1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static const struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44 }; 45 46 /*** private data structures ***/ 47 48 struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54 }; 55 56 struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87 #ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90 #endif 91 struct kref ref; 92 }; 93 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/clk.h> 96 97 struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106 }; 107 108 /*** runtime pm ***/ 109 static int clk_pm_runtime_get(struct clk_core *core) 110 { 111 int ret; 112 113 if (!core->rpm_enabled) 114 return 0; 115 116 ret = pm_runtime_get_sync(core->dev); 117 if (ret < 0) { 118 pm_runtime_put_noidle(core->dev); 119 return ret; 120 } 121 return 0; 122 } 123 124 static void clk_pm_runtime_put(struct clk_core *core) 125 { 126 if (!core->rpm_enabled) 127 return; 128 129 pm_runtime_put_sync(core->dev); 130 } 131 132 /*** locking ***/ 133 static void clk_prepare_lock(void) 134 { 135 if (!mutex_trylock(&prepare_lock)) { 136 if (prepare_owner == current) { 137 prepare_refcnt++; 138 return; 139 } 140 mutex_lock(&prepare_lock); 141 } 142 WARN_ON_ONCE(prepare_owner != NULL); 143 WARN_ON_ONCE(prepare_refcnt != 0); 144 prepare_owner = current; 145 prepare_refcnt = 1; 146 } 147 148 static void clk_prepare_unlock(void) 149 { 150 WARN_ON_ONCE(prepare_owner != current); 151 WARN_ON_ONCE(prepare_refcnt == 0); 152 153 if (--prepare_refcnt) 154 return; 155 prepare_owner = NULL; 156 mutex_unlock(&prepare_lock); 157 } 158 159 static unsigned long clk_enable_lock(void) 160 __acquires(enable_lock) 161 { 162 unsigned long flags; 163 164 /* 165 * On UP systems, spin_trylock_irqsave() always returns true, even if 166 * we already hold the lock. So, in that case, we rely only on 167 * reference counting. 168 */ 169 if (!IS_ENABLED(CONFIG_SMP) || 170 !spin_trylock_irqsave(&enable_lock, flags)) { 171 if (enable_owner == current) { 172 enable_refcnt++; 173 __acquire(enable_lock); 174 if (!IS_ENABLED(CONFIG_SMP)) 175 local_save_flags(flags); 176 return flags; 177 } 178 spin_lock_irqsave(&enable_lock, flags); 179 } 180 WARN_ON_ONCE(enable_owner != NULL); 181 WARN_ON_ONCE(enable_refcnt != 0); 182 enable_owner = current; 183 enable_refcnt = 1; 184 return flags; 185 } 186 187 static void clk_enable_unlock(unsigned long flags) 188 __releases(enable_lock) 189 { 190 WARN_ON_ONCE(enable_owner != current); 191 WARN_ON_ONCE(enable_refcnt == 0); 192 193 if (--enable_refcnt) { 194 __release(enable_lock); 195 return; 196 } 197 enable_owner = NULL; 198 spin_unlock_irqrestore(&enable_lock, flags); 199 } 200 201 static bool clk_core_rate_is_protected(struct clk_core *core) 202 { 203 return core->protect_count; 204 } 205 206 static bool clk_core_is_prepared(struct clk_core *core) 207 { 208 bool ret = false; 209 210 /* 211 * .is_prepared is optional for clocks that can prepare 212 * fall back to software usage counter if it is missing 213 */ 214 if (!core->ops->is_prepared) 215 return core->prepare_count; 216 217 if (!clk_pm_runtime_get(core)) { 218 ret = core->ops->is_prepared(core->hw); 219 clk_pm_runtime_put(core); 220 } 221 222 return ret; 223 } 224 225 static bool clk_core_is_enabled(struct clk_core *core) 226 { 227 bool ret = false; 228 229 /* 230 * .is_enabled is only mandatory for clocks that gate 231 * fall back to software usage counter if .is_enabled is missing 232 */ 233 if (!core->ops->is_enabled) 234 return core->enable_count; 235 236 /* 237 * Check if clock controller's device is runtime active before 238 * calling .is_enabled callback. If not, assume that clock is 239 * disabled, because we might be called from atomic context, from 240 * which pm_runtime_get() is not allowed. 241 * This function is called mainly from clk_disable_unused_subtree, 242 * which ensures proper runtime pm activation of controller before 243 * taking enable spinlock, but the below check is needed if one tries 244 * to call it from other places. 245 */ 246 if (core->rpm_enabled) { 247 pm_runtime_get_noresume(core->dev); 248 if (!pm_runtime_active(core->dev)) { 249 ret = false; 250 goto done; 251 } 252 } 253 254 ret = core->ops->is_enabled(core->hw); 255 done: 256 if (core->rpm_enabled) 257 pm_runtime_put(core->dev); 258 259 return ret; 260 } 261 262 /*** helper functions ***/ 263 264 const char *__clk_get_name(const struct clk *clk) 265 { 266 return !clk ? NULL : clk->core->name; 267 } 268 EXPORT_SYMBOL_GPL(__clk_get_name); 269 270 const char *clk_hw_get_name(const struct clk_hw *hw) 271 { 272 return hw->core->name; 273 } 274 EXPORT_SYMBOL_GPL(clk_hw_get_name); 275 276 struct clk_hw *__clk_get_hw(struct clk *clk) 277 { 278 return !clk ? NULL : clk->core->hw; 279 } 280 EXPORT_SYMBOL_GPL(__clk_get_hw); 281 282 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 283 { 284 return hw->core->num_parents; 285 } 286 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 287 288 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 289 { 290 return hw->core->parent ? hw->core->parent->hw : NULL; 291 } 292 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 293 294 static struct clk_core *__clk_lookup_subtree(const char *name, 295 struct clk_core *core) 296 { 297 struct clk_core *child; 298 struct clk_core *ret; 299 300 if (!strcmp(core->name, name)) 301 return core; 302 303 hlist_for_each_entry(child, &core->children, child_node) { 304 ret = __clk_lookup_subtree(name, child); 305 if (ret) 306 return ret; 307 } 308 309 return NULL; 310 } 311 312 static struct clk_core *clk_core_lookup(const char *name) 313 { 314 struct clk_core *root_clk; 315 struct clk_core *ret; 316 317 if (!name) 318 return NULL; 319 320 /* search the 'proper' clk tree first */ 321 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 322 ret = __clk_lookup_subtree(name, root_clk); 323 if (ret) 324 return ret; 325 } 326 327 /* if not found, then search the orphan tree */ 328 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 329 ret = __clk_lookup_subtree(name, root_clk); 330 if (ret) 331 return ret; 332 } 333 334 return NULL; 335 } 336 337 #ifdef CONFIG_OF 338 static int of_parse_clkspec(const struct device_node *np, int index, 339 const char *name, struct of_phandle_args *out_args); 340 static struct clk_hw * 341 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 342 #else 343 static inline int of_parse_clkspec(const struct device_node *np, int index, 344 const char *name, 345 struct of_phandle_args *out_args) 346 { 347 return -ENOENT; 348 } 349 static inline struct clk_hw * 350 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 351 { 352 return ERR_PTR(-ENOENT); 353 } 354 #endif 355 356 /** 357 * clk_core_get - Find the clk_core parent of a clk 358 * @core: clk to find parent of 359 * @p_index: parent index to search for 360 * 361 * This is the preferred method for clk providers to find the parent of a 362 * clk when that parent is external to the clk controller. The parent_names 363 * array is indexed and treated as a local name matching a string in the device 364 * node's 'clock-names' property or as the 'con_id' matching the device's 365 * dev_name() in a clk_lookup. This allows clk providers to use their own 366 * namespace instead of looking for a globally unique parent string. 367 * 368 * For example the following DT snippet would allow a clock registered by the 369 * clock-controller@c001 that has a clk_init_data::parent_data array 370 * with 'xtal' in the 'name' member to find the clock provided by the 371 * clock-controller@f00abcd without needing to get the globally unique name of 372 * the xtal clk. 373 * 374 * parent: clock-controller@f00abcd { 375 * reg = <0xf00abcd 0xabcd>; 376 * #clock-cells = <0>; 377 * }; 378 * 379 * clock-controller@c001 { 380 * reg = <0xc001 0xf00d>; 381 * clocks = <&parent>; 382 * clock-names = "xtal"; 383 * #clock-cells = <1>; 384 * }; 385 * 386 * Returns: -ENOENT when the provider can't be found or the clk doesn't 387 * exist in the provider or the name can't be found in the DT node or 388 * in a clkdev lookup. NULL when the provider knows about the clk but it 389 * isn't provided on this system. 390 * A valid clk_core pointer when the clk can be found in the provider. 391 */ 392 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 393 { 394 const char *name = core->parents[p_index].fw_name; 395 int index = core->parents[p_index].index; 396 struct clk_hw *hw = ERR_PTR(-ENOENT); 397 struct device *dev = core->dev; 398 const char *dev_id = dev ? dev_name(dev) : NULL; 399 struct device_node *np = core->of_node; 400 struct of_phandle_args clkspec; 401 402 if (np && (name || index >= 0) && 403 !of_parse_clkspec(np, index, name, &clkspec)) { 404 hw = of_clk_get_hw_from_clkspec(&clkspec); 405 of_node_put(clkspec.np); 406 } else if (name) { 407 /* 408 * If the DT search above couldn't find the provider fallback to 409 * looking up via clkdev based clk_lookups. 410 */ 411 hw = clk_find_hw(dev_id, name); 412 } 413 414 if (IS_ERR(hw)) 415 return ERR_CAST(hw); 416 417 return hw->core; 418 } 419 420 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 421 { 422 struct clk_parent_map *entry = &core->parents[index]; 423 struct clk_core *parent; 424 425 if (entry->hw) { 426 parent = entry->hw->core; 427 } else { 428 parent = clk_core_get(core, index); 429 if (PTR_ERR(parent) == -ENOENT && entry->name) 430 parent = clk_core_lookup(entry->name); 431 } 432 433 /* 434 * We have a direct reference but it isn't registered yet? 435 * Orphan it and let clk_reparent() update the orphan status 436 * when the parent is registered. 437 */ 438 if (!parent) 439 parent = ERR_PTR(-EPROBE_DEFER); 440 441 /* Only cache it if it's not an error */ 442 if (!IS_ERR(parent)) 443 entry->core = parent; 444 } 445 446 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 447 u8 index) 448 { 449 if (!core || index >= core->num_parents || !core->parents) 450 return NULL; 451 452 if (!core->parents[index].core) 453 clk_core_fill_parent_index(core, index); 454 455 return core->parents[index].core; 456 } 457 458 struct clk_hw * 459 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 460 { 461 struct clk_core *parent; 462 463 parent = clk_core_get_parent_by_index(hw->core, index); 464 465 return !parent ? NULL : parent->hw; 466 } 467 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 468 469 unsigned int __clk_get_enable_count(struct clk *clk) 470 { 471 return !clk ? 0 : clk->core->enable_count; 472 } 473 474 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 475 { 476 if (!core) 477 return 0; 478 479 if (!core->num_parents || core->parent) 480 return core->rate; 481 482 /* 483 * Clk must have a parent because num_parents > 0 but the parent isn't 484 * known yet. Best to return 0 as the rate of this clk until we can 485 * properly recalc the rate based on the parent's rate. 486 */ 487 return 0; 488 } 489 490 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 491 { 492 return clk_core_get_rate_nolock(hw->core); 493 } 494 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 495 496 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 497 { 498 if (!core) 499 return 0; 500 501 return core->accuracy; 502 } 503 504 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 505 { 506 return hw->core->flags; 507 } 508 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 509 510 bool clk_hw_is_prepared(const struct clk_hw *hw) 511 { 512 return clk_core_is_prepared(hw->core); 513 } 514 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 515 516 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 517 { 518 return clk_core_rate_is_protected(hw->core); 519 } 520 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 521 522 bool clk_hw_is_enabled(const struct clk_hw *hw) 523 { 524 return clk_core_is_enabled(hw->core); 525 } 526 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 527 528 bool __clk_is_enabled(struct clk *clk) 529 { 530 if (!clk) 531 return false; 532 533 return clk_core_is_enabled(clk->core); 534 } 535 EXPORT_SYMBOL_GPL(__clk_is_enabled); 536 537 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 538 unsigned long best, unsigned long flags) 539 { 540 if (flags & CLK_MUX_ROUND_CLOSEST) 541 return abs(now - rate) < abs(best - rate); 542 543 return now <= rate && now > best; 544 } 545 546 int clk_mux_determine_rate_flags(struct clk_hw *hw, 547 struct clk_rate_request *req, 548 unsigned long flags) 549 { 550 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 551 int i, num_parents, ret; 552 unsigned long best = 0; 553 struct clk_rate_request parent_req = *req; 554 555 /* if NO_REPARENT flag set, pass through to current parent */ 556 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 557 parent = core->parent; 558 if (core->flags & CLK_SET_RATE_PARENT) { 559 ret = __clk_determine_rate(parent ? parent->hw : NULL, 560 &parent_req); 561 if (ret) 562 return ret; 563 564 best = parent_req.rate; 565 } else if (parent) { 566 best = clk_core_get_rate_nolock(parent); 567 } else { 568 best = clk_core_get_rate_nolock(core); 569 } 570 571 goto out; 572 } 573 574 /* find the parent that can provide the fastest rate <= rate */ 575 num_parents = core->num_parents; 576 for (i = 0; i < num_parents; i++) { 577 parent = clk_core_get_parent_by_index(core, i); 578 if (!parent) 579 continue; 580 581 if (core->flags & CLK_SET_RATE_PARENT) { 582 parent_req = *req; 583 ret = __clk_determine_rate(parent->hw, &parent_req); 584 if (ret) 585 continue; 586 } else { 587 parent_req.rate = clk_core_get_rate_nolock(parent); 588 } 589 590 if (mux_is_better_rate(req->rate, parent_req.rate, 591 best, flags)) { 592 best_parent = parent; 593 best = parent_req.rate; 594 } 595 } 596 597 if (!best_parent) 598 return -EINVAL; 599 600 out: 601 if (best_parent) 602 req->best_parent_hw = best_parent->hw; 603 req->best_parent_rate = best; 604 req->rate = best; 605 606 return 0; 607 } 608 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 609 610 struct clk *__clk_lookup(const char *name) 611 { 612 struct clk_core *core = clk_core_lookup(name); 613 614 return !core ? NULL : core->hw->clk; 615 } 616 617 static void clk_core_get_boundaries(struct clk_core *core, 618 unsigned long *min_rate, 619 unsigned long *max_rate) 620 { 621 struct clk *clk_user; 622 623 lockdep_assert_held(&prepare_lock); 624 625 *min_rate = core->min_rate; 626 *max_rate = core->max_rate; 627 628 hlist_for_each_entry(clk_user, &core->clks, clks_node) 629 *min_rate = max(*min_rate, clk_user->min_rate); 630 631 hlist_for_each_entry(clk_user, &core->clks, clks_node) 632 *max_rate = min(*max_rate, clk_user->max_rate); 633 } 634 635 static bool clk_core_check_boundaries(struct clk_core *core, 636 unsigned long min_rate, 637 unsigned long max_rate) 638 { 639 struct clk *user; 640 641 lockdep_assert_held(&prepare_lock); 642 643 if (min_rate > core->max_rate || max_rate < core->min_rate) 644 return false; 645 646 hlist_for_each_entry(user, &core->clks, clks_node) 647 if (min_rate > user->max_rate || max_rate < user->min_rate) 648 return false; 649 650 return true; 651 } 652 653 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 654 unsigned long max_rate) 655 { 656 hw->core->min_rate = min_rate; 657 hw->core->max_rate = max_rate; 658 } 659 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 660 661 /* 662 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 663 * @hw: mux type clk to determine rate on 664 * @req: rate request, also used to return preferred parent and frequencies 665 * 666 * Helper for finding best parent to provide a given frequency. This can be used 667 * directly as a determine_rate callback (e.g. for a mux), or from a more 668 * complex clock that may combine a mux with other operations. 669 * 670 * Returns: 0 on success, -EERROR value on error 671 */ 672 int __clk_mux_determine_rate(struct clk_hw *hw, 673 struct clk_rate_request *req) 674 { 675 return clk_mux_determine_rate_flags(hw, req, 0); 676 } 677 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 678 679 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 680 struct clk_rate_request *req) 681 { 682 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 683 } 684 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 685 686 /*** clk api ***/ 687 688 static void clk_core_rate_unprotect(struct clk_core *core) 689 { 690 lockdep_assert_held(&prepare_lock); 691 692 if (!core) 693 return; 694 695 if (WARN(core->protect_count == 0, 696 "%s already unprotected\n", core->name)) 697 return; 698 699 if (--core->protect_count > 0) 700 return; 701 702 clk_core_rate_unprotect(core->parent); 703 } 704 705 static int clk_core_rate_nuke_protect(struct clk_core *core) 706 { 707 int ret; 708 709 lockdep_assert_held(&prepare_lock); 710 711 if (!core) 712 return -EINVAL; 713 714 if (core->protect_count == 0) 715 return 0; 716 717 ret = core->protect_count; 718 core->protect_count = 1; 719 clk_core_rate_unprotect(core); 720 721 return ret; 722 } 723 724 /** 725 * clk_rate_exclusive_put - release exclusivity over clock rate control 726 * @clk: the clk over which the exclusivity is released 727 * 728 * clk_rate_exclusive_put() completes a critical section during which a clock 729 * consumer cannot tolerate any other consumer making any operation on the 730 * clock which could result in a rate change or rate glitch. Exclusive clocks 731 * cannot have their rate changed, either directly or indirectly due to changes 732 * further up the parent chain of clocks. As a result, clocks up parent chain 733 * also get under exclusive control of the calling consumer. 734 * 735 * If exlusivity is claimed more than once on clock, even by the same consumer, 736 * the rate effectively gets locked as exclusivity can't be preempted. 737 * 738 * Calls to clk_rate_exclusive_put() must be balanced with calls to 739 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 740 * error status. 741 */ 742 void clk_rate_exclusive_put(struct clk *clk) 743 { 744 if (!clk) 745 return; 746 747 clk_prepare_lock(); 748 749 /* 750 * if there is something wrong with this consumer protect count, stop 751 * here before messing with the provider 752 */ 753 if (WARN_ON(clk->exclusive_count <= 0)) 754 goto out; 755 756 clk_core_rate_unprotect(clk->core); 757 clk->exclusive_count--; 758 out: 759 clk_prepare_unlock(); 760 } 761 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 762 763 static void clk_core_rate_protect(struct clk_core *core) 764 { 765 lockdep_assert_held(&prepare_lock); 766 767 if (!core) 768 return; 769 770 if (core->protect_count == 0) 771 clk_core_rate_protect(core->parent); 772 773 core->protect_count++; 774 } 775 776 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 777 { 778 lockdep_assert_held(&prepare_lock); 779 780 if (!core) 781 return; 782 783 if (count == 0) 784 return; 785 786 clk_core_rate_protect(core); 787 core->protect_count = count; 788 } 789 790 /** 791 * clk_rate_exclusive_get - get exclusivity over the clk rate control 792 * @clk: the clk over which the exclusity of rate control is requested 793 * 794 * clk_rate_exclusive_get() begins a critical section during which a clock 795 * consumer cannot tolerate any other consumer making any operation on the 796 * clock which could result in a rate change or rate glitch. Exclusive clocks 797 * cannot have their rate changed, either directly or indirectly due to changes 798 * further up the parent chain of clocks. As a result, clocks up parent chain 799 * also get under exclusive control of the calling consumer. 800 * 801 * If exlusivity is claimed more than once on clock, even by the same consumer, 802 * the rate effectively gets locked as exclusivity can't be preempted. 803 * 804 * Calls to clk_rate_exclusive_get() should be balanced with calls to 805 * clk_rate_exclusive_put(). Calls to this function may sleep. 806 * Returns 0 on success, -EERROR otherwise 807 */ 808 int clk_rate_exclusive_get(struct clk *clk) 809 { 810 if (!clk) 811 return 0; 812 813 clk_prepare_lock(); 814 clk_core_rate_protect(clk->core); 815 clk->exclusive_count++; 816 clk_prepare_unlock(); 817 818 return 0; 819 } 820 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 821 822 static void clk_core_unprepare(struct clk_core *core) 823 { 824 lockdep_assert_held(&prepare_lock); 825 826 if (!core) 827 return; 828 829 if (WARN(core->prepare_count == 0, 830 "%s already unprepared\n", core->name)) 831 return; 832 833 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 834 "Unpreparing critical %s\n", core->name)) 835 return; 836 837 if (core->flags & CLK_SET_RATE_GATE) 838 clk_core_rate_unprotect(core); 839 840 if (--core->prepare_count > 0) 841 return; 842 843 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 844 845 trace_clk_unprepare(core); 846 847 if (core->ops->unprepare) 848 core->ops->unprepare(core->hw); 849 850 clk_pm_runtime_put(core); 851 852 trace_clk_unprepare_complete(core); 853 clk_core_unprepare(core->parent); 854 } 855 856 static void clk_core_unprepare_lock(struct clk_core *core) 857 { 858 clk_prepare_lock(); 859 clk_core_unprepare(core); 860 clk_prepare_unlock(); 861 } 862 863 /** 864 * clk_unprepare - undo preparation of a clock source 865 * @clk: the clk being unprepared 866 * 867 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 868 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 869 * if the operation may sleep. One example is a clk which is accessed over 870 * I2c. In the complex case a clk gate operation may require a fast and a slow 871 * part. It is this reason that clk_unprepare and clk_disable are not mutually 872 * exclusive. In fact clk_disable must be called before clk_unprepare. 873 */ 874 void clk_unprepare(struct clk *clk) 875 { 876 if (IS_ERR_OR_NULL(clk)) 877 return; 878 879 clk_core_unprepare_lock(clk->core); 880 } 881 EXPORT_SYMBOL_GPL(clk_unprepare); 882 883 static int clk_core_prepare(struct clk_core *core) 884 { 885 int ret = 0; 886 887 lockdep_assert_held(&prepare_lock); 888 889 if (!core) 890 return 0; 891 892 if (core->prepare_count == 0) { 893 ret = clk_pm_runtime_get(core); 894 if (ret) 895 return ret; 896 897 ret = clk_core_prepare(core->parent); 898 if (ret) 899 goto runtime_put; 900 901 trace_clk_prepare(core); 902 903 if (core->ops->prepare) 904 ret = core->ops->prepare(core->hw); 905 906 trace_clk_prepare_complete(core); 907 908 if (ret) 909 goto unprepare; 910 } 911 912 core->prepare_count++; 913 914 /* 915 * CLK_SET_RATE_GATE is a special case of clock protection 916 * Instead of a consumer claiming exclusive rate control, it is 917 * actually the provider which prevents any consumer from making any 918 * operation which could result in a rate change or rate glitch while 919 * the clock is prepared. 920 */ 921 if (core->flags & CLK_SET_RATE_GATE) 922 clk_core_rate_protect(core); 923 924 return 0; 925 unprepare: 926 clk_core_unprepare(core->parent); 927 runtime_put: 928 clk_pm_runtime_put(core); 929 return ret; 930 } 931 932 static int clk_core_prepare_lock(struct clk_core *core) 933 { 934 int ret; 935 936 clk_prepare_lock(); 937 ret = clk_core_prepare(core); 938 clk_prepare_unlock(); 939 940 return ret; 941 } 942 943 /** 944 * clk_prepare - prepare a clock source 945 * @clk: the clk being prepared 946 * 947 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 948 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 949 * operation may sleep. One example is a clk which is accessed over I2c. In 950 * the complex case a clk ungate operation may require a fast and a slow part. 951 * It is this reason that clk_prepare and clk_enable are not mutually 952 * exclusive. In fact clk_prepare must be called before clk_enable. 953 * Returns 0 on success, -EERROR otherwise. 954 */ 955 int clk_prepare(struct clk *clk) 956 { 957 if (!clk) 958 return 0; 959 960 return clk_core_prepare_lock(clk->core); 961 } 962 EXPORT_SYMBOL_GPL(clk_prepare); 963 964 static void clk_core_disable(struct clk_core *core) 965 { 966 lockdep_assert_held(&enable_lock); 967 968 if (!core) 969 return; 970 971 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 972 return; 973 974 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 975 "Disabling critical %s\n", core->name)) 976 return; 977 978 if (--core->enable_count > 0) 979 return; 980 981 trace_clk_disable_rcuidle(core); 982 983 if (core->ops->disable) 984 core->ops->disable(core->hw); 985 986 trace_clk_disable_complete_rcuidle(core); 987 988 clk_core_disable(core->parent); 989 } 990 991 static void clk_core_disable_lock(struct clk_core *core) 992 { 993 unsigned long flags; 994 995 flags = clk_enable_lock(); 996 clk_core_disable(core); 997 clk_enable_unlock(flags); 998 } 999 1000 /** 1001 * clk_disable - gate a clock 1002 * @clk: the clk being gated 1003 * 1004 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 1005 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 1006 * clk if the operation is fast and will never sleep. One example is a 1007 * SoC-internal clk which is controlled via simple register writes. In the 1008 * complex case a clk gate operation may require a fast and a slow part. It is 1009 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 1010 * In fact clk_disable must be called before clk_unprepare. 1011 */ 1012 void clk_disable(struct clk *clk) 1013 { 1014 if (IS_ERR_OR_NULL(clk)) 1015 return; 1016 1017 clk_core_disable_lock(clk->core); 1018 } 1019 EXPORT_SYMBOL_GPL(clk_disable); 1020 1021 static int clk_core_enable(struct clk_core *core) 1022 { 1023 int ret = 0; 1024 1025 lockdep_assert_held(&enable_lock); 1026 1027 if (!core) 1028 return 0; 1029 1030 if (WARN(core->prepare_count == 0, 1031 "Enabling unprepared %s\n", core->name)) 1032 return -ESHUTDOWN; 1033 1034 if (core->enable_count == 0) { 1035 ret = clk_core_enable(core->parent); 1036 1037 if (ret) 1038 return ret; 1039 1040 trace_clk_enable_rcuidle(core); 1041 1042 if (core->ops->enable) 1043 ret = core->ops->enable(core->hw); 1044 1045 trace_clk_enable_complete_rcuidle(core); 1046 1047 if (ret) { 1048 clk_core_disable(core->parent); 1049 return ret; 1050 } 1051 } 1052 1053 core->enable_count++; 1054 return 0; 1055 } 1056 1057 static int clk_core_enable_lock(struct clk_core *core) 1058 { 1059 unsigned long flags; 1060 int ret; 1061 1062 flags = clk_enable_lock(); 1063 ret = clk_core_enable(core); 1064 clk_enable_unlock(flags); 1065 1066 return ret; 1067 } 1068 1069 /** 1070 * clk_gate_restore_context - restore context for poweroff 1071 * @hw: the clk_hw pointer of clock whose state is to be restored 1072 * 1073 * The clock gate restore context function enables or disables 1074 * the gate clocks based on the enable_count. This is done in cases 1075 * where the clock context is lost and based on the enable_count 1076 * the clock either needs to be enabled/disabled. This 1077 * helps restore the state of gate clocks. 1078 */ 1079 void clk_gate_restore_context(struct clk_hw *hw) 1080 { 1081 struct clk_core *core = hw->core; 1082 1083 if (core->enable_count) 1084 core->ops->enable(hw); 1085 else 1086 core->ops->disable(hw); 1087 } 1088 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1089 1090 static int clk_core_save_context(struct clk_core *core) 1091 { 1092 struct clk_core *child; 1093 int ret = 0; 1094 1095 hlist_for_each_entry(child, &core->children, child_node) { 1096 ret = clk_core_save_context(child); 1097 if (ret < 0) 1098 return ret; 1099 } 1100 1101 if (core->ops && core->ops->save_context) 1102 ret = core->ops->save_context(core->hw); 1103 1104 return ret; 1105 } 1106 1107 static void clk_core_restore_context(struct clk_core *core) 1108 { 1109 struct clk_core *child; 1110 1111 if (core->ops && core->ops->restore_context) 1112 core->ops->restore_context(core->hw); 1113 1114 hlist_for_each_entry(child, &core->children, child_node) 1115 clk_core_restore_context(child); 1116 } 1117 1118 /** 1119 * clk_save_context - save clock context for poweroff 1120 * 1121 * Saves the context of the clock register for powerstates in which the 1122 * contents of the registers will be lost. Occurs deep within the suspend 1123 * code. Returns 0 on success. 1124 */ 1125 int clk_save_context(void) 1126 { 1127 struct clk_core *clk; 1128 int ret; 1129 1130 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1131 ret = clk_core_save_context(clk); 1132 if (ret < 0) 1133 return ret; 1134 } 1135 1136 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1137 ret = clk_core_save_context(clk); 1138 if (ret < 0) 1139 return ret; 1140 } 1141 1142 return 0; 1143 } 1144 EXPORT_SYMBOL_GPL(clk_save_context); 1145 1146 /** 1147 * clk_restore_context - restore clock context after poweroff 1148 * 1149 * Restore the saved clock context upon resume. 1150 * 1151 */ 1152 void clk_restore_context(void) 1153 { 1154 struct clk_core *core; 1155 1156 hlist_for_each_entry(core, &clk_root_list, child_node) 1157 clk_core_restore_context(core); 1158 1159 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1160 clk_core_restore_context(core); 1161 } 1162 EXPORT_SYMBOL_GPL(clk_restore_context); 1163 1164 /** 1165 * clk_enable - ungate a clock 1166 * @clk: the clk being ungated 1167 * 1168 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1169 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1170 * if the operation will never sleep. One example is a SoC-internal clk which 1171 * is controlled via simple register writes. In the complex case a clk ungate 1172 * operation may require a fast and a slow part. It is this reason that 1173 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1174 * must be called before clk_enable. Returns 0 on success, -EERROR 1175 * otherwise. 1176 */ 1177 int clk_enable(struct clk *clk) 1178 { 1179 if (!clk) 1180 return 0; 1181 1182 return clk_core_enable_lock(clk->core); 1183 } 1184 EXPORT_SYMBOL_GPL(clk_enable); 1185 1186 /** 1187 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it. 1188 * @clk: clock source 1189 * 1190 * Returns true if clk_prepare() implicitly enables the clock, effectively 1191 * making clk_enable()/clk_disable() no-ops, false otherwise. 1192 * 1193 * This is of interest mainly to power management code where actually 1194 * disabling the clock also requires unpreparing it to have any material 1195 * effect. 1196 * 1197 * Regardless of the value returned here, the caller must always invoke 1198 * clk_enable() or clk_prepare_enable() and counterparts for usage counts 1199 * to be right. 1200 */ 1201 bool clk_is_enabled_when_prepared(struct clk *clk) 1202 { 1203 return clk && !(clk->core->ops->enable && clk->core->ops->disable); 1204 } 1205 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared); 1206 1207 static int clk_core_prepare_enable(struct clk_core *core) 1208 { 1209 int ret; 1210 1211 ret = clk_core_prepare_lock(core); 1212 if (ret) 1213 return ret; 1214 1215 ret = clk_core_enable_lock(core); 1216 if (ret) 1217 clk_core_unprepare_lock(core); 1218 1219 return ret; 1220 } 1221 1222 static void clk_core_disable_unprepare(struct clk_core *core) 1223 { 1224 clk_core_disable_lock(core); 1225 clk_core_unprepare_lock(core); 1226 } 1227 1228 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1229 { 1230 struct clk_core *child; 1231 1232 lockdep_assert_held(&prepare_lock); 1233 1234 hlist_for_each_entry(child, &core->children, child_node) 1235 clk_unprepare_unused_subtree(child); 1236 1237 if (core->prepare_count) 1238 return; 1239 1240 if (core->flags & CLK_IGNORE_UNUSED) 1241 return; 1242 1243 if (clk_pm_runtime_get(core)) 1244 return; 1245 1246 if (clk_core_is_prepared(core)) { 1247 trace_clk_unprepare(core); 1248 if (core->ops->unprepare_unused) 1249 core->ops->unprepare_unused(core->hw); 1250 else if (core->ops->unprepare) 1251 core->ops->unprepare(core->hw); 1252 trace_clk_unprepare_complete(core); 1253 } 1254 1255 clk_pm_runtime_put(core); 1256 } 1257 1258 static void __init clk_disable_unused_subtree(struct clk_core *core) 1259 { 1260 struct clk_core *child; 1261 unsigned long flags; 1262 1263 lockdep_assert_held(&prepare_lock); 1264 1265 hlist_for_each_entry(child, &core->children, child_node) 1266 clk_disable_unused_subtree(child); 1267 1268 if (core->flags & CLK_OPS_PARENT_ENABLE) 1269 clk_core_prepare_enable(core->parent); 1270 1271 if (clk_pm_runtime_get(core)) 1272 goto unprepare_out; 1273 1274 flags = clk_enable_lock(); 1275 1276 if (core->enable_count) 1277 goto unlock_out; 1278 1279 if (core->flags & CLK_IGNORE_UNUSED) 1280 goto unlock_out; 1281 1282 /* 1283 * some gate clocks have special needs during the disable-unused 1284 * sequence. call .disable_unused if available, otherwise fall 1285 * back to .disable 1286 */ 1287 if (clk_core_is_enabled(core)) { 1288 trace_clk_disable(core); 1289 if (core->ops->disable_unused) 1290 core->ops->disable_unused(core->hw); 1291 else if (core->ops->disable) 1292 core->ops->disable(core->hw); 1293 trace_clk_disable_complete(core); 1294 } 1295 1296 unlock_out: 1297 clk_enable_unlock(flags); 1298 clk_pm_runtime_put(core); 1299 unprepare_out: 1300 if (core->flags & CLK_OPS_PARENT_ENABLE) 1301 clk_core_disable_unprepare(core->parent); 1302 } 1303 1304 static bool clk_ignore_unused __initdata; 1305 static int __init clk_ignore_unused_setup(char *__unused) 1306 { 1307 clk_ignore_unused = true; 1308 return 1; 1309 } 1310 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1311 1312 static int __init clk_disable_unused(void) 1313 { 1314 struct clk_core *core; 1315 1316 if (clk_ignore_unused) { 1317 pr_warn("clk: Not disabling unused clocks\n"); 1318 return 0; 1319 } 1320 1321 clk_prepare_lock(); 1322 1323 hlist_for_each_entry(core, &clk_root_list, child_node) 1324 clk_disable_unused_subtree(core); 1325 1326 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1327 clk_disable_unused_subtree(core); 1328 1329 hlist_for_each_entry(core, &clk_root_list, child_node) 1330 clk_unprepare_unused_subtree(core); 1331 1332 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1333 clk_unprepare_unused_subtree(core); 1334 1335 clk_prepare_unlock(); 1336 1337 return 0; 1338 } 1339 late_initcall_sync(clk_disable_unused); 1340 1341 static int clk_core_determine_round_nolock(struct clk_core *core, 1342 struct clk_rate_request *req) 1343 { 1344 long rate; 1345 1346 lockdep_assert_held(&prepare_lock); 1347 1348 if (!core) 1349 return 0; 1350 1351 req->rate = clamp(req->rate, req->min_rate, req->max_rate); 1352 1353 /* 1354 * At this point, core protection will be disabled 1355 * - if the provider is not protected at all 1356 * - if the calling consumer is the only one which has exclusivity 1357 * over the provider 1358 */ 1359 if (clk_core_rate_is_protected(core)) { 1360 req->rate = core->rate; 1361 } else if (core->ops->determine_rate) { 1362 return core->ops->determine_rate(core->hw, req); 1363 } else if (core->ops->round_rate) { 1364 rate = core->ops->round_rate(core->hw, req->rate, 1365 &req->best_parent_rate); 1366 if (rate < 0) 1367 return rate; 1368 1369 req->rate = rate; 1370 } else { 1371 return -EINVAL; 1372 } 1373 1374 return 0; 1375 } 1376 1377 static void clk_core_init_rate_req(struct clk_core * const core, 1378 struct clk_rate_request *req) 1379 { 1380 struct clk_core *parent; 1381 1382 if (WARN_ON(!core || !req)) 1383 return; 1384 1385 parent = core->parent; 1386 if (parent) { 1387 req->best_parent_hw = parent->hw; 1388 req->best_parent_rate = parent->rate; 1389 } else { 1390 req->best_parent_hw = NULL; 1391 req->best_parent_rate = 0; 1392 } 1393 } 1394 1395 static bool clk_core_can_round(struct clk_core * const core) 1396 { 1397 return core->ops->determine_rate || core->ops->round_rate; 1398 } 1399 1400 static int clk_core_round_rate_nolock(struct clk_core *core, 1401 struct clk_rate_request *req) 1402 { 1403 lockdep_assert_held(&prepare_lock); 1404 1405 if (!core) { 1406 req->rate = 0; 1407 return 0; 1408 } 1409 1410 clk_core_init_rate_req(core, req); 1411 1412 if (clk_core_can_round(core)) 1413 return clk_core_determine_round_nolock(core, req); 1414 else if (core->flags & CLK_SET_RATE_PARENT) 1415 return clk_core_round_rate_nolock(core->parent, req); 1416 1417 req->rate = core->rate; 1418 return 0; 1419 } 1420 1421 /** 1422 * __clk_determine_rate - get the closest rate actually supported by a clock 1423 * @hw: determine the rate of this clock 1424 * @req: target rate request 1425 * 1426 * Useful for clk_ops such as .set_rate and .determine_rate. 1427 */ 1428 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1429 { 1430 if (!hw) { 1431 req->rate = 0; 1432 return 0; 1433 } 1434 1435 return clk_core_round_rate_nolock(hw->core, req); 1436 } 1437 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1438 1439 /** 1440 * clk_hw_round_rate() - round the given rate for a hw clk 1441 * @hw: the hw clk for which we are rounding a rate 1442 * @rate: the rate which is to be rounded 1443 * 1444 * Takes in a rate as input and rounds it to a rate that the clk can actually 1445 * use. 1446 * 1447 * Context: prepare_lock must be held. 1448 * For clk providers to call from within clk_ops such as .round_rate, 1449 * .determine_rate. 1450 * 1451 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1452 * else returns the parent rate. 1453 */ 1454 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1455 { 1456 int ret; 1457 struct clk_rate_request req; 1458 1459 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1460 req.rate = rate; 1461 1462 ret = clk_core_round_rate_nolock(hw->core, &req); 1463 if (ret) 1464 return 0; 1465 1466 return req.rate; 1467 } 1468 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1469 1470 /** 1471 * clk_round_rate - round the given rate for a clk 1472 * @clk: the clk for which we are rounding a rate 1473 * @rate: the rate which is to be rounded 1474 * 1475 * Takes in a rate as input and rounds it to a rate that the clk can actually 1476 * use which is then returned. If clk doesn't support round_rate operation 1477 * then the parent rate is returned. 1478 */ 1479 long clk_round_rate(struct clk *clk, unsigned long rate) 1480 { 1481 struct clk_rate_request req; 1482 int ret; 1483 1484 if (!clk) 1485 return 0; 1486 1487 clk_prepare_lock(); 1488 1489 if (clk->exclusive_count) 1490 clk_core_rate_unprotect(clk->core); 1491 1492 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1493 req.rate = rate; 1494 1495 ret = clk_core_round_rate_nolock(clk->core, &req); 1496 1497 if (clk->exclusive_count) 1498 clk_core_rate_protect(clk->core); 1499 1500 clk_prepare_unlock(); 1501 1502 if (ret) 1503 return ret; 1504 1505 return req.rate; 1506 } 1507 EXPORT_SYMBOL_GPL(clk_round_rate); 1508 1509 /** 1510 * __clk_notify - call clk notifier chain 1511 * @core: clk that is changing rate 1512 * @msg: clk notifier type (see include/linux/clk.h) 1513 * @old_rate: old clk rate 1514 * @new_rate: new clk rate 1515 * 1516 * Triggers a notifier call chain on the clk rate-change notification 1517 * for 'clk'. Passes a pointer to the struct clk and the previous 1518 * and current rates to the notifier callback. Intended to be called by 1519 * internal clock code only. Returns NOTIFY_DONE from the last driver 1520 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1521 * a driver returns that. 1522 */ 1523 static int __clk_notify(struct clk_core *core, unsigned long msg, 1524 unsigned long old_rate, unsigned long new_rate) 1525 { 1526 struct clk_notifier *cn; 1527 struct clk_notifier_data cnd; 1528 int ret = NOTIFY_DONE; 1529 1530 cnd.old_rate = old_rate; 1531 cnd.new_rate = new_rate; 1532 1533 list_for_each_entry(cn, &clk_notifier_list, node) { 1534 if (cn->clk->core == core) { 1535 cnd.clk = cn->clk; 1536 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1537 &cnd); 1538 if (ret & NOTIFY_STOP_MASK) 1539 return ret; 1540 } 1541 } 1542 1543 return ret; 1544 } 1545 1546 /** 1547 * __clk_recalc_accuracies 1548 * @core: first clk in the subtree 1549 * 1550 * Walks the subtree of clks starting with clk and recalculates accuracies as 1551 * it goes. Note that if a clk does not implement the .recalc_accuracy 1552 * callback then it is assumed that the clock will take on the accuracy of its 1553 * parent. 1554 */ 1555 static void __clk_recalc_accuracies(struct clk_core *core) 1556 { 1557 unsigned long parent_accuracy = 0; 1558 struct clk_core *child; 1559 1560 lockdep_assert_held(&prepare_lock); 1561 1562 if (core->parent) 1563 parent_accuracy = core->parent->accuracy; 1564 1565 if (core->ops->recalc_accuracy) 1566 core->accuracy = core->ops->recalc_accuracy(core->hw, 1567 parent_accuracy); 1568 else 1569 core->accuracy = parent_accuracy; 1570 1571 hlist_for_each_entry(child, &core->children, child_node) 1572 __clk_recalc_accuracies(child); 1573 } 1574 1575 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1576 { 1577 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1578 __clk_recalc_accuracies(core); 1579 1580 return clk_core_get_accuracy_no_lock(core); 1581 } 1582 1583 /** 1584 * clk_get_accuracy - return the accuracy of clk 1585 * @clk: the clk whose accuracy is being returned 1586 * 1587 * Simply returns the cached accuracy of the clk, unless 1588 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1589 * issued. 1590 * If clk is NULL then returns 0. 1591 */ 1592 long clk_get_accuracy(struct clk *clk) 1593 { 1594 long accuracy; 1595 1596 if (!clk) 1597 return 0; 1598 1599 clk_prepare_lock(); 1600 accuracy = clk_core_get_accuracy_recalc(clk->core); 1601 clk_prepare_unlock(); 1602 1603 return accuracy; 1604 } 1605 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1606 1607 static unsigned long clk_recalc(struct clk_core *core, 1608 unsigned long parent_rate) 1609 { 1610 unsigned long rate = parent_rate; 1611 1612 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1613 rate = core->ops->recalc_rate(core->hw, parent_rate); 1614 clk_pm_runtime_put(core); 1615 } 1616 return rate; 1617 } 1618 1619 /** 1620 * __clk_recalc_rates 1621 * @core: first clk in the subtree 1622 * @msg: notification type (see include/linux/clk.h) 1623 * 1624 * Walks the subtree of clks starting with clk and recalculates rates as it 1625 * goes. Note that if a clk does not implement the .recalc_rate callback then 1626 * it is assumed that the clock will take on the rate of its parent. 1627 * 1628 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1629 * if necessary. 1630 */ 1631 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1632 { 1633 unsigned long old_rate; 1634 unsigned long parent_rate = 0; 1635 struct clk_core *child; 1636 1637 lockdep_assert_held(&prepare_lock); 1638 1639 old_rate = core->rate; 1640 1641 if (core->parent) 1642 parent_rate = core->parent->rate; 1643 1644 core->rate = clk_recalc(core, parent_rate); 1645 1646 /* 1647 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1648 * & ABORT_RATE_CHANGE notifiers 1649 */ 1650 if (core->notifier_count && msg) 1651 __clk_notify(core, msg, old_rate, core->rate); 1652 1653 hlist_for_each_entry(child, &core->children, child_node) 1654 __clk_recalc_rates(child, msg); 1655 } 1656 1657 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1658 { 1659 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1660 __clk_recalc_rates(core, 0); 1661 1662 return clk_core_get_rate_nolock(core); 1663 } 1664 1665 /** 1666 * clk_get_rate - return the rate of clk 1667 * @clk: the clk whose rate is being returned 1668 * 1669 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1670 * is set, which means a recalc_rate will be issued. 1671 * If clk is NULL then returns 0. 1672 */ 1673 unsigned long clk_get_rate(struct clk *clk) 1674 { 1675 unsigned long rate; 1676 1677 if (!clk) 1678 return 0; 1679 1680 clk_prepare_lock(); 1681 rate = clk_core_get_rate_recalc(clk->core); 1682 clk_prepare_unlock(); 1683 1684 return rate; 1685 } 1686 EXPORT_SYMBOL_GPL(clk_get_rate); 1687 1688 static int clk_fetch_parent_index(struct clk_core *core, 1689 struct clk_core *parent) 1690 { 1691 int i; 1692 1693 if (!parent) 1694 return -EINVAL; 1695 1696 for (i = 0; i < core->num_parents; i++) { 1697 /* Found it first try! */ 1698 if (core->parents[i].core == parent) 1699 return i; 1700 1701 /* Something else is here, so keep looking */ 1702 if (core->parents[i].core) 1703 continue; 1704 1705 /* Maybe core hasn't been cached but the hw is all we know? */ 1706 if (core->parents[i].hw) { 1707 if (core->parents[i].hw == parent->hw) 1708 break; 1709 1710 /* Didn't match, but we're expecting a clk_hw */ 1711 continue; 1712 } 1713 1714 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1715 if (parent == clk_core_get(core, i)) 1716 break; 1717 1718 /* Fallback to comparing globally unique names */ 1719 if (core->parents[i].name && 1720 !strcmp(parent->name, core->parents[i].name)) 1721 break; 1722 } 1723 1724 if (i == core->num_parents) 1725 return -EINVAL; 1726 1727 core->parents[i].core = parent; 1728 return i; 1729 } 1730 1731 /** 1732 * clk_hw_get_parent_index - return the index of the parent clock 1733 * @hw: clk_hw associated with the clk being consumed 1734 * 1735 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1736 * clock does not have a current parent. 1737 */ 1738 int clk_hw_get_parent_index(struct clk_hw *hw) 1739 { 1740 struct clk_hw *parent = clk_hw_get_parent(hw); 1741 1742 if (WARN_ON(parent == NULL)) 1743 return -EINVAL; 1744 1745 return clk_fetch_parent_index(hw->core, parent->core); 1746 } 1747 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1748 1749 /* 1750 * Update the orphan status of @core and all its children. 1751 */ 1752 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1753 { 1754 struct clk_core *child; 1755 1756 core->orphan = is_orphan; 1757 1758 hlist_for_each_entry(child, &core->children, child_node) 1759 clk_core_update_orphan_status(child, is_orphan); 1760 } 1761 1762 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1763 { 1764 bool was_orphan = core->orphan; 1765 1766 hlist_del(&core->child_node); 1767 1768 if (new_parent) { 1769 bool becomes_orphan = new_parent->orphan; 1770 1771 /* avoid duplicate POST_RATE_CHANGE notifications */ 1772 if (new_parent->new_child == core) 1773 new_parent->new_child = NULL; 1774 1775 hlist_add_head(&core->child_node, &new_parent->children); 1776 1777 if (was_orphan != becomes_orphan) 1778 clk_core_update_orphan_status(core, becomes_orphan); 1779 } else { 1780 hlist_add_head(&core->child_node, &clk_orphan_list); 1781 if (!was_orphan) 1782 clk_core_update_orphan_status(core, true); 1783 } 1784 1785 core->parent = new_parent; 1786 } 1787 1788 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1789 struct clk_core *parent) 1790 { 1791 unsigned long flags; 1792 struct clk_core *old_parent = core->parent; 1793 1794 /* 1795 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1796 * 1797 * 2. Migrate prepare state between parents and prevent race with 1798 * clk_enable(). 1799 * 1800 * If the clock is not prepared, then a race with 1801 * clk_enable/disable() is impossible since we already have the 1802 * prepare lock (future calls to clk_enable() need to be preceded by 1803 * a clk_prepare()). 1804 * 1805 * If the clock is prepared, migrate the prepared state to the new 1806 * parent and also protect against a race with clk_enable() by 1807 * forcing the clock and the new parent on. This ensures that all 1808 * future calls to clk_enable() are practically NOPs with respect to 1809 * hardware and software states. 1810 * 1811 * See also: Comment for clk_set_parent() below. 1812 */ 1813 1814 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1815 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1816 clk_core_prepare_enable(old_parent); 1817 clk_core_prepare_enable(parent); 1818 } 1819 1820 /* migrate prepare count if > 0 */ 1821 if (core->prepare_count) { 1822 clk_core_prepare_enable(parent); 1823 clk_core_enable_lock(core); 1824 } 1825 1826 /* update the clk tree topology */ 1827 flags = clk_enable_lock(); 1828 clk_reparent(core, parent); 1829 clk_enable_unlock(flags); 1830 1831 return old_parent; 1832 } 1833 1834 static void __clk_set_parent_after(struct clk_core *core, 1835 struct clk_core *parent, 1836 struct clk_core *old_parent) 1837 { 1838 /* 1839 * Finish the migration of prepare state and undo the changes done 1840 * for preventing a race with clk_enable(). 1841 */ 1842 if (core->prepare_count) { 1843 clk_core_disable_lock(core); 1844 clk_core_disable_unprepare(old_parent); 1845 } 1846 1847 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1848 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1849 clk_core_disable_unprepare(parent); 1850 clk_core_disable_unprepare(old_parent); 1851 } 1852 } 1853 1854 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1855 u8 p_index) 1856 { 1857 unsigned long flags; 1858 int ret = 0; 1859 struct clk_core *old_parent; 1860 1861 old_parent = __clk_set_parent_before(core, parent); 1862 1863 trace_clk_set_parent(core, parent); 1864 1865 /* change clock input source */ 1866 if (parent && core->ops->set_parent) 1867 ret = core->ops->set_parent(core->hw, p_index); 1868 1869 trace_clk_set_parent_complete(core, parent); 1870 1871 if (ret) { 1872 flags = clk_enable_lock(); 1873 clk_reparent(core, old_parent); 1874 clk_enable_unlock(flags); 1875 __clk_set_parent_after(core, old_parent, parent); 1876 1877 return ret; 1878 } 1879 1880 __clk_set_parent_after(core, parent, old_parent); 1881 1882 return 0; 1883 } 1884 1885 /** 1886 * __clk_speculate_rates 1887 * @core: first clk in the subtree 1888 * @parent_rate: the "future" rate of clk's parent 1889 * 1890 * Walks the subtree of clks starting with clk, speculating rates as it 1891 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1892 * 1893 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1894 * pre-rate change notifications and returns early if no clks in the 1895 * subtree have subscribed to the notifications. Note that if a clk does not 1896 * implement the .recalc_rate callback then it is assumed that the clock will 1897 * take on the rate of its parent. 1898 */ 1899 static int __clk_speculate_rates(struct clk_core *core, 1900 unsigned long parent_rate) 1901 { 1902 struct clk_core *child; 1903 unsigned long new_rate; 1904 int ret = NOTIFY_DONE; 1905 1906 lockdep_assert_held(&prepare_lock); 1907 1908 new_rate = clk_recalc(core, parent_rate); 1909 1910 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1911 if (core->notifier_count) 1912 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1913 1914 if (ret & NOTIFY_STOP_MASK) { 1915 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1916 __func__, core->name, ret); 1917 goto out; 1918 } 1919 1920 hlist_for_each_entry(child, &core->children, child_node) { 1921 ret = __clk_speculate_rates(child, new_rate); 1922 if (ret & NOTIFY_STOP_MASK) 1923 break; 1924 } 1925 1926 out: 1927 return ret; 1928 } 1929 1930 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1931 struct clk_core *new_parent, u8 p_index) 1932 { 1933 struct clk_core *child; 1934 1935 core->new_rate = new_rate; 1936 core->new_parent = new_parent; 1937 core->new_parent_index = p_index; 1938 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1939 core->new_child = NULL; 1940 if (new_parent && new_parent != core->parent) 1941 new_parent->new_child = core; 1942 1943 hlist_for_each_entry(child, &core->children, child_node) { 1944 child->new_rate = clk_recalc(child, new_rate); 1945 clk_calc_subtree(child, child->new_rate, NULL, 0); 1946 } 1947 } 1948 1949 /* 1950 * calculate the new rates returning the topmost clock that has to be 1951 * changed. 1952 */ 1953 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1954 unsigned long rate) 1955 { 1956 struct clk_core *top = core; 1957 struct clk_core *old_parent, *parent; 1958 unsigned long best_parent_rate = 0; 1959 unsigned long new_rate; 1960 unsigned long min_rate; 1961 unsigned long max_rate; 1962 int p_index = 0; 1963 long ret; 1964 1965 /* sanity */ 1966 if (IS_ERR_OR_NULL(core)) 1967 return NULL; 1968 1969 /* save parent rate, if it exists */ 1970 parent = old_parent = core->parent; 1971 if (parent) 1972 best_parent_rate = parent->rate; 1973 1974 clk_core_get_boundaries(core, &min_rate, &max_rate); 1975 1976 /* find the closest rate and parent clk/rate */ 1977 if (clk_core_can_round(core)) { 1978 struct clk_rate_request req; 1979 1980 req.rate = rate; 1981 req.min_rate = min_rate; 1982 req.max_rate = max_rate; 1983 1984 clk_core_init_rate_req(core, &req); 1985 1986 ret = clk_core_determine_round_nolock(core, &req); 1987 if (ret < 0) 1988 return NULL; 1989 1990 best_parent_rate = req.best_parent_rate; 1991 new_rate = req.rate; 1992 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1993 1994 if (new_rate < min_rate || new_rate > max_rate) 1995 return NULL; 1996 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1997 /* pass-through clock without adjustable parent */ 1998 core->new_rate = core->rate; 1999 return NULL; 2000 } else { 2001 /* pass-through clock with adjustable parent */ 2002 top = clk_calc_new_rates(parent, rate); 2003 new_rate = parent->new_rate; 2004 goto out; 2005 } 2006 2007 /* some clocks must be gated to change parent */ 2008 if (parent != old_parent && 2009 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 2010 pr_debug("%s: %s not gated but wants to reparent\n", 2011 __func__, core->name); 2012 return NULL; 2013 } 2014 2015 /* try finding the new parent index */ 2016 if (parent && core->num_parents > 1) { 2017 p_index = clk_fetch_parent_index(core, parent); 2018 if (p_index < 0) { 2019 pr_debug("%s: clk %s can not be parent of clk %s\n", 2020 __func__, parent->name, core->name); 2021 return NULL; 2022 } 2023 } 2024 2025 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 2026 best_parent_rate != parent->rate) 2027 top = clk_calc_new_rates(parent, best_parent_rate); 2028 2029 out: 2030 clk_calc_subtree(core, new_rate, parent, p_index); 2031 2032 return top; 2033 } 2034 2035 /* 2036 * Notify about rate changes in a subtree. Always walk down the whole tree 2037 * so that in case of an error we can walk down the whole tree again and 2038 * abort the change. 2039 */ 2040 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2041 unsigned long event) 2042 { 2043 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2044 int ret = NOTIFY_DONE; 2045 2046 if (core->rate == core->new_rate) 2047 return NULL; 2048 2049 if (core->notifier_count) { 2050 ret = __clk_notify(core, event, core->rate, core->new_rate); 2051 if (ret & NOTIFY_STOP_MASK) 2052 fail_clk = core; 2053 } 2054 2055 hlist_for_each_entry(child, &core->children, child_node) { 2056 /* Skip children who will be reparented to another clock */ 2057 if (child->new_parent && child->new_parent != core) 2058 continue; 2059 tmp_clk = clk_propagate_rate_change(child, event); 2060 if (tmp_clk) 2061 fail_clk = tmp_clk; 2062 } 2063 2064 /* handle the new child who might not be in core->children yet */ 2065 if (core->new_child) { 2066 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2067 if (tmp_clk) 2068 fail_clk = tmp_clk; 2069 } 2070 2071 return fail_clk; 2072 } 2073 2074 /* 2075 * walk down a subtree and set the new rates notifying the rate 2076 * change on the way 2077 */ 2078 static void clk_change_rate(struct clk_core *core) 2079 { 2080 struct clk_core *child; 2081 struct hlist_node *tmp; 2082 unsigned long old_rate; 2083 unsigned long best_parent_rate = 0; 2084 bool skip_set_rate = false; 2085 struct clk_core *old_parent; 2086 struct clk_core *parent = NULL; 2087 2088 old_rate = core->rate; 2089 2090 if (core->new_parent) { 2091 parent = core->new_parent; 2092 best_parent_rate = core->new_parent->rate; 2093 } else if (core->parent) { 2094 parent = core->parent; 2095 best_parent_rate = core->parent->rate; 2096 } 2097 2098 if (clk_pm_runtime_get(core)) 2099 return; 2100 2101 if (core->flags & CLK_SET_RATE_UNGATE) { 2102 clk_core_prepare(core); 2103 clk_core_enable_lock(core); 2104 } 2105 2106 if (core->new_parent && core->new_parent != core->parent) { 2107 old_parent = __clk_set_parent_before(core, core->new_parent); 2108 trace_clk_set_parent(core, core->new_parent); 2109 2110 if (core->ops->set_rate_and_parent) { 2111 skip_set_rate = true; 2112 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2113 best_parent_rate, 2114 core->new_parent_index); 2115 } else if (core->ops->set_parent) { 2116 core->ops->set_parent(core->hw, core->new_parent_index); 2117 } 2118 2119 trace_clk_set_parent_complete(core, core->new_parent); 2120 __clk_set_parent_after(core, core->new_parent, old_parent); 2121 } 2122 2123 if (core->flags & CLK_OPS_PARENT_ENABLE) 2124 clk_core_prepare_enable(parent); 2125 2126 trace_clk_set_rate(core, core->new_rate); 2127 2128 if (!skip_set_rate && core->ops->set_rate) 2129 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2130 2131 trace_clk_set_rate_complete(core, core->new_rate); 2132 2133 core->rate = clk_recalc(core, best_parent_rate); 2134 2135 if (core->flags & CLK_SET_RATE_UNGATE) { 2136 clk_core_disable_lock(core); 2137 clk_core_unprepare(core); 2138 } 2139 2140 if (core->flags & CLK_OPS_PARENT_ENABLE) 2141 clk_core_disable_unprepare(parent); 2142 2143 if (core->notifier_count && old_rate != core->rate) 2144 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2145 2146 if (core->flags & CLK_RECALC_NEW_RATES) 2147 (void)clk_calc_new_rates(core, core->new_rate); 2148 2149 /* 2150 * Use safe iteration, as change_rate can actually swap parents 2151 * for certain clock types. 2152 */ 2153 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2154 /* Skip children who will be reparented to another clock */ 2155 if (child->new_parent && child->new_parent != core) 2156 continue; 2157 clk_change_rate(child); 2158 } 2159 2160 /* handle the new child who might not be in core->children yet */ 2161 if (core->new_child) 2162 clk_change_rate(core->new_child); 2163 2164 clk_pm_runtime_put(core); 2165 } 2166 2167 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2168 unsigned long req_rate) 2169 { 2170 int ret, cnt; 2171 struct clk_rate_request req; 2172 2173 lockdep_assert_held(&prepare_lock); 2174 2175 if (!core) 2176 return 0; 2177 2178 /* simulate what the rate would be if it could be freely set */ 2179 cnt = clk_core_rate_nuke_protect(core); 2180 if (cnt < 0) 2181 return cnt; 2182 2183 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2184 req.rate = req_rate; 2185 2186 ret = clk_core_round_rate_nolock(core, &req); 2187 2188 /* restore the protection */ 2189 clk_core_rate_restore_protect(core, cnt); 2190 2191 return ret ? 0 : req.rate; 2192 } 2193 2194 static int clk_core_set_rate_nolock(struct clk_core *core, 2195 unsigned long req_rate) 2196 { 2197 struct clk_core *top, *fail_clk; 2198 unsigned long rate; 2199 int ret = 0; 2200 2201 if (!core) 2202 return 0; 2203 2204 rate = clk_core_req_round_rate_nolock(core, req_rate); 2205 2206 /* bail early if nothing to do */ 2207 if (rate == clk_core_get_rate_nolock(core)) 2208 return 0; 2209 2210 /* fail on a direct rate set of a protected provider */ 2211 if (clk_core_rate_is_protected(core)) 2212 return -EBUSY; 2213 2214 /* calculate new rates and get the topmost changed clock */ 2215 top = clk_calc_new_rates(core, req_rate); 2216 if (!top) 2217 return -EINVAL; 2218 2219 ret = clk_pm_runtime_get(core); 2220 if (ret) 2221 return ret; 2222 2223 /* notify that we are about to change rates */ 2224 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2225 if (fail_clk) { 2226 pr_debug("%s: failed to set %s rate\n", __func__, 2227 fail_clk->name); 2228 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2229 ret = -EBUSY; 2230 goto err; 2231 } 2232 2233 /* change the rates */ 2234 clk_change_rate(top); 2235 2236 core->req_rate = req_rate; 2237 err: 2238 clk_pm_runtime_put(core); 2239 2240 return ret; 2241 } 2242 2243 /** 2244 * clk_set_rate - specify a new rate for clk 2245 * @clk: the clk whose rate is being changed 2246 * @rate: the new rate for clk 2247 * 2248 * In the simplest case clk_set_rate will only adjust the rate of clk. 2249 * 2250 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2251 * propagate up to clk's parent; whether or not this happens depends on the 2252 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2253 * after calling .round_rate then upstream parent propagation is ignored. If 2254 * *parent_rate comes back with a new rate for clk's parent then we propagate 2255 * up to clk's parent and set its rate. Upward propagation will continue 2256 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2257 * .round_rate stops requesting changes to clk's parent_rate. 2258 * 2259 * Rate changes are accomplished via tree traversal that also recalculates the 2260 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2261 * 2262 * Returns 0 on success, -EERROR otherwise. 2263 */ 2264 int clk_set_rate(struct clk *clk, unsigned long rate) 2265 { 2266 int ret; 2267 2268 if (!clk) 2269 return 0; 2270 2271 /* prevent racing with updates to the clock topology */ 2272 clk_prepare_lock(); 2273 2274 if (clk->exclusive_count) 2275 clk_core_rate_unprotect(clk->core); 2276 2277 ret = clk_core_set_rate_nolock(clk->core, rate); 2278 2279 if (clk->exclusive_count) 2280 clk_core_rate_protect(clk->core); 2281 2282 clk_prepare_unlock(); 2283 2284 return ret; 2285 } 2286 EXPORT_SYMBOL_GPL(clk_set_rate); 2287 2288 /** 2289 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2290 * @clk: the clk whose rate is being changed 2291 * @rate: the new rate for clk 2292 * 2293 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2294 * within a critical section 2295 * 2296 * This can be used initially to ensure that at least 1 consumer is 2297 * satisfied when several consumers are competing for exclusivity over the 2298 * same clock provider. 2299 * 2300 * The exclusivity is not applied if setting the rate failed. 2301 * 2302 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2303 * clk_rate_exclusive_put(). 2304 * 2305 * Returns 0 on success, -EERROR otherwise. 2306 */ 2307 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2308 { 2309 int ret; 2310 2311 if (!clk) 2312 return 0; 2313 2314 /* prevent racing with updates to the clock topology */ 2315 clk_prepare_lock(); 2316 2317 /* 2318 * The temporary protection removal is not here, on purpose 2319 * This function is meant to be used instead of clk_rate_protect, 2320 * so before the consumer code path protect the clock provider 2321 */ 2322 2323 ret = clk_core_set_rate_nolock(clk->core, rate); 2324 if (!ret) { 2325 clk_core_rate_protect(clk->core); 2326 clk->exclusive_count++; 2327 } 2328 2329 clk_prepare_unlock(); 2330 2331 return ret; 2332 } 2333 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2334 2335 static int clk_set_rate_range_nolock(struct clk *clk, 2336 unsigned long min, 2337 unsigned long max) 2338 { 2339 int ret = 0; 2340 unsigned long old_min, old_max, rate; 2341 2342 lockdep_assert_held(&prepare_lock); 2343 2344 if (!clk) 2345 return 0; 2346 2347 trace_clk_set_rate_range(clk->core, min, max); 2348 2349 if (min > max) { 2350 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2351 __func__, clk->core->name, clk->dev_id, clk->con_id, 2352 min, max); 2353 return -EINVAL; 2354 } 2355 2356 if (clk->exclusive_count) 2357 clk_core_rate_unprotect(clk->core); 2358 2359 /* Save the current values in case we need to rollback the change */ 2360 old_min = clk->min_rate; 2361 old_max = clk->max_rate; 2362 clk->min_rate = min; 2363 clk->max_rate = max; 2364 2365 if (!clk_core_check_boundaries(clk->core, min, max)) { 2366 ret = -EINVAL; 2367 goto out; 2368 } 2369 2370 /* 2371 * Since the boundaries have been changed, let's give the 2372 * opportunity to the provider to adjust the clock rate based on 2373 * the new boundaries. 2374 * 2375 * We also need to handle the case where the clock is currently 2376 * outside of the boundaries. Clamping the last requested rate 2377 * to the current minimum and maximum will also handle this. 2378 * 2379 * FIXME: 2380 * There is a catch. It may fail for the usual reason (clock 2381 * broken, clock protected, etc) but also because: 2382 * - round_rate() was not favorable and fell on the wrong 2383 * side of the boundary 2384 * - the determine_rate() callback does not really check for 2385 * this corner case when determining the rate 2386 */ 2387 rate = clamp(clk->core->req_rate, min, max); 2388 ret = clk_core_set_rate_nolock(clk->core, rate); 2389 if (ret) { 2390 /* rollback the changes */ 2391 clk->min_rate = old_min; 2392 clk->max_rate = old_max; 2393 } 2394 2395 out: 2396 if (clk->exclusive_count) 2397 clk_core_rate_protect(clk->core); 2398 2399 return ret; 2400 } 2401 2402 /** 2403 * clk_set_rate_range - set a rate range for a clock source 2404 * @clk: clock source 2405 * @min: desired minimum clock rate in Hz, inclusive 2406 * @max: desired maximum clock rate in Hz, inclusive 2407 * 2408 * Return: 0 for success or negative errno on failure. 2409 */ 2410 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2411 { 2412 int ret; 2413 2414 if (!clk) 2415 return 0; 2416 2417 clk_prepare_lock(); 2418 2419 ret = clk_set_rate_range_nolock(clk, min, max); 2420 2421 clk_prepare_unlock(); 2422 2423 return ret; 2424 } 2425 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2426 2427 /** 2428 * clk_set_min_rate - set a minimum clock rate for a clock source 2429 * @clk: clock source 2430 * @rate: desired minimum clock rate in Hz, inclusive 2431 * 2432 * Returns success (0) or negative errno. 2433 */ 2434 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2435 { 2436 if (!clk) 2437 return 0; 2438 2439 trace_clk_set_min_rate(clk->core, rate); 2440 2441 return clk_set_rate_range(clk, rate, clk->max_rate); 2442 } 2443 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2444 2445 /** 2446 * clk_set_max_rate - set a maximum clock rate for a clock source 2447 * @clk: clock source 2448 * @rate: desired maximum clock rate in Hz, inclusive 2449 * 2450 * Returns success (0) or negative errno. 2451 */ 2452 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2453 { 2454 if (!clk) 2455 return 0; 2456 2457 trace_clk_set_max_rate(clk->core, rate); 2458 2459 return clk_set_rate_range(clk, clk->min_rate, rate); 2460 } 2461 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2462 2463 /** 2464 * clk_get_parent - return the parent of a clk 2465 * @clk: the clk whose parent gets returned 2466 * 2467 * Simply returns clk->parent. Returns NULL if clk is NULL. 2468 */ 2469 struct clk *clk_get_parent(struct clk *clk) 2470 { 2471 struct clk *parent; 2472 2473 if (!clk) 2474 return NULL; 2475 2476 clk_prepare_lock(); 2477 /* TODO: Create a per-user clk and change callers to call clk_put */ 2478 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2479 clk_prepare_unlock(); 2480 2481 return parent; 2482 } 2483 EXPORT_SYMBOL_GPL(clk_get_parent); 2484 2485 static struct clk_core *__clk_init_parent(struct clk_core *core) 2486 { 2487 u8 index = 0; 2488 2489 if (core->num_parents > 1 && core->ops->get_parent) 2490 index = core->ops->get_parent(core->hw); 2491 2492 return clk_core_get_parent_by_index(core, index); 2493 } 2494 2495 static void clk_core_reparent(struct clk_core *core, 2496 struct clk_core *new_parent) 2497 { 2498 clk_reparent(core, new_parent); 2499 __clk_recalc_accuracies(core); 2500 __clk_recalc_rates(core, POST_RATE_CHANGE); 2501 } 2502 2503 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2504 { 2505 if (!hw) 2506 return; 2507 2508 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2509 } 2510 2511 /** 2512 * clk_has_parent - check if a clock is a possible parent for another 2513 * @clk: clock source 2514 * @parent: parent clock source 2515 * 2516 * This function can be used in drivers that need to check that a clock can be 2517 * the parent of another without actually changing the parent. 2518 * 2519 * Returns true if @parent is a possible parent for @clk, false otherwise. 2520 */ 2521 bool clk_has_parent(struct clk *clk, struct clk *parent) 2522 { 2523 struct clk_core *core, *parent_core; 2524 int i; 2525 2526 /* NULL clocks should be nops, so return success if either is NULL. */ 2527 if (!clk || !parent) 2528 return true; 2529 2530 core = clk->core; 2531 parent_core = parent->core; 2532 2533 /* Optimize for the case where the parent is already the parent. */ 2534 if (core->parent == parent_core) 2535 return true; 2536 2537 for (i = 0; i < core->num_parents; i++) 2538 if (!strcmp(core->parents[i].name, parent_core->name)) 2539 return true; 2540 2541 return false; 2542 } 2543 EXPORT_SYMBOL_GPL(clk_has_parent); 2544 2545 static int clk_core_set_parent_nolock(struct clk_core *core, 2546 struct clk_core *parent) 2547 { 2548 int ret = 0; 2549 int p_index = 0; 2550 unsigned long p_rate = 0; 2551 2552 lockdep_assert_held(&prepare_lock); 2553 2554 if (!core) 2555 return 0; 2556 2557 if (core->parent == parent) 2558 return 0; 2559 2560 /* verify ops for multi-parent clks */ 2561 if (core->num_parents > 1 && !core->ops->set_parent) 2562 return -EPERM; 2563 2564 /* check that we are allowed to re-parent if the clock is in use */ 2565 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2566 return -EBUSY; 2567 2568 if (clk_core_rate_is_protected(core)) 2569 return -EBUSY; 2570 2571 /* try finding the new parent index */ 2572 if (parent) { 2573 p_index = clk_fetch_parent_index(core, parent); 2574 if (p_index < 0) { 2575 pr_debug("%s: clk %s can not be parent of clk %s\n", 2576 __func__, parent->name, core->name); 2577 return p_index; 2578 } 2579 p_rate = parent->rate; 2580 } 2581 2582 ret = clk_pm_runtime_get(core); 2583 if (ret) 2584 return ret; 2585 2586 /* propagate PRE_RATE_CHANGE notifications */ 2587 ret = __clk_speculate_rates(core, p_rate); 2588 2589 /* abort if a driver objects */ 2590 if (ret & NOTIFY_STOP_MASK) 2591 goto runtime_put; 2592 2593 /* do the re-parent */ 2594 ret = __clk_set_parent(core, parent, p_index); 2595 2596 /* propagate rate an accuracy recalculation accordingly */ 2597 if (ret) { 2598 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2599 } else { 2600 __clk_recalc_rates(core, POST_RATE_CHANGE); 2601 __clk_recalc_accuracies(core); 2602 } 2603 2604 runtime_put: 2605 clk_pm_runtime_put(core); 2606 2607 return ret; 2608 } 2609 2610 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2611 { 2612 return clk_core_set_parent_nolock(hw->core, parent->core); 2613 } 2614 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2615 2616 /** 2617 * clk_set_parent - switch the parent of a mux clk 2618 * @clk: the mux clk whose input we are switching 2619 * @parent: the new input to clk 2620 * 2621 * Re-parent clk to use parent as its new input source. If clk is in 2622 * prepared state, the clk will get enabled for the duration of this call. If 2623 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2624 * that, the reparenting is glitchy in hardware, etc), use the 2625 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2626 * 2627 * After successfully changing clk's parent clk_set_parent will update the 2628 * clk topology, sysfs topology and propagate rate recalculation via 2629 * __clk_recalc_rates. 2630 * 2631 * Returns 0 on success, -EERROR otherwise. 2632 */ 2633 int clk_set_parent(struct clk *clk, struct clk *parent) 2634 { 2635 int ret; 2636 2637 if (!clk) 2638 return 0; 2639 2640 clk_prepare_lock(); 2641 2642 if (clk->exclusive_count) 2643 clk_core_rate_unprotect(clk->core); 2644 2645 ret = clk_core_set_parent_nolock(clk->core, 2646 parent ? parent->core : NULL); 2647 2648 if (clk->exclusive_count) 2649 clk_core_rate_protect(clk->core); 2650 2651 clk_prepare_unlock(); 2652 2653 return ret; 2654 } 2655 EXPORT_SYMBOL_GPL(clk_set_parent); 2656 2657 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2658 { 2659 int ret = -EINVAL; 2660 2661 lockdep_assert_held(&prepare_lock); 2662 2663 if (!core) 2664 return 0; 2665 2666 if (clk_core_rate_is_protected(core)) 2667 return -EBUSY; 2668 2669 trace_clk_set_phase(core, degrees); 2670 2671 if (core->ops->set_phase) { 2672 ret = core->ops->set_phase(core->hw, degrees); 2673 if (!ret) 2674 core->phase = degrees; 2675 } 2676 2677 trace_clk_set_phase_complete(core, degrees); 2678 2679 return ret; 2680 } 2681 2682 /** 2683 * clk_set_phase - adjust the phase shift of a clock signal 2684 * @clk: clock signal source 2685 * @degrees: number of degrees the signal is shifted 2686 * 2687 * Shifts the phase of a clock signal by the specified 2688 * degrees. Returns 0 on success, -EERROR otherwise. 2689 * 2690 * This function makes no distinction about the input or reference 2691 * signal that we adjust the clock signal phase against. For example 2692 * phase locked-loop clock signal generators we may shift phase with 2693 * respect to feedback clock signal input, but for other cases the 2694 * clock phase may be shifted with respect to some other, unspecified 2695 * signal. 2696 * 2697 * Additionally the concept of phase shift does not propagate through 2698 * the clock tree hierarchy, which sets it apart from clock rates and 2699 * clock accuracy. A parent clock phase attribute does not have an 2700 * impact on the phase attribute of a child clock. 2701 */ 2702 int clk_set_phase(struct clk *clk, int degrees) 2703 { 2704 int ret; 2705 2706 if (!clk) 2707 return 0; 2708 2709 /* sanity check degrees */ 2710 degrees %= 360; 2711 if (degrees < 0) 2712 degrees += 360; 2713 2714 clk_prepare_lock(); 2715 2716 if (clk->exclusive_count) 2717 clk_core_rate_unprotect(clk->core); 2718 2719 ret = clk_core_set_phase_nolock(clk->core, degrees); 2720 2721 if (clk->exclusive_count) 2722 clk_core_rate_protect(clk->core); 2723 2724 clk_prepare_unlock(); 2725 2726 return ret; 2727 } 2728 EXPORT_SYMBOL_GPL(clk_set_phase); 2729 2730 static int clk_core_get_phase(struct clk_core *core) 2731 { 2732 int ret; 2733 2734 lockdep_assert_held(&prepare_lock); 2735 if (!core->ops->get_phase) 2736 return 0; 2737 2738 /* Always try to update cached phase if possible */ 2739 ret = core->ops->get_phase(core->hw); 2740 if (ret >= 0) 2741 core->phase = ret; 2742 2743 return ret; 2744 } 2745 2746 /** 2747 * clk_get_phase - return the phase shift of a clock signal 2748 * @clk: clock signal source 2749 * 2750 * Returns the phase shift of a clock node in degrees, otherwise returns 2751 * -EERROR. 2752 */ 2753 int clk_get_phase(struct clk *clk) 2754 { 2755 int ret; 2756 2757 if (!clk) 2758 return 0; 2759 2760 clk_prepare_lock(); 2761 ret = clk_core_get_phase(clk->core); 2762 clk_prepare_unlock(); 2763 2764 return ret; 2765 } 2766 EXPORT_SYMBOL_GPL(clk_get_phase); 2767 2768 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2769 { 2770 /* Assume a default value of 50% */ 2771 core->duty.num = 1; 2772 core->duty.den = 2; 2773 } 2774 2775 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2776 2777 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2778 { 2779 struct clk_duty *duty = &core->duty; 2780 int ret = 0; 2781 2782 if (!core->ops->get_duty_cycle) 2783 return clk_core_update_duty_cycle_parent_nolock(core); 2784 2785 ret = core->ops->get_duty_cycle(core->hw, duty); 2786 if (ret) 2787 goto reset; 2788 2789 /* Don't trust the clock provider too much */ 2790 if (duty->den == 0 || duty->num > duty->den) { 2791 ret = -EINVAL; 2792 goto reset; 2793 } 2794 2795 return 0; 2796 2797 reset: 2798 clk_core_reset_duty_cycle_nolock(core); 2799 return ret; 2800 } 2801 2802 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2803 { 2804 int ret = 0; 2805 2806 if (core->parent && 2807 core->flags & CLK_DUTY_CYCLE_PARENT) { 2808 ret = clk_core_update_duty_cycle_nolock(core->parent); 2809 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2810 } else { 2811 clk_core_reset_duty_cycle_nolock(core); 2812 } 2813 2814 return ret; 2815 } 2816 2817 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2818 struct clk_duty *duty); 2819 2820 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2821 struct clk_duty *duty) 2822 { 2823 int ret; 2824 2825 lockdep_assert_held(&prepare_lock); 2826 2827 if (clk_core_rate_is_protected(core)) 2828 return -EBUSY; 2829 2830 trace_clk_set_duty_cycle(core, duty); 2831 2832 if (!core->ops->set_duty_cycle) 2833 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2834 2835 ret = core->ops->set_duty_cycle(core->hw, duty); 2836 if (!ret) 2837 memcpy(&core->duty, duty, sizeof(*duty)); 2838 2839 trace_clk_set_duty_cycle_complete(core, duty); 2840 2841 return ret; 2842 } 2843 2844 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2845 struct clk_duty *duty) 2846 { 2847 int ret = 0; 2848 2849 if (core->parent && 2850 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2851 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2852 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2853 } 2854 2855 return ret; 2856 } 2857 2858 /** 2859 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2860 * @clk: clock signal source 2861 * @num: numerator of the duty cycle ratio to be applied 2862 * @den: denominator of the duty cycle ratio to be applied 2863 * 2864 * Apply the duty cycle ratio if the ratio is valid and the clock can 2865 * perform this operation 2866 * 2867 * Returns (0) on success, a negative errno otherwise. 2868 */ 2869 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2870 { 2871 int ret; 2872 struct clk_duty duty; 2873 2874 if (!clk) 2875 return 0; 2876 2877 /* sanity check the ratio */ 2878 if (den == 0 || num > den) 2879 return -EINVAL; 2880 2881 duty.num = num; 2882 duty.den = den; 2883 2884 clk_prepare_lock(); 2885 2886 if (clk->exclusive_count) 2887 clk_core_rate_unprotect(clk->core); 2888 2889 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2890 2891 if (clk->exclusive_count) 2892 clk_core_rate_protect(clk->core); 2893 2894 clk_prepare_unlock(); 2895 2896 return ret; 2897 } 2898 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2899 2900 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2901 unsigned int scale) 2902 { 2903 struct clk_duty *duty = &core->duty; 2904 int ret; 2905 2906 clk_prepare_lock(); 2907 2908 ret = clk_core_update_duty_cycle_nolock(core); 2909 if (!ret) 2910 ret = mult_frac(scale, duty->num, duty->den); 2911 2912 clk_prepare_unlock(); 2913 2914 return ret; 2915 } 2916 2917 /** 2918 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2919 * @clk: clock signal source 2920 * @scale: scaling factor to be applied to represent the ratio as an integer 2921 * 2922 * Returns the duty cycle ratio of a clock node multiplied by the provided 2923 * scaling factor, or negative errno on error. 2924 */ 2925 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2926 { 2927 if (!clk) 2928 return 0; 2929 2930 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2931 } 2932 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2933 2934 /** 2935 * clk_is_match - check if two clk's point to the same hardware clock 2936 * @p: clk compared against q 2937 * @q: clk compared against p 2938 * 2939 * Returns true if the two struct clk pointers both point to the same hardware 2940 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2941 * share the same struct clk_core object. 2942 * 2943 * Returns false otherwise. Note that two NULL clks are treated as matching. 2944 */ 2945 bool clk_is_match(const struct clk *p, const struct clk *q) 2946 { 2947 /* trivial case: identical struct clk's or both NULL */ 2948 if (p == q) 2949 return true; 2950 2951 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2952 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2953 if (p->core == q->core) 2954 return true; 2955 2956 return false; 2957 } 2958 EXPORT_SYMBOL_GPL(clk_is_match); 2959 2960 /*** debugfs support ***/ 2961 2962 #ifdef CONFIG_DEBUG_FS 2963 #include <linux/debugfs.h> 2964 2965 static struct dentry *rootdir; 2966 static int inited = 0; 2967 static DEFINE_MUTEX(clk_debug_lock); 2968 static HLIST_HEAD(clk_debug_list); 2969 2970 static struct hlist_head *orphan_list[] = { 2971 &clk_orphan_list, 2972 NULL, 2973 }; 2974 2975 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2976 int level) 2977 { 2978 int phase; 2979 2980 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ", 2981 level * 3 + 1, "", 2982 30 - level * 3, c->name, 2983 c->enable_count, c->prepare_count, c->protect_count, 2984 clk_core_get_rate_recalc(c), 2985 clk_core_get_accuracy_recalc(c)); 2986 2987 phase = clk_core_get_phase(c); 2988 if (phase >= 0) 2989 seq_printf(s, "%5d", phase); 2990 else 2991 seq_puts(s, "-----"); 2992 2993 seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000)); 2994 2995 if (c->ops->is_enabled) 2996 seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N'); 2997 else if (!c->ops->enable) 2998 seq_printf(s, " %9c\n", 'Y'); 2999 else 3000 seq_printf(s, " %9c\n", '?'); 3001 } 3002 3003 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 3004 int level) 3005 { 3006 struct clk_core *child; 3007 3008 clk_pm_runtime_get(c); 3009 clk_summary_show_one(s, c, level); 3010 clk_pm_runtime_put(c); 3011 3012 hlist_for_each_entry(child, &c->children, child_node) 3013 clk_summary_show_subtree(s, child, level + 1); 3014 } 3015 3016 static int clk_summary_show(struct seq_file *s, void *data) 3017 { 3018 struct clk_core *c; 3019 struct hlist_head **lists = (struct hlist_head **)s->private; 3020 3021 seq_puts(s, " enable prepare protect duty hardware\n"); 3022 seq_puts(s, " clock count count count rate accuracy phase cycle enable\n"); 3023 seq_puts(s, "-------------------------------------------------------------------------------------------------------\n"); 3024 3025 clk_prepare_lock(); 3026 3027 for (; *lists; lists++) 3028 hlist_for_each_entry(c, *lists, child_node) 3029 clk_summary_show_subtree(s, c, 0); 3030 3031 clk_prepare_unlock(); 3032 3033 return 0; 3034 } 3035 DEFINE_SHOW_ATTRIBUTE(clk_summary); 3036 3037 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 3038 { 3039 int phase; 3040 unsigned long min_rate, max_rate; 3041 3042 clk_core_get_boundaries(c, &min_rate, &max_rate); 3043 3044 /* This should be JSON format, i.e. elements separated with a comma */ 3045 seq_printf(s, "\"%s\": { ", c->name); 3046 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 3047 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 3048 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 3049 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 3050 seq_printf(s, "\"min_rate\": %lu,", min_rate); 3051 seq_printf(s, "\"max_rate\": %lu,", max_rate); 3052 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 3053 phase = clk_core_get_phase(c); 3054 if (phase >= 0) 3055 seq_printf(s, "\"phase\": %d,", phase); 3056 seq_printf(s, "\"duty_cycle\": %u", 3057 clk_core_get_scaled_duty_cycle(c, 100000)); 3058 } 3059 3060 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3061 { 3062 struct clk_core *child; 3063 3064 clk_dump_one(s, c, level); 3065 3066 hlist_for_each_entry(child, &c->children, child_node) { 3067 seq_putc(s, ','); 3068 clk_dump_subtree(s, child, level + 1); 3069 } 3070 3071 seq_putc(s, '}'); 3072 } 3073 3074 static int clk_dump_show(struct seq_file *s, void *data) 3075 { 3076 struct clk_core *c; 3077 bool first_node = true; 3078 struct hlist_head **lists = (struct hlist_head **)s->private; 3079 3080 seq_putc(s, '{'); 3081 clk_prepare_lock(); 3082 3083 for (; *lists; lists++) { 3084 hlist_for_each_entry(c, *lists, child_node) { 3085 if (!first_node) 3086 seq_putc(s, ','); 3087 first_node = false; 3088 clk_dump_subtree(s, c, 0); 3089 } 3090 } 3091 3092 clk_prepare_unlock(); 3093 3094 seq_puts(s, "}\n"); 3095 return 0; 3096 } 3097 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3098 3099 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3100 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3101 /* 3102 * This can be dangerous, therefore don't provide any real compile time 3103 * configuration option for this feature. 3104 * People who want to use this will need to modify the source code directly. 3105 */ 3106 static int clk_rate_set(void *data, u64 val) 3107 { 3108 struct clk_core *core = data; 3109 int ret; 3110 3111 clk_prepare_lock(); 3112 ret = clk_core_set_rate_nolock(core, val); 3113 clk_prepare_unlock(); 3114 3115 return ret; 3116 } 3117 3118 #define clk_rate_mode 0644 3119 3120 static int clk_prepare_enable_set(void *data, u64 val) 3121 { 3122 struct clk_core *core = data; 3123 int ret = 0; 3124 3125 if (val) 3126 ret = clk_prepare_enable(core->hw->clk); 3127 else 3128 clk_disable_unprepare(core->hw->clk); 3129 3130 return ret; 3131 } 3132 3133 static int clk_prepare_enable_get(void *data, u64 *val) 3134 { 3135 struct clk_core *core = data; 3136 3137 *val = core->enable_count && core->prepare_count; 3138 return 0; 3139 } 3140 3141 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3142 clk_prepare_enable_set, "%llu\n"); 3143 3144 #else 3145 #define clk_rate_set NULL 3146 #define clk_rate_mode 0444 3147 #endif 3148 3149 static int clk_rate_get(void *data, u64 *val) 3150 { 3151 struct clk_core *core = data; 3152 3153 clk_prepare_lock(); 3154 *val = clk_core_get_rate_recalc(core); 3155 clk_prepare_unlock(); 3156 3157 return 0; 3158 } 3159 3160 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3161 3162 static const struct { 3163 unsigned long flag; 3164 const char *name; 3165 } clk_flags[] = { 3166 #define ENTRY(f) { f, #f } 3167 ENTRY(CLK_SET_RATE_GATE), 3168 ENTRY(CLK_SET_PARENT_GATE), 3169 ENTRY(CLK_SET_RATE_PARENT), 3170 ENTRY(CLK_IGNORE_UNUSED), 3171 ENTRY(CLK_GET_RATE_NOCACHE), 3172 ENTRY(CLK_SET_RATE_NO_REPARENT), 3173 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3174 ENTRY(CLK_RECALC_NEW_RATES), 3175 ENTRY(CLK_SET_RATE_UNGATE), 3176 ENTRY(CLK_IS_CRITICAL), 3177 ENTRY(CLK_OPS_PARENT_ENABLE), 3178 ENTRY(CLK_DUTY_CYCLE_PARENT), 3179 #undef ENTRY 3180 }; 3181 3182 static int clk_flags_show(struct seq_file *s, void *data) 3183 { 3184 struct clk_core *core = s->private; 3185 unsigned long flags = core->flags; 3186 unsigned int i; 3187 3188 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3189 if (flags & clk_flags[i].flag) { 3190 seq_printf(s, "%s\n", clk_flags[i].name); 3191 flags &= ~clk_flags[i].flag; 3192 } 3193 } 3194 if (flags) { 3195 /* Unknown flags */ 3196 seq_printf(s, "0x%lx\n", flags); 3197 } 3198 3199 return 0; 3200 } 3201 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3202 3203 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3204 unsigned int i, char terminator) 3205 { 3206 struct clk_core *parent; 3207 3208 /* 3209 * Go through the following options to fetch a parent's name. 3210 * 3211 * 1. Fetch the registered parent clock and use its name 3212 * 2. Use the global (fallback) name if specified 3213 * 3. Use the local fw_name if provided 3214 * 4. Fetch parent clock's clock-output-name if DT index was set 3215 * 3216 * This may still fail in some cases, such as when the parent is 3217 * specified directly via a struct clk_hw pointer, but it isn't 3218 * registered (yet). 3219 */ 3220 parent = clk_core_get_parent_by_index(core, i); 3221 if (parent) 3222 seq_puts(s, parent->name); 3223 else if (core->parents[i].name) 3224 seq_puts(s, core->parents[i].name); 3225 else if (core->parents[i].fw_name) 3226 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3227 else if (core->parents[i].index >= 0) 3228 seq_puts(s, 3229 of_clk_get_parent_name(core->of_node, 3230 core->parents[i].index)); 3231 else 3232 seq_puts(s, "(missing)"); 3233 3234 seq_putc(s, terminator); 3235 } 3236 3237 static int possible_parents_show(struct seq_file *s, void *data) 3238 { 3239 struct clk_core *core = s->private; 3240 int i; 3241 3242 for (i = 0; i < core->num_parents - 1; i++) 3243 possible_parent_show(s, core, i, ' '); 3244 3245 possible_parent_show(s, core, i, '\n'); 3246 3247 return 0; 3248 } 3249 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3250 3251 static int current_parent_show(struct seq_file *s, void *data) 3252 { 3253 struct clk_core *core = s->private; 3254 3255 if (core->parent) 3256 seq_printf(s, "%s\n", core->parent->name); 3257 3258 return 0; 3259 } 3260 DEFINE_SHOW_ATTRIBUTE(current_parent); 3261 3262 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3263 static ssize_t current_parent_write(struct file *file, const char __user *ubuf, 3264 size_t count, loff_t *ppos) 3265 { 3266 struct seq_file *s = file->private_data; 3267 struct clk_core *core = s->private; 3268 struct clk_core *parent; 3269 u8 idx; 3270 int err; 3271 3272 err = kstrtou8_from_user(ubuf, count, 0, &idx); 3273 if (err < 0) 3274 return err; 3275 3276 parent = clk_core_get_parent_by_index(core, idx); 3277 if (!parent) 3278 return -ENOENT; 3279 3280 clk_prepare_lock(); 3281 err = clk_core_set_parent_nolock(core, parent); 3282 clk_prepare_unlock(); 3283 if (err) 3284 return err; 3285 3286 return count; 3287 } 3288 3289 static const struct file_operations current_parent_rw_fops = { 3290 .open = current_parent_open, 3291 .write = current_parent_write, 3292 .read = seq_read, 3293 .llseek = seq_lseek, 3294 .release = single_release, 3295 }; 3296 #endif 3297 3298 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3299 { 3300 struct clk_core *core = s->private; 3301 struct clk_duty *duty = &core->duty; 3302 3303 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3304 3305 return 0; 3306 } 3307 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3308 3309 static int clk_min_rate_show(struct seq_file *s, void *data) 3310 { 3311 struct clk_core *core = s->private; 3312 unsigned long min_rate, max_rate; 3313 3314 clk_prepare_lock(); 3315 clk_core_get_boundaries(core, &min_rate, &max_rate); 3316 clk_prepare_unlock(); 3317 seq_printf(s, "%lu\n", min_rate); 3318 3319 return 0; 3320 } 3321 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3322 3323 static int clk_max_rate_show(struct seq_file *s, void *data) 3324 { 3325 struct clk_core *core = s->private; 3326 unsigned long min_rate, max_rate; 3327 3328 clk_prepare_lock(); 3329 clk_core_get_boundaries(core, &min_rate, &max_rate); 3330 clk_prepare_unlock(); 3331 seq_printf(s, "%lu\n", max_rate); 3332 3333 return 0; 3334 } 3335 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3336 3337 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3338 { 3339 struct dentry *root; 3340 3341 if (!core || !pdentry) 3342 return; 3343 3344 root = debugfs_create_dir(core->name, pdentry); 3345 core->dentry = root; 3346 3347 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3348 &clk_rate_fops); 3349 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3350 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3351 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3352 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3353 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3354 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3355 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3356 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3357 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3358 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3359 &clk_duty_cycle_fops); 3360 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3361 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3362 &clk_prepare_enable_fops); 3363 3364 if (core->num_parents > 1) 3365 debugfs_create_file("clk_parent", 0644, root, core, 3366 ¤t_parent_rw_fops); 3367 else 3368 #endif 3369 if (core->num_parents > 0) 3370 debugfs_create_file("clk_parent", 0444, root, core, 3371 ¤t_parent_fops); 3372 3373 if (core->num_parents > 1) 3374 debugfs_create_file("clk_possible_parents", 0444, root, core, 3375 &possible_parents_fops); 3376 3377 if (core->ops->debug_init) 3378 core->ops->debug_init(core->hw, core->dentry); 3379 } 3380 3381 /** 3382 * clk_debug_register - add a clk node to the debugfs clk directory 3383 * @core: the clk being added to the debugfs clk directory 3384 * 3385 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3386 * initialized. Otherwise it bails out early since the debugfs clk directory 3387 * will be created lazily by clk_debug_init as part of a late_initcall. 3388 */ 3389 static void clk_debug_register(struct clk_core *core) 3390 { 3391 mutex_lock(&clk_debug_lock); 3392 hlist_add_head(&core->debug_node, &clk_debug_list); 3393 if (inited) 3394 clk_debug_create_one(core, rootdir); 3395 mutex_unlock(&clk_debug_lock); 3396 } 3397 3398 /** 3399 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3400 * @core: the clk being removed from the debugfs clk directory 3401 * 3402 * Dynamically removes a clk and all its child nodes from the 3403 * debugfs clk directory if clk->dentry points to debugfs created by 3404 * clk_debug_register in __clk_core_init. 3405 */ 3406 static void clk_debug_unregister(struct clk_core *core) 3407 { 3408 mutex_lock(&clk_debug_lock); 3409 hlist_del_init(&core->debug_node); 3410 debugfs_remove_recursive(core->dentry); 3411 core->dentry = NULL; 3412 mutex_unlock(&clk_debug_lock); 3413 } 3414 3415 /** 3416 * clk_debug_init - lazily populate the debugfs clk directory 3417 * 3418 * clks are often initialized very early during boot before memory can be 3419 * dynamically allocated and well before debugfs is setup. This function 3420 * populates the debugfs clk directory once at boot-time when we know that 3421 * debugfs is setup. It should only be called once at boot-time, all other clks 3422 * added dynamically will be done so with clk_debug_register. 3423 */ 3424 static int __init clk_debug_init(void) 3425 { 3426 struct clk_core *core; 3427 3428 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3429 pr_warn("\n"); 3430 pr_warn("********************************************************************\n"); 3431 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3432 pr_warn("** **\n"); 3433 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n"); 3434 pr_warn("** **\n"); 3435 pr_warn("** This means that this kernel is built to expose clk operations **\n"); 3436 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n"); 3437 pr_warn("** to userspace, which may compromise security on your system. **\n"); 3438 pr_warn("** **\n"); 3439 pr_warn("** If you see this message and you are not debugging the **\n"); 3440 pr_warn("** kernel, report this immediately to your vendor! **\n"); 3441 pr_warn("** **\n"); 3442 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3443 pr_warn("********************************************************************\n"); 3444 #endif 3445 3446 rootdir = debugfs_create_dir("clk", NULL); 3447 3448 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3449 &clk_summary_fops); 3450 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3451 &clk_dump_fops); 3452 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3453 &clk_summary_fops); 3454 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3455 &clk_dump_fops); 3456 3457 mutex_lock(&clk_debug_lock); 3458 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3459 clk_debug_create_one(core, rootdir); 3460 3461 inited = 1; 3462 mutex_unlock(&clk_debug_lock); 3463 3464 return 0; 3465 } 3466 late_initcall(clk_debug_init); 3467 #else 3468 static inline void clk_debug_register(struct clk_core *core) { } 3469 static inline void clk_debug_unregister(struct clk_core *core) 3470 { 3471 } 3472 #endif 3473 3474 static void clk_core_reparent_orphans_nolock(void) 3475 { 3476 struct clk_core *orphan; 3477 struct hlist_node *tmp2; 3478 3479 /* 3480 * walk the list of orphan clocks and reparent any that newly finds a 3481 * parent. 3482 */ 3483 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3484 struct clk_core *parent = __clk_init_parent(orphan); 3485 3486 /* 3487 * We need to use __clk_set_parent_before() and _after() to 3488 * to properly migrate any prepare/enable count of the orphan 3489 * clock. This is important for CLK_IS_CRITICAL clocks, which 3490 * are enabled during init but might not have a parent yet. 3491 */ 3492 if (parent) { 3493 /* update the clk tree topology */ 3494 __clk_set_parent_before(orphan, parent); 3495 __clk_set_parent_after(orphan, parent, NULL); 3496 __clk_recalc_accuracies(orphan); 3497 __clk_recalc_rates(orphan, 0); 3498 3499 /* 3500 * __clk_init_parent() will set the initial req_rate to 3501 * 0 if the clock doesn't have clk_ops::recalc_rate and 3502 * is an orphan when it's registered. 3503 * 3504 * 'req_rate' is used by clk_set_rate_range() and 3505 * clk_put() to trigger a clk_set_rate() call whenever 3506 * the boundaries are modified. Let's make sure 3507 * 'req_rate' is set to something non-zero so that 3508 * clk_set_rate_range() doesn't drop the frequency. 3509 */ 3510 orphan->req_rate = orphan->rate; 3511 } 3512 } 3513 } 3514 3515 /** 3516 * __clk_core_init - initialize the data structures in a struct clk_core 3517 * @core: clk_core being initialized 3518 * 3519 * Initializes the lists in struct clk_core, queries the hardware for the 3520 * parent and rate and sets them both. 3521 */ 3522 static int __clk_core_init(struct clk_core *core) 3523 { 3524 int ret; 3525 struct clk_core *parent; 3526 unsigned long rate; 3527 int phase; 3528 3529 clk_prepare_lock(); 3530 3531 /* 3532 * Set hw->core after grabbing the prepare_lock to synchronize with 3533 * callers of clk_core_fill_parent_index() where we treat hw->core 3534 * being NULL as the clk not being registered yet. This is crucial so 3535 * that clks aren't parented until their parent is fully registered. 3536 */ 3537 core->hw->core = core; 3538 3539 ret = clk_pm_runtime_get(core); 3540 if (ret) 3541 goto unlock; 3542 3543 /* check to see if a clock with this name is already registered */ 3544 if (clk_core_lookup(core->name)) { 3545 pr_debug("%s: clk %s already initialized\n", 3546 __func__, core->name); 3547 ret = -EEXIST; 3548 goto out; 3549 } 3550 3551 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3552 if (core->ops->set_rate && 3553 !((core->ops->round_rate || core->ops->determine_rate) && 3554 core->ops->recalc_rate)) { 3555 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3556 __func__, core->name); 3557 ret = -EINVAL; 3558 goto out; 3559 } 3560 3561 if (core->ops->set_parent && !core->ops->get_parent) { 3562 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3563 __func__, core->name); 3564 ret = -EINVAL; 3565 goto out; 3566 } 3567 3568 if (core->num_parents > 1 && !core->ops->get_parent) { 3569 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3570 __func__, core->name); 3571 ret = -EINVAL; 3572 goto out; 3573 } 3574 3575 if (core->ops->set_rate_and_parent && 3576 !(core->ops->set_parent && core->ops->set_rate)) { 3577 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3578 __func__, core->name); 3579 ret = -EINVAL; 3580 goto out; 3581 } 3582 3583 /* 3584 * optional platform-specific magic 3585 * 3586 * The .init callback is not used by any of the basic clock types, but 3587 * exists for weird hardware that must perform initialization magic for 3588 * CCF to get an accurate view of clock for any other callbacks. It may 3589 * also be used needs to perform dynamic allocations. Such allocation 3590 * must be freed in the terminate() callback. 3591 * This callback shall not be used to initialize the parameters state, 3592 * such as rate, parent, etc ... 3593 * 3594 * If it exist, this callback should called before any other callback of 3595 * the clock 3596 */ 3597 if (core->ops->init) { 3598 ret = core->ops->init(core->hw); 3599 if (ret) 3600 goto out; 3601 } 3602 3603 parent = core->parent = __clk_init_parent(core); 3604 3605 /* 3606 * Populate core->parent if parent has already been clk_core_init'd. If 3607 * parent has not yet been clk_core_init'd then place clk in the orphan 3608 * list. If clk doesn't have any parents then place it in the root 3609 * clk list. 3610 * 3611 * Every time a new clk is clk_init'd then we walk the list of orphan 3612 * clocks and re-parent any that are children of the clock currently 3613 * being clk_init'd. 3614 */ 3615 if (parent) { 3616 hlist_add_head(&core->child_node, &parent->children); 3617 core->orphan = parent->orphan; 3618 } else if (!core->num_parents) { 3619 hlist_add_head(&core->child_node, &clk_root_list); 3620 core->orphan = false; 3621 } else { 3622 hlist_add_head(&core->child_node, &clk_orphan_list); 3623 core->orphan = true; 3624 } 3625 3626 /* 3627 * Set clk's accuracy. The preferred method is to use 3628 * .recalc_accuracy. For simple clocks and lazy developers the default 3629 * fallback is to use the parent's accuracy. If a clock doesn't have a 3630 * parent (or is orphaned) then accuracy is set to zero (perfect 3631 * clock). 3632 */ 3633 if (core->ops->recalc_accuracy) 3634 core->accuracy = core->ops->recalc_accuracy(core->hw, 3635 clk_core_get_accuracy_no_lock(parent)); 3636 else if (parent) 3637 core->accuracy = parent->accuracy; 3638 else 3639 core->accuracy = 0; 3640 3641 /* 3642 * Set clk's phase by clk_core_get_phase() caching the phase. 3643 * Since a phase is by definition relative to its parent, just 3644 * query the current clock phase, or just assume it's in phase. 3645 */ 3646 phase = clk_core_get_phase(core); 3647 if (phase < 0) { 3648 ret = phase; 3649 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 3650 core->name); 3651 goto out; 3652 } 3653 3654 /* 3655 * Set clk's duty cycle. 3656 */ 3657 clk_core_update_duty_cycle_nolock(core); 3658 3659 /* 3660 * Set clk's rate. The preferred method is to use .recalc_rate. For 3661 * simple clocks and lazy developers the default fallback is to use the 3662 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3663 * then rate is set to zero. 3664 */ 3665 if (core->ops->recalc_rate) 3666 rate = core->ops->recalc_rate(core->hw, 3667 clk_core_get_rate_nolock(parent)); 3668 else if (parent) 3669 rate = parent->rate; 3670 else 3671 rate = 0; 3672 core->rate = core->req_rate = rate; 3673 3674 /* 3675 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3676 * don't get accidentally disabled when walking the orphan tree and 3677 * reparenting clocks 3678 */ 3679 if (core->flags & CLK_IS_CRITICAL) { 3680 ret = clk_core_prepare(core); 3681 if (ret) { 3682 pr_warn("%s: critical clk '%s' failed to prepare\n", 3683 __func__, core->name); 3684 goto out; 3685 } 3686 3687 ret = clk_core_enable_lock(core); 3688 if (ret) { 3689 pr_warn("%s: critical clk '%s' failed to enable\n", 3690 __func__, core->name); 3691 clk_core_unprepare(core); 3692 goto out; 3693 } 3694 } 3695 3696 clk_core_reparent_orphans_nolock(); 3697 3698 3699 kref_init(&core->ref); 3700 out: 3701 clk_pm_runtime_put(core); 3702 unlock: 3703 if (ret) { 3704 hlist_del_init(&core->child_node); 3705 core->hw->core = NULL; 3706 } 3707 3708 clk_prepare_unlock(); 3709 3710 if (!ret) 3711 clk_debug_register(core); 3712 3713 return ret; 3714 } 3715 3716 /** 3717 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3718 * @core: clk to add consumer to 3719 * @clk: consumer to link to a clk 3720 */ 3721 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3722 { 3723 clk_prepare_lock(); 3724 hlist_add_head(&clk->clks_node, &core->clks); 3725 clk_prepare_unlock(); 3726 } 3727 3728 /** 3729 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3730 * @clk: consumer to unlink 3731 */ 3732 static void clk_core_unlink_consumer(struct clk *clk) 3733 { 3734 lockdep_assert_held(&prepare_lock); 3735 hlist_del(&clk->clks_node); 3736 } 3737 3738 /** 3739 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3740 * @core: clk to allocate a consumer for 3741 * @dev_id: string describing device name 3742 * @con_id: connection ID string on device 3743 * 3744 * Returns: clk consumer left unlinked from the consumer list 3745 */ 3746 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3747 const char *con_id) 3748 { 3749 struct clk *clk; 3750 3751 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3752 if (!clk) 3753 return ERR_PTR(-ENOMEM); 3754 3755 clk->core = core; 3756 clk->dev_id = dev_id; 3757 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3758 clk->max_rate = ULONG_MAX; 3759 3760 return clk; 3761 } 3762 3763 /** 3764 * free_clk - Free a clk consumer 3765 * @clk: clk consumer to free 3766 * 3767 * Note, this assumes the clk has been unlinked from the clk_core consumer 3768 * list. 3769 */ 3770 static void free_clk(struct clk *clk) 3771 { 3772 kfree_const(clk->con_id); 3773 kfree(clk); 3774 } 3775 3776 /** 3777 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3778 * a clk_hw 3779 * @dev: clk consumer device 3780 * @hw: clk_hw associated with the clk being consumed 3781 * @dev_id: string describing device name 3782 * @con_id: connection ID string on device 3783 * 3784 * This is the main function used to create a clk pointer for use by clk 3785 * consumers. It connects a consumer to the clk_core and clk_hw structures 3786 * used by the framework and clk provider respectively. 3787 */ 3788 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3789 const char *dev_id, const char *con_id) 3790 { 3791 struct clk *clk; 3792 struct clk_core *core; 3793 3794 /* This is to allow this function to be chained to others */ 3795 if (IS_ERR_OR_NULL(hw)) 3796 return ERR_CAST(hw); 3797 3798 core = hw->core; 3799 clk = alloc_clk(core, dev_id, con_id); 3800 if (IS_ERR(clk)) 3801 return clk; 3802 clk->dev = dev; 3803 3804 if (!try_module_get(core->owner)) { 3805 free_clk(clk); 3806 return ERR_PTR(-ENOENT); 3807 } 3808 3809 kref_get(&core->ref); 3810 clk_core_link_consumer(core, clk); 3811 3812 return clk; 3813 } 3814 3815 /** 3816 * clk_hw_get_clk - get clk consumer given an clk_hw 3817 * @hw: clk_hw associated with the clk being consumed 3818 * @con_id: connection ID string on device 3819 * 3820 * Returns: new clk consumer 3821 * This is the function to be used by providers which need 3822 * to get a consumer clk and act on the clock element 3823 * Calls to this function must be balanced with calls clk_put() 3824 */ 3825 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id) 3826 { 3827 struct device *dev = hw->core->dev; 3828 const char *name = dev ? dev_name(dev) : NULL; 3829 3830 return clk_hw_create_clk(dev, hw, name, con_id); 3831 } 3832 EXPORT_SYMBOL(clk_hw_get_clk); 3833 3834 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3835 { 3836 const char *dst; 3837 3838 if (!src) { 3839 if (must_exist) 3840 return -EINVAL; 3841 return 0; 3842 } 3843 3844 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3845 if (!dst) 3846 return -ENOMEM; 3847 3848 return 0; 3849 } 3850 3851 static int clk_core_populate_parent_map(struct clk_core *core, 3852 const struct clk_init_data *init) 3853 { 3854 u8 num_parents = init->num_parents; 3855 const char * const *parent_names = init->parent_names; 3856 const struct clk_hw **parent_hws = init->parent_hws; 3857 const struct clk_parent_data *parent_data = init->parent_data; 3858 int i, ret = 0; 3859 struct clk_parent_map *parents, *parent; 3860 3861 if (!num_parents) 3862 return 0; 3863 3864 /* 3865 * Avoid unnecessary string look-ups of clk_core's possible parents by 3866 * having a cache of names/clk_hw pointers to clk_core pointers. 3867 */ 3868 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3869 core->parents = parents; 3870 if (!parents) 3871 return -ENOMEM; 3872 3873 /* Copy everything over because it might be __initdata */ 3874 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3875 parent->index = -1; 3876 if (parent_names) { 3877 /* throw a WARN if any entries are NULL */ 3878 WARN(!parent_names[i], 3879 "%s: invalid NULL in %s's .parent_names\n", 3880 __func__, core->name); 3881 ret = clk_cpy_name(&parent->name, parent_names[i], 3882 true); 3883 } else if (parent_data) { 3884 parent->hw = parent_data[i].hw; 3885 parent->index = parent_data[i].index; 3886 ret = clk_cpy_name(&parent->fw_name, 3887 parent_data[i].fw_name, false); 3888 if (!ret) 3889 ret = clk_cpy_name(&parent->name, 3890 parent_data[i].name, 3891 false); 3892 } else if (parent_hws) { 3893 parent->hw = parent_hws[i]; 3894 } else { 3895 ret = -EINVAL; 3896 WARN(1, "Must specify parents if num_parents > 0\n"); 3897 } 3898 3899 if (ret) { 3900 do { 3901 kfree_const(parents[i].name); 3902 kfree_const(parents[i].fw_name); 3903 } while (--i >= 0); 3904 kfree(parents); 3905 3906 return ret; 3907 } 3908 } 3909 3910 return 0; 3911 } 3912 3913 static void clk_core_free_parent_map(struct clk_core *core) 3914 { 3915 int i = core->num_parents; 3916 3917 if (!core->num_parents) 3918 return; 3919 3920 while (--i >= 0) { 3921 kfree_const(core->parents[i].name); 3922 kfree_const(core->parents[i].fw_name); 3923 } 3924 3925 kfree(core->parents); 3926 } 3927 3928 static struct clk * 3929 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3930 { 3931 int ret; 3932 struct clk_core *core; 3933 const struct clk_init_data *init = hw->init; 3934 3935 /* 3936 * The init data is not supposed to be used outside of registration path. 3937 * Set it to NULL so that provider drivers can't use it either and so that 3938 * we catch use of hw->init early on in the core. 3939 */ 3940 hw->init = NULL; 3941 3942 core = kzalloc(sizeof(*core), GFP_KERNEL); 3943 if (!core) { 3944 ret = -ENOMEM; 3945 goto fail_out; 3946 } 3947 3948 core->name = kstrdup_const(init->name, GFP_KERNEL); 3949 if (!core->name) { 3950 ret = -ENOMEM; 3951 goto fail_name; 3952 } 3953 3954 if (WARN_ON(!init->ops)) { 3955 ret = -EINVAL; 3956 goto fail_ops; 3957 } 3958 core->ops = init->ops; 3959 3960 if (dev && pm_runtime_enabled(dev)) 3961 core->rpm_enabled = true; 3962 core->dev = dev; 3963 core->of_node = np; 3964 if (dev && dev->driver) 3965 core->owner = dev->driver->owner; 3966 core->hw = hw; 3967 core->flags = init->flags; 3968 core->num_parents = init->num_parents; 3969 core->min_rate = 0; 3970 core->max_rate = ULONG_MAX; 3971 3972 ret = clk_core_populate_parent_map(core, init); 3973 if (ret) 3974 goto fail_parents; 3975 3976 INIT_HLIST_HEAD(&core->clks); 3977 3978 /* 3979 * Don't call clk_hw_create_clk() here because that would pin the 3980 * provider module to itself and prevent it from ever being removed. 3981 */ 3982 hw->clk = alloc_clk(core, NULL, NULL); 3983 if (IS_ERR(hw->clk)) { 3984 ret = PTR_ERR(hw->clk); 3985 goto fail_create_clk; 3986 } 3987 3988 clk_core_link_consumer(core, hw->clk); 3989 3990 ret = __clk_core_init(core); 3991 if (!ret) 3992 return hw->clk; 3993 3994 clk_prepare_lock(); 3995 clk_core_unlink_consumer(hw->clk); 3996 clk_prepare_unlock(); 3997 3998 free_clk(hw->clk); 3999 hw->clk = NULL; 4000 4001 fail_create_clk: 4002 clk_core_free_parent_map(core); 4003 fail_parents: 4004 fail_ops: 4005 kfree_const(core->name); 4006 fail_name: 4007 kfree(core); 4008 fail_out: 4009 return ERR_PTR(ret); 4010 } 4011 4012 /** 4013 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 4014 * @dev: Device to get device node of 4015 * 4016 * Return: device node pointer of @dev, or the device node pointer of 4017 * @dev->parent if dev doesn't have a device node, or NULL if neither 4018 * @dev or @dev->parent have a device node. 4019 */ 4020 static struct device_node *dev_or_parent_of_node(struct device *dev) 4021 { 4022 struct device_node *np; 4023 4024 if (!dev) 4025 return NULL; 4026 4027 np = dev_of_node(dev); 4028 if (!np) 4029 np = dev_of_node(dev->parent); 4030 4031 return np; 4032 } 4033 4034 /** 4035 * clk_register - allocate a new clock, register it and return an opaque cookie 4036 * @dev: device that is registering this clock 4037 * @hw: link to hardware-specific clock data 4038 * 4039 * clk_register is the *deprecated* interface for populating the clock tree with 4040 * new clock nodes. Use clk_hw_register() instead. 4041 * 4042 * Returns: a pointer to the newly allocated struct clk which 4043 * cannot be dereferenced by driver code but may be used in conjunction with the 4044 * rest of the clock API. In the event of an error clk_register will return an 4045 * error code; drivers must test for an error code after calling clk_register. 4046 */ 4047 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 4048 { 4049 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 4050 } 4051 EXPORT_SYMBOL_GPL(clk_register); 4052 4053 /** 4054 * clk_hw_register - register a clk_hw and return an error code 4055 * @dev: device that is registering this clock 4056 * @hw: link to hardware-specific clock data 4057 * 4058 * clk_hw_register is the primary interface for populating the clock tree with 4059 * new clock nodes. It returns an integer equal to zero indicating success or 4060 * less than zero indicating failure. Drivers must test for an error code after 4061 * calling clk_hw_register(). 4062 */ 4063 int clk_hw_register(struct device *dev, struct clk_hw *hw) 4064 { 4065 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 4066 hw)); 4067 } 4068 EXPORT_SYMBOL_GPL(clk_hw_register); 4069 4070 /* 4071 * of_clk_hw_register - register a clk_hw and return an error code 4072 * @node: device_node of device that is registering this clock 4073 * @hw: link to hardware-specific clock data 4074 * 4075 * of_clk_hw_register() is the primary interface for populating the clock tree 4076 * with new clock nodes when a struct device is not available, but a struct 4077 * device_node is. It returns an integer equal to zero indicating success or 4078 * less than zero indicating failure. Drivers must test for an error code after 4079 * calling of_clk_hw_register(). 4080 */ 4081 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 4082 { 4083 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 4084 } 4085 EXPORT_SYMBOL_GPL(of_clk_hw_register); 4086 4087 /* Free memory allocated for a clock. */ 4088 static void __clk_release(struct kref *ref) 4089 { 4090 struct clk_core *core = container_of(ref, struct clk_core, ref); 4091 4092 lockdep_assert_held(&prepare_lock); 4093 4094 clk_core_free_parent_map(core); 4095 kfree_const(core->name); 4096 kfree(core); 4097 } 4098 4099 /* 4100 * Empty clk_ops for unregistered clocks. These are used temporarily 4101 * after clk_unregister() was called on a clock and until last clock 4102 * consumer calls clk_put() and the struct clk object is freed. 4103 */ 4104 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 4105 { 4106 return -ENXIO; 4107 } 4108 4109 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 4110 { 4111 WARN_ON_ONCE(1); 4112 } 4113 4114 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 4115 unsigned long parent_rate) 4116 { 4117 return -ENXIO; 4118 } 4119 4120 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 4121 { 4122 return -ENXIO; 4123 } 4124 4125 static const struct clk_ops clk_nodrv_ops = { 4126 .enable = clk_nodrv_prepare_enable, 4127 .disable = clk_nodrv_disable_unprepare, 4128 .prepare = clk_nodrv_prepare_enable, 4129 .unprepare = clk_nodrv_disable_unprepare, 4130 .set_rate = clk_nodrv_set_rate, 4131 .set_parent = clk_nodrv_set_parent, 4132 }; 4133 4134 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4135 const struct clk_core *target) 4136 { 4137 int i; 4138 struct clk_core *child; 4139 4140 for (i = 0; i < root->num_parents; i++) 4141 if (root->parents[i].core == target) 4142 root->parents[i].core = NULL; 4143 4144 hlist_for_each_entry(child, &root->children, child_node) 4145 clk_core_evict_parent_cache_subtree(child, target); 4146 } 4147 4148 /* Remove this clk from all parent caches */ 4149 static void clk_core_evict_parent_cache(struct clk_core *core) 4150 { 4151 const struct hlist_head **lists; 4152 struct clk_core *root; 4153 4154 lockdep_assert_held(&prepare_lock); 4155 4156 for (lists = all_lists; *lists; lists++) 4157 hlist_for_each_entry(root, *lists, child_node) 4158 clk_core_evict_parent_cache_subtree(root, core); 4159 4160 } 4161 4162 /** 4163 * clk_unregister - unregister a currently registered clock 4164 * @clk: clock to unregister 4165 */ 4166 void clk_unregister(struct clk *clk) 4167 { 4168 unsigned long flags; 4169 const struct clk_ops *ops; 4170 4171 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4172 return; 4173 4174 clk_debug_unregister(clk->core); 4175 4176 clk_prepare_lock(); 4177 4178 ops = clk->core->ops; 4179 if (ops == &clk_nodrv_ops) { 4180 pr_err("%s: unregistered clock: %s\n", __func__, 4181 clk->core->name); 4182 goto unlock; 4183 } 4184 /* 4185 * Assign empty clock ops for consumers that might still hold 4186 * a reference to this clock. 4187 */ 4188 flags = clk_enable_lock(); 4189 clk->core->ops = &clk_nodrv_ops; 4190 clk_enable_unlock(flags); 4191 4192 if (ops->terminate) 4193 ops->terminate(clk->core->hw); 4194 4195 if (!hlist_empty(&clk->core->children)) { 4196 struct clk_core *child; 4197 struct hlist_node *t; 4198 4199 /* Reparent all children to the orphan list. */ 4200 hlist_for_each_entry_safe(child, t, &clk->core->children, 4201 child_node) 4202 clk_core_set_parent_nolock(child, NULL); 4203 } 4204 4205 clk_core_evict_parent_cache(clk->core); 4206 4207 hlist_del_init(&clk->core->child_node); 4208 4209 if (clk->core->prepare_count) 4210 pr_warn("%s: unregistering prepared clock: %s\n", 4211 __func__, clk->core->name); 4212 4213 if (clk->core->protect_count) 4214 pr_warn("%s: unregistering protected clock: %s\n", 4215 __func__, clk->core->name); 4216 4217 kref_put(&clk->core->ref, __clk_release); 4218 free_clk(clk); 4219 unlock: 4220 clk_prepare_unlock(); 4221 } 4222 EXPORT_SYMBOL_GPL(clk_unregister); 4223 4224 /** 4225 * clk_hw_unregister - unregister a currently registered clk_hw 4226 * @hw: hardware-specific clock data to unregister 4227 */ 4228 void clk_hw_unregister(struct clk_hw *hw) 4229 { 4230 clk_unregister(hw->clk); 4231 } 4232 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4233 4234 static void devm_clk_unregister_cb(struct device *dev, void *res) 4235 { 4236 clk_unregister(*(struct clk **)res); 4237 } 4238 4239 static void devm_clk_hw_unregister_cb(struct device *dev, void *res) 4240 { 4241 clk_hw_unregister(*(struct clk_hw **)res); 4242 } 4243 4244 /** 4245 * devm_clk_register - resource managed clk_register() 4246 * @dev: device that is registering this clock 4247 * @hw: link to hardware-specific clock data 4248 * 4249 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4250 * 4251 * Clocks returned from this function are automatically clk_unregister()ed on 4252 * driver detach. See clk_register() for more information. 4253 */ 4254 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4255 { 4256 struct clk *clk; 4257 struct clk **clkp; 4258 4259 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL); 4260 if (!clkp) 4261 return ERR_PTR(-ENOMEM); 4262 4263 clk = clk_register(dev, hw); 4264 if (!IS_ERR(clk)) { 4265 *clkp = clk; 4266 devres_add(dev, clkp); 4267 } else { 4268 devres_free(clkp); 4269 } 4270 4271 return clk; 4272 } 4273 EXPORT_SYMBOL_GPL(devm_clk_register); 4274 4275 /** 4276 * devm_clk_hw_register - resource managed clk_hw_register() 4277 * @dev: device that is registering this clock 4278 * @hw: link to hardware-specific clock data 4279 * 4280 * Managed clk_hw_register(). Clocks registered by this function are 4281 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4282 * for more information. 4283 */ 4284 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4285 { 4286 struct clk_hw **hwp; 4287 int ret; 4288 4289 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL); 4290 if (!hwp) 4291 return -ENOMEM; 4292 4293 ret = clk_hw_register(dev, hw); 4294 if (!ret) { 4295 *hwp = hw; 4296 devres_add(dev, hwp); 4297 } else { 4298 devres_free(hwp); 4299 } 4300 4301 return ret; 4302 } 4303 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4304 4305 static int devm_clk_match(struct device *dev, void *res, void *data) 4306 { 4307 struct clk *c = res; 4308 if (WARN_ON(!c)) 4309 return 0; 4310 return c == data; 4311 } 4312 4313 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 4314 { 4315 struct clk_hw *hw = res; 4316 4317 if (WARN_ON(!hw)) 4318 return 0; 4319 return hw == data; 4320 } 4321 4322 /** 4323 * devm_clk_unregister - resource managed clk_unregister() 4324 * @dev: device that is unregistering the clock data 4325 * @clk: clock to unregister 4326 * 4327 * Deallocate a clock allocated with devm_clk_register(). Normally 4328 * this function will not need to be called and the resource management 4329 * code will ensure that the resource is freed. 4330 */ 4331 void devm_clk_unregister(struct device *dev, struct clk *clk) 4332 { 4333 WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk)); 4334 } 4335 EXPORT_SYMBOL_GPL(devm_clk_unregister); 4336 4337 /** 4338 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 4339 * @dev: device that is unregistering the hardware-specific clock data 4340 * @hw: link to hardware-specific clock data 4341 * 4342 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 4343 * this function will not need to be called and the resource management 4344 * code will ensure that the resource is freed. 4345 */ 4346 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 4347 { 4348 WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match, 4349 hw)); 4350 } 4351 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 4352 4353 static void devm_clk_release(struct device *dev, void *res) 4354 { 4355 clk_put(*(struct clk **)res); 4356 } 4357 4358 /** 4359 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk() 4360 * @dev: device that is registering this clock 4361 * @hw: clk_hw associated with the clk being consumed 4362 * @con_id: connection ID string on device 4363 * 4364 * Managed clk_hw_get_clk(). Clocks got with this function are 4365 * automatically clk_put() on driver detach. See clk_put() 4366 * for more information. 4367 */ 4368 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw, 4369 const char *con_id) 4370 { 4371 struct clk *clk; 4372 struct clk **clkp; 4373 4374 /* This should not happen because it would mean we have drivers 4375 * passing around clk_hw pointers instead of having the caller use 4376 * proper clk_get() style APIs 4377 */ 4378 WARN_ON_ONCE(dev != hw->core->dev); 4379 4380 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4381 if (!clkp) 4382 return ERR_PTR(-ENOMEM); 4383 4384 clk = clk_hw_get_clk(hw, con_id); 4385 if (!IS_ERR(clk)) { 4386 *clkp = clk; 4387 devres_add(dev, clkp); 4388 } else { 4389 devres_free(clkp); 4390 } 4391 4392 return clk; 4393 } 4394 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk); 4395 4396 /* 4397 * clkdev helpers 4398 */ 4399 4400 void __clk_put(struct clk *clk) 4401 { 4402 struct module *owner; 4403 4404 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4405 return; 4406 4407 clk_prepare_lock(); 4408 4409 /* 4410 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4411 * given user should be balanced with calls to clk_rate_exclusive_put() 4412 * and by that same consumer 4413 */ 4414 if (WARN_ON(clk->exclusive_count)) { 4415 /* We voiced our concern, let's sanitize the situation */ 4416 clk->core->protect_count -= (clk->exclusive_count - 1); 4417 clk_core_rate_unprotect(clk->core); 4418 clk->exclusive_count = 0; 4419 } 4420 4421 hlist_del(&clk->clks_node); 4422 clk_set_rate_range_nolock(clk, 0, ULONG_MAX); 4423 4424 owner = clk->core->owner; 4425 kref_put(&clk->core->ref, __clk_release); 4426 4427 clk_prepare_unlock(); 4428 4429 module_put(owner); 4430 4431 free_clk(clk); 4432 } 4433 4434 /*** clk rate change notifiers ***/ 4435 4436 /** 4437 * clk_notifier_register - add a clk rate change notifier 4438 * @clk: struct clk * to watch 4439 * @nb: struct notifier_block * with callback info 4440 * 4441 * Request notification when clk's rate changes. This uses an SRCU 4442 * notifier because we want it to block and notifier unregistrations are 4443 * uncommon. The callbacks associated with the notifier must not 4444 * re-enter into the clk framework by calling any top-level clk APIs; 4445 * this will cause a nested prepare_lock mutex. 4446 * 4447 * In all notification cases (pre, post and abort rate change) the original 4448 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4449 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4450 * 4451 * clk_notifier_register() must be called from non-atomic context. 4452 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4453 * allocation failure; otherwise, passes along the return value of 4454 * srcu_notifier_chain_register(). 4455 */ 4456 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4457 { 4458 struct clk_notifier *cn; 4459 int ret = -ENOMEM; 4460 4461 if (!clk || !nb) 4462 return -EINVAL; 4463 4464 clk_prepare_lock(); 4465 4466 /* search the list of notifiers for this clk */ 4467 list_for_each_entry(cn, &clk_notifier_list, node) 4468 if (cn->clk == clk) 4469 goto found; 4470 4471 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4472 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4473 if (!cn) 4474 goto out; 4475 4476 cn->clk = clk; 4477 srcu_init_notifier_head(&cn->notifier_head); 4478 4479 list_add(&cn->node, &clk_notifier_list); 4480 4481 found: 4482 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4483 4484 clk->core->notifier_count++; 4485 4486 out: 4487 clk_prepare_unlock(); 4488 4489 return ret; 4490 } 4491 EXPORT_SYMBOL_GPL(clk_notifier_register); 4492 4493 /** 4494 * clk_notifier_unregister - remove a clk rate change notifier 4495 * @clk: struct clk * 4496 * @nb: struct notifier_block * with callback info 4497 * 4498 * Request no further notification for changes to 'clk' and frees memory 4499 * allocated in clk_notifier_register. 4500 * 4501 * Returns -EINVAL if called with null arguments; otherwise, passes 4502 * along the return value of srcu_notifier_chain_unregister(). 4503 */ 4504 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4505 { 4506 struct clk_notifier *cn; 4507 int ret = -ENOENT; 4508 4509 if (!clk || !nb) 4510 return -EINVAL; 4511 4512 clk_prepare_lock(); 4513 4514 list_for_each_entry(cn, &clk_notifier_list, node) { 4515 if (cn->clk == clk) { 4516 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4517 4518 clk->core->notifier_count--; 4519 4520 /* XXX the notifier code should handle this better */ 4521 if (!cn->notifier_head.head) { 4522 srcu_cleanup_notifier_head(&cn->notifier_head); 4523 list_del(&cn->node); 4524 kfree(cn); 4525 } 4526 break; 4527 } 4528 } 4529 4530 clk_prepare_unlock(); 4531 4532 return ret; 4533 } 4534 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4535 4536 struct clk_notifier_devres { 4537 struct clk *clk; 4538 struct notifier_block *nb; 4539 }; 4540 4541 static void devm_clk_notifier_release(struct device *dev, void *res) 4542 { 4543 struct clk_notifier_devres *devres = res; 4544 4545 clk_notifier_unregister(devres->clk, devres->nb); 4546 } 4547 4548 int devm_clk_notifier_register(struct device *dev, struct clk *clk, 4549 struct notifier_block *nb) 4550 { 4551 struct clk_notifier_devres *devres; 4552 int ret; 4553 4554 devres = devres_alloc(devm_clk_notifier_release, 4555 sizeof(*devres), GFP_KERNEL); 4556 4557 if (!devres) 4558 return -ENOMEM; 4559 4560 ret = clk_notifier_register(clk, nb); 4561 if (!ret) { 4562 devres->clk = clk; 4563 devres->nb = nb; 4564 } else { 4565 devres_free(devres); 4566 } 4567 4568 return ret; 4569 } 4570 EXPORT_SYMBOL_GPL(devm_clk_notifier_register); 4571 4572 #ifdef CONFIG_OF 4573 static void clk_core_reparent_orphans(void) 4574 { 4575 clk_prepare_lock(); 4576 clk_core_reparent_orphans_nolock(); 4577 clk_prepare_unlock(); 4578 } 4579 4580 /** 4581 * struct of_clk_provider - Clock provider registration structure 4582 * @link: Entry in global list of clock providers 4583 * @node: Pointer to device tree node of clock provider 4584 * @get: Get clock callback. Returns NULL or a struct clk for the 4585 * given clock specifier 4586 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4587 * struct clk_hw for the given clock specifier 4588 * @data: context pointer to be passed into @get callback 4589 */ 4590 struct of_clk_provider { 4591 struct list_head link; 4592 4593 struct device_node *node; 4594 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4595 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4596 void *data; 4597 }; 4598 4599 extern struct of_device_id __clk_of_table; 4600 static const struct of_device_id __clk_of_table_sentinel 4601 __used __section("__clk_of_table_end"); 4602 4603 static LIST_HEAD(of_clk_providers); 4604 static DEFINE_MUTEX(of_clk_mutex); 4605 4606 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4607 void *data) 4608 { 4609 return data; 4610 } 4611 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4612 4613 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4614 { 4615 return data; 4616 } 4617 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4618 4619 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4620 { 4621 struct clk_onecell_data *clk_data = data; 4622 unsigned int idx = clkspec->args[0]; 4623 4624 if (idx >= clk_data->clk_num) { 4625 pr_err("%s: invalid clock index %u\n", __func__, idx); 4626 return ERR_PTR(-EINVAL); 4627 } 4628 4629 return clk_data->clks[idx]; 4630 } 4631 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4632 4633 struct clk_hw * 4634 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4635 { 4636 struct clk_hw_onecell_data *hw_data = data; 4637 unsigned int idx = clkspec->args[0]; 4638 4639 if (idx >= hw_data->num) { 4640 pr_err("%s: invalid index %u\n", __func__, idx); 4641 return ERR_PTR(-EINVAL); 4642 } 4643 4644 return hw_data->hws[idx]; 4645 } 4646 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4647 4648 /** 4649 * of_clk_add_provider() - Register a clock provider for a node 4650 * @np: Device node pointer associated with clock provider 4651 * @clk_src_get: callback for decoding clock 4652 * @data: context pointer for @clk_src_get callback. 4653 * 4654 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4655 */ 4656 int of_clk_add_provider(struct device_node *np, 4657 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4658 void *data), 4659 void *data) 4660 { 4661 struct of_clk_provider *cp; 4662 int ret; 4663 4664 if (!np) 4665 return 0; 4666 4667 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4668 if (!cp) 4669 return -ENOMEM; 4670 4671 cp->node = of_node_get(np); 4672 cp->data = data; 4673 cp->get = clk_src_get; 4674 4675 mutex_lock(&of_clk_mutex); 4676 list_add(&cp->link, &of_clk_providers); 4677 mutex_unlock(&of_clk_mutex); 4678 pr_debug("Added clock from %pOF\n", np); 4679 4680 clk_core_reparent_orphans(); 4681 4682 ret = of_clk_set_defaults(np, true); 4683 if (ret < 0) 4684 of_clk_del_provider(np); 4685 4686 fwnode_dev_initialized(&np->fwnode, true); 4687 4688 return ret; 4689 } 4690 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4691 4692 /** 4693 * of_clk_add_hw_provider() - Register a clock provider for a node 4694 * @np: Device node pointer associated with clock provider 4695 * @get: callback for decoding clk_hw 4696 * @data: context pointer for @get callback. 4697 */ 4698 int of_clk_add_hw_provider(struct device_node *np, 4699 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4700 void *data), 4701 void *data) 4702 { 4703 struct of_clk_provider *cp; 4704 int ret; 4705 4706 if (!np) 4707 return 0; 4708 4709 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4710 if (!cp) 4711 return -ENOMEM; 4712 4713 cp->node = of_node_get(np); 4714 cp->data = data; 4715 cp->get_hw = get; 4716 4717 mutex_lock(&of_clk_mutex); 4718 list_add(&cp->link, &of_clk_providers); 4719 mutex_unlock(&of_clk_mutex); 4720 pr_debug("Added clk_hw provider from %pOF\n", np); 4721 4722 clk_core_reparent_orphans(); 4723 4724 ret = of_clk_set_defaults(np, true); 4725 if (ret < 0) 4726 of_clk_del_provider(np); 4727 4728 fwnode_dev_initialized(&np->fwnode, true); 4729 4730 return ret; 4731 } 4732 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4733 4734 static void devm_of_clk_release_provider(struct device *dev, void *res) 4735 { 4736 of_clk_del_provider(*(struct device_node **)res); 4737 } 4738 4739 /* 4740 * We allow a child device to use its parent device as the clock provider node 4741 * for cases like MFD sub-devices where the child device driver wants to use 4742 * devm_*() APIs but not list the device in DT as a sub-node. 4743 */ 4744 static struct device_node *get_clk_provider_node(struct device *dev) 4745 { 4746 struct device_node *np, *parent_np; 4747 4748 np = dev->of_node; 4749 parent_np = dev->parent ? dev->parent->of_node : NULL; 4750 4751 if (!of_find_property(np, "#clock-cells", NULL)) 4752 if (of_find_property(parent_np, "#clock-cells", NULL)) 4753 np = parent_np; 4754 4755 return np; 4756 } 4757 4758 /** 4759 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4760 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4761 * @get: callback for decoding clk_hw 4762 * @data: context pointer for @get callback 4763 * 4764 * Registers clock provider for given device's node. If the device has no DT 4765 * node or if the device node lacks of clock provider information (#clock-cells) 4766 * then the parent device's node is scanned for this information. If parent node 4767 * has the #clock-cells then it is used in registration. Provider is 4768 * automatically released at device exit. 4769 * 4770 * Return: 0 on success or an errno on failure. 4771 */ 4772 int devm_of_clk_add_hw_provider(struct device *dev, 4773 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4774 void *data), 4775 void *data) 4776 { 4777 struct device_node **ptr, *np; 4778 int ret; 4779 4780 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4781 GFP_KERNEL); 4782 if (!ptr) 4783 return -ENOMEM; 4784 4785 np = get_clk_provider_node(dev); 4786 ret = of_clk_add_hw_provider(np, get, data); 4787 if (!ret) { 4788 *ptr = np; 4789 devres_add(dev, ptr); 4790 } else { 4791 devres_free(ptr); 4792 } 4793 4794 return ret; 4795 } 4796 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4797 4798 /** 4799 * of_clk_del_provider() - Remove a previously registered clock provider 4800 * @np: Device node pointer associated with clock provider 4801 */ 4802 void of_clk_del_provider(struct device_node *np) 4803 { 4804 struct of_clk_provider *cp; 4805 4806 if (!np) 4807 return; 4808 4809 mutex_lock(&of_clk_mutex); 4810 list_for_each_entry(cp, &of_clk_providers, link) { 4811 if (cp->node == np) { 4812 list_del(&cp->link); 4813 fwnode_dev_initialized(&np->fwnode, false); 4814 of_node_put(cp->node); 4815 kfree(cp); 4816 break; 4817 } 4818 } 4819 mutex_unlock(&of_clk_mutex); 4820 } 4821 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4822 4823 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4824 { 4825 struct device_node **np = res; 4826 4827 if (WARN_ON(!np || !*np)) 4828 return 0; 4829 4830 return *np == data; 4831 } 4832 4833 /** 4834 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4835 * @dev: Device to whose lifetime the clock provider was bound 4836 */ 4837 void devm_of_clk_del_provider(struct device *dev) 4838 { 4839 int ret; 4840 struct device_node *np = get_clk_provider_node(dev); 4841 4842 ret = devres_release(dev, devm_of_clk_release_provider, 4843 devm_clk_provider_match, np); 4844 4845 WARN_ON(ret); 4846 } 4847 EXPORT_SYMBOL(devm_of_clk_del_provider); 4848 4849 /** 4850 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4851 * @np: device node to parse clock specifier from 4852 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4853 * @name: clock name to find and parse. If name is NULL, the index is used 4854 * @out_args: Result of parsing the clock specifier 4855 * 4856 * Parses a device node's "clocks" and "clock-names" properties to find the 4857 * phandle and cells for the index or name that is desired. The resulting clock 4858 * specifier is placed into @out_args, or an errno is returned when there's a 4859 * parsing error. The @index argument is ignored if @name is non-NULL. 4860 * 4861 * Example: 4862 * 4863 * phandle1: clock-controller@1 { 4864 * #clock-cells = <2>; 4865 * } 4866 * 4867 * phandle2: clock-controller@2 { 4868 * #clock-cells = <1>; 4869 * } 4870 * 4871 * clock-consumer@3 { 4872 * clocks = <&phandle1 1 2 &phandle2 3>; 4873 * clock-names = "name1", "name2"; 4874 * } 4875 * 4876 * To get a device_node for `clock-controller@2' node you may call this 4877 * function a few different ways: 4878 * 4879 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4880 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4881 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4882 * 4883 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4884 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4885 * the "clock-names" property of @np. 4886 */ 4887 static int of_parse_clkspec(const struct device_node *np, int index, 4888 const char *name, struct of_phandle_args *out_args) 4889 { 4890 int ret = -ENOENT; 4891 4892 /* Walk up the tree of devices looking for a clock property that matches */ 4893 while (np) { 4894 /* 4895 * For named clocks, first look up the name in the 4896 * "clock-names" property. If it cannot be found, then index 4897 * will be an error code and of_parse_phandle_with_args() will 4898 * return -EINVAL. 4899 */ 4900 if (name) 4901 index = of_property_match_string(np, "clock-names", name); 4902 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4903 index, out_args); 4904 if (!ret) 4905 break; 4906 if (name && index >= 0) 4907 break; 4908 4909 /* 4910 * No matching clock found on this node. If the parent node 4911 * has a "clock-ranges" property, then we can try one of its 4912 * clocks. 4913 */ 4914 np = np->parent; 4915 if (np && !of_get_property(np, "clock-ranges", NULL)) 4916 break; 4917 index = 0; 4918 } 4919 4920 return ret; 4921 } 4922 4923 static struct clk_hw * 4924 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4925 struct of_phandle_args *clkspec) 4926 { 4927 struct clk *clk; 4928 4929 if (provider->get_hw) 4930 return provider->get_hw(clkspec, provider->data); 4931 4932 clk = provider->get(clkspec, provider->data); 4933 if (IS_ERR(clk)) 4934 return ERR_CAST(clk); 4935 return __clk_get_hw(clk); 4936 } 4937 4938 static struct clk_hw * 4939 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4940 { 4941 struct of_clk_provider *provider; 4942 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4943 4944 if (!clkspec) 4945 return ERR_PTR(-EINVAL); 4946 4947 mutex_lock(&of_clk_mutex); 4948 list_for_each_entry(provider, &of_clk_providers, link) { 4949 if (provider->node == clkspec->np) { 4950 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4951 if (!IS_ERR(hw)) 4952 break; 4953 } 4954 } 4955 mutex_unlock(&of_clk_mutex); 4956 4957 return hw; 4958 } 4959 4960 /** 4961 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4962 * @clkspec: pointer to a clock specifier data structure 4963 * 4964 * This function looks up a struct clk from the registered list of clock 4965 * providers, an input is a clock specifier data structure as returned 4966 * from the of_parse_phandle_with_args() function call. 4967 */ 4968 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4969 { 4970 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4971 4972 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4973 } 4974 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4975 4976 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4977 const char *con_id) 4978 { 4979 int ret; 4980 struct clk_hw *hw; 4981 struct of_phandle_args clkspec; 4982 4983 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4984 if (ret) 4985 return ERR_PTR(ret); 4986 4987 hw = of_clk_get_hw_from_clkspec(&clkspec); 4988 of_node_put(clkspec.np); 4989 4990 return hw; 4991 } 4992 4993 static struct clk *__of_clk_get(struct device_node *np, 4994 int index, const char *dev_id, 4995 const char *con_id) 4996 { 4997 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4998 4999 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 5000 } 5001 5002 struct clk *of_clk_get(struct device_node *np, int index) 5003 { 5004 return __of_clk_get(np, index, np->full_name, NULL); 5005 } 5006 EXPORT_SYMBOL(of_clk_get); 5007 5008 /** 5009 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 5010 * @np: pointer to clock consumer node 5011 * @name: name of consumer's clock input, or NULL for the first clock reference 5012 * 5013 * This function parses the clocks and clock-names properties, 5014 * and uses them to look up the struct clk from the registered list of clock 5015 * providers. 5016 */ 5017 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 5018 { 5019 if (!np) 5020 return ERR_PTR(-ENOENT); 5021 5022 return __of_clk_get(np, 0, np->full_name, name); 5023 } 5024 EXPORT_SYMBOL(of_clk_get_by_name); 5025 5026 /** 5027 * of_clk_get_parent_count() - Count the number of clocks a device node has 5028 * @np: device node to count 5029 * 5030 * Returns: The number of clocks that are possible parents of this node 5031 */ 5032 unsigned int of_clk_get_parent_count(const struct device_node *np) 5033 { 5034 int count; 5035 5036 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 5037 if (count < 0) 5038 return 0; 5039 5040 return count; 5041 } 5042 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 5043 5044 const char *of_clk_get_parent_name(const struct device_node *np, int index) 5045 { 5046 struct of_phandle_args clkspec; 5047 struct property *prop; 5048 const char *clk_name; 5049 const __be32 *vp; 5050 u32 pv; 5051 int rc; 5052 int count; 5053 struct clk *clk; 5054 5055 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 5056 &clkspec); 5057 if (rc) 5058 return NULL; 5059 5060 index = clkspec.args_count ? clkspec.args[0] : 0; 5061 count = 0; 5062 5063 /* if there is an indices property, use it to transfer the index 5064 * specified into an array offset for the clock-output-names property. 5065 */ 5066 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 5067 if (index == pv) { 5068 index = count; 5069 break; 5070 } 5071 count++; 5072 } 5073 /* We went off the end of 'clock-indices' without finding it */ 5074 if (prop && !vp) 5075 return NULL; 5076 5077 if (of_property_read_string_index(clkspec.np, "clock-output-names", 5078 index, 5079 &clk_name) < 0) { 5080 /* 5081 * Best effort to get the name if the clock has been 5082 * registered with the framework. If the clock isn't 5083 * registered, we return the node name as the name of 5084 * the clock as long as #clock-cells = 0. 5085 */ 5086 clk = of_clk_get_from_provider(&clkspec); 5087 if (IS_ERR(clk)) { 5088 if (clkspec.args_count == 0) 5089 clk_name = clkspec.np->name; 5090 else 5091 clk_name = NULL; 5092 } else { 5093 clk_name = __clk_get_name(clk); 5094 clk_put(clk); 5095 } 5096 } 5097 5098 5099 of_node_put(clkspec.np); 5100 return clk_name; 5101 } 5102 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 5103 5104 /** 5105 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 5106 * number of parents 5107 * @np: Device node pointer associated with clock provider 5108 * @parents: pointer to char array that hold the parents' names 5109 * @size: size of the @parents array 5110 * 5111 * Return: number of parents for the clock node. 5112 */ 5113 int of_clk_parent_fill(struct device_node *np, const char **parents, 5114 unsigned int size) 5115 { 5116 unsigned int i = 0; 5117 5118 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 5119 i++; 5120 5121 return i; 5122 } 5123 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 5124 5125 struct clock_provider { 5126 void (*clk_init_cb)(struct device_node *); 5127 struct device_node *np; 5128 struct list_head node; 5129 }; 5130 5131 /* 5132 * This function looks for a parent clock. If there is one, then it 5133 * checks that the provider for this parent clock was initialized, in 5134 * this case the parent clock will be ready. 5135 */ 5136 static int parent_ready(struct device_node *np) 5137 { 5138 int i = 0; 5139 5140 while (true) { 5141 struct clk *clk = of_clk_get(np, i); 5142 5143 /* this parent is ready we can check the next one */ 5144 if (!IS_ERR(clk)) { 5145 clk_put(clk); 5146 i++; 5147 continue; 5148 } 5149 5150 /* at least one parent is not ready, we exit now */ 5151 if (PTR_ERR(clk) == -EPROBE_DEFER) 5152 return 0; 5153 5154 /* 5155 * Here we make assumption that the device tree is 5156 * written correctly. So an error means that there is 5157 * no more parent. As we didn't exit yet, then the 5158 * previous parent are ready. If there is no clock 5159 * parent, no need to wait for them, then we can 5160 * consider their absence as being ready 5161 */ 5162 return 1; 5163 } 5164 } 5165 5166 /** 5167 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5168 * @np: Device node pointer associated with clock provider 5169 * @index: clock index 5170 * @flags: pointer to top-level framework flags 5171 * 5172 * Detects if the clock-critical property exists and, if so, sets the 5173 * corresponding CLK_IS_CRITICAL flag. 5174 * 5175 * Do not use this function. It exists only for legacy Device Tree 5176 * bindings, such as the one-clock-per-node style that are outdated. 5177 * Those bindings typically put all clock data into .dts and the Linux 5178 * driver has no clock data, thus making it impossible to set this flag 5179 * correctly from the driver. Only those drivers may call 5180 * of_clk_detect_critical from their setup functions. 5181 * 5182 * Return: error code or zero on success 5183 */ 5184 int of_clk_detect_critical(struct device_node *np, int index, 5185 unsigned long *flags) 5186 { 5187 struct property *prop; 5188 const __be32 *cur; 5189 uint32_t idx; 5190 5191 if (!np || !flags) 5192 return -EINVAL; 5193 5194 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 5195 if (index == idx) 5196 *flags |= CLK_IS_CRITICAL; 5197 5198 return 0; 5199 } 5200 5201 /** 5202 * of_clk_init() - Scan and init clock providers from the DT 5203 * @matches: array of compatible values and init functions for providers. 5204 * 5205 * This function scans the device tree for matching clock providers 5206 * and calls their initialization functions. It also does it by trying 5207 * to follow the dependencies. 5208 */ 5209 void __init of_clk_init(const struct of_device_id *matches) 5210 { 5211 const struct of_device_id *match; 5212 struct device_node *np; 5213 struct clock_provider *clk_provider, *next; 5214 bool is_init_done; 5215 bool force = false; 5216 LIST_HEAD(clk_provider_list); 5217 5218 if (!matches) 5219 matches = &__clk_of_table; 5220 5221 /* First prepare the list of the clocks providers */ 5222 for_each_matching_node_and_match(np, matches, &match) { 5223 struct clock_provider *parent; 5224 5225 if (!of_device_is_available(np)) 5226 continue; 5227 5228 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5229 if (!parent) { 5230 list_for_each_entry_safe(clk_provider, next, 5231 &clk_provider_list, node) { 5232 list_del(&clk_provider->node); 5233 of_node_put(clk_provider->np); 5234 kfree(clk_provider); 5235 } 5236 of_node_put(np); 5237 return; 5238 } 5239 5240 parent->clk_init_cb = match->data; 5241 parent->np = of_node_get(np); 5242 list_add_tail(&parent->node, &clk_provider_list); 5243 } 5244 5245 while (!list_empty(&clk_provider_list)) { 5246 is_init_done = false; 5247 list_for_each_entry_safe(clk_provider, next, 5248 &clk_provider_list, node) { 5249 if (force || parent_ready(clk_provider->np)) { 5250 5251 /* Don't populate platform devices */ 5252 of_node_set_flag(clk_provider->np, 5253 OF_POPULATED); 5254 5255 clk_provider->clk_init_cb(clk_provider->np); 5256 of_clk_set_defaults(clk_provider->np, true); 5257 5258 list_del(&clk_provider->node); 5259 of_node_put(clk_provider->np); 5260 kfree(clk_provider); 5261 is_init_done = true; 5262 } 5263 } 5264 5265 /* 5266 * We didn't manage to initialize any of the 5267 * remaining providers during the last loop, so now we 5268 * initialize all the remaining ones unconditionally 5269 * in case the clock parent was not mandatory 5270 */ 5271 if (!is_init_done) 5272 force = true; 5273 } 5274 } 5275 #endif 5276