xref: /linux/drivers/clk/clk.c (revision 5a48b7433a5aee719ab242d2feadaf4c9e065989)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static const struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	int ret;
112 
113 	if (!core->rpm_enabled)
114 		return 0;
115 
116 	ret = pm_runtime_get_sync(core->dev);
117 	if (ret < 0) {
118 		pm_runtime_put_noidle(core->dev);
119 		return ret;
120 	}
121 	return 0;
122 }
123 
124 static void clk_pm_runtime_put(struct clk_core *core)
125 {
126 	if (!core->rpm_enabled)
127 		return;
128 
129 	pm_runtime_put_sync(core->dev);
130 }
131 
132 /***           locking             ***/
133 static void clk_prepare_lock(void)
134 {
135 	if (!mutex_trylock(&prepare_lock)) {
136 		if (prepare_owner == current) {
137 			prepare_refcnt++;
138 			return;
139 		}
140 		mutex_lock(&prepare_lock);
141 	}
142 	WARN_ON_ONCE(prepare_owner != NULL);
143 	WARN_ON_ONCE(prepare_refcnt != 0);
144 	prepare_owner = current;
145 	prepare_refcnt = 1;
146 }
147 
148 static void clk_prepare_unlock(void)
149 {
150 	WARN_ON_ONCE(prepare_owner != current);
151 	WARN_ON_ONCE(prepare_refcnt == 0);
152 
153 	if (--prepare_refcnt)
154 		return;
155 	prepare_owner = NULL;
156 	mutex_unlock(&prepare_lock);
157 }
158 
159 static unsigned long clk_enable_lock(void)
160 	__acquires(enable_lock)
161 {
162 	unsigned long flags;
163 
164 	/*
165 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
166 	 * we already hold the lock. So, in that case, we rely only on
167 	 * reference counting.
168 	 */
169 	if (!IS_ENABLED(CONFIG_SMP) ||
170 	    !spin_trylock_irqsave(&enable_lock, flags)) {
171 		if (enable_owner == current) {
172 			enable_refcnt++;
173 			__acquire(enable_lock);
174 			if (!IS_ENABLED(CONFIG_SMP))
175 				local_save_flags(flags);
176 			return flags;
177 		}
178 		spin_lock_irqsave(&enable_lock, flags);
179 	}
180 	WARN_ON_ONCE(enable_owner != NULL);
181 	WARN_ON_ONCE(enable_refcnt != 0);
182 	enable_owner = current;
183 	enable_refcnt = 1;
184 	return flags;
185 }
186 
187 static void clk_enable_unlock(unsigned long flags)
188 	__releases(enable_lock)
189 {
190 	WARN_ON_ONCE(enable_owner != current);
191 	WARN_ON_ONCE(enable_refcnt == 0);
192 
193 	if (--enable_refcnt) {
194 		__release(enable_lock);
195 		return;
196 	}
197 	enable_owner = NULL;
198 	spin_unlock_irqrestore(&enable_lock, flags);
199 }
200 
201 static bool clk_core_rate_is_protected(struct clk_core *core)
202 {
203 	return core->protect_count;
204 }
205 
206 static bool clk_core_is_prepared(struct clk_core *core)
207 {
208 	bool ret = false;
209 
210 	/*
211 	 * .is_prepared is optional for clocks that can prepare
212 	 * fall back to software usage counter if it is missing
213 	 */
214 	if (!core->ops->is_prepared)
215 		return core->prepare_count;
216 
217 	if (!clk_pm_runtime_get(core)) {
218 		ret = core->ops->is_prepared(core->hw);
219 		clk_pm_runtime_put(core);
220 	}
221 
222 	return ret;
223 }
224 
225 static bool clk_core_is_enabled(struct clk_core *core)
226 {
227 	bool ret = false;
228 
229 	/*
230 	 * .is_enabled is only mandatory for clocks that gate
231 	 * fall back to software usage counter if .is_enabled is missing
232 	 */
233 	if (!core->ops->is_enabled)
234 		return core->enable_count;
235 
236 	/*
237 	 * Check if clock controller's device is runtime active before
238 	 * calling .is_enabled callback. If not, assume that clock is
239 	 * disabled, because we might be called from atomic context, from
240 	 * which pm_runtime_get() is not allowed.
241 	 * This function is called mainly from clk_disable_unused_subtree,
242 	 * which ensures proper runtime pm activation of controller before
243 	 * taking enable spinlock, but the below check is needed if one tries
244 	 * to call it from other places.
245 	 */
246 	if (core->rpm_enabled) {
247 		pm_runtime_get_noresume(core->dev);
248 		if (!pm_runtime_active(core->dev)) {
249 			ret = false;
250 			goto done;
251 		}
252 	}
253 
254 	ret = core->ops->is_enabled(core->hw);
255 done:
256 	if (core->rpm_enabled)
257 		pm_runtime_put(core->dev);
258 
259 	return ret;
260 }
261 
262 /***    helper functions   ***/
263 
264 const char *__clk_get_name(const struct clk *clk)
265 {
266 	return !clk ? NULL : clk->core->name;
267 }
268 EXPORT_SYMBOL_GPL(__clk_get_name);
269 
270 const char *clk_hw_get_name(const struct clk_hw *hw)
271 {
272 	return hw->core->name;
273 }
274 EXPORT_SYMBOL_GPL(clk_hw_get_name);
275 
276 struct clk_hw *__clk_get_hw(struct clk *clk)
277 {
278 	return !clk ? NULL : clk->core->hw;
279 }
280 EXPORT_SYMBOL_GPL(__clk_get_hw);
281 
282 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
283 {
284 	return hw->core->num_parents;
285 }
286 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
287 
288 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
289 {
290 	return hw->core->parent ? hw->core->parent->hw : NULL;
291 }
292 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
293 
294 static struct clk_core *__clk_lookup_subtree(const char *name,
295 					     struct clk_core *core)
296 {
297 	struct clk_core *child;
298 	struct clk_core *ret;
299 
300 	if (!strcmp(core->name, name))
301 		return core;
302 
303 	hlist_for_each_entry(child, &core->children, child_node) {
304 		ret = __clk_lookup_subtree(name, child);
305 		if (ret)
306 			return ret;
307 	}
308 
309 	return NULL;
310 }
311 
312 static struct clk_core *clk_core_lookup(const char *name)
313 {
314 	struct clk_core *root_clk;
315 	struct clk_core *ret;
316 
317 	if (!name)
318 		return NULL;
319 
320 	/* search the 'proper' clk tree first */
321 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
322 		ret = __clk_lookup_subtree(name, root_clk);
323 		if (ret)
324 			return ret;
325 	}
326 
327 	/* if not found, then search the orphan tree */
328 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
329 		ret = __clk_lookup_subtree(name, root_clk);
330 		if (ret)
331 			return ret;
332 	}
333 
334 	return NULL;
335 }
336 
337 #ifdef CONFIG_OF
338 static int of_parse_clkspec(const struct device_node *np, int index,
339 			    const char *name, struct of_phandle_args *out_args);
340 static struct clk_hw *
341 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
342 #else
343 static inline int of_parse_clkspec(const struct device_node *np, int index,
344 				   const char *name,
345 				   struct of_phandle_args *out_args)
346 {
347 	return -ENOENT;
348 }
349 static inline struct clk_hw *
350 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
351 {
352 	return ERR_PTR(-ENOENT);
353 }
354 #endif
355 
356 /**
357  * clk_core_get - Find the clk_core parent of a clk
358  * @core: clk to find parent of
359  * @p_index: parent index to search for
360  *
361  * This is the preferred method for clk providers to find the parent of a
362  * clk when that parent is external to the clk controller. The parent_names
363  * array is indexed and treated as a local name matching a string in the device
364  * node's 'clock-names' property or as the 'con_id' matching the device's
365  * dev_name() in a clk_lookup. This allows clk providers to use their own
366  * namespace instead of looking for a globally unique parent string.
367  *
368  * For example the following DT snippet would allow a clock registered by the
369  * clock-controller@c001 that has a clk_init_data::parent_data array
370  * with 'xtal' in the 'name' member to find the clock provided by the
371  * clock-controller@f00abcd without needing to get the globally unique name of
372  * the xtal clk.
373  *
374  *      parent: clock-controller@f00abcd {
375  *              reg = <0xf00abcd 0xabcd>;
376  *              #clock-cells = <0>;
377  *      };
378  *
379  *      clock-controller@c001 {
380  *              reg = <0xc001 0xf00d>;
381  *              clocks = <&parent>;
382  *              clock-names = "xtal";
383  *              #clock-cells = <1>;
384  *      };
385  *
386  * Returns: -ENOENT when the provider can't be found or the clk doesn't
387  * exist in the provider or the name can't be found in the DT node or
388  * in a clkdev lookup. NULL when the provider knows about the clk but it
389  * isn't provided on this system.
390  * A valid clk_core pointer when the clk can be found in the provider.
391  */
392 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
393 {
394 	const char *name = core->parents[p_index].fw_name;
395 	int index = core->parents[p_index].index;
396 	struct clk_hw *hw = ERR_PTR(-ENOENT);
397 	struct device *dev = core->dev;
398 	const char *dev_id = dev ? dev_name(dev) : NULL;
399 	struct device_node *np = core->of_node;
400 	struct of_phandle_args clkspec;
401 
402 	if (np && (name || index >= 0) &&
403 	    !of_parse_clkspec(np, index, name, &clkspec)) {
404 		hw = of_clk_get_hw_from_clkspec(&clkspec);
405 		of_node_put(clkspec.np);
406 	} else if (name) {
407 		/*
408 		 * If the DT search above couldn't find the provider fallback to
409 		 * looking up via clkdev based clk_lookups.
410 		 */
411 		hw = clk_find_hw(dev_id, name);
412 	}
413 
414 	if (IS_ERR(hw))
415 		return ERR_CAST(hw);
416 
417 	return hw->core;
418 }
419 
420 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
421 {
422 	struct clk_parent_map *entry = &core->parents[index];
423 	struct clk_core *parent;
424 
425 	if (entry->hw) {
426 		parent = entry->hw->core;
427 	} else {
428 		parent = clk_core_get(core, index);
429 		if (PTR_ERR(parent) == -ENOENT && entry->name)
430 			parent = clk_core_lookup(entry->name);
431 	}
432 
433 	/*
434 	 * We have a direct reference but it isn't registered yet?
435 	 * Orphan it and let clk_reparent() update the orphan status
436 	 * when the parent is registered.
437 	 */
438 	if (!parent)
439 		parent = ERR_PTR(-EPROBE_DEFER);
440 
441 	/* Only cache it if it's not an error */
442 	if (!IS_ERR(parent))
443 		entry->core = parent;
444 }
445 
446 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
447 							 u8 index)
448 {
449 	if (!core || index >= core->num_parents || !core->parents)
450 		return NULL;
451 
452 	if (!core->parents[index].core)
453 		clk_core_fill_parent_index(core, index);
454 
455 	return core->parents[index].core;
456 }
457 
458 struct clk_hw *
459 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
460 {
461 	struct clk_core *parent;
462 
463 	parent = clk_core_get_parent_by_index(hw->core, index);
464 
465 	return !parent ? NULL : parent->hw;
466 }
467 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
468 
469 unsigned int __clk_get_enable_count(struct clk *clk)
470 {
471 	return !clk ? 0 : clk->core->enable_count;
472 }
473 
474 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
475 {
476 	if (!core)
477 		return 0;
478 
479 	if (!core->num_parents || core->parent)
480 		return core->rate;
481 
482 	/*
483 	 * Clk must have a parent because num_parents > 0 but the parent isn't
484 	 * known yet. Best to return 0 as the rate of this clk until we can
485 	 * properly recalc the rate based on the parent's rate.
486 	 */
487 	return 0;
488 }
489 
490 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
491 {
492 	return clk_core_get_rate_nolock(hw->core);
493 }
494 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
495 
496 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
497 {
498 	if (!core)
499 		return 0;
500 
501 	return core->accuracy;
502 }
503 
504 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
505 {
506 	return hw->core->flags;
507 }
508 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
509 
510 bool clk_hw_is_prepared(const struct clk_hw *hw)
511 {
512 	return clk_core_is_prepared(hw->core);
513 }
514 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
515 
516 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
517 {
518 	return clk_core_rate_is_protected(hw->core);
519 }
520 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
521 
522 bool clk_hw_is_enabled(const struct clk_hw *hw)
523 {
524 	return clk_core_is_enabled(hw->core);
525 }
526 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
527 
528 bool __clk_is_enabled(struct clk *clk)
529 {
530 	if (!clk)
531 		return false;
532 
533 	return clk_core_is_enabled(clk->core);
534 }
535 EXPORT_SYMBOL_GPL(__clk_is_enabled);
536 
537 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
538 			   unsigned long best, unsigned long flags)
539 {
540 	if (flags & CLK_MUX_ROUND_CLOSEST)
541 		return abs(now - rate) < abs(best - rate);
542 
543 	return now <= rate && now > best;
544 }
545 
546 int clk_mux_determine_rate_flags(struct clk_hw *hw,
547 				 struct clk_rate_request *req,
548 				 unsigned long flags)
549 {
550 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
551 	int i, num_parents, ret;
552 	unsigned long best = 0;
553 	struct clk_rate_request parent_req = *req;
554 
555 	/* if NO_REPARENT flag set, pass through to current parent */
556 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
557 		parent = core->parent;
558 		if (core->flags & CLK_SET_RATE_PARENT) {
559 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
560 						   &parent_req);
561 			if (ret)
562 				return ret;
563 
564 			best = parent_req.rate;
565 		} else if (parent) {
566 			best = clk_core_get_rate_nolock(parent);
567 		} else {
568 			best = clk_core_get_rate_nolock(core);
569 		}
570 
571 		goto out;
572 	}
573 
574 	/* find the parent that can provide the fastest rate <= rate */
575 	num_parents = core->num_parents;
576 	for (i = 0; i < num_parents; i++) {
577 		parent = clk_core_get_parent_by_index(core, i);
578 		if (!parent)
579 			continue;
580 
581 		if (core->flags & CLK_SET_RATE_PARENT) {
582 			parent_req = *req;
583 			ret = __clk_determine_rate(parent->hw, &parent_req);
584 			if (ret)
585 				continue;
586 		} else {
587 			parent_req.rate = clk_core_get_rate_nolock(parent);
588 		}
589 
590 		if (mux_is_better_rate(req->rate, parent_req.rate,
591 				       best, flags)) {
592 			best_parent = parent;
593 			best = parent_req.rate;
594 		}
595 	}
596 
597 	if (!best_parent)
598 		return -EINVAL;
599 
600 out:
601 	if (best_parent)
602 		req->best_parent_hw = best_parent->hw;
603 	req->best_parent_rate = best;
604 	req->rate = best;
605 
606 	return 0;
607 }
608 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
609 
610 struct clk *__clk_lookup(const char *name)
611 {
612 	struct clk_core *core = clk_core_lookup(name);
613 
614 	return !core ? NULL : core->hw->clk;
615 }
616 
617 static void clk_core_get_boundaries(struct clk_core *core,
618 				    unsigned long *min_rate,
619 				    unsigned long *max_rate)
620 {
621 	struct clk *clk_user;
622 
623 	lockdep_assert_held(&prepare_lock);
624 
625 	*min_rate = core->min_rate;
626 	*max_rate = core->max_rate;
627 
628 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
629 		*min_rate = max(*min_rate, clk_user->min_rate);
630 
631 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
632 		*max_rate = min(*max_rate, clk_user->max_rate);
633 }
634 
635 static bool clk_core_check_boundaries(struct clk_core *core,
636 				      unsigned long min_rate,
637 				      unsigned long max_rate)
638 {
639 	struct clk *user;
640 
641 	lockdep_assert_held(&prepare_lock);
642 
643 	if (min_rate > core->max_rate || max_rate < core->min_rate)
644 		return false;
645 
646 	hlist_for_each_entry(user, &core->clks, clks_node)
647 		if (min_rate > user->max_rate || max_rate < user->min_rate)
648 			return false;
649 
650 	return true;
651 }
652 
653 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
654 			   unsigned long max_rate)
655 {
656 	hw->core->min_rate = min_rate;
657 	hw->core->max_rate = max_rate;
658 }
659 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
660 
661 /*
662  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
663  * @hw: mux type clk to determine rate on
664  * @req: rate request, also used to return preferred parent and frequencies
665  *
666  * Helper for finding best parent to provide a given frequency. This can be used
667  * directly as a determine_rate callback (e.g. for a mux), or from a more
668  * complex clock that may combine a mux with other operations.
669  *
670  * Returns: 0 on success, -EERROR value on error
671  */
672 int __clk_mux_determine_rate(struct clk_hw *hw,
673 			     struct clk_rate_request *req)
674 {
675 	return clk_mux_determine_rate_flags(hw, req, 0);
676 }
677 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
678 
679 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
680 				     struct clk_rate_request *req)
681 {
682 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
683 }
684 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
685 
686 /***        clk api        ***/
687 
688 static void clk_core_rate_unprotect(struct clk_core *core)
689 {
690 	lockdep_assert_held(&prepare_lock);
691 
692 	if (!core)
693 		return;
694 
695 	if (WARN(core->protect_count == 0,
696 	    "%s already unprotected\n", core->name))
697 		return;
698 
699 	if (--core->protect_count > 0)
700 		return;
701 
702 	clk_core_rate_unprotect(core->parent);
703 }
704 
705 static int clk_core_rate_nuke_protect(struct clk_core *core)
706 {
707 	int ret;
708 
709 	lockdep_assert_held(&prepare_lock);
710 
711 	if (!core)
712 		return -EINVAL;
713 
714 	if (core->protect_count == 0)
715 		return 0;
716 
717 	ret = core->protect_count;
718 	core->protect_count = 1;
719 	clk_core_rate_unprotect(core);
720 
721 	return ret;
722 }
723 
724 /**
725  * clk_rate_exclusive_put - release exclusivity over clock rate control
726  * @clk: the clk over which the exclusivity is released
727  *
728  * clk_rate_exclusive_put() completes a critical section during which a clock
729  * consumer cannot tolerate any other consumer making any operation on the
730  * clock which could result in a rate change or rate glitch. Exclusive clocks
731  * cannot have their rate changed, either directly or indirectly due to changes
732  * further up the parent chain of clocks. As a result, clocks up parent chain
733  * also get under exclusive control of the calling consumer.
734  *
735  * If exlusivity is claimed more than once on clock, even by the same consumer,
736  * the rate effectively gets locked as exclusivity can't be preempted.
737  *
738  * Calls to clk_rate_exclusive_put() must be balanced with calls to
739  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
740  * error status.
741  */
742 void clk_rate_exclusive_put(struct clk *clk)
743 {
744 	if (!clk)
745 		return;
746 
747 	clk_prepare_lock();
748 
749 	/*
750 	 * if there is something wrong with this consumer protect count, stop
751 	 * here before messing with the provider
752 	 */
753 	if (WARN_ON(clk->exclusive_count <= 0))
754 		goto out;
755 
756 	clk_core_rate_unprotect(clk->core);
757 	clk->exclusive_count--;
758 out:
759 	clk_prepare_unlock();
760 }
761 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
762 
763 static void clk_core_rate_protect(struct clk_core *core)
764 {
765 	lockdep_assert_held(&prepare_lock);
766 
767 	if (!core)
768 		return;
769 
770 	if (core->protect_count == 0)
771 		clk_core_rate_protect(core->parent);
772 
773 	core->protect_count++;
774 }
775 
776 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
777 {
778 	lockdep_assert_held(&prepare_lock);
779 
780 	if (!core)
781 		return;
782 
783 	if (count == 0)
784 		return;
785 
786 	clk_core_rate_protect(core);
787 	core->protect_count = count;
788 }
789 
790 /**
791  * clk_rate_exclusive_get - get exclusivity over the clk rate control
792  * @clk: the clk over which the exclusity of rate control is requested
793  *
794  * clk_rate_exclusive_get() begins a critical section during which a clock
795  * consumer cannot tolerate any other consumer making any operation on the
796  * clock which could result in a rate change or rate glitch. Exclusive clocks
797  * cannot have their rate changed, either directly or indirectly due to changes
798  * further up the parent chain of clocks. As a result, clocks up parent chain
799  * also get under exclusive control of the calling consumer.
800  *
801  * If exlusivity is claimed more than once on clock, even by the same consumer,
802  * the rate effectively gets locked as exclusivity can't be preempted.
803  *
804  * Calls to clk_rate_exclusive_get() should be balanced with calls to
805  * clk_rate_exclusive_put(). Calls to this function may sleep.
806  * Returns 0 on success, -EERROR otherwise
807  */
808 int clk_rate_exclusive_get(struct clk *clk)
809 {
810 	if (!clk)
811 		return 0;
812 
813 	clk_prepare_lock();
814 	clk_core_rate_protect(clk->core);
815 	clk->exclusive_count++;
816 	clk_prepare_unlock();
817 
818 	return 0;
819 }
820 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
821 
822 static void clk_core_unprepare(struct clk_core *core)
823 {
824 	lockdep_assert_held(&prepare_lock);
825 
826 	if (!core)
827 		return;
828 
829 	if (WARN(core->prepare_count == 0,
830 	    "%s already unprepared\n", core->name))
831 		return;
832 
833 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
834 	    "Unpreparing critical %s\n", core->name))
835 		return;
836 
837 	if (core->flags & CLK_SET_RATE_GATE)
838 		clk_core_rate_unprotect(core);
839 
840 	if (--core->prepare_count > 0)
841 		return;
842 
843 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
844 
845 	trace_clk_unprepare(core);
846 
847 	if (core->ops->unprepare)
848 		core->ops->unprepare(core->hw);
849 
850 	clk_pm_runtime_put(core);
851 
852 	trace_clk_unprepare_complete(core);
853 	clk_core_unprepare(core->parent);
854 }
855 
856 static void clk_core_unprepare_lock(struct clk_core *core)
857 {
858 	clk_prepare_lock();
859 	clk_core_unprepare(core);
860 	clk_prepare_unlock();
861 }
862 
863 /**
864  * clk_unprepare - undo preparation of a clock source
865  * @clk: the clk being unprepared
866  *
867  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
868  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
869  * if the operation may sleep.  One example is a clk which is accessed over
870  * I2c.  In the complex case a clk gate operation may require a fast and a slow
871  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
872  * exclusive.  In fact clk_disable must be called before clk_unprepare.
873  */
874 void clk_unprepare(struct clk *clk)
875 {
876 	if (IS_ERR_OR_NULL(clk))
877 		return;
878 
879 	clk_core_unprepare_lock(clk->core);
880 }
881 EXPORT_SYMBOL_GPL(clk_unprepare);
882 
883 static int clk_core_prepare(struct clk_core *core)
884 {
885 	int ret = 0;
886 
887 	lockdep_assert_held(&prepare_lock);
888 
889 	if (!core)
890 		return 0;
891 
892 	if (core->prepare_count == 0) {
893 		ret = clk_pm_runtime_get(core);
894 		if (ret)
895 			return ret;
896 
897 		ret = clk_core_prepare(core->parent);
898 		if (ret)
899 			goto runtime_put;
900 
901 		trace_clk_prepare(core);
902 
903 		if (core->ops->prepare)
904 			ret = core->ops->prepare(core->hw);
905 
906 		trace_clk_prepare_complete(core);
907 
908 		if (ret)
909 			goto unprepare;
910 	}
911 
912 	core->prepare_count++;
913 
914 	/*
915 	 * CLK_SET_RATE_GATE is a special case of clock protection
916 	 * Instead of a consumer claiming exclusive rate control, it is
917 	 * actually the provider which prevents any consumer from making any
918 	 * operation which could result in a rate change or rate glitch while
919 	 * the clock is prepared.
920 	 */
921 	if (core->flags & CLK_SET_RATE_GATE)
922 		clk_core_rate_protect(core);
923 
924 	return 0;
925 unprepare:
926 	clk_core_unprepare(core->parent);
927 runtime_put:
928 	clk_pm_runtime_put(core);
929 	return ret;
930 }
931 
932 static int clk_core_prepare_lock(struct clk_core *core)
933 {
934 	int ret;
935 
936 	clk_prepare_lock();
937 	ret = clk_core_prepare(core);
938 	clk_prepare_unlock();
939 
940 	return ret;
941 }
942 
943 /**
944  * clk_prepare - prepare a clock source
945  * @clk: the clk being prepared
946  *
947  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
948  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
949  * operation may sleep.  One example is a clk which is accessed over I2c.  In
950  * the complex case a clk ungate operation may require a fast and a slow part.
951  * It is this reason that clk_prepare and clk_enable are not mutually
952  * exclusive.  In fact clk_prepare must be called before clk_enable.
953  * Returns 0 on success, -EERROR otherwise.
954  */
955 int clk_prepare(struct clk *clk)
956 {
957 	if (!clk)
958 		return 0;
959 
960 	return clk_core_prepare_lock(clk->core);
961 }
962 EXPORT_SYMBOL_GPL(clk_prepare);
963 
964 static void clk_core_disable(struct clk_core *core)
965 {
966 	lockdep_assert_held(&enable_lock);
967 
968 	if (!core)
969 		return;
970 
971 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
972 		return;
973 
974 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
975 	    "Disabling critical %s\n", core->name))
976 		return;
977 
978 	if (--core->enable_count > 0)
979 		return;
980 
981 	trace_clk_disable_rcuidle(core);
982 
983 	if (core->ops->disable)
984 		core->ops->disable(core->hw);
985 
986 	trace_clk_disable_complete_rcuidle(core);
987 
988 	clk_core_disable(core->parent);
989 }
990 
991 static void clk_core_disable_lock(struct clk_core *core)
992 {
993 	unsigned long flags;
994 
995 	flags = clk_enable_lock();
996 	clk_core_disable(core);
997 	clk_enable_unlock(flags);
998 }
999 
1000 /**
1001  * clk_disable - gate a clock
1002  * @clk: the clk being gated
1003  *
1004  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1005  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1006  * clk if the operation is fast and will never sleep.  One example is a
1007  * SoC-internal clk which is controlled via simple register writes.  In the
1008  * complex case a clk gate operation may require a fast and a slow part.  It is
1009  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1010  * In fact clk_disable must be called before clk_unprepare.
1011  */
1012 void clk_disable(struct clk *clk)
1013 {
1014 	if (IS_ERR_OR_NULL(clk))
1015 		return;
1016 
1017 	clk_core_disable_lock(clk->core);
1018 }
1019 EXPORT_SYMBOL_GPL(clk_disable);
1020 
1021 static int clk_core_enable(struct clk_core *core)
1022 {
1023 	int ret = 0;
1024 
1025 	lockdep_assert_held(&enable_lock);
1026 
1027 	if (!core)
1028 		return 0;
1029 
1030 	if (WARN(core->prepare_count == 0,
1031 	    "Enabling unprepared %s\n", core->name))
1032 		return -ESHUTDOWN;
1033 
1034 	if (core->enable_count == 0) {
1035 		ret = clk_core_enable(core->parent);
1036 
1037 		if (ret)
1038 			return ret;
1039 
1040 		trace_clk_enable_rcuidle(core);
1041 
1042 		if (core->ops->enable)
1043 			ret = core->ops->enable(core->hw);
1044 
1045 		trace_clk_enable_complete_rcuidle(core);
1046 
1047 		if (ret) {
1048 			clk_core_disable(core->parent);
1049 			return ret;
1050 		}
1051 	}
1052 
1053 	core->enable_count++;
1054 	return 0;
1055 }
1056 
1057 static int clk_core_enable_lock(struct clk_core *core)
1058 {
1059 	unsigned long flags;
1060 	int ret;
1061 
1062 	flags = clk_enable_lock();
1063 	ret = clk_core_enable(core);
1064 	clk_enable_unlock(flags);
1065 
1066 	return ret;
1067 }
1068 
1069 /**
1070  * clk_gate_restore_context - restore context for poweroff
1071  * @hw: the clk_hw pointer of clock whose state is to be restored
1072  *
1073  * The clock gate restore context function enables or disables
1074  * the gate clocks based on the enable_count. This is done in cases
1075  * where the clock context is lost and based on the enable_count
1076  * the clock either needs to be enabled/disabled. This
1077  * helps restore the state of gate clocks.
1078  */
1079 void clk_gate_restore_context(struct clk_hw *hw)
1080 {
1081 	struct clk_core *core = hw->core;
1082 
1083 	if (core->enable_count)
1084 		core->ops->enable(hw);
1085 	else
1086 		core->ops->disable(hw);
1087 }
1088 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1089 
1090 static int clk_core_save_context(struct clk_core *core)
1091 {
1092 	struct clk_core *child;
1093 	int ret = 0;
1094 
1095 	hlist_for_each_entry(child, &core->children, child_node) {
1096 		ret = clk_core_save_context(child);
1097 		if (ret < 0)
1098 			return ret;
1099 	}
1100 
1101 	if (core->ops && core->ops->save_context)
1102 		ret = core->ops->save_context(core->hw);
1103 
1104 	return ret;
1105 }
1106 
1107 static void clk_core_restore_context(struct clk_core *core)
1108 {
1109 	struct clk_core *child;
1110 
1111 	if (core->ops && core->ops->restore_context)
1112 		core->ops->restore_context(core->hw);
1113 
1114 	hlist_for_each_entry(child, &core->children, child_node)
1115 		clk_core_restore_context(child);
1116 }
1117 
1118 /**
1119  * clk_save_context - save clock context for poweroff
1120  *
1121  * Saves the context of the clock register for powerstates in which the
1122  * contents of the registers will be lost. Occurs deep within the suspend
1123  * code.  Returns 0 on success.
1124  */
1125 int clk_save_context(void)
1126 {
1127 	struct clk_core *clk;
1128 	int ret;
1129 
1130 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1131 		ret = clk_core_save_context(clk);
1132 		if (ret < 0)
1133 			return ret;
1134 	}
1135 
1136 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1137 		ret = clk_core_save_context(clk);
1138 		if (ret < 0)
1139 			return ret;
1140 	}
1141 
1142 	return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(clk_save_context);
1145 
1146 /**
1147  * clk_restore_context - restore clock context after poweroff
1148  *
1149  * Restore the saved clock context upon resume.
1150  *
1151  */
1152 void clk_restore_context(void)
1153 {
1154 	struct clk_core *core;
1155 
1156 	hlist_for_each_entry(core, &clk_root_list, child_node)
1157 		clk_core_restore_context(core);
1158 
1159 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1160 		clk_core_restore_context(core);
1161 }
1162 EXPORT_SYMBOL_GPL(clk_restore_context);
1163 
1164 /**
1165  * clk_enable - ungate a clock
1166  * @clk: the clk being ungated
1167  *
1168  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1169  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1170  * if the operation will never sleep.  One example is a SoC-internal clk which
1171  * is controlled via simple register writes.  In the complex case a clk ungate
1172  * operation may require a fast and a slow part.  It is this reason that
1173  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1174  * must be called before clk_enable.  Returns 0 on success, -EERROR
1175  * otherwise.
1176  */
1177 int clk_enable(struct clk *clk)
1178 {
1179 	if (!clk)
1180 		return 0;
1181 
1182 	return clk_core_enable_lock(clk->core);
1183 }
1184 EXPORT_SYMBOL_GPL(clk_enable);
1185 
1186 /**
1187  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1188  * @clk: clock source
1189  *
1190  * Returns true if clk_prepare() implicitly enables the clock, effectively
1191  * making clk_enable()/clk_disable() no-ops, false otherwise.
1192  *
1193  * This is of interest mainly to power management code where actually
1194  * disabling the clock also requires unpreparing it to have any material
1195  * effect.
1196  *
1197  * Regardless of the value returned here, the caller must always invoke
1198  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1199  * to be right.
1200  */
1201 bool clk_is_enabled_when_prepared(struct clk *clk)
1202 {
1203 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1204 }
1205 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1206 
1207 static int clk_core_prepare_enable(struct clk_core *core)
1208 {
1209 	int ret;
1210 
1211 	ret = clk_core_prepare_lock(core);
1212 	if (ret)
1213 		return ret;
1214 
1215 	ret = clk_core_enable_lock(core);
1216 	if (ret)
1217 		clk_core_unprepare_lock(core);
1218 
1219 	return ret;
1220 }
1221 
1222 static void clk_core_disable_unprepare(struct clk_core *core)
1223 {
1224 	clk_core_disable_lock(core);
1225 	clk_core_unprepare_lock(core);
1226 }
1227 
1228 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1229 {
1230 	struct clk_core *child;
1231 
1232 	lockdep_assert_held(&prepare_lock);
1233 
1234 	hlist_for_each_entry(child, &core->children, child_node)
1235 		clk_unprepare_unused_subtree(child);
1236 
1237 	if (core->prepare_count)
1238 		return;
1239 
1240 	if (core->flags & CLK_IGNORE_UNUSED)
1241 		return;
1242 
1243 	if (clk_pm_runtime_get(core))
1244 		return;
1245 
1246 	if (clk_core_is_prepared(core)) {
1247 		trace_clk_unprepare(core);
1248 		if (core->ops->unprepare_unused)
1249 			core->ops->unprepare_unused(core->hw);
1250 		else if (core->ops->unprepare)
1251 			core->ops->unprepare(core->hw);
1252 		trace_clk_unprepare_complete(core);
1253 	}
1254 
1255 	clk_pm_runtime_put(core);
1256 }
1257 
1258 static void __init clk_disable_unused_subtree(struct clk_core *core)
1259 {
1260 	struct clk_core *child;
1261 	unsigned long flags;
1262 
1263 	lockdep_assert_held(&prepare_lock);
1264 
1265 	hlist_for_each_entry(child, &core->children, child_node)
1266 		clk_disable_unused_subtree(child);
1267 
1268 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1269 		clk_core_prepare_enable(core->parent);
1270 
1271 	if (clk_pm_runtime_get(core))
1272 		goto unprepare_out;
1273 
1274 	flags = clk_enable_lock();
1275 
1276 	if (core->enable_count)
1277 		goto unlock_out;
1278 
1279 	if (core->flags & CLK_IGNORE_UNUSED)
1280 		goto unlock_out;
1281 
1282 	/*
1283 	 * some gate clocks have special needs during the disable-unused
1284 	 * sequence.  call .disable_unused if available, otherwise fall
1285 	 * back to .disable
1286 	 */
1287 	if (clk_core_is_enabled(core)) {
1288 		trace_clk_disable(core);
1289 		if (core->ops->disable_unused)
1290 			core->ops->disable_unused(core->hw);
1291 		else if (core->ops->disable)
1292 			core->ops->disable(core->hw);
1293 		trace_clk_disable_complete(core);
1294 	}
1295 
1296 unlock_out:
1297 	clk_enable_unlock(flags);
1298 	clk_pm_runtime_put(core);
1299 unprepare_out:
1300 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1301 		clk_core_disable_unprepare(core->parent);
1302 }
1303 
1304 static bool clk_ignore_unused __initdata;
1305 static int __init clk_ignore_unused_setup(char *__unused)
1306 {
1307 	clk_ignore_unused = true;
1308 	return 1;
1309 }
1310 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1311 
1312 static int __init clk_disable_unused(void)
1313 {
1314 	struct clk_core *core;
1315 
1316 	if (clk_ignore_unused) {
1317 		pr_warn("clk: Not disabling unused clocks\n");
1318 		return 0;
1319 	}
1320 
1321 	clk_prepare_lock();
1322 
1323 	hlist_for_each_entry(core, &clk_root_list, child_node)
1324 		clk_disable_unused_subtree(core);
1325 
1326 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1327 		clk_disable_unused_subtree(core);
1328 
1329 	hlist_for_each_entry(core, &clk_root_list, child_node)
1330 		clk_unprepare_unused_subtree(core);
1331 
1332 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1333 		clk_unprepare_unused_subtree(core);
1334 
1335 	clk_prepare_unlock();
1336 
1337 	return 0;
1338 }
1339 late_initcall_sync(clk_disable_unused);
1340 
1341 static int clk_core_determine_round_nolock(struct clk_core *core,
1342 					   struct clk_rate_request *req)
1343 {
1344 	long rate;
1345 
1346 	lockdep_assert_held(&prepare_lock);
1347 
1348 	if (!core)
1349 		return 0;
1350 
1351 	req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1352 
1353 	/*
1354 	 * At this point, core protection will be disabled
1355 	 * - if the provider is not protected at all
1356 	 * - if the calling consumer is the only one which has exclusivity
1357 	 *   over the provider
1358 	 */
1359 	if (clk_core_rate_is_protected(core)) {
1360 		req->rate = core->rate;
1361 	} else if (core->ops->determine_rate) {
1362 		return core->ops->determine_rate(core->hw, req);
1363 	} else if (core->ops->round_rate) {
1364 		rate = core->ops->round_rate(core->hw, req->rate,
1365 					     &req->best_parent_rate);
1366 		if (rate < 0)
1367 			return rate;
1368 
1369 		req->rate = rate;
1370 	} else {
1371 		return -EINVAL;
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 static void clk_core_init_rate_req(struct clk_core * const core,
1378 				   struct clk_rate_request *req)
1379 {
1380 	struct clk_core *parent;
1381 
1382 	if (WARN_ON(!core || !req))
1383 		return;
1384 
1385 	parent = core->parent;
1386 	if (parent) {
1387 		req->best_parent_hw = parent->hw;
1388 		req->best_parent_rate = parent->rate;
1389 	} else {
1390 		req->best_parent_hw = NULL;
1391 		req->best_parent_rate = 0;
1392 	}
1393 }
1394 
1395 static bool clk_core_can_round(struct clk_core * const core)
1396 {
1397 	return core->ops->determine_rate || core->ops->round_rate;
1398 }
1399 
1400 static int clk_core_round_rate_nolock(struct clk_core *core,
1401 				      struct clk_rate_request *req)
1402 {
1403 	lockdep_assert_held(&prepare_lock);
1404 
1405 	if (!core) {
1406 		req->rate = 0;
1407 		return 0;
1408 	}
1409 
1410 	clk_core_init_rate_req(core, req);
1411 
1412 	if (clk_core_can_round(core))
1413 		return clk_core_determine_round_nolock(core, req);
1414 	else if (core->flags & CLK_SET_RATE_PARENT)
1415 		return clk_core_round_rate_nolock(core->parent, req);
1416 
1417 	req->rate = core->rate;
1418 	return 0;
1419 }
1420 
1421 /**
1422  * __clk_determine_rate - get the closest rate actually supported by a clock
1423  * @hw: determine the rate of this clock
1424  * @req: target rate request
1425  *
1426  * Useful for clk_ops such as .set_rate and .determine_rate.
1427  */
1428 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1429 {
1430 	if (!hw) {
1431 		req->rate = 0;
1432 		return 0;
1433 	}
1434 
1435 	return clk_core_round_rate_nolock(hw->core, req);
1436 }
1437 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1438 
1439 /**
1440  * clk_hw_round_rate() - round the given rate for a hw clk
1441  * @hw: the hw clk for which we are rounding a rate
1442  * @rate: the rate which is to be rounded
1443  *
1444  * Takes in a rate as input and rounds it to a rate that the clk can actually
1445  * use.
1446  *
1447  * Context: prepare_lock must be held.
1448  *          For clk providers to call from within clk_ops such as .round_rate,
1449  *          .determine_rate.
1450  *
1451  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1452  *         else returns the parent rate.
1453  */
1454 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1455 {
1456 	int ret;
1457 	struct clk_rate_request req;
1458 
1459 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1460 	req.rate = rate;
1461 
1462 	ret = clk_core_round_rate_nolock(hw->core, &req);
1463 	if (ret)
1464 		return 0;
1465 
1466 	return req.rate;
1467 }
1468 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1469 
1470 /**
1471  * clk_round_rate - round the given rate for a clk
1472  * @clk: the clk for which we are rounding a rate
1473  * @rate: the rate which is to be rounded
1474  *
1475  * Takes in a rate as input and rounds it to a rate that the clk can actually
1476  * use which is then returned.  If clk doesn't support round_rate operation
1477  * then the parent rate is returned.
1478  */
1479 long clk_round_rate(struct clk *clk, unsigned long rate)
1480 {
1481 	struct clk_rate_request req;
1482 	int ret;
1483 
1484 	if (!clk)
1485 		return 0;
1486 
1487 	clk_prepare_lock();
1488 
1489 	if (clk->exclusive_count)
1490 		clk_core_rate_unprotect(clk->core);
1491 
1492 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1493 	req.rate = rate;
1494 
1495 	ret = clk_core_round_rate_nolock(clk->core, &req);
1496 
1497 	if (clk->exclusive_count)
1498 		clk_core_rate_protect(clk->core);
1499 
1500 	clk_prepare_unlock();
1501 
1502 	if (ret)
1503 		return ret;
1504 
1505 	return req.rate;
1506 }
1507 EXPORT_SYMBOL_GPL(clk_round_rate);
1508 
1509 /**
1510  * __clk_notify - call clk notifier chain
1511  * @core: clk that is changing rate
1512  * @msg: clk notifier type (see include/linux/clk.h)
1513  * @old_rate: old clk rate
1514  * @new_rate: new clk rate
1515  *
1516  * Triggers a notifier call chain on the clk rate-change notification
1517  * for 'clk'.  Passes a pointer to the struct clk and the previous
1518  * and current rates to the notifier callback.  Intended to be called by
1519  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1520  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1521  * a driver returns that.
1522  */
1523 static int __clk_notify(struct clk_core *core, unsigned long msg,
1524 		unsigned long old_rate, unsigned long new_rate)
1525 {
1526 	struct clk_notifier *cn;
1527 	struct clk_notifier_data cnd;
1528 	int ret = NOTIFY_DONE;
1529 
1530 	cnd.old_rate = old_rate;
1531 	cnd.new_rate = new_rate;
1532 
1533 	list_for_each_entry(cn, &clk_notifier_list, node) {
1534 		if (cn->clk->core == core) {
1535 			cnd.clk = cn->clk;
1536 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1537 					&cnd);
1538 			if (ret & NOTIFY_STOP_MASK)
1539 				return ret;
1540 		}
1541 	}
1542 
1543 	return ret;
1544 }
1545 
1546 /**
1547  * __clk_recalc_accuracies
1548  * @core: first clk in the subtree
1549  *
1550  * Walks the subtree of clks starting with clk and recalculates accuracies as
1551  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1552  * callback then it is assumed that the clock will take on the accuracy of its
1553  * parent.
1554  */
1555 static void __clk_recalc_accuracies(struct clk_core *core)
1556 {
1557 	unsigned long parent_accuracy = 0;
1558 	struct clk_core *child;
1559 
1560 	lockdep_assert_held(&prepare_lock);
1561 
1562 	if (core->parent)
1563 		parent_accuracy = core->parent->accuracy;
1564 
1565 	if (core->ops->recalc_accuracy)
1566 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1567 							  parent_accuracy);
1568 	else
1569 		core->accuracy = parent_accuracy;
1570 
1571 	hlist_for_each_entry(child, &core->children, child_node)
1572 		__clk_recalc_accuracies(child);
1573 }
1574 
1575 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1576 {
1577 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1578 		__clk_recalc_accuracies(core);
1579 
1580 	return clk_core_get_accuracy_no_lock(core);
1581 }
1582 
1583 /**
1584  * clk_get_accuracy - return the accuracy of clk
1585  * @clk: the clk whose accuracy is being returned
1586  *
1587  * Simply returns the cached accuracy of the clk, unless
1588  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1589  * issued.
1590  * If clk is NULL then returns 0.
1591  */
1592 long clk_get_accuracy(struct clk *clk)
1593 {
1594 	long accuracy;
1595 
1596 	if (!clk)
1597 		return 0;
1598 
1599 	clk_prepare_lock();
1600 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1601 	clk_prepare_unlock();
1602 
1603 	return accuracy;
1604 }
1605 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1606 
1607 static unsigned long clk_recalc(struct clk_core *core,
1608 				unsigned long parent_rate)
1609 {
1610 	unsigned long rate = parent_rate;
1611 
1612 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1613 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1614 		clk_pm_runtime_put(core);
1615 	}
1616 	return rate;
1617 }
1618 
1619 /**
1620  * __clk_recalc_rates
1621  * @core: first clk in the subtree
1622  * @msg: notification type (see include/linux/clk.h)
1623  *
1624  * Walks the subtree of clks starting with clk and recalculates rates as it
1625  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1626  * it is assumed that the clock will take on the rate of its parent.
1627  *
1628  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1629  * if necessary.
1630  */
1631 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1632 {
1633 	unsigned long old_rate;
1634 	unsigned long parent_rate = 0;
1635 	struct clk_core *child;
1636 
1637 	lockdep_assert_held(&prepare_lock);
1638 
1639 	old_rate = core->rate;
1640 
1641 	if (core->parent)
1642 		parent_rate = core->parent->rate;
1643 
1644 	core->rate = clk_recalc(core, parent_rate);
1645 
1646 	/*
1647 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1648 	 * & ABORT_RATE_CHANGE notifiers
1649 	 */
1650 	if (core->notifier_count && msg)
1651 		__clk_notify(core, msg, old_rate, core->rate);
1652 
1653 	hlist_for_each_entry(child, &core->children, child_node)
1654 		__clk_recalc_rates(child, msg);
1655 }
1656 
1657 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1658 {
1659 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1660 		__clk_recalc_rates(core, 0);
1661 
1662 	return clk_core_get_rate_nolock(core);
1663 }
1664 
1665 /**
1666  * clk_get_rate - return the rate of clk
1667  * @clk: the clk whose rate is being returned
1668  *
1669  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1670  * is set, which means a recalc_rate will be issued.
1671  * If clk is NULL then returns 0.
1672  */
1673 unsigned long clk_get_rate(struct clk *clk)
1674 {
1675 	unsigned long rate;
1676 
1677 	if (!clk)
1678 		return 0;
1679 
1680 	clk_prepare_lock();
1681 	rate = clk_core_get_rate_recalc(clk->core);
1682 	clk_prepare_unlock();
1683 
1684 	return rate;
1685 }
1686 EXPORT_SYMBOL_GPL(clk_get_rate);
1687 
1688 static int clk_fetch_parent_index(struct clk_core *core,
1689 				  struct clk_core *parent)
1690 {
1691 	int i;
1692 
1693 	if (!parent)
1694 		return -EINVAL;
1695 
1696 	for (i = 0; i < core->num_parents; i++) {
1697 		/* Found it first try! */
1698 		if (core->parents[i].core == parent)
1699 			return i;
1700 
1701 		/* Something else is here, so keep looking */
1702 		if (core->parents[i].core)
1703 			continue;
1704 
1705 		/* Maybe core hasn't been cached but the hw is all we know? */
1706 		if (core->parents[i].hw) {
1707 			if (core->parents[i].hw == parent->hw)
1708 				break;
1709 
1710 			/* Didn't match, but we're expecting a clk_hw */
1711 			continue;
1712 		}
1713 
1714 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1715 		if (parent == clk_core_get(core, i))
1716 			break;
1717 
1718 		/* Fallback to comparing globally unique names */
1719 		if (core->parents[i].name &&
1720 		    !strcmp(parent->name, core->parents[i].name))
1721 			break;
1722 	}
1723 
1724 	if (i == core->num_parents)
1725 		return -EINVAL;
1726 
1727 	core->parents[i].core = parent;
1728 	return i;
1729 }
1730 
1731 /**
1732  * clk_hw_get_parent_index - return the index of the parent clock
1733  * @hw: clk_hw associated with the clk being consumed
1734  *
1735  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1736  * clock does not have a current parent.
1737  */
1738 int clk_hw_get_parent_index(struct clk_hw *hw)
1739 {
1740 	struct clk_hw *parent = clk_hw_get_parent(hw);
1741 
1742 	if (WARN_ON(parent == NULL))
1743 		return -EINVAL;
1744 
1745 	return clk_fetch_parent_index(hw->core, parent->core);
1746 }
1747 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1748 
1749 /*
1750  * Update the orphan status of @core and all its children.
1751  */
1752 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1753 {
1754 	struct clk_core *child;
1755 
1756 	core->orphan = is_orphan;
1757 
1758 	hlist_for_each_entry(child, &core->children, child_node)
1759 		clk_core_update_orphan_status(child, is_orphan);
1760 }
1761 
1762 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1763 {
1764 	bool was_orphan = core->orphan;
1765 
1766 	hlist_del(&core->child_node);
1767 
1768 	if (new_parent) {
1769 		bool becomes_orphan = new_parent->orphan;
1770 
1771 		/* avoid duplicate POST_RATE_CHANGE notifications */
1772 		if (new_parent->new_child == core)
1773 			new_parent->new_child = NULL;
1774 
1775 		hlist_add_head(&core->child_node, &new_parent->children);
1776 
1777 		if (was_orphan != becomes_orphan)
1778 			clk_core_update_orphan_status(core, becomes_orphan);
1779 	} else {
1780 		hlist_add_head(&core->child_node, &clk_orphan_list);
1781 		if (!was_orphan)
1782 			clk_core_update_orphan_status(core, true);
1783 	}
1784 
1785 	core->parent = new_parent;
1786 }
1787 
1788 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1789 					   struct clk_core *parent)
1790 {
1791 	unsigned long flags;
1792 	struct clk_core *old_parent = core->parent;
1793 
1794 	/*
1795 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1796 	 *
1797 	 * 2. Migrate prepare state between parents and prevent race with
1798 	 * clk_enable().
1799 	 *
1800 	 * If the clock is not prepared, then a race with
1801 	 * clk_enable/disable() is impossible since we already have the
1802 	 * prepare lock (future calls to clk_enable() need to be preceded by
1803 	 * a clk_prepare()).
1804 	 *
1805 	 * If the clock is prepared, migrate the prepared state to the new
1806 	 * parent and also protect against a race with clk_enable() by
1807 	 * forcing the clock and the new parent on.  This ensures that all
1808 	 * future calls to clk_enable() are practically NOPs with respect to
1809 	 * hardware and software states.
1810 	 *
1811 	 * See also: Comment for clk_set_parent() below.
1812 	 */
1813 
1814 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1815 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1816 		clk_core_prepare_enable(old_parent);
1817 		clk_core_prepare_enable(parent);
1818 	}
1819 
1820 	/* migrate prepare count if > 0 */
1821 	if (core->prepare_count) {
1822 		clk_core_prepare_enable(parent);
1823 		clk_core_enable_lock(core);
1824 	}
1825 
1826 	/* update the clk tree topology */
1827 	flags = clk_enable_lock();
1828 	clk_reparent(core, parent);
1829 	clk_enable_unlock(flags);
1830 
1831 	return old_parent;
1832 }
1833 
1834 static void __clk_set_parent_after(struct clk_core *core,
1835 				   struct clk_core *parent,
1836 				   struct clk_core *old_parent)
1837 {
1838 	/*
1839 	 * Finish the migration of prepare state and undo the changes done
1840 	 * for preventing a race with clk_enable().
1841 	 */
1842 	if (core->prepare_count) {
1843 		clk_core_disable_lock(core);
1844 		clk_core_disable_unprepare(old_parent);
1845 	}
1846 
1847 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1848 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1849 		clk_core_disable_unprepare(parent);
1850 		clk_core_disable_unprepare(old_parent);
1851 	}
1852 }
1853 
1854 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1855 			    u8 p_index)
1856 {
1857 	unsigned long flags;
1858 	int ret = 0;
1859 	struct clk_core *old_parent;
1860 
1861 	old_parent = __clk_set_parent_before(core, parent);
1862 
1863 	trace_clk_set_parent(core, parent);
1864 
1865 	/* change clock input source */
1866 	if (parent && core->ops->set_parent)
1867 		ret = core->ops->set_parent(core->hw, p_index);
1868 
1869 	trace_clk_set_parent_complete(core, parent);
1870 
1871 	if (ret) {
1872 		flags = clk_enable_lock();
1873 		clk_reparent(core, old_parent);
1874 		clk_enable_unlock(flags);
1875 		__clk_set_parent_after(core, old_parent, parent);
1876 
1877 		return ret;
1878 	}
1879 
1880 	__clk_set_parent_after(core, parent, old_parent);
1881 
1882 	return 0;
1883 }
1884 
1885 /**
1886  * __clk_speculate_rates
1887  * @core: first clk in the subtree
1888  * @parent_rate: the "future" rate of clk's parent
1889  *
1890  * Walks the subtree of clks starting with clk, speculating rates as it
1891  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1892  *
1893  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1894  * pre-rate change notifications and returns early if no clks in the
1895  * subtree have subscribed to the notifications.  Note that if a clk does not
1896  * implement the .recalc_rate callback then it is assumed that the clock will
1897  * take on the rate of its parent.
1898  */
1899 static int __clk_speculate_rates(struct clk_core *core,
1900 				 unsigned long parent_rate)
1901 {
1902 	struct clk_core *child;
1903 	unsigned long new_rate;
1904 	int ret = NOTIFY_DONE;
1905 
1906 	lockdep_assert_held(&prepare_lock);
1907 
1908 	new_rate = clk_recalc(core, parent_rate);
1909 
1910 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1911 	if (core->notifier_count)
1912 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1913 
1914 	if (ret & NOTIFY_STOP_MASK) {
1915 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1916 				__func__, core->name, ret);
1917 		goto out;
1918 	}
1919 
1920 	hlist_for_each_entry(child, &core->children, child_node) {
1921 		ret = __clk_speculate_rates(child, new_rate);
1922 		if (ret & NOTIFY_STOP_MASK)
1923 			break;
1924 	}
1925 
1926 out:
1927 	return ret;
1928 }
1929 
1930 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1931 			     struct clk_core *new_parent, u8 p_index)
1932 {
1933 	struct clk_core *child;
1934 
1935 	core->new_rate = new_rate;
1936 	core->new_parent = new_parent;
1937 	core->new_parent_index = p_index;
1938 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1939 	core->new_child = NULL;
1940 	if (new_parent && new_parent != core->parent)
1941 		new_parent->new_child = core;
1942 
1943 	hlist_for_each_entry(child, &core->children, child_node) {
1944 		child->new_rate = clk_recalc(child, new_rate);
1945 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1946 	}
1947 }
1948 
1949 /*
1950  * calculate the new rates returning the topmost clock that has to be
1951  * changed.
1952  */
1953 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1954 					   unsigned long rate)
1955 {
1956 	struct clk_core *top = core;
1957 	struct clk_core *old_parent, *parent;
1958 	unsigned long best_parent_rate = 0;
1959 	unsigned long new_rate;
1960 	unsigned long min_rate;
1961 	unsigned long max_rate;
1962 	int p_index = 0;
1963 	long ret;
1964 
1965 	/* sanity */
1966 	if (IS_ERR_OR_NULL(core))
1967 		return NULL;
1968 
1969 	/* save parent rate, if it exists */
1970 	parent = old_parent = core->parent;
1971 	if (parent)
1972 		best_parent_rate = parent->rate;
1973 
1974 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1975 
1976 	/* find the closest rate and parent clk/rate */
1977 	if (clk_core_can_round(core)) {
1978 		struct clk_rate_request req;
1979 
1980 		req.rate = rate;
1981 		req.min_rate = min_rate;
1982 		req.max_rate = max_rate;
1983 
1984 		clk_core_init_rate_req(core, &req);
1985 
1986 		ret = clk_core_determine_round_nolock(core, &req);
1987 		if (ret < 0)
1988 			return NULL;
1989 
1990 		best_parent_rate = req.best_parent_rate;
1991 		new_rate = req.rate;
1992 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1993 
1994 		if (new_rate < min_rate || new_rate > max_rate)
1995 			return NULL;
1996 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1997 		/* pass-through clock without adjustable parent */
1998 		core->new_rate = core->rate;
1999 		return NULL;
2000 	} else {
2001 		/* pass-through clock with adjustable parent */
2002 		top = clk_calc_new_rates(parent, rate);
2003 		new_rate = parent->new_rate;
2004 		goto out;
2005 	}
2006 
2007 	/* some clocks must be gated to change parent */
2008 	if (parent != old_parent &&
2009 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2010 		pr_debug("%s: %s not gated but wants to reparent\n",
2011 			 __func__, core->name);
2012 		return NULL;
2013 	}
2014 
2015 	/* try finding the new parent index */
2016 	if (parent && core->num_parents > 1) {
2017 		p_index = clk_fetch_parent_index(core, parent);
2018 		if (p_index < 0) {
2019 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2020 				 __func__, parent->name, core->name);
2021 			return NULL;
2022 		}
2023 	}
2024 
2025 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2026 	    best_parent_rate != parent->rate)
2027 		top = clk_calc_new_rates(parent, best_parent_rate);
2028 
2029 out:
2030 	clk_calc_subtree(core, new_rate, parent, p_index);
2031 
2032 	return top;
2033 }
2034 
2035 /*
2036  * Notify about rate changes in a subtree. Always walk down the whole tree
2037  * so that in case of an error we can walk down the whole tree again and
2038  * abort the change.
2039  */
2040 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2041 						  unsigned long event)
2042 {
2043 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2044 	int ret = NOTIFY_DONE;
2045 
2046 	if (core->rate == core->new_rate)
2047 		return NULL;
2048 
2049 	if (core->notifier_count) {
2050 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2051 		if (ret & NOTIFY_STOP_MASK)
2052 			fail_clk = core;
2053 	}
2054 
2055 	hlist_for_each_entry(child, &core->children, child_node) {
2056 		/* Skip children who will be reparented to another clock */
2057 		if (child->new_parent && child->new_parent != core)
2058 			continue;
2059 		tmp_clk = clk_propagate_rate_change(child, event);
2060 		if (tmp_clk)
2061 			fail_clk = tmp_clk;
2062 	}
2063 
2064 	/* handle the new child who might not be in core->children yet */
2065 	if (core->new_child) {
2066 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2067 		if (tmp_clk)
2068 			fail_clk = tmp_clk;
2069 	}
2070 
2071 	return fail_clk;
2072 }
2073 
2074 /*
2075  * walk down a subtree and set the new rates notifying the rate
2076  * change on the way
2077  */
2078 static void clk_change_rate(struct clk_core *core)
2079 {
2080 	struct clk_core *child;
2081 	struct hlist_node *tmp;
2082 	unsigned long old_rate;
2083 	unsigned long best_parent_rate = 0;
2084 	bool skip_set_rate = false;
2085 	struct clk_core *old_parent;
2086 	struct clk_core *parent = NULL;
2087 
2088 	old_rate = core->rate;
2089 
2090 	if (core->new_parent) {
2091 		parent = core->new_parent;
2092 		best_parent_rate = core->new_parent->rate;
2093 	} else if (core->parent) {
2094 		parent = core->parent;
2095 		best_parent_rate = core->parent->rate;
2096 	}
2097 
2098 	if (clk_pm_runtime_get(core))
2099 		return;
2100 
2101 	if (core->flags & CLK_SET_RATE_UNGATE) {
2102 		clk_core_prepare(core);
2103 		clk_core_enable_lock(core);
2104 	}
2105 
2106 	if (core->new_parent && core->new_parent != core->parent) {
2107 		old_parent = __clk_set_parent_before(core, core->new_parent);
2108 		trace_clk_set_parent(core, core->new_parent);
2109 
2110 		if (core->ops->set_rate_and_parent) {
2111 			skip_set_rate = true;
2112 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2113 					best_parent_rate,
2114 					core->new_parent_index);
2115 		} else if (core->ops->set_parent) {
2116 			core->ops->set_parent(core->hw, core->new_parent_index);
2117 		}
2118 
2119 		trace_clk_set_parent_complete(core, core->new_parent);
2120 		__clk_set_parent_after(core, core->new_parent, old_parent);
2121 	}
2122 
2123 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2124 		clk_core_prepare_enable(parent);
2125 
2126 	trace_clk_set_rate(core, core->new_rate);
2127 
2128 	if (!skip_set_rate && core->ops->set_rate)
2129 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2130 
2131 	trace_clk_set_rate_complete(core, core->new_rate);
2132 
2133 	core->rate = clk_recalc(core, best_parent_rate);
2134 
2135 	if (core->flags & CLK_SET_RATE_UNGATE) {
2136 		clk_core_disable_lock(core);
2137 		clk_core_unprepare(core);
2138 	}
2139 
2140 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2141 		clk_core_disable_unprepare(parent);
2142 
2143 	if (core->notifier_count && old_rate != core->rate)
2144 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2145 
2146 	if (core->flags & CLK_RECALC_NEW_RATES)
2147 		(void)clk_calc_new_rates(core, core->new_rate);
2148 
2149 	/*
2150 	 * Use safe iteration, as change_rate can actually swap parents
2151 	 * for certain clock types.
2152 	 */
2153 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2154 		/* Skip children who will be reparented to another clock */
2155 		if (child->new_parent && child->new_parent != core)
2156 			continue;
2157 		clk_change_rate(child);
2158 	}
2159 
2160 	/* handle the new child who might not be in core->children yet */
2161 	if (core->new_child)
2162 		clk_change_rate(core->new_child);
2163 
2164 	clk_pm_runtime_put(core);
2165 }
2166 
2167 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2168 						     unsigned long req_rate)
2169 {
2170 	int ret, cnt;
2171 	struct clk_rate_request req;
2172 
2173 	lockdep_assert_held(&prepare_lock);
2174 
2175 	if (!core)
2176 		return 0;
2177 
2178 	/* simulate what the rate would be if it could be freely set */
2179 	cnt = clk_core_rate_nuke_protect(core);
2180 	if (cnt < 0)
2181 		return cnt;
2182 
2183 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2184 	req.rate = req_rate;
2185 
2186 	ret = clk_core_round_rate_nolock(core, &req);
2187 
2188 	/* restore the protection */
2189 	clk_core_rate_restore_protect(core, cnt);
2190 
2191 	return ret ? 0 : req.rate;
2192 }
2193 
2194 static int clk_core_set_rate_nolock(struct clk_core *core,
2195 				    unsigned long req_rate)
2196 {
2197 	struct clk_core *top, *fail_clk;
2198 	unsigned long rate;
2199 	int ret = 0;
2200 
2201 	if (!core)
2202 		return 0;
2203 
2204 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2205 
2206 	/* bail early if nothing to do */
2207 	if (rate == clk_core_get_rate_nolock(core))
2208 		return 0;
2209 
2210 	/* fail on a direct rate set of a protected provider */
2211 	if (clk_core_rate_is_protected(core))
2212 		return -EBUSY;
2213 
2214 	/* calculate new rates and get the topmost changed clock */
2215 	top = clk_calc_new_rates(core, req_rate);
2216 	if (!top)
2217 		return -EINVAL;
2218 
2219 	ret = clk_pm_runtime_get(core);
2220 	if (ret)
2221 		return ret;
2222 
2223 	/* notify that we are about to change rates */
2224 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2225 	if (fail_clk) {
2226 		pr_debug("%s: failed to set %s rate\n", __func__,
2227 				fail_clk->name);
2228 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2229 		ret = -EBUSY;
2230 		goto err;
2231 	}
2232 
2233 	/* change the rates */
2234 	clk_change_rate(top);
2235 
2236 	core->req_rate = req_rate;
2237 err:
2238 	clk_pm_runtime_put(core);
2239 
2240 	return ret;
2241 }
2242 
2243 /**
2244  * clk_set_rate - specify a new rate for clk
2245  * @clk: the clk whose rate is being changed
2246  * @rate: the new rate for clk
2247  *
2248  * In the simplest case clk_set_rate will only adjust the rate of clk.
2249  *
2250  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2251  * propagate up to clk's parent; whether or not this happens depends on the
2252  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2253  * after calling .round_rate then upstream parent propagation is ignored.  If
2254  * *parent_rate comes back with a new rate for clk's parent then we propagate
2255  * up to clk's parent and set its rate.  Upward propagation will continue
2256  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2257  * .round_rate stops requesting changes to clk's parent_rate.
2258  *
2259  * Rate changes are accomplished via tree traversal that also recalculates the
2260  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2261  *
2262  * Returns 0 on success, -EERROR otherwise.
2263  */
2264 int clk_set_rate(struct clk *clk, unsigned long rate)
2265 {
2266 	int ret;
2267 
2268 	if (!clk)
2269 		return 0;
2270 
2271 	/* prevent racing with updates to the clock topology */
2272 	clk_prepare_lock();
2273 
2274 	if (clk->exclusive_count)
2275 		clk_core_rate_unprotect(clk->core);
2276 
2277 	ret = clk_core_set_rate_nolock(clk->core, rate);
2278 
2279 	if (clk->exclusive_count)
2280 		clk_core_rate_protect(clk->core);
2281 
2282 	clk_prepare_unlock();
2283 
2284 	return ret;
2285 }
2286 EXPORT_SYMBOL_GPL(clk_set_rate);
2287 
2288 /**
2289  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2290  * @clk: the clk whose rate is being changed
2291  * @rate: the new rate for clk
2292  *
2293  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2294  * within a critical section
2295  *
2296  * This can be used initially to ensure that at least 1 consumer is
2297  * satisfied when several consumers are competing for exclusivity over the
2298  * same clock provider.
2299  *
2300  * The exclusivity is not applied if setting the rate failed.
2301  *
2302  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2303  * clk_rate_exclusive_put().
2304  *
2305  * Returns 0 on success, -EERROR otherwise.
2306  */
2307 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2308 {
2309 	int ret;
2310 
2311 	if (!clk)
2312 		return 0;
2313 
2314 	/* prevent racing with updates to the clock topology */
2315 	clk_prepare_lock();
2316 
2317 	/*
2318 	 * The temporary protection removal is not here, on purpose
2319 	 * This function is meant to be used instead of clk_rate_protect,
2320 	 * so before the consumer code path protect the clock provider
2321 	 */
2322 
2323 	ret = clk_core_set_rate_nolock(clk->core, rate);
2324 	if (!ret) {
2325 		clk_core_rate_protect(clk->core);
2326 		clk->exclusive_count++;
2327 	}
2328 
2329 	clk_prepare_unlock();
2330 
2331 	return ret;
2332 }
2333 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2334 
2335 static int clk_set_rate_range_nolock(struct clk *clk,
2336 				     unsigned long min,
2337 				     unsigned long max)
2338 {
2339 	int ret = 0;
2340 	unsigned long old_min, old_max, rate;
2341 
2342 	lockdep_assert_held(&prepare_lock);
2343 
2344 	if (!clk)
2345 		return 0;
2346 
2347 	trace_clk_set_rate_range(clk->core, min, max);
2348 
2349 	if (min > max) {
2350 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2351 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2352 		       min, max);
2353 		return -EINVAL;
2354 	}
2355 
2356 	if (clk->exclusive_count)
2357 		clk_core_rate_unprotect(clk->core);
2358 
2359 	/* Save the current values in case we need to rollback the change */
2360 	old_min = clk->min_rate;
2361 	old_max = clk->max_rate;
2362 	clk->min_rate = min;
2363 	clk->max_rate = max;
2364 
2365 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2366 		ret = -EINVAL;
2367 		goto out;
2368 	}
2369 
2370 	/*
2371 	 * Since the boundaries have been changed, let's give the
2372 	 * opportunity to the provider to adjust the clock rate based on
2373 	 * the new boundaries.
2374 	 *
2375 	 * We also need to handle the case where the clock is currently
2376 	 * outside of the boundaries. Clamping the last requested rate
2377 	 * to the current minimum and maximum will also handle this.
2378 	 *
2379 	 * FIXME:
2380 	 * There is a catch. It may fail for the usual reason (clock
2381 	 * broken, clock protected, etc) but also because:
2382 	 * - round_rate() was not favorable and fell on the wrong
2383 	 *   side of the boundary
2384 	 * - the determine_rate() callback does not really check for
2385 	 *   this corner case when determining the rate
2386 	 */
2387 	rate = clamp(clk->core->req_rate, min, max);
2388 	ret = clk_core_set_rate_nolock(clk->core, rate);
2389 	if (ret) {
2390 		/* rollback the changes */
2391 		clk->min_rate = old_min;
2392 		clk->max_rate = old_max;
2393 	}
2394 
2395 out:
2396 	if (clk->exclusive_count)
2397 		clk_core_rate_protect(clk->core);
2398 
2399 	return ret;
2400 }
2401 
2402 /**
2403  * clk_set_rate_range - set a rate range for a clock source
2404  * @clk: clock source
2405  * @min: desired minimum clock rate in Hz, inclusive
2406  * @max: desired maximum clock rate in Hz, inclusive
2407  *
2408  * Return: 0 for success or negative errno on failure.
2409  */
2410 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2411 {
2412 	int ret;
2413 
2414 	if (!clk)
2415 		return 0;
2416 
2417 	clk_prepare_lock();
2418 
2419 	ret = clk_set_rate_range_nolock(clk, min, max);
2420 
2421 	clk_prepare_unlock();
2422 
2423 	return ret;
2424 }
2425 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2426 
2427 /**
2428  * clk_set_min_rate - set a minimum clock rate for a clock source
2429  * @clk: clock source
2430  * @rate: desired minimum clock rate in Hz, inclusive
2431  *
2432  * Returns success (0) or negative errno.
2433  */
2434 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2435 {
2436 	if (!clk)
2437 		return 0;
2438 
2439 	trace_clk_set_min_rate(clk->core, rate);
2440 
2441 	return clk_set_rate_range(clk, rate, clk->max_rate);
2442 }
2443 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2444 
2445 /**
2446  * clk_set_max_rate - set a maximum clock rate for a clock source
2447  * @clk: clock source
2448  * @rate: desired maximum clock rate in Hz, inclusive
2449  *
2450  * Returns success (0) or negative errno.
2451  */
2452 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2453 {
2454 	if (!clk)
2455 		return 0;
2456 
2457 	trace_clk_set_max_rate(clk->core, rate);
2458 
2459 	return clk_set_rate_range(clk, clk->min_rate, rate);
2460 }
2461 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2462 
2463 /**
2464  * clk_get_parent - return the parent of a clk
2465  * @clk: the clk whose parent gets returned
2466  *
2467  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2468  */
2469 struct clk *clk_get_parent(struct clk *clk)
2470 {
2471 	struct clk *parent;
2472 
2473 	if (!clk)
2474 		return NULL;
2475 
2476 	clk_prepare_lock();
2477 	/* TODO: Create a per-user clk and change callers to call clk_put */
2478 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2479 	clk_prepare_unlock();
2480 
2481 	return parent;
2482 }
2483 EXPORT_SYMBOL_GPL(clk_get_parent);
2484 
2485 static struct clk_core *__clk_init_parent(struct clk_core *core)
2486 {
2487 	u8 index = 0;
2488 
2489 	if (core->num_parents > 1 && core->ops->get_parent)
2490 		index = core->ops->get_parent(core->hw);
2491 
2492 	return clk_core_get_parent_by_index(core, index);
2493 }
2494 
2495 static void clk_core_reparent(struct clk_core *core,
2496 				  struct clk_core *new_parent)
2497 {
2498 	clk_reparent(core, new_parent);
2499 	__clk_recalc_accuracies(core);
2500 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2501 }
2502 
2503 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2504 {
2505 	if (!hw)
2506 		return;
2507 
2508 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2509 }
2510 
2511 /**
2512  * clk_has_parent - check if a clock is a possible parent for another
2513  * @clk: clock source
2514  * @parent: parent clock source
2515  *
2516  * This function can be used in drivers that need to check that a clock can be
2517  * the parent of another without actually changing the parent.
2518  *
2519  * Returns true if @parent is a possible parent for @clk, false otherwise.
2520  */
2521 bool clk_has_parent(struct clk *clk, struct clk *parent)
2522 {
2523 	struct clk_core *core, *parent_core;
2524 	int i;
2525 
2526 	/* NULL clocks should be nops, so return success if either is NULL. */
2527 	if (!clk || !parent)
2528 		return true;
2529 
2530 	core = clk->core;
2531 	parent_core = parent->core;
2532 
2533 	/* Optimize for the case where the parent is already the parent. */
2534 	if (core->parent == parent_core)
2535 		return true;
2536 
2537 	for (i = 0; i < core->num_parents; i++)
2538 		if (!strcmp(core->parents[i].name, parent_core->name))
2539 			return true;
2540 
2541 	return false;
2542 }
2543 EXPORT_SYMBOL_GPL(clk_has_parent);
2544 
2545 static int clk_core_set_parent_nolock(struct clk_core *core,
2546 				      struct clk_core *parent)
2547 {
2548 	int ret = 0;
2549 	int p_index = 0;
2550 	unsigned long p_rate = 0;
2551 
2552 	lockdep_assert_held(&prepare_lock);
2553 
2554 	if (!core)
2555 		return 0;
2556 
2557 	if (core->parent == parent)
2558 		return 0;
2559 
2560 	/* verify ops for multi-parent clks */
2561 	if (core->num_parents > 1 && !core->ops->set_parent)
2562 		return -EPERM;
2563 
2564 	/* check that we are allowed to re-parent if the clock is in use */
2565 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2566 		return -EBUSY;
2567 
2568 	if (clk_core_rate_is_protected(core))
2569 		return -EBUSY;
2570 
2571 	/* try finding the new parent index */
2572 	if (parent) {
2573 		p_index = clk_fetch_parent_index(core, parent);
2574 		if (p_index < 0) {
2575 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2576 					__func__, parent->name, core->name);
2577 			return p_index;
2578 		}
2579 		p_rate = parent->rate;
2580 	}
2581 
2582 	ret = clk_pm_runtime_get(core);
2583 	if (ret)
2584 		return ret;
2585 
2586 	/* propagate PRE_RATE_CHANGE notifications */
2587 	ret = __clk_speculate_rates(core, p_rate);
2588 
2589 	/* abort if a driver objects */
2590 	if (ret & NOTIFY_STOP_MASK)
2591 		goto runtime_put;
2592 
2593 	/* do the re-parent */
2594 	ret = __clk_set_parent(core, parent, p_index);
2595 
2596 	/* propagate rate an accuracy recalculation accordingly */
2597 	if (ret) {
2598 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2599 	} else {
2600 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2601 		__clk_recalc_accuracies(core);
2602 	}
2603 
2604 runtime_put:
2605 	clk_pm_runtime_put(core);
2606 
2607 	return ret;
2608 }
2609 
2610 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2611 {
2612 	return clk_core_set_parent_nolock(hw->core, parent->core);
2613 }
2614 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2615 
2616 /**
2617  * clk_set_parent - switch the parent of a mux clk
2618  * @clk: the mux clk whose input we are switching
2619  * @parent: the new input to clk
2620  *
2621  * Re-parent clk to use parent as its new input source.  If clk is in
2622  * prepared state, the clk will get enabled for the duration of this call. If
2623  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2624  * that, the reparenting is glitchy in hardware, etc), use the
2625  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2626  *
2627  * After successfully changing clk's parent clk_set_parent will update the
2628  * clk topology, sysfs topology and propagate rate recalculation via
2629  * __clk_recalc_rates.
2630  *
2631  * Returns 0 on success, -EERROR otherwise.
2632  */
2633 int clk_set_parent(struct clk *clk, struct clk *parent)
2634 {
2635 	int ret;
2636 
2637 	if (!clk)
2638 		return 0;
2639 
2640 	clk_prepare_lock();
2641 
2642 	if (clk->exclusive_count)
2643 		clk_core_rate_unprotect(clk->core);
2644 
2645 	ret = clk_core_set_parent_nolock(clk->core,
2646 					 parent ? parent->core : NULL);
2647 
2648 	if (clk->exclusive_count)
2649 		clk_core_rate_protect(clk->core);
2650 
2651 	clk_prepare_unlock();
2652 
2653 	return ret;
2654 }
2655 EXPORT_SYMBOL_GPL(clk_set_parent);
2656 
2657 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2658 {
2659 	int ret = -EINVAL;
2660 
2661 	lockdep_assert_held(&prepare_lock);
2662 
2663 	if (!core)
2664 		return 0;
2665 
2666 	if (clk_core_rate_is_protected(core))
2667 		return -EBUSY;
2668 
2669 	trace_clk_set_phase(core, degrees);
2670 
2671 	if (core->ops->set_phase) {
2672 		ret = core->ops->set_phase(core->hw, degrees);
2673 		if (!ret)
2674 			core->phase = degrees;
2675 	}
2676 
2677 	trace_clk_set_phase_complete(core, degrees);
2678 
2679 	return ret;
2680 }
2681 
2682 /**
2683  * clk_set_phase - adjust the phase shift of a clock signal
2684  * @clk: clock signal source
2685  * @degrees: number of degrees the signal is shifted
2686  *
2687  * Shifts the phase of a clock signal by the specified
2688  * degrees. Returns 0 on success, -EERROR otherwise.
2689  *
2690  * This function makes no distinction about the input or reference
2691  * signal that we adjust the clock signal phase against. For example
2692  * phase locked-loop clock signal generators we may shift phase with
2693  * respect to feedback clock signal input, but for other cases the
2694  * clock phase may be shifted with respect to some other, unspecified
2695  * signal.
2696  *
2697  * Additionally the concept of phase shift does not propagate through
2698  * the clock tree hierarchy, which sets it apart from clock rates and
2699  * clock accuracy. A parent clock phase attribute does not have an
2700  * impact on the phase attribute of a child clock.
2701  */
2702 int clk_set_phase(struct clk *clk, int degrees)
2703 {
2704 	int ret;
2705 
2706 	if (!clk)
2707 		return 0;
2708 
2709 	/* sanity check degrees */
2710 	degrees %= 360;
2711 	if (degrees < 0)
2712 		degrees += 360;
2713 
2714 	clk_prepare_lock();
2715 
2716 	if (clk->exclusive_count)
2717 		clk_core_rate_unprotect(clk->core);
2718 
2719 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2720 
2721 	if (clk->exclusive_count)
2722 		clk_core_rate_protect(clk->core);
2723 
2724 	clk_prepare_unlock();
2725 
2726 	return ret;
2727 }
2728 EXPORT_SYMBOL_GPL(clk_set_phase);
2729 
2730 static int clk_core_get_phase(struct clk_core *core)
2731 {
2732 	int ret;
2733 
2734 	lockdep_assert_held(&prepare_lock);
2735 	if (!core->ops->get_phase)
2736 		return 0;
2737 
2738 	/* Always try to update cached phase if possible */
2739 	ret = core->ops->get_phase(core->hw);
2740 	if (ret >= 0)
2741 		core->phase = ret;
2742 
2743 	return ret;
2744 }
2745 
2746 /**
2747  * clk_get_phase - return the phase shift of a clock signal
2748  * @clk: clock signal source
2749  *
2750  * Returns the phase shift of a clock node in degrees, otherwise returns
2751  * -EERROR.
2752  */
2753 int clk_get_phase(struct clk *clk)
2754 {
2755 	int ret;
2756 
2757 	if (!clk)
2758 		return 0;
2759 
2760 	clk_prepare_lock();
2761 	ret = clk_core_get_phase(clk->core);
2762 	clk_prepare_unlock();
2763 
2764 	return ret;
2765 }
2766 EXPORT_SYMBOL_GPL(clk_get_phase);
2767 
2768 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2769 {
2770 	/* Assume a default value of 50% */
2771 	core->duty.num = 1;
2772 	core->duty.den = 2;
2773 }
2774 
2775 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2776 
2777 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2778 {
2779 	struct clk_duty *duty = &core->duty;
2780 	int ret = 0;
2781 
2782 	if (!core->ops->get_duty_cycle)
2783 		return clk_core_update_duty_cycle_parent_nolock(core);
2784 
2785 	ret = core->ops->get_duty_cycle(core->hw, duty);
2786 	if (ret)
2787 		goto reset;
2788 
2789 	/* Don't trust the clock provider too much */
2790 	if (duty->den == 0 || duty->num > duty->den) {
2791 		ret = -EINVAL;
2792 		goto reset;
2793 	}
2794 
2795 	return 0;
2796 
2797 reset:
2798 	clk_core_reset_duty_cycle_nolock(core);
2799 	return ret;
2800 }
2801 
2802 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2803 {
2804 	int ret = 0;
2805 
2806 	if (core->parent &&
2807 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2808 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2809 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2810 	} else {
2811 		clk_core_reset_duty_cycle_nolock(core);
2812 	}
2813 
2814 	return ret;
2815 }
2816 
2817 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2818 						 struct clk_duty *duty);
2819 
2820 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2821 					  struct clk_duty *duty)
2822 {
2823 	int ret;
2824 
2825 	lockdep_assert_held(&prepare_lock);
2826 
2827 	if (clk_core_rate_is_protected(core))
2828 		return -EBUSY;
2829 
2830 	trace_clk_set_duty_cycle(core, duty);
2831 
2832 	if (!core->ops->set_duty_cycle)
2833 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2834 
2835 	ret = core->ops->set_duty_cycle(core->hw, duty);
2836 	if (!ret)
2837 		memcpy(&core->duty, duty, sizeof(*duty));
2838 
2839 	trace_clk_set_duty_cycle_complete(core, duty);
2840 
2841 	return ret;
2842 }
2843 
2844 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2845 						 struct clk_duty *duty)
2846 {
2847 	int ret = 0;
2848 
2849 	if (core->parent &&
2850 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2851 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2852 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2853 	}
2854 
2855 	return ret;
2856 }
2857 
2858 /**
2859  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2860  * @clk: clock signal source
2861  * @num: numerator of the duty cycle ratio to be applied
2862  * @den: denominator of the duty cycle ratio to be applied
2863  *
2864  * Apply the duty cycle ratio if the ratio is valid and the clock can
2865  * perform this operation
2866  *
2867  * Returns (0) on success, a negative errno otherwise.
2868  */
2869 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2870 {
2871 	int ret;
2872 	struct clk_duty duty;
2873 
2874 	if (!clk)
2875 		return 0;
2876 
2877 	/* sanity check the ratio */
2878 	if (den == 0 || num > den)
2879 		return -EINVAL;
2880 
2881 	duty.num = num;
2882 	duty.den = den;
2883 
2884 	clk_prepare_lock();
2885 
2886 	if (clk->exclusive_count)
2887 		clk_core_rate_unprotect(clk->core);
2888 
2889 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2890 
2891 	if (clk->exclusive_count)
2892 		clk_core_rate_protect(clk->core);
2893 
2894 	clk_prepare_unlock();
2895 
2896 	return ret;
2897 }
2898 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2899 
2900 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2901 					  unsigned int scale)
2902 {
2903 	struct clk_duty *duty = &core->duty;
2904 	int ret;
2905 
2906 	clk_prepare_lock();
2907 
2908 	ret = clk_core_update_duty_cycle_nolock(core);
2909 	if (!ret)
2910 		ret = mult_frac(scale, duty->num, duty->den);
2911 
2912 	clk_prepare_unlock();
2913 
2914 	return ret;
2915 }
2916 
2917 /**
2918  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2919  * @clk: clock signal source
2920  * @scale: scaling factor to be applied to represent the ratio as an integer
2921  *
2922  * Returns the duty cycle ratio of a clock node multiplied by the provided
2923  * scaling factor, or negative errno on error.
2924  */
2925 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2926 {
2927 	if (!clk)
2928 		return 0;
2929 
2930 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2931 }
2932 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2933 
2934 /**
2935  * clk_is_match - check if two clk's point to the same hardware clock
2936  * @p: clk compared against q
2937  * @q: clk compared against p
2938  *
2939  * Returns true if the two struct clk pointers both point to the same hardware
2940  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2941  * share the same struct clk_core object.
2942  *
2943  * Returns false otherwise. Note that two NULL clks are treated as matching.
2944  */
2945 bool clk_is_match(const struct clk *p, const struct clk *q)
2946 {
2947 	/* trivial case: identical struct clk's or both NULL */
2948 	if (p == q)
2949 		return true;
2950 
2951 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2952 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2953 		if (p->core == q->core)
2954 			return true;
2955 
2956 	return false;
2957 }
2958 EXPORT_SYMBOL_GPL(clk_is_match);
2959 
2960 /***        debugfs support        ***/
2961 
2962 #ifdef CONFIG_DEBUG_FS
2963 #include <linux/debugfs.h>
2964 
2965 static struct dentry *rootdir;
2966 static int inited = 0;
2967 static DEFINE_MUTEX(clk_debug_lock);
2968 static HLIST_HEAD(clk_debug_list);
2969 
2970 static struct hlist_head *orphan_list[] = {
2971 	&clk_orphan_list,
2972 	NULL,
2973 };
2974 
2975 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2976 				 int level)
2977 {
2978 	int phase;
2979 
2980 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
2981 		   level * 3 + 1, "",
2982 		   30 - level * 3, c->name,
2983 		   c->enable_count, c->prepare_count, c->protect_count,
2984 		   clk_core_get_rate_recalc(c),
2985 		   clk_core_get_accuracy_recalc(c));
2986 
2987 	phase = clk_core_get_phase(c);
2988 	if (phase >= 0)
2989 		seq_printf(s, "%5d", phase);
2990 	else
2991 		seq_puts(s, "-----");
2992 
2993 	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
2994 
2995 	if (c->ops->is_enabled)
2996 		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
2997 	else if (!c->ops->enable)
2998 		seq_printf(s, " %9c\n", 'Y');
2999 	else
3000 		seq_printf(s, " %9c\n", '?');
3001 }
3002 
3003 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3004 				     int level)
3005 {
3006 	struct clk_core *child;
3007 
3008 	clk_pm_runtime_get(c);
3009 	clk_summary_show_one(s, c, level);
3010 	clk_pm_runtime_put(c);
3011 
3012 	hlist_for_each_entry(child, &c->children, child_node)
3013 		clk_summary_show_subtree(s, child, level + 1);
3014 }
3015 
3016 static int clk_summary_show(struct seq_file *s, void *data)
3017 {
3018 	struct clk_core *c;
3019 	struct hlist_head **lists = (struct hlist_head **)s->private;
3020 
3021 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
3022 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
3023 	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3024 
3025 	clk_prepare_lock();
3026 
3027 	for (; *lists; lists++)
3028 		hlist_for_each_entry(c, *lists, child_node)
3029 			clk_summary_show_subtree(s, c, 0);
3030 
3031 	clk_prepare_unlock();
3032 
3033 	return 0;
3034 }
3035 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3036 
3037 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3038 {
3039 	int phase;
3040 	unsigned long min_rate, max_rate;
3041 
3042 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3043 
3044 	/* This should be JSON format, i.e. elements separated with a comma */
3045 	seq_printf(s, "\"%s\": { ", c->name);
3046 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3047 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3048 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3049 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3050 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3051 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3052 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3053 	phase = clk_core_get_phase(c);
3054 	if (phase >= 0)
3055 		seq_printf(s, "\"phase\": %d,", phase);
3056 	seq_printf(s, "\"duty_cycle\": %u",
3057 		   clk_core_get_scaled_duty_cycle(c, 100000));
3058 }
3059 
3060 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3061 {
3062 	struct clk_core *child;
3063 
3064 	clk_dump_one(s, c, level);
3065 
3066 	hlist_for_each_entry(child, &c->children, child_node) {
3067 		seq_putc(s, ',');
3068 		clk_dump_subtree(s, child, level + 1);
3069 	}
3070 
3071 	seq_putc(s, '}');
3072 }
3073 
3074 static int clk_dump_show(struct seq_file *s, void *data)
3075 {
3076 	struct clk_core *c;
3077 	bool first_node = true;
3078 	struct hlist_head **lists = (struct hlist_head **)s->private;
3079 
3080 	seq_putc(s, '{');
3081 	clk_prepare_lock();
3082 
3083 	for (; *lists; lists++) {
3084 		hlist_for_each_entry(c, *lists, child_node) {
3085 			if (!first_node)
3086 				seq_putc(s, ',');
3087 			first_node = false;
3088 			clk_dump_subtree(s, c, 0);
3089 		}
3090 	}
3091 
3092 	clk_prepare_unlock();
3093 
3094 	seq_puts(s, "}\n");
3095 	return 0;
3096 }
3097 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3098 
3099 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3100 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3101 /*
3102  * This can be dangerous, therefore don't provide any real compile time
3103  * configuration option for this feature.
3104  * People who want to use this will need to modify the source code directly.
3105  */
3106 static int clk_rate_set(void *data, u64 val)
3107 {
3108 	struct clk_core *core = data;
3109 	int ret;
3110 
3111 	clk_prepare_lock();
3112 	ret = clk_core_set_rate_nolock(core, val);
3113 	clk_prepare_unlock();
3114 
3115 	return ret;
3116 }
3117 
3118 #define clk_rate_mode	0644
3119 
3120 static int clk_prepare_enable_set(void *data, u64 val)
3121 {
3122 	struct clk_core *core = data;
3123 	int ret = 0;
3124 
3125 	if (val)
3126 		ret = clk_prepare_enable(core->hw->clk);
3127 	else
3128 		clk_disable_unprepare(core->hw->clk);
3129 
3130 	return ret;
3131 }
3132 
3133 static int clk_prepare_enable_get(void *data, u64 *val)
3134 {
3135 	struct clk_core *core = data;
3136 
3137 	*val = core->enable_count && core->prepare_count;
3138 	return 0;
3139 }
3140 
3141 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3142 			 clk_prepare_enable_set, "%llu\n");
3143 
3144 #else
3145 #define clk_rate_set	NULL
3146 #define clk_rate_mode	0444
3147 #endif
3148 
3149 static int clk_rate_get(void *data, u64 *val)
3150 {
3151 	struct clk_core *core = data;
3152 
3153 	clk_prepare_lock();
3154 	*val = clk_core_get_rate_recalc(core);
3155 	clk_prepare_unlock();
3156 
3157 	return 0;
3158 }
3159 
3160 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3161 
3162 static const struct {
3163 	unsigned long flag;
3164 	const char *name;
3165 } clk_flags[] = {
3166 #define ENTRY(f) { f, #f }
3167 	ENTRY(CLK_SET_RATE_GATE),
3168 	ENTRY(CLK_SET_PARENT_GATE),
3169 	ENTRY(CLK_SET_RATE_PARENT),
3170 	ENTRY(CLK_IGNORE_UNUSED),
3171 	ENTRY(CLK_GET_RATE_NOCACHE),
3172 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3173 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3174 	ENTRY(CLK_RECALC_NEW_RATES),
3175 	ENTRY(CLK_SET_RATE_UNGATE),
3176 	ENTRY(CLK_IS_CRITICAL),
3177 	ENTRY(CLK_OPS_PARENT_ENABLE),
3178 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3179 #undef ENTRY
3180 };
3181 
3182 static int clk_flags_show(struct seq_file *s, void *data)
3183 {
3184 	struct clk_core *core = s->private;
3185 	unsigned long flags = core->flags;
3186 	unsigned int i;
3187 
3188 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3189 		if (flags & clk_flags[i].flag) {
3190 			seq_printf(s, "%s\n", clk_flags[i].name);
3191 			flags &= ~clk_flags[i].flag;
3192 		}
3193 	}
3194 	if (flags) {
3195 		/* Unknown flags */
3196 		seq_printf(s, "0x%lx\n", flags);
3197 	}
3198 
3199 	return 0;
3200 }
3201 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3202 
3203 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3204 				 unsigned int i, char terminator)
3205 {
3206 	struct clk_core *parent;
3207 
3208 	/*
3209 	 * Go through the following options to fetch a parent's name.
3210 	 *
3211 	 * 1. Fetch the registered parent clock and use its name
3212 	 * 2. Use the global (fallback) name if specified
3213 	 * 3. Use the local fw_name if provided
3214 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3215 	 *
3216 	 * This may still fail in some cases, such as when the parent is
3217 	 * specified directly via a struct clk_hw pointer, but it isn't
3218 	 * registered (yet).
3219 	 */
3220 	parent = clk_core_get_parent_by_index(core, i);
3221 	if (parent)
3222 		seq_puts(s, parent->name);
3223 	else if (core->parents[i].name)
3224 		seq_puts(s, core->parents[i].name);
3225 	else if (core->parents[i].fw_name)
3226 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3227 	else if (core->parents[i].index >= 0)
3228 		seq_puts(s,
3229 			 of_clk_get_parent_name(core->of_node,
3230 						core->parents[i].index));
3231 	else
3232 		seq_puts(s, "(missing)");
3233 
3234 	seq_putc(s, terminator);
3235 }
3236 
3237 static int possible_parents_show(struct seq_file *s, void *data)
3238 {
3239 	struct clk_core *core = s->private;
3240 	int i;
3241 
3242 	for (i = 0; i < core->num_parents - 1; i++)
3243 		possible_parent_show(s, core, i, ' ');
3244 
3245 	possible_parent_show(s, core, i, '\n');
3246 
3247 	return 0;
3248 }
3249 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3250 
3251 static int current_parent_show(struct seq_file *s, void *data)
3252 {
3253 	struct clk_core *core = s->private;
3254 
3255 	if (core->parent)
3256 		seq_printf(s, "%s\n", core->parent->name);
3257 
3258 	return 0;
3259 }
3260 DEFINE_SHOW_ATTRIBUTE(current_parent);
3261 
3262 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3263 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3264 				    size_t count, loff_t *ppos)
3265 {
3266 	struct seq_file *s = file->private_data;
3267 	struct clk_core *core = s->private;
3268 	struct clk_core *parent;
3269 	u8 idx;
3270 	int err;
3271 
3272 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3273 	if (err < 0)
3274 		return err;
3275 
3276 	parent = clk_core_get_parent_by_index(core, idx);
3277 	if (!parent)
3278 		return -ENOENT;
3279 
3280 	clk_prepare_lock();
3281 	err = clk_core_set_parent_nolock(core, parent);
3282 	clk_prepare_unlock();
3283 	if (err)
3284 		return err;
3285 
3286 	return count;
3287 }
3288 
3289 static const struct file_operations current_parent_rw_fops = {
3290 	.open		= current_parent_open,
3291 	.write		= current_parent_write,
3292 	.read		= seq_read,
3293 	.llseek		= seq_lseek,
3294 	.release	= single_release,
3295 };
3296 #endif
3297 
3298 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3299 {
3300 	struct clk_core *core = s->private;
3301 	struct clk_duty *duty = &core->duty;
3302 
3303 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3304 
3305 	return 0;
3306 }
3307 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3308 
3309 static int clk_min_rate_show(struct seq_file *s, void *data)
3310 {
3311 	struct clk_core *core = s->private;
3312 	unsigned long min_rate, max_rate;
3313 
3314 	clk_prepare_lock();
3315 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3316 	clk_prepare_unlock();
3317 	seq_printf(s, "%lu\n", min_rate);
3318 
3319 	return 0;
3320 }
3321 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3322 
3323 static int clk_max_rate_show(struct seq_file *s, void *data)
3324 {
3325 	struct clk_core *core = s->private;
3326 	unsigned long min_rate, max_rate;
3327 
3328 	clk_prepare_lock();
3329 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3330 	clk_prepare_unlock();
3331 	seq_printf(s, "%lu\n", max_rate);
3332 
3333 	return 0;
3334 }
3335 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3336 
3337 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3338 {
3339 	struct dentry *root;
3340 
3341 	if (!core || !pdentry)
3342 		return;
3343 
3344 	root = debugfs_create_dir(core->name, pdentry);
3345 	core->dentry = root;
3346 
3347 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3348 			    &clk_rate_fops);
3349 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3350 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3351 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3352 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3353 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3354 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3355 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3356 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3357 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3358 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3359 			    &clk_duty_cycle_fops);
3360 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3361 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3362 			    &clk_prepare_enable_fops);
3363 
3364 	if (core->num_parents > 1)
3365 		debugfs_create_file("clk_parent", 0644, root, core,
3366 				    &current_parent_rw_fops);
3367 	else
3368 #endif
3369 	if (core->num_parents > 0)
3370 		debugfs_create_file("clk_parent", 0444, root, core,
3371 				    &current_parent_fops);
3372 
3373 	if (core->num_parents > 1)
3374 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3375 				    &possible_parents_fops);
3376 
3377 	if (core->ops->debug_init)
3378 		core->ops->debug_init(core->hw, core->dentry);
3379 }
3380 
3381 /**
3382  * clk_debug_register - add a clk node to the debugfs clk directory
3383  * @core: the clk being added to the debugfs clk directory
3384  *
3385  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3386  * initialized.  Otherwise it bails out early since the debugfs clk directory
3387  * will be created lazily by clk_debug_init as part of a late_initcall.
3388  */
3389 static void clk_debug_register(struct clk_core *core)
3390 {
3391 	mutex_lock(&clk_debug_lock);
3392 	hlist_add_head(&core->debug_node, &clk_debug_list);
3393 	if (inited)
3394 		clk_debug_create_one(core, rootdir);
3395 	mutex_unlock(&clk_debug_lock);
3396 }
3397 
3398  /**
3399  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3400  * @core: the clk being removed from the debugfs clk directory
3401  *
3402  * Dynamically removes a clk and all its child nodes from the
3403  * debugfs clk directory if clk->dentry points to debugfs created by
3404  * clk_debug_register in __clk_core_init.
3405  */
3406 static void clk_debug_unregister(struct clk_core *core)
3407 {
3408 	mutex_lock(&clk_debug_lock);
3409 	hlist_del_init(&core->debug_node);
3410 	debugfs_remove_recursive(core->dentry);
3411 	core->dentry = NULL;
3412 	mutex_unlock(&clk_debug_lock);
3413 }
3414 
3415 /**
3416  * clk_debug_init - lazily populate the debugfs clk directory
3417  *
3418  * clks are often initialized very early during boot before memory can be
3419  * dynamically allocated and well before debugfs is setup. This function
3420  * populates the debugfs clk directory once at boot-time when we know that
3421  * debugfs is setup. It should only be called once at boot-time, all other clks
3422  * added dynamically will be done so with clk_debug_register.
3423  */
3424 static int __init clk_debug_init(void)
3425 {
3426 	struct clk_core *core;
3427 
3428 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3429 	pr_warn("\n");
3430 	pr_warn("********************************************************************\n");
3431 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3432 	pr_warn("**                                                                **\n");
3433 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3434 	pr_warn("**                                                                **\n");
3435 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3436 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3437 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3438 	pr_warn("**                                                                **\n");
3439 	pr_warn("** If you see this message and you are not debugging the          **\n");
3440 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3441 	pr_warn("**                                                                **\n");
3442 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3443 	pr_warn("********************************************************************\n");
3444 #endif
3445 
3446 	rootdir = debugfs_create_dir("clk", NULL);
3447 
3448 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3449 			    &clk_summary_fops);
3450 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3451 			    &clk_dump_fops);
3452 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3453 			    &clk_summary_fops);
3454 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3455 			    &clk_dump_fops);
3456 
3457 	mutex_lock(&clk_debug_lock);
3458 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3459 		clk_debug_create_one(core, rootdir);
3460 
3461 	inited = 1;
3462 	mutex_unlock(&clk_debug_lock);
3463 
3464 	return 0;
3465 }
3466 late_initcall(clk_debug_init);
3467 #else
3468 static inline void clk_debug_register(struct clk_core *core) { }
3469 static inline void clk_debug_unregister(struct clk_core *core)
3470 {
3471 }
3472 #endif
3473 
3474 static void clk_core_reparent_orphans_nolock(void)
3475 {
3476 	struct clk_core *orphan;
3477 	struct hlist_node *tmp2;
3478 
3479 	/*
3480 	 * walk the list of orphan clocks and reparent any that newly finds a
3481 	 * parent.
3482 	 */
3483 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3484 		struct clk_core *parent = __clk_init_parent(orphan);
3485 
3486 		/*
3487 		 * We need to use __clk_set_parent_before() and _after() to
3488 		 * to properly migrate any prepare/enable count of the orphan
3489 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3490 		 * are enabled during init but might not have a parent yet.
3491 		 */
3492 		if (parent) {
3493 			/* update the clk tree topology */
3494 			__clk_set_parent_before(orphan, parent);
3495 			__clk_set_parent_after(orphan, parent, NULL);
3496 			__clk_recalc_accuracies(orphan);
3497 			__clk_recalc_rates(orphan, 0);
3498 
3499 			/*
3500 			 * __clk_init_parent() will set the initial req_rate to
3501 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3502 			 * is an orphan when it's registered.
3503 			 *
3504 			 * 'req_rate' is used by clk_set_rate_range() and
3505 			 * clk_put() to trigger a clk_set_rate() call whenever
3506 			 * the boundaries are modified. Let's make sure
3507 			 * 'req_rate' is set to something non-zero so that
3508 			 * clk_set_rate_range() doesn't drop the frequency.
3509 			 */
3510 			orphan->req_rate = orphan->rate;
3511 		}
3512 	}
3513 }
3514 
3515 /**
3516  * __clk_core_init - initialize the data structures in a struct clk_core
3517  * @core:	clk_core being initialized
3518  *
3519  * Initializes the lists in struct clk_core, queries the hardware for the
3520  * parent and rate and sets them both.
3521  */
3522 static int __clk_core_init(struct clk_core *core)
3523 {
3524 	int ret;
3525 	struct clk_core *parent;
3526 	unsigned long rate;
3527 	int phase;
3528 
3529 	clk_prepare_lock();
3530 
3531 	/*
3532 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3533 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3534 	 * being NULL as the clk not being registered yet. This is crucial so
3535 	 * that clks aren't parented until their parent is fully registered.
3536 	 */
3537 	core->hw->core = core;
3538 
3539 	ret = clk_pm_runtime_get(core);
3540 	if (ret)
3541 		goto unlock;
3542 
3543 	/* check to see if a clock with this name is already registered */
3544 	if (clk_core_lookup(core->name)) {
3545 		pr_debug("%s: clk %s already initialized\n",
3546 				__func__, core->name);
3547 		ret = -EEXIST;
3548 		goto out;
3549 	}
3550 
3551 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3552 	if (core->ops->set_rate &&
3553 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3554 	      core->ops->recalc_rate)) {
3555 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3556 		       __func__, core->name);
3557 		ret = -EINVAL;
3558 		goto out;
3559 	}
3560 
3561 	if (core->ops->set_parent && !core->ops->get_parent) {
3562 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3563 		       __func__, core->name);
3564 		ret = -EINVAL;
3565 		goto out;
3566 	}
3567 
3568 	if (core->num_parents > 1 && !core->ops->get_parent) {
3569 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3570 		       __func__, core->name);
3571 		ret = -EINVAL;
3572 		goto out;
3573 	}
3574 
3575 	if (core->ops->set_rate_and_parent &&
3576 			!(core->ops->set_parent && core->ops->set_rate)) {
3577 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3578 				__func__, core->name);
3579 		ret = -EINVAL;
3580 		goto out;
3581 	}
3582 
3583 	/*
3584 	 * optional platform-specific magic
3585 	 *
3586 	 * The .init callback is not used by any of the basic clock types, but
3587 	 * exists for weird hardware that must perform initialization magic for
3588 	 * CCF to get an accurate view of clock for any other callbacks. It may
3589 	 * also be used needs to perform dynamic allocations. Such allocation
3590 	 * must be freed in the terminate() callback.
3591 	 * This callback shall not be used to initialize the parameters state,
3592 	 * such as rate, parent, etc ...
3593 	 *
3594 	 * If it exist, this callback should called before any other callback of
3595 	 * the clock
3596 	 */
3597 	if (core->ops->init) {
3598 		ret = core->ops->init(core->hw);
3599 		if (ret)
3600 			goto out;
3601 	}
3602 
3603 	parent = core->parent = __clk_init_parent(core);
3604 
3605 	/*
3606 	 * Populate core->parent if parent has already been clk_core_init'd. If
3607 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3608 	 * list.  If clk doesn't have any parents then place it in the root
3609 	 * clk list.
3610 	 *
3611 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3612 	 * clocks and re-parent any that are children of the clock currently
3613 	 * being clk_init'd.
3614 	 */
3615 	if (parent) {
3616 		hlist_add_head(&core->child_node, &parent->children);
3617 		core->orphan = parent->orphan;
3618 	} else if (!core->num_parents) {
3619 		hlist_add_head(&core->child_node, &clk_root_list);
3620 		core->orphan = false;
3621 	} else {
3622 		hlist_add_head(&core->child_node, &clk_orphan_list);
3623 		core->orphan = true;
3624 	}
3625 
3626 	/*
3627 	 * Set clk's accuracy.  The preferred method is to use
3628 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3629 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3630 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3631 	 * clock).
3632 	 */
3633 	if (core->ops->recalc_accuracy)
3634 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3635 					clk_core_get_accuracy_no_lock(parent));
3636 	else if (parent)
3637 		core->accuracy = parent->accuracy;
3638 	else
3639 		core->accuracy = 0;
3640 
3641 	/*
3642 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3643 	 * Since a phase is by definition relative to its parent, just
3644 	 * query the current clock phase, or just assume it's in phase.
3645 	 */
3646 	phase = clk_core_get_phase(core);
3647 	if (phase < 0) {
3648 		ret = phase;
3649 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3650 			core->name);
3651 		goto out;
3652 	}
3653 
3654 	/*
3655 	 * Set clk's duty cycle.
3656 	 */
3657 	clk_core_update_duty_cycle_nolock(core);
3658 
3659 	/*
3660 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3661 	 * simple clocks and lazy developers the default fallback is to use the
3662 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3663 	 * then rate is set to zero.
3664 	 */
3665 	if (core->ops->recalc_rate)
3666 		rate = core->ops->recalc_rate(core->hw,
3667 				clk_core_get_rate_nolock(parent));
3668 	else if (parent)
3669 		rate = parent->rate;
3670 	else
3671 		rate = 0;
3672 	core->rate = core->req_rate = rate;
3673 
3674 	/*
3675 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3676 	 * don't get accidentally disabled when walking the orphan tree and
3677 	 * reparenting clocks
3678 	 */
3679 	if (core->flags & CLK_IS_CRITICAL) {
3680 		ret = clk_core_prepare(core);
3681 		if (ret) {
3682 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3683 			       __func__, core->name);
3684 			goto out;
3685 		}
3686 
3687 		ret = clk_core_enable_lock(core);
3688 		if (ret) {
3689 			pr_warn("%s: critical clk '%s' failed to enable\n",
3690 			       __func__, core->name);
3691 			clk_core_unprepare(core);
3692 			goto out;
3693 		}
3694 	}
3695 
3696 	clk_core_reparent_orphans_nolock();
3697 
3698 
3699 	kref_init(&core->ref);
3700 out:
3701 	clk_pm_runtime_put(core);
3702 unlock:
3703 	if (ret) {
3704 		hlist_del_init(&core->child_node);
3705 		core->hw->core = NULL;
3706 	}
3707 
3708 	clk_prepare_unlock();
3709 
3710 	if (!ret)
3711 		clk_debug_register(core);
3712 
3713 	return ret;
3714 }
3715 
3716 /**
3717  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3718  * @core: clk to add consumer to
3719  * @clk: consumer to link to a clk
3720  */
3721 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3722 {
3723 	clk_prepare_lock();
3724 	hlist_add_head(&clk->clks_node, &core->clks);
3725 	clk_prepare_unlock();
3726 }
3727 
3728 /**
3729  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3730  * @clk: consumer to unlink
3731  */
3732 static void clk_core_unlink_consumer(struct clk *clk)
3733 {
3734 	lockdep_assert_held(&prepare_lock);
3735 	hlist_del(&clk->clks_node);
3736 }
3737 
3738 /**
3739  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3740  * @core: clk to allocate a consumer for
3741  * @dev_id: string describing device name
3742  * @con_id: connection ID string on device
3743  *
3744  * Returns: clk consumer left unlinked from the consumer list
3745  */
3746 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3747 			     const char *con_id)
3748 {
3749 	struct clk *clk;
3750 
3751 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3752 	if (!clk)
3753 		return ERR_PTR(-ENOMEM);
3754 
3755 	clk->core = core;
3756 	clk->dev_id = dev_id;
3757 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3758 	clk->max_rate = ULONG_MAX;
3759 
3760 	return clk;
3761 }
3762 
3763 /**
3764  * free_clk - Free a clk consumer
3765  * @clk: clk consumer to free
3766  *
3767  * Note, this assumes the clk has been unlinked from the clk_core consumer
3768  * list.
3769  */
3770 static void free_clk(struct clk *clk)
3771 {
3772 	kfree_const(clk->con_id);
3773 	kfree(clk);
3774 }
3775 
3776 /**
3777  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3778  * a clk_hw
3779  * @dev: clk consumer device
3780  * @hw: clk_hw associated with the clk being consumed
3781  * @dev_id: string describing device name
3782  * @con_id: connection ID string on device
3783  *
3784  * This is the main function used to create a clk pointer for use by clk
3785  * consumers. It connects a consumer to the clk_core and clk_hw structures
3786  * used by the framework and clk provider respectively.
3787  */
3788 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3789 			      const char *dev_id, const char *con_id)
3790 {
3791 	struct clk *clk;
3792 	struct clk_core *core;
3793 
3794 	/* This is to allow this function to be chained to others */
3795 	if (IS_ERR_OR_NULL(hw))
3796 		return ERR_CAST(hw);
3797 
3798 	core = hw->core;
3799 	clk = alloc_clk(core, dev_id, con_id);
3800 	if (IS_ERR(clk))
3801 		return clk;
3802 	clk->dev = dev;
3803 
3804 	if (!try_module_get(core->owner)) {
3805 		free_clk(clk);
3806 		return ERR_PTR(-ENOENT);
3807 	}
3808 
3809 	kref_get(&core->ref);
3810 	clk_core_link_consumer(core, clk);
3811 
3812 	return clk;
3813 }
3814 
3815 /**
3816  * clk_hw_get_clk - get clk consumer given an clk_hw
3817  * @hw: clk_hw associated with the clk being consumed
3818  * @con_id: connection ID string on device
3819  *
3820  * Returns: new clk consumer
3821  * This is the function to be used by providers which need
3822  * to get a consumer clk and act on the clock element
3823  * Calls to this function must be balanced with calls clk_put()
3824  */
3825 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3826 {
3827 	struct device *dev = hw->core->dev;
3828 	const char *name = dev ? dev_name(dev) : NULL;
3829 
3830 	return clk_hw_create_clk(dev, hw, name, con_id);
3831 }
3832 EXPORT_SYMBOL(clk_hw_get_clk);
3833 
3834 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3835 {
3836 	const char *dst;
3837 
3838 	if (!src) {
3839 		if (must_exist)
3840 			return -EINVAL;
3841 		return 0;
3842 	}
3843 
3844 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3845 	if (!dst)
3846 		return -ENOMEM;
3847 
3848 	return 0;
3849 }
3850 
3851 static int clk_core_populate_parent_map(struct clk_core *core,
3852 					const struct clk_init_data *init)
3853 {
3854 	u8 num_parents = init->num_parents;
3855 	const char * const *parent_names = init->parent_names;
3856 	const struct clk_hw **parent_hws = init->parent_hws;
3857 	const struct clk_parent_data *parent_data = init->parent_data;
3858 	int i, ret = 0;
3859 	struct clk_parent_map *parents, *parent;
3860 
3861 	if (!num_parents)
3862 		return 0;
3863 
3864 	/*
3865 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3866 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3867 	 */
3868 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3869 	core->parents = parents;
3870 	if (!parents)
3871 		return -ENOMEM;
3872 
3873 	/* Copy everything over because it might be __initdata */
3874 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3875 		parent->index = -1;
3876 		if (parent_names) {
3877 			/* throw a WARN if any entries are NULL */
3878 			WARN(!parent_names[i],
3879 				"%s: invalid NULL in %s's .parent_names\n",
3880 				__func__, core->name);
3881 			ret = clk_cpy_name(&parent->name, parent_names[i],
3882 					   true);
3883 		} else if (parent_data) {
3884 			parent->hw = parent_data[i].hw;
3885 			parent->index = parent_data[i].index;
3886 			ret = clk_cpy_name(&parent->fw_name,
3887 					   parent_data[i].fw_name, false);
3888 			if (!ret)
3889 				ret = clk_cpy_name(&parent->name,
3890 						   parent_data[i].name,
3891 						   false);
3892 		} else if (parent_hws) {
3893 			parent->hw = parent_hws[i];
3894 		} else {
3895 			ret = -EINVAL;
3896 			WARN(1, "Must specify parents if num_parents > 0\n");
3897 		}
3898 
3899 		if (ret) {
3900 			do {
3901 				kfree_const(parents[i].name);
3902 				kfree_const(parents[i].fw_name);
3903 			} while (--i >= 0);
3904 			kfree(parents);
3905 
3906 			return ret;
3907 		}
3908 	}
3909 
3910 	return 0;
3911 }
3912 
3913 static void clk_core_free_parent_map(struct clk_core *core)
3914 {
3915 	int i = core->num_parents;
3916 
3917 	if (!core->num_parents)
3918 		return;
3919 
3920 	while (--i >= 0) {
3921 		kfree_const(core->parents[i].name);
3922 		kfree_const(core->parents[i].fw_name);
3923 	}
3924 
3925 	kfree(core->parents);
3926 }
3927 
3928 static struct clk *
3929 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3930 {
3931 	int ret;
3932 	struct clk_core *core;
3933 	const struct clk_init_data *init = hw->init;
3934 
3935 	/*
3936 	 * The init data is not supposed to be used outside of registration path.
3937 	 * Set it to NULL so that provider drivers can't use it either and so that
3938 	 * we catch use of hw->init early on in the core.
3939 	 */
3940 	hw->init = NULL;
3941 
3942 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3943 	if (!core) {
3944 		ret = -ENOMEM;
3945 		goto fail_out;
3946 	}
3947 
3948 	core->name = kstrdup_const(init->name, GFP_KERNEL);
3949 	if (!core->name) {
3950 		ret = -ENOMEM;
3951 		goto fail_name;
3952 	}
3953 
3954 	if (WARN_ON(!init->ops)) {
3955 		ret = -EINVAL;
3956 		goto fail_ops;
3957 	}
3958 	core->ops = init->ops;
3959 
3960 	if (dev && pm_runtime_enabled(dev))
3961 		core->rpm_enabled = true;
3962 	core->dev = dev;
3963 	core->of_node = np;
3964 	if (dev && dev->driver)
3965 		core->owner = dev->driver->owner;
3966 	core->hw = hw;
3967 	core->flags = init->flags;
3968 	core->num_parents = init->num_parents;
3969 	core->min_rate = 0;
3970 	core->max_rate = ULONG_MAX;
3971 
3972 	ret = clk_core_populate_parent_map(core, init);
3973 	if (ret)
3974 		goto fail_parents;
3975 
3976 	INIT_HLIST_HEAD(&core->clks);
3977 
3978 	/*
3979 	 * Don't call clk_hw_create_clk() here because that would pin the
3980 	 * provider module to itself and prevent it from ever being removed.
3981 	 */
3982 	hw->clk = alloc_clk(core, NULL, NULL);
3983 	if (IS_ERR(hw->clk)) {
3984 		ret = PTR_ERR(hw->clk);
3985 		goto fail_create_clk;
3986 	}
3987 
3988 	clk_core_link_consumer(core, hw->clk);
3989 
3990 	ret = __clk_core_init(core);
3991 	if (!ret)
3992 		return hw->clk;
3993 
3994 	clk_prepare_lock();
3995 	clk_core_unlink_consumer(hw->clk);
3996 	clk_prepare_unlock();
3997 
3998 	free_clk(hw->clk);
3999 	hw->clk = NULL;
4000 
4001 fail_create_clk:
4002 	clk_core_free_parent_map(core);
4003 fail_parents:
4004 fail_ops:
4005 	kfree_const(core->name);
4006 fail_name:
4007 	kfree(core);
4008 fail_out:
4009 	return ERR_PTR(ret);
4010 }
4011 
4012 /**
4013  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4014  * @dev: Device to get device node of
4015  *
4016  * Return: device node pointer of @dev, or the device node pointer of
4017  * @dev->parent if dev doesn't have a device node, or NULL if neither
4018  * @dev or @dev->parent have a device node.
4019  */
4020 static struct device_node *dev_or_parent_of_node(struct device *dev)
4021 {
4022 	struct device_node *np;
4023 
4024 	if (!dev)
4025 		return NULL;
4026 
4027 	np = dev_of_node(dev);
4028 	if (!np)
4029 		np = dev_of_node(dev->parent);
4030 
4031 	return np;
4032 }
4033 
4034 /**
4035  * clk_register - allocate a new clock, register it and return an opaque cookie
4036  * @dev: device that is registering this clock
4037  * @hw: link to hardware-specific clock data
4038  *
4039  * clk_register is the *deprecated* interface for populating the clock tree with
4040  * new clock nodes. Use clk_hw_register() instead.
4041  *
4042  * Returns: a pointer to the newly allocated struct clk which
4043  * cannot be dereferenced by driver code but may be used in conjunction with the
4044  * rest of the clock API.  In the event of an error clk_register will return an
4045  * error code; drivers must test for an error code after calling clk_register.
4046  */
4047 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4048 {
4049 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4050 }
4051 EXPORT_SYMBOL_GPL(clk_register);
4052 
4053 /**
4054  * clk_hw_register - register a clk_hw and return an error code
4055  * @dev: device that is registering this clock
4056  * @hw: link to hardware-specific clock data
4057  *
4058  * clk_hw_register is the primary interface for populating the clock tree with
4059  * new clock nodes. It returns an integer equal to zero indicating success or
4060  * less than zero indicating failure. Drivers must test for an error code after
4061  * calling clk_hw_register().
4062  */
4063 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4064 {
4065 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4066 			       hw));
4067 }
4068 EXPORT_SYMBOL_GPL(clk_hw_register);
4069 
4070 /*
4071  * of_clk_hw_register - register a clk_hw and return an error code
4072  * @node: device_node of device that is registering this clock
4073  * @hw: link to hardware-specific clock data
4074  *
4075  * of_clk_hw_register() is the primary interface for populating the clock tree
4076  * with new clock nodes when a struct device is not available, but a struct
4077  * device_node is. It returns an integer equal to zero indicating success or
4078  * less than zero indicating failure. Drivers must test for an error code after
4079  * calling of_clk_hw_register().
4080  */
4081 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4082 {
4083 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4084 }
4085 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4086 
4087 /* Free memory allocated for a clock. */
4088 static void __clk_release(struct kref *ref)
4089 {
4090 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4091 
4092 	lockdep_assert_held(&prepare_lock);
4093 
4094 	clk_core_free_parent_map(core);
4095 	kfree_const(core->name);
4096 	kfree(core);
4097 }
4098 
4099 /*
4100  * Empty clk_ops for unregistered clocks. These are used temporarily
4101  * after clk_unregister() was called on a clock and until last clock
4102  * consumer calls clk_put() and the struct clk object is freed.
4103  */
4104 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4105 {
4106 	return -ENXIO;
4107 }
4108 
4109 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4110 {
4111 	WARN_ON_ONCE(1);
4112 }
4113 
4114 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4115 					unsigned long parent_rate)
4116 {
4117 	return -ENXIO;
4118 }
4119 
4120 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4121 {
4122 	return -ENXIO;
4123 }
4124 
4125 static const struct clk_ops clk_nodrv_ops = {
4126 	.enable		= clk_nodrv_prepare_enable,
4127 	.disable	= clk_nodrv_disable_unprepare,
4128 	.prepare	= clk_nodrv_prepare_enable,
4129 	.unprepare	= clk_nodrv_disable_unprepare,
4130 	.set_rate	= clk_nodrv_set_rate,
4131 	.set_parent	= clk_nodrv_set_parent,
4132 };
4133 
4134 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4135 						const struct clk_core *target)
4136 {
4137 	int i;
4138 	struct clk_core *child;
4139 
4140 	for (i = 0; i < root->num_parents; i++)
4141 		if (root->parents[i].core == target)
4142 			root->parents[i].core = NULL;
4143 
4144 	hlist_for_each_entry(child, &root->children, child_node)
4145 		clk_core_evict_parent_cache_subtree(child, target);
4146 }
4147 
4148 /* Remove this clk from all parent caches */
4149 static void clk_core_evict_parent_cache(struct clk_core *core)
4150 {
4151 	const struct hlist_head **lists;
4152 	struct clk_core *root;
4153 
4154 	lockdep_assert_held(&prepare_lock);
4155 
4156 	for (lists = all_lists; *lists; lists++)
4157 		hlist_for_each_entry(root, *lists, child_node)
4158 			clk_core_evict_parent_cache_subtree(root, core);
4159 
4160 }
4161 
4162 /**
4163  * clk_unregister - unregister a currently registered clock
4164  * @clk: clock to unregister
4165  */
4166 void clk_unregister(struct clk *clk)
4167 {
4168 	unsigned long flags;
4169 	const struct clk_ops *ops;
4170 
4171 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4172 		return;
4173 
4174 	clk_debug_unregister(clk->core);
4175 
4176 	clk_prepare_lock();
4177 
4178 	ops = clk->core->ops;
4179 	if (ops == &clk_nodrv_ops) {
4180 		pr_err("%s: unregistered clock: %s\n", __func__,
4181 		       clk->core->name);
4182 		goto unlock;
4183 	}
4184 	/*
4185 	 * Assign empty clock ops for consumers that might still hold
4186 	 * a reference to this clock.
4187 	 */
4188 	flags = clk_enable_lock();
4189 	clk->core->ops = &clk_nodrv_ops;
4190 	clk_enable_unlock(flags);
4191 
4192 	if (ops->terminate)
4193 		ops->terminate(clk->core->hw);
4194 
4195 	if (!hlist_empty(&clk->core->children)) {
4196 		struct clk_core *child;
4197 		struct hlist_node *t;
4198 
4199 		/* Reparent all children to the orphan list. */
4200 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4201 					  child_node)
4202 			clk_core_set_parent_nolock(child, NULL);
4203 	}
4204 
4205 	clk_core_evict_parent_cache(clk->core);
4206 
4207 	hlist_del_init(&clk->core->child_node);
4208 
4209 	if (clk->core->prepare_count)
4210 		pr_warn("%s: unregistering prepared clock: %s\n",
4211 					__func__, clk->core->name);
4212 
4213 	if (clk->core->protect_count)
4214 		pr_warn("%s: unregistering protected clock: %s\n",
4215 					__func__, clk->core->name);
4216 
4217 	kref_put(&clk->core->ref, __clk_release);
4218 	free_clk(clk);
4219 unlock:
4220 	clk_prepare_unlock();
4221 }
4222 EXPORT_SYMBOL_GPL(clk_unregister);
4223 
4224 /**
4225  * clk_hw_unregister - unregister a currently registered clk_hw
4226  * @hw: hardware-specific clock data to unregister
4227  */
4228 void clk_hw_unregister(struct clk_hw *hw)
4229 {
4230 	clk_unregister(hw->clk);
4231 }
4232 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4233 
4234 static void devm_clk_unregister_cb(struct device *dev, void *res)
4235 {
4236 	clk_unregister(*(struct clk **)res);
4237 }
4238 
4239 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4240 {
4241 	clk_hw_unregister(*(struct clk_hw **)res);
4242 }
4243 
4244 /**
4245  * devm_clk_register - resource managed clk_register()
4246  * @dev: device that is registering this clock
4247  * @hw: link to hardware-specific clock data
4248  *
4249  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4250  *
4251  * Clocks returned from this function are automatically clk_unregister()ed on
4252  * driver detach. See clk_register() for more information.
4253  */
4254 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4255 {
4256 	struct clk *clk;
4257 	struct clk **clkp;
4258 
4259 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4260 	if (!clkp)
4261 		return ERR_PTR(-ENOMEM);
4262 
4263 	clk = clk_register(dev, hw);
4264 	if (!IS_ERR(clk)) {
4265 		*clkp = clk;
4266 		devres_add(dev, clkp);
4267 	} else {
4268 		devres_free(clkp);
4269 	}
4270 
4271 	return clk;
4272 }
4273 EXPORT_SYMBOL_GPL(devm_clk_register);
4274 
4275 /**
4276  * devm_clk_hw_register - resource managed clk_hw_register()
4277  * @dev: device that is registering this clock
4278  * @hw: link to hardware-specific clock data
4279  *
4280  * Managed clk_hw_register(). Clocks registered by this function are
4281  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4282  * for more information.
4283  */
4284 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4285 {
4286 	struct clk_hw **hwp;
4287 	int ret;
4288 
4289 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4290 	if (!hwp)
4291 		return -ENOMEM;
4292 
4293 	ret = clk_hw_register(dev, hw);
4294 	if (!ret) {
4295 		*hwp = hw;
4296 		devres_add(dev, hwp);
4297 	} else {
4298 		devres_free(hwp);
4299 	}
4300 
4301 	return ret;
4302 }
4303 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4304 
4305 static int devm_clk_match(struct device *dev, void *res, void *data)
4306 {
4307 	struct clk *c = res;
4308 	if (WARN_ON(!c))
4309 		return 0;
4310 	return c == data;
4311 }
4312 
4313 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4314 {
4315 	struct clk_hw *hw = res;
4316 
4317 	if (WARN_ON(!hw))
4318 		return 0;
4319 	return hw == data;
4320 }
4321 
4322 /**
4323  * devm_clk_unregister - resource managed clk_unregister()
4324  * @dev: device that is unregistering the clock data
4325  * @clk: clock to unregister
4326  *
4327  * Deallocate a clock allocated with devm_clk_register(). Normally
4328  * this function will not need to be called and the resource management
4329  * code will ensure that the resource is freed.
4330  */
4331 void devm_clk_unregister(struct device *dev, struct clk *clk)
4332 {
4333 	WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk));
4334 }
4335 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4336 
4337 /**
4338  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4339  * @dev: device that is unregistering the hardware-specific clock data
4340  * @hw: link to hardware-specific clock data
4341  *
4342  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4343  * this function will not need to be called and the resource management
4344  * code will ensure that the resource is freed.
4345  */
4346 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4347 {
4348 	WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match,
4349 				hw));
4350 }
4351 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4352 
4353 static void devm_clk_release(struct device *dev, void *res)
4354 {
4355 	clk_put(*(struct clk **)res);
4356 }
4357 
4358 /**
4359  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4360  * @dev: device that is registering this clock
4361  * @hw: clk_hw associated with the clk being consumed
4362  * @con_id: connection ID string on device
4363  *
4364  * Managed clk_hw_get_clk(). Clocks got with this function are
4365  * automatically clk_put() on driver detach. See clk_put()
4366  * for more information.
4367  */
4368 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4369 				const char *con_id)
4370 {
4371 	struct clk *clk;
4372 	struct clk **clkp;
4373 
4374 	/* This should not happen because it would mean we have drivers
4375 	 * passing around clk_hw pointers instead of having the caller use
4376 	 * proper clk_get() style APIs
4377 	 */
4378 	WARN_ON_ONCE(dev != hw->core->dev);
4379 
4380 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4381 	if (!clkp)
4382 		return ERR_PTR(-ENOMEM);
4383 
4384 	clk = clk_hw_get_clk(hw, con_id);
4385 	if (!IS_ERR(clk)) {
4386 		*clkp = clk;
4387 		devres_add(dev, clkp);
4388 	} else {
4389 		devres_free(clkp);
4390 	}
4391 
4392 	return clk;
4393 }
4394 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4395 
4396 /*
4397  * clkdev helpers
4398  */
4399 
4400 void __clk_put(struct clk *clk)
4401 {
4402 	struct module *owner;
4403 
4404 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4405 		return;
4406 
4407 	clk_prepare_lock();
4408 
4409 	/*
4410 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4411 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4412 	 * and by that same consumer
4413 	 */
4414 	if (WARN_ON(clk->exclusive_count)) {
4415 		/* We voiced our concern, let's sanitize the situation */
4416 		clk->core->protect_count -= (clk->exclusive_count - 1);
4417 		clk_core_rate_unprotect(clk->core);
4418 		clk->exclusive_count = 0;
4419 	}
4420 
4421 	hlist_del(&clk->clks_node);
4422 	clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4423 
4424 	owner = clk->core->owner;
4425 	kref_put(&clk->core->ref, __clk_release);
4426 
4427 	clk_prepare_unlock();
4428 
4429 	module_put(owner);
4430 
4431 	free_clk(clk);
4432 }
4433 
4434 /***        clk rate change notifiers        ***/
4435 
4436 /**
4437  * clk_notifier_register - add a clk rate change notifier
4438  * @clk: struct clk * to watch
4439  * @nb: struct notifier_block * with callback info
4440  *
4441  * Request notification when clk's rate changes.  This uses an SRCU
4442  * notifier because we want it to block and notifier unregistrations are
4443  * uncommon.  The callbacks associated with the notifier must not
4444  * re-enter into the clk framework by calling any top-level clk APIs;
4445  * this will cause a nested prepare_lock mutex.
4446  *
4447  * In all notification cases (pre, post and abort rate change) the original
4448  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4449  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4450  *
4451  * clk_notifier_register() must be called from non-atomic context.
4452  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4453  * allocation failure; otherwise, passes along the return value of
4454  * srcu_notifier_chain_register().
4455  */
4456 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4457 {
4458 	struct clk_notifier *cn;
4459 	int ret = -ENOMEM;
4460 
4461 	if (!clk || !nb)
4462 		return -EINVAL;
4463 
4464 	clk_prepare_lock();
4465 
4466 	/* search the list of notifiers for this clk */
4467 	list_for_each_entry(cn, &clk_notifier_list, node)
4468 		if (cn->clk == clk)
4469 			goto found;
4470 
4471 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4472 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4473 	if (!cn)
4474 		goto out;
4475 
4476 	cn->clk = clk;
4477 	srcu_init_notifier_head(&cn->notifier_head);
4478 
4479 	list_add(&cn->node, &clk_notifier_list);
4480 
4481 found:
4482 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4483 
4484 	clk->core->notifier_count++;
4485 
4486 out:
4487 	clk_prepare_unlock();
4488 
4489 	return ret;
4490 }
4491 EXPORT_SYMBOL_GPL(clk_notifier_register);
4492 
4493 /**
4494  * clk_notifier_unregister - remove a clk rate change notifier
4495  * @clk: struct clk *
4496  * @nb: struct notifier_block * with callback info
4497  *
4498  * Request no further notification for changes to 'clk' and frees memory
4499  * allocated in clk_notifier_register.
4500  *
4501  * Returns -EINVAL if called with null arguments; otherwise, passes
4502  * along the return value of srcu_notifier_chain_unregister().
4503  */
4504 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4505 {
4506 	struct clk_notifier *cn;
4507 	int ret = -ENOENT;
4508 
4509 	if (!clk || !nb)
4510 		return -EINVAL;
4511 
4512 	clk_prepare_lock();
4513 
4514 	list_for_each_entry(cn, &clk_notifier_list, node) {
4515 		if (cn->clk == clk) {
4516 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4517 
4518 			clk->core->notifier_count--;
4519 
4520 			/* XXX the notifier code should handle this better */
4521 			if (!cn->notifier_head.head) {
4522 				srcu_cleanup_notifier_head(&cn->notifier_head);
4523 				list_del(&cn->node);
4524 				kfree(cn);
4525 			}
4526 			break;
4527 		}
4528 	}
4529 
4530 	clk_prepare_unlock();
4531 
4532 	return ret;
4533 }
4534 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4535 
4536 struct clk_notifier_devres {
4537 	struct clk *clk;
4538 	struct notifier_block *nb;
4539 };
4540 
4541 static void devm_clk_notifier_release(struct device *dev, void *res)
4542 {
4543 	struct clk_notifier_devres *devres = res;
4544 
4545 	clk_notifier_unregister(devres->clk, devres->nb);
4546 }
4547 
4548 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4549 			       struct notifier_block *nb)
4550 {
4551 	struct clk_notifier_devres *devres;
4552 	int ret;
4553 
4554 	devres = devres_alloc(devm_clk_notifier_release,
4555 			      sizeof(*devres), GFP_KERNEL);
4556 
4557 	if (!devres)
4558 		return -ENOMEM;
4559 
4560 	ret = clk_notifier_register(clk, nb);
4561 	if (!ret) {
4562 		devres->clk = clk;
4563 		devres->nb = nb;
4564 	} else {
4565 		devres_free(devres);
4566 	}
4567 
4568 	return ret;
4569 }
4570 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4571 
4572 #ifdef CONFIG_OF
4573 static void clk_core_reparent_orphans(void)
4574 {
4575 	clk_prepare_lock();
4576 	clk_core_reparent_orphans_nolock();
4577 	clk_prepare_unlock();
4578 }
4579 
4580 /**
4581  * struct of_clk_provider - Clock provider registration structure
4582  * @link: Entry in global list of clock providers
4583  * @node: Pointer to device tree node of clock provider
4584  * @get: Get clock callback.  Returns NULL or a struct clk for the
4585  *       given clock specifier
4586  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4587  *       struct clk_hw for the given clock specifier
4588  * @data: context pointer to be passed into @get callback
4589  */
4590 struct of_clk_provider {
4591 	struct list_head link;
4592 
4593 	struct device_node *node;
4594 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4595 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4596 	void *data;
4597 };
4598 
4599 extern struct of_device_id __clk_of_table;
4600 static const struct of_device_id __clk_of_table_sentinel
4601 	__used __section("__clk_of_table_end");
4602 
4603 static LIST_HEAD(of_clk_providers);
4604 static DEFINE_MUTEX(of_clk_mutex);
4605 
4606 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4607 				     void *data)
4608 {
4609 	return data;
4610 }
4611 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4612 
4613 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4614 {
4615 	return data;
4616 }
4617 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4618 
4619 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4620 {
4621 	struct clk_onecell_data *clk_data = data;
4622 	unsigned int idx = clkspec->args[0];
4623 
4624 	if (idx >= clk_data->clk_num) {
4625 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4626 		return ERR_PTR(-EINVAL);
4627 	}
4628 
4629 	return clk_data->clks[idx];
4630 }
4631 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4632 
4633 struct clk_hw *
4634 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4635 {
4636 	struct clk_hw_onecell_data *hw_data = data;
4637 	unsigned int idx = clkspec->args[0];
4638 
4639 	if (idx >= hw_data->num) {
4640 		pr_err("%s: invalid index %u\n", __func__, idx);
4641 		return ERR_PTR(-EINVAL);
4642 	}
4643 
4644 	return hw_data->hws[idx];
4645 }
4646 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4647 
4648 /**
4649  * of_clk_add_provider() - Register a clock provider for a node
4650  * @np: Device node pointer associated with clock provider
4651  * @clk_src_get: callback for decoding clock
4652  * @data: context pointer for @clk_src_get callback.
4653  *
4654  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4655  */
4656 int of_clk_add_provider(struct device_node *np,
4657 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4658 						   void *data),
4659 			void *data)
4660 {
4661 	struct of_clk_provider *cp;
4662 	int ret;
4663 
4664 	if (!np)
4665 		return 0;
4666 
4667 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4668 	if (!cp)
4669 		return -ENOMEM;
4670 
4671 	cp->node = of_node_get(np);
4672 	cp->data = data;
4673 	cp->get = clk_src_get;
4674 
4675 	mutex_lock(&of_clk_mutex);
4676 	list_add(&cp->link, &of_clk_providers);
4677 	mutex_unlock(&of_clk_mutex);
4678 	pr_debug("Added clock from %pOF\n", np);
4679 
4680 	clk_core_reparent_orphans();
4681 
4682 	ret = of_clk_set_defaults(np, true);
4683 	if (ret < 0)
4684 		of_clk_del_provider(np);
4685 
4686 	fwnode_dev_initialized(&np->fwnode, true);
4687 
4688 	return ret;
4689 }
4690 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4691 
4692 /**
4693  * of_clk_add_hw_provider() - Register a clock provider for a node
4694  * @np: Device node pointer associated with clock provider
4695  * @get: callback for decoding clk_hw
4696  * @data: context pointer for @get callback.
4697  */
4698 int of_clk_add_hw_provider(struct device_node *np,
4699 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4700 						 void *data),
4701 			   void *data)
4702 {
4703 	struct of_clk_provider *cp;
4704 	int ret;
4705 
4706 	if (!np)
4707 		return 0;
4708 
4709 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4710 	if (!cp)
4711 		return -ENOMEM;
4712 
4713 	cp->node = of_node_get(np);
4714 	cp->data = data;
4715 	cp->get_hw = get;
4716 
4717 	mutex_lock(&of_clk_mutex);
4718 	list_add(&cp->link, &of_clk_providers);
4719 	mutex_unlock(&of_clk_mutex);
4720 	pr_debug("Added clk_hw provider from %pOF\n", np);
4721 
4722 	clk_core_reparent_orphans();
4723 
4724 	ret = of_clk_set_defaults(np, true);
4725 	if (ret < 0)
4726 		of_clk_del_provider(np);
4727 
4728 	fwnode_dev_initialized(&np->fwnode, true);
4729 
4730 	return ret;
4731 }
4732 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4733 
4734 static void devm_of_clk_release_provider(struct device *dev, void *res)
4735 {
4736 	of_clk_del_provider(*(struct device_node **)res);
4737 }
4738 
4739 /*
4740  * We allow a child device to use its parent device as the clock provider node
4741  * for cases like MFD sub-devices where the child device driver wants to use
4742  * devm_*() APIs but not list the device in DT as a sub-node.
4743  */
4744 static struct device_node *get_clk_provider_node(struct device *dev)
4745 {
4746 	struct device_node *np, *parent_np;
4747 
4748 	np = dev->of_node;
4749 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4750 
4751 	if (!of_find_property(np, "#clock-cells", NULL))
4752 		if (of_find_property(parent_np, "#clock-cells", NULL))
4753 			np = parent_np;
4754 
4755 	return np;
4756 }
4757 
4758 /**
4759  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4760  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4761  * @get: callback for decoding clk_hw
4762  * @data: context pointer for @get callback
4763  *
4764  * Registers clock provider for given device's node. If the device has no DT
4765  * node or if the device node lacks of clock provider information (#clock-cells)
4766  * then the parent device's node is scanned for this information. If parent node
4767  * has the #clock-cells then it is used in registration. Provider is
4768  * automatically released at device exit.
4769  *
4770  * Return: 0 on success or an errno on failure.
4771  */
4772 int devm_of_clk_add_hw_provider(struct device *dev,
4773 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4774 					      void *data),
4775 			void *data)
4776 {
4777 	struct device_node **ptr, *np;
4778 	int ret;
4779 
4780 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4781 			   GFP_KERNEL);
4782 	if (!ptr)
4783 		return -ENOMEM;
4784 
4785 	np = get_clk_provider_node(dev);
4786 	ret = of_clk_add_hw_provider(np, get, data);
4787 	if (!ret) {
4788 		*ptr = np;
4789 		devres_add(dev, ptr);
4790 	} else {
4791 		devres_free(ptr);
4792 	}
4793 
4794 	return ret;
4795 }
4796 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4797 
4798 /**
4799  * of_clk_del_provider() - Remove a previously registered clock provider
4800  * @np: Device node pointer associated with clock provider
4801  */
4802 void of_clk_del_provider(struct device_node *np)
4803 {
4804 	struct of_clk_provider *cp;
4805 
4806 	if (!np)
4807 		return;
4808 
4809 	mutex_lock(&of_clk_mutex);
4810 	list_for_each_entry(cp, &of_clk_providers, link) {
4811 		if (cp->node == np) {
4812 			list_del(&cp->link);
4813 			fwnode_dev_initialized(&np->fwnode, false);
4814 			of_node_put(cp->node);
4815 			kfree(cp);
4816 			break;
4817 		}
4818 	}
4819 	mutex_unlock(&of_clk_mutex);
4820 }
4821 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4822 
4823 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4824 {
4825 	struct device_node **np = res;
4826 
4827 	if (WARN_ON(!np || !*np))
4828 		return 0;
4829 
4830 	return *np == data;
4831 }
4832 
4833 /**
4834  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4835  * @dev: Device to whose lifetime the clock provider was bound
4836  */
4837 void devm_of_clk_del_provider(struct device *dev)
4838 {
4839 	int ret;
4840 	struct device_node *np = get_clk_provider_node(dev);
4841 
4842 	ret = devres_release(dev, devm_of_clk_release_provider,
4843 			     devm_clk_provider_match, np);
4844 
4845 	WARN_ON(ret);
4846 }
4847 EXPORT_SYMBOL(devm_of_clk_del_provider);
4848 
4849 /**
4850  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4851  * @np: device node to parse clock specifier from
4852  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4853  * @name: clock name to find and parse. If name is NULL, the index is used
4854  * @out_args: Result of parsing the clock specifier
4855  *
4856  * Parses a device node's "clocks" and "clock-names" properties to find the
4857  * phandle and cells for the index or name that is desired. The resulting clock
4858  * specifier is placed into @out_args, or an errno is returned when there's a
4859  * parsing error. The @index argument is ignored if @name is non-NULL.
4860  *
4861  * Example:
4862  *
4863  * phandle1: clock-controller@1 {
4864  *	#clock-cells = <2>;
4865  * }
4866  *
4867  * phandle2: clock-controller@2 {
4868  *	#clock-cells = <1>;
4869  * }
4870  *
4871  * clock-consumer@3 {
4872  *	clocks = <&phandle1 1 2 &phandle2 3>;
4873  *	clock-names = "name1", "name2";
4874  * }
4875  *
4876  * To get a device_node for `clock-controller@2' node you may call this
4877  * function a few different ways:
4878  *
4879  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4880  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4881  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4882  *
4883  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4884  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4885  * the "clock-names" property of @np.
4886  */
4887 static int of_parse_clkspec(const struct device_node *np, int index,
4888 			    const char *name, struct of_phandle_args *out_args)
4889 {
4890 	int ret = -ENOENT;
4891 
4892 	/* Walk up the tree of devices looking for a clock property that matches */
4893 	while (np) {
4894 		/*
4895 		 * For named clocks, first look up the name in the
4896 		 * "clock-names" property.  If it cannot be found, then index
4897 		 * will be an error code and of_parse_phandle_with_args() will
4898 		 * return -EINVAL.
4899 		 */
4900 		if (name)
4901 			index = of_property_match_string(np, "clock-names", name);
4902 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4903 						 index, out_args);
4904 		if (!ret)
4905 			break;
4906 		if (name && index >= 0)
4907 			break;
4908 
4909 		/*
4910 		 * No matching clock found on this node.  If the parent node
4911 		 * has a "clock-ranges" property, then we can try one of its
4912 		 * clocks.
4913 		 */
4914 		np = np->parent;
4915 		if (np && !of_get_property(np, "clock-ranges", NULL))
4916 			break;
4917 		index = 0;
4918 	}
4919 
4920 	return ret;
4921 }
4922 
4923 static struct clk_hw *
4924 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4925 			      struct of_phandle_args *clkspec)
4926 {
4927 	struct clk *clk;
4928 
4929 	if (provider->get_hw)
4930 		return provider->get_hw(clkspec, provider->data);
4931 
4932 	clk = provider->get(clkspec, provider->data);
4933 	if (IS_ERR(clk))
4934 		return ERR_CAST(clk);
4935 	return __clk_get_hw(clk);
4936 }
4937 
4938 static struct clk_hw *
4939 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4940 {
4941 	struct of_clk_provider *provider;
4942 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4943 
4944 	if (!clkspec)
4945 		return ERR_PTR(-EINVAL);
4946 
4947 	mutex_lock(&of_clk_mutex);
4948 	list_for_each_entry(provider, &of_clk_providers, link) {
4949 		if (provider->node == clkspec->np) {
4950 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4951 			if (!IS_ERR(hw))
4952 				break;
4953 		}
4954 	}
4955 	mutex_unlock(&of_clk_mutex);
4956 
4957 	return hw;
4958 }
4959 
4960 /**
4961  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4962  * @clkspec: pointer to a clock specifier data structure
4963  *
4964  * This function looks up a struct clk from the registered list of clock
4965  * providers, an input is a clock specifier data structure as returned
4966  * from the of_parse_phandle_with_args() function call.
4967  */
4968 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4969 {
4970 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4971 
4972 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4973 }
4974 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4975 
4976 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4977 			     const char *con_id)
4978 {
4979 	int ret;
4980 	struct clk_hw *hw;
4981 	struct of_phandle_args clkspec;
4982 
4983 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4984 	if (ret)
4985 		return ERR_PTR(ret);
4986 
4987 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4988 	of_node_put(clkspec.np);
4989 
4990 	return hw;
4991 }
4992 
4993 static struct clk *__of_clk_get(struct device_node *np,
4994 				int index, const char *dev_id,
4995 				const char *con_id)
4996 {
4997 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4998 
4999 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5000 }
5001 
5002 struct clk *of_clk_get(struct device_node *np, int index)
5003 {
5004 	return __of_clk_get(np, index, np->full_name, NULL);
5005 }
5006 EXPORT_SYMBOL(of_clk_get);
5007 
5008 /**
5009  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5010  * @np: pointer to clock consumer node
5011  * @name: name of consumer's clock input, or NULL for the first clock reference
5012  *
5013  * This function parses the clocks and clock-names properties,
5014  * and uses them to look up the struct clk from the registered list of clock
5015  * providers.
5016  */
5017 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5018 {
5019 	if (!np)
5020 		return ERR_PTR(-ENOENT);
5021 
5022 	return __of_clk_get(np, 0, np->full_name, name);
5023 }
5024 EXPORT_SYMBOL(of_clk_get_by_name);
5025 
5026 /**
5027  * of_clk_get_parent_count() - Count the number of clocks a device node has
5028  * @np: device node to count
5029  *
5030  * Returns: The number of clocks that are possible parents of this node
5031  */
5032 unsigned int of_clk_get_parent_count(const struct device_node *np)
5033 {
5034 	int count;
5035 
5036 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5037 	if (count < 0)
5038 		return 0;
5039 
5040 	return count;
5041 }
5042 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5043 
5044 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5045 {
5046 	struct of_phandle_args clkspec;
5047 	struct property *prop;
5048 	const char *clk_name;
5049 	const __be32 *vp;
5050 	u32 pv;
5051 	int rc;
5052 	int count;
5053 	struct clk *clk;
5054 
5055 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5056 					&clkspec);
5057 	if (rc)
5058 		return NULL;
5059 
5060 	index = clkspec.args_count ? clkspec.args[0] : 0;
5061 	count = 0;
5062 
5063 	/* if there is an indices property, use it to transfer the index
5064 	 * specified into an array offset for the clock-output-names property.
5065 	 */
5066 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5067 		if (index == pv) {
5068 			index = count;
5069 			break;
5070 		}
5071 		count++;
5072 	}
5073 	/* We went off the end of 'clock-indices' without finding it */
5074 	if (prop && !vp)
5075 		return NULL;
5076 
5077 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5078 					  index,
5079 					  &clk_name) < 0) {
5080 		/*
5081 		 * Best effort to get the name if the clock has been
5082 		 * registered with the framework. If the clock isn't
5083 		 * registered, we return the node name as the name of
5084 		 * the clock as long as #clock-cells = 0.
5085 		 */
5086 		clk = of_clk_get_from_provider(&clkspec);
5087 		if (IS_ERR(clk)) {
5088 			if (clkspec.args_count == 0)
5089 				clk_name = clkspec.np->name;
5090 			else
5091 				clk_name = NULL;
5092 		} else {
5093 			clk_name = __clk_get_name(clk);
5094 			clk_put(clk);
5095 		}
5096 	}
5097 
5098 
5099 	of_node_put(clkspec.np);
5100 	return clk_name;
5101 }
5102 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5103 
5104 /**
5105  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5106  * number of parents
5107  * @np: Device node pointer associated with clock provider
5108  * @parents: pointer to char array that hold the parents' names
5109  * @size: size of the @parents array
5110  *
5111  * Return: number of parents for the clock node.
5112  */
5113 int of_clk_parent_fill(struct device_node *np, const char **parents,
5114 		       unsigned int size)
5115 {
5116 	unsigned int i = 0;
5117 
5118 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5119 		i++;
5120 
5121 	return i;
5122 }
5123 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5124 
5125 struct clock_provider {
5126 	void (*clk_init_cb)(struct device_node *);
5127 	struct device_node *np;
5128 	struct list_head node;
5129 };
5130 
5131 /*
5132  * This function looks for a parent clock. If there is one, then it
5133  * checks that the provider for this parent clock was initialized, in
5134  * this case the parent clock will be ready.
5135  */
5136 static int parent_ready(struct device_node *np)
5137 {
5138 	int i = 0;
5139 
5140 	while (true) {
5141 		struct clk *clk = of_clk_get(np, i);
5142 
5143 		/* this parent is ready we can check the next one */
5144 		if (!IS_ERR(clk)) {
5145 			clk_put(clk);
5146 			i++;
5147 			continue;
5148 		}
5149 
5150 		/* at least one parent is not ready, we exit now */
5151 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5152 			return 0;
5153 
5154 		/*
5155 		 * Here we make assumption that the device tree is
5156 		 * written correctly. So an error means that there is
5157 		 * no more parent. As we didn't exit yet, then the
5158 		 * previous parent are ready. If there is no clock
5159 		 * parent, no need to wait for them, then we can
5160 		 * consider their absence as being ready
5161 		 */
5162 		return 1;
5163 	}
5164 }
5165 
5166 /**
5167  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5168  * @np: Device node pointer associated with clock provider
5169  * @index: clock index
5170  * @flags: pointer to top-level framework flags
5171  *
5172  * Detects if the clock-critical property exists and, if so, sets the
5173  * corresponding CLK_IS_CRITICAL flag.
5174  *
5175  * Do not use this function. It exists only for legacy Device Tree
5176  * bindings, such as the one-clock-per-node style that are outdated.
5177  * Those bindings typically put all clock data into .dts and the Linux
5178  * driver has no clock data, thus making it impossible to set this flag
5179  * correctly from the driver. Only those drivers may call
5180  * of_clk_detect_critical from their setup functions.
5181  *
5182  * Return: error code or zero on success
5183  */
5184 int of_clk_detect_critical(struct device_node *np, int index,
5185 			   unsigned long *flags)
5186 {
5187 	struct property *prop;
5188 	const __be32 *cur;
5189 	uint32_t idx;
5190 
5191 	if (!np || !flags)
5192 		return -EINVAL;
5193 
5194 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5195 		if (index == idx)
5196 			*flags |= CLK_IS_CRITICAL;
5197 
5198 	return 0;
5199 }
5200 
5201 /**
5202  * of_clk_init() - Scan and init clock providers from the DT
5203  * @matches: array of compatible values and init functions for providers.
5204  *
5205  * This function scans the device tree for matching clock providers
5206  * and calls their initialization functions. It also does it by trying
5207  * to follow the dependencies.
5208  */
5209 void __init of_clk_init(const struct of_device_id *matches)
5210 {
5211 	const struct of_device_id *match;
5212 	struct device_node *np;
5213 	struct clock_provider *clk_provider, *next;
5214 	bool is_init_done;
5215 	bool force = false;
5216 	LIST_HEAD(clk_provider_list);
5217 
5218 	if (!matches)
5219 		matches = &__clk_of_table;
5220 
5221 	/* First prepare the list of the clocks providers */
5222 	for_each_matching_node_and_match(np, matches, &match) {
5223 		struct clock_provider *parent;
5224 
5225 		if (!of_device_is_available(np))
5226 			continue;
5227 
5228 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5229 		if (!parent) {
5230 			list_for_each_entry_safe(clk_provider, next,
5231 						 &clk_provider_list, node) {
5232 				list_del(&clk_provider->node);
5233 				of_node_put(clk_provider->np);
5234 				kfree(clk_provider);
5235 			}
5236 			of_node_put(np);
5237 			return;
5238 		}
5239 
5240 		parent->clk_init_cb = match->data;
5241 		parent->np = of_node_get(np);
5242 		list_add_tail(&parent->node, &clk_provider_list);
5243 	}
5244 
5245 	while (!list_empty(&clk_provider_list)) {
5246 		is_init_done = false;
5247 		list_for_each_entry_safe(clk_provider, next,
5248 					&clk_provider_list, node) {
5249 			if (force || parent_ready(clk_provider->np)) {
5250 
5251 				/* Don't populate platform devices */
5252 				of_node_set_flag(clk_provider->np,
5253 						 OF_POPULATED);
5254 
5255 				clk_provider->clk_init_cb(clk_provider->np);
5256 				of_clk_set_defaults(clk_provider->np, true);
5257 
5258 				list_del(&clk_provider->node);
5259 				of_node_put(clk_provider->np);
5260 				kfree(clk_provider);
5261 				is_init_done = true;
5262 			}
5263 		}
5264 
5265 		/*
5266 		 * We didn't manage to initialize any of the
5267 		 * remaining providers during the last loop, so now we
5268 		 * initialize all the remaining ones unconditionally
5269 		 * in case the clock parent was not mandatory
5270 		 */
5271 		if (!is_init_done)
5272 			force = true;
5273 	}
5274 }
5275 #endif
5276