xref: /linux/drivers/clk/clk.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 /* List of registered clks that use runtime PM */
41 static HLIST_HEAD(clk_rpm_list);
42 static DEFINE_MUTEX(clk_rpm_list_lock);
43 
44 static const struct hlist_head *all_lists[] = {
45 	&clk_root_list,
46 	&clk_orphan_list,
47 	NULL,
48 };
49 
50 /***    private data structures    ***/
51 
52 struct clk_parent_map {
53 	const struct clk_hw	*hw;
54 	struct clk_core		*core;
55 	const char		*fw_name;
56 	const char		*name;
57 	int			index;
58 };
59 
60 struct clk_core {
61 	const char		*name;
62 	const struct clk_ops	*ops;
63 	struct clk_hw		*hw;
64 	struct module		*owner;
65 	struct device		*dev;
66 	struct hlist_node	rpm_node;
67 	struct device_node	*of_node;
68 	struct clk_core		*parent;
69 	struct clk_parent_map	*parents;
70 	u8			num_parents;
71 	u8			new_parent_index;
72 	unsigned long		rate;
73 	unsigned long		req_rate;
74 	unsigned long		new_rate;
75 	struct clk_core		*new_parent;
76 	struct clk_core		*new_child;
77 	unsigned long		flags;
78 	bool			orphan;
79 	bool			rpm_enabled;
80 	unsigned int		enable_count;
81 	unsigned int		prepare_count;
82 	unsigned int		protect_count;
83 	unsigned long		min_rate;
84 	unsigned long		max_rate;
85 	unsigned long		accuracy;
86 	int			phase;
87 	struct clk_duty		duty;
88 	struct hlist_head	children;
89 	struct hlist_node	child_node;
90 	struct hlist_head	clks;
91 	unsigned int		notifier_count;
92 #ifdef CONFIG_DEBUG_FS
93 	struct dentry		*dentry;
94 	struct hlist_node	debug_node;
95 #endif
96 	struct kref		ref;
97 };
98 
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/clk.h>
101 
102 struct clk {
103 	struct clk_core	*core;
104 	struct device *dev;
105 	const char *dev_id;
106 	const char *con_id;
107 	unsigned long min_rate;
108 	unsigned long max_rate;
109 	unsigned int exclusive_count;
110 	struct hlist_node clks_node;
111 };
112 
113 /***           runtime pm          ***/
114 static int clk_pm_runtime_get(struct clk_core *core)
115 {
116 	if (!core->rpm_enabled)
117 		return 0;
118 
119 	return pm_runtime_resume_and_get(core->dev);
120 }
121 
122 static void clk_pm_runtime_put(struct clk_core *core)
123 {
124 	if (!core->rpm_enabled)
125 		return;
126 
127 	pm_runtime_put_sync(core->dev);
128 }
129 
130 /**
131  * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices
132  *
133  * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so
134  * that disabling unused clks avoids a deadlock where a device is runtime PM
135  * resuming/suspending and the runtime PM callback is trying to grab the
136  * prepare_lock for something like clk_prepare_enable() while
137  * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime
138  * PM resume/suspend the device as well.
139  *
140  * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on
141  * success. Otherwise the lock is released on failure.
142  *
143  * Return: 0 on success, negative errno otherwise.
144  */
145 static int clk_pm_runtime_get_all(void)
146 {
147 	int ret;
148 	struct clk_core *core, *failed;
149 
150 	/*
151 	 * Grab the list lock to prevent any new clks from being registered
152 	 * or unregistered until clk_pm_runtime_put_all().
153 	 */
154 	mutex_lock(&clk_rpm_list_lock);
155 
156 	/*
157 	 * Runtime PM "get" all the devices that are needed for the clks
158 	 * currently registered. Do this without holding the prepare_lock, to
159 	 * avoid the deadlock.
160 	 */
161 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
162 		ret = clk_pm_runtime_get(core);
163 		if (ret) {
164 			failed = core;
165 			pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n",
166 			       dev_name(failed->dev), failed->name);
167 			goto err;
168 		}
169 	}
170 
171 	return 0;
172 
173 err:
174 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
175 		if (core == failed)
176 			break;
177 
178 		clk_pm_runtime_put(core);
179 	}
180 	mutex_unlock(&clk_rpm_list_lock);
181 
182 	return ret;
183 }
184 
185 /**
186  * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices
187  *
188  * Put the runtime PM references taken in clk_pm_runtime_get_all() and release
189  * the 'clk_rpm_list_lock'.
190  */
191 static void clk_pm_runtime_put_all(void)
192 {
193 	struct clk_core *core;
194 
195 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node)
196 		clk_pm_runtime_put(core);
197 	mutex_unlock(&clk_rpm_list_lock);
198 }
199 
200 static void clk_pm_runtime_init(struct clk_core *core)
201 {
202 	struct device *dev = core->dev;
203 
204 	if (dev && pm_runtime_enabled(dev)) {
205 		core->rpm_enabled = true;
206 
207 		mutex_lock(&clk_rpm_list_lock);
208 		hlist_add_head(&core->rpm_node, &clk_rpm_list);
209 		mutex_unlock(&clk_rpm_list_lock);
210 	}
211 }
212 
213 /***           locking             ***/
214 static void clk_prepare_lock(void)
215 {
216 	if (!mutex_trylock(&prepare_lock)) {
217 		if (prepare_owner == current) {
218 			prepare_refcnt++;
219 			return;
220 		}
221 		mutex_lock(&prepare_lock);
222 	}
223 	WARN_ON_ONCE(prepare_owner != NULL);
224 	WARN_ON_ONCE(prepare_refcnt != 0);
225 	prepare_owner = current;
226 	prepare_refcnt = 1;
227 }
228 
229 static void clk_prepare_unlock(void)
230 {
231 	WARN_ON_ONCE(prepare_owner != current);
232 	WARN_ON_ONCE(prepare_refcnt == 0);
233 
234 	if (--prepare_refcnt)
235 		return;
236 	prepare_owner = NULL;
237 	mutex_unlock(&prepare_lock);
238 }
239 
240 static unsigned long clk_enable_lock(void)
241 	__acquires(enable_lock)
242 {
243 	unsigned long flags;
244 
245 	/*
246 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
247 	 * we already hold the lock. So, in that case, we rely only on
248 	 * reference counting.
249 	 */
250 	if (!IS_ENABLED(CONFIG_SMP) ||
251 	    !spin_trylock_irqsave(&enable_lock, flags)) {
252 		if (enable_owner == current) {
253 			enable_refcnt++;
254 			__acquire(enable_lock);
255 			if (!IS_ENABLED(CONFIG_SMP))
256 				local_save_flags(flags);
257 			return flags;
258 		}
259 		spin_lock_irqsave(&enable_lock, flags);
260 	}
261 	WARN_ON_ONCE(enable_owner != NULL);
262 	WARN_ON_ONCE(enable_refcnt != 0);
263 	enable_owner = current;
264 	enable_refcnt = 1;
265 	return flags;
266 }
267 
268 static void clk_enable_unlock(unsigned long flags)
269 	__releases(enable_lock)
270 {
271 	WARN_ON_ONCE(enable_owner != current);
272 	WARN_ON_ONCE(enable_refcnt == 0);
273 
274 	if (--enable_refcnt) {
275 		__release(enable_lock);
276 		return;
277 	}
278 	enable_owner = NULL;
279 	spin_unlock_irqrestore(&enable_lock, flags);
280 }
281 
282 static bool clk_core_rate_is_protected(struct clk_core *core)
283 {
284 	return core->protect_count;
285 }
286 
287 static bool clk_core_is_prepared(struct clk_core *core)
288 {
289 	bool ret = false;
290 
291 	/*
292 	 * .is_prepared is optional for clocks that can prepare
293 	 * fall back to software usage counter if it is missing
294 	 */
295 	if (!core->ops->is_prepared)
296 		return core->prepare_count;
297 
298 	if (!clk_pm_runtime_get(core)) {
299 		ret = core->ops->is_prepared(core->hw);
300 		clk_pm_runtime_put(core);
301 	}
302 
303 	return ret;
304 }
305 
306 static bool clk_core_is_enabled(struct clk_core *core)
307 {
308 	bool ret = false;
309 
310 	/*
311 	 * .is_enabled is only mandatory for clocks that gate
312 	 * fall back to software usage counter if .is_enabled is missing
313 	 */
314 	if (!core->ops->is_enabled)
315 		return core->enable_count;
316 
317 	/*
318 	 * Check if clock controller's device is runtime active before
319 	 * calling .is_enabled callback. If not, assume that clock is
320 	 * disabled, because we might be called from atomic context, from
321 	 * which pm_runtime_get() is not allowed.
322 	 * This function is called mainly from clk_disable_unused_subtree,
323 	 * which ensures proper runtime pm activation of controller before
324 	 * taking enable spinlock, but the below check is needed if one tries
325 	 * to call it from other places.
326 	 */
327 	if (core->rpm_enabled) {
328 		pm_runtime_get_noresume(core->dev);
329 		if (!pm_runtime_active(core->dev)) {
330 			ret = false;
331 			goto done;
332 		}
333 	}
334 
335 	/*
336 	 * This could be called with the enable lock held, or from atomic
337 	 * context. If the parent isn't enabled already, we can't do
338 	 * anything here. We can also assume this clock isn't enabled.
339 	 */
340 	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
341 		if (!clk_core_is_enabled(core->parent)) {
342 			ret = false;
343 			goto done;
344 		}
345 
346 	ret = core->ops->is_enabled(core->hw);
347 done:
348 	if (core->rpm_enabled)
349 		pm_runtime_put(core->dev);
350 
351 	return ret;
352 }
353 
354 /***    helper functions   ***/
355 
356 const char *__clk_get_name(const struct clk *clk)
357 {
358 	return !clk ? NULL : clk->core->name;
359 }
360 EXPORT_SYMBOL_GPL(__clk_get_name);
361 
362 const char *clk_hw_get_name(const struct clk_hw *hw)
363 {
364 	return hw->core->name;
365 }
366 EXPORT_SYMBOL_GPL(clk_hw_get_name);
367 
368 struct clk_hw *__clk_get_hw(struct clk *clk)
369 {
370 	return !clk ? NULL : clk->core->hw;
371 }
372 EXPORT_SYMBOL_GPL(__clk_get_hw);
373 
374 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
375 {
376 	return hw->core->num_parents;
377 }
378 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
379 
380 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
381 {
382 	return hw->core->parent ? hw->core->parent->hw : NULL;
383 }
384 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
385 
386 static struct clk_core *__clk_lookup_subtree(const char *name,
387 					     struct clk_core *core)
388 {
389 	struct clk_core *child;
390 	struct clk_core *ret;
391 
392 	if (!strcmp(core->name, name))
393 		return core;
394 
395 	hlist_for_each_entry(child, &core->children, child_node) {
396 		ret = __clk_lookup_subtree(name, child);
397 		if (ret)
398 			return ret;
399 	}
400 
401 	return NULL;
402 }
403 
404 static struct clk_core *clk_core_lookup(const char *name)
405 {
406 	struct clk_core *root_clk;
407 	struct clk_core *ret;
408 
409 	if (!name)
410 		return NULL;
411 
412 	/* search the 'proper' clk tree first */
413 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
414 		ret = __clk_lookup_subtree(name, root_clk);
415 		if (ret)
416 			return ret;
417 	}
418 
419 	/* if not found, then search the orphan tree */
420 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
421 		ret = __clk_lookup_subtree(name, root_clk);
422 		if (ret)
423 			return ret;
424 	}
425 
426 	return NULL;
427 }
428 
429 #ifdef CONFIG_OF
430 static int of_parse_clkspec(const struct device_node *np, int index,
431 			    const char *name, struct of_phandle_args *out_args);
432 static struct clk_hw *
433 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
434 #else
435 static inline int of_parse_clkspec(const struct device_node *np, int index,
436 				   const char *name,
437 				   struct of_phandle_args *out_args)
438 {
439 	return -ENOENT;
440 }
441 static inline struct clk_hw *
442 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
443 {
444 	return ERR_PTR(-ENOENT);
445 }
446 #endif
447 
448 /**
449  * clk_core_get - Find the clk_core parent of a clk
450  * @core: clk to find parent of
451  * @p_index: parent index to search for
452  *
453  * This is the preferred method for clk providers to find the parent of a
454  * clk when that parent is external to the clk controller. The parent_names
455  * array is indexed and treated as a local name matching a string in the device
456  * node's 'clock-names' property or as the 'con_id' matching the device's
457  * dev_name() in a clk_lookup. This allows clk providers to use their own
458  * namespace instead of looking for a globally unique parent string.
459  *
460  * For example the following DT snippet would allow a clock registered by the
461  * clock-controller@c001 that has a clk_init_data::parent_data array
462  * with 'xtal' in the 'name' member to find the clock provided by the
463  * clock-controller@f00abcd without needing to get the globally unique name of
464  * the xtal clk.
465  *
466  *      parent: clock-controller@f00abcd {
467  *              reg = <0xf00abcd 0xabcd>;
468  *              #clock-cells = <0>;
469  *      };
470  *
471  *      clock-controller@c001 {
472  *              reg = <0xc001 0xf00d>;
473  *              clocks = <&parent>;
474  *              clock-names = "xtal";
475  *              #clock-cells = <1>;
476  *      };
477  *
478  * Returns: -ENOENT when the provider can't be found or the clk doesn't
479  * exist in the provider or the name can't be found in the DT node or
480  * in a clkdev lookup. NULL when the provider knows about the clk but it
481  * isn't provided on this system.
482  * A valid clk_core pointer when the clk can be found in the provider.
483  */
484 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
485 {
486 	const char *name = core->parents[p_index].fw_name;
487 	int index = core->parents[p_index].index;
488 	struct clk_hw *hw = ERR_PTR(-ENOENT);
489 	struct device *dev = core->dev;
490 	const char *dev_id = dev ? dev_name(dev) : NULL;
491 	struct device_node *np = core->of_node;
492 	struct of_phandle_args clkspec;
493 
494 	if (np && (name || index >= 0) &&
495 	    !of_parse_clkspec(np, index, name, &clkspec)) {
496 		hw = of_clk_get_hw_from_clkspec(&clkspec);
497 		of_node_put(clkspec.np);
498 	} else if (name) {
499 		/*
500 		 * If the DT search above couldn't find the provider fallback to
501 		 * looking up via clkdev based clk_lookups.
502 		 */
503 		hw = clk_find_hw(dev_id, name);
504 	}
505 
506 	if (IS_ERR(hw))
507 		return ERR_CAST(hw);
508 
509 	if (!hw)
510 		return NULL;
511 
512 	return hw->core;
513 }
514 
515 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
516 {
517 	struct clk_parent_map *entry = &core->parents[index];
518 	struct clk_core *parent;
519 
520 	if (entry->hw) {
521 		parent = entry->hw->core;
522 	} else {
523 		parent = clk_core_get(core, index);
524 		if (PTR_ERR(parent) == -ENOENT && entry->name)
525 			parent = clk_core_lookup(entry->name);
526 	}
527 
528 	/*
529 	 * We have a direct reference but it isn't registered yet?
530 	 * Orphan it and let clk_reparent() update the orphan status
531 	 * when the parent is registered.
532 	 */
533 	if (!parent)
534 		parent = ERR_PTR(-EPROBE_DEFER);
535 
536 	/* Only cache it if it's not an error */
537 	if (!IS_ERR(parent))
538 		entry->core = parent;
539 }
540 
541 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
542 							 u8 index)
543 {
544 	if (!core || index >= core->num_parents || !core->parents)
545 		return NULL;
546 
547 	if (!core->parents[index].core)
548 		clk_core_fill_parent_index(core, index);
549 
550 	return core->parents[index].core;
551 }
552 
553 struct clk_hw *
554 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
555 {
556 	struct clk_core *parent;
557 
558 	parent = clk_core_get_parent_by_index(hw->core, index);
559 
560 	return !parent ? NULL : parent->hw;
561 }
562 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
563 
564 unsigned int __clk_get_enable_count(struct clk *clk)
565 {
566 	return !clk ? 0 : clk->core->enable_count;
567 }
568 
569 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
570 {
571 	if (!core)
572 		return 0;
573 
574 	if (!core->num_parents || core->parent)
575 		return core->rate;
576 
577 	/*
578 	 * Clk must have a parent because num_parents > 0 but the parent isn't
579 	 * known yet. Best to return 0 as the rate of this clk until we can
580 	 * properly recalc the rate based on the parent's rate.
581 	 */
582 	return 0;
583 }
584 
585 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
586 {
587 	return clk_core_get_rate_nolock(hw->core);
588 }
589 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
590 
591 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
592 {
593 	if (!core)
594 		return 0;
595 
596 	return core->accuracy;
597 }
598 
599 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
600 {
601 	return hw->core->flags;
602 }
603 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
604 
605 bool clk_hw_is_prepared(const struct clk_hw *hw)
606 {
607 	return clk_core_is_prepared(hw->core);
608 }
609 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
610 
611 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
612 {
613 	return clk_core_rate_is_protected(hw->core);
614 }
615 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
616 
617 bool clk_hw_is_enabled(const struct clk_hw *hw)
618 {
619 	return clk_core_is_enabled(hw->core);
620 }
621 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
622 
623 bool __clk_is_enabled(struct clk *clk)
624 {
625 	if (!clk)
626 		return false;
627 
628 	return clk_core_is_enabled(clk->core);
629 }
630 EXPORT_SYMBOL_GPL(__clk_is_enabled);
631 
632 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
633 			   unsigned long best, unsigned long flags)
634 {
635 	if (flags & CLK_MUX_ROUND_CLOSEST)
636 		return abs(now - rate) < abs(best - rate);
637 
638 	return now <= rate && now > best;
639 }
640 
641 static void clk_core_init_rate_req(struct clk_core * const core,
642 				   struct clk_rate_request *req,
643 				   unsigned long rate);
644 
645 static int clk_core_round_rate_nolock(struct clk_core *core,
646 				      struct clk_rate_request *req);
647 
648 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
649 {
650 	struct clk_core *tmp;
651 	unsigned int i;
652 
653 	/* Optimize for the case where the parent is already the parent. */
654 	if (core->parent == parent)
655 		return true;
656 
657 	for (i = 0; i < core->num_parents; i++) {
658 		tmp = clk_core_get_parent_by_index(core, i);
659 		if (!tmp)
660 			continue;
661 
662 		if (tmp == parent)
663 			return true;
664 	}
665 
666 	return false;
667 }
668 
669 static void
670 clk_core_forward_rate_req(struct clk_core *core,
671 			  const struct clk_rate_request *old_req,
672 			  struct clk_core *parent,
673 			  struct clk_rate_request *req,
674 			  unsigned long parent_rate)
675 {
676 	if (WARN_ON(!clk_core_has_parent(core, parent)))
677 		return;
678 
679 	clk_core_init_rate_req(parent, req, parent_rate);
680 
681 	if (req->min_rate < old_req->min_rate)
682 		req->min_rate = old_req->min_rate;
683 
684 	if (req->max_rate > old_req->max_rate)
685 		req->max_rate = old_req->max_rate;
686 }
687 
688 static int
689 clk_core_determine_rate_no_reparent(struct clk_hw *hw,
690 				    struct clk_rate_request *req)
691 {
692 	struct clk_core *core = hw->core;
693 	struct clk_core *parent = core->parent;
694 	unsigned long best;
695 	int ret;
696 
697 	if (core->flags & CLK_SET_RATE_PARENT) {
698 		struct clk_rate_request parent_req;
699 
700 		if (!parent) {
701 			req->rate = 0;
702 			return 0;
703 		}
704 
705 		clk_core_forward_rate_req(core, req, parent, &parent_req,
706 					  req->rate);
707 
708 		trace_clk_rate_request_start(&parent_req);
709 
710 		ret = clk_core_round_rate_nolock(parent, &parent_req);
711 		if (ret)
712 			return ret;
713 
714 		trace_clk_rate_request_done(&parent_req);
715 
716 		best = parent_req.rate;
717 	} else if (parent) {
718 		best = clk_core_get_rate_nolock(parent);
719 	} else {
720 		best = clk_core_get_rate_nolock(core);
721 	}
722 
723 	req->best_parent_rate = best;
724 	req->rate = best;
725 
726 	return 0;
727 }
728 
729 int clk_mux_determine_rate_flags(struct clk_hw *hw,
730 				 struct clk_rate_request *req,
731 				 unsigned long flags)
732 {
733 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
734 	int i, num_parents, ret;
735 	unsigned long best = 0;
736 
737 	/* if NO_REPARENT flag set, pass through to current parent */
738 	if (core->flags & CLK_SET_RATE_NO_REPARENT)
739 		return clk_core_determine_rate_no_reparent(hw, req);
740 
741 	/* find the parent that can provide the fastest rate <= rate */
742 	num_parents = core->num_parents;
743 	for (i = 0; i < num_parents; i++) {
744 		unsigned long parent_rate;
745 
746 		parent = clk_core_get_parent_by_index(core, i);
747 		if (!parent)
748 			continue;
749 
750 		if (core->flags & CLK_SET_RATE_PARENT) {
751 			struct clk_rate_request parent_req;
752 
753 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
754 
755 			trace_clk_rate_request_start(&parent_req);
756 
757 			ret = clk_core_round_rate_nolock(parent, &parent_req);
758 			if (ret)
759 				continue;
760 
761 			trace_clk_rate_request_done(&parent_req);
762 
763 			parent_rate = parent_req.rate;
764 		} else {
765 			parent_rate = clk_core_get_rate_nolock(parent);
766 		}
767 
768 		if (mux_is_better_rate(req->rate, parent_rate,
769 				       best, flags)) {
770 			best_parent = parent;
771 			best = parent_rate;
772 		}
773 	}
774 
775 	if (!best_parent)
776 		return -EINVAL;
777 
778 	req->best_parent_hw = best_parent->hw;
779 	req->best_parent_rate = best;
780 	req->rate = best;
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
785 
786 struct clk *__clk_lookup(const char *name)
787 {
788 	struct clk_core *core = clk_core_lookup(name);
789 
790 	return !core ? NULL : core->hw->clk;
791 }
792 
793 static void clk_core_get_boundaries(struct clk_core *core,
794 				    unsigned long *min_rate,
795 				    unsigned long *max_rate)
796 {
797 	struct clk *clk_user;
798 
799 	lockdep_assert_held(&prepare_lock);
800 
801 	*min_rate = core->min_rate;
802 	*max_rate = core->max_rate;
803 
804 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
805 		*min_rate = max(*min_rate, clk_user->min_rate);
806 
807 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
808 		*max_rate = min(*max_rate, clk_user->max_rate);
809 }
810 
811 /*
812  * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
813  * @hw: the hw clk we want to get the range from
814  * @min_rate: pointer to the variable that will hold the minimum
815  * @max_rate: pointer to the variable that will hold the maximum
816  *
817  * Fills the @min_rate and @max_rate variables with the minimum and
818  * maximum that clock can reach.
819  */
820 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
821 			   unsigned long *max_rate)
822 {
823 	clk_core_get_boundaries(hw->core, min_rate, max_rate);
824 }
825 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
826 
827 static bool clk_core_check_boundaries(struct clk_core *core,
828 				      unsigned long min_rate,
829 				      unsigned long max_rate)
830 {
831 	struct clk *user;
832 
833 	lockdep_assert_held(&prepare_lock);
834 
835 	if (min_rate > core->max_rate || max_rate < core->min_rate)
836 		return false;
837 
838 	hlist_for_each_entry(user, &core->clks, clks_node)
839 		if (min_rate > user->max_rate || max_rate < user->min_rate)
840 			return false;
841 
842 	return true;
843 }
844 
845 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
846 			   unsigned long max_rate)
847 {
848 	hw->core->min_rate = min_rate;
849 	hw->core->max_rate = max_rate;
850 }
851 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
852 
853 /*
854  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
855  * @hw: mux type clk to determine rate on
856  * @req: rate request, also used to return preferred parent and frequencies
857  *
858  * Helper for finding best parent to provide a given frequency. This can be used
859  * directly as a determine_rate callback (e.g. for a mux), or from a more
860  * complex clock that may combine a mux with other operations.
861  *
862  * Returns: 0 on success, -EERROR value on error
863  */
864 int __clk_mux_determine_rate(struct clk_hw *hw,
865 			     struct clk_rate_request *req)
866 {
867 	return clk_mux_determine_rate_flags(hw, req, 0);
868 }
869 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
870 
871 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
872 				     struct clk_rate_request *req)
873 {
874 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
875 }
876 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
877 
878 /*
879  * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
880  * @hw: mux type clk to determine rate on
881  * @req: rate request, also used to return preferred frequency
882  *
883  * Helper for finding best parent rate to provide a given frequency.
884  * This can be used directly as a determine_rate callback (e.g. for a
885  * mux), or from a more complex clock that may combine a mux with other
886  * operations.
887  *
888  * Returns: 0 on success, -EERROR value on error
889  */
890 int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
891 				      struct clk_rate_request *req)
892 {
893 	return clk_core_determine_rate_no_reparent(hw, req);
894 }
895 EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
896 
897 /***        clk api        ***/
898 
899 static void clk_core_rate_unprotect(struct clk_core *core)
900 {
901 	lockdep_assert_held(&prepare_lock);
902 
903 	if (!core)
904 		return;
905 
906 	if (WARN(core->protect_count == 0,
907 	    "%s already unprotected\n", core->name))
908 		return;
909 
910 	if (--core->protect_count > 0)
911 		return;
912 
913 	clk_core_rate_unprotect(core->parent);
914 }
915 
916 static int clk_core_rate_nuke_protect(struct clk_core *core)
917 {
918 	int ret;
919 
920 	lockdep_assert_held(&prepare_lock);
921 
922 	if (!core)
923 		return -EINVAL;
924 
925 	if (core->protect_count == 0)
926 		return 0;
927 
928 	ret = core->protect_count;
929 	core->protect_count = 1;
930 	clk_core_rate_unprotect(core);
931 
932 	return ret;
933 }
934 
935 /**
936  * clk_rate_exclusive_put - release exclusivity over clock rate control
937  * @clk: the clk over which the exclusivity is released
938  *
939  * clk_rate_exclusive_put() completes a critical section during which a clock
940  * consumer cannot tolerate any other consumer making any operation on the
941  * clock which could result in a rate change or rate glitch. Exclusive clocks
942  * cannot have their rate changed, either directly or indirectly due to changes
943  * further up the parent chain of clocks. As a result, clocks up parent chain
944  * also get under exclusive control of the calling consumer.
945  *
946  * If exlusivity is claimed more than once on clock, even by the same consumer,
947  * the rate effectively gets locked as exclusivity can't be preempted.
948  *
949  * Calls to clk_rate_exclusive_put() must be balanced with calls to
950  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
951  * error status.
952  */
953 void clk_rate_exclusive_put(struct clk *clk)
954 {
955 	if (!clk)
956 		return;
957 
958 	clk_prepare_lock();
959 
960 	/*
961 	 * if there is something wrong with this consumer protect count, stop
962 	 * here before messing with the provider
963 	 */
964 	if (WARN_ON(clk->exclusive_count <= 0))
965 		goto out;
966 
967 	clk_core_rate_unprotect(clk->core);
968 	clk->exclusive_count--;
969 out:
970 	clk_prepare_unlock();
971 }
972 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
973 
974 static void clk_core_rate_protect(struct clk_core *core)
975 {
976 	lockdep_assert_held(&prepare_lock);
977 
978 	if (!core)
979 		return;
980 
981 	if (core->protect_count == 0)
982 		clk_core_rate_protect(core->parent);
983 
984 	core->protect_count++;
985 }
986 
987 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
988 {
989 	lockdep_assert_held(&prepare_lock);
990 
991 	if (!core)
992 		return;
993 
994 	if (count == 0)
995 		return;
996 
997 	clk_core_rate_protect(core);
998 	core->protect_count = count;
999 }
1000 
1001 /**
1002  * clk_rate_exclusive_get - get exclusivity over the clk rate control
1003  * @clk: the clk over which the exclusity of rate control is requested
1004  *
1005  * clk_rate_exclusive_get() begins a critical section during which a clock
1006  * consumer cannot tolerate any other consumer making any operation on the
1007  * clock which could result in a rate change or rate glitch. Exclusive clocks
1008  * cannot have their rate changed, either directly or indirectly due to changes
1009  * further up the parent chain of clocks. As a result, clocks up parent chain
1010  * also get under exclusive control of the calling consumer.
1011  *
1012  * If exlusivity is claimed more than once on clock, even by the same consumer,
1013  * the rate effectively gets locked as exclusivity can't be preempted.
1014  *
1015  * Calls to clk_rate_exclusive_get() should be balanced with calls to
1016  * clk_rate_exclusive_put(). Calls to this function may sleep.
1017  * Returns 0 on success, -EERROR otherwise
1018  */
1019 int clk_rate_exclusive_get(struct clk *clk)
1020 {
1021 	if (!clk)
1022 		return 0;
1023 
1024 	clk_prepare_lock();
1025 	clk_core_rate_protect(clk->core);
1026 	clk->exclusive_count++;
1027 	clk_prepare_unlock();
1028 
1029 	return 0;
1030 }
1031 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
1032 
1033 static void devm_clk_rate_exclusive_put(void *data)
1034 {
1035 	struct clk *clk = data;
1036 
1037 	clk_rate_exclusive_put(clk);
1038 }
1039 
1040 int devm_clk_rate_exclusive_get(struct device *dev, struct clk *clk)
1041 {
1042 	int ret;
1043 
1044 	ret = clk_rate_exclusive_get(clk);
1045 	if (ret)
1046 		return ret;
1047 
1048 	return devm_add_action_or_reset(dev, devm_clk_rate_exclusive_put, clk);
1049 }
1050 EXPORT_SYMBOL_GPL(devm_clk_rate_exclusive_get);
1051 
1052 static void clk_core_unprepare(struct clk_core *core)
1053 {
1054 	lockdep_assert_held(&prepare_lock);
1055 
1056 	if (!core)
1057 		return;
1058 
1059 	if (WARN(core->prepare_count == 0,
1060 	    "%s already unprepared\n", core->name))
1061 		return;
1062 
1063 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
1064 	    "Unpreparing critical %s\n", core->name))
1065 		return;
1066 
1067 	if (core->flags & CLK_SET_RATE_GATE)
1068 		clk_core_rate_unprotect(core);
1069 
1070 	if (--core->prepare_count > 0)
1071 		return;
1072 
1073 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
1074 
1075 	trace_clk_unprepare(core);
1076 
1077 	if (core->ops->unprepare)
1078 		core->ops->unprepare(core->hw);
1079 
1080 	trace_clk_unprepare_complete(core);
1081 	clk_core_unprepare(core->parent);
1082 	clk_pm_runtime_put(core);
1083 }
1084 
1085 static void clk_core_unprepare_lock(struct clk_core *core)
1086 {
1087 	clk_prepare_lock();
1088 	clk_core_unprepare(core);
1089 	clk_prepare_unlock();
1090 }
1091 
1092 /**
1093  * clk_unprepare - undo preparation of a clock source
1094  * @clk: the clk being unprepared
1095  *
1096  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
1097  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
1098  * if the operation may sleep.  One example is a clk which is accessed over
1099  * I2c.  In the complex case a clk gate operation may require a fast and a slow
1100  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
1101  * exclusive.  In fact clk_disable must be called before clk_unprepare.
1102  */
1103 void clk_unprepare(struct clk *clk)
1104 {
1105 	if (IS_ERR_OR_NULL(clk))
1106 		return;
1107 
1108 	clk_core_unprepare_lock(clk->core);
1109 }
1110 EXPORT_SYMBOL_GPL(clk_unprepare);
1111 
1112 static int clk_core_prepare(struct clk_core *core)
1113 {
1114 	int ret = 0;
1115 
1116 	lockdep_assert_held(&prepare_lock);
1117 
1118 	if (!core)
1119 		return 0;
1120 
1121 	if (core->prepare_count == 0) {
1122 		ret = clk_pm_runtime_get(core);
1123 		if (ret)
1124 			return ret;
1125 
1126 		ret = clk_core_prepare(core->parent);
1127 		if (ret)
1128 			goto runtime_put;
1129 
1130 		trace_clk_prepare(core);
1131 
1132 		if (core->ops->prepare)
1133 			ret = core->ops->prepare(core->hw);
1134 
1135 		trace_clk_prepare_complete(core);
1136 
1137 		if (ret)
1138 			goto unprepare;
1139 	}
1140 
1141 	core->prepare_count++;
1142 
1143 	/*
1144 	 * CLK_SET_RATE_GATE is a special case of clock protection
1145 	 * Instead of a consumer claiming exclusive rate control, it is
1146 	 * actually the provider which prevents any consumer from making any
1147 	 * operation which could result in a rate change or rate glitch while
1148 	 * the clock is prepared.
1149 	 */
1150 	if (core->flags & CLK_SET_RATE_GATE)
1151 		clk_core_rate_protect(core);
1152 
1153 	return 0;
1154 unprepare:
1155 	clk_core_unprepare(core->parent);
1156 runtime_put:
1157 	clk_pm_runtime_put(core);
1158 	return ret;
1159 }
1160 
1161 static int clk_core_prepare_lock(struct clk_core *core)
1162 {
1163 	int ret;
1164 
1165 	clk_prepare_lock();
1166 	ret = clk_core_prepare(core);
1167 	clk_prepare_unlock();
1168 
1169 	return ret;
1170 }
1171 
1172 /**
1173  * clk_prepare - prepare a clock source
1174  * @clk: the clk being prepared
1175  *
1176  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1177  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1178  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1179  * the complex case a clk ungate operation may require a fast and a slow part.
1180  * It is this reason that clk_prepare and clk_enable are not mutually
1181  * exclusive.  In fact clk_prepare must be called before clk_enable.
1182  * Returns 0 on success, -EERROR otherwise.
1183  */
1184 int clk_prepare(struct clk *clk)
1185 {
1186 	if (!clk)
1187 		return 0;
1188 
1189 	return clk_core_prepare_lock(clk->core);
1190 }
1191 EXPORT_SYMBOL_GPL(clk_prepare);
1192 
1193 static void clk_core_disable(struct clk_core *core)
1194 {
1195 	lockdep_assert_held(&enable_lock);
1196 
1197 	if (!core)
1198 		return;
1199 
1200 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1201 		return;
1202 
1203 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1204 	    "Disabling critical %s\n", core->name))
1205 		return;
1206 
1207 	if (--core->enable_count > 0)
1208 		return;
1209 
1210 	trace_clk_disable(core);
1211 
1212 	if (core->ops->disable)
1213 		core->ops->disable(core->hw);
1214 
1215 	trace_clk_disable_complete(core);
1216 
1217 	clk_core_disable(core->parent);
1218 }
1219 
1220 static void clk_core_disable_lock(struct clk_core *core)
1221 {
1222 	unsigned long flags;
1223 
1224 	flags = clk_enable_lock();
1225 	clk_core_disable(core);
1226 	clk_enable_unlock(flags);
1227 }
1228 
1229 /**
1230  * clk_disable - gate a clock
1231  * @clk: the clk being gated
1232  *
1233  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1234  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1235  * clk if the operation is fast and will never sleep.  One example is a
1236  * SoC-internal clk which is controlled via simple register writes.  In the
1237  * complex case a clk gate operation may require a fast and a slow part.  It is
1238  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1239  * In fact clk_disable must be called before clk_unprepare.
1240  */
1241 void clk_disable(struct clk *clk)
1242 {
1243 	if (IS_ERR_OR_NULL(clk))
1244 		return;
1245 
1246 	clk_core_disable_lock(clk->core);
1247 }
1248 EXPORT_SYMBOL_GPL(clk_disable);
1249 
1250 static int clk_core_enable(struct clk_core *core)
1251 {
1252 	int ret = 0;
1253 
1254 	lockdep_assert_held(&enable_lock);
1255 
1256 	if (!core)
1257 		return 0;
1258 
1259 	if (WARN(core->prepare_count == 0,
1260 	    "Enabling unprepared %s\n", core->name))
1261 		return -ESHUTDOWN;
1262 
1263 	if (core->enable_count == 0) {
1264 		ret = clk_core_enable(core->parent);
1265 
1266 		if (ret)
1267 			return ret;
1268 
1269 		trace_clk_enable(core);
1270 
1271 		if (core->ops->enable)
1272 			ret = core->ops->enable(core->hw);
1273 
1274 		trace_clk_enable_complete(core);
1275 
1276 		if (ret) {
1277 			clk_core_disable(core->parent);
1278 			return ret;
1279 		}
1280 	}
1281 
1282 	core->enable_count++;
1283 	return 0;
1284 }
1285 
1286 static int clk_core_enable_lock(struct clk_core *core)
1287 {
1288 	unsigned long flags;
1289 	int ret;
1290 
1291 	flags = clk_enable_lock();
1292 	ret = clk_core_enable(core);
1293 	clk_enable_unlock(flags);
1294 
1295 	return ret;
1296 }
1297 
1298 /**
1299  * clk_gate_restore_context - restore context for poweroff
1300  * @hw: the clk_hw pointer of clock whose state is to be restored
1301  *
1302  * The clock gate restore context function enables or disables
1303  * the gate clocks based on the enable_count. This is done in cases
1304  * where the clock context is lost and based on the enable_count
1305  * the clock either needs to be enabled/disabled. This
1306  * helps restore the state of gate clocks.
1307  */
1308 void clk_gate_restore_context(struct clk_hw *hw)
1309 {
1310 	struct clk_core *core = hw->core;
1311 
1312 	if (core->enable_count)
1313 		core->ops->enable(hw);
1314 	else
1315 		core->ops->disable(hw);
1316 }
1317 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1318 
1319 static int clk_core_save_context(struct clk_core *core)
1320 {
1321 	struct clk_core *child;
1322 	int ret = 0;
1323 
1324 	hlist_for_each_entry(child, &core->children, child_node) {
1325 		ret = clk_core_save_context(child);
1326 		if (ret < 0)
1327 			return ret;
1328 	}
1329 
1330 	if (core->ops && core->ops->save_context)
1331 		ret = core->ops->save_context(core->hw);
1332 
1333 	return ret;
1334 }
1335 
1336 static void clk_core_restore_context(struct clk_core *core)
1337 {
1338 	struct clk_core *child;
1339 
1340 	if (core->ops && core->ops->restore_context)
1341 		core->ops->restore_context(core->hw);
1342 
1343 	hlist_for_each_entry(child, &core->children, child_node)
1344 		clk_core_restore_context(child);
1345 }
1346 
1347 /**
1348  * clk_save_context - save clock context for poweroff
1349  *
1350  * Saves the context of the clock register for powerstates in which the
1351  * contents of the registers will be lost. Occurs deep within the suspend
1352  * code.  Returns 0 on success.
1353  */
1354 int clk_save_context(void)
1355 {
1356 	struct clk_core *clk;
1357 	int ret;
1358 
1359 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1360 		ret = clk_core_save_context(clk);
1361 		if (ret < 0)
1362 			return ret;
1363 	}
1364 
1365 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1366 		ret = clk_core_save_context(clk);
1367 		if (ret < 0)
1368 			return ret;
1369 	}
1370 
1371 	return 0;
1372 }
1373 EXPORT_SYMBOL_GPL(clk_save_context);
1374 
1375 /**
1376  * clk_restore_context - restore clock context after poweroff
1377  *
1378  * Restore the saved clock context upon resume.
1379  *
1380  */
1381 void clk_restore_context(void)
1382 {
1383 	struct clk_core *core;
1384 
1385 	hlist_for_each_entry(core, &clk_root_list, child_node)
1386 		clk_core_restore_context(core);
1387 
1388 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1389 		clk_core_restore_context(core);
1390 }
1391 EXPORT_SYMBOL_GPL(clk_restore_context);
1392 
1393 /**
1394  * clk_enable - ungate a clock
1395  * @clk: the clk being ungated
1396  *
1397  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1398  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1399  * if the operation will never sleep.  One example is a SoC-internal clk which
1400  * is controlled via simple register writes.  In the complex case a clk ungate
1401  * operation may require a fast and a slow part.  It is this reason that
1402  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1403  * must be called before clk_enable.  Returns 0 on success, -EERROR
1404  * otherwise.
1405  */
1406 int clk_enable(struct clk *clk)
1407 {
1408 	if (!clk)
1409 		return 0;
1410 
1411 	return clk_core_enable_lock(clk->core);
1412 }
1413 EXPORT_SYMBOL_GPL(clk_enable);
1414 
1415 /**
1416  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1417  * @clk: clock source
1418  *
1419  * Returns true if clk_prepare() implicitly enables the clock, effectively
1420  * making clk_enable()/clk_disable() no-ops, false otherwise.
1421  *
1422  * This is of interest mainly to power management code where actually
1423  * disabling the clock also requires unpreparing it to have any material
1424  * effect.
1425  *
1426  * Regardless of the value returned here, the caller must always invoke
1427  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1428  * to be right.
1429  */
1430 bool clk_is_enabled_when_prepared(struct clk *clk)
1431 {
1432 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1433 }
1434 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1435 
1436 static int clk_core_prepare_enable(struct clk_core *core)
1437 {
1438 	int ret;
1439 
1440 	ret = clk_core_prepare_lock(core);
1441 	if (ret)
1442 		return ret;
1443 
1444 	ret = clk_core_enable_lock(core);
1445 	if (ret)
1446 		clk_core_unprepare_lock(core);
1447 
1448 	return ret;
1449 }
1450 
1451 static void clk_core_disable_unprepare(struct clk_core *core)
1452 {
1453 	clk_core_disable_lock(core);
1454 	clk_core_unprepare_lock(core);
1455 }
1456 
1457 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1458 {
1459 	struct clk_core *child;
1460 
1461 	lockdep_assert_held(&prepare_lock);
1462 
1463 	hlist_for_each_entry(child, &core->children, child_node)
1464 		clk_unprepare_unused_subtree(child);
1465 
1466 	if (core->prepare_count)
1467 		return;
1468 
1469 	if (core->flags & CLK_IGNORE_UNUSED)
1470 		return;
1471 
1472 	if (clk_core_is_prepared(core)) {
1473 		trace_clk_unprepare(core);
1474 		if (core->ops->unprepare_unused)
1475 			core->ops->unprepare_unused(core->hw);
1476 		else if (core->ops->unprepare)
1477 			core->ops->unprepare(core->hw);
1478 		trace_clk_unprepare_complete(core);
1479 	}
1480 }
1481 
1482 static void __init clk_disable_unused_subtree(struct clk_core *core)
1483 {
1484 	struct clk_core *child;
1485 	unsigned long flags;
1486 
1487 	lockdep_assert_held(&prepare_lock);
1488 
1489 	hlist_for_each_entry(child, &core->children, child_node)
1490 		clk_disable_unused_subtree(child);
1491 
1492 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1493 		clk_core_prepare_enable(core->parent);
1494 
1495 	flags = clk_enable_lock();
1496 
1497 	if (core->enable_count)
1498 		goto unlock_out;
1499 
1500 	if (core->flags & CLK_IGNORE_UNUSED)
1501 		goto unlock_out;
1502 
1503 	/*
1504 	 * some gate clocks have special needs during the disable-unused
1505 	 * sequence.  call .disable_unused if available, otherwise fall
1506 	 * back to .disable
1507 	 */
1508 	if (clk_core_is_enabled(core)) {
1509 		trace_clk_disable(core);
1510 		if (core->ops->disable_unused)
1511 			core->ops->disable_unused(core->hw);
1512 		else if (core->ops->disable)
1513 			core->ops->disable(core->hw);
1514 		trace_clk_disable_complete(core);
1515 	}
1516 
1517 unlock_out:
1518 	clk_enable_unlock(flags);
1519 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1520 		clk_core_disable_unprepare(core->parent);
1521 }
1522 
1523 static bool clk_ignore_unused __initdata;
1524 static int __init clk_ignore_unused_setup(char *__unused)
1525 {
1526 	clk_ignore_unused = true;
1527 	return 1;
1528 }
1529 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1530 
1531 static int __init clk_disable_unused(void)
1532 {
1533 	struct clk_core *core;
1534 	int ret;
1535 
1536 	if (clk_ignore_unused) {
1537 		pr_warn("clk: Not disabling unused clocks\n");
1538 		return 0;
1539 	}
1540 
1541 	pr_info("clk: Disabling unused clocks\n");
1542 
1543 	ret = clk_pm_runtime_get_all();
1544 	if (ret)
1545 		return ret;
1546 	/*
1547 	 * Grab the prepare lock to keep the clk topology stable while iterating
1548 	 * over clks.
1549 	 */
1550 	clk_prepare_lock();
1551 
1552 	hlist_for_each_entry(core, &clk_root_list, child_node)
1553 		clk_disable_unused_subtree(core);
1554 
1555 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1556 		clk_disable_unused_subtree(core);
1557 
1558 	hlist_for_each_entry(core, &clk_root_list, child_node)
1559 		clk_unprepare_unused_subtree(core);
1560 
1561 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1562 		clk_unprepare_unused_subtree(core);
1563 
1564 	clk_prepare_unlock();
1565 
1566 	clk_pm_runtime_put_all();
1567 
1568 	return 0;
1569 }
1570 late_initcall_sync(clk_disable_unused);
1571 
1572 static int clk_core_determine_round_nolock(struct clk_core *core,
1573 					   struct clk_rate_request *req)
1574 {
1575 	long rate;
1576 
1577 	lockdep_assert_held(&prepare_lock);
1578 
1579 	if (!core)
1580 		return 0;
1581 
1582 	/*
1583 	 * Some clock providers hand-craft their clk_rate_requests and
1584 	 * might not fill min_rate and max_rate.
1585 	 *
1586 	 * If it's the case, clamping the rate is equivalent to setting
1587 	 * the rate to 0 which is bad. Skip the clamping but complain so
1588 	 * that it gets fixed, hopefully.
1589 	 */
1590 	if (!req->min_rate && !req->max_rate)
1591 		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1592 			__func__, core->name);
1593 	else
1594 		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1595 
1596 	/*
1597 	 * At this point, core protection will be disabled
1598 	 * - if the provider is not protected at all
1599 	 * - if the calling consumer is the only one which has exclusivity
1600 	 *   over the provider
1601 	 */
1602 	if (clk_core_rate_is_protected(core)) {
1603 		req->rate = core->rate;
1604 	} else if (core->ops->determine_rate) {
1605 		return core->ops->determine_rate(core->hw, req);
1606 	} else if (core->ops->round_rate) {
1607 		rate = core->ops->round_rate(core->hw, req->rate,
1608 					     &req->best_parent_rate);
1609 		if (rate < 0)
1610 			return rate;
1611 
1612 		req->rate = rate;
1613 	} else {
1614 		return -EINVAL;
1615 	}
1616 
1617 	return 0;
1618 }
1619 
1620 static void clk_core_init_rate_req(struct clk_core * const core,
1621 				   struct clk_rate_request *req,
1622 				   unsigned long rate)
1623 {
1624 	struct clk_core *parent;
1625 
1626 	if (WARN_ON(!req))
1627 		return;
1628 
1629 	memset(req, 0, sizeof(*req));
1630 	req->max_rate = ULONG_MAX;
1631 
1632 	if (!core)
1633 		return;
1634 
1635 	req->core = core;
1636 	req->rate = rate;
1637 	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1638 
1639 	parent = core->parent;
1640 	if (parent) {
1641 		req->best_parent_hw = parent->hw;
1642 		req->best_parent_rate = parent->rate;
1643 	} else {
1644 		req->best_parent_hw = NULL;
1645 		req->best_parent_rate = 0;
1646 	}
1647 }
1648 
1649 /**
1650  * clk_hw_init_rate_request - Initializes a clk_rate_request
1651  * @hw: the clk for which we want to submit a rate request
1652  * @req: the clk_rate_request structure we want to initialise
1653  * @rate: the rate which is to be requested
1654  *
1655  * Initializes a clk_rate_request structure to submit to
1656  * __clk_determine_rate() or similar functions.
1657  */
1658 void clk_hw_init_rate_request(const struct clk_hw *hw,
1659 			      struct clk_rate_request *req,
1660 			      unsigned long rate)
1661 {
1662 	if (WARN_ON(!hw || !req))
1663 		return;
1664 
1665 	clk_core_init_rate_req(hw->core, req, rate);
1666 }
1667 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1668 
1669 /**
1670  * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1671  * @hw: the original clock that got the rate request
1672  * @old_req: the original clk_rate_request structure we want to forward
1673  * @parent: the clk we want to forward @old_req to
1674  * @req: the clk_rate_request structure we want to initialise
1675  * @parent_rate: The rate which is to be requested to @parent
1676  *
1677  * Initializes a clk_rate_request structure to submit to a clock parent
1678  * in __clk_determine_rate() or similar functions.
1679  */
1680 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1681 				 const struct clk_rate_request *old_req,
1682 				 const struct clk_hw *parent,
1683 				 struct clk_rate_request *req,
1684 				 unsigned long parent_rate)
1685 {
1686 	if (WARN_ON(!hw || !old_req || !parent || !req))
1687 		return;
1688 
1689 	clk_core_forward_rate_req(hw->core, old_req,
1690 				  parent->core, req,
1691 				  parent_rate);
1692 }
1693 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1694 
1695 static bool clk_core_can_round(struct clk_core * const core)
1696 {
1697 	return core->ops->determine_rate || core->ops->round_rate;
1698 }
1699 
1700 static int clk_core_round_rate_nolock(struct clk_core *core,
1701 				      struct clk_rate_request *req)
1702 {
1703 	int ret;
1704 
1705 	lockdep_assert_held(&prepare_lock);
1706 
1707 	if (!core) {
1708 		req->rate = 0;
1709 		return 0;
1710 	}
1711 
1712 	if (clk_core_can_round(core))
1713 		return clk_core_determine_round_nolock(core, req);
1714 
1715 	if (core->flags & CLK_SET_RATE_PARENT) {
1716 		struct clk_rate_request parent_req;
1717 
1718 		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1719 
1720 		trace_clk_rate_request_start(&parent_req);
1721 
1722 		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1723 		if (ret)
1724 			return ret;
1725 
1726 		trace_clk_rate_request_done(&parent_req);
1727 
1728 		req->best_parent_rate = parent_req.rate;
1729 		req->rate = parent_req.rate;
1730 
1731 		return 0;
1732 	}
1733 
1734 	req->rate = core->rate;
1735 	return 0;
1736 }
1737 
1738 /**
1739  * __clk_determine_rate - get the closest rate actually supported by a clock
1740  * @hw: determine the rate of this clock
1741  * @req: target rate request
1742  *
1743  * Useful for clk_ops such as .set_rate and .determine_rate.
1744  */
1745 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1746 {
1747 	if (!hw) {
1748 		req->rate = 0;
1749 		return 0;
1750 	}
1751 
1752 	return clk_core_round_rate_nolock(hw->core, req);
1753 }
1754 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1755 
1756 /**
1757  * clk_hw_round_rate() - round the given rate for a hw clk
1758  * @hw: the hw clk for which we are rounding a rate
1759  * @rate: the rate which is to be rounded
1760  *
1761  * Takes in a rate as input and rounds it to a rate that the clk can actually
1762  * use.
1763  *
1764  * Context: prepare_lock must be held.
1765  *          For clk providers to call from within clk_ops such as .round_rate,
1766  *          .determine_rate.
1767  *
1768  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1769  *         else returns the parent rate.
1770  */
1771 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1772 {
1773 	int ret;
1774 	struct clk_rate_request req;
1775 
1776 	clk_core_init_rate_req(hw->core, &req, rate);
1777 
1778 	trace_clk_rate_request_start(&req);
1779 
1780 	ret = clk_core_round_rate_nolock(hw->core, &req);
1781 	if (ret)
1782 		return 0;
1783 
1784 	trace_clk_rate_request_done(&req);
1785 
1786 	return req.rate;
1787 }
1788 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1789 
1790 /**
1791  * clk_round_rate - round the given rate for a clk
1792  * @clk: the clk for which we are rounding a rate
1793  * @rate: the rate which is to be rounded
1794  *
1795  * Takes in a rate as input and rounds it to a rate that the clk can actually
1796  * use which is then returned.  If clk doesn't support round_rate operation
1797  * then the parent rate is returned.
1798  */
1799 long clk_round_rate(struct clk *clk, unsigned long rate)
1800 {
1801 	struct clk_rate_request req;
1802 	int ret;
1803 
1804 	if (!clk)
1805 		return 0;
1806 
1807 	clk_prepare_lock();
1808 
1809 	if (clk->exclusive_count)
1810 		clk_core_rate_unprotect(clk->core);
1811 
1812 	clk_core_init_rate_req(clk->core, &req, rate);
1813 
1814 	trace_clk_rate_request_start(&req);
1815 
1816 	ret = clk_core_round_rate_nolock(clk->core, &req);
1817 
1818 	trace_clk_rate_request_done(&req);
1819 
1820 	if (clk->exclusive_count)
1821 		clk_core_rate_protect(clk->core);
1822 
1823 	clk_prepare_unlock();
1824 
1825 	if (ret)
1826 		return ret;
1827 
1828 	return req.rate;
1829 }
1830 EXPORT_SYMBOL_GPL(clk_round_rate);
1831 
1832 /**
1833  * __clk_notify - call clk notifier chain
1834  * @core: clk that is changing rate
1835  * @msg: clk notifier type (see include/linux/clk.h)
1836  * @old_rate: old clk rate
1837  * @new_rate: new clk rate
1838  *
1839  * Triggers a notifier call chain on the clk rate-change notification
1840  * for 'clk'.  Passes a pointer to the struct clk and the previous
1841  * and current rates to the notifier callback.  Intended to be called by
1842  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1843  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1844  * a driver returns that.
1845  */
1846 static int __clk_notify(struct clk_core *core, unsigned long msg,
1847 		unsigned long old_rate, unsigned long new_rate)
1848 {
1849 	struct clk_notifier *cn;
1850 	struct clk_notifier_data cnd;
1851 	int ret = NOTIFY_DONE;
1852 
1853 	cnd.old_rate = old_rate;
1854 	cnd.new_rate = new_rate;
1855 
1856 	list_for_each_entry(cn, &clk_notifier_list, node) {
1857 		if (cn->clk->core == core) {
1858 			cnd.clk = cn->clk;
1859 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1860 					&cnd);
1861 			if (ret & NOTIFY_STOP_MASK)
1862 				return ret;
1863 		}
1864 	}
1865 
1866 	return ret;
1867 }
1868 
1869 /**
1870  * __clk_recalc_accuracies
1871  * @core: first clk in the subtree
1872  *
1873  * Walks the subtree of clks starting with clk and recalculates accuracies as
1874  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1875  * callback then it is assumed that the clock will take on the accuracy of its
1876  * parent.
1877  */
1878 static void __clk_recalc_accuracies(struct clk_core *core)
1879 {
1880 	unsigned long parent_accuracy = 0;
1881 	struct clk_core *child;
1882 
1883 	lockdep_assert_held(&prepare_lock);
1884 
1885 	if (core->parent)
1886 		parent_accuracy = core->parent->accuracy;
1887 
1888 	if (core->ops->recalc_accuracy)
1889 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1890 							  parent_accuracy);
1891 	else
1892 		core->accuracy = parent_accuracy;
1893 
1894 	hlist_for_each_entry(child, &core->children, child_node)
1895 		__clk_recalc_accuracies(child);
1896 }
1897 
1898 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1899 {
1900 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1901 		__clk_recalc_accuracies(core);
1902 
1903 	return clk_core_get_accuracy_no_lock(core);
1904 }
1905 
1906 /**
1907  * clk_get_accuracy - return the accuracy of clk
1908  * @clk: the clk whose accuracy is being returned
1909  *
1910  * Simply returns the cached accuracy of the clk, unless
1911  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1912  * issued.
1913  * If clk is NULL then returns 0.
1914  */
1915 long clk_get_accuracy(struct clk *clk)
1916 {
1917 	long accuracy;
1918 
1919 	if (!clk)
1920 		return 0;
1921 
1922 	clk_prepare_lock();
1923 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1924 	clk_prepare_unlock();
1925 
1926 	return accuracy;
1927 }
1928 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1929 
1930 static unsigned long clk_recalc(struct clk_core *core,
1931 				unsigned long parent_rate)
1932 {
1933 	unsigned long rate = parent_rate;
1934 
1935 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1936 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1937 		clk_pm_runtime_put(core);
1938 	}
1939 	return rate;
1940 }
1941 
1942 /**
1943  * __clk_recalc_rates
1944  * @core: first clk in the subtree
1945  * @update_req: Whether req_rate should be updated with the new rate
1946  * @msg: notification type (see include/linux/clk.h)
1947  *
1948  * Walks the subtree of clks starting with clk and recalculates rates as it
1949  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1950  * it is assumed that the clock will take on the rate of its parent.
1951  *
1952  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1953  * if necessary.
1954  */
1955 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1956 			       unsigned long msg)
1957 {
1958 	unsigned long old_rate;
1959 	unsigned long parent_rate = 0;
1960 	struct clk_core *child;
1961 
1962 	lockdep_assert_held(&prepare_lock);
1963 
1964 	old_rate = core->rate;
1965 
1966 	if (core->parent)
1967 		parent_rate = core->parent->rate;
1968 
1969 	core->rate = clk_recalc(core, parent_rate);
1970 	if (update_req)
1971 		core->req_rate = core->rate;
1972 
1973 	/*
1974 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1975 	 * & ABORT_RATE_CHANGE notifiers
1976 	 */
1977 	if (core->notifier_count && msg)
1978 		__clk_notify(core, msg, old_rate, core->rate);
1979 
1980 	hlist_for_each_entry(child, &core->children, child_node)
1981 		__clk_recalc_rates(child, update_req, msg);
1982 }
1983 
1984 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1985 {
1986 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1987 		__clk_recalc_rates(core, false, 0);
1988 
1989 	return clk_core_get_rate_nolock(core);
1990 }
1991 
1992 /**
1993  * clk_get_rate - return the rate of clk
1994  * @clk: the clk whose rate is being returned
1995  *
1996  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1997  * is set, which means a recalc_rate will be issued. Can be called regardless of
1998  * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1999  * 0.
2000  */
2001 unsigned long clk_get_rate(struct clk *clk)
2002 {
2003 	unsigned long rate;
2004 
2005 	if (!clk)
2006 		return 0;
2007 
2008 	clk_prepare_lock();
2009 	rate = clk_core_get_rate_recalc(clk->core);
2010 	clk_prepare_unlock();
2011 
2012 	return rate;
2013 }
2014 EXPORT_SYMBOL_GPL(clk_get_rate);
2015 
2016 static int clk_fetch_parent_index(struct clk_core *core,
2017 				  struct clk_core *parent)
2018 {
2019 	int i;
2020 
2021 	if (!parent)
2022 		return -EINVAL;
2023 
2024 	for (i = 0; i < core->num_parents; i++) {
2025 		/* Found it first try! */
2026 		if (core->parents[i].core == parent)
2027 			return i;
2028 
2029 		/* Something else is here, so keep looking */
2030 		if (core->parents[i].core)
2031 			continue;
2032 
2033 		/* Maybe core hasn't been cached but the hw is all we know? */
2034 		if (core->parents[i].hw) {
2035 			if (core->parents[i].hw == parent->hw)
2036 				break;
2037 
2038 			/* Didn't match, but we're expecting a clk_hw */
2039 			continue;
2040 		}
2041 
2042 		/* Maybe it hasn't been cached (clk_set_parent() path) */
2043 		if (parent == clk_core_get(core, i))
2044 			break;
2045 
2046 		/* Fallback to comparing globally unique names */
2047 		if (core->parents[i].name &&
2048 		    !strcmp(parent->name, core->parents[i].name))
2049 			break;
2050 	}
2051 
2052 	if (i == core->num_parents)
2053 		return -EINVAL;
2054 
2055 	core->parents[i].core = parent;
2056 	return i;
2057 }
2058 
2059 /**
2060  * clk_hw_get_parent_index - return the index of the parent clock
2061  * @hw: clk_hw associated with the clk being consumed
2062  *
2063  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
2064  * clock does not have a current parent.
2065  */
2066 int clk_hw_get_parent_index(struct clk_hw *hw)
2067 {
2068 	struct clk_hw *parent = clk_hw_get_parent(hw);
2069 
2070 	if (WARN_ON(parent == NULL))
2071 		return -EINVAL;
2072 
2073 	return clk_fetch_parent_index(hw->core, parent->core);
2074 }
2075 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
2076 
2077 /*
2078  * Update the orphan status of @core and all its children.
2079  */
2080 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
2081 {
2082 	struct clk_core *child;
2083 
2084 	core->orphan = is_orphan;
2085 
2086 	hlist_for_each_entry(child, &core->children, child_node)
2087 		clk_core_update_orphan_status(child, is_orphan);
2088 }
2089 
2090 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
2091 {
2092 	bool was_orphan = core->orphan;
2093 
2094 	hlist_del(&core->child_node);
2095 
2096 	if (new_parent) {
2097 		bool becomes_orphan = new_parent->orphan;
2098 
2099 		/* avoid duplicate POST_RATE_CHANGE notifications */
2100 		if (new_parent->new_child == core)
2101 			new_parent->new_child = NULL;
2102 
2103 		hlist_add_head(&core->child_node, &new_parent->children);
2104 
2105 		if (was_orphan != becomes_orphan)
2106 			clk_core_update_orphan_status(core, becomes_orphan);
2107 	} else {
2108 		hlist_add_head(&core->child_node, &clk_orphan_list);
2109 		if (!was_orphan)
2110 			clk_core_update_orphan_status(core, true);
2111 	}
2112 
2113 	core->parent = new_parent;
2114 }
2115 
2116 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2117 					   struct clk_core *parent)
2118 {
2119 	unsigned long flags;
2120 	struct clk_core *old_parent = core->parent;
2121 
2122 	/*
2123 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2124 	 *
2125 	 * 2. Migrate prepare state between parents and prevent race with
2126 	 * clk_enable().
2127 	 *
2128 	 * If the clock is not prepared, then a race with
2129 	 * clk_enable/disable() is impossible since we already have the
2130 	 * prepare lock (future calls to clk_enable() need to be preceded by
2131 	 * a clk_prepare()).
2132 	 *
2133 	 * If the clock is prepared, migrate the prepared state to the new
2134 	 * parent and also protect against a race with clk_enable() by
2135 	 * forcing the clock and the new parent on.  This ensures that all
2136 	 * future calls to clk_enable() are practically NOPs with respect to
2137 	 * hardware and software states.
2138 	 *
2139 	 * See also: Comment for clk_set_parent() below.
2140 	 */
2141 
2142 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2143 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2144 		clk_core_prepare_enable(old_parent);
2145 		clk_core_prepare_enable(parent);
2146 	}
2147 
2148 	/* migrate prepare count if > 0 */
2149 	if (core->prepare_count) {
2150 		clk_core_prepare_enable(parent);
2151 		clk_core_enable_lock(core);
2152 	}
2153 
2154 	/* update the clk tree topology */
2155 	flags = clk_enable_lock();
2156 	clk_reparent(core, parent);
2157 	clk_enable_unlock(flags);
2158 
2159 	return old_parent;
2160 }
2161 
2162 static void __clk_set_parent_after(struct clk_core *core,
2163 				   struct clk_core *parent,
2164 				   struct clk_core *old_parent)
2165 {
2166 	/*
2167 	 * Finish the migration of prepare state and undo the changes done
2168 	 * for preventing a race with clk_enable().
2169 	 */
2170 	if (core->prepare_count) {
2171 		clk_core_disable_lock(core);
2172 		clk_core_disable_unprepare(old_parent);
2173 	}
2174 
2175 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2176 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2177 		clk_core_disable_unprepare(parent);
2178 		clk_core_disable_unprepare(old_parent);
2179 	}
2180 }
2181 
2182 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2183 			    u8 p_index)
2184 {
2185 	unsigned long flags;
2186 	int ret = 0;
2187 	struct clk_core *old_parent;
2188 
2189 	old_parent = __clk_set_parent_before(core, parent);
2190 
2191 	trace_clk_set_parent(core, parent);
2192 
2193 	/* change clock input source */
2194 	if (parent && core->ops->set_parent)
2195 		ret = core->ops->set_parent(core->hw, p_index);
2196 
2197 	trace_clk_set_parent_complete(core, parent);
2198 
2199 	if (ret) {
2200 		flags = clk_enable_lock();
2201 		clk_reparent(core, old_parent);
2202 		clk_enable_unlock(flags);
2203 
2204 		__clk_set_parent_after(core, old_parent, parent);
2205 
2206 		return ret;
2207 	}
2208 
2209 	__clk_set_parent_after(core, parent, old_parent);
2210 
2211 	return 0;
2212 }
2213 
2214 /**
2215  * __clk_speculate_rates
2216  * @core: first clk in the subtree
2217  * @parent_rate: the "future" rate of clk's parent
2218  *
2219  * Walks the subtree of clks starting with clk, speculating rates as it
2220  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2221  *
2222  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2223  * pre-rate change notifications and returns early if no clks in the
2224  * subtree have subscribed to the notifications.  Note that if a clk does not
2225  * implement the .recalc_rate callback then it is assumed that the clock will
2226  * take on the rate of its parent.
2227  */
2228 static int __clk_speculate_rates(struct clk_core *core,
2229 				 unsigned long parent_rate)
2230 {
2231 	struct clk_core *child;
2232 	unsigned long new_rate;
2233 	int ret = NOTIFY_DONE;
2234 
2235 	lockdep_assert_held(&prepare_lock);
2236 
2237 	new_rate = clk_recalc(core, parent_rate);
2238 
2239 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2240 	if (core->notifier_count)
2241 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2242 
2243 	if (ret & NOTIFY_STOP_MASK) {
2244 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2245 				__func__, core->name, ret);
2246 		goto out;
2247 	}
2248 
2249 	hlist_for_each_entry(child, &core->children, child_node) {
2250 		ret = __clk_speculate_rates(child, new_rate);
2251 		if (ret & NOTIFY_STOP_MASK)
2252 			break;
2253 	}
2254 
2255 out:
2256 	return ret;
2257 }
2258 
2259 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2260 			     struct clk_core *new_parent, u8 p_index)
2261 {
2262 	struct clk_core *child;
2263 
2264 	core->new_rate = new_rate;
2265 	core->new_parent = new_parent;
2266 	core->new_parent_index = p_index;
2267 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2268 	core->new_child = NULL;
2269 	if (new_parent && new_parent != core->parent)
2270 		new_parent->new_child = core;
2271 
2272 	hlist_for_each_entry(child, &core->children, child_node) {
2273 		child->new_rate = clk_recalc(child, new_rate);
2274 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2275 	}
2276 }
2277 
2278 /*
2279  * calculate the new rates returning the topmost clock that has to be
2280  * changed.
2281  */
2282 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2283 					   unsigned long rate)
2284 {
2285 	struct clk_core *top = core;
2286 	struct clk_core *old_parent, *parent;
2287 	unsigned long best_parent_rate = 0;
2288 	unsigned long new_rate;
2289 	unsigned long min_rate;
2290 	unsigned long max_rate;
2291 	int p_index = 0;
2292 	long ret;
2293 
2294 	/* sanity */
2295 	if (IS_ERR_OR_NULL(core))
2296 		return NULL;
2297 
2298 	/* save parent rate, if it exists */
2299 	parent = old_parent = core->parent;
2300 	if (parent)
2301 		best_parent_rate = parent->rate;
2302 
2303 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2304 
2305 	/* find the closest rate and parent clk/rate */
2306 	if (clk_core_can_round(core)) {
2307 		struct clk_rate_request req;
2308 
2309 		clk_core_init_rate_req(core, &req, rate);
2310 
2311 		trace_clk_rate_request_start(&req);
2312 
2313 		ret = clk_core_determine_round_nolock(core, &req);
2314 		if (ret < 0)
2315 			return NULL;
2316 
2317 		trace_clk_rate_request_done(&req);
2318 
2319 		best_parent_rate = req.best_parent_rate;
2320 		new_rate = req.rate;
2321 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2322 
2323 		if (new_rate < min_rate || new_rate > max_rate)
2324 			return NULL;
2325 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2326 		/* pass-through clock without adjustable parent */
2327 		core->new_rate = core->rate;
2328 		return NULL;
2329 	} else {
2330 		/* pass-through clock with adjustable parent */
2331 		top = clk_calc_new_rates(parent, rate);
2332 		new_rate = parent->new_rate;
2333 		goto out;
2334 	}
2335 
2336 	/* some clocks must be gated to change parent */
2337 	if (parent != old_parent &&
2338 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2339 		pr_debug("%s: %s not gated but wants to reparent\n",
2340 			 __func__, core->name);
2341 		return NULL;
2342 	}
2343 
2344 	/* try finding the new parent index */
2345 	if (parent && core->num_parents > 1) {
2346 		p_index = clk_fetch_parent_index(core, parent);
2347 		if (p_index < 0) {
2348 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2349 				 __func__, parent->name, core->name);
2350 			return NULL;
2351 		}
2352 	}
2353 
2354 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2355 	    best_parent_rate != parent->rate)
2356 		top = clk_calc_new_rates(parent, best_parent_rate);
2357 
2358 out:
2359 	clk_calc_subtree(core, new_rate, parent, p_index);
2360 
2361 	return top;
2362 }
2363 
2364 /*
2365  * Notify about rate changes in a subtree. Always walk down the whole tree
2366  * so that in case of an error we can walk down the whole tree again and
2367  * abort the change.
2368  */
2369 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2370 						  unsigned long event)
2371 {
2372 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2373 	int ret = NOTIFY_DONE;
2374 
2375 	if (core->rate == core->new_rate)
2376 		return NULL;
2377 
2378 	if (core->notifier_count) {
2379 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2380 		if (ret & NOTIFY_STOP_MASK)
2381 			fail_clk = core;
2382 	}
2383 
2384 	hlist_for_each_entry(child, &core->children, child_node) {
2385 		/* Skip children who will be reparented to another clock */
2386 		if (child->new_parent && child->new_parent != core)
2387 			continue;
2388 		tmp_clk = clk_propagate_rate_change(child, event);
2389 		if (tmp_clk)
2390 			fail_clk = tmp_clk;
2391 	}
2392 
2393 	/* handle the new child who might not be in core->children yet */
2394 	if (core->new_child) {
2395 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2396 		if (tmp_clk)
2397 			fail_clk = tmp_clk;
2398 	}
2399 
2400 	return fail_clk;
2401 }
2402 
2403 /*
2404  * walk down a subtree and set the new rates notifying the rate
2405  * change on the way
2406  */
2407 static void clk_change_rate(struct clk_core *core)
2408 {
2409 	struct clk_core *child;
2410 	struct hlist_node *tmp;
2411 	unsigned long old_rate;
2412 	unsigned long best_parent_rate = 0;
2413 	bool skip_set_rate = false;
2414 	struct clk_core *old_parent;
2415 	struct clk_core *parent = NULL;
2416 
2417 	old_rate = core->rate;
2418 
2419 	if (core->new_parent) {
2420 		parent = core->new_parent;
2421 		best_parent_rate = core->new_parent->rate;
2422 	} else if (core->parent) {
2423 		parent = core->parent;
2424 		best_parent_rate = core->parent->rate;
2425 	}
2426 
2427 	if (clk_pm_runtime_get(core))
2428 		return;
2429 
2430 	if (core->flags & CLK_SET_RATE_UNGATE) {
2431 		clk_core_prepare(core);
2432 		clk_core_enable_lock(core);
2433 	}
2434 
2435 	if (core->new_parent && core->new_parent != core->parent) {
2436 		old_parent = __clk_set_parent_before(core, core->new_parent);
2437 		trace_clk_set_parent(core, core->new_parent);
2438 
2439 		if (core->ops->set_rate_and_parent) {
2440 			skip_set_rate = true;
2441 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2442 					best_parent_rate,
2443 					core->new_parent_index);
2444 		} else if (core->ops->set_parent) {
2445 			core->ops->set_parent(core->hw, core->new_parent_index);
2446 		}
2447 
2448 		trace_clk_set_parent_complete(core, core->new_parent);
2449 		__clk_set_parent_after(core, core->new_parent, old_parent);
2450 	}
2451 
2452 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2453 		clk_core_prepare_enable(parent);
2454 
2455 	trace_clk_set_rate(core, core->new_rate);
2456 
2457 	if (!skip_set_rate && core->ops->set_rate)
2458 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2459 
2460 	trace_clk_set_rate_complete(core, core->new_rate);
2461 
2462 	core->rate = clk_recalc(core, best_parent_rate);
2463 
2464 	if (core->flags & CLK_SET_RATE_UNGATE) {
2465 		clk_core_disable_lock(core);
2466 		clk_core_unprepare(core);
2467 	}
2468 
2469 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2470 		clk_core_disable_unprepare(parent);
2471 
2472 	if (core->notifier_count && old_rate != core->rate)
2473 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2474 
2475 	if (core->flags & CLK_RECALC_NEW_RATES)
2476 		(void)clk_calc_new_rates(core, core->new_rate);
2477 
2478 	/*
2479 	 * Use safe iteration, as change_rate can actually swap parents
2480 	 * for certain clock types.
2481 	 */
2482 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2483 		/* Skip children who will be reparented to another clock */
2484 		if (child->new_parent && child->new_parent != core)
2485 			continue;
2486 		clk_change_rate(child);
2487 	}
2488 
2489 	/* handle the new child who might not be in core->children yet */
2490 	if (core->new_child)
2491 		clk_change_rate(core->new_child);
2492 
2493 	clk_pm_runtime_put(core);
2494 }
2495 
2496 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2497 						     unsigned long req_rate)
2498 {
2499 	int ret, cnt;
2500 	struct clk_rate_request req;
2501 
2502 	lockdep_assert_held(&prepare_lock);
2503 
2504 	if (!core)
2505 		return 0;
2506 
2507 	/* simulate what the rate would be if it could be freely set */
2508 	cnt = clk_core_rate_nuke_protect(core);
2509 	if (cnt < 0)
2510 		return cnt;
2511 
2512 	clk_core_init_rate_req(core, &req, req_rate);
2513 
2514 	trace_clk_rate_request_start(&req);
2515 
2516 	ret = clk_core_round_rate_nolock(core, &req);
2517 
2518 	trace_clk_rate_request_done(&req);
2519 
2520 	/* restore the protection */
2521 	clk_core_rate_restore_protect(core, cnt);
2522 
2523 	return ret ? 0 : req.rate;
2524 }
2525 
2526 static int clk_core_set_rate_nolock(struct clk_core *core,
2527 				    unsigned long req_rate)
2528 {
2529 	struct clk_core *top, *fail_clk;
2530 	unsigned long rate;
2531 	int ret;
2532 
2533 	if (!core)
2534 		return 0;
2535 
2536 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2537 
2538 	/* bail early if nothing to do */
2539 	if (rate == clk_core_get_rate_nolock(core))
2540 		return 0;
2541 
2542 	/* fail on a direct rate set of a protected provider */
2543 	if (clk_core_rate_is_protected(core))
2544 		return -EBUSY;
2545 
2546 	/* calculate new rates and get the topmost changed clock */
2547 	top = clk_calc_new_rates(core, req_rate);
2548 	if (!top)
2549 		return -EINVAL;
2550 
2551 	ret = clk_pm_runtime_get(core);
2552 	if (ret)
2553 		return ret;
2554 
2555 	/* notify that we are about to change rates */
2556 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2557 	if (fail_clk) {
2558 		pr_debug("%s: failed to set %s rate\n", __func__,
2559 				fail_clk->name);
2560 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2561 		ret = -EBUSY;
2562 		goto err;
2563 	}
2564 
2565 	/* change the rates */
2566 	clk_change_rate(top);
2567 
2568 	core->req_rate = req_rate;
2569 err:
2570 	clk_pm_runtime_put(core);
2571 
2572 	return ret;
2573 }
2574 
2575 /**
2576  * clk_set_rate - specify a new rate for clk
2577  * @clk: the clk whose rate is being changed
2578  * @rate: the new rate for clk
2579  *
2580  * In the simplest case clk_set_rate will only adjust the rate of clk.
2581  *
2582  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2583  * propagate up to clk's parent; whether or not this happens depends on the
2584  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2585  * after calling .round_rate then upstream parent propagation is ignored.  If
2586  * *parent_rate comes back with a new rate for clk's parent then we propagate
2587  * up to clk's parent and set its rate.  Upward propagation will continue
2588  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2589  * .round_rate stops requesting changes to clk's parent_rate.
2590  *
2591  * Rate changes are accomplished via tree traversal that also recalculates the
2592  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2593  *
2594  * Returns 0 on success, -EERROR otherwise.
2595  */
2596 int clk_set_rate(struct clk *clk, unsigned long rate)
2597 {
2598 	int ret;
2599 
2600 	if (!clk)
2601 		return 0;
2602 
2603 	/* prevent racing with updates to the clock topology */
2604 	clk_prepare_lock();
2605 
2606 	if (clk->exclusive_count)
2607 		clk_core_rate_unprotect(clk->core);
2608 
2609 	ret = clk_core_set_rate_nolock(clk->core, rate);
2610 
2611 	if (clk->exclusive_count)
2612 		clk_core_rate_protect(clk->core);
2613 
2614 	clk_prepare_unlock();
2615 
2616 	return ret;
2617 }
2618 EXPORT_SYMBOL_GPL(clk_set_rate);
2619 
2620 /**
2621  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2622  * @clk: the clk whose rate is being changed
2623  * @rate: the new rate for clk
2624  *
2625  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2626  * within a critical section
2627  *
2628  * This can be used initially to ensure that at least 1 consumer is
2629  * satisfied when several consumers are competing for exclusivity over the
2630  * same clock provider.
2631  *
2632  * The exclusivity is not applied if setting the rate failed.
2633  *
2634  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2635  * clk_rate_exclusive_put().
2636  *
2637  * Returns 0 on success, -EERROR otherwise.
2638  */
2639 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2640 {
2641 	int ret;
2642 
2643 	if (!clk)
2644 		return 0;
2645 
2646 	/* prevent racing with updates to the clock topology */
2647 	clk_prepare_lock();
2648 
2649 	/*
2650 	 * The temporary protection removal is not here, on purpose
2651 	 * This function is meant to be used instead of clk_rate_protect,
2652 	 * so before the consumer code path protect the clock provider
2653 	 */
2654 
2655 	ret = clk_core_set_rate_nolock(clk->core, rate);
2656 	if (!ret) {
2657 		clk_core_rate_protect(clk->core);
2658 		clk->exclusive_count++;
2659 	}
2660 
2661 	clk_prepare_unlock();
2662 
2663 	return ret;
2664 }
2665 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2666 
2667 static int clk_set_rate_range_nolock(struct clk *clk,
2668 				     unsigned long min,
2669 				     unsigned long max)
2670 {
2671 	int ret = 0;
2672 	unsigned long old_min, old_max, rate;
2673 
2674 	lockdep_assert_held(&prepare_lock);
2675 
2676 	if (!clk)
2677 		return 0;
2678 
2679 	trace_clk_set_rate_range(clk->core, min, max);
2680 
2681 	if (min > max) {
2682 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2683 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2684 		       min, max);
2685 		return -EINVAL;
2686 	}
2687 
2688 	if (clk->exclusive_count)
2689 		clk_core_rate_unprotect(clk->core);
2690 
2691 	/* Save the current values in case we need to rollback the change */
2692 	old_min = clk->min_rate;
2693 	old_max = clk->max_rate;
2694 	clk->min_rate = min;
2695 	clk->max_rate = max;
2696 
2697 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2698 		ret = -EINVAL;
2699 		goto out;
2700 	}
2701 
2702 	rate = clk->core->req_rate;
2703 	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2704 		rate = clk_core_get_rate_recalc(clk->core);
2705 
2706 	/*
2707 	 * Since the boundaries have been changed, let's give the
2708 	 * opportunity to the provider to adjust the clock rate based on
2709 	 * the new boundaries.
2710 	 *
2711 	 * We also need to handle the case where the clock is currently
2712 	 * outside of the boundaries. Clamping the last requested rate
2713 	 * to the current minimum and maximum will also handle this.
2714 	 *
2715 	 * FIXME:
2716 	 * There is a catch. It may fail for the usual reason (clock
2717 	 * broken, clock protected, etc) but also because:
2718 	 * - round_rate() was not favorable and fell on the wrong
2719 	 *   side of the boundary
2720 	 * - the determine_rate() callback does not really check for
2721 	 *   this corner case when determining the rate
2722 	 */
2723 	rate = clamp(rate, min, max);
2724 	ret = clk_core_set_rate_nolock(clk->core, rate);
2725 	if (ret) {
2726 		/* rollback the changes */
2727 		clk->min_rate = old_min;
2728 		clk->max_rate = old_max;
2729 	}
2730 
2731 out:
2732 	if (clk->exclusive_count)
2733 		clk_core_rate_protect(clk->core);
2734 
2735 	return ret;
2736 }
2737 
2738 /**
2739  * clk_set_rate_range - set a rate range for a clock source
2740  * @clk: clock source
2741  * @min: desired minimum clock rate in Hz, inclusive
2742  * @max: desired maximum clock rate in Hz, inclusive
2743  *
2744  * Return: 0 for success or negative errno on failure.
2745  */
2746 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2747 {
2748 	int ret;
2749 
2750 	if (!clk)
2751 		return 0;
2752 
2753 	clk_prepare_lock();
2754 
2755 	ret = clk_set_rate_range_nolock(clk, min, max);
2756 
2757 	clk_prepare_unlock();
2758 
2759 	return ret;
2760 }
2761 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2762 
2763 /**
2764  * clk_set_min_rate - set a minimum clock rate for a clock source
2765  * @clk: clock source
2766  * @rate: desired minimum clock rate in Hz, inclusive
2767  *
2768  * Returns success (0) or negative errno.
2769  */
2770 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2771 {
2772 	if (!clk)
2773 		return 0;
2774 
2775 	trace_clk_set_min_rate(clk->core, rate);
2776 
2777 	return clk_set_rate_range(clk, rate, clk->max_rate);
2778 }
2779 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2780 
2781 /**
2782  * clk_set_max_rate - set a maximum clock rate for a clock source
2783  * @clk: clock source
2784  * @rate: desired maximum clock rate in Hz, inclusive
2785  *
2786  * Returns success (0) or negative errno.
2787  */
2788 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2789 {
2790 	if (!clk)
2791 		return 0;
2792 
2793 	trace_clk_set_max_rate(clk->core, rate);
2794 
2795 	return clk_set_rate_range(clk, clk->min_rate, rate);
2796 }
2797 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2798 
2799 /**
2800  * clk_get_parent - return the parent of a clk
2801  * @clk: the clk whose parent gets returned
2802  *
2803  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2804  */
2805 struct clk *clk_get_parent(struct clk *clk)
2806 {
2807 	struct clk *parent;
2808 
2809 	if (!clk)
2810 		return NULL;
2811 
2812 	clk_prepare_lock();
2813 	/* TODO: Create a per-user clk and change callers to call clk_put */
2814 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2815 	clk_prepare_unlock();
2816 
2817 	return parent;
2818 }
2819 EXPORT_SYMBOL_GPL(clk_get_parent);
2820 
2821 static struct clk_core *__clk_init_parent(struct clk_core *core)
2822 {
2823 	u8 index = 0;
2824 
2825 	if (core->num_parents > 1 && core->ops->get_parent)
2826 		index = core->ops->get_parent(core->hw);
2827 
2828 	return clk_core_get_parent_by_index(core, index);
2829 }
2830 
2831 static void clk_core_reparent(struct clk_core *core,
2832 				  struct clk_core *new_parent)
2833 {
2834 	clk_reparent(core, new_parent);
2835 	__clk_recalc_accuracies(core);
2836 	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2837 }
2838 
2839 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2840 {
2841 	if (!hw)
2842 		return;
2843 
2844 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2845 }
2846 
2847 /**
2848  * clk_has_parent - check if a clock is a possible parent for another
2849  * @clk: clock source
2850  * @parent: parent clock source
2851  *
2852  * This function can be used in drivers that need to check that a clock can be
2853  * the parent of another without actually changing the parent.
2854  *
2855  * Returns true if @parent is a possible parent for @clk, false otherwise.
2856  */
2857 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2858 {
2859 	/* NULL clocks should be nops, so return success if either is NULL. */
2860 	if (!clk || !parent)
2861 		return true;
2862 
2863 	return clk_core_has_parent(clk->core, parent->core);
2864 }
2865 EXPORT_SYMBOL_GPL(clk_has_parent);
2866 
2867 static int clk_core_set_parent_nolock(struct clk_core *core,
2868 				      struct clk_core *parent)
2869 {
2870 	int ret = 0;
2871 	int p_index = 0;
2872 	unsigned long p_rate = 0;
2873 
2874 	lockdep_assert_held(&prepare_lock);
2875 
2876 	if (!core)
2877 		return 0;
2878 
2879 	if (core->parent == parent)
2880 		return 0;
2881 
2882 	/* verify ops for multi-parent clks */
2883 	if (core->num_parents > 1 && !core->ops->set_parent)
2884 		return -EPERM;
2885 
2886 	/* check that we are allowed to re-parent if the clock is in use */
2887 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2888 		return -EBUSY;
2889 
2890 	if (clk_core_rate_is_protected(core))
2891 		return -EBUSY;
2892 
2893 	/* try finding the new parent index */
2894 	if (parent) {
2895 		p_index = clk_fetch_parent_index(core, parent);
2896 		if (p_index < 0) {
2897 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2898 					__func__, parent->name, core->name);
2899 			return p_index;
2900 		}
2901 		p_rate = parent->rate;
2902 	}
2903 
2904 	ret = clk_pm_runtime_get(core);
2905 	if (ret)
2906 		return ret;
2907 
2908 	/* propagate PRE_RATE_CHANGE notifications */
2909 	ret = __clk_speculate_rates(core, p_rate);
2910 
2911 	/* abort if a driver objects */
2912 	if (ret & NOTIFY_STOP_MASK)
2913 		goto runtime_put;
2914 
2915 	/* do the re-parent */
2916 	ret = __clk_set_parent(core, parent, p_index);
2917 
2918 	/* propagate rate an accuracy recalculation accordingly */
2919 	if (ret) {
2920 		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2921 	} else {
2922 		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2923 		__clk_recalc_accuracies(core);
2924 	}
2925 
2926 runtime_put:
2927 	clk_pm_runtime_put(core);
2928 
2929 	return ret;
2930 }
2931 
2932 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2933 {
2934 	return clk_core_set_parent_nolock(hw->core, parent->core);
2935 }
2936 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2937 
2938 /**
2939  * clk_set_parent - switch the parent of a mux clk
2940  * @clk: the mux clk whose input we are switching
2941  * @parent: the new input to clk
2942  *
2943  * Re-parent clk to use parent as its new input source.  If clk is in
2944  * prepared state, the clk will get enabled for the duration of this call. If
2945  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2946  * that, the reparenting is glitchy in hardware, etc), use the
2947  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2948  *
2949  * After successfully changing clk's parent clk_set_parent will update the
2950  * clk topology, sysfs topology and propagate rate recalculation via
2951  * __clk_recalc_rates.
2952  *
2953  * Returns 0 on success, -EERROR otherwise.
2954  */
2955 int clk_set_parent(struct clk *clk, struct clk *parent)
2956 {
2957 	int ret;
2958 
2959 	if (!clk)
2960 		return 0;
2961 
2962 	clk_prepare_lock();
2963 
2964 	if (clk->exclusive_count)
2965 		clk_core_rate_unprotect(clk->core);
2966 
2967 	ret = clk_core_set_parent_nolock(clk->core,
2968 					 parent ? parent->core : NULL);
2969 
2970 	if (clk->exclusive_count)
2971 		clk_core_rate_protect(clk->core);
2972 
2973 	clk_prepare_unlock();
2974 
2975 	return ret;
2976 }
2977 EXPORT_SYMBOL_GPL(clk_set_parent);
2978 
2979 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2980 {
2981 	int ret = -EINVAL;
2982 
2983 	lockdep_assert_held(&prepare_lock);
2984 
2985 	if (!core)
2986 		return 0;
2987 
2988 	if (clk_core_rate_is_protected(core))
2989 		return -EBUSY;
2990 
2991 	trace_clk_set_phase(core, degrees);
2992 
2993 	if (core->ops->set_phase) {
2994 		ret = core->ops->set_phase(core->hw, degrees);
2995 		if (!ret)
2996 			core->phase = degrees;
2997 	}
2998 
2999 	trace_clk_set_phase_complete(core, degrees);
3000 
3001 	return ret;
3002 }
3003 
3004 /**
3005  * clk_set_phase - adjust the phase shift of a clock signal
3006  * @clk: clock signal source
3007  * @degrees: number of degrees the signal is shifted
3008  *
3009  * Shifts the phase of a clock signal by the specified
3010  * degrees. Returns 0 on success, -EERROR otherwise.
3011  *
3012  * This function makes no distinction about the input or reference
3013  * signal that we adjust the clock signal phase against. For example
3014  * phase locked-loop clock signal generators we may shift phase with
3015  * respect to feedback clock signal input, but for other cases the
3016  * clock phase may be shifted with respect to some other, unspecified
3017  * signal.
3018  *
3019  * Additionally the concept of phase shift does not propagate through
3020  * the clock tree hierarchy, which sets it apart from clock rates and
3021  * clock accuracy. A parent clock phase attribute does not have an
3022  * impact on the phase attribute of a child clock.
3023  */
3024 int clk_set_phase(struct clk *clk, int degrees)
3025 {
3026 	int ret;
3027 
3028 	if (!clk)
3029 		return 0;
3030 
3031 	/* sanity check degrees */
3032 	degrees %= 360;
3033 	if (degrees < 0)
3034 		degrees += 360;
3035 
3036 	clk_prepare_lock();
3037 
3038 	if (clk->exclusive_count)
3039 		clk_core_rate_unprotect(clk->core);
3040 
3041 	ret = clk_core_set_phase_nolock(clk->core, degrees);
3042 
3043 	if (clk->exclusive_count)
3044 		clk_core_rate_protect(clk->core);
3045 
3046 	clk_prepare_unlock();
3047 
3048 	return ret;
3049 }
3050 EXPORT_SYMBOL_GPL(clk_set_phase);
3051 
3052 static int clk_core_get_phase(struct clk_core *core)
3053 {
3054 	int ret;
3055 
3056 	lockdep_assert_held(&prepare_lock);
3057 	if (!core->ops->get_phase)
3058 		return 0;
3059 
3060 	/* Always try to update cached phase if possible */
3061 	ret = core->ops->get_phase(core->hw);
3062 	if (ret >= 0)
3063 		core->phase = ret;
3064 
3065 	return ret;
3066 }
3067 
3068 /**
3069  * clk_get_phase - return the phase shift of a clock signal
3070  * @clk: clock signal source
3071  *
3072  * Returns the phase shift of a clock node in degrees, otherwise returns
3073  * -EERROR.
3074  */
3075 int clk_get_phase(struct clk *clk)
3076 {
3077 	int ret;
3078 
3079 	if (!clk)
3080 		return 0;
3081 
3082 	clk_prepare_lock();
3083 	ret = clk_core_get_phase(clk->core);
3084 	clk_prepare_unlock();
3085 
3086 	return ret;
3087 }
3088 EXPORT_SYMBOL_GPL(clk_get_phase);
3089 
3090 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
3091 {
3092 	/* Assume a default value of 50% */
3093 	core->duty.num = 1;
3094 	core->duty.den = 2;
3095 }
3096 
3097 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
3098 
3099 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
3100 {
3101 	struct clk_duty *duty = &core->duty;
3102 	int ret = 0;
3103 
3104 	if (!core->ops->get_duty_cycle)
3105 		return clk_core_update_duty_cycle_parent_nolock(core);
3106 
3107 	ret = core->ops->get_duty_cycle(core->hw, duty);
3108 	if (ret)
3109 		goto reset;
3110 
3111 	/* Don't trust the clock provider too much */
3112 	if (duty->den == 0 || duty->num > duty->den) {
3113 		ret = -EINVAL;
3114 		goto reset;
3115 	}
3116 
3117 	return 0;
3118 
3119 reset:
3120 	clk_core_reset_duty_cycle_nolock(core);
3121 	return ret;
3122 }
3123 
3124 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3125 {
3126 	int ret = 0;
3127 
3128 	if (core->parent &&
3129 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
3130 		ret = clk_core_update_duty_cycle_nolock(core->parent);
3131 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3132 	} else {
3133 		clk_core_reset_duty_cycle_nolock(core);
3134 	}
3135 
3136 	return ret;
3137 }
3138 
3139 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3140 						 struct clk_duty *duty);
3141 
3142 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3143 					  struct clk_duty *duty)
3144 {
3145 	int ret;
3146 
3147 	lockdep_assert_held(&prepare_lock);
3148 
3149 	if (clk_core_rate_is_protected(core))
3150 		return -EBUSY;
3151 
3152 	trace_clk_set_duty_cycle(core, duty);
3153 
3154 	if (!core->ops->set_duty_cycle)
3155 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3156 
3157 	ret = core->ops->set_duty_cycle(core->hw, duty);
3158 	if (!ret)
3159 		memcpy(&core->duty, duty, sizeof(*duty));
3160 
3161 	trace_clk_set_duty_cycle_complete(core, duty);
3162 
3163 	return ret;
3164 }
3165 
3166 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3167 						 struct clk_duty *duty)
3168 {
3169 	int ret = 0;
3170 
3171 	if (core->parent &&
3172 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3173 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3174 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3175 	}
3176 
3177 	return ret;
3178 }
3179 
3180 /**
3181  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3182  * @clk: clock signal source
3183  * @num: numerator of the duty cycle ratio to be applied
3184  * @den: denominator of the duty cycle ratio to be applied
3185  *
3186  * Apply the duty cycle ratio if the ratio is valid and the clock can
3187  * perform this operation
3188  *
3189  * Returns (0) on success, a negative errno otherwise.
3190  */
3191 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3192 {
3193 	int ret;
3194 	struct clk_duty duty;
3195 
3196 	if (!clk)
3197 		return 0;
3198 
3199 	/* sanity check the ratio */
3200 	if (den == 0 || num > den)
3201 		return -EINVAL;
3202 
3203 	duty.num = num;
3204 	duty.den = den;
3205 
3206 	clk_prepare_lock();
3207 
3208 	if (clk->exclusive_count)
3209 		clk_core_rate_unprotect(clk->core);
3210 
3211 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3212 
3213 	if (clk->exclusive_count)
3214 		clk_core_rate_protect(clk->core);
3215 
3216 	clk_prepare_unlock();
3217 
3218 	return ret;
3219 }
3220 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3221 
3222 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3223 					  unsigned int scale)
3224 {
3225 	struct clk_duty *duty = &core->duty;
3226 	int ret;
3227 
3228 	clk_prepare_lock();
3229 
3230 	ret = clk_core_update_duty_cycle_nolock(core);
3231 	if (!ret)
3232 		ret = mult_frac(scale, duty->num, duty->den);
3233 
3234 	clk_prepare_unlock();
3235 
3236 	return ret;
3237 }
3238 
3239 /**
3240  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3241  * @clk: clock signal source
3242  * @scale: scaling factor to be applied to represent the ratio as an integer
3243  *
3244  * Returns the duty cycle ratio of a clock node multiplied by the provided
3245  * scaling factor, or negative errno on error.
3246  */
3247 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3248 {
3249 	if (!clk)
3250 		return 0;
3251 
3252 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3253 }
3254 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3255 
3256 /**
3257  * clk_is_match - check if two clk's point to the same hardware clock
3258  * @p: clk compared against q
3259  * @q: clk compared against p
3260  *
3261  * Returns true if the two struct clk pointers both point to the same hardware
3262  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3263  * share the same struct clk_core object.
3264  *
3265  * Returns false otherwise. Note that two NULL clks are treated as matching.
3266  */
3267 bool clk_is_match(const struct clk *p, const struct clk *q)
3268 {
3269 	/* trivial case: identical struct clk's or both NULL */
3270 	if (p == q)
3271 		return true;
3272 
3273 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3274 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3275 		if (p->core == q->core)
3276 			return true;
3277 
3278 	return false;
3279 }
3280 EXPORT_SYMBOL_GPL(clk_is_match);
3281 
3282 /***        debugfs support        ***/
3283 
3284 #ifdef CONFIG_DEBUG_FS
3285 #include <linux/debugfs.h>
3286 
3287 static struct dentry *rootdir;
3288 static int inited = 0;
3289 static DEFINE_MUTEX(clk_debug_lock);
3290 static HLIST_HEAD(clk_debug_list);
3291 
3292 static struct hlist_head *orphan_list[] = {
3293 	&clk_orphan_list,
3294 	NULL,
3295 };
3296 
3297 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3298 				 int level)
3299 {
3300 	int phase;
3301 	struct clk *clk_user;
3302 	int multi_node = 0;
3303 
3304 	seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ",
3305 		   level * 3 + 1, "",
3306 		   35 - level * 3, c->name,
3307 		   c->enable_count, c->prepare_count, c->protect_count,
3308 		   clk_core_get_rate_recalc(c),
3309 		   clk_core_get_accuracy_recalc(c));
3310 
3311 	phase = clk_core_get_phase(c);
3312 	if (phase >= 0)
3313 		seq_printf(s, "%-5d", phase);
3314 	else
3315 		seq_puts(s, "-----");
3316 
3317 	seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000));
3318 
3319 	if (c->ops->is_enabled)
3320 		seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N');
3321 	else if (!c->ops->enable)
3322 		seq_printf(s, " %5c ", 'Y');
3323 	else
3324 		seq_printf(s, " %5c ", '?');
3325 
3326 	hlist_for_each_entry(clk_user, &c->clks, clks_node) {
3327 		seq_printf(s, "%*s%-*s  %-25s\n",
3328 			   level * 3 + 2 + 105 * multi_node, "",
3329 			   30,
3330 			   clk_user->dev_id ? clk_user->dev_id : "deviceless",
3331 			   clk_user->con_id ? clk_user->con_id : "no_connection_id");
3332 
3333 		multi_node = 1;
3334 	}
3335 
3336 }
3337 
3338 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3339 				     int level)
3340 {
3341 	struct clk_core *child;
3342 
3343 	clk_summary_show_one(s, c, level);
3344 
3345 	hlist_for_each_entry(child, &c->children, child_node)
3346 		clk_summary_show_subtree(s, child, level + 1);
3347 }
3348 
3349 static int clk_summary_show(struct seq_file *s, void *data)
3350 {
3351 	struct clk_core *c;
3352 	struct hlist_head **lists = s->private;
3353 	int ret;
3354 
3355 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware                            connection\n");
3356 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable   consumer                         id\n");
3357 	seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n");
3358 
3359 	ret = clk_pm_runtime_get_all();
3360 	if (ret)
3361 		return ret;
3362 
3363 	clk_prepare_lock();
3364 
3365 	for (; *lists; lists++)
3366 		hlist_for_each_entry(c, *lists, child_node)
3367 			clk_summary_show_subtree(s, c, 0);
3368 
3369 	clk_prepare_unlock();
3370 	clk_pm_runtime_put_all();
3371 
3372 	return 0;
3373 }
3374 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3375 
3376 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3377 {
3378 	int phase;
3379 	unsigned long min_rate, max_rate;
3380 
3381 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3382 
3383 	/* This should be JSON format, i.e. elements separated with a comma */
3384 	seq_printf(s, "\"%s\": { ", c->name);
3385 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3386 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3387 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3388 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3389 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3390 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3391 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3392 	phase = clk_core_get_phase(c);
3393 	if (phase >= 0)
3394 		seq_printf(s, "\"phase\": %d,", phase);
3395 	seq_printf(s, "\"duty_cycle\": %u",
3396 		   clk_core_get_scaled_duty_cycle(c, 100000));
3397 }
3398 
3399 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3400 {
3401 	struct clk_core *child;
3402 
3403 	clk_dump_one(s, c, level);
3404 
3405 	hlist_for_each_entry(child, &c->children, child_node) {
3406 		seq_putc(s, ',');
3407 		clk_dump_subtree(s, child, level + 1);
3408 	}
3409 
3410 	seq_putc(s, '}');
3411 }
3412 
3413 static int clk_dump_show(struct seq_file *s, void *data)
3414 {
3415 	struct clk_core *c;
3416 	bool first_node = true;
3417 	struct hlist_head **lists = s->private;
3418 	int ret;
3419 
3420 	ret = clk_pm_runtime_get_all();
3421 	if (ret)
3422 		return ret;
3423 
3424 	seq_putc(s, '{');
3425 
3426 	clk_prepare_lock();
3427 
3428 	for (; *lists; lists++) {
3429 		hlist_for_each_entry(c, *lists, child_node) {
3430 			if (!first_node)
3431 				seq_putc(s, ',');
3432 			first_node = false;
3433 			clk_dump_subtree(s, c, 0);
3434 		}
3435 	}
3436 
3437 	clk_prepare_unlock();
3438 	clk_pm_runtime_put_all();
3439 
3440 	seq_puts(s, "}\n");
3441 	return 0;
3442 }
3443 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3444 
3445 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3446 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3447 /*
3448  * This can be dangerous, therefore don't provide any real compile time
3449  * configuration option for this feature.
3450  * People who want to use this will need to modify the source code directly.
3451  */
3452 static int clk_rate_set(void *data, u64 val)
3453 {
3454 	struct clk_core *core = data;
3455 	int ret;
3456 
3457 	clk_prepare_lock();
3458 	ret = clk_core_set_rate_nolock(core, val);
3459 	clk_prepare_unlock();
3460 
3461 	return ret;
3462 }
3463 
3464 #define clk_rate_mode	0644
3465 
3466 static int clk_phase_set(void *data, u64 val)
3467 {
3468 	struct clk_core *core = data;
3469 	int degrees = do_div(val, 360);
3470 	int ret;
3471 
3472 	clk_prepare_lock();
3473 	ret = clk_core_set_phase_nolock(core, degrees);
3474 	clk_prepare_unlock();
3475 
3476 	return ret;
3477 }
3478 
3479 #define clk_phase_mode	0644
3480 
3481 static int clk_prepare_enable_set(void *data, u64 val)
3482 {
3483 	struct clk_core *core = data;
3484 	int ret = 0;
3485 
3486 	if (val)
3487 		ret = clk_prepare_enable(core->hw->clk);
3488 	else
3489 		clk_disable_unprepare(core->hw->clk);
3490 
3491 	return ret;
3492 }
3493 
3494 static int clk_prepare_enable_get(void *data, u64 *val)
3495 {
3496 	struct clk_core *core = data;
3497 
3498 	*val = core->enable_count && core->prepare_count;
3499 	return 0;
3500 }
3501 
3502 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3503 			 clk_prepare_enable_set, "%llu\n");
3504 
3505 #else
3506 #define clk_rate_set	NULL
3507 #define clk_rate_mode	0444
3508 
3509 #define clk_phase_set	NULL
3510 #define clk_phase_mode	0644
3511 #endif
3512 
3513 static int clk_rate_get(void *data, u64 *val)
3514 {
3515 	struct clk_core *core = data;
3516 
3517 	clk_prepare_lock();
3518 	*val = clk_core_get_rate_recalc(core);
3519 	clk_prepare_unlock();
3520 
3521 	return 0;
3522 }
3523 
3524 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3525 
3526 static int clk_phase_get(void *data, u64 *val)
3527 {
3528 	struct clk_core *core = data;
3529 
3530 	*val = core->phase;
3531 	return 0;
3532 }
3533 
3534 DEFINE_DEBUGFS_ATTRIBUTE(clk_phase_fops, clk_phase_get, clk_phase_set, "%llu\n");
3535 
3536 static const struct {
3537 	unsigned long flag;
3538 	const char *name;
3539 } clk_flags[] = {
3540 #define ENTRY(f) { f, #f }
3541 	ENTRY(CLK_SET_RATE_GATE),
3542 	ENTRY(CLK_SET_PARENT_GATE),
3543 	ENTRY(CLK_SET_RATE_PARENT),
3544 	ENTRY(CLK_IGNORE_UNUSED),
3545 	ENTRY(CLK_GET_RATE_NOCACHE),
3546 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3547 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3548 	ENTRY(CLK_RECALC_NEW_RATES),
3549 	ENTRY(CLK_SET_RATE_UNGATE),
3550 	ENTRY(CLK_IS_CRITICAL),
3551 	ENTRY(CLK_OPS_PARENT_ENABLE),
3552 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3553 #undef ENTRY
3554 };
3555 
3556 static int clk_flags_show(struct seq_file *s, void *data)
3557 {
3558 	struct clk_core *core = s->private;
3559 	unsigned long flags = core->flags;
3560 	unsigned int i;
3561 
3562 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3563 		if (flags & clk_flags[i].flag) {
3564 			seq_printf(s, "%s\n", clk_flags[i].name);
3565 			flags &= ~clk_flags[i].flag;
3566 		}
3567 	}
3568 	if (flags) {
3569 		/* Unknown flags */
3570 		seq_printf(s, "0x%lx\n", flags);
3571 	}
3572 
3573 	return 0;
3574 }
3575 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3576 
3577 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3578 				 unsigned int i, char terminator)
3579 {
3580 	struct clk_core *parent;
3581 	const char *name = NULL;
3582 
3583 	/*
3584 	 * Go through the following options to fetch a parent's name.
3585 	 *
3586 	 * 1. Fetch the registered parent clock and use its name
3587 	 * 2. Use the global (fallback) name if specified
3588 	 * 3. Use the local fw_name if provided
3589 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3590 	 *
3591 	 * This may still fail in some cases, such as when the parent is
3592 	 * specified directly via a struct clk_hw pointer, but it isn't
3593 	 * registered (yet).
3594 	 */
3595 	parent = clk_core_get_parent_by_index(core, i);
3596 	if (parent) {
3597 		seq_puts(s, parent->name);
3598 	} else if (core->parents[i].name) {
3599 		seq_puts(s, core->parents[i].name);
3600 	} else if (core->parents[i].fw_name) {
3601 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3602 	} else {
3603 		if (core->parents[i].index >= 0)
3604 			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3605 		if (!name)
3606 			name = "(missing)";
3607 
3608 		seq_puts(s, name);
3609 	}
3610 
3611 	seq_putc(s, terminator);
3612 }
3613 
3614 static int possible_parents_show(struct seq_file *s, void *data)
3615 {
3616 	struct clk_core *core = s->private;
3617 	int i;
3618 
3619 	for (i = 0; i < core->num_parents - 1; i++)
3620 		possible_parent_show(s, core, i, ' ');
3621 
3622 	possible_parent_show(s, core, i, '\n');
3623 
3624 	return 0;
3625 }
3626 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3627 
3628 static int current_parent_show(struct seq_file *s, void *data)
3629 {
3630 	struct clk_core *core = s->private;
3631 
3632 	if (core->parent)
3633 		seq_printf(s, "%s\n", core->parent->name);
3634 
3635 	return 0;
3636 }
3637 DEFINE_SHOW_ATTRIBUTE(current_parent);
3638 
3639 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3640 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3641 				    size_t count, loff_t *ppos)
3642 {
3643 	struct seq_file *s = file->private_data;
3644 	struct clk_core *core = s->private;
3645 	struct clk_core *parent;
3646 	u8 idx;
3647 	int err;
3648 
3649 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3650 	if (err < 0)
3651 		return err;
3652 
3653 	parent = clk_core_get_parent_by_index(core, idx);
3654 	if (!parent)
3655 		return -ENOENT;
3656 
3657 	clk_prepare_lock();
3658 	err = clk_core_set_parent_nolock(core, parent);
3659 	clk_prepare_unlock();
3660 	if (err)
3661 		return err;
3662 
3663 	return count;
3664 }
3665 
3666 static const struct file_operations current_parent_rw_fops = {
3667 	.open		= current_parent_open,
3668 	.write		= current_parent_write,
3669 	.read		= seq_read,
3670 	.llseek		= seq_lseek,
3671 	.release	= single_release,
3672 };
3673 #endif
3674 
3675 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3676 {
3677 	struct clk_core *core = s->private;
3678 	struct clk_duty *duty = &core->duty;
3679 
3680 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3681 
3682 	return 0;
3683 }
3684 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3685 
3686 static int clk_min_rate_show(struct seq_file *s, void *data)
3687 {
3688 	struct clk_core *core = s->private;
3689 	unsigned long min_rate, max_rate;
3690 
3691 	clk_prepare_lock();
3692 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3693 	clk_prepare_unlock();
3694 	seq_printf(s, "%lu\n", min_rate);
3695 
3696 	return 0;
3697 }
3698 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3699 
3700 static int clk_max_rate_show(struct seq_file *s, void *data)
3701 {
3702 	struct clk_core *core = s->private;
3703 	unsigned long min_rate, max_rate;
3704 
3705 	clk_prepare_lock();
3706 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3707 	clk_prepare_unlock();
3708 	seq_printf(s, "%lu\n", max_rate);
3709 
3710 	return 0;
3711 }
3712 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3713 
3714 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3715 {
3716 	struct dentry *root;
3717 
3718 	if (!core || !pdentry)
3719 		return;
3720 
3721 	root = debugfs_create_dir(core->name, pdentry);
3722 	core->dentry = root;
3723 
3724 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3725 			    &clk_rate_fops);
3726 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3727 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3728 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3729 	debugfs_create_file("clk_phase", clk_phase_mode, root, core,
3730 			    &clk_phase_fops);
3731 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3732 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3733 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3734 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3735 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3736 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3737 			    &clk_duty_cycle_fops);
3738 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3739 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3740 			    &clk_prepare_enable_fops);
3741 
3742 	if (core->num_parents > 1)
3743 		debugfs_create_file("clk_parent", 0644, root, core,
3744 				    &current_parent_rw_fops);
3745 	else
3746 #endif
3747 	if (core->num_parents > 0)
3748 		debugfs_create_file("clk_parent", 0444, root, core,
3749 				    &current_parent_fops);
3750 
3751 	if (core->num_parents > 1)
3752 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3753 				    &possible_parents_fops);
3754 
3755 	if (core->ops->debug_init)
3756 		core->ops->debug_init(core->hw, core->dentry);
3757 }
3758 
3759 /**
3760  * clk_debug_register - add a clk node to the debugfs clk directory
3761  * @core: the clk being added to the debugfs clk directory
3762  *
3763  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3764  * initialized.  Otherwise it bails out early since the debugfs clk directory
3765  * will be created lazily by clk_debug_init as part of a late_initcall.
3766  */
3767 static void clk_debug_register(struct clk_core *core)
3768 {
3769 	mutex_lock(&clk_debug_lock);
3770 	hlist_add_head(&core->debug_node, &clk_debug_list);
3771 	if (inited)
3772 		clk_debug_create_one(core, rootdir);
3773 	mutex_unlock(&clk_debug_lock);
3774 }
3775 
3776  /**
3777  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3778  * @core: the clk being removed from the debugfs clk directory
3779  *
3780  * Dynamically removes a clk and all its child nodes from the
3781  * debugfs clk directory if clk->dentry points to debugfs created by
3782  * clk_debug_register in __clk_core_init.
3783  */
3784 static void clk_debug_unregister(struct clk_core *core)
3785 {
3786 	mutex_lock(&clk_debug_lock);
3787 	hlist_del_init(&core->debug_node);
3788 	debugfs_remove_recursive(core->dentry);
3789 	core->dentry = NULL;
3790 	mutex_unlock(&clk_debug_lock);
3791 }
3792 
3793 /**
3794  * clk_debug_init - lazily populate the debugfs clk directory
3795  *
3796  * clks are often initialized very early during boot before memory can be
3797  * dynamically allocated and well before debugfs is setup. This function
3798  * populates the debugfs clk directory once at boot-time when we know that
3799  * debugfs is setup. It should only be called once at boot-time, all other clks
3800  * added dynamically will be done so with clk_debug_register.
3801  */
3802 static int __init clk_debug_init(void)
3803 {
3804 	struct clk_core *core;
3805 
3806 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3807 	pr_warn("\n");
3808 	pr_warn("********************************************************************\n");
3809 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3810 	pr_warn("**                                                                **\n");
3811 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3812 	pr_warn("**                                                                **\n");
3813 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3814 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3815 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3816 	pr_warn("**                                                                **\n");
3817 	pr_warn("** If you see this message and you are not debugging the          **\n");
3818 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3819 	pr_warn("**                                                                **\n");
3820 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3821 	pr_warn("********************************************************************\n");
3822 #endif
3823 
3824 	rootdir = debugfs_create_dir("clk", NULL);
3825 
3826 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3827 			    &clk_summary_fops);
3828 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3829 			    &clk_dump_fops);
3830 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3831 			    &clk_summary_fops);
3832 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3833 			    &clk_dump_fops);
3834 
3835 	mutex_lock(&clk_debug_lock);
3836 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3837 		clk_debug_create_one(core, rootdir);
3838 
3839 	inited = 1;
3840 	mutex_unlock(&clk_debug_lock);
3841 
3842 	return 0;
3843 }
3844 late_initcall(clk_debug_init);
3845 #else
3846 static inline void clk_debug_register(struct clk_core *core) { }
3847 static inline void clk_debug_unregister(struct clk_core *core)
3848 {
3849 }
3850 #endif
3851 
3852 static void clk_core_reparent_orphans_nolock(void)
3853 {
3854 	struct clk_core *orphan;
3855 	struct hlist_node *tmp2;
3856 
3857 	/*
3858 	 * walk the list of orphan clocks and reparent any that newly finds a
3859 	 * parent.
3860 	 */
3861 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3862 		struct clk_core *parent = __clk_init_parent(orphan);
3863 
3864 		/*
3865 		 * We need to use __clk_set_parent_before() and _after() to
3866 		 * properly migrate any prepare/enable count of the orphan
3867 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3868 		 * are enabled during init but might not have a parent yet.
3869 		 */
3870 		if (parent) {
3871 			/* update the clk tree topology */
3872 			__clk_set_parent_before(orphan, parent);
3873 			__clk_set_parent_after(orphan, parent, NULL);
3874 			__clk_recalc_accuracies(orphan);
3875 			__clk_recalc_rates(orphan, true, 0);
3876 
3877 			/*
3878 			 * __clk_init_parent() will set the initial req_rate to
3879 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3880 			 * is an orphan when it's registered.
3881 			 *
3882 			 * 'req_rate' is used by clk_set_rate_range() and
3883 			 * clk_put() to trigger a clk_set_rate() call whenever
3884 			 * the boundaries are modified. Let's make sure
3885 			 * 'req_rate' is set to something non-zero so that
3886 			 * clk_set_rate_range() doesn't drop the frequency.
3887 			 */
3888 			orphan->req_rate = orphan->rate;
3889 		}
3890 	}
3891 }
3892 
3893 /**
3894  * __clk_core_init - initialize the data structures in a struct clk_core
3895  * @core:	clk_core being initialized
3896  *
3897  * Initializes the lists in struct clk_core, queries the hardware for the
3898  * parent and rate and sets them both.
3899  */
3900 static int __clk_core_init(struct clk_core *core)
3901 {
3902 	int ret;
3903 	struct clk_core *parent;
3904 	unsigned long rate;
3905 	int phase;
3906 
3907 	clk_prepare_lock();
3908 
3909 	/*
3910 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3911 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3912 	 * being NULL as the clk not being registered yet. This is crucial so
3913 	 * that clks aren't parented until their parent is fully registered.
3914 	 */
3915 	core->hw->core = core;
3916 
3917 	ret = clk_pm_runtime_get(core);
3918 	if (ret)
3919 		goto unlock;
3920 
3921 	/* check to see if a clock with this name is already registered */
3922 	if (clk_core_lookup(core->name)) {
3923 		pr_debug("%s: clk %s already initialized\n",
3924 				__func__, core->name);
3925 		ret = -EEXIST;
3926 		goto out;
3927 	}
3928 
3929 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3930 	if (core->ops->set_rate &&
3931 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3932 	      core->ops->recalc_rate)) {
3933 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3934 		       __func__, core->name);
3935 		ret = -EINVAL;
3936 		goto out;
3937 	}
3938 
3939 	if (core->ops->set_parent && !core->ops->get_parent) {
3940 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3941 		       __func__, core->name);
3942 		ret = -EINVAL;
3943 		goto out;
3944 	}
3945 
3946 	if (core->ops->set_parent && !core->ops->determine_rate) {
3947 		pr_err("%s: %s must implement .set_parent & .determine_rate\n",
3948 			__func__, core->name);
3949 		ret = -EINVAL;
3950 		goto out;
3951 	}
3952 
3953 	if (core->num_parents > 1 && !core->ops->get_parent) {
3954 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3955 		       __func__, core->name);
3956 		ret = -EINVAL;
3957 		goto out;
3958 	}
3959 
3960 	if (core->ops->set_rate_and_parent &&
3961 			!(core->ops->set_parent && core->ops->set_rate)) {
3962 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3963 				__func__, core->name);
3964 		ret = -EINVAL;
3965 		goto out;
3966 	}
3967 
3968 	/*
3969 	 * optional platform-specific magic
3970 	 *
3971 	 * The .init callback is not used by any of the basic clock types, but
3972 	 * exists for weird hardware that must perform initialization magic for
3973 	 * CCF to get an accurate view of clock for any other callbacks. It may
3974 	 * also be used needs to perform dynamic allocations. Such allocation
3975 	 * must be freed in the terminate() callback.
3976 	 * This callback shall not be used to initialize the parameters state,
3977 	 * such as rate, parent, etc ...
3978 	 *
3979 	 * If it exist, this callback should called before any other callback of
3980 	 * the clock
3981 	 */
3982 	if (core->ops->init) {
3983 		ret = core->ops->init(core->hw);
3984 		if (ret)
3985 			goto out;
3986 	}
3987 
3988 	parent = core->parent = __clk_init_parent(core);
3989 
3990 	/*
3991 	 * Populate core->parent if parent has already been clk_core_init'd. If
3992 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3993 	 * list.  If clk doesn't have any parents then place it in the root
3994 	 * clk list.
3995 	 *
3996 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3997 	 * clocks and re-parent any that are children of the clock currently
3998 	 * being clk_init'd.
3999 	 */
4000 	if (parent) {
4001 		hlist_add_head(&core->child_node, &parent->children);
4002 		core->orphan = parent->orphan;
4003 	} else if (!core->num_parents) {
4004 		hlist_add_head(&core->child_node, &clk_root_list);
4005 		core->orphan = false;
4006 	} else {
4007 		hlist_add_head(&core->child_node, &clk_orphan_list);
4008 		core->orphan = true;
4009 	}
4010 
4011 	/*
4012 	 * Set clk's accuracy.  The preferred method is to use
4013 	 * .recalc_accuracy. For simple clocks and lazy developers the default
4014 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
4015 	 * parent (or is orphaned) then accuracy is set to zero (perfect
4016 	 * clock).
4017 	 */
4018 	if (core->ops->recalc_accuracy)
4019 		core->accuracy = core->ops->recalc_accuracy(core->hw,
4020 					clk_core_get_accuracy_no_lock(parent));
4021 	else if (parent)
4022 		core->accuracy = parent->accuracy;
4023 	else
4024 		core->accuracy = 0;
4025 
4026 	/*
4027 	 * Set clk's phase by clk_core_get_phase() caching the phase.
4028 	 * Since a phase is by definition relative to its parent, just
4029 	 * query the current clock phase, or just assume it's in phase.
4030 	 */
4031 	phase = clk_core_get_phase(core);
4032 	if (phase < 0) {
4033 		ret = phase;
4034 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
4035 			core->name);
4036 		goto out;
4037 	}
4038 
4039 	/*
4040 	 * Set clk's duty cycle.
4041 	 */
4042 	clk_core_update_duty_cycle_nolock(core);
4043 
4044 	/*
4045 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
4046 	 * simple clocks and lazy developers the default fallback is to use the
4047 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
4048 	 * then rate is set to zero.
4049 	 */
4050 	if (core->ops->recalc_rate)
4051 		rate = core->ops->recalc_rate(core->hw,
4052 				clk_core_get_rate_nolock(parent));
4053 	else if (parent)
4054 		rate = parent->rate;
4055 	else
4056 		rate = 0;
4057 	core->rate = core->req_rate = rate;
4058 
4059 	/*
4060 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
4061 	 * don't get accidentally disabled when walking the orphan tree and
4062 	 * reparenting clocks
4063 	 */
4064 	if (core->flags & CLK_IS_CRITICAL) {
4065 		ret = clk_core_prepare(core);
4066 		if (ret) {
4067 			pr_warn("%s: critical clk '%s' failed to prepare\n",
4068 			       __func__, core->name);
4069 			goto out;
4070 		}
4071 
4072 		ret = clk_core_enable_lock(core);
4073 		if (ret) {
4074 			pr_warn("%s: critical clk '%s' failed to enable\n",
4075 			       __func__, core->name);
4076 			clk_core_unprepare(core);
4077 			goto out;
4078 		}
4079 	}
4080 
4081 	clk_core_reparent_orphans_nolock();
4082 out:
4083 	clk_pm_runtime_put(core);
4084 unlock:
4085 	if (ret) {
4086 		hlist_del_init(&core->child_node);
4087 		core->hw->core = NULL;
4088 	}
4089 
4090 	clk_prepare_unlock();
4091 
4092 	if (!ret)
4093 		clk_debug_register(core);
4094 
4095 	return ret;
4096 }
4097 
4098 /**
4099  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
4100  * @core: clk to add consumer to
4101  * @clk: consumer to link to a clk
4102  */
4103 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
4104 {
4105 	clk_prepare_lock();
4106 	hlist_add_head(&clk->clks_node, &core->clks);
4107 	clk_prepare_unlock();
4108 }
4109 
4110 /**
4111  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
4112  * @clk: consumer to unlink
4113  */
4114 static void clk_core_unlink_consumer(struct clk *clk)
4115 {
4116 	lockdep_assert_held(&prepare_lock);
4117 	hlist_del(&clk->clks_node);
4118 }
4119 
4120 /**
4121  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
4122  * @core: clk to allocate a consumer for
4123  * @dev_id: string describing device name
4124  * @con_id: connection ID string on device
4125  *
4126  * Returns: clk consumer left unlinked from the consumer list
4127  */
4128 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
4129 			     const char *con_id)
4130 {
4131 	struct clk *clk;
4132 
4133 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
4134 	if (!clk)
4135 		return ERR_PTR(-ENOMEM);
4136 
4137 	clk->core = core;
4138 	clk->dev_id = dev_id;
4139 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
4140 	clk->max_rate = ULONG_MAX;
4141 
4142 	return clk;
4143 }
4144 
4145 /**
4146  * free_clk - Free a clk consumer
4147  * @clk: clk consumer to free
4148  *
4149  * Note, this assumes the clk has been unlinked from the clk_core consumer
4150  * list.
4151  */
4152 static void free_clk(struct clk *clk)
4153 {
4154 	kfree_const(clk->con_id);
4155 	kfree(clk);
4156 }
4157 
4158 /**
4159  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4160  * a clk_hw
4161  * @dev: clk consumer device
4162  * @hw: clk_hw associated with the clk being consumed
4163  * @dev_id: string describing device name
4164  * @con_id: connection ID string on device
4165  *
4166  * This is the main function used to create a clk pointer for use by clk
4167  * consumers. It connects a consumer to the clk_core and clk_hw structures
4168  * used by the framework and clk provider respectively.
4169  */
4170 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4171 			      const char *dev_id, const char *con_id)
4172 {
4173 	struct clk *clk;
4174 	struct clk_core *core;
4175 
4176 	/* This is to allow this function to be chained to others */
4177 	if (IS_ERR_OR_NULL(hw))
4178 		return ERR_CAST(hw);
4179 
4180 	core = hw->core;
4181 	clk = alloc_clk(core, dev_id, con_id);
4182 	if (IS_ERR(clk))
4183 		return clk;
4184 	clk->dev = dev;
4185 
4186 	if (!try_module_get(core->owner)) {
4187 		free_clk(clk);
4188 		return ERR_PTR(-ENOENT);
4189 	}
4190 
4191 	kref_get(&core->ref);
4192 	clk_core_link_consumer(core, clk);
4193 
4194 	return clk;
4195 }
4196 
4197 /**
4198  * clk_hw_get_clk - get clk consumer given an clk_hw
4199  * @hw: clk_hw associated with the clk being consumed
4200  * @con_id: connection ID string on device
4201  *
4202  * Returns: new clk consumer
4203  * This is the function to be used by providers which need
4204  * to get a consumer clk and act on the clock element
4205  * Calls to this function must be balanced with calls clk_put()
4206  */
4207 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4208 {
4209 	struct device *dev = hw->core->dev;
4210 	const char *name = dev ? dev_name(dev) : NULL;
4211 
4212 	return clk_hw_create_clk(dev, hw, name, con_id);
4213 }
4214 EXPORT_SYMBOL(clk_hw_get_clk);
4215 
4216 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4217 {
4218 	const char *dst;
4219 
4220 	if (!src) {
4221 		if (must_exist)
4222 			return -EINVAL;
4223 		return 0;
4224 	}
4225 
4226 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4227 	if (!dst)
4228 		return -ENOMEM;
4229 
4230 	return 0;
4231 }
4232 
4233 static int clk_core_populate_parent_map(struct clk_core *core,
4234 					const struct clk_init_data *init)
4235 {
4236 	u8 num_parents = init->num_parents;
4237 	const char * const *parent_names = init->parent_names;
4238 	const struct clk_hw **parent_hws = init->parent_hws;
4239 	const struct clk_parent_data *parent_data = init->parent_data;
4240 	int i, ret = 0;
4241 	struct clk_parent_map *parents, *parent;
4242 
4243 	if (!num_parents)
4244 		return 0;
4245 
4246 	/*
4247 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4248 	 * having a cache of names/clk_hw pointers to clk_core pointers.
4249 	 */
4250 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4251 	core->parents = parents;
4252 	if (!parents)
4253 		return -ENOMEM;
4254 
4255 	/* Copy everything over because it might be __initdata */
4256 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4257 		parent->index = -1;
4258 		if (parent_names) {
4259 			/* throw a WARN if any entries are NULL */
4260 			WARN(!parent_names[i],
4261 				"%s: invalid NULL in %s's .parent_names\n",
4262 				__func__, core->name);
4263 			ret = clk_cpy_name(&parent->name, parent_names[i],
4264 					   true);
4265 		} else if (parent_data) {
4266 			parent->hw = parent_data[i].hw;
4267 			parent->index = parent_data[i].index;
4268 			ret = clk_cpy_name(&parent->fw_name,
4269 					   parent_data[i].fw_name, false);
4270 			if (!ret)
4271 				ret = clk_cpy_name(&parent->name,
4272 						   parent_data[i].name,
4273 						   false);
4274 		} else if (parent_hws) {
4275 			parent->hw = parent_hws[i];
4276 		} else {
4277 			ret = -EINVAL;
4278 			WARN(1, "Must specify parents if num_parents > 0\n");
4279 		}
4280 
4281 		if (ret) {
4282 			do {
4283 				kfree_const(parents[i].name);
4284 				kfree_const(parents[i].fw_name);
4285 			} while (--i >= 0);
4286 			kfree(parents);
4287 
4288 			return ret;
4289 		}
4290 	}
4291 
4292 	return 0;
4293 }
4294 
4295 static void clk_core_free_parent_map(struct clk_core *core)
4296 {
4297 	int i = core->num_parents;
4298 
4299 	if (!core->num_parents)
4300 		return;
4301 
4302 	while (--i >= 0) {
4303 		kfree_const(core->parents[i].name);
4304 		kfree_const(core->parents[i].fw_name);
4305 	}
4306 
4307 	kfree(core->parents);
4308 }
4309 
4310 /* Free memory allocated for a struct clk_core */
4311 static void __clk_release(struct kref *ref)
4312 {
4313 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4314 
4315 	if (core->rpm_enabled) {
4316 		mutex_lock(&clk_rpm_list_lock);
4317 		hlist_del(&core->rpm_node);
4318 		mutex_unlock(&clk_rpm_list_lock);
4319 	}
4320 
4321 	clk_core_free_parent_map(core);
4322 	kfree_const(core->name);
4323 	kfree(core);
4324 }
4325 
4326 static struct clk *
4327 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4328 {
4329 	int ret;
4330 	struct clk_core *core;
4331 	const struct clk_init_data *init = hw->init;
4332 
4333 	/*
4334 	 * The init data is not supposed to be used outside of registration path.
4335 	 * Set it to NULL so that provider drivers can't use it either and so that
4336 	 * we catch use of hw->init early on in the core.
4337 	 */
4338 	hw->init = NULL;
4339 
4340 	core = kzalloc(sizeof(*core), GFP_KERNEL);
4341 	if (!core) {
4342 		ret = -ENOMEM;
4343 		goto fail_out;
4344 	}
4345 
4346 	kref_init(&core->ref);
4347 
4348 	core->name = kstrdup_const(init->name, GFP_KERNEL);
4349 	if (!core->name) {
4350 		ret = -ENOMEM;
4351 		goto fail_name;
4352 	}
4353 
4354 	if (WARN_ON(!init->ops)) {
4355 		ret = -EINVAL;
4356 		goto fail_ops;
4357 	}
4358 	core->ops = init->ops;
4359 
4360 	core->dev = dev;
4361 	clk_pm_runtime_init(core);
4362 	core->of_node = np;
4363 	if (dev && dev->driver)
4364 		core->owner = dev->driver->owner;
4365 	core->hw = hw;
4366 	core->flags = init->flags;
4367 	core->num_parents = init->num_parents;
4368 	core->min_rate = 0;
4369 	core->max_rate = ULONG_MAX;
4370 
4371 	ret = clk_core_populate_parent_map(core, init);
4372 	if (ret)
4373 		goto fail_parents;
4374 
4375 	INIT_HLIST_HEAD(&core->clks);
4376 
4377 	/*
4378 	 * Don't call clk_hw_create_clk() here because that would pin the
4379 	 * provider module to itself and prevent it from ever being removed.
4380 	 */
4381 	hw->clk = alloc_clk(core, NULL, NULL);
4382 	if (IS_ERR(hw->clk)) {
4383 		ret = PTR_ERR(hw->clk);
4384 		goto fail_create_clk;
4385 	}
4386 
4387 	clk_core_link_consumer(core, hw->clk);
4388 
4389 	ret = __clk_core_init(core);
4390 	if (!ret)
4391 		return hw->clk;
4392 
4393 	clk_prepare_lock();
4394 	clk_core_unlink_consumer(hw->clk);
4395 	clk_prepare_unlock();
4396 
4397 	free_clk(hw->clk);
4398 	hw->clk = NULL;
4399 
4400 fail_create_clk:
4401 fail_parents:
4402 fail_ops:
4403 fail_name:
4404 	kref_put(&core->ref, __clk_release);
4405 fail_out:
4406 	return ERR_PTR(ret);
4407 }
4408 
4409 /**
4410  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4411  * @dev: Device to get device node of
4412  *
4413  * Return: device node pointer of @dev, or the device node pointer of
4414  * @dev->parent if dev doesn't have a device node, or NULL if neither
4415  * @dev or @dev->parent have a device node.
4416  */
4417 static struct device_node *dev_or_parent_of_node(struct device *dev)
4418 {
4419 	struct device_node *np;
4420 
4421 	if (!dev)
4422 		return NULL;
4423 
4424 	np = dev_of_node(dev);
4425 	if (!np)
4426 		np = dev_of_node(dev->parent);
4427 
4428 	return np;
4429 }
4430 
4431 /**
4432  * clk_register - allocate a new clock, register it and return an opaque cookie
4433  * @dev: device that is registering this clock
4434  * @hw: link to hardware-specific clock data
4435  *
4436  * clk_register is the *deprecated* interface for populating the clock tree with
4437  * new clock nodes. Use clk_hw_register() instead.
4438  *
4439  * Returns: a pointer to the newly allocated struct clk which
4440  * cannot be dereferenced by driver code but may be used in conjunction with the
4441  * rest of the clock API.  In the event of an error clk_register will return an
4442  * error code; drivers must test for an error code after calling clk_register.
4443  */
4444 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4445 {
4446 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4447 }
4448 EXPORT_SYMBOL_GPL(clk_register);
4449 
4450 /**
4451  * clk_hw_register - register a clk_hw and return an error code
4452  * @dev: device that is registering this clock
4453  * @hw: link to hardware-specific clock data
4454  *
4455  * clk_hw_register is the primary interface for populating the clock tree with
4456  * new clock nodes. It returns an integer equal to zero indicating success or
4457  * less than zero indicating failure. Drivers must test for an error code after
4458  * calling clk_hw_register().
4459  */
4460 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4461 {
4462 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4463 			       hw));
4464 }
4465 EXPORT_SYMBOL_GPL(clk_hw_register);
4466 
4467 /*
4468  * of_clk_hw_register - register a clk_hw and return an error code
4469  * @node: device_node of device that is registering this clock
4470  * @hw: link to hardware-specific clock data
4471  *
4472  * of_clk_hw_register() is the primary interface for populating the clock tree
4473  * with new clock nodes when a struct device is not available, but a struct
4474  * device_node is. It returns an integer equal to zero indicating success or
4475  * less than zero indicating failure. Drivers must test for an error code after
4476  * calling of_clk_hw_register().
4477  */
4478 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4479 {
4480 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4481 }
4482 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4483 
4484 /*
4485  * Empty clk_ops for unregistered clocks. These are used temporarily
4486  * after clk_unregister() was called on a clock and until last clock
4487  * consumer calls clk_put() and the struct clk object is freed.
4488  */
4489 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4490 {
4491 	return -ENXIO;
4492 }
4493 
4494 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4495 {
4496 	WARN_ON_ONCE(1);
4497 }
4498 
4499 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4500 					unsigned long parent_rate)
4501 {
4502 	return -ENXIO;
4503 }
4504 
4505 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4506 {
4507 	return -ENXIO;
4508 }
4509 
4510 static int clk_nodrv_determine_rate(struct clk_hw *hw,
4511 				    struct clk_rate_request *req)
4512 {
4513 	return -ENXIO;
4514 }
4515 
4516 static const struct clk_ops clk_nodrv_ops = {
4517 	.enable		= clk_nodrv_prepare_enable,
4518 	.disable	= clk_nodrv_disable_unprepare,
4519 	.prepare	= clk_nodrv_prepare_enable,
4520 	.unprepare	= clk_nodrv_disable_unprepare,
4521 	.determine_rate	= clk_nodrv_determine_rate,
4522 	.set_rate	= clk_nodrv_set_rate,
4523 	.set_parent	= clk_nodrv_set_parent,
4524 };
4525 
4526 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4527 						const struct clk_core *target)
4528 {
4529 	int i;
4530 	struct clk_core *child;
4531 
4532 	for (i = 0; i < root->num_parents; i++)
4533 		if (root->parents[i].core == target)
4534 			root->parents[i].core = NULL;
4535 
4536 	hlist_for_each_entry(child, &root->children, child_node)
4537 		clk_core_evict_parent_cache_subtree(child, target);
4538 }
4539 
4540 /* Remove this clk from all parent caches */
4541 static void clk_core_evict_parent_cache(struct clk_core *core)
4542 {
4543 	const struct hlist_head **lists;
4544 	struct clk_core *root;
4545 
4546 	lockdep_assert_held(&prepare_lock);
4547 
4548 	for (lists = all_lists; *lists; lists++)
4549 		hlist_for_each_entry(root, *lists, child_node)
4550 			clk_core_evict_parent_cache_subtree(root, core);
4551 
4552 }
4553 
4554 /**
4555  * clk_unregister - unregister a currently registered clock
4556  * @clk: clock to unregister
4557  */
4558 void clk_unregister(struct clk *clk)
4559 {
4560 	unsigned long flags;
4561 	const struct clk_ops *ops;
4562 
4563 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4564 		return;
4565 
4566 	clk_debug_unregister(clk->core);
4567 
4568 	clk_prepare_lock();
4569 
4570 	ops = clk->core->ops;
4571 	if (ops == &clk_nodrv_ops) {
4572 		pr_err("%s: unregistered clock: %s\n", __func__,
4573 		       clk->core->name);
4574 		clk_prepare_unlock();
4575 		return;
4576 	}
4577 	/*
4578 	 * Assign empty clock ops for consumers that might still hold
4579 	 * a reference to this clock.
4580 	 */
4581 	flags = clk_enable_lock();
4582 	clk->core->ops = &clk_nodrv_ops;
4583 	clk_enable_unlock(flags);
4584 
4585 	if (ops->terminate)
4586 		ops->terminate(clk->core->hw);
4587 
4588 	if (!hlist_empty(&clk->core->children)) {
4589 		struct clk_core *child;
4590 		struct hlist_node *t;
4591 
4592 		/* Reparent all children to the orphan list. */
4593 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4594 					  child_node)
4595 			clk_core_set_parent_nolock(child, NULL);
4596 	}
4597 
4598 	clk_core_evict_parent_cache(clk->core);
4599 
4600 	hlist_del_init(&clk->core->child_node);
4601 
4602 	if (clk->core->prepare_count)
4603 		pr_warn("%s: unregistering prepared clock: %s\n",
4604 					__func__, clk->core->name);
4605 
4606 	if (clk->core->protect_count)
4607 		pr_warn("%s: unregistering protected clock: %s\n",
4608 					__func__, clk->core->name);
4609 	clk_prepare_unlock();
4610 
4611 	kref_put(&clk->core->ref, __clk_release);
4612 	free_clk(clk);
4613 }
4614 EXPORT_SYMBOL_GPL(clk_unregister);
4615 
4616 /**
4617  * clk_hw_unregister - unregister a currently registered clk_hw
4618  * @hw: hardware-specific clock data to unregister
4619  */
4620 void clk_hw_unregister(struct clk_hw *hw)
4621 {
4622 	clk_unregister(hw->clk);
4623 }
4624 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4625 
4626 static void devm_clk_unregister_cb(struct device *dev, void *res)
4627 {
4628 	clk_unregister(*(struct clk **)res);
4629 }
4630 
4631 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4632 {
4633 	clk_hw_unregister(*(struct clk_hw **)res);
4634 }
4635 
4636 /**
4637  * devm_clk_register - resource managed clk_register()
4638  * @dev: device that is registering this clock
4639  * @hw: link to hardware-specific clock data
4640  *
4641  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4642  *
4643  * Clocks returned from this function are automatically clk_unregister()ed on
4644  * driver detach. See clk_register() for more information.
4645  */
4646 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4647 {
4648 	struct clk *clk;
4649 	struct clk **clkp;
4650 
4651 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4652 	if (!clkp)
4653 		return ERR_PTR(-ENOMEM);
4654 
4655 	clk = clk_register(dev, hw);
4656 	if (!IS_ERR(clk)) {
4657 		*clkp = clk;
4658 		devres_add(dev, clkp);
4659 	} else {
4660 		devres_free(clkp);
4661 	}
4662 
4663 	return clk;
4664 }
4665 EXPORT_SYMBOL_GPL(devm_clk_register);
4666 
4667 /**
4668  * devm_clk_hw_register - resource managed clk_hw_register()
4669  * @dev: device that is registering this clock
4670  * @hw: link to hardware-specific clock data
4671  *
4672  * Managed clk_hw_register(). Clocks registered by this function are
4673  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4674  * for more information.
4675  */
4676 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4677 {
4678 	struct clk_hw **hwp;
4679 	int ret;
4680 
4681 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4682 	if (!hwp)
4683 		return -ENOMEM;
4684 
4685 	ret = clk_hw_register(dev, hw);
4686 	if (!ret) {
4687 		*hwp = hw;
4688 		devres_add(dev, hwp);
4689 	} else {
4690 		devres_free(hwp);
4691 	}
4692 
4693 	return ret;
4694 }
4695 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4696 
4697 static void devm_clk_release(struct device *dev, void *res)
4698 {
4699 	clk_put(*(struct clk **)res);
4700 }
4701 
4702 /**
4703  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4704  * @dev: device that is registering this clock
4705  * @hw: clk_hw associated with the clk being consumed
4706  * @con_id: connection ID string on device
4707  *
4708  * Managed clk_hw_get_clk(). Clocks got with this function are
4709  * automatically clk_put() on driver detach. See clk_put()
4710  * for more information.
4711  */
4712 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4713 				const char *con_id)
4714 {
4715 	struct clk *clk;
4716 	struct clk **clkp;
4717 
4718 	/* This should not happen because it would mean we have drivers
4719 	 * passing around clk_hw pointers instead of having the caller use
4720 	 * proper clk_get() style APIs
4721 	 */
4722 	WARN_ON_ONCE(dev != hw->core->dev);
4723 
4724 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4725 	if (!clkp)
4726 		return ERR_PTR(-ENOMEM);
4727 
4728 	clk = clk_hw_get_clk(hw, con_id);
4729 	if (!IS_ERR(clk)) {
4730 		*clkp = clk;
4731 		devres_add(dev, clkp);
4732 	} else {
4733 		devres_free(clkp);
4734 	}
4735 
4736 	return clk;
4737 }
4738 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4739 
4740 /*
4741  * clkdev helpers
4742  */
4743 
4744 void __clk_put(struct clk *clk)
4745 {
4746 	struct module *owner;
4747 
4748 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4749 		return;
4750 
4751 	clk_prepare_lock();
4752 
4753 	/*
4754 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4755 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4756 	 * and by that same consumer
4757 	 */
4758 	if (WARN_ON(clk->exclusive_count)) {
4759 		/* We voiced our concern, let's sanitize the situation */
4760 		clk->core->protect_count -= (clk->exclusive_count - 1);
4761 		clk_core_rate_unprotect(clk->core);
4762 		clk->exclusive_count = 0;
4763 	}
4764 
4765 	hlist_del(&clk->clks_node);
4766 
4767 	/* If we had any boundaries on that clock, let's drop them. */
4768 	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4769 		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4770 
4771 	clk_prepare_unlock();
4772 
4773 	owner = clk->core->owner;
4774 	kref_put(&clk->core->ref, __clk_release);
4775 	module_put(owner);
4776 	free_clk(clk);
4777 }
4778 
4779 /***        clk rate change notifiers        ***/
4780 
4781 /**
4782  * clk_notifier_register - add a clk rate change notifier
4783  * @clk: struct clk * to watch
4784  * @nb: struct notifier_block * with callback info
4785  *
4786  * Request notification when clk's rate changes.  This uses an SRCU
4787  * notifier because we want it to block and notifier unregistrations are
4788  * uncommon.  The callbacks associated with the notifier must not
4789  * re-enter into the clk framework by calling any top-level clk APIs;
4790  * this will cause a nested prepare_lock mutex.
4791  *
4792  * In all notification cases (pre, post and abort rate change) the original
4793  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4794  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4795  *
4796  * clk_notifier_register() must be called from non-atomic context.
4797  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4798  * allocation failure; otherwise, passes along the return value of
4799  * srcu_notifier_chain_register().
4800  */
4801 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4802 {
4803 	struct clk_notifier *cn;
4804 	int ret = -ENOMEM;
4805 
4806 	if (!clk || !nb)
4807 		return -EINVAL;
4808 
4809 	clk_prepare_lock();
4810 
4811 	/* search the list of notifiers for this clk */
4812 	list_for_each_entry(cn, &clk_notifier_list, node)
4813 		if (cn->clk == clk)
4814 			goto found;
4815 
4816 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4817 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4818 	if (!cn)
4819 		goto out;
4820 
4821 	cn->clk = clk;
4822 	srcu_init_notifier_head(&cn->notifier_head);
4823 
4824 	list_add(&cn->node, &clk_notifier_list);
4825 
4826 found:
4827 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4828 
4829 	clk->core->notifier_count++;
4830 
4831 out:
4832 	clk_prepare_unlock();
4833 
4834 	return ret;
4835 }
4836 EXPORT_SYMBOL_GPL(clk_notifier_register);
4837 
4838 /**
4839  * clk_notifier_unregister - remove a clk rate change notifier
4840  * @clk: struct clk *
4841  * @nb: struct notifier_block * with callback info
4842  *
4843  * Request no further notification for changes to 'clk' and frees memory
4844  * allocated in clk_notifier_register.
4845  *
4846  * Returns -EINVAL if called with null arguments; otherwise, passes
4847  * along the return value of srcu_notifier_chain_unregister().
4848  */
4849 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4850 {
4851 	struct clk_notifier *cn;
4852 	int ret = -ENOENT;
4853 
4854 	if (!clk || !nb)
4855 		return -EINVAL;
4856 
4857 	clk_prepare_lock();
4858 
4859 	list_for_each_entry(cn, &clk_notifier_list, node) {
4860 		if (cn->clk == clk) {
4861 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4862 
4863 			clk->core->notifier_count--;
4864 
4865 			/* XXX the notifier code should handle this better */
4866 			if (!cn->notifier_head.head) {
4867 				srcu_cleanup_notifier_head(&cn->notifier_head);
4868 				list_del(&cn->node);
4869 				kfree(cn);
4870 			}
4871 			break;
4872 		}
4873 	}
4874 
4875 	clk_prepare_unlock();
4876 
4877 	return ret;
4878 }
4879 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4880 
4881 struct clk_notifier_devres {
4882 	struct clk *clk;
4883 	struct notifier_block *nb;
4884 };
4885 
4886 static void devm_clk_notifier_release(struct device *dev, void *res)
4887 {
4888 	struct clk_notifier_devres *devres = res;
4889 
4890 	clk_notifier_unregister(devres->clk, devres->nb);
4891 }
4892 
4893 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4894 			       struct notifier_block *nb)
4895 {
4896 	struct clk_notifier_devres *devres;
4897 	int ret;
4898 
4899 	devres = devres_alloc(devm_clk_notifier_release,
4900 			      sizeof(*devres), GFP_KERNEL);
4901 
4902 	if (!devres)
4903 		return -ENOMEM;
4904 
4905 	ret = clk_notifier_register(clk, nb);
4906 	if (!ret) {
4907 		devres->clk = clk;
4908 		devres->nb = nb;
4909 		devres_add(dev, devres);
4910 	} else {
4911 		devres_free(devres);
4912 	}
4913 
4914 	return ret;
4915 }
4916 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4917 
4918 #ifdef CONFIG_OF
4919 static void clk_core_reparent_orphans(void)
4920 {
4921 	clk_prepare_lock();
4922 	clk_core_reparent_orphans_nolock();
4923 	clk_prepare_unlock();
4924 }
4925 
4926 /**
4927  * struct of_clk_provider - Clock provider registration structure
4928  * @link: Entry in global list of clock providers
4929  * @node: Pointer to device tree node of clock provider
4930  * @get: Get clock callback.  Returns NULL or a struct clk for the
4931  *       given clock specifier
4932  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4933  *       struct clk_hw for the given clock specifier
4934  * @data: context pointer to be passed into @get callback
4935  */
4936 struct of_clk_provider {
4937 	struct list_head link;
4938 
4939 	struct device_node *node;
4940 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4941 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4942 	void *data;
4943 };
4944 
4945 extern struct of_device_id __clk_of_table;
4946 static const struct of_device_id __clk_of_table_sentinel
4947 	__used __section("__clk_of_table_end");
4948 
4949 static LIST_HEAD(of_clk_providers);
4950 static DEFINE_MUTEX(of_clk_mutex);
4951 
4952 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4953 				     void *data)
4954 {
4955 	return data;
4956 }
4957 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4958 
4959 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4960 {
4961 	return data;
4962 }
4963 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4964 
4965 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4966 {
4967 	struct clk_onecell_data *clk_data = data;
4968 	unsigned int idx = clkspec->args[0];
4969 
4970 	if (idx >= clk_data->clk_num) {
4971 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4972 		return ERR_PTR(-EINVAL);
4973 	}
4974 
4975 	return clk_data->clks[idx];
4976 }
4977 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4978 
4979 struct clk_hw *
4980 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4981 {
4982 	struct clk_hw_onecell_data *hw_data = data;
4983 	unsigned int idx = clkspec->args[0];
4984 
4985 	if (idx >= hw_data->num) {
4986 		pr_err("%s: invalid index %u\n", __func__, idx);
4987 		return ERR_PTR(-EINVAL);
4988 	}
4989 
4990 	return hw_data->hws[idx];
4991 }
4992 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4993 
4994 /**
4995  * of_clk_add_provider() - Register a clock provider for a node
4996  * @np: Device node pointer associated with clock provider
4997  * @clk_src_get: callback for decoding clock
4998  * @data: context pointer for @clk_src_get callback.
4999  *
5000  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
5001  */
5002 int of_clk_add_provider(struct device_node *np,
5003 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
5004 						   void *data),
5005 			void *data)
5006 {
5007 	struct of_clk_provider *cp;
5008 	int ret;
5009 
5010 	if (!np)
5011 		return 0;
5012 
5013 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5014 	if (!cp)
5015 		return -ENOMEM;
5016 
5017 	cp->node = of_node_get(np);
5018 	cp->data = data;
5019 	cp->get = clk_src_get;
5020 
5021 	mutex_lock(&of_clk_mutex);
5022 	list_add(&cp->link, &of_clk_providers);
5023 	mutex_unlock(&of_clk_mutex);
5024 	pr_debug("Added clock from %pOF\n", np);
5025 
5026 	clk_core_reparent_orphans();
5027 
5028 	ret = of_clk_set_defaults(np, true);
5029 	if (ret < 0)
5030 		of_clk_del_provider(np);
5031 
5032 	fwnode_dev_initialized(&np->fwnode, true);
5033 
5034 	return ret;
5035 }
5036 EXPORT_SYMBOL_GPL(of_clk_add_provider);
5037 
5038 /**
5039  * of_clk_add_hw_provider() - Register a clock provider for a node
5040  * @np: Device node pointer associated with clock provider
5041  * @get: callback for decoding clk_hw
5042  * @data: context pointer for @get callback.
5043  */
5044 int of_clk_add_hw_provider(struct device_node *np,
5045 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5046 						 void *data),
5047 			   void *data)
5048 {
5049 	struct of_clk_provider *cp;
5050 	int ret;
5051 
5052 	if (!np)
5053 		return 0;
5054 
5055 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5056 	if (!cp)
5057 		return -ENOMEM;
5058 
5059 	cp->node = of_node_get(np);
5060 	cp->data = data;
5061 	cp->get_hw = get;
5062 
5063 	mutex_lock(&of_clk_mutex);
5064 	list_add(&cp->link, &of_clk_providers);
5065 	mutex_unlock(&of_clk_mutex);
5066 	pr_debug("Added clk_hw provider from %pOF\n", np);
5067 
5068 	clk_core_reparent_orphans();
5069 
5070 	ret = of_clk_set_defaults(np, true);
5071 	if (ret < 0)
5072 		of_clk_del_provider(np);
5073 
5074 	fwnode_dev_initialized(&np->fwnode, true);
5075 
5076 	return ret;
5077 }
5078 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
5079 
5080 static void devm_of_clk_release_provider(struct device *dev, void *res)
5081 {
5082 	of_clk_del_provider(*(struct device_node **)res);
5083 }
5084 
5085 /*
5086  * We allow a child device to use its parent device as the clock provider node
5087  * for cases like MFD sub-devices where the child device driver wants to use
5088  * devm_*() APIs but not list the device in DT as a sub-node.
5089  */
5090 static struct device_node *get_clk_provider_node(struct device *dev)
5091 {
5092 	struct device_node *np, *parent_np;
5093 
5094 	np = dev->of_node;
5095 	parent_np = dev->parent ? dev->parent->of_node : NULL;
5096 
5097 	if (!of_property_present(np, "#clock-cells"))
5098 		if (of_property_present(parent_np, "#clock-cells"))
5099 			np = parent_np;
5100 
5101 	return np;
5102 }
5103 
5104 /**
5105  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
5106  * @dev: Device acting as the clock provider (used for DT node and lifetime)
5107  * @get: callback for decoding clk_hw
5108  * @data: context pointer for @get callback
5109  *
5110  * Registers clock provider for given device's node. If the device has no DT
5111  * node or if the device node lacks of clock provider information (#clock-cells)
5112  * then the parent device's node is scanned for this information. If parent node
5113  * has the #clock-cells then it is used in registration. Provider is
5114  * automatically released at device exit.
5115  *
5116  * Return: 0 on success or an errno on failure.
5117  */
5118 int devm_of_clk_add_hw_provider(struct device *dev,
5119 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5120 					      void *data),
5121 			void *data)
5122 {
5123 	struct device_node **ptr, *np;
5124 	int ret;
5125 
5126 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
5127 			   GFP_KERNEL);
5128 	if (!ptr)
5129 		return -ENOMEM;
5130 
5131 	np = get_clk_provider_node(dev);
5132 	ret = of_clk_add_hw_provider(np, get, data);
5133 	if (!ret) {
5134 		*ptr = np;
5135 		devres_add(dev, ptr);
5136 	} else {
5137 		devres_free(ptr);
5138 	}
5139 
5140 	return ret;
5141 }
5142 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
5143 
5144 /**
5145  * of_clk_del_provider() - Remove a previously registered clock provider
5146  * @np: Device node pointer associated with clock provider
5147  */
5148 void of_clk_del_provider(struct device_node *np)
5149 {
5150 	struct of_clk_provider *cp;
5151 
5152 	if (!np)
5153 		return;
5154 
5155 	mutex_lock(&of_clk_mutex);
5156 	list_for_each_entry(cp, &of_clk_providers, link) {
5157 		if (cp->node == np) {
5158 			list_del(&cp->link);
5159 			fwnode_dev_initialized(&np->fwnode, false);
5160 			of_node_put(cp->node);
5161 			kfree(cp);
5162 			break;
5163 		}
5164 	}
5165 	mutex_unlock(&of_clk_mutex);
5166 }
5167 EXPORT_SYMBOL_GPL(of_clk_del_provider);
5168 
5169 /**
5170  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5171  * @np: device node to parse clock specifier from
5172  * @index: index of phandle to parse clock out of. If index < 0, @name is used
5173  * @name: clock name to find and parse. If name is NULL, the index is used
5174  * @out_args: Result of parsing the clock specifier
5175  *
5176  * Parses a device node's "clocks" and "clock-names" properties to find the
5177  * phandle and cells for the index or name that is desired. The resulting clock
5178  * specifier is placed into @out_args, or an errno is returned when there's a
5179  * parsing error. The @index argument is ignored if @name is non-NULL.
5180  *
5181  * Example:
5182  *
5183  * phandle1: clock-controller@1 {
5184  *	#clock-cells = <2>;
5185  * }
5186  *
5187  * phandle2: clock-controller@2 {
5188  *	#clock-cells = <1>;
5189  * }
5190  *
5191  * clock-consumer@3 {
5192  *	clocks = <&phandle1 1 2 &phandle2 3>;
5193  *	clock-names = "name1", "name2";
5194  * }
5195  *
5196  * To get a device_node for `clock-controller@2' node you may call this
5197  * function a few different ways:
5198  *
5199  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5200  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5201  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5202  *
5203  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5204  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5205  * the "clock-names" property of @np.
5206  */
5207 static int of_parse_clkspec(const struct device_node *np, int index,
5208 			    const char *name, struct of_phandle_args *out_args)
5209 {
5210 	int ret = -ENOENT;
5211 
5212 	/* Walk up the tree of devices looking for a clock property that matches */
5213 	while (np) {
5214 		/*
5215 		 * For named clocks, first look up the name in the
5216 		 * "clock-names" property.  If it cannot be found, then index
5217 		 * will be an error code and of_parse_phandle_with_args() will
5218 		 * return -EINVAL.
5219 		 */
5220 		if (name)
5221 			index = of_property_match_string(np, "clock-names", name);
5222 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5223 						 index, out_args);
5224 		if (!ret)
5225 			break;
5226 		if (name && index >= 0)
5227 			break;
5228 
5229 		/*
5230 		 * No matching clock found on this node.  If the parent node
5231 		 * has a "clock-ranges" property, then we can try one of its
5232 		 * clocks.
5233 		 */
5234 		np = np->parent;
5235 		if (np && !of_get_property(np, "clock-ranges", NULL))
5236 			break;
5237 		index = 0;
5238 	}
5239 
5240 	return ret;
5241 }
5242 
5243 static struct clk_hw *
5244 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5245 			      struct of_phandle_args *clkspec)
5246 {
5247 	struct clk *clk;
5248 
5249 	if (provider->get_hw)
5250 		return provider->get_hw(clkspec, provider->data);
5251 
5252 	clk = provider->get(clkspec, provider->data);
5253 	if (IS_ERR(clk))
5254 		return ERR_CAST(clk);
5255 	return __clk_get_hw(clk);
5256 }
5257 
5258 static struct clk_hw *
5259 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5260 {
5261 	struct of_clk_provider *provider;
5262 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5263 
5264 	if (!clkspec)
5265 		return ERR_PTR(-EINVAL);
5266 
5267 	mutex_lock(&of_clk_mutex);
5268 	list_for_each_entry(provider, &of_clk_providers, link) {
5269 		if (provider->node == clkspec->np) {
5270 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5271 			if (!IS_ERR(hw))
5272 				break;
5273 		}
5274 	}
5275 	mutex_unlock(&of_clk_mutex);
5276 
5277 	return hw;
5278 }
5279 
5280 /**
5281  * of_clk_get_from_provider() - Lookup a clock from a clock provider
5282  * @clkspec: pointer to a clock specifier data structure
5283  *
5284  * This function looks up a struct clk from the registered list of clock
5285  * providers, an input is a clock specifier data structure as returned
5286  * from the of_parse_phandle_with_args() function call.
5287  */
5288 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5289 {
5290 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5291 
5292 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5293 }
5294 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5295 
5296 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5297 			     const char *con_id)
5298 {
5299 	int ret;
5300 	struct clk_hw *hw;
5301 	struct of_phandle_args clkspec;
5302 
5303 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5304 	if (ret)
5305 		return ERR_PTR(ret);
5306 
5307 	hw = of_clk_get_hw_from_clkspec(&clkspec);
5308 	of_node_put(clkspec.np);
5309 
5310 	return hw;
5311 }
5312 
5313 static struct clk *__of_clk_get(struct device_node *np,
5314 				int index, const char *dev_id,
5315 				const char *con_id)
5316 {
5317 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5318 
5319 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5320 }
5321 
5322 struct clk *of_clk_get(struct device_node *np, int index)
5323 {
5324 	return __of_clk_get(np, index, np->full_name, NULL);
5325 }
5326 EXPORT_SYMBOL(of_clk_get);
5327 
5328 /**
5329  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5330  * @np: pointer to clock consumer node
5331  * @name: name of consumer's clock input, or NULL for the first clock reference
5332  *
5333  * This function parses the clocks and clock-names properties,
5334  * and uses them to look up the struct clk from the registered list of clock
5335  * providers.
5336  */
5337 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5338 {
5339 	if (!np)
5340 		return ERR_PTR(-ENOENT);
5341 
5342 	return __of_clk_get(np, 0, np->full_name, name);
5343 }
5344 EXPORT_SYMBOL(of_clk_get_by_name);
5345 
5346 /**
5347  * of_clk_get_parent_count() - Count the number of clocks a device node has
5348  * @np: device node to count
5349  *
5350  * Returns: The number of clocks that are possible parents of this node
5351  */
5352 unsigned int of_clk_get_parent_count(const struct device_node *np)
5353 {
5354 	int count;
5355 
5356 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5357 	if (count < 0)
5358 		return 0;
5359 
5360 	return count;
5361 }
5362 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5363 
5364 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5365 {
5366 	struct of_phandle_args clkspec;
5367 	const char *clk_name;
5368 	bool found = false;
5369 	u32 pv;
5370 	int rc;
5371 	int count;
5372 	struct clk *clk;
5373 
5374 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5375 					&clkspec);
5376 	if (rc)
5377 		return NULL;
5378 
5379 	index = clkspec.args_count ? clkspec.args[0] : 0;
5380 	count = 0;
5381 
5382 	/* if there is an indices property, use it to transfer the index
5383 	 * specified into an array offset for the clock-output-names property.
5384 	 */
5385 	of_property_for_each_u32(clkspec.np, "clock-indices", pv) {
5386 		if (index == pv) {
5387 			index = count;
5388 			found = true;
5389 			break;
5390 		}
5391 		count++;
5392 	}
5393 	/* We went off the end of 'clock-indices' without finding it */
5394 	if (of_property_present(clkspec.np, "clock-indices") && !found)
5395 		return NULL;
5396 
5397 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5398 					  index,
5399 					  &clk_name) < 0) {
5400 		/*
5401 		 * Best effort to get the name if the clock has been
5402 		 * registered with the framework. If the clock isn't
5403 		 * registered, we return the node name as the name of
5404 		 * the clock as long as #clock-cells = 0.
5405 		 */
5406 		clk = of_clk_get_from_provider(&clkspec);
5407 		if (IS_ERR(clk)) {
5408 			if (clkspec.args_count == 0)
5409 				clk_name = clkspec.np->name;
5410 			else
5411 				clk_name = NULL;
5412 		} else {
5413 			clk_name = __clk_get_name(clk);
5414 			clk_put(clk);
5415 		}
5416 	}
5417 
5418 
5419 	of_node_put(clkspec.np);
5420 	return clk_name;
5421 }
5422 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5423 
5424 /**
5425  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5426  * number of parents
5427  * @np: Device node pointer associated with clock provider
5428  * @parents: pointer to char array that hold the parents' names
5429  * @size: size of the @parents array
5430  *
5431  * Return: number of parents for the clock node.
5432  */
5433 int of_clk_parent_fill(struct device_node *np, const char **parents,
5434 		       unsigned int size)
5435 {
5436 	unsigned int i = 0;
5437 
5438 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5439 		i++;
5440 
5441 	return i;
5442 }
5443 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5444 
5445 struct clock_provider {
5446 	void (*clk_init_cb)(struct device_node *);
5447 	struct device_node *np;
5448 	struct list_head node;
5449 };
5450 
5451 /*
5452  * This function looks for a parent clock. If there is one, then it
5453  * checks that the provider for this parent clock was initialized, in
5454  * this case the parent clock will be ready.
5455  */
5456 static int parent_ready(struct device_node *np)
5457 {
5458 	int i = 0;
5459 
5460 	while (true) {
5461 		struct clk *clk = of_clk_get(np, i);
5462 
5463 		/* this parent is ready we can check the next one */
5464 		if (!IS_ERR(clk)) {
5465 			clk_put(clk);
5466 			i++;
5467 			continue;
5468 		}
5469 
5470 		/* at least one parent is not ready, we exit now */
5471 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5472 			return 0;
5473 
5474 		/*
5475 		 * Here we make assumption that the device tree is
5476 		 * written correctly. So an error means that there is
5477 		 * no more parent. As we didn't exit yet, then the
5478 		 * previous parent are ready. If there is no clock
5479 		 * parent, no need to wait for them, then we can
5480 		 * consider their absence as being ready
5481 		 */
5482 		return 1;
5483 	}
5484 }
5485 
5486 /**
5487  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5488  * @np: Device node pointer associated with clock provider
5489  * @index: clock index
5490  * @flags: pointer to top-level framework flags
5491  *
5492  * Detects if the clock-critical property exists and, if so, sets the
5493  * corresponding CLK_IS_CRITICAL flag.
5494  *
5495  * Do not use this function. It exists only for legacy Device Tree
5496  * bindings, such as the one-clock-per-node style that are outdated.
5497  * Those bindings typically put all clock data into .dts and the Linux
5498  * driver has no clock data, thus making it impossible to set this flag
5499  * correctly from the driver. Only those drivers may call
5500  * of_clk_detect_critical from their setup functions.
5501  *
5502  * Return: error code or zero on success
5503  */
5504 int of_clk_detect_critical(struct device_node *np, int index,
5505 			   unsigned long *flags)
5506 {
5507 	uint32_t idx;
5508 
5509 	if (!np || !flags)
5510 		return -EINVAL;
5511 
5512 	of_property_for_each_u32(np, "clock-critical", idx)
5513 		if (index == idx)
5514 			*flags |= CLK_IS_CRITICAL;
5515 
5516 	return 0;
5517 }
5518 
5519 /**
5520  * of_clk_init() - Scan and init clock providers from the DT
5521  * @matches: array of compatible values and init functions for providers.
5522  *
5523  * This function scans the device tree for matching clock providers
5524  * and calls their initialization functions. It also does it by trying
5525  * to follow the dependencies.
5526  */
5527 void __init of_clk_init(const struct of_device_id *matches)
5528 {
5529 	const struct of_device_id *match;
5530 	struct device_node *np;
5531 	struct clock_provider *clk_provider, *next;
5532 	bool is_init_done;
5533 	bool force = false;
5534 	LIST_HEAD(clk_provider_list);
5535 
5536 	if (!matches)
5537 		matches = &__clk_of_table;
5538 
5539 	/* First prepare the list of the clocks providers */
5540 	for_each_matching_node_and_match(np, matches, &match) {
5541 		struct clock_provider *parent;
5542 
5543 		if (!of_device_is_available(np))
5544 			continue;
5545 
5546 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5547 		if (!parent) {
5548 			list_for_each_entry_safe(clk_provider, next,
5549 						 &clk_provider_list, node) {
5550 				list_del(&clk_provider->node);
5551 				of_node_put(clk_provider->np);
5552 				kfree(clk_provider);
5553 			}
5554 			of_node_put(np);
5555 			return;
5556 		}
5557 
5558 		parent->clk_init_cb = match->data;
5559 		parent->np = of_node_get(np);
5560 		list_add_tail(&parent->node, &clk_provider_list);
5561 	}
5562 
5563 	while (!list_empty(&clk_provider_list)) {
5564 		is_init_done = false;
5565 		list_for_each_entry_safe(clk_provider, next,
5566 					&clk_provider_list, node) {
5567 			if (force || parent_ready(clk_provider->np)) {
5568 
5569 				/* Don't populate platform devices */
5570 				of_node_set_flag(clk_provider->np,
5571 						 OF_POPULATED);
5572 
5573 				clk_provider->clk_init_cb(clk_provider->np);
5574 				of_clk_set_defaults(clk_provider->np, true);
5575 
5576 				list_del(&clk_provider->node);
5577 				of_node_put(clk_provider->np);
5578 				kfree(clk_provider);
5579 				is_init_done = true;
5580 			}
5581 		}
5582 
5583 		/*
5584 		 * We didn't manage to initialize any of the
5585 		 * remaining providers during the last loop, so now we
5586 		 * initialize all the remaining ones unconditionally
5587 		 * in case the clock parent was not mandatory
5588 		 */
5589 		if (!is_init_done)
5590 			force = true;
5591 	}
5592 }
5593 #endif
5594