && core->ops->set_rate) 2446 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2447 2448 trace_clk_set_rate_complete(core, core->new_rate); 2449 2450 core->rate = clk_recalc(core, best_parent_rate); 2451 2452 if (core->flags & CLK_SET_RATE_UNGATE) { 2453 clk_core_disable_lock(core); 2454 clk_core_unprepare(core); 2455 } 2456 2457 if (core->flags & CLK_OPS_PARENT_ENABLE) 2458 clk_core_disable_unprepare(parent); 2459 2460 if (core->notifier_count && old_rate != core->rate) 2461 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2462 2463 if (core->flags & CLK_RECALC_NEW_RATES) 2464 (void)clk_calc_new_rates(core, core->new_rate); 2465 2466 /* 2467 * Use safe iteration, as change_rate can actually swap parents 2468 * for certain clock types. 2469 */ 2470 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2471 /* Skip children who will be reparented to another clock */ 2472 if (child->new_parent && child->new_parent != core) 2473 continue; 2474 clk_change_rate(child); 2475 } 2476 2477 /* handle the new child who might not be in core->children yet */ 2478 if (core->new_child) 2479 clk_change_rate(core->new_child); 2480 2481 clk_pm_runtime_put(core); 2482 } 2483 2484 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2485 unsigned long req_rate) 2486 { 2487 int ret, cnt; 2488 struct clk_rate_request req; 2489 2490 lockdep_assert_held(&prepare_lock); 2491 2492 if (!core) 2493 return 0; 2494 2495 /* simulate what the rate would be if it could be freely set */ 2496 cnt = clk_core_rate_nuke_protect(core); 2497 if (cnt < 0) 2498 return cnt; 2499 2500 clk_core_init_rate_req(core, &req, req_rate); 2501 2502 trace_clk_rate_request_start(&req); 2503 2504 ret = clk_core_round_rate_nolock(core, &req); 2505 2506 trace_clk_rate_request_done(&req); 2507 2508 /* restore the protection */ 2509 clk_core_rate_restore_protect(core, cnt); 2510 2511 return ret ? 0 : req.rate; 2512 } 2513 2514 static int clk_core_set_rate_nolock(struct clk_core *core, 2515 unsigned long req_rate) 2516 { 2517 struct clk_core *top, *fail_clk; 2518 unsigned long rate; 2519 int ret; 2520 2521 if (!core) 2522 return 0; 2523 2524 rate = clk_core_req_round_rate_nolock(core, req_rate); 2525 2526 /* bail early if nothing to do */ 2527 if (rate == clk_core_get_rate_nolock(core)) 2528 return 0; 2529 2530 /* fail on a direct rate set of a protected provider */ 2531 if (clk_core_rate_is_protected(core)) 2532 return -EBUSY; 2533 2534 /* calculate new rates and get the topmost changed clock */ 2535 top = clk_calc_new_rates(core, req_rate); 2536 if (!top) 2537 return -EINVAL; 2538 2539 ret = clk_pm_runtime_get(core); 2540 if (ret) 2541 return ret; 2542 2543 /* notify that we are about to change rates */ 2544 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2545 if (fail_clk) { 2546 pr_debug("%s: failed to set %s rate\n", __func__, 2547 fail_clk->name); 2548 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2549 ret = -EBUSY; 2550 goto err; 2551 } 2552 2553 /* change the rates */ 2554 clk_change_rate(top); 2555 2556 core->req_rate = req_rate; 2557 err: 2558 clk_pm_runtime_put(core); 2559 2560 return ret; 2561 } 2562 2563 /** 2564 * clk_set_rate - specify a new rate for clk 2565 * @clk: the clk whose rate is being changed 2566 * @rate: the new rate for clk 2567 * 2568 * In the simplest case clk_set_rate will only adjust the rate of clk. 2569 * 2570 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2571 * propagate up to clk's parent; whether or not this happens depends on the 2572 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2573 * after calling .round_rate then upstream parent propagation is ignored. If 2574 * *parent_rate comes back with a new rate for clk's parent then we propagate 2575 * up to clk's parent and set its rate. Upward propagation will continue 2576 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2577 * .round_rate stops requesting changes to clk's parent_rate. 2578 * 2579 * Rate changes are accomplished via tree traversal that also recalculates the 2580 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2581 * 2582 * Returns 0 on success, -EERROR otherwise. 2583 */ 2584 int clk_set_rate(struct clk *clk, unsigned long rate) 2585 { 2586 int ret; 2587 2588 if (!clk) 2589 return 0; 2590 2591 /* prevent racing with updates to the clock topology */ 2592 clk_prepare_lock(); 2593 2594 if (clk->exclusive_count) 2595 clk_core_rate_unprotect(clk->core); 2596 2597 ret = clk_core_set_rate_nolock(clk->core, rate); 2598 2599 if (clk->exclusive_count) 2600 clk_core_rate_protect(clk->core); 2601 2602 clk_prepare_unlock(); 2603 2604 return ret; 2605 } 2606 EXPORT_SYMBOL_GPL(clk_set_rate); 2607 2608 /** 2609 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2610 * @clk: the clk whose rate is being changed 2611 * @rate: the new rate for clk 2612 * 2613 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2614 * within a critical section 2615 * 2616 * This can be used initially to ensure that at least 1 consumer is 2617 * satisfied when several consumers are competing for exclusivity over the 2618 * same clock provider. 2619 * 2620 * The exclusivity is not applied if setting the rate failed. 2621 * 2622 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2623 * clk_rate_exclusive_put(). 2624 * 2625 * Returns 0 on success, -EERROR otherwise. 2626 */ 2627 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2628 { 2629 int ret; 2630 2631 if (!clk) 2632 return 0; 2633 2634 /* prevent racing with updates to the clock topology */ 2635 clk_prepare_lock(); 2636 2637 /* 2638 * The temporary protection removal is not here, on purpose 2639 * This function is meant to be used instead of clk_rate_protect, 2640 * so before the consumer code path protect the clock provider 2641 */ 2642 2643 ret = clk_core_set_rate_nolock(clk->core, rate); 2644 if (!ret) { 2645 clk_core_rate_protect(clk->core); 2646 clk->exclusive_count++; 2647 } 2648 2649 clk_prepare_unlock(); 2650 2651 return ret; 2652 } 2653 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2654 2655 static int clk_set_rate_range_nolock(struct clk *clk, 2656 unsigned long min, 2657 unsigned long max) 2658 { 2659 int ret = 0; 2660 unsigned long old_min, old_max, rate; 2661 2662 lockdep_assert_held(&prepare_lock); 2663 2664 if (!clk) 2665 return 0; 2666 2667 trace_clk_set_rate_range(clk->core, min, max); 2668 2669 if (min > max) { 2670 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2671 __func__, clk->core->name, clk->dev_id, clk->con_id, 2672 min, max); 2673 return -EINVAL; 2674 } 2675 2676 if (clk->exclusive_count) 2677 clk_core_rate_unprotect(clk->core); 2678 2679 /* Save the current values in case we need to rollback the change */ 2680 old_min = clk->min_rate; 2681 old_max = clk->max_rate; 2682 clk->min_rate = min; 2683 clk->max_rate = max; 2684 2685 if (!clk_core_check_boundaries(clk->core, min, max)) { 2686 ret = -EINVAL; 2687 goto out; 2688 } 2689 2690 rate = clk->core->req_rate; 2691 if (clk->core->flags & CLK_GET_RATE_NOCACHE) 2692 rate = clk_core_get_rate_recalc(clk->core); 2693 2694 /* 2695 * Since the boundaries have been changed, let's give the 2696 * opportunity to the provider to adjust the clock rate based on 2697 * the new boundaries. 2698 * 2699 * We also need to handle the case where the clock is currently 2700 * outside of the boundaries. Clamping the last requested rate 2701 * to the current minimum and maximum will also handle this. 2702 * 2703 * FIXME: 2704 * There is a catch. It may fail for the usual reason (clock 2705 * broken, clock protected, etc) but also because: 2706 * - round_rate() was not favorable and fell on the wrong 2707 * side of the boundary 2708 * - the determine_rate() callback does not really check for 2709 * this corner case when determining the rate 2710 */ 2711 rate = clamp(rate, min, max); 2712 ret = clk_core_set_rate_nolock(clk->core, rate); 2713 if (ret) { 2714 /* rollback the changes */ 2715 clk->min_rate = old_min; 2716 clk->max_rate = old_max; 2717 } 2718 2719 out: 2720 if (clk->exclusive_count) 2721 clk_core_rate_protect(clk->core); 2722 2723 return ret; 2724 } 2725 2726 /** 2727 * clk_set_rate_range - set a rate range for a clock source 2728 * @clk: clock source 2729 * @min: desired minimum clock rate in Hz, inclusive 2730 * @max: desired maximum clock rate in Hz, inclusive 2731 * 2732 * Return: 0 for success or negative errno on failure. 2733 */ 2734 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2735 { 2736 int ret; 2737 2738 if (!clk) 2739 return 0; 2740 2741 clk_prepare_lock(); 2742 2743 ret = clk_set_rate_range_nolock(clk, min, max); 2744 2745 clk_prepare_unlock(); 2746 2747 return ret; 2748 } 2749 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2750 2751 /** 2752 * clk_set_min_rate - set a minimum clock rate for a clock source 2753 * @clk: clock source 2754 * @rate: desired minimum clock rate in Hz, inclusive 2755 * 2756 * Returns success (0) or negative errno. 2757 */ 2758 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2759 { 2760 if (!clk) 2761 return 0; 2762 2763 trace_clk_set_min_rate(clk->core, rate); 2764 2765 return clk_set_rate_range(clk, rate, clk->max_rate); 2766 } 2767 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2768 2769 /** 2770 * clk_set_max_rate - set a maximum clock rate for a clock source 2771 * @clk: clock source 2772 * @rate: desired maximum clock rate in Hz, inclusive 2773 * 2774 * Returns success (0) or negative errno. 2775 */ 2776 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2777 { 2778 if (!clk) 2779 return 0; 2780 2781 trace_clk_set_max_rate(clk->core, rate); 2782 2783 return clk_set_rate_range(clk, clk->min_rate, rate); 2784 } 2785 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2786 2787 /** 2788 * clk_get_parent - return the parent of a clk 2789 * @clk: the clk whose parent gets returned 2790 * 2791 * Simply returns clk->parent. Returns NULL if clk is NULL. 2792 */ 2793 struct clk *clk_get_parent(struct clk *clk) 2794 { 2795 struct clk *parent; 2796 2797 if (!clk) 2798 return NULL; 2799 2800 clk_prepare_lock(); 2801 /* TODO: Create a per-user clk and change callers to call clk_put */ 2802 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2803 clk_prepare_unlock(); 2804 2805 return parent; 2806 } 2807 EXPORT_SYMBOL_GPL(clk_get_parent); 2808 2809 static struct clk_core *__clk_init_parent(struct clk_core *core) 2810 { 2811 u8 index = 0; 2812 2813 if (core->num_parents > 1 && core->ops->get_parent) 2814 index = core->ops->get_parent(core->hw); 2815 2816 return clk_core_get_parent_by_index(core, index); 2817 } 2818 2819 static void clk_core_reparent(struct clk_core *core, 2820 struct clk_core *new_parent) 2821 { 2822 clk_reparent(core, new_parent); 2823 __clk_recalc_accuracies(core); 2824 __clk_recalc_rates(core, true, POST_RATE_CHANGE); 2825 } 2826 2827 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2828 { 2829 if (!hw) 2830 return; 2831 2832 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2833 } 2834 2835 /** 2836 * clk_has_parent - check if a clock is a possible parent for another 2837 * @clk: clock source 2838 * @parent: parent clock source 2839 * 2840 * This function can be used in drivers that need to check that a clock can be 2841 * the parent of another without actually changing the parent. 2842 * 2843 * Returns true if @parent is a possible parent for @clk, false otherwise. 2844 */ 2845 bool clk_has_parent(const struct clk *clk, const struct clk *parent) 2846 { 2847 /* NULL clocks should be nops, so return success if either is NULL. */ 2848 if (!clk || !parent) 2849 return true; 2850 2851 return clk_core_has_parent(clk->core, parent->core); 2852 } 2853 EXPORT_SYMBOL_GPL(clk_has_parent); 2854 2855 static int clk_core_set_parent_nolock(struct clk_core *core, 2856 struct clk_core *parent) 2857 { 2858 int ret = 0; 2859 int p_index = 0; 2860 unsigned long p_rate = 0; 2861 2862 lockdep_assert_held(&prepare_lock); 2863 2864 if (!core) 2865 return 0; 2866 2867 if (core->parent == parent) 2868 return 0; 2869 2870 /* verify ops for multi-parent clks */ 2871 if (core->num_parents > 1 && !core->ops->set_parent) 2872 return -EPERM; 2873 2874 /* check that we are allowed to re-parent if the clock is in use */ 2875 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2876 return -EBUSY; 2877 2878 if (clk_core_rate_is_protected(core)) 2879 return -EBUSY; 2880 2881 /* try finding the new parent index */ 2882 if (parent) { 2883 p_index = clk_fetch_parent_index(core, parent); 2884 if (p_index < 0) { 2885 pr_debug("%s: clk %s can not be parent of clk %s\n", 2886 __func__, parent->name, core->name); 2887 return p_index; 2888 } 2889 p_rate = parent->rate; 2890 } 2891 2892 ret = clk_pm_runtime_get(core); 2893 if (ret) 2894 return ret; 2895 2896 /* propagate PRE_RATE_CHANGE notifications */ 2897 ret = __clk_speculate_rates(core, p_rate); 2898 2899 /* abort if a driver objects */ 2900 if (ret & NOTIFY_STOP_MASK) 2901 goto runtime_put; 2902 2903 /* do the re-parent */ 2904 ret = __clk_set_parent(core, parent, p_index); 2905 2906 /* propagate rate an accuracy recalculation accordingly */ 2907 if (ret) { 2908 __clk_recalc_rates(core, true, ABORT_RATE_CHANGE); 2909 } else { 2910 __clk_recalc_rates(core, true, POST_RATE_CHANGE); 2911 __clk_recalc_accuracies(core); 2912 } 2913 2914 runtime_put: 2915 clk_pm_runtime_put(core); 2916 2917 return ret; 2918 } 2919 2920 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2921 { 2922 return clk_core_set_parent_nolock(hw->core, parent->core); 2923 } 2924 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2925 2926 /** 2927 * clk_set_parent - switch the parent of a mux clk 2928 * @clk: the mux clk whose input we are switching 2929 * @parent: the new input to clk 2930 * 2931 * Re-parent clk to use parent as its new input source. If clk is in 2932 * prepared state, the clk will get enabled for the duration of this call. If 2933 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2934 * that, the reparenting is glitchy in hardware, etc), use the 2935 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2936 * 2937 * After successfully changing clk's parent clk_set_parent will update the 2938 * clk topology, sysfs topology and propagate rate recalculation via 2939 * __clk_recalc_rates. 2940 * 2941 * Returns 0 on success, -EERROR otherwise. 2942 */ 2943 int clk_set_parent(struct clk *clk, struct clk *parent) 2944 { 2945 int ret; 2946 2947 if (!clk) 2948 return 0; 2949 2950 clk_prepare_lock(); 2951 2952 if (clk->exclusive_count) 2953 clk_core_rate_unprotect(clk->core); 2954 2955 ret = clk_core_set_parent_nolock(clk->core, 2956 parent ? parent->core : NULL); 2957 2958 if (clk->exclusive_count) 2959 clk_core_rate_protect(clk->core); 2960 2961 clk_prepare_unlock(); 2962 2963 return ret; 2964 } 2965 EXPORT_SYMBOL_GPL(clk_set_parent); 2966 2967 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2968 { 2969 int ret = -EINVAL; 2970 2971 lockdep_assert_held(&prepare_lock); 2972 2973 if (!core) 2974 return 0; 2975 2976 if (clk_core_rate_is_protected(core)) 2977 return -EBUSY; 2978 2979 trace_clk_set_phase(core, degrees); 2980 2981 if (core->ops->set_phase) { 2982 ret = core->ops->set_phase(core->hw, degrees); 2983 if (!ret) 2984 core->phase = degrees; 2985 } 2986 2987 trace_clk_set_phase_complete(core, degrees); 2988 2989 return ret; 2990 } 2991 2992 /** 2993 * clk_set_phase - adjust the phase shift of a clock signal 2994 * @clk: clock signal source 2995 * @degrees: number of degrees the signal is shifted 2996 * 2997 * Shifts the phase of a clock signal by the specified 2998 * degrees. Returns 0 on success, -EERROR otherwise. 2999 * 3000 * This function makes no distinction about the input or reference 3001 * signal that we adjust the clock signal phase against. For example 3002 * phase locked-loop clock signal generators we may shift phase with 3003 * respect to feedback clock signal input, but for other cases the 3004 * clock phase may be shifted with respect to some other, unspecified 3005 * signal. 3006 * 3007 * Additionally the concept of phase shift does not propagate through 3008 * the clock tree hierarchy, which sets it apart from clock rates and 3009 * clock accuracy. A parent clock phase attribute does not have an 3010 * impact on the phase attribute of a child clock. 3011 */ 3012 int clk_set_phase(struct clk *clk, int degrees) 3013 { 3014 int ret; 3015 3016 if (!clk) 3017 return 0; 3018 3019 /* sanity check degrees */ 3020 degrees %= 360; 3021 if (degrees < 0) 3022 degrees += 360; 3023 3024 clk_prepare_lock(); 3025 3026 if (clk->exclusive_count) 3027 clk_core_rate_unprotect(clk->core); 3028 3029 ret = clk_core_set_phase_nolock(clk->core, degrees); 3030 3031 if (clk->exclusive_count) 3032 clk_core_rate_protect(clk->core); 3033 3034 clk_prepare_unlock(); 3035 3036 return ret; 3037 } 3038 EXPORT_SYMBOL_GPL(clk_set_phase); 3039 3040 static int clk_core_get_phase(struct clk_core *core) 3041 { 3042 int ret; 3043 3044 lockdep_assert_held(&prepare_lock); 3045 if (!core->ops->get_phase) 3046 return 0; 3047 3048 /* Always try to update cached phase if possible */ 3049 ret = core->ops->get_phase(core->hw); 3050 if (ret >= 0) 3051 core->phase = ret; 3052 3053 return ret; 3054 } 3055 3056 /** 3057 * clk_get_phase - return the phase shift of a clock signal 3058 * @clk: clock signal source 3059 * 3060 * Returns the phase shift of a clock node in degrees, otherwise returns 3061 * -EERROR. 3062 */ 3063 int clk_get_phase(struct clk *clk) 3064 { 3065 int ret; 3066 3067 if (!clk) 3068 return 0; 3069 3070 clk_prepare_lock(); 3071 ret = clk_core_get_phase(clk->core); 3072 clk_prepare_unlock(); 3073 3074 return ret; 3075 } 3076 EXPORT_SYMBOL_GPL(clk_get_phase); 3077 3078 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 3079 { 3080 /* Assume a default value of 50% */ 3081 core->duty.num = 1; 3082 core->duty.den = 2; 3083 } 3084 3085 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 3086 3087 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 3088 { 3089 struct clk_duty *duty = &core->duty; 3090 int ret = 0; 3091 3092 if (!core->ops->get_duty_cycle) 3093 return clk_core_update_duty_cycle_parent_nolock(core); 3094 3095 ret = core->ops->get_duty_cycle(core->hw, duty); 3096 if (ret) 3097 goto reset; 3098 3099 /* Don't trust the clock provider too much */ 3100 if (duty->den == 0 || duty->num > duty->den) { 3101 ret = -EINVAL; 3102 goto reset; 3103 } 3104 3105 return 0; 3106 3107 reset: 3108 clk_core_reset_duty_cycle_nolock(core); 3109 return ret; 3110 } 3111 3112 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 3113 { 3114 int ret = 0; 3115 3116 if (core->parent && 3117 core->flags & CLK_DUTY_CYCLE_PARENT) { 3118 ret = clk_core_update_duty_cycle_nolock(core->parent); 3119 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 3120 } else { 3121 clk_core_reset_duty_cycle_nolock(core); 3122 } 3123 3124 return ret; 3125 } 3126 3127 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 3128 struct clk_duty *duty); 3129 3130 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 3131 struct clk_duty *duty) 3132 { 3133 int ret; 3134 3135 lockdep_assert_held(&prepare_lock); 3136 3137 if (clk_core_rate_is_protected(core)) 3138 return -EBUSY; 3139 3140 trace_clk_set_duty_cycle(core, duty); 3141 3142 if (!core->ops->set_duty_cycle) 3143 return clk_core_set_duty_cycle_parent_nolock(core, duty); 3144 3145 ret = core->ops->set_duty_cycle(core->hw, duty); 3146 if (!ret) 3147 memcpy(&core->duty, duty, sizeof(*duty)); 3148 3149 trace_clk_set_duty_cycle_complete(core, duty); 3150 3151 return ret; 3152 } 3153 3154 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 3155 struct clk_duty *duty) 3156 { 3157 int ret = 0; 3158 3159 if (core->parent && 3160 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 3161 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 3162 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 3163 } 3164 3165 return ret; 3166 } 3167 3168 /** 3169 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 3170 * @clk: clock signal source 3171 * @num: numerator of the duty cycle ratio to be applied 3172 * @den: denominator of the duty cycle ratio to be applied 3173 * 3174 * Apply the duty cycle ratio if the ratio is valid and the clock can 3175 * perform this operation 3176 * 3177 * Returns (0) on success, a negative errno otherwise. 3178 */ 3179 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 3180 { 3181 int ret; 3182 struct clk_duty duty; 3183 3184 if (!clk) 3185 return 0; 3186 3187 /* sanity check the ratio */ 3188 if (den == 0 || num > den) 3189 return -EINVAL; 3190 3191 duty.num = num; 3192 duty.den = den; 3193 3194 clk_prepare_lock(); 3195 3196 if (clk->exclusive_count) 3197 clk_core_rate_unprotect(clk->core); 3198 3199 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 3200 3201 if (clk->exclusive_count) 3202 clk_core_rate_protect(clk->core); 3203 3204 clk_prepare_unlock(); 3205 3206 return ret; 3207 } 3208 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 3209 3210 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 3211 unsigned int scale) 3212 { 3213 struct clk_duty *duty = &core->duty; 3214 int ret; 3215 3216 clk_prepare_lock(); 3217 3218 ret = clk_core_update_duty_cycle_nolock(core); 3219 if (!ret) 3220 ret = mult_frac(scale, duty->num, duty->den); 3221 3222 clk_prepare_unlock(); 3223 3224 return ret; 3225 } 3226 3227 /** 3228 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 3229 * @clk: clock signal source 3230 * @scale: scaling factor to be applied to represent the ratio as an integer 3231 * 3232 * Returns the duty cycle ratio of a clock node multiplied by the provided 3233 * scaling factor, or negative errno on error. 3234 */ 3235 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 3236 { 3237 if (!clk) 3238 return 0; 3239 3240 return clk_core_get_scaled_duty_cycle(clk->core, scale); 3241 } 3242 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 3243 3244 /** 3245 * clk_is_match - check if two clk's point to the same hardware clock 3246 * @p: clk compared against q 3247 * @q: clk compared against p 3248 * 3249 * Returns true if the two struct clk pointers both point to the same hardware 3250 * clock node. Put differently, returns true if struct clk *p and struct clk *q 3251 * share the same struct clk_core object. 3252 * 3253 * Returns false otherwise. Note that two NULL clks are treated as matching. 3254 */ 3255 bool clk_is_match(const struct clk *p, const struct clk *q) 3256 { 3257 /* trivial case: identical struct clk's or both NULL */ 3258 if (p == q) 3259 return true; 3260 3261 /* true if clk->core pointers match. Avoid dereferencing garbage */ 3262 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 3263 if (p->core == q->core) 3264 return true; 3265 3266 return false; 3267 } 3268 EXPORT_SYMBOL_GPL(clk_is_match); 3269 3270 /*** debugfs support ***/ 3271 3272 #ifdef CONFIG_DEBUG_FS 3273 #include <linux/debugfs.h> 3274 3275 static struct dentry *rootdir; 3276 static int inited = 0; 3277 static DEFINE_MUTEX(clk_debug_lock); 3278 static HLIST_HEAD(clk_debug_list); 3279 3280 static struct hlist_head *orphan_list[] = { 3281 &clk_orphan_list, 3282 NULL, 3283 }; 3284 3285 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 3286 int level) 3287 { 3288 int phase; 3289 struct clk *clk_user; 3290 int multi_node = 0; 3291 3292 seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ", 3293 level * 3 + 1, "", 3294 35 - level * 3, c->name, 3295 c->enable_count, c->prepare_count, c->protect_count, 3296 clk_core_get_rate_recalc(c), 3297 clk_core_get_accuracy_recalc(c)); 3298 3299 phase = clk_core_get_phase(c); 3300 if (phase >= 0) 3301 seq_printf(s, "%-5d", phase); 3302 else 3303 seq_puts(s, "-----"); 3304 3305 seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000)); 3306 3307 if (c->ops->is_enabled) 3308 seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N'); 3309 else if (!c->ops->enable) 3310 seq_printf(s, " %5c ", 'Y'); 3311 else 3312 seq_printf(s, " %5c ", '?'); 3313 3314 hlist_for_each_entry(clk_user, &c->clks, clks_node) { 3315 seq_printf(s, "%*s%-*s %-25s\n", 3316 level * 3 + 2 + 105 * multi_node, "", 3317 30, 3318 clk_user->dev_id ? clk_user->dev_id : "deviceless", 3319 clk_user->con_id ? clk_user->con_id : "no_connection_id"); 3320 3321 multi_node = 1; 3322 } 3323 3324 } 3325 3326 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 3327 int level) 3328 { 3329 struct clk_core *child; 3330 3331 clk_summary_show_one(s, c, level); 3332 3333 hlist_for_each_entry(child, &c->children, child_node) 3334 clk_summary_show_subtree(s, child, level + 1); 3335 } 3336 3337 static int clk_summary_show(struct seq_file *s, void *data) 3338 { 3339 struct clk_core *c; 3340 struct hlist_head **lists = s->private; 3341 int ret; 3342 3343 seq_puts(s, " enable prepare protect duty hardware connection\n"); 3344 seq_puts(s, " clock count count count rate accuracy phase cycle enable consumer id\n"); 3345 seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n"); 3346 3347 ret = clk_pm_runtime_get_all(); 3348 if (ret) 3349 return ret; 3350 3351 clk_prepare_lock(); 3352 3353 for (; *lists; lists++) 3354 hlist_for_each_entry(c, *lists, child_node) 3355 clk_summary_show_subtree(s, c, 0); 3356 3357 clk_prepare_unlock(); 3358 clk_pm_runtime_put_all(); 3359 3360 return 0; 3361 } 3362 DEFINE_SHOW_ATTRIBUTE(clk_summary); 3363 3364 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 3365 { 3366 int phase; 3367 unsigned long min_rate, max_rate; 3368 3369 clk_core_get_boundaries(c, &min_rate, &max_rate); 3370 3371 /* This should be JSON format, i.e. elements separated with a comma */ 3372 seq_printf(s, "\"%s\": { ", c->name); 3373 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 3374 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 3375 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 3376 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 3377 seq_printf(s, "\"min_rate\": %lu,", min_rate); 3378 seq_printf(s, "\"max_rate\": %lu,", max_rate); 3379 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 3380 phase = clk_core_get_phase(c); 3381 if (phase >= 0) 3382 seq_printf(s, "\"phase\": %d,", phase); 3383 seq_printf(s, "\"duty_cycle\": %u", 3384 clk_core_get_scaled_duty_cycle(c, 100000)); 3385 } 3386 3387 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3388 { 3389 struct clk_core *child; 3390 3391 clk_dump_one(s, c, level); 3392 3393 hlist_for_each_entry(child, &c->children, child_node) { 3394 seq_putc(s, ','); 3395 clk_dump_subtree(s, child, level + 1); 3396 } 3397 3398 seq_putc(s, '}'); 3399 } 3400 3401 static int clk_dump_show(struct seq_file *s, void *data) 3402 { 3403 struct clk_core *c; 3404 bool first_node = true; 3405 struct hlist_head **lists = s->private; 3406 int ret; 3407 3408 ret = clk_pm_runtime_get_all(); 3409 if (ret) 3410 return ret; 3411 3412 seq_putc(s, '{'); 3413 3414 clk_prepare_lock(); 3415 3416 for (; *lists; lists++) { 3417 hlist_for_each_entry(c, *lists, child_node) { 3418 if (!first_node) 3419 seq_putc(s, ','); 3420 first_node = false; 3421 clk_dump_subtree(s, c, 0); 3422 } 3423 } 3424 3425 clk_prepare_unlock(); 3426 clk_pm_runtime_put_all(); 3427 3428 seq_puts(s, "}\n"); 3429 return 0; 3430 } 3431 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3432 3433 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3434 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3435 /* 3436 * This can be dangerous, therefore don't provide any real compile time 3437 * configuration option for this feature. 3438 * People who want to use this will need to modify the source code directly. 3439 */ 3440 static int clk_rate_set(void *data, u64 val) 3441 { 3442 struct clk_core *core = data; 3443 int ret; 3444 3445 clk_prepare_lock(); 3446 ret = clk_core_set_rate_nolock(core, val); 3447 clk_prepare_unlock(); 3448 3449 return ret; 3450 } 3451 3452 #define clk_rate_mode 0644 3453 3454 static int clk_phase_set(void *data, u64 val) 3455 { 3456 struct clk_core *core = data; 3457 int degrees = do_div(val, 360); 3458 int ret; 3459 3460 clk_prepare_lock(); 3461 ret = clk_core_set_phase_nolock(core, degrees); 3462 clk_prepare_unlock(); 3463 3464 return ret; 3465 } 3466 3467 #define clk_phase_mode 0644 3468 3469 static int clk_prepare_enable_set(void *data, u64 val) 3470 { 3471 struct clk_core *core = data; 3472 int ret = 0; 3473 3474 if (val) 3475 ret = clk_prepare_enable(core->hw->clk); 3476 else 3477 clk_disable_unprepare(core->hw->clk); 3478 3479 return ret; 3480 } 3481 3482 static int clk_prepare_enable_get(void *data, u64 *val) 3483 { 3484 struct clk_core *core = data; 3485 3486 *val = core->enable_count && core->prepare_count; 3487 return 0; 3488 } 3489 3490 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3491 clk_prepare_enable_set, "%llu\n"); 3492 3493 #else 3494 #define clk_rate_set NULL 3495 #define clk_rate_mode 0444 3496 3497 #define clk_phase_set NULL 3498 #define clk_phase_mode 0644 3499 #endif 3500 3501 static int clk_rate_get(void *data, u64 *val) 3502 { 3503 struct clk_core *core = data; 3504 3505 clk_prepare_lock(); 3506 *val = clk_core_get_rate_recalc(core); 3507 clk_prepare_unlock(); 3508 3509 return 0; 3510 } 3511 3512 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3513 3514 static int clk_phase_get(void *data, u64 *val) 3515 { 3516 struct clk_core *core = data; 3517 3518 *val = core->phase; 3519 return 0; 3520 } 3521 3522 DEFINE_DEBUGFS_ATTRIBUTE(clk_phase_fops, clk_phase_get, clk_phase_set, "%llu\n"); 3523 3524 static const struct { 3525 unsigned long flag; 3526 const char *name; 3527 } clk_flags[] = { 3528 #define ENTRY(f) { f, #f } 3529 ENTRY(CLK_SET_RATE_GATE), 3530 ENTRY(CLK_SET_PARENT_GATE), 3531 ENTRY(CLK_SET_RATE_PARENT), 3532 ENTRY(CLK_IGNORE_UNUSED), 3533 ENTRY(CLK_GET_RATE_NOCACHE), 3534 ENTRY(CLK_SET_RATE_NO_REPARENT), 3535 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3536 ENTRY(CLK_RECALC_NEW_RATES), 3537 ENTRY(CLK_SET_RATE_UNGATE), 3538 ENTRY(CLK_IS_CRITICAL), 3539 ENTRY(CLK_OPS_PARENT_ENABLE), 3540 ENTRY(CLK_DUTY_CYCLE_PARENT), 3541 #undef ENTRY 3542 }; 3543 3544 static int clk_flags_show(struct seq_file *s, void *data) 3545 { 3546 struct clk_core *core = s->private; 3547 unsigned long flags = core->flags; 3548 unsigned int i; 3549 3550 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3551 if (flags & clk_flags[i].flag) { 3552 seq_printf(s, "%s\n", clk_flags[i].name); 3553 flags &= ~clk_flags[i].flag; 3554 } 3555 } 3556 if (flags) { 3557 /* Unknown flags */ 3558 seq_printf(s, "0x%lx\n", flags); 3559 } 3560 3561 return 0; 3562 } 3563 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3564 3565 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3566 unsigned int i, char terminator) 3567 { 3568 struct clk_core *parent; 3569 const char *name = NULL; 3570 3571 /* 3572 * Go through the following options to fetch a parent's name. 3573 * 3574 * 1. Fetch the registered parent clock and use its name 3575 * 2. Use the global (fallback) name if specified 3576 * 3. Use the local fw_name if provided 3577 * 4. Fetch parent clock's clock-output-name if DT index was set 3578 * 3579 * This may still fail in some cases, such as when the parent is 3580 * specified directly via a struct clk_hw pointer, but it isn't 3581 * registered (yet). 3582 */ 3583 parent = clk_core_get_parent_by_index(core, i); 3584 if (parent) { 3585 seq_puts(s, parent->name); 3586 } else if (core->parents[i].name) { 3587 seq_puts(s, core->parents[i].name); 3588 } else if (core->parents[i].fw_name) { 3589 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3590 } else { 3591 if (core->parents[i].index >= 0) 3592 name = of_clk_get_parent_name(core->of_node, core->parents[i].index); 3593 if (!name) 3594 name = "(missing)"; 3595 3596 seq_puts(s, name); 3597 } 3598 3599 seq_putc(s, terminator); 3600 } 3601 3602 static int possible_parents_show(struct seq_file *s, void *data) 3603 { 3604 struct clk_core *core = s->private; 3605 int i; 3606 3607 for (i = 0; i < core->num_parents - 1; i++) 3608 possible_parent_show(s, core, i, ' '); 3609 3610 possible_parent_show(s, core, i, '\n'); 3611 3612 return 0; 3613 } 3614 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3615 3616 static int current_parent_show(struct seq_file *s, void *data) 3617 { 3618 struct clk_core *core = s->private; 3619 3620 if (core->parent) 3621 seq_printf(s, "%s\n", core->parent->name); 3622 3623 return 0; 3624 } 3625 DEFINE_SHOW_ATTRIBUTE(current_parent); 3626 3627 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3628 static ssize_t current_parent_write(struct file *file, const char __user *ubuf, 3629 size_t count, loff_t *ppos) 3630 { 3631 struct seq_file *s = file->private_data; 3632 struct clk_core *core = s->private; 3633 struct clk_core *parent; 3634 u8 idx; 3635 int err; 3636 3637 err = kstrtou8_from_user(ubuf, count, 0, &idx); 3638 if (err < 0) 3639 return err; 3640 3641 parent = clk_core_get_parent_by_index(core, idx); 3642 if (!parent) 3643 return -ENOENT; 3644 3645 clk_prepare_lock(); 3646 err = clk_core_set_parent_nolock(core, parent); 3647 clk_prepare_unlock(); 3648 if (err) 3649 return err; 3650 3651 return count; 3652 } 3653 3654 static const struct file_operations current_parent_rw_fops = { 3655 .open = current_parent_open, 3656 .write = current_parent_write, 3657 .read = seq_read, 3658 .llseek = seq_lseek, 3659 .release = single_release, 3660 }; 3661 #endif 3662 3663 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3664 { 3665 struct clk_core *core = s->private; 3666 struct clk_duty *duty = &core->duty; 3667 3668 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3669 3670 return 0; 3671 } 3672 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3673 3674 static int clk_min_rate_show(struct seq_file *s, void *data) 3675 { 3676 struct clk_core *core = s->private; 3677 unsigned long min_rate, max_rate; 3678 3679 clk_prepare_lock(); 3680 clk_core_get_boundaries(core, &min_rate, &max_rate); 3681 clk_prepare_unlock(); 3682 seq_printf(s, "%lu\n", min_rate); 3683 3684 return 0; 3685 } 3686 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3687 3688 static int clk_max_rate_show(struct seq_file *s, void *data) 3689 { 3690 struct clk_core *core = s->private; 3691 unsigned long min_rate, max_rate; 3692 3693 clk_prepare_lock(); 3694 clk_core_get_boundaries(core, &min_rate, &max_rate); 3695 clk_prepare_unlock(); 3696 seq_printf(s, "%lu\n", max_rate); 3697 3698 return 0; 3699 } 3700 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3701 3702 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3703 { 3704 struct dentry *root; 3705 3706 if (!core || !pdentry) 3707 return; 3708 3709 root = debugfs_create_dir(core->name, pdentry); 3710 core->dentry = root; 3711 3712 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3713 &clk_rate_fops); 3714 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3715 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3716 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3717 debugfs_create_file("clk_phase", clk_phase_mode, root, core, 3718 &clk_phase_fops); 3719 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3720 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3721 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3722 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3723 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3724 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3725 &clk_duty_cycle_fops); 3726 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3727 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3728 &clk_prepare_enable_fops); 3729 3730 if (core->num_parents > 1) 3731 debugfs_create_file("clk_parent", 0644, root, core, 3732 ¤t_parent_rw_fops); 3733 else 3734 #endif 3735 if (core->num_parents > 0) 3736 debugfs_create_file("clk_parent", 0444, root, core, 3737 ¤t_parent_fops); 3738 3739 if (core->num_parents > 1) 3740 debugfs_create_file("clk_possible_parents", 0444, root, core, 3741 &possible_parents_fops); 3742 3743 if (core->ops->debug_init) 3744 core->ops->debug_init(core->hw, core->dentry); 3745 } 3746 3747 /** 3748 * clk_debug_register - add a clk node to the debugfs clk directory 3749 * @core: the clk being added to the debugfs clk directory 3750 * 3751 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3752 * initialized. Otherwise it bails out early since the debugfs clk directory 3753 * will be created lazily by clk_debug_init as part of a late_initcall. 3754 */ 3755 static void clk_debug_register(struct clk_core *core) 3756 { 3757 mutex_lock(&clk_debug_lock); 3758 hlist_add_head(&core->debug_node, &clk_debug_list); 3759 if (inited) 3760 clk_debug_create_one(core, rootdir); 3761 mutex_unlock(&clk_debug_lock); 3762 } 3763 3764 /** 3765 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3766 * @core: the clk being removed from the debugfs clk directory 3767 * 3768 * Dynamically removes a clk and all its child nodes from the 3769 * debugfs clk directory if clk->dentry points to debugfs created by 3770 * clk_debug_register in __clk_core_init. 3771 */ 3772 static void clk_debug_unregister(struct clk_core *core) 3773 { 3774 mutex_lock(&clk_debug_lock); 3775 hlist_del_init(&core->debug_node); 3776 debugfs_remove_recursive(core->dentry); 3777 core->dentry = NULL; 3778 mutex_unlock(&clk_debug_lock); 3779 } 3780 3781 /** 3782 * clk_debug_init - lazily populate the debugfs clk directory 3783 * 3784 * clks are often initialized very early during boot before memory can be 3785 * dynamically allocated and well before debugfs is setup. This function 3786 * populates the debugfs clk directory once at boot-time when we know that 3787 * debugfs is setup. It should only be called once at boot-time, all other clks 3788 * added dynamically will be done so with clk_debug_register. 3789 */ 3790 static int __init clk_debug_init(void) 3791 { 3792 struct clk_core *core; 3793 3794 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3795 pr_warn("\n"); 3796 pr_warn("********************************************************************\n"); 3797 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3798 pr_warn("** **\n"); 3799 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n"); 3800 pr_warn("** **\n"); 3801 pr_warn("** This means that this kernel is built to expose clk operations **\n"); 3802 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n"); 3803 pr_warn("** to userspace, which may compromise security on your system. **\n"); 3804 pr_warn("** **\n"); 3805 pr_warn("** If you see this message and you are not debugging the **\n"); 3806 pr_warn("** kernel, report this immediately to your vendor! **\n"); 3807 pr_warn("** **\n"); 3808 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3809 pr_warn("********************************************************************\n"); 3810 #endif 3811 3812 rootdir = debugfs_create_dir("clk", NULL); 3813 3814 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3815 &clk_summary_fops); 3816 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3817 &clk_dump_fops); 3818 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3819 &clk_summary_fops); 3820 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3821 &clk_dump_fops); 3822 3823 mutex_lock(&clk_debug_lock); 3824 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3825 clk_debug_create_one(core, rootdir); 3826 3827 inited = 1; 3828 mutex_unlock(&clk_debug_lock); 3829 3830 return 0; 3831 } 3832 late_initcall(clk_debug_init); 3833 #else 3834 static inline void clk_debug_register(struct clk_core *core) { } 3835 static inline void clk_debug_unregister(struct clk_core *core) 3836 { 3837 } 3838 #endif 3839 3840 static void clk_core_reparent_orphans_nolock(void) 3841 { 3842 struct clk_core *orphan; 3843 struct hlist_node *tmp2; 3844 3845 /* 3846 * walk the list of orphan clocks and reparent any that newly finds a 3847 * parent. 3848 */ 3849 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3850 struct clk_core *parent = __clk_init_parent(orphan); 3851 3852 /* 3853 * We need to use __clk_set_parent_before() and _after() to 3854 * properly migrate any prepare/enable count of the orphan 3855 * clock. This is important for CLK_IS_CRITICAL clocks, which 3856 * are enabled during init but might not have a parent yet. 3857 */ 3858 if (parent) { 3859 /* update the clk tree topology */ 3860 __clk_set_parent_before(orphan, parent); 3861 __clk_set_parent_after(orphan, parent, NULL); 3862 __clk_recalc_accuracies(orphan); 3863 __clk_recalc_rates(orphan, true, 0); 3864 3865 /* 3866 * __clk_init_parent() will set the initial req_rate to 3867 * 0 if the clock doesn't have clk_ops::recalc_rate and 3868 * is an orphan when it's registered. 3869 * 3870 * 'req_rate' is used by clk_set_rate_range() and 3871 * clk_put() to trigger a clk_set_rate() call whenever 3872 * the boundaries are modified. Let's make sure 3873 * 'req_rate' is set to something non-zero so that 3874 * clk_set_rate_range() doesn't drop the frequency. 3875 */ 3876 orphan->req_rate = orphan->rate; 3877 } 3878 } 3879 } 3880 3881 /** 3882 * __clk_core_init - initialize the data structures in a struct clk_core 3883 * @core: clk_core being initialized 3884 * 3885 * Initializes the lists in struct clk_core, queries the hardware for the 3886 * parent and rate and sets them both. 3887 */ 3888 static int __clk_core_init(struct clk_core *core) 3889 { 3890 int ret; 3891 struct clk_core *parent; 3892 unsigned long rate; 3893 int phase; 3894 3895 clk_prepare_lock(); 3896 3897 /* 3898 * Set hw->core after grabbing the prepare_lock to synchronize with 3899 * callers of clk_core_fill_parent_index() where we treat hw->core 3900 * being NULL as the clk not being registered yet. This is crucial so 3901 * that clks aren't parented until their parent is fully registered. 3902 */ 3903 core->hw->core = core; 3904 3905 ret = clk_pm_runtime_get(core); 3906 if (ret) 3907 goto unlock; 3908 3909 /* check to see if a clock with this name is already registered */ 3910 if (clk_core_lookup(core->name)) { 3911 pr_debug("%s: clk %s already initialized\n", 3912 __func__, core->name); 3913 ret = -EEXIST; 3914 goto out; 3915 } 3916 3917 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3918 if (core->ops->set_rate && 3919 !((core->ops->round_rate || core->ops->determine_rate) && 3920 core->ops->recalc_rate)) { 3921 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3922 __func__, core->name); 3923 ret = -EINVAL; 3924 goto out; 3925 } 3926 3927 if (core->ops->set_parent && !core->ops->get_parent) { 3928 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3929 __func__, core->name); 3930 ret = -EINVAL; 3931 goto out; 3932 } 3933 3934 if (core->ops->set_parent && !core->ops->determine_rate) { 3935 pr_err("%s: %s must implement .set_parent & .determine_rate\n", 3936 __func__, core->name); 3937 ret = -EINVAL; 3938 goto out; 3939 } 3940 3941 if (core->num_parents > 1 && !core->ops->get_parent) { 3942 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3943 __func__, core->name); 3944 ret = -EINVAL; 3945 goto out; 3946 } 3947 3948 if (core->ops->set_rate_and_parent && 3949 !(core->ops->set_parent && core->ops->set_rate)) { 3950 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3951 __func__, core->name); 3952 ret = -EINVAL; 3953 goto out; 3954 } 3955 3956 /* 3957 * optional platform-specific magic 3958 * 3959 * The .init callback is not used by any of the basic clock types, but 3960 * exists for weird hardware that must perform initialization magic for 3961 * CCF to get an accurate view of clock for any other callbacks. It may 3962 * also be used needs to perform dynamic allocations. Such allocation 3963 * must be freed in the terminate() callback. 3964 * This callback shall not be used to initialize the parameters state, 3965 * such as rate, parent, etc ... 3966 * 3967 * If it exist, this callback should called before any other callback of 3968 * the clock 3969 */ 3970 if (core->ops->init) { 3971 ret = core->ops->init(core->hw); 3972 if (ret) 3973 goto out; 3974 } 3975 3976 parent = core->parent = __clk_init_parent(core); 3977 3978 /* 3979 * Populate core->parent if parent has already been clk_core_init'd. If 3980 * parent has not yet been clk_core_init'd then place clk in the orphan 3981 * list. If clk doesn't have any parents then place it in the root 3982 * clk list. 3983 * 3984 * Every time a new clk is clk_init'd then we walk the list of orphan 3985 * clocks and re-parent any that are children of the clock currently 3986 * being clk_init'd. 3987 */ 3988 if (parent) { 3989 hlist_add_head(&core->child_node, &parent->children); 3990 core->orphan = parent->orphan; 3991 } else if (!core->num_parents) { 3992 hlist_add_head(&core->child_node, &clk_root_list); 3993 core->orphan = false; 3994 } else { 3995 hlist_add_head(&core->child_node, &clk_orphan_list); 3996 core->orphan = true; 3997 } 3998 hash_add(clk_hashtable, &core->hashtable_node, 3999 full_name_hash(NULL, core->name, strlen(core->name))); 4000 4001 /* 4002 * Set clk's accuracy. The preferred method is to use 4003 * .recalc_accuracy. For simple clocks and lazy developers the default 4004 * fallback is to use the parent's accuracy. If a clock doesn't have a 4005 * parent (or is orphaned) then accuracy is set to zero (perfect 4006 * clock). 4007 */ 4008 if (core->ops->recalc_accuracy) 4009 core->accuracy = core->ops->recalc_accuracy(core->hw, 4010 clk_core_get_accuracy_no_lock(parent)); 4011 else if (parent) 4012 core->accuracy = parent->accuracy; 4013 else 4014 core->accuracy = 0; 4015 4016 /* 4017 * Set clk's phase by clk_core_get_phase() caching the phase. 4018 * Since a phase is by definition relative to its parent, just 4019 * query the current clock phase, or just assume it's in phase. 4020 */ 4021 phase = clk_core_get_phase(core); 4022 if (phase < 0) { 4023 ret = phase; 4024 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 4025 core->name); 4026 goto out; 4027 } 4028 4029 /* 4030 * Set clk's duty cycle. 4031 */ 4032 clk_core_update_duty_cycle_nolock(core); 4033 4034 /* 4035 * Set clk's rate. The preferred method is to use .recalc_rate. For 4036 * simple clocks and lazy developers the default fallback is to use the 4037 * parent's rate. If a clock doesn't have a parent (or is orphaned) 4038 * then rate is set to zero. 4039 */ 4040 if (core->ops->recalc_rate) 4041 rate = core->ops->recalc_rate(core->hw, 4042 clk_core_get_rate_nolock(parent)); 4043 else if (parent) 4044 rate = parent->rate; 4045 else 4046 rate = 0; 4047 core->rate = core->req_rate = rate; 4048 4049 /* 4050 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 4051 * don't get accidentally disabled when walking the orphan tree and 4052 * reparenting clocks 4053 */ 4054 if (core->flags & CLK_IS_CRITICAL) { 4055 ret = clk_core_prepare(core); 4056 if (ret) { 4057 pr_warn("%s: critical clk '%s' failed to prepare\n", 4058 __func__, core->name); 4059 goto out; 4060 } 4061 4062 ret = clk_core_enable_lock(core); 4063 if (ret) { 4064 pr_warn("%s: critical clk '%s' failed to enable\n", 4065 __func__, core->name); 4066 clk_core_unprepare(core); 4067 goto out; 4068 } 4069 } 4070 4071 clk_core_reparent_orphans_nolock(); 4072 out: 4073 clk_pm_runtime_put(core); 4074 unlock: 4075 if (ret) { 4076 hash_del(&core->hashtable_node); 4077 hlist_del_init(&core->child_node); 4078 core->hw->core = NULL; 4079 } 4080 4081 clk_prepare_unlock(); 4082 4083 if (!ret) 4084 clk_debug_register(core); 4085 4086 return ret; 4087 } 4088 4089 /** 4090 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 4091 * @core: clk to add consumer to 4092 * @clk: consumer to link to a clk 4093 */ 4094 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 4095 { 4096 clk_prepare_lock(); 4097 hlist_add_head(&clk->clks_node, &core->clks); 4098 clk_prepare_unlock(); 4099 } 4100 4101 /** 4102 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 4103 * @clk: consumer to unlink 4104 */ 4105 static void clk_core_unlink_consumer(struct clk *clk) 4106 { 4107 lockdep_assert_held(&prepare_lock); 4108 hlist_del(&clk->clks_node); 4109 } 4110 4111 /** 4112 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 4113 * @core: clk to allocate a consumer for 4114 * @dev_id: string describing device name 4115 * @con_id: connection ID string on device 4116 * 4117 * Returns: clk consumer left unlinked from the consumer list 4118 */ 4119 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 4120 const char *con_id) 4121 { 4122 struct clk *clk; 4123 4124 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 4125 if (!clk) 4126 return ERR_PTR(-ENOMEM); 4127 4128 clk->core = core; 4129 clk->dev_id = dev_id; 4130 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 4131 clk->max_rate = ULONG_MAX; 4132 4133 return clk; 4134 } 4135 4136 /** 4137 * free_clk - Free a clk consumer 4138 * @clk: clk consumer to free 4139 * 4140 * Note, this assumes the clk has been unlinked from the clk_core consumer 4141 * list. 4142 */ 4143 static void free_clk(struct clk *clk) 4144 { 4145 kfree_const(clk->con_id); 4146 kfree(clk); 4147 } 4148 4149 /** 4150 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 4151 * a clk_hw 4152 * @dev: clk consumer device 4153 * @hw: clk_hw associated with the clk being consumed 4154 * @dev_id: string describing device name 4155 * @con_id: connection ID string on device 4156 * 4157 * This is the main function used to create a clk pointer for use by clk 4158 * consumers. It connects a consumer to the clk_core and clk_hw structures 4159 * used by the framework and clk provider respectively. 4160 */ 4161 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 4162 const char *dev_id, const char *con_id) 4163 { 4164 struct clk *clk; 4165 struct clk_core *core; 4166 4167 /* This is to allow this function to be chained to others */ 4168 if (IS_ERR_OR_NULL(hw)) 4169 return ERR_CAST(hw); 4170 4171 core = hw->core; 4172 clk = alloc_clk(core, dev_id, con_id); 4173 if (IS_ERR(clk)) 4174 return clk; 4175 clk->dev = dev; 4176 4177 if (!try_module_get(core->owner)) { 4178 free_clk(clk); 4179 return ERR_PTR(-ENOENT); 4180 } 4181 4182 kref_get(&core->ref); 4183 clk_core_link_consumer(core, clk); 4184 4185 return clk; 4186 } 4187 4188 /** 4189 * clk_hw_get_clk - get clk consumer given an clk_hw 4190 * @hw: clk_hw associated with the clk being consumed 4191 * @con_id: connection ID string on device 4192 * 4193 * Returns: new clk consumer 4194 * This is the function to be used by providers which need 4195 * to get a consumer clk and act on the clock element 4196 * Calls to this function must be balanced with calls clk_put() 4197 */ 4198 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id) 4199 { 4200 struct device *dev = hw->core->dev; 4201 const char *name = dev ? dev_name(dev) : NULL; 4202 4203 return clk_hw_create_clk(dev, hw, name, con_id); 4204 } 4205 EXPORT_SYMBOL(clk_hw_get_clk); 4206 4207 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 4208 { 4209 const char *dst; 4210 4211 if (!src) { 4212 if (must_exist) 4213 return -EINVAL; 4214 return 0; 4215 } 4216 4217 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 4218 if (!dst) 4219 return -ENOMEM; 4220 4221 return 0; 4222 } 4223 4224 static int clk_core_populate_parent_map(struct clk_core *core, 4225 const struct clk_init_data *init) 4226 { 4227 u8 num_parents = init->num_parents; 4228 const char * const *parent_names = init->parent_names; 4229 const struct clk_hw **parent_hws = init->parent_hws; 4230 const struct clk_parent_data *parent_data = init->parent_data; 4231 int i, ret = 0; 4232 struct clk_parent_map *parents, *parent; 4233 4234 if (!num_parents) 4235 return 0; 4236 4237 /* 4238 * Avoid unnecessary string look-ups of clk_core's possible parents by 4239 * having a cache of names/clk_hw pointers to clk_core pointers. 4240 */ 4241 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 4242 core->parents = parents; 4243 if (!parents) 4244 return -ENOMEM; 4245 4246 /* Copy everything over because it might be __initdata */ 4247 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 4248 parent->index = -1; 4249 if (parent_names) { 4250 /* throw a WARN if any entries are NULL */ 4251 WARN(!parent_names[i], 4252 "%s: invalid NULL in %s's .parent_names\n", 4253 __func__, core->name); 4254 ret = clk_cpy_name(&parent->name, parent_names[i], 4255 true); 4256 } else if (parent_data) { 4257 parent->hw = parent_data[i].hw; 4258 parent->index = parent_data[i].index; 4259 ret = clk_cpy_name(&parent->fw_name, 4260 parent_data[i].fw_name, false); 4261 if (!ret) 4262 ret = clk_cpy_name(&parent->name, 4263 parent_data[i].name, 4264 false); 4265 } else if (parent_hws) { 4266 parent->hw = parent_hws[i]; 4267 } else { 4268 ret = -EINVAL; 4269 WARN(1, "Must specify parents if num_parents > 0\n"); 4270 } 4271 4272 if (ret) { 4273 do { 4274 kfree_const(parents[i].name); 4275 kfree_const(parents[i].fw_name); 4276 } while (--i >= 0); 4277 kfree(parents); 4278 4279 return ret; 4280 } 4281 } 4282 4283 return 0; 4284 } 4285 4286 static void clk_core_free_parent_map(struct clk_core *core) 4287 { 4288 int i = core->num_parents; 4289 4290 if (!core->num_parents) 4291 return; 4292 4293 while (--i >= 0) { 4294 kfree_const(core->parents[i].name); 4295 kfree_const(core->parents[i].fw_name); 4296 } 4297 4298 kfree(core->parents); 4299 } 4300 4301 /* Free memory allocated for a struct clk_core */ 4302 static void __clk_release(struct kref *ref) 4303 { 4304 struct clk_core *core = container_of(ref, struct clk_core, ref); 4305 4306 if (core->rpm_enabled) { 4307 mutex_lock(&clk_rpm_list_lock); 4308 hlist_del(&core->rpm_node); 4309 mutex_unlock(&clk_rpm_list_lock); 4310 } 4311 4312 clk_core_free_parent_map(core); 4313 kfree_const(core->name); 4314 kfree(core); 4315 } 4316 4317 static struct clk * 4318 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 4319 { 4320 int ret; 4321 struct clk_core *core; 4322 const struct clk_init_data *init = hw->init; 4323 4324 /* 4325 * The init data is not supposed to be used outside of registration path. 4326 * Set it to NULL so that provider drivers can't use it either and so that 4327 * we catch use of hw->init early on in the core. 4328 */ 4329 hw->init = NULL; 4330 4331 core = kzalloc(sizeof(*core), GFP_KERNEL); 4332 if (!core) { 4333 ret = -ENOMEM; 4334 goto fail_out; 4335 } 4336 4337 kref_init(&core->ref); 4338 4339 core->name = kstrdup_const(init->name, GFP_KERNEL); 4340 if (!core->name) { 4341 ret = -ENOMEM; 4342 goto fail_name; 4343 } 4344 4345 if (WARN_ON(!init->ops)) { 4346 ret = -EINVAL; 4347 goto fail_ops; 4348 } 4349 core->ops = init->ops; 4350 4351 core->dev = dev; 4352 clk_pm_runtime_init(core); 4353 core->of_node = np; 4354 if (dev && dev->driver) 4355 core->owner = dev->driver->owner; 4356 core->hw = hw; 4357 core->flags = init->flags; 4358 core->num_parents = init->num_parents; 4359 core->min_rate = 0; 4360 core->max_rate = ULONG_MAX; 4361 4362 ret = clk_core_populate_parent_map(core, init); 4363 if (ret) 4364 goto fail_parents; 4365 4366 INIT_HLIST_HEAD(&core->clks); 4367 4368 /* 4369 * Don't call clk_hw_create_clk() here because that would pin the 4370 * provider module to itself and prevent it from ever being removed. 4371 */ 4372 hw->clk = alloc_clk(core, NULL, NULL); 4373 if (IS_ERR(hw->clk)) { 4374 ret = PTR_ERR(hw->clk); 4375 goto fail_create_clk; 4376 } 4377 4378 clk_core_link_consumer(core, hw->clk); 4379 4380 ret = __clk_core_init(core); 4381 if (!ret) 4382 return hw->clk; 4383 4384 clk_prepare_lock(); 4385 clk_core_unlink_consumer(hw->clk); 4386 clk_prepare_unlock(); 4387 4388 free_clk(hw->clk); 4389 hw->clk = NULL; 4390 4391 fail_create_clk: 4392 fail_parents: 4393 fail_ops: 4394 fail_name: 4395 kref_put(&core->ref, __clk_release); 4396 fail_out: 4397 if (dev) { 4398 dev_err_probe(dev, ret, "failed to register clk '%s' (%pS)\n", 4399 init->name, hw); 4400 } else { 4401 pr_err("%pOF: error %pe: failed to register clk '%s' (%pS)\n", 4402 np, ERR_PTR(ret), init->name, hw); 4403 } 4404 return ERR_PTR(ret); 4405 } 4406 4407 /** 4408 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 4409 * @dev: Device to get device node of 4410 * 4411 * Return: device node pointer of @dev, or the device node pointer of 4412 * @dev->parent if dev doesn't have a device node, or NULL if neither 4413 * @dev or @dev->parent have a device node. 4414 */ 4415 static struct device_node *dev_or_parent_of_node(struct device *dev) 4416 { 4417 struct device_node *np; 4418 4419 if (!dev) 4420 return NULL; 4421 4422 np = dev_of_node(dev); 4423 if (!np) 4424 np = dev_of_node(dev->parent); 4425 4426 return np; 4427 } 4428 4429 /** 4430 * clk_register - allocate a new clock, register it and return an opaque cookie 4431 * @dev: device that is registering this clock 4432 * @hw: link to hardware-specific clock data 4433 * 4434 * clk_register is the *deprecated* interface for populating the clock tree with 4435 * new clock nodes. Use clk_hw_register() instead. 4436 * 4437 * Returns: a pointer to the newly allocated struct clk which 4438 * cannot be dereferenced by driver code but may be used in conjunction with the 4439 * rest of the clock API. In the event of an error clk_register will return an 4440 * error code; drivers must test for an error code after calling clk_register. 4441 */ 4442 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 4443 { 4444 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 4445 } 4446 EXPORT_SYMBOL_GPL(clk_register); 4447 4448 /** 4449 * clk_hw_register - register a clk_hw and return an error code 4450 * @dev: device that is registering this clock 4451 * @hw: link to hardware-specific clock data 4452 * 4453 * clk_hw_register is the primary interface for populating the clock tree with 4454 * new clock nodes. It returns an integer equal to zero indicating success or 4455 * less than zero indicating failure. Drivers must test for an error code after 4456 * calling clk_hw_register(). 4457 */ 4458 int clk_hw_register(struct device *dev, struct clk_hw *hw) 4459 { 4460 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 4461 hw)); 4462 } 4463 EXPORT_SYMBOL_GPL(clk_hw_register); 4464 4465 /* 4466 * of_clk_hw_register - register a clk_hw and return an error code 4467 * @node: device_node of device that is registering this clock 4468 * @hw: link to hardware-specific clock data 4469 * 4470 * of_clk_hw_register() is the primary interface for populating the clock tree 4471 * with new clock nodes when a struct device is not available, but a struct 4472 * device_node is. It returns an integer equal to zero indicating success or 4473 * less than zero indicating failure. Drivers must test for an error code after 4474 * calling of_clk_hw_register(). 4475 */ 4476 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 4477 { 4478 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 4479 } 4480 EXPORT_SYMBOL_GPL(of_clk_hw_register); 4481 4482 /* 4483 * Empty clk_ops for unregistered clocks. These are used temporarily 4484 * after clk_unregister() was called on a clock and until last clock 4485 * consumer calls clk_put() and the struct clk object is freed. 4486 */ 4487 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 4488 { 4489 return -ENXIO; 4490 } 4491 4492 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 4493 { 4494 WARN_ON_ONCE(1); 4495 } 4496 4497 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 4498 unsigned long parent_rate) 4499 { 4500 return -ENXIO; 4501 } 4502 4503 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 4504 { 4505 return -ENXIO; 4506 } 4507 4508 static int clk_nodrv_determine_rate(struct clk_hw *hw, 4509 struct clk_rate_request *req) 4510 { 4511 return -ENXIO; 4512 } 4513 4514 static const struct clk_ops clk_nodrv_ops = { 4515 .enable = clk_nodrv_prepare_enable, 4516 .disable = clk_nodrv_disable_unprepare, 4517 .prepare = clk_nodrv_prepare_enable, 4518 .unprepare = clk_nodrv_disable_unprepare, 4519 .determine_rate = clk_nodrv_determine_rate, 4520 .set_rate = clk_nodrv_set_rate, 4521 .set_parent = clk_nodrv_set_parent, 4522 }; 4523 4524 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4525 const struct clk_core *target) 4526 { 4527 int i; 4528 struct clk_core *child; 4529 4530 for (i = 0; i < root->num_parents; i++) 4531 if (root->parents[i].core == target) 4532 root->parents[i].core = NULL; 4533 4534 hlist_for_each_entry(child, &root->children, child_node) 4535 clk_core_evict_parent_cache_subtree(child, target); 4536 } 4537 4538 /* Remove this clk from all parent caches */ 4539 static void clk_core_evict_parent_cache(struct clk_core *core) 4540 { 4541 const struct hlist_head **lists; 4542 struct clk_core *root; 4543 4544 lockdep_assert_held(&prepare_lock); 4545 4546 for (lists = all_lists; *lists; lists++) 4547 hlist_for_each_entry(root, *lists, child_node) 4548 clk_core_evict_parent_cache_subtree(root, core); 4549 4550 } 4551 4552 /** 4553 * clk_unregister - unregister a currently registered clock 4554 * @clk: clock to unregister 4555 */ 4556 void clk_unregister(struct clk *clk) 4557 { 4558 unsigned long flags; 4559 const struct clk_ops *ops; 4560 4561 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4562 return; 4563 4564 clk_debug_unregister(clk->core); 4565 4566 clk_prepare_lock(); 4567 4568 ops = clk->core->ops; 4569 if (ops == &clk_nodrv_ops) { 4570 pr_err("%s: unregistered clock: %s\n", __func__, 4571 clk->core->name); 4572 clk_prepare_unlock(); 4573 return; 4574 } 4575 /* 4576 * Assign empty clock ops for consumers that might still hold 4577 * a reference to this clock. 4578 */ 4579 flags = clk_enable_lock(); 4580 clk->core->ops = &clk_nodrv_ops; 4581 clk_enable_unlock(flags); 4582 4583 if (ops->terminate) 4584 ops->terminate(clk->core->hw); 4585 4586 if (!hlist_empty(&clk->core->children)) { 4587 struct clk_core *child; 4588 struct hlist_node *t; 4589 4590 /* Reparent all children to the orphan list. */ 4591 hlist_for_each_entry_safe(child, t, &clk->core->children, 4592 child_node) 4593 clk_core_set_parent_nolock(child, NULL); 4594 } 4595 4596 clk_core_evict_parent_cache(clk->core); 4597 4598 hash_del(&clk->core->hashtable_node); 4599 hlist_del_init(&clk->core->child_node); 4600 4601 if (clk->core->prepare_count) 4602 pr_warn("%s: unregistering prepared clock: %s\n", 4603 __func__, clk->core->name); 4604 4605 if (clk->core->protect_count) 4606 pr_warn("%s: unregistering protected clock: %s\n", 4607 __func__, clk->core->name); 4608 clk_prepare_unlock(); 4609 4610 kref_put(&clk->core->ref, __clk_release); 4611 free_clk(clk); 4612 } 4613 EXPORT_SYMBOL_GPL(clk_unregister); 4614 4615 /** 4616 * clk_hw_unregister - unregister a currently registered clk_hw 4617 * @hw: hardware-specific clock data to unregister 4618 */ 4619 void clk_hw_unregister(struct clk_hw *hw) 4620 { 4621 clk_unregister(hw->clk); 4622 } 4623 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4624 4625 static void devm_clk_unregister_cb(struct device *dev, void *res) 4626 { 4627 clk_unregister(*(struct clk **)res); 4628 } 4629 4630 static void devm_clk_hw_unregister_cb(struct device *dev, void *res) 4631 { 4632 clk_hw_unregister(*(struct clk_hw **)res); 4633 } 4634 4635 /** 4636 * devm_clk_register - resource managed clk_register() 4637 * @dev: device that is registering this clock 4638 * @hw: link to hardware-specific clock data 4639 * 4640 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4641 * 4642 * Clocks returned from this function are automatically clk_unregister()ed on 4643 * driver detach. See clk_register() for more information. 4644 */ 4645 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4646 { 4647 struct clk *clk; 4648 struct clk **clkp; 4649 4650 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL); 4651 if (!clkp) 4652 return ERR_PTR(-ENOMEM); 4653 4654 clk = clk_register(dev, hw); 4655 if (!IS_ERR(clk)) { 4656 *clkp = clk; 4657 devres_add(dev, clkp); 4658 } else { 4659 devres_free(clkp); 4660 } 4661 4662 return clk; 4663 } 4664 EXPORT_SYMBOL_GPL(devm_clk_register); 4665 4666 /** 4667 * devm_clk_hw_register - resource managed clk_hw_register() 4668 * @dev: device that is registering this clock 4669 * @hw: link to hardware-specific clock data 4670 * 4671 * Managed clk_hw_register(). Clocks registered by this function are 4672 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4673 * for more information. 4674 */ 4675 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4676 { 4677 struct clk_hw **hwp; 4678 int ret; 4679 4680 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL); 4681 if (!hwp) 4682 return -ENOMEM; 4683 4684 ret = clk_hw_register(dev, hw); 4685 if (!ret) { 4686 *hwp = hw; 4687 devres_add(dev, hwp); 4688 } else { 4689 devres_free(hwp); 4690 } 4691 4692 return ret; 4693 } 4694 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4695 4696 static void devm_clk_release(struct device *dev, void *res) 4697 { 4698 clk_put(*(struct clk **)res); 4699 } 4700 4701 /** 4702 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk() 4703 * @dev: device that is registering this clock 4704 * @hw: clk_hw associated with the clk being consumed 4705 * @con_id: connection ID string on device 4706 * 4707 * Managed clk_hw_get_clk(). Clocks got with this function are 4708 * automatically clk_put() on driver detach. See clk_put() 4709 * for more information. 4710 */ 4711 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw, 4712 const char *con_id) 4713 { 4714 struct clk *clk; 4715 struct clk **clkp; 4716 4717 /* This should not happen because it would mean we have drivers 4718 * passing around clk_hw pointers instead of having the caller use 4719 * proper clk_get() style APIs 4720 */ 4721 WARN_ON_ONCE(dev != hw->core->dev); 4722 4723 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4724 if (!clkp) 4725 return ERR_PTR(-ENOMEM); 4726 4727 clk = clk_hw_get_clk(hw, con_id); 4728 if (!IS_ERR(clk)) { 4729 *clkp = clk; 4730 devres_add(dev, clkp); 4731 } else { 4732 devres_free(clkp); 4733 } 4734 4735 return clk; 4736 } 4737 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk); 4738 4739 /* 4740 * clkdev helpers 4741 */ 4742 4743 void __clk_put(struct clk *clk) 4744 { 4745 struct module *owner; 4746 4747 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4748 return; 4749 4750 clk_prepare_lock(); 4751 4752 /* 4753 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4754 * given user should be balanced with calls to clk_rate_exclusive_put() 4755 * and by that same consumer 4756 */ 4757 if (WARN_ON(clk->exclusive_count)) { 4758 /* We voiced our concern, let's sanitize the situation */ 4759 clk->core->protect_count -= (clk->exclusive_count - 1); 4760 clk_core_rate_unprotect(clk->core); 4761 clk->exclusive_count = 0; 4762 } 4763 4764 clk_core_unlink_consumer(clk); 4765 4766 /* If we had any boundaries on that clock, let's drop them. */ 4767 if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX) 4768 clk_set_rate_range_nolock(clk, 0, ULONG_MAX); 4769 4770 clk_prepare_unlock(); 4771 4772 owner = clk->core->owner; 4773 kref_put(&clk->core->ref, __clk_release); 4774 module_put(owner); 4775 free_clk(clk); 4776 } 4777 4778 /*** clk rate change notifiers ***/ 4779 4780 /** 4781 * clk_notifier_register - add a clk rate change notifier 4782 * @clk: struct clk * to watch 4783 * @nb: struct notifier_block * with callback info 4784 * 4785 * Request notification when clk's rate changes. This uses an SRCU 4786 * notifier because we want it to block and notifier unregistrations are 4787 * uncommon. The callbacks associated with the notifier must not 4788 * re-enter into the clk framework by calling any top-level clk APIs; 4789 * this will cause a nested prepare_lock mutex. 4790 * 4791 * In all notification cases (pre, post and abort rate change) the original 4792 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4793 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4794 * 4795 * clk_notifier_register() must be called from non-atomic context. 4796 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4797 * allocation failure; otherwise, passes along the return value of 4798 * srcu_notifier_chain_register(). 4799 */ 4800 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4801 { 4802 struct clk_notifier *cn; 4803 int ret = -ENOMEM; 4804 4805 if (!clk || !nb) 4806 return -EINVAL; 4807 4808 clk_prepare_lock(); 4809 4810 /* search the list of notifiers for this clk */ 4811 list_for_each_entry(cn, &clk_notifier_list, node) 4812 if (cn->clk == clk) 4813 goto found; 4814 4815 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4816 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4817 if (!cn) 4818 goto out; 4819 4820 cn->clk = clk; 4821 srcu_init_notifier_head(&cn->notifier_head); 4822 4823 list_add(&cn->node, &clk_notifier_list); 4824 4825 found: 4826 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4827 4828 clk->core->notifier_count++; 4829 4830 out: 4831 clk_prepare_unlock(); 4832 4833 return ret; 4834 } 4835 EXPORT_SYMBOL_GPL(clk_notifier_register); 4836 4837 /** 4838 * clk_notifier_unregister - remove a clk rate change notifier 4839 * @clk: struct clk * 4840 * @nb: struct notifier_block * with callback info 4841 * 4842 * Request no further notification for changes to 'clk' and frees memory 4843 * allocated in clk_notifier_register. 4844 * 4845 * Returns -EINVAL if called with null arguments; otherwise, passes 4846 * along the return value of srcu_notifier_chain_unregister(). 4847 */ 4848 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4849 { 4850 struct clk_notifier *cn; 4851 int ret = -ENOENT; 4852 4853 if (!clk || !nb) 4854 return -EINVAL; 4855 4856 clk_prepare_lock(); 4857 4858 list_for_each_entry(cn, &clk_notifier_list, node) { 4859 if (cn->clk == clk) { 4860 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4861 4862 clk->core->notifier_count--; 4863 4864 /* XXX the notifier code should handle this better */ 4865 if (!cn->notifier_head.head) { 4866 srcu_cleanup_notifier_head(&cn->notifier_head); 4867 list_del(&cn->node); 4868 kfree(cn); 4869 } 4870 break; 4871 } 4872 } 4873 4874 clk_prepare_unlock(); 4875 4876 return ret; 4877 } 4878 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4879 4880 struct clk_notifier_devres { 4881 struct clk *clk; 4882 struct notifier_block *nb; 4883 }; 4884 4885 static void devm_clk_notifier_release(struct device *dev, void *res) 4886 { 4887 struct clk_notifier_devres *devres = res; 4888 4889 clk_notifier_unregister(devres->clk, devres->nb); 4890 } 4891 4892 int devm_clk_notifier_register(struct device *dev, struct clk *clk, 4893 struct notifier_block *nb) 4894 { 4895 struct clk_notifier_devres *devres; 4896 int ret; 4897 4898 devres = devres_alloc(devm_clk_notifier_release, 4899 sizeof(*devres), GFP_KERNEL); 4900 4901 if (!devres) 4902 return -ENOMEM; 4903 4904 ret = clk_notifier_register(clk, nb); 4905 if (!ret) { 4906 devres->clk = clk; 4907 devres->nb = nb; 4908 devres_add(dev, devres); 4909 } else { 4910 devres_free(devres); 4911 } 4912 4913 return ret; 4914 } 4915 EXPORT_SYMBOL_GPL(devm_clk_notifier_register); 4916 4917 #ifdef CONFIG_OF 4918 static void clk_core_reparent_orphans(void) 4919 { 4920 clk_prepare_lock(); 4921 clk_core_reparent_orphans_nolock(); 4922 clk_prepare_unlock(); 4923 } 4924 4925 /** 4926 * struct of_clk_provider - Clock provider registration structure 4927 * @link: Entry in global list of clock providers 4928 * @node: Pointer to device tree node of clock provider 4929 * @get: Get clock callback. Returns NULL or a struct clk for the 4930 * given clock specifier 4931 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4932 * struct clk_hw for the given clock specifier 4933 * @data: context pointer to be passed into @get callback 4934 */ 4935 struct of_clk_provider { 4936 struct list_head link; 4937 4938 struct device_node *node; 4939 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4940 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4941 void *data; 4942 }; 4943 4944 extern struct of_device_id __clk_of_table; 4945 static const struct of_device_id __clk_of_table_sentinel 4946 __used __section("__clk_of_table_end"); 4947 4948 static LIST_HEAD(of_clk_providers); 4949 static DEFINE_MUTEX(of_clk_mutex); 4950 4951 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4952 void *data) 4953 { 4954 return data; 4955 } 4956 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4957 4958 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4959 { 4960 return data; 4961 } 4962 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4963 4964 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4965 { 4966 struct clk_onecell_data *clk_data = data; 4967 unsigned int idx = clkspec->args[0]; 4968 4969 if (idx >= clk_data->clk_num) { 4970 pr_err("%s: invalid clock index %u\n", __func__, idx); 4971 return ERR_PTR(-EINVAL); 4972 } 4973 4974 return clk_data->clks[idx]; 4975 } 4976 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4977 4978 struct clk_hw * 4979 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4980 { 4981 struct clk_hw_onecell_data *hw_data = data; 4982 unsigned int idx = clkspec->args[0]; 4983 4984 if (idx >= hw_data->num) { 4985 pr_err("%s: invalid index %u\n", __func__, idx); 4986 return ERR_PTR(-EINVAL); 4987 } 4988 4989 return hw_data->hws[idx]; 4990 } 4991 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4992 4993 /** 4994 * of_clk_add_provider() - Register a clock provider for a node 4995 * @np: Device node pointer associated with clock provider 4996 * @clk_src_get: callback for decoding clock 4997 * @data: context pointer for @clk_src_get callback. 4998 * 4999 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 5000 */ 5001 int of_clk_add_provider(struct device_node *np, 5002 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 5003 void *data), 5004 void *data) 5005 { 5006 struct of_clk_provider *cp; 5007 int ret; 5008 5009 if (!np) 5010 return 0; 5011 5012 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 5013 if (!cp) 5014 return -ENOMEM; 5015 5016 cp->node = of_node_get(np); 5017 cp->data = data; 5018 cp->get = clk_src_get; 5019 5020 mutex_lock(&of_clk_mutex); 5021 list_add(&cp->link, &of_clk_providers); 5022 mutex_unlock(&of_clk_mutex); 5023 pr_debug("Added clock from %pOF\n", np); 5024 5025 clk_core_reparent_orphans(); 5026 5027 ret = of_clk_set_defaults(np, true); 5028 if (ret < 0) 5029 of_clk_del_provider(np); 5030 5031 fwnode_dev_initialized(&np->fwnode, true); 5032 5033 return ret; 5034 } 5035 EXPORT_SYMBOL_GPL(of_clk_add_provider); 5036 5037 /** 5038 * of_clk_add_hw_provider() - Register a clock provider for a node 5039 * @np: Device node pointer associated with clock provider 5040 * @get: callback for decoding clk_hw 5041 * @data: context pointer for @get callback. 5042 */ 5043 int of_clk_add_hw_provider(struct device_node *np, 5044 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 5045 void *data), 5046 void *data) 5047 { 5048 struct of_clk_provider *cp; 5049 int ret; 5050 5051 if (!np) 5052 return 0; 5053 5054 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 5055 if (!cp) 5056 return -ENOMEM; 5057 5058 cp->node = of_node_get(np); 5059 cp->data = data; 5060 cp->get_hw = get; 5061 5062 mutex_lock(&of_clk_mutex); 5063 list_add(&cp->link, &of_clk_providers); 5064 mutex_unlock(&of_clk_mutex); 5065 pr_debug("Added clk_hw provider from %pOF\n", np); 5066 5067 clk_core_reparent_orphans(); 5068 5069 ret = of_clk_set_defaults(np, true); 5070 if (ret < 0) 5071 of_clk_del_provider(np); 5072 5073 fwnode_dev_initialized(&np->fwnode, true); 5074 5075 return ret; 5076 } 5077 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 5078 5079 static void devm_of_clk_release_provider(struct device *dev, void *res) 5080 { 5081 of_clk_del_provider(*(struct device_node **)res); 5082 } 5083 5084 /* 5085 * We allow a child device to use its parent device as the clock provider node 5086 * for cases like MFD sub-devices where the child device driver wants to use 5087 * devm_*() APIs but not list the device in DT as a sub-node. 5088 */ 5089 static struct device_node *get_clk_provider_node(struct device *dev) 5090 { 5091 struct device_node *np, *parent_np; 5092 5093 np = dev->of_node; 5094 parent_np = dev->parent ? dev->parent->of_node : NULL; 5095 5096 if (!of_property_present(np, "#clock-cells")) 5097 if (of_property_present(parent_np, "#clock-cells")) 5098 np = parent_np; 5099 5100 return np; 5101 } 5102 5103 /** 5104 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 5105 * @dev: Device acting as the clock provider (used for DT node and lifetime) 5106 * @get: callback for decoding clk_hw 5107 * @data: context pointer for @get callback 5108 * 5109 * Registers clock provider for given device's node. If the device has no DT 5110 * node or if the device node lacks of clock provider information (#clock-cells) 5111 * then the parent device's node is scanned for this information. If parent node 5112 * has the #clock-cells then it is used in registration. Provider is 5113 * automatically released at device exit. 5114 * 5115 * Return: 0 on success or an errno on failure. 5116 */ 5117 int devm_of_clk_add_hw_provider(struct device *dev, 5118 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 5119 void *data), 5120 void *data) 5121 { 5122 struct device_node **ptr, *np; 5123 int ret; 5124 5125 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 5126 GFP_KERNEL); 5127 if (!ptr) 5128 return -ENOMEM; 5129 5130 np = get_clk_provider_node(dev); 5131 ret = of_clk_add_hw_provider(np, get, data); 5132 if (!ret) { 5133 *ptr = np; 5134 devres_add(dev, ptr); 5135 } else { 5136 devres_free(ptr); 5137 } 5138 5139 return ret; 5140 } 5141 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 5142 5143 /** 5144 * of_clk_del_provider() - Remove a previously registered clock provider 5145 * @np: Device node pointer associated with clock provider 5146 */ 5147 void of_clk_del_provider(struct device_node *np) 5148 { 5149 struct of_clk_provider *cp; 5150 5151 if (!np) 5152 return; 5153 5154 mutex_lock(&of_clk_mutex); 5155 list_for_each_entry(cp, &of_clk_providers, link) { 5156 if (cp->node == np) { 5157 list_del(&cp->link); 5158 fwnode_dev_initialized(&np->fwnode, false); 5159 of_node_put(cp->node); 5160 kfree(cp); 5161 break; 5162 } 5163 } 5164 mutex_unlock(&of_clk_mutex); 5165 } 5166 EXPORT_SYMBOL_GPL(of_clk_del_provider); 5167 5168 /** 5169 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 5170 * @np: device node to parse clock specifier from 5171 * @index: index of phandle to parse clock out of. If index < 0, @name is used 5172 * @name: clock name to find and parse. If name is NULL, the index is used 5173 * @out_args: Result of parsing the clock specifier 5174 * 5175 * Parses a device node's "clocks" and "clock-names" properties to find the 5176 * phandle and cells for the index or name that is desired. The resulting clock 5177 * specifier is placed into @out_args, or an errno is returned when there's a 5178 * parsing error. The @index argument is ignored if @name is non-NULL. 5179 * 5180 * Example: 5181 * 5182 * phandle1: clock-controller@1 { 5183 * #clock-cells = <2>; 5184 * } 5185 * 5186 * phandle2: clock-controller@2 { 5187 * #clock-cells = <1>; 5188 * } 5189 * 5190 * clock-consumer@3 { 5191 * clocks = <&phandle1 1 2 &phandle2 3>; 5192 * clock-names = "name1", "name2"; 5193 * } 5194 * 5195 * To get a device_node for `clock-controller@2' node you may call this 5196 * function a few different ways: 5197 * 5198 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 5199 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 5200 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 5201 * 5202 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 5203 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 5204 * the "clock-names" property of @np. 5205 */ 5206 static int of_parse_clkspec(const struct device_node *np, int index, 5207 const char *name, struct of_phandle_args *out_args) 5208 { 5209 int ret = -ENOENT; 5210 5211 /* Walk up the tree of devices looking for a clock property that matches */ 5212 while (np) { 5213 /* 5214 * For named clocks, first look up the name in the 5215 * "clock-names" property. If it cannot be found, then index 5216 * will be an error code and of_parse_phandle_with_args() will 5217 * return -EINVAL. 5218 */ 5219 if (name) 5220 index = of_property_match_string(np, "clock-names", name); 5221 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 5222 index, out_args); 5223 if (!ret) 5224 break; 5225 if (name && index >= 0) 5226 break; 5227 5228 /* 5229 * No matching clock found on this node. If the parent node 5230 * has a "clock-ranges" property, then we can try one of its 5231 * clocks. 5232 */ 5233 np = np->parent; 5234 if (np && !of_property_present(np, "clock-ranges")) 5235 break; 5236 index = 0; 5237 } 5238 5239 return ret; 5240 } 5241 5242 static struct clk_hw * 5243 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 5244 struct of_phandle_args *clkspec) 5245 { 5246 struct clk *clk; 5247 5248 if (provider->get_hw) 5249 return provider->get_hw(clkspec, provider->data); 5250 5251 clk = provider->get(clkspec, provider->data); 5252 if (IS_ERR(clk)) 5253 return ERR_CAST(clk); 5254 return __clk_get_hw(clk); 5255 } 5256 5257 static struct clk_hw * 5258 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 5259 { 5260 struct of_clk_provider *provider; 5261 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 5262 5263 if (!clkspec) 5264 return ERR_PTR(-EINVAL); 5265 5266 /* Check if node in clkspec is in disabled/fail state */ 5267 if (!of_device_is_available(clkspec->np)) 5268 return ERR_PTR(-ENOENT); 5269 5270 mutex_lock(&of_clk_mutex); 5271 list_for_each_entry(provider, &of_clk_providers, link) { 5272 if (provider->node == clkspec->np) { 5273 hw = __of_clk_get_hw_from_provider(provider, clkspec); 5274 if (!IS_ERR(hw)) 5275 break; 5276 } 5277 } 5278 mutex_unlock(&of_clk_mutex); 5279 5280 return hw; 5281 } 5282 5283 /** 5284 * of_clk_get_from_provider() - Lookup a clock from a clock provider 5285 * @clkspec: pointer to a clock specifier data structure 5286 * 5287 * This function looks up a struct clk from the registered list of clock 5288 * providers, an input is a clock specifier data structure as returned 5289 * from the of_parse_phandle_with_args() function call. 5290 */ 5291 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 5292 { 5293 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 5294 5295 return clk_hw_create_clk(NULL, hw, NULL, __func__); 5296 } 5297 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 5298 5299 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 5300 const char *con_id) 5301 { 5302 int ret; 5303 struct clk_hw *hw; 5304 struct of_phandle_args clkspec; 5305 5306 ret = of_parse_clkspec(np, index, con_id, &clkspec); 5307 if (ret) 5308 return ERR_PTR(ret); 5309 5310 hw = of_clk_get_hw_from_clkspec(&clkspec); 5311 of_node_put(clkspec.np); 5312 5313 return hw; 5314 } 5315 5316 static struct clk *__of_clk_get(struct device_node *np, 5317 int index, const char *dev_id, 5318 const char *con_id) 5319 { 5320 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 5321 5322 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 5323 } 5324 5325 struct clk *of_clk_get(struct device_node *np, int index) 5326 { 5327 return __of_clk_get(np, index, np->full_name, NULL); 5328 } 5329 EXPORT_SYMBOL(of_clk_get); 5330 5331 /** 5332 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 5333 * @np: pointer to clock consumer node 5334 * @name: name of consumer's clock input, or NULL for the first clock reference 5335 * 5336 * This function parses the clocks and clock-names properties, 5337 * and uses them to look up the struct clk from the registered list of clock 5338 * providers. 5339 */ 5340 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 5341 { 5342 if (!np) 5343 return ERR_PTR(-ENOENT); 5344 5345 return __of_clk_get(np, 0, np->full_name, name); 5346 } 5347 EXPORT_SYMBOL(of_clk_get_by_name); 5348 5349 /** 5350 * of_clk_get_parent_count() - Count the number of clocks a device node has 5351 * @np: device node to count 5352 * 5353 * Returns: The number of clocks that are possible parents of this node 5354 */ 5355 unsigned int of_clk_get_parent_count(const struct device_node *np) 5356 { 5357 int count; 5358 5359 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 5360 if (count < 0) 5361 return 0; 5362 5363 return count; 5364 } 5365 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 5366 5367 const char *of_clk_get_parent_name(const struct device_node *np, int index) 5368 { 5369 struct of_phandle_args clkspec; 5370 const char *clk_name; 5371 bool found = false; 5372 u32 pv; 5373 int rc; 5374 int count; 5375 struct clk *clk; 5376 5377 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 5378 &clkspec); 5379 if (rc) 5380 return NULL; 5381 5382 index = clkspec.args_count ? clkspec.args[0] : 0; 5383 count = 0; 5384 5385 /* if there is an indices property, use it to transfer the index 5386 * specified into an array offset for the clock-output-names property. 5387 */ 5388 of_property_for_each_u32(clkspec.np, "clock-indices", pv) { 5389 if (index == pv) { 5390 index = count; 5391 found = true; 5392 break; 5393 } 5394 count++; 5395 } 5396 /* We went off the end of 'clock-indices' without finding it */ 5397 if (of_property_present(clkspec.np, "clock-indices") && !found) { 5398 of_node_put(clkspec.np); 5399 return NULL; 5400 } 5401 5402 if (of_property_read_string_index(clkspec.np, "clock-output-names", 5403 index, 5404 &clk_name) < 0) { 5405 /* 5406 * Best effort to get the name if the clock has been 5407 * registered with the framework. If the clock isn't 5408 * registered, we return the node name as the name of 5409 * the clock as long as #clock-cells = 0. 5410 */ 5411 clk = of_clk_get_from_provider(&clkspec); 5412 if (IS_ERR(clk)) { 5413 if (clkspec.args_count == 0) 5414 clk_name = clkspec.np->name; 5415 else 5416 clk_name = NULL; 5417 } else { 5418 clk_name = __clk_get_name(clk); 5419 clk_put(clk); 5420 } 5421 } 5422 5423 5424 of_node_put(clkspec.np); 5425 return clk_name; 5426 } 5427 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 5428 5429 /** 5430 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 5431 * number of parents 5432 * @np: Device node pointer associated with clock provider 5433 * @parents: pointer to char array that hold the parents' names 5434 * @size: size of the @parents array 5435 * 5436 * Return: number of parents for the clock node. 5437 */ 5438 int of_clk_parent_fill(struct device_node *np, const char **parents, 5439 unsigned int size) 5440 { 5441 unsigned int i = 0; 5442 5443 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 5444 i++; 5445 5446 return i; 5447 } 5448 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 5449 5450 struct clock_provider { 5451 void (*clk_init_cb)(struct device_node *); 5452 struct device_node *np; 5453 struct list_head node; 5454 }; 5455 5456 /* 5457 * This function looks for a parent clock. If there is one, then it 5458 * checks that the provider for this parent clock was initialized, in 5459 * this case the parent clock will be ready. 5460 */ 5461 static int parent_ready(struct device_node *np) 5462 { 5463 int i = 0; 5464 5465 while (true) { 5466 struct clk *clk = of_clk_get(np, i); 5467 5468 /* this parent is ready we can check the next one */ 5469 if (!IS_ERR(clk)) { 5470 clk_put(clk); 5471 i++; 5472 continue; 5473 } 5474 5475 /* at least one parent is not ready, we exit now */ 5476 if (PTR_ERR(clk) == -EPROBE_DEFER) 5477 return 0; 5478 5479 /* 5480 * Here we make assumption that the device tree is 5481 * written correctly. So an error means that there is 5482 * no more parent. As we didn't exit yet, then the 5483 * previous parent are ready. If there is no clock 5484 * parent, no need to wait for them, then we can 5485 * consider their absence as being ready 5486 */ 5487 return 1; 5488 } 5489 } 5490 5491 /** 5492 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5493 * @np: Device node pointer associated with clock provider 5494 * @index: clock index 5495 * @flags: pointer to top-level framework flags 5496 * 5497 * Detects if the clock-critical property exists and, if so, sets the 5498 * corresponding CLK_IS_CRITICAL flag. 5499 * 5500 * Do not use this function. It exists only for legacy Device Tree 5501 * bindings, such as the one-clock-per-node style that are outdated. 5502 * Those bindings typically put all clock data into .dts and the Linux 5503 * driver has no clock data, thus making it impossible to set this flag 5504 * correctly from the driver. Only those drivers may call 5505 * of_clk_detect_critical from their setup functions. 5506 * 5507 * Return: error code or zero on success 5508 */ 5509 int of_clk_detect_critical(struct device_node *np, int index, 5510 unsigned long *flags) 5511 { 5512 uint32_t idx; 5513 5514 if (!np || !flags) 5515 return -EINVAL; 5516 5517 of_property_for_each_u32(np, "clock-critical", idx) 5518 if (index == idx) 5519 *flags |= CLK_IS_CRITICAL; 5520 5521 return 0; 5522 } 5523 5524 /** 5525 * of_clk_init() - Scan and init clock providers from the DT 5526 * @matches: array of compatible values and init functions for providers. 5527 * 5528 * This function scans the device tree for matching clock providers 5529 * and calls their initialization functions. It also does it by trying 5530 * to follow the dependencies. 5531 */ 5532 void __init of_clk_init(const struct of_device_id *matches) 5533 { 5534 const struct of_device_id *match; 5535 struct device_node *np; 5536 struct clock_provider *clk_provider, *next; 5537 bool is_init_done; 5538 bool force = false; 5539 LIST_HEAD(clk_provider_list); 5540 5541 if (!matches) 5542 matches = &__clk_of_table; 5543 5544 /* First prepare the list of the clocks providers */ 5545 for_each_matching_node_and_match(np, matches, &match) { 5546 struct clock_provider *parent; 5547 5548 if (!of_device_is_available(np)) 5549 continue; 5550 5551 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5552 if (!parent) { 5553 list_for_each_entry_safe(clk_provider, next, 5554 &clk_provider_list, node) { 5555 list_del(&clk_provider->node); 5556 of_node_put(clk_provider->np); 5557 kfree(clk_provider); 5558 } 5559 of_node_put(np); 5560 return; 5561 } 5562 5563 parent->clk_init_cb = match->data; 5564 parent->np = of_node_get(np); 5565 list_add_tail(&parent->node, &clk_provider_list); 5566 } 5567 5568 while (!list_empty(&clk_provider_list)) { 5569 is_init_done = false; 5570 list_for_each_entry_safe(clk_provider, next, 5571 &clk_provider_list, node) { 5572 if (force || parent_ready(clk_provider->np)) { 5573 5574 /* Don't populate platform devices */ 5575 of_node_set_flag(clk_provider->np, 5576 OF_POPULATED); 5577 5578 clk_provider->clk_init_cb(clk_provider->np); 5579 of_clk_set_defaults(clk_provider->np, true); 5580 5581 list_del(&clk_provider->node); 5582 of_node_put(clk_provider->np); 5583 kfree(clk_provider); 5584 is_init_done = true; 5585 } 5586 } 5587 5588 /* 5589 * We didn't manage to initialize any of the 5590 * remaining providers during the last loop, so now we 5591 * initialize all the remaining ones unconditionally 5592 * in case the clock parent was not mandatory 5593 */ 5594 if (!is_init_done) 5595 force = true; 5596 } 5597 } 5598 #endif 5599