1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 /* List of registered clks that use runtime PM */ 41 static HLIST_HEAD(clk_rpm_list); 42 static DEFINE_MUTEX(clk_rpm_list_lock); 43 44 static const struct hlist_head *all_lists[] = { 45 &clk_root_list, 46 &clk_orphan_list, 47 NULL, 48 }; 49 50 /*** private data structures ***/ 51 52 struct clk_parent_map { 53 const struct clk_hw *hw; 54 struct clk_core *core; 55 const char *fw_name; 56 const char *name; 57 int index; 58 }; 59 60 struct clk_core { 61 const char *name; 62 const struct clk_ops *ops; 63 struct clk_hw *hw; 64 struct module *owner; 65 struct device *dev; 66 struct hlist_node rpm_node; 67 struct device_node *of_node; 68 struct clk_core *parent; 69 struct clk_parent_map *parents; 70 u8 num_parents; 71 u8 new_parent_index; 72 unsigned long rate; 73 unsigned long req_rate; 74 unsigned long new_rate; 75 struct clk_core *new_parent; 76 struct clk_core *new_child; 77 unsigned long flags; 78 bool orphan; 79 bool rpm_enabled; 80 unsigned int enable_count; 81 unsigned int prepare_count; 82 unsigned int protect_count; 83 unsigned long min_rate; 84 unsigned long max_rate; 85 unsigned long accuracy; 86 int phase; 87 struct clk_duty duty; 88 struct hlist_head children; 89 struct hlist_node child_node; 90 struct hlist_head clks; 91 unsigned int notifier_count; 92 #ifdef CONFIG_DEBUG_FS 93 struct dentry *dentry; 94 struct hlist_node debug_node; 95 #endif 96 struct kref ref; 97 }; 98 99 #define CREATE_TRACE_POINTS 100 #include <trace/events/clk.h> 101 102 struct clk { 103 struct clk_core *core; 104 struct device *dev; 105 const char *dev_id; 106 const char *con_id; 107 unsigned long min_rate; 108 unsigned long max_rate; 109 unsigned int exclusive_count; 110 struct hlist_node clks_node; 111 }; 112 113 /*** runtime pm ***/ 114 static int clk_pm_runtime_get(struct clk_core *core) 115 { 116 if (!core->rpm_enabled) 117 return 0; 118 119 return pm_runtime_resume_and_get(core->dev); 120 } 121 122 static void clk_pm_runtime_put(struct clk_core *core) 123 { 124 if (!core->rpm_enabled) 125 return; 126 127 pm_runtime_put_sync(core->dev); 128 } 129 130 /** 131 * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices 132 * 133 * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so 134 * that disabling unused clks avoids a deadlock where a device is runtime PM 135 * resuming/suspending and the runtime PM callback is trying to grab the 136 * prepare_lock for something like clk_prepare_enable() while 137 * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime 138 * PM resume/suspend the device as well. 139 * 140 * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on 141 * success. Otherwise the lock is released on failure. 142 * 143 * Return: 0 on success, negative errno otherwise. 144 */ 145 static int clk_pm_runtime_get_all(void) 146 { 147 int ret; 148 struct clk_core *core, *failed; 149 150 /* 151 * Grab the list lock to prevent any new clks from being registered 152 * or unregistered until clk_pm_runtime_put_all(). 153 */ 154 mutex_lock(&clk_rpm_list_lock); 155 156 /* 157 * Runtime PM "get" all the devices that are needed for the clks 158 * currently registered. Do this without holding the prepare_lock, to 159 * avoid the deadlock. 160 */ 161 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) { 162 ret = clk_pm_runtime_get(core); 163 if (ret) { 164 failed = core; 165 pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n", 166 dev_name(failed->dev), failed->name); 167 goto err; 168 } 169 } 170 171 return 0; 172 173 err: 174 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) { 175 if (core == failed) 176 break; 177 178 clk_pm_runtime_put(core); 179 } 180 mutex_unlock(&clk_rpm_list_lock); 181 182 return ret; 183 } 184 185 /** 186 * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices 187 * 188 * Put the runtime PM references taken in clk_pm_runtime_get_all() and release 189 * the 'clk_rpm_list_lock'. 190 */ 191 static void clk_pm_runtime_put_all(void) 192 { 193 struct clk_core *core; 194 195 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) 196 clk_pm_runtime_put(core); 197 mutex_unlock(&clk_rpm_list_lock); 198 } 199 200 static void clk_pm_runtime_init(struct clk_core *core) 201 { 202 struct device *dev = core->dev; 203 204 if (dev && pm_runtime_enabled(dev)) { 205 core->rpm_enabled = true; 206 207 mutex_lock(&clk_rpm_list_lock); 208 hlist_add_head(&core->rpm_node, &clk_rpm_list); 209 mutex_unlock(&clk_rpm_list_lock); 210 } 211 } 212 213 /*** locking ***/ 214 static void clk_prepare_lock(void) 215 { 216 if (!mutex_trylock(&prepare_lock)) { 217 if (prepare_owner == current) { 218 prepare_refcnt++; 219 return; 220 } 221 mutex_lock(&prepare_lock); 222 } 223 WARN_ON_ONCE(prepare_owner != NULL); 224 WARN_ON_ONCE(prepare_refcnt != 0); 225 prepare_owner = current; 226 prepare_refcnt = 1; 227 } 228 229 static void clk_prepare_unlock(void) 230 { 231 WARN_ON_ONCE(prepare_owner != current); 232 WARN_ON_ONCE(prepare_refcnt == 0); 233 234 if (--prepare_refcnt) 235 return; 236 prepare_owner = NULL; 237 mutex_unlock(&prepare_lock); 238 } 239 240 static unsigned long clk_enable_lock(void) 241 __acquires(enable_lock) 242 { 243 unsigned long flags; 244 245 /* 246 * On UP systems, spin_trylock_irqsave() always returns true, even if 247 * we already hold the lock. So, in that case, we rely only on 248 * reference counting. 249 */ 250 if (!IS_ENABLED(CONFIG_SMP) || 251 !spin_trylock_irqsave(&enable_lock, flags)) { 252 if (enable_owner == current) { 253 enable_refcnt++; 254 __acquire(enable_lock); 255 if (!IS_ENABLED(CONFIG_SMP)) 256 local_save_flags(flags); 257 return flags; 258 } 259 spin_lock_irqsave(&enable_lock, flags); 260 } 261 WARN_ON_ONCE(enable_owner != NULL); 262 WARN_ON_ONCE(enable_refcnt != 0); 263 enable_owner = current; 264 enable_refcnt = 1; 265 return flags; 266 } 267 268 static void clk_enable_unlock(unsigned long flags) 269 __releases(enable_lock) 270 { 271 WARN_ON_ONCE(enable_owner != current); 272 WARN_ON_ONCE(enable_refcnt == 0); 273 274 if (--enable_refcnt) { 275 __release(enable_lock); 276 return; 277 } 278 enable_owner = NULL; 279 spin_unlock_irqrestore(&enable_lock, flags); 280 } 281 282 static bool clk_core_rate_is_protected(struct clk_core *core) 283 { 284 return core->protect_count; 285 } 286 287 static bool clk_core_is_prepared(struct clk_core *core) 288 { 289 bool ret = false; 290 291 /* 292 * .is_prepared is optional for clocks that can prepare 293 * fall back to software usage counter if it is missing 294 */ 295 if (!core->ops->is_prepared) 296 return core->prepare_count; 297 298 if (!clk_pm_runtime_get(core)) { 299 ret = core->ops->is_prepared(core->hw); 300 clk_pm_runtime_put(core); 301 } 302 303 return ret; 304 } 305 306 static bool clk_core_is_enabled(struct clk_core *core) 307 { 308 bool ret = false; 309 310 /* 311 * .is_enabled is only mandatory for clocks that gate 312 * fall back to software usage counter if .is_enabled is missing 313 */ 314 if (!core->ops->is_enabled) 315 return core->enable_count; 316 317 /* 318 * Check if clock controller's device is runtime active before 319 * calling .is_enabled callback. If not, assume that clock is 320 * disabled, because we might be called from atomic context, from 321 * which pm_runtime_get() is not allowed. 322 * This function is called mainly from clk_disable_unused_subtree, 323 * which ensures proper runtime pm activation of controller before 324 * taking enable spinlock, but the below check is needed if one tries 325 * to call it from other places. 326 */ 327 if (core->rpm_enabled) { 328 pm_runtime_get_noresume(core->dev); 329 if (!pm_runtime_active(core->dev)) { 330 ret = false; 331 goto done; 332 } 333 } 334 335 /* 336 * This could be called with the enable lock held, or from atomic 337 * context. If the parent isn't enabled already, we can't do 338 * anything here. We can also assume this clock isn't enabled. 339 */ 340 if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent) 341 if (!clk_core_is_enabled(core->parent)) { 342 ret = false; 343 goto done; 344 } 345 346 ret = core->ops->is_enabled(core->hw); 347 done: 348 if (core->rpm_enabled) 349 pm_runtime_put(core->dev); 350 351 return ret; 352 } 353 354 /*** helper functions ***/ 355 356 const char *__clk_get_name(const struct clk *clk) 357 { 358 return !clk ? NULL : clk->core->name; 359 } 360 EXPORT_SYMBOL_GPL(__clk_get_name); 361 362 const char *clk_hw_get_name(const struct clk_hw *hw) 363 { 364 return hw->core->name; 365 } 366 EXPORT_SYMBOL_GPL(clk_hw_get_name); 367 368 struct clk_hw *__clk_get_hw(struct clk *clk) 369 { 370 return !clk ? NULL : clk->core->hw; 371 } 372 EXPORT_SYMBOL_GPL(__clk_get_hw); 373 374 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 375 { 376 return hw->core->num_parents; 377 } 378 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 379 380 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 381 { 382 return hw->core->parent ? hw->core->parent->hw : NULL; 383 } 384 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 385 386 static struct clk_core *__clk_lookup_subtree(const char *name, 387 struct clk_core *core) 388 { 389 struct clk_core *child; 390 struct clk_core *ret; 391 392 if (!strcmp(core->name, name)) 393 return core; 394 395 hlist_for_each_entry(child, &core->children, child_node) { 396 ret = __clk_lookup_subtree(name, child); 397 if (ret) 398 return ret; 399 } 400 401 return NULL; 402 } 403 404 static struct clk_core *clk_core_lookup(const char *name) 405 { 406 struct clk_core *root_clk; 407 struct clk_core *ret; 408 409 if (!name) 410 return NULL; 411 412 /* search the 'proper' clk tree first */ 413 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 414 ret = __clk_lookup_subtree(name, root_clk); 415 if (ret) 416 return ret; 417 } 418 419 /* if not found, then search the orphan tree */ 420 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 421 ret = __clk_lookup_subtree(name, root_clk); 422 if (ret) 423 return ret; 424 } 425 426 return NULL; 427 } 428 429 #ifdef CONFIG_OF 430 static int of_parse_clkspec(const struct device_node *np, int index, 431 const char *name, struct of_phandle_args *out_args); 432 static struct clk_hw * 433 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 434 #else 435 static inline int of_parse_clkspec(const struct device_node *np, int index, 436 const char *name, 437 struct of_phandle_args *out_args) 438 { 439 return -ENOENT; 440 } 441 static inline struct clk_hw * 442 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 443 { 444 return ERR_PTR(-ENOENT); 445 } 446 #endif 447 448 /** 449 * clk_core_get - Find the clk_core parent of a clk 450 * @core: clk to find parent of 451 * @p_index: parent index to search for 452 * 453 * This is the preferred method for clk providers to find the parent of a 454 * clk when that parent is external to the clk controller. The parent_names 455 * array is indexed and treated as a local name matching a string in the device 456 * node's 'clock-names' property or as the 'con_id' matching the device's 457 * dev_name() in a clk_lookup. This allows clk providers to use their own 458 * namespace instead of looking for a globally unique parent string. 459 * 460 * For example the following DT snippet would allow a clock registered by the 461 * clock-controller@c001 that has a clk_init_data::parent_data array 462 * with 'xtal' in the 'name' member to find the clock provided by the 463 * clock-controller@f00abcd without needing to get the globally unique name of 464 * the xtal clk. 465 * 466 * parent: clock-controller@f00abcd { 467 * reg = <0xf00abcd 0xabcd>; 468 * #clock-cells = <0>; 469 * }; 470 * 471 * clock-controller@c001 { 472 * reg = <0xc001 0xf00d>; 473 * clocks = <&parent>; 474 * clock-names = "xtal"; 475 * #clock-cells = <1>; 476 * }; 477 * 478 * Returns: -ENOENT when the provider can't be found or the clk doesn't 479 * exist in the provider or the name can't be found in the DT node or 480 * in a clkdev lookup. NULL when the provider knows about the clk but it 481 * isn't provided on this system. 482 * A valid clk_core pointer when the clk can be found in the provider. 483 */ 484 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 485 { 486 const char *name = core->parents[p_index].fw_name; 487 int index = core->parents[p_index].index; 488 struct clk_hw *hw = ERR_PTR(-ENOENT); 489 struct device *dev = core->dev; 490 const char *dev_id = dev ? dev_name(dev) : NULL; 491 struct device_node *np = core->of_node; 492 struct of_phandle_args clkspec; 493 494 if (np && (name || index >= 0) && 495 !of_parse_clkspec(np, index, name, &clkspec)) { 496 hw = of_clk_get_hw_from_clkspec(&clkspec); 497 of_node_put(clkspec.np); 498 } else if (name) { 499 /* 500 * If the DT search above couldn't find the provider fallback to 501 * looking up via clkdev based clk_lookups. 502 */ 503 hw = clk_find_hw(dev_id, name); 504 } 505 506 if (IS_ERR(hw)) 507 return ERR_CAST(hw); 508 509 if (!hw) 510 return NULL; 511 512 return hw->core; 513 } 514 515 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 516 { 517 struct clk_parent_map *entry = &core->parents[index]; 518 struct clk_core *parent; 519 520 if (entry->hw) { 521 parent = entry->hw->core; 522 } else { 523 parent = clk_core_get(core, index); 524 if (PTR_ERR(parent) == -ENOENT && entry->name) 525 parent = clk_core_lookup(entry->name); 526 } 527 528 /* 529 * We have a direct reference but it isn't registered yet? 530 * Orphan it and let clk_reparent() update the orphan status 531 * when the parent is registered. 532 */ 533 if (!parent) 534 parent = ERR_PTR(-EPROBE_DEFER); 535 536 /* Only cache it if it's not an error */ 537 if (!IS_ERR(parent)) 538 entry->core = parent; 539 } 540 541 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 542 u8 index) 543 { 544 if (!core || index >= core->num_parents || !core->parents) 545 return NULL; 546 547 if (!core->parents[index].core) 548 clk_core_fill_parent_index(core, index); 549 550 return core->parents[index].core; 551 } 552 553 struct clk_hw * 554 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 555 { 556 struct clk_core *parent; 557 558 parent = clk_core_get_parent_by_index(hw->core, index); 559 560 return !parent ? NULL : parent->hw; 561 } 562 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 563 564 unsigned int __clk_get_enable_count(struct clk *clk) 565 { 566 return !clk ? 0 : clk->core->enable_count; 567 } 568 569 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 570 { 571 if (!core) 572 return 0; 573 574 if (!core->num_parents || core->parent) 575 return core->rate; 576 577 /* 578 * Clk must have a parent because num_parents > 0 but the parent isn't 579 * known yet. Best to return 0 as the rate of this clk until we can 580 * properly recalc the rate based on the parent's rate. 581 */ 582 return 0; 583 } 584 585 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 586 { 587 return clk_core_get_rate_nolock(hw->core); 588 } 589 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 590 591 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 592 { 593 if (!core) 594 return 0; 595 596 return core->accuracy; 597 } 598 599 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 600 { 601 return hw->core->flags; 602 } 603 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 604 605 bool clk_hw_is_prepared(const struct clk_hw *hw) 606 { 607 return clk_core_is_prepared(hw->core); 608 } 609 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 610 611 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 612 { 613 return clk_core_rate_is_protected(hw->core); 614 } 615 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 616 617 bool clk_hw_is_enabled(const struct clk_hw *hw) 618 { 619 return clk_core_is_enabled(hw->core); 620 } 621 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 622 623 bool __clk_is_enabled(struct clk *clk) 624 { 625 if (!clk) 626 return false; 627 628 return clk_core_is_enabled(clk->core); 629 } 630 EXPORT_SYMBOL_GPL(__clk_is_enabled); 631 632 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 633 unsigned long best, unsigned long flags) 634 { 635 if (flags & CLK_MUX_ROUND_CLOSEST) 636 return abs(now - rate) < abs(best - rate); 637 638 return now <= rate && now > best; 639 } 640 641 static void clk_core_init_rate_req(struct clk_core * const core, 642 struct clk_rate_request *req, 643 unsigned long rate); 644 645 static int clk_core_round_rate_nolock(struct clk_core *core, 646 struct clk_rate_request *req); 647 648 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent) 649 { 650 struct clk_core *tmp; 651 unsigned int i; 652 653 /* Optimize for the case where the parent is already the parent. */ 654 if (core->parent == parent) 655 return true; 656 657 for (i = 0; i < core->num_parents; i++) { 658 tmp = clk_core_get_parent_by_index(core, i); 659 if (!tmp) 660 continue; 661 662 if (tmp == parent) 663 return true; 664 } 665 666 return false; 667 } 668 669 static void 670 clk_core_forward_rate_req(struct clk_core *core, 671 const struct clk_rate_request *old_req, 672 struct clk_core *parent, 673 struct clk_rate_request *req, 674 unsigned long parent_rate) 675 { 676 if (WARN_ON(!clk_core_has_parent(core, parent))) 677 return; 678 679 clk_core_init_rate_req(parent, req, parent_rate); 680 681 if (req->min_rate < old_req->min_rate) 682 req->min_rate = old_req->min_rate; 683 684 if (req->max_rate > old_req->max_rate) 685 req->max_rate = old_req->max_rate; 686 } 687 688 static int 689 clk_core_determine_rate_no_reparent(struct clk_hw *hw, 690 struct clk_rate_request *req) 691 { 692 struct clk_core *core = hw->core; 693 struct clk_core *parent = core->parent; 694 unsigned long best; 695 int ret; 696 697 if (core->flags & CLK_SET_RATE_PARENT) { 698 struct clk_rate_request parent_req; 699 700 if (!parent) { 701 req->rate = 0; 702 return 0; 703 } 704 705 clk_core_forward_rate_req(core, req, parent, &parent_req, 706 req->rate); 707 708 trace_clk_rate_request_start(&parent_req); 709 710 ret = clk_core_round_rate_nolock(parent, &parent_req); 711 if (ret) 712 return ret; 713 714 trace_clk_rate_request_done(&parent_req); 715 716 best = parent_req.rate; 717 } else if (parent) { 718 best = clk_core_get_rate_nolock(parent); 719 } else { 720 best = clk_core_get_rate_nolock(core); 721 } 722 723 req->best_parent_rate = best; 724 req->rate = best; 725 726 return 0; 727 } 728 729 int clk_mux_determine_rate_flags(struct clk_hw *hw, 730 struct clk_rate_request *req, 731 unsigned long flags) 732 { 733 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 734 int i, num_parents, ret; 735 unsigned long best = 0; 736 737 /* if NO_REPARENT flag set, pass through to current parent */ 738 if (core->flags & CLK_SET_RATE_NO_REPARENT) 739 return clk_core_determine_rate_no_reparent(hw, req); 740 741 /* find the parent that can provide the fastest rate <= rate */ 742 num_parents = core->num_parents; 743 for (i = 0; i < num_parents; i++) { 744 unsigned long parent_rate; 745 746 parent = clk_core_get_parent_by_index(core, i); 747 if (!parent) 748 continue; 749 750 if (core->flags & CLK_SET_RATE_PARENT) { 751 struct clk_rate_request parent_req; 752 753 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate); 754 755 trace_clk_rate_request_start(&parent_req); 756 757 ret = clk_core_round_rate_nolock(parent, &parent_req); 758 if (ret) 759 continue; 760 761 trace_clk_rate_request_done(&parent_req); 762 763 parent_rate = parent_req.rate; 764 } else { 765 parent_rate = clk_core_get_rate_nolock(parent); 766 } 767 768 if (mux_is_better_rate(req->rate, parent_rate, 769 best, flags)) { 770 best_parent = parent; 771 best = parent_rate; 772 } 773 } 774 775 if (!best_parent) 776 return -EINVAL; 777 778 req->best_parent_hw = best_parent->hw; 779 req->best_parent_rate = best; 780 req->rate = best; 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 785 786 struct clk *__clk_lookup(const char *name) 787 { 788 struct clk_core *core = clk_core_lookup(name); 789 790 return !core ? NULL : core->hw->clk; 791 } 792 793 static void clk_core_get_boundaries(struct clk_core *core, 794 unsigned long *min_rate, 795 unsigned long *max_rate) 796 { 797 struct clk *clk_user; 798 799 lockdep_assert_held(&prepare_lock); 800 801 *min_rate = core->min_rate; 802 *max_rate = core->max_rate; 803 804 hlist_for_each_entry(clk_user, &core->clks, clks_node) 805 *min_rate = max(*min_rate, clk_user->min_rate); 806 807 hlist_for_each_entry(clk_user, &core->clks, clks_node) 808 *max_rate = min(*max_rate, clk_user->max_rate); 809 } 810 811 /* 812 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk 813 * @hw: the hw clk we want to get the range from 814 * @min_rate: pointer to the variable that will hold the minimum 815 * @max_rate: pointer to the variable that will hold the maximum 816 * 817 * Fills the @min_rate and @max_rate variables with the minimum and 818 * maximum that clock can reach. 819 */ 820 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate, 821 unsigned long *max_rate) 822 { 823 clk_core_get_boundaries(hw->core, min_rate, max_rate); 824 } 825 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range); 826 827 static bool clk_core_check_boundaries(struct clk_core *core, 828 unsigned long min_rate, 829 unsigned long max_rate) 830 { 831 struct clk *user; 832 833 lockdep_assert_held(&prepare_lock); 834 835 if (min_rate > core->max_rate || max_rate < core->min_rate) 836 return false; 837 838 hlist_for_each_entry(user, &core->clks, clks_node) 839 if (min_rate > user->max_rate || max_rate < user->min_rate) 840 return false; 841 842 return true; 843 } 844 845 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 846 unsigned long max_rate) 847 { 848 hw->core->min_rate = min_rate; 849 hw->core->max_rate = max_rate; 850 } 851 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 852 853 /* 854 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 855 * @hw: mux type clk to determine rate on 856 * @req: rate request, also used to return preferred parent and frequencies 857 * 858 * Helper for finding best parent to provide a given frequency. This can be used 859 * directly as a determine_rate callback (e.g. for a mux), or from a more 860 * complex clock that may combine a mux with other operations. 861 * 862 * Returns: 0 on success, -EERROR value on error 863 */ 864 int __clk_mux_determine_rate(struct clk_hw *hw, 865 struct clk_rate_request *req) 866 { 867 return clk_mux_determine_rate_flags(hw, req, 0); 868 } 869 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 870 871 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 872 struct clk_rate_request *req) 873 { 874 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 875 } 876 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 877 878 /* 879 * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent 880 * @hw: mux type clk to determine rate on 881 * @req: rate request, also used to return preferred frequency 882 * 883 * Helper for finding best parent rate to provide a given frequency. 884 * This can be used directly as a determine_rate callback (e.g. for a 885 * mux), or from a more complex clock that may combine a mux with other 886 * operations. 887 * 888 * Returns: 0 on success, -EERROR value on error 889 */ 890 int clk_hw_determine_rate_no_reparent(struct clk_hw *hw, 891 struct clk_rate_request *req) 892 { 893 return clk_core_determine_rate_no_reparent(hw, req); 894 } 895 EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent); 896 897 /*** clk api ***/ 898 899 static void clk_core_rate_unprotect(struct clk_core *core) 900 { 901 lockdep_assert_held(&prepare_lock); 902 903 if (!core) 904 return; 905 906 if (WARN(core->protect_count == 0, 907 "%s already unprotected\n", core->name)) 908 return; 909 910 if (--core->protect_count > 0) 911 return; 912 913 clk_core_rate_unprotect(core->parent); 914 } 915 916 static int clk_core_rate_nuke_protect(struct clk_core *core) 917 { 918 int ret; 919 920 lockdep_assert_held(&prepare_lock); 921 922 if (!core) 923 return -EINVAL; 924 925 if (core->protect_count == 0) 926 return 0; 927 928 ret = core->protect_count; 929 core->protect_count = 1; 930 clk_core_rate_unprotect(core); 931 932 return ret; 933 } 934 935 /** 936 * clk_rate_exclusive_put - release exclusivity over clock rate control 937 * @clk: the clk over which the exclusivity is released 938 * 939 * clk_rate_exclusive_put() completes a critical section during which a clock 940 * consumer cannot tolerate any other consumer making any operation on the 941 * clock which could result in a rate change or rate glitch. Exclusive clocks 942 * cannot have their rate changed, either directly or indirectly due to changes 943 * further up the parent chain of clocks. As a result, clocks up parent chain 944 * also get under exclusive control of the calling consumer. 945 * 946 * If exlusivity is claimed more than once on clock, even by the same consumer, 947 * the rate effectively gets locked as exclusivity can't be preempted. 948 * 949 * Calls to clk_rate_exclusive_put() must be balanced with calls to 950 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 951 * error status. 952 */ 953 void clk_rate_exclusive_put(struct clk *clk) 954 { 955 if (!clk) 956 return; 957 958 clk_prepare_lock(); 959 960 /* 961 * if there is something wrong with this consumer protect count, stop 962 * here before messing with the provider 963 */ 964 if (WARN_ON(clk->exclusive_count <= 0)) 965 goto out; 966 967 clk_core_rate_unprotect(clk->core); 968 clk->exclusive_count--; 969 out: 970 clk_prepare_unlock(); 971 } 972 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 973 974 static void clk_core_rate_protect(struct clk_core *core) 975 { 976 lockdep_assert_held(&prepare_lock); 977 978 if (!core) 979 return; 980 981 if (core->protect_count == 0) 982 clk_core_rate_protect(core->parent); 983 984 core->protect_count++; 985 } 986 987 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 988 { 989 lockdep_assert_held(&prepare_lock); 990 991 if (!core) 992 return; 993 994 if (count == 0) 995 return; 996 997 clk_core_rate_protect(core); 998 core->protect_count = count; 999 } 1000 1001 /** 1002 * clk_rate_exclusive_get - get exclusivity over the clk rate control 1003 * @clk: the clk over which the exclusity of rate control is requested 1004 * 1005 * clk_rate_exclusive_get() begins a critical section during which a clock 1006 * consumer cannot tolerate any other consumer making any operation on the 1007 * clock which could result in a rate change or rate glitch. Exclusive clocks 1008 * cannot have their rate changed, either directly or indirectly due to changes 1009 * further up the parent chain of clocks. As a result, clocks up parent chain 1010 * also get under exclusive control of the calling consumer. 1011 * 1012 * If exlusivity is claimed more than once on clock, even by the same consumer, 1013 * the rate effectively gets locked as exclusivity can't be preempted. 1014 * 1015 * Calls to clk_rate_exclusive_get() should be balanced with calls to 1016 * clk_rate_exclusive_put(). Calls to this function may sleep. 1017 * Returns 0 on success, -EERROR otherwise 1018 */ 1019 int clk_rate_exclusive_get(struct clk *clk) 1020 { 1021 if (!clk) 1022 return 0; 1023 1024 clk_prepare_lock(); 1025 clk_core_rate_protect(clk->core); 1026 clk->exclusive_count++; 1027 clk_prepare_unlock(); 1028 1029 return 0; 1030 } 1031 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 1032 1033 static void devm_clk_rate_exclusive_put(void *data) 1034 { 1035 struct clk *clk = data; 1036 1037 clk_rate_exclusive_put(clk); 1038 } 1039 1040 int devm_clk_rate_exclusive_get(struct device *dev, struct clk *clk) 1041 { 1042 int ret; 1043 1044 ret = clk_rate_exclusive_get(clk); 1045 if (ret) 1046 return ret; 1047 1048 return devm_add_action_or_reset(dev, devm_clk_rate_exclusive_put, clk); 1049 } 1050 EXPORT_SYMBOL_GPL(devm_clk_rate_exclusive_get); 1051 1052 static void clk_core_unprepare(struct clk_core *core) 1053 { 1054 lockdep_assert_held(&prepare_lock); 1055 1056 if (!core) 1057 return; 1058 1059 if (WARN(core->prepare_count == 0, 1060 "%s already unprepared\n", core->name)) 1061 return; 1062 1063 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 1064 "Unpreparing critical %s\n", core->name)) 1065 return; 1066 1067 if (core->flags & CLK_SET_RATE_GATE) 1068 clk_core_rate_unprotect(core); 1069 1070 if (--core->prepare_count > 0) 1071 return; 1072 1073 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 1074 1075 trace_clk_unprepare(core); 1076 1077 if (core->ops->unprepare) 1078 core->ops->unprepare(core->hw); 1079 1080 trace_clk_unprepare_complete(core); 1081 clk_core_unprepare(core->parent); 1082 clk_pm_runtime_put(core); 1083 } 1084 1085 static void clk_core_unprepare_lock(struct clk_core *core) 1086 { 1087 clk_prepare_lock(); 1088 clk_core_unprepare(core); 1089 clk_prepare_unlock(); 1090 } 1091 1092 /** 1093 * clk_unprepare - undo preparation of a clock source 1094 * @clk: the clk being unprepared 1095 * 1096 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 1097 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 1098 * if the operation may sleep. One example is a clk which is accessed over 1099 * I2c. In the complex case a clk gate operation may require a fast and a slow 1100 * part. It is this reason that clk_unprepare and clk_disable are not mutually 1101 * exclusive. In fact clk_disable must be called before clk_unprepare. 1102 */ 1103 void clk_unprepare(struct clk *clk) 1104 { 1105 if (IS_ERR_OR_NULL(clk)) 1106 return; 1107 1108 clk_core_unprepare_lock(clk->core); 1109 } 1110 EXPORT_SYMBOL_GPL(clk_unprepare); 1111 1112 static int clk_core_prepare(struct clk_core *core) 1113 { 1114 int ret = 0; 1115 1116 lockdep_assert_held(&prepare_lock); 1117 1118 if (!core) 1119 return 0; 1120 1121 if (core->prepare_count == 0) { 1122 ret = clk_pm_runtime_get(core); 1123 if (ret) 1124 return ret; 1125 1126 ret = clk_core_prepare(core->parent); 1127 if (ret) 1128 goto runtime_put; 1129 1130 trace_clk_prepare(core); 1131 1132 if (core->ops->prepare) 1133 ret = core->ops->prepare(core->hw); 1134 1135 trace_clk_prepare_complete(core); 1136 1137 if (ret) 1138 goto unprepare; 1139 } 1140 1141 core->prepare_count++; 1142 1143 /* 1144 * CLK_SET_RATE_GATE is a special case of clock protection 1145 * Instead of a consumer claiming exclusive rate control, it is 1146 * actually the provider which prevents any consumer from making any 1147 * operation which could result in a rate change or rate glitch while 1148 * the clock is prepared. 1149 */ 1150 if (core->flags & CLK_SET_RATE_GATE) 1151 clk_core_rate_protect(core); 1152 1153 return 0; 1154 unprepare: 1155 clk_core_unprepare(core->parent); 1156 runtime_put: 1157 clk_pm_runtime_put(core); 1158 return ret; 1159 } 1160 1161 static int clk_core_prepare_lock(struct clk_core *core) 1162 { 1163 int ret; 1164 1165 clk_prepare_lock(); 1166 ret = clk_core_prepare(core); 1167 clk_prepare_unlock(); 1168 1169 return ret; 1170 } 1171 1172 /** 1173 * clk_prepare - prepare a clock source 1174 * @clk: the clk being prepared 1175 * 1176 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 1177 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 1178 * operation may sleep. One example is a clk which is accessed over I2c. In 1179 * the complex case a clk ungate operation may require a fast and a slow part. 1180 * It is this reason that clk_prepare and clk_enable are not mutually 1181 * exclusive. In fact clk_prepare must be called before clk_enable. 1182 * Returns 0 on success, -EERROR otherwise. 1183 */ 1184 int clk_prepare(struct clk *clk) 1185 { 1186 if (!clk) 1187 return 0; 1188 1189 return clk_core_prepare_lock(clk->core); 1190 } 1191 EXPORT_SYMBOL_GPL(clk_prepare); 1192 1193 static void clk_core_disable(struct clk_core *core) 1194 { 1195 lockdep_assert_held(&enable_lock); 1196 1197 if (!core) 1198 return; 1199 1200 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 1201 return; 1202 1203 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 1204 "Disabling critical %s\n", core->name)) 1205 return; 1206 1207 if (--core->enable_count > 0) 1208 return; 1209 1210 trace_clk_disable(core); 1211 1212 if (core->ops->disable) 1213 core->ops->disable(core->hw); 1214 1215 trace_clk_disable_complete(core); 1216 1217 clk_core_disable(core->parent); 1218 } 1219 1220 static void clk_core_disable_lock(struct clk_core *core) 1221 { 1222 unsigned long flags; 1223 1224 flags = clk_enable_lock(); 1225 clk_core_disable(core); 1226 clk_enable_unlock(flags); 1227 } 1228 1229 /** 1230 * clk_disable - gate a clock 1231 * @clk: the clk being gated 1232 * 1233 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 1234 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 1235 * clk if the operation is fast and will never sleep. One example is a 1236 * SoC-internal clk which is controlled via simple register writes. In the 1237 * complex case a clk gate operation may require a fast and a slow part. It is 1238 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 1239 * In fact clk_disable must be called before clk_unprepare. 1240 */ 1241 void clk_disable(struct clk *clk) 1242 { 1243 if (IS_ERR_OR_NULL(clk)) 1244 return; 1245 1246 clk_core_disable_lock(clk->core); 1247 } 1248 EXPORT_SYMBOL_GPL(clk_disable); 1249 1250 static int clk_core_enable(struct clk_core *core) 1251 { 1252 int ret = 0; 1253 1254 lockdep_assert_held(&enable_lock); 1255 1256 if (!core) 1257 return 0; 1258 1259 if (WARN(core->prepare_count == 0, 1260 "Enabling unprepared %s\n", core->name)) 1261 return -ESHUTDOWN; 1262 1263 if (core->enable_count == 0) { 1264 ret = clk_core_enable(core->parent); 1265 1266 if (ret) 1267 return ret; 1268 1269 trace_clk_enable(core); 1270 1271 if (core->ops->enable) 1272 ret = core->ops->enable(core->hw); 1273 1274 trace_clk_enable_complete(core); 1275 1276 if (ret) { 1277 clk_core_disable(core->parent); 1278 return ret; 1279 } 1280 } 1281 1282 core->enable_count++; 1283 return 0; 1284 } 1285 1286 static int clk_core_enable_lock(struct clk_core *core) 1287 { 1288 unsigned long flags; 1289 int ret; 1290 1291 flags = clk_enable_lock(); 1292 ret = clk_core_enable(core); 1293 clk_enable_unlock(flags); 1294 1295 return ret; 1296 } 1297 1298 /** 1299 * clk_gate_restore_context - restore context for poweroff 1300 * @hw: the clk_hw pointer of clock whose state is to be restored 1301 * 1302 * The clock gate restore context function enables or disables 1303 * the gate clocks based on the enable_count. This is done in cases 1304 * where the clock context is lost and based on the enable_count 1305 * the clock either needs to be enabled/disabled. This 1306 * helps restore the state of gate clocks. 1307 */ 1308 void clk_gate_restore_context(struct clk_hw *hw) 1309 { 1310 struct clk_core *core = hw->core; 1311 1312 if (core->enable_count) 1313 core->ops->enable(hw); 1314 else 1315 core->ops->disable(hw); 1316 } 1317 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1318 1319 static int clk_core_save_context(struct clk_core *core) 1320 { 1321 struct clk_core *child; 1322 int ret = 0; 1323 1324 hlist_for_each_entry(child, &core->children, child_node) { 1325 ret = clk_core_save_context(child); 1326 if (ret < 0) 1327 return ret; 1328 } 1329 1330 if (core->ops && core->ops->save_context) 1331 ret = core->ops->save_context(core->hw); 1332 1333 return ret; 1334 } 1335 1336 static void clk_core_restore_context(struct clk_core *core) 1337 { 1338 struct clk_core *child; 1339 1340 if (core->ops && core->ops->restore_context) 1341 core->ops->restore_context(core->hw); 1342 1343 hlist_for_each_entry(child, &core->children, child_node) 1344 clk_core_restore_context(child); 1345 } 1346 1347 /** 1348 * clk_save_context - save clock context for poweroff 1349 * 1350 * Saves the context of the clock register for powerstates in which the 1351 * contents of the registers will be lost. Occurs deep within the suspend 1352 * code. Returns 0 on success. 1353 */ 1354 int clk_save_context(void) 1355 { 1356 struct clk_core *clk; 1357 int ret; 1358 1359 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1360 ret = clk_core_save_context(clk); 1361 if (ret < 0) 1362 return ret; 1363 } 1364 1365 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1366 ret = clk_core_save_context(clk); 1367 if (ret < 0) 1368 return ret; 1369 } 1370 1371 return 0; 1372 } 1373 EXPORT_SYMBOL_GPL(clk_save_context); 1374 1375 /** 1376 * clk_restore_context - restore clock context after poweroff 1377 * 1378 * Restore the saved clock context upon resume. 1379 * 1380 */ 1381 void clk_restore_context(void) 1382 { 1383 struct clk_core *core; 1384 1385 hlist_for_each_entry(core, &clk_root_list, child_node) 1386 clk_core_restore_context(core); 1387 1388 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1389 clk_core_restore_context(core); 1390 } 1391 EXPORT_SYMBOL_GPL(clk_restore_context); 1392 1393 /** 1394 * clk_enable - ungate a clock 1395 * @clk: the clk being ungated 1396 * 1397 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1398 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1399 * if the operation will never sleep. One example is a SoC-internal clk which 1400 * is controlled via simple register writes. In the complex case a clk ungate 1401 * operation may require a fast and a slow part. It is this reason that 1402 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1403 * must be called before clk_enable. Returns 0 on success, -EERROR 1404 * otherwise. 1405 */ 1406 int clk_enable(struct clk *clk) 1407 { 1408 if (!clk) 1409 return 0; 1410 1411 return clk_core_enable_lock(clk->core); 1412 } 1413 EXPORT_SYMBOL_GPL(clk_enable); 1414 1415 /** 1416 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it. 1417 * @clk: clock source 1418 * 1419 * Returns true if clk_prepare() implicitly enables the clock, effectively 1420 * making clk_enable()/clk_disable() no-ops, false otherwise. 1421 * 1422 * This is of interest mainly to power management code where actually 1423 * disabling the clock also requires unpreparing it to have any material 1424 * effect. 1425 * 1426 * Regardless of the value returned here, the caller must always invoke 1427 * clk_enable() or clk_prepare_enable() and counterparts for usage counts 1428 * to be right. 1429 */ 1430 bool clk_is_enabled_when_prepared(struct clk *clk) 1431 { 1432 return clk && !(clk->core->ops->enable && clk->core->ops->disable); 1433 } 1434 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared); 1435 1436 static int clk_core_prepare_enable(struct clk_core *core) 1437 { 1438 int ret; 1439 1440 ret = clk_core_prepare_lock(core); 1441 if (ret) 1442 return ret; 1443 1444 ret = clk_core_enable_lock(core); 1445 if (ret) 1446 clk_core_unprepare_lock(core); 1447 1448 return ret; 1449 } 1450 1451 static void clk_core_disable_unprepare(struct clk_core *core) 1452 { 1453 clk_core_disable_lock(core); 1454 clk_core_unprepare_lock(core); 1455 } 1456 1457 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1458 { 1459 struct clk_core *child; 1460 1461 lockdep_assert_held(&prepare_lock); 1462 1463 hlist_for_each_entry(child, &core->children, child_node) 1464 clk_unprepare_unused_subtree(child); 1465 1466 if (core->prepare_count) 1467 return; 1468 1469 if (core->flags & CLK_IGNORE_UNUSED) 1470 return; 1471 1472 if (clk_core_is_prepared(core)) { 1473 trace_clk_unprepare(core); 1474 if (core->ops->unprepare_unused) 1475 core->ops->unprepare_unused(core->hw); 1476 else if (core->ops->unprepare) 1477 core->ops->unprepare(core->hw); 1478 trace_clk_unprepare_complete(core); 1479 } 1480 } 1481 1482 static void __init clk_disable_unused_subtree(struct clk_core *core) 1483 { 1484 struct clk_core *child; 1485 unsigned long flags; 1486 1487 lockdep_assert_held(&prepare_lock); 1488 1489 hlist_for_each_entry(child, &core->children, child_node) 1490 clk_disable_unused_subtree(child); 1491 1492 if (core->flags & CLK_OPS_PARENT_ENABLE) 1493 clk_core_prepare_enable(core->parent); 1494 1495 flags = clk_enable_lock(); 1496 1497 if (core->enable_count) 1498 goto unlock_out; 1499 1500 if (core->flags & CLK_IGNORE_UNUSED) 1501 goto unlock_out; 1502 1503 /* 1504 * some gate clocks have special needs during the disable-unused 1505 * sequence. call .disable_unused if available, otherwise fall 1506 * back to .disable 1507 */ 1508 if (clk_core_is_enabled(core)) { 1509 trace_clk_disable(core); 1510 if (core->ops->disable_unused) 1511 core->ops->disable_unused(core->hw); 1512 else if (core->ops->disable) 1513 core->ops->disable(core->hw); 1514 trace_clk_disable_complete(core); 1515 } 1516 1517 unlock_out: 1518 clk_enable_unlock(flags); 1519 if (core->flags & CLK_OPS_PARENT_ENABLE) 1520 clk_core_disable_unprepare(core->parent); 1521 } 1522 1523 static bool clk_ignore_unused __initdata; 1524 static int __init clk_ignore_unused_setup(char *__unused) 1525 { 1526 clk_ignore_unused = true; 1527 return 1; 1528 } 1529 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1530 1531 static int __init clk_disable_unused(void) 1532 { 1533 struct clk_core *core; 1534 int ret; 1535 1536 if (clk_ignore_unused) { 1537 pr_warn("clk: Not disabling unused clocks\n"); 1538 return 0; 1539 } 1540 1541 pr_info("clk: Disabling unused clocks\n"); 1542 1543 ret = clk_pm_runtime_get_all(); 1544 if (ret) 1545 return ret; 1546 /* 1547 * Grab the prepare lock to keep the clk topology stable while iterating 1548 * over clks. 1549 */ 1550 clk_prepare_lock(); 1551 1552 hlist_for_each_entry(core, &clk_root_list, child_node) 1553 clk_disable_unused_subtree(core); 1554 1555 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1556 clk_disable_unused_subtree(core); 1557 1558 hlist_for_each_entry(core, &clk_root_list, child_node) 1559 clk_unprepare_unused_subtree(core); 1560 1561 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1562 clk_unprepare_unused_subtree(core); 1563 1564 clk_prepare_unlock(); 1565 1566 clk_pm_runtime_put_all(); 1567 1568 return 0; 1569 } 1570 late_initcall_sync(clk_disable_unused); 1571 1572 static int clk_core_determine_round_nolock(struct clk_core *core, 1573 struct clk_rate_request *req) 1574 { 1575 long rate; 1576 1577 lockdep_assert_held(&prepare_lock); 1578 1579 if (!core) 1580 return 0; 1581 1582 /* 1583 * Some clock providers hand-craft their clk_rate_requests and 1584 * might not fill min_rate and max_rate. 1585 * 1586 * If it's the case, clamping the rate is equivalent to setting 1587 * the rate to 0 which is bad. Skip the clamping but complain so 1588 * that it gets fixed, hopefully. 1589 */ 1590 if (!req->min_rate && !req->max_rate) 1591 pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n", 1592 __func__, core->name); 1593 else 1594 req->rate = clamp(req->rate, req->min_rate, req->max_rate); 1595 1596 /* 1597 * At this point, core protection will be disabled 1598 * - if the provider is not protected at all 1599 * - if the calling consumer is the only one which has exclusivity 1600 * over the provider 1601 */ 1602 if (clk_core_rate_is_protected(core)) { 1603 req->rate = core->rate; 1604 } else if (core->ops->determine_rate) { 1605 return core->ops->determine_rate(core->hw, req); 1606 } else if (core->ops->round_rate) { 1607 rate = core->ops->round_rate(core->hw, req->rate, 1608 &req->best_parent_rate); 1609 if (rate < 0) 1610 return rate; 1611 1612 req->rate = rate; 1613 } else { 1614 return -EINVAL; 1615 } 1616 1617 return 0; 1618 } 1619 1620 static void clk_core_init_rate_req(struct clk_core * const core, 1621 struct clk_rate_request *req, 1622 unsigned long rate) 1623 { 1624 struct clk_core *parent; 1625 1626 if (WARN_ON(!req)) 1627 return; 1628 1629 memset(req, 0, sizeof(*req)); 1630 req->max_rate = ULONG_MAX; 1631 1632 if (!core) 1633 return; 1634 1635 req->core = core; 1636 req->rate = rate; 1637 clk_core_get_boundaries(core, &req->min_rate, &req->max_rate); 1638 1639 parent = core->parent; 1640 if (parent) { 1641 req->best_parent_hw = parent->hw; 1642 req->best_parent_rate = parent->rate; 1643 } else { 1644 req->best_parent_hw = NULL; 1645 req->best_parent_rate = 0; 1646 } 1647 } 1648 1649 /** 1650 * clk_hw_init_rate_request - Initializes a clk_rate_request 1651 * @hw: the clk for which we want to submit a rate request 1652 * @req: the clk_rate_request structure we want to initialise 1653 * @rate: the rate which is to be requested 1654 * 1655 * Initializes a clk_rate_request structure to submit to 1656 * __clk_determine_rate() or similar functions. 1657 */ 1658 void clk_hw_init_rate_request(const struct clk_hw *hw, 1659 struct clk_rate_request *req, 1660 unsigned long rate) 1661 { 1662 if (WARN_ON(!hw || !req)) 1663 return; 1664 1665 clk_core_init_rate_req(hw->core, req, rate); 1666 } 1667 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request); 1668 1669 /** 1670 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent 1671 * @hw: the original clock that got the rate request 1672 * @old_req: the original clk_rate_request structure we want to forward 1673 * @parent: the clk we want to forward @old_req to 1674 * @req: the clk_rate_request structure we want to initialise 1675 * @parent_rate: The rate which is to be requested to @parent 1676 * 1677 * Initializes a clk_rate_request structure to submit to a clock parent 1678 * in __clk_determine_rate() or similar functions. 1679 */ 1680 void clk_hw_forward_rate_request(const struct clk_hw *hw, 1681 const struct clk_rate_request *old_req, 1682 const struct clk_hw *parent, 1683 struct clk_rate_request *req, 1684 unsigned long parent_rate) 1685 { 1686 if (WARN_ON(!hw || !old_req || !parent || !req)) 1687 return; 1688 1689 clk_core_forward_rate_req(hw->core, old_req, 1690 parent->core, req, 1691 parent_rate); 1692 } 1693 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request); 1694 1695 static bool clk_core_can_round(struct clk_core * const core) 1696 { 1697 return core->ops->determine_rate || core->ops->round_rate; 1698 } 1699 1700 static int clk_core_round_rate_nolock(struct clk_core *core, 1701 struct clk_rate_request *req) 1702 { 1703 int ret; 1704 1705 lockdep_assert_held(&prepare_lock); 1706 1707 if (!core) { 1708 req->rate = 0; 1709 return 0; 1710 } 1711 1712 if (clk_core_can_round(core)) 1713 return clk_core_determine_round_nolock(core, req); 1714 1715 if (core->flags & CLK_SET_RATE_PARENT) { 1716 struct clk_rate_request parent_req; 1717 1718 clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate); 1719 1720 trace_clk_rate_request_start(&parent_req); 1721 1722 ret = clk_core_round_rate_nolock(core->parent, &parent_req); 1723 if (ret) 1724 return ret; 1725 1726 trace_clk_rate_request_done(&parent_req); 1727 1728 req->best_parent_rate = parent_req.rate; 1729 req->rate = parent_req.rate; 1730 1731 return 0; 1732 } 1733 1734 req->rate = core->rate; 1735 return 0; 1736 } 1737 1738 /** 1739 * __clk_determine_rate - get the closest rate actually supported by a clock 1740 * @hw: determine the rate of this clock 1741 * @req: target rate request 1742 * 1743 * Useful for clk_ops such as .set_rate and .determine_rate. 1744 */ 1745 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1746 { 1747 if (!hw) { 1748 req->rate = 0; 1749 return 0; 1750 } 1751 1752 return clk_core_round_rate_nolock(hw->core, req); 1753 } 1754 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1755 1756 /** 1757 * clk_hw_round_rate() - round the given rate for a hw clk 1758 * @hw: the hw clk for which we are rounding a rate 1759 * @rate: the rate which is to be rounded 1760 * 1761 * Takes in a rate as input and rounds it to a rate that the clk can actually 1762 * use. 1763 * 1764 * Context: prepare_lock must be held. 1765 * For clk providers to call from within clk_ops such as .round_rate, 1766 * .determine_rate. 1767 * 1768 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1769 * else returns the parent rate. 1770 */ 1771 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1772 { 1773 int ret; 1774 struct clk_rate_request req; 1775 1776 clk_core_init_rate_req(hw->core, &req, rate); 1777 1778 trace_clk_rate_request_start(&req); 1779 1780 ret = clk_core_round_rate_nolock(hw->core, &req); 1781 if (ret) 1782 return 0; 1783 1784 trace_clk_rate_request_done(&req); 1785 1786 return req.rate; 1787 } 1788 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1789 1790 /** 1791 * clk_round_rate - round the given rate for a clk 1792 * @clk: the clk for which we are rounding a rate 1793 * @rate: the rate which is to be rounded 1794 * 1795 * Takes in a rate as input and rounds it to a rate that the clk can actually 1796 * use which is then returned. If clk doesn't support round_rate operation 1797 * then the parent rate is returned. 1798 */ 1799 long clk_round_rate(struct clk *clk, unsigned long rate) 1800 { 1801 struct clk_rate_request req; 1802 int ret; 1803 1804 if (!clk) 1805 return 0; 1806 1807 clk_prepare_lock(); 1808 1809 if (clk->exclusive_count) 1810 clk_core_rate_unprotect(clk->core); 1811 1812 clk_core_init_rate_req(clk->core, &req, rate); 1813 1814 trace_clk_rate_request_start(&req); 1815 1816 ret = clk_core_round_rate_nolock(clk->core, &req); 1817 1818 trace_clk_rate_request_done(&req); 1819 1820 if (clk->exclusive_count) 1821 clk_core_rate_protect(clk->core); 1822 1823 clk_prepare_unlock(); 1824 1825 if (ret) 1826 return ret; 1827 1828 return req.rate; 1829 } 1830 EXPORT_SYMBOL_GPL(clk_round_rate); 1831 1832 /** 1833 * __clk_notify - call clk notifier chain 1834 * @core: clk that is changing rate 1835 * @msg: clk notifier type (see include/linux/clk.h) 1836 * @old_rate: old clk rate 1837 * @new_rate: new clk rate 1838 * 1839 * Triggers a notifier call chain on the clk rate-change notification 1840 * for 'clk'. Passes a pointer to the struct clk and the previous 1841 * and current rates to the notifier callback. Intended to be called by 1842 * internal clock code only. Returns NOTIFY_DONE from the last driver 1843 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1844 * a driver returns that. 1845 */ 1846 static int __clk_notify(struct clk_core *core, unsigned long msg, 1847 unsigned long old_rate, unsigned long new_rate) 1848 { 1849 struct clk_notifier *cn; 1850 struct clk_notifier_data cnd; 1851 int ret = NOTIFY_DONE; 1852 1853 cnd.old_rate = old_rate; 1854 cnd.new_rate = new_rate; 1855 1856 list_for_each_entry(cn, &clk_notifier_list, node) { 1857 if (cn->clk->core == core) { 1858 cnd.clk = cn->clk; 1859 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1860 &cnd); 1861 if (ret & NOTIFY_STOP_MASK) 1862 return ret; 1863 } 1864 } 1865 1866 return ret; 1867 } 1868 1869 /** 1870 * __clk_recalc_accuracies 1871 * @core: first clk in the subtree 1872 * 1873 * Walks the subtree of clks starting with clk and recalculates accuracies as 1874 * it goes. Note that if a clk does not implement the .recalc_accuracy 1875 * callback then it is assumed that the clock will take on the accuracy of its 1876 * parent. 1877 */ 1878 static void __clk_recalc_accuracies(struct clk_core *core) 1879 { 1880 unsigned long parent_accuracy = 0; 1881 struct clk_core *child; 1882 1883 lockdep_assert_held(&prepare_lock); 1884 1885 if (core->parent) 1886 parent_accuracy = core->parent->accuracy; 1887 1888 if (core->ops->recalc_accuracy) 1889 core->accuracy = core->ops->recalc_accuracy(core->hw, 1890 parent_accuracy); 1891 else 1892 core->accuracy = parent_accuracy; 1893 1894 hlist_for_each_entry(child, &core->children, child_node) 1895 __clk_recalc_accuracies(child); 1896 } 1897 1898 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1899 { 1900 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1901 __clk_recalc_accuracies(core); 1902 1903 return clk_core_get_accuracy_no_lock(core); 1904 } 1905 1906 /** 1907 * clk_get_accuracy - return the accuracy of clk 1908 * @clk: the clk whose accuracy is being returned 1909 * 1910 * Simply returns the cached accuracy of the clk, unless 1911 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1912 * issued. 1913 * If clk is NULL then returns 0. 1914 */ 1915 long clk_get_accuracy(struct clk *clk) 1916 { 1917 long accuracy; 1918 1919 if (!clk) 1920 return 0; 1921 1922 clk_prepare_lock(); 1923 accuracy = clk_core_get_accuracy_recalc(clk->core); 1924 clk_prepare_unlock(); 1925 1926 return accuracy; 1927 } 1928 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1929 1930 static unsigned long clk_recalc(struct clk_core *core, 1931 unsigned long parent_rate) 1932 { 1933 unsigned long rate = parent_rate; 1934 1935 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1936 rate = core->ops->recalc_rate(core->hw, parent_rate); 1937 clk_pm_runtime_put(core); 1938 } 1939 return rate; 1940 } 1941 1942 /** 1943 * __clk_recalc_rates 1944 * @core: first clk in the subtree 1945 * @update_req: Whether req_rate should be updated with the new rate 1946 * @msg: notification type (see include/linux/clk.h) 1947 * 1948 * Walks the subtree of clks starting with clk and recalculates rates as it 1949 * goes. Note that if a clk does not implement the .recalc_rate callback then 1950 * it is assumed that the clock will take on the rate of its parent. 1951 * 1952 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1953 * if necessary. 1954 */ 1955 static void __clk_recalc_rates(struct clk_core *core, bool update_req, 1956 unsigned long msg) 1957 { 1958 unsigned long old_rate; 1959 unsigned long parent_rate = 0; 1960 struct clk_core *child; 1961 1962 lockdep_assert_held(&prepare_lock); 1963 1964 old_rate = core->rate; 1965 1966 if (core->parent) 1967 parent_rate = core->parent->rate; 1968 1969 core->rate = clk_recalc(core, parent_rate); 1970 if (update_req) 1971 core->req_rate = core->rate; 1972 1973 /* 1974 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1975 * & ABORT_RATE_CHANGE notifiers 1976 */ 1977 if (core->notifier_count && msg) 1978 __clk_notify(core, msg, old_rate, core->rate); 1979 1980 hlist_for_each_entry(child, &core->children, child_node) 1981 __clk_recalc_rates(child, update_req, msg); 1982 } 1983 1984 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1985 { 1986 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1987 __clk_recalc_rates(core, false, 0); 1988 1989 return clk_core_get_rate_nolock(core); 1990 } 1991 1992 /** 1993 * clk_get_rate - return the rate of clk 1994 * @clk: the clk whose rate is being returned 1995 * 1996 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1997 * is set, which means a recalc_rate will be issued. Can be called regardless of 1998 * the clock enabledness. If clk is NULL, or if an error occurred, then returns 1999 * 0. 2000 */ 2001 unsigned long clk_get_rate(struct clk *clk) 2002 { 2003 unsigned long rate; 2004 2005 if (!clk) 2006 return 0; 2007 2008 clk_prepare_lock(); 2009 rate = clk_core_get_rate_recalc(clk->core); 2010 clk_prepare_unlock(); 2011 2012 return rate; 2013 } 2014 EXPORT_SYMBOL_GPL(clk_get_rate); 2015 2016 static int clk_fetch_parent_index(struct clk_core *core, 2017 struct clk_core *parent) 2018 { 2019 int i; 2020 2021 if (!parent) 2022 return -EINVAL; 2023 2024 for (i = 0; i < core->num_parents; i++) { 2025 /* Found it first try! */ 2026 if (core->parents[i].core == parent) 2027 return i; 2028 2029 /* Something else is here, so keep looking */ 2030 if (core->parents[i].core) 2031 continue; 2032 2033 /* Maybe core hasn't been cached but the hw is all we know? */ 2034 if (core->parents[i].hw) { 2035 if (core->parents[i].hw == parent->hw) 2036 break; 2037 2038 /* Didn't match, but we're expecting a clk_hw */ 2039 continue; 2040 } 2041 2042 /* Maybe it hasn't been cached (clk_set_parent() path) */ 2043 if (parent == clk_core_get(core, i)) 2044 break; 2045 2046 /* Fallback to comparing globally unique names */ 2047 if (core->parents[i].name && 2048 !strcmp(parent->name, core->parents[i].name)) 2049 break; 2050 } 2051 2052 if (i == core->num_parents) 2053 return -EINVAL; 2054 2055 core->parents[i].core = parent; 2056 return i; 2057 } 2058 2059 /** 2060 * clk_hw_get_parent_index - return the index of the parent clock 2061 * @hw: clk_hw associated with the clk being consumed 2062 * 2063 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 2064 * clock does not have a current parent. 2065 */ 2066 int clk_hw_get_parent_index(struct clk_hw *hw) 2067 { 2068 struct clk_hw *parent = clk_hw_get_parent(hw); 2069 2070 if (WARN_ON(parent == NULL)) 2071 return -EINVAL; 2072 2073 return clk_fetch_parent_index(hw->core, parent->core); 2074 } 2075 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 2076 2077 /* 2078 * Update the orphan status of @core and all its children. 2079 */ 2080 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 2081 { 2082 struct clk_core *child; 2083 2084 core->orphan = is_orphan; 2085 2086 hlist_for_each_entry(child, &core->children, child_node) 2087 clk_core_update_orphan_status(child, is_orphan); 2088 } 2089 2090 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 2091 { 2092 bool was_orphan = core->orphan; 2093 2094 hlist_del(&core->child_node); 2095 2096 if (new_parent) { 2097 bool becomes_orphan = new_parent->orphan; 2098 2099 /* avoid duplicate POST_RATE_CHANGE notifications */ 2100 if (new_parent->new_child == core) 2101 new_parent->new_child = NULL; 2102 2103 hlist_add_head(&core->child_node, &new_parent->children); 2104 2105 if (was_orphan != becomes_orphan) 2106 clk_core_update_orphan_status(core, becomes_orphan); 2107 } else { 2108 hlist_add_head(&core->child_node, &clk_orphan_list); 2109 if (!was_orphan) 2110 clk_core_update_orphan_status(core, true); 2111 } 2112 2113 core->parent = new_parent; 2114 } 2115 2116 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 2117 struct clk_core *parent) 2118 { 2119 unsigned long flags; 2120 struct clk_core *old_parent = core->parent; 2121 2122 /* 2123 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 2124 * 2125 * 2. Migrate prepare state between parents and prevent race with 2126 * clk_enable(). 2127 * 2128 * If the clock is not prepared, then a race with 2129 * clk_enable/disable() is impossible since we already have the 2130 * prepare lock (future calls to clk_enable() need to be preceded by 2131 * a clk_prepare()). 2132 * 2133 * If the clock is prepared, migrate the prepared state to the new 2134 * parent and also protect against a race with clk_enable() by 2135 * forcing the clock and the new parent on. This ensures that all 2136 * future calls to clk_enable() are practically NOPs with respect to 2137 * hardware and software states. 2138 * 2139 * See also: Comment for clk_set_parent() below. 2140 */ 2141 2142 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 2143 if (core->flags & CLK_OPS_PARENT_ENABLE) { 2144 clk_core_prepare_enable(old_parent); 2145 clk_core_prepare_enable(parent); 2146 } 2147 2148 /* migrate prepare count if > 0 */ 2149 if (core->prepare_count) { 2150 clk_core_prepare_enable(parent); 2151 clk_core_enable_lock(core); 2152 } 2153 2154 /* update the clk tree topology */ 2155 flags = clk_enable_lock(); 2156 clk_reparent(core, parent); 2157 clk_enable_unlock(flags); 2158 2159 return old_parent; 2160 } 2161 2162 static void __clk_set_parent_after(struct clk_core *core, 2163 struct clk_core *parent, 2164 struct clk_core *old_parent) 2165 { 2166 /* 2167 * Finish the migration of prepare state and undo the changes done 2168 * for preventing a race with clk_enable(). 2169 */ 2170 if (core->prepare_count) { 2171 clk_core_disable_lock(core); 2172 clk_core_disable_unprepare(old_parent); 2173 } 2174 2175 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 2176 if (core->flags & CLK_OPS_PARENT_ENABLE) { 2177 clk_core_disable_unprepare(parent); 2178 clk_core_disable_unprepare(old_parent); 2179 } 2180 } 2181 2182 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 2183 u8 p_index) 2184 { 2185 unsigned long flags; 2186 int ret = 0; 2187 struct clk_core *old_parent; 2188 2189 old_parent = __clk_set_parent_before(core, parent); 2190 2191 trace_clk_set_parent(core, parent); 2192 2193 /* change clock input source */ 2194 if (parent && core->ops->set_parent) 2195 ret = core->ops->set_parent(core->hw, p_index); 2196 2197 trace_clk_set_parent_complete(core, parent); 2198 2199 if (ret) { 2200 flags = clk_enable_lock(); 2201 clk_reparent(core, old_parent); 2202 clk_enable_unlock(flags); 2203 2204 __clk_set_parent_after(core, old_parent, parent); 2205 2206 return ret; 2207 } 2208 2209 __clk_set_parent_after(core, parent, old_parent); 2210 2211 return 0; 2212 } 2213 2214 /** 2215 * __clk_speculate_rates 2216 * @core: first clk in the subtree 2217 * @parent_rate: the "future" rate of clk's parent 2218 * 2219 * Walks the subtree of clks starting with clk, speculating rates as it 2220 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 2221 * 2222 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 2223 * pre-rate change notifications and returns early if no clks in the 2224 * subtree have subscribed to the notifications. Note that if a clk does not 2225 * implement the .recalc_rate callback then it is assumed that the clock will 2226 * take on the rate of its parent. 2227 */ 2228 static int __clk_speculate_rates(struct clk_core *core, 2229 unsigned long parent_rate) 2230 { 2231 struct clk_core *child; 2232 unsigned long new_rate; 2233 int ret = NOTIFY_DONE; 2234 2235 lockdep_assert_held(&prepare_lock); 2236 2237 new_rate = clk_recalc(core, parent_rate); 2238 2239 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 2240 if (core->notifier_count) 2241 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 2242 2243 if (ret & NOTIFY_STOP_MASK) { 2244 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 2245 __func__, core->name, ret); 2246 goto out; 2247 } 2248 2249 hlist_for_each_entry(child, &core->children, child_node) { 2250 ret = __clk_speculate_rates(child, new_rate); 2251 if (ret & NOTIFY_STOP_MASK) 2252 break; 2253 } 2254 2255 out: 2256 return ret; 2257 } 2258 2259 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 2260 struct clk_core *new_parent, u8 p_index) 2261 { 2262 struct clk_core *child; 2263 2264 core->new_rate = new_rate; 2265 core->new_parent = new_parent; 2266 core->new_parent_index = p_index; 2267 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 2268 core->new_child = NULL; 2269 if (new_parent && new_parent != core->parent) 2270 new_parent->new_child = core; 2271 2272 hlist_for_each_entry(child, &core->children, child_node) { 2273 child->new_rate = clk_recalc(child, new_rate); 2274 clk_calc_subtree(child, child->new_rate, NULL, 0); 2275 } 2276 } 2277 2278 /* 2279 * calculate the new rates returning the topmost clock that has to be 2280 * changed. 2281 */ 2282 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 2283 unsigned long rate) 2284 { 2285 struct clk_core *top = core; 2286 struct clk_core *old_parent, *parent; 2287 unsigned long best_parent_rate = 0; 2288 unsigned long new_rate; 2289 unsigned long min_rate; 2290 unsigned long max_rate; 2291 int p_index = 0; 2292 long ret; 2293 2294 /* sanity */ 2295 if (IS_ERR_OR_NULL(core)) 2296 return NULL; 2297 2298 /* save parent rate, if it exists */ 2299 parent = old_parent = core->parent; 2300 if (parent) 2301 best_parent_rate = parent->rate; 2302 2303 clk_core_get_boundaries(core, &min_rate, &max_rate); 2304 2305 /* find the closest rate and parent clk/rate */ 2306 if (clk_core_can_round(core)) { 2307 struct clk_rate_request req; 2308 2309 clk_core_init_rate_req(core, &req, rate); 2310 2311 trace_clk_rate_request_start(&req); 2312 2313 ret = clk_core_determine_round_nolock(core, &req); 2314 if (ret < 0) 2315 return NULL; 2316 2317 trace_clk_rate_request_done(&req); 2318 2319 best_parent_rate = req.best_parent_rate; 2320 new_rate = req.rate; 2321 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 2322 2323 if (new_rate < min_rate || new_rate > max_rate) 2324 return NULL; 2325 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 2326 /* pass-through clock without adjustable parent */ 2327 core->new_rate = core->rate; 2328 return NULL; 2329 } else { 2330 /* pass-through clock with adjustable parent */ 2331 top = clk_calc_new_rates(parent, rate); 2332 new_rate = parent->new_rate; 2333 goto out; 2334 } 2335 2336 /* some clocks must be gated to change parent */ 2337 if (parent != old_parent && 2338 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 2339 pr_debug("%s: %s not gated but wants to reparent\n", 2340 __func__, core->name); 2341 return NULL; 2342 } 2343 2344 /* try finding the new parent index */ 2345 if (parent && core->num_parents > 1) { 2346 p_index = clk_fetch_parent_index(core, parent); 2347 if (p_index < 0) { 2348 pr_debug("%s: clk %s can not be parent of clk %s\n", 2349 __func__, parent->name, core->name); 2350 return NULL; 2351 } 2352 } 2353 2354 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 2355 best_parent_rate != parent->rate) 2356 top = clk_calc_new_rates(parent, best_parent_rate); 2357 2358 out: 2359 clk_calc_subtree(core, new_rate, parent, p_index); 2360 2361 return top; 2362 } 2363 2364 /* 2365 * Notify about rate changes in a subtree. Always walk down the whole tree 2366 * so that in case of an error we can walk down the whole tree again and 2367 * abort the change. 2368 */ 2369 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2370 unsigned long event) 2371 { 2372 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2373 int ret = NOTIFY_DONE; 2374 2375 if (core->rate == core->new_rate) 2376 return NULL; 2377 2378 if (core->notifier_count) { 2379 ret = __clk_notify(core, event, core->rate, core->new_rate); 2380 if (ret & NOTIFY_STOP_MASK) 2381 fail_clk = core; 2382 } 2383 2384 hlist_for_each_entry(child, &core->children, child_node) { 2385 /* Skip children who will be reparented to another clock */ 2386 if (child->new_parent && child->new_parent != core) 2387 continue; 2388 tmp_clk = clk_propagate_rate_change(child, event); 2389 if (tmp_clk) 2390 fail_clk = tmp_clk; 2391 } 2392 2393 /* handle the new child who might not be in core->children yet */ 2394 if (core->new_child) { 2395 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2396 if (tmp_clk) 2397 fail_clk = tmp_clk; 2398 } 2399 2400 return fail_clk; 2401 } 2402 2403 /* 2404 * walk down a subtree and set the new rates notifying the rate 2405 * change on the way 2406 */ 2407 static void clk_change_rate(struct clk_core *core) 2408 { 2409 struct clk_core *child; 2410 struct hlist_node *tmp; 2411 unsigned long old_rate; 2412 unsigned long best_parent_rate = 0; 2413 bool skip_set_rate = false; 2414 struct clk_core *old_parent; 2415 struct clk_core *parent = NULL; 2416 2417 old_rate = core->rate; 2418 2419 if (core->new_parent) { 2420 parent = core->new_parent; 2421 best_parent_rate = core->new_parent->rate; 2422 } else if (core->parent) { 2423 parent = core->parent; 2424 best_parent_rate = core->parent->rate; 2425 } 2426 2427 if (clk_pm_runtime_get(core)) 2428 return; 2429 2430 if (core->flags & CLK_SET_RATE_UNGATE) { 2431 clk_core_prepare(core); 2432 clk_core_enable_lock(core); 2433 } 2434 2435 if (core->new_parent && core->new_parent != core->parent) { 2436 old_parent = __clk_set_parent_before(core, core->new_parent); 2437 trace_clk_set_parent(core, core->new_parent); 2438 2439 if (core->ops->set_rate_and_parent) { 2440 skip_set_rate = true; 2441 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2442 best_parent_rate, 2443 core->new_parent_index); 2444 } else if (core->ops->set_parent) { 2445 core->ops->set_parent(core->hw, core->new_parent_index); 2446 } 2447 2448 trace_clk_set_parent_complete(core, core->new_parent); 2449 __clk_set_parent_after(core, core->new_parent, old_parent); 2450 } 2451 2452 if (core->flags & CLK_OPS_PARENT_ENABLE) 2453 clk_core_prepare_enable(parent); 2454 2455 trace_clk_set_rate(core, core->new_rate); 2456 2457 if (!skip_set_rate && core->ops->set_rate) 2458 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2459 2460 trace_clk_set_rate_complete(core, core->new_rate); 2461 2462 core->rate = clk_recalc(core, best_parent_rate); 2463 2464 if (core->flags & CLK_SET_RATE_UNGATE) { 2465 clk_core_disable_lock(core); 2466 clk_core_unprepare(core); 2467 } 2468 2469 if (core->flags & CLK_OPS_PARENT_ENABLE) 2470 clk_core_disable_unprepare(parent); 2471 2472 if (core->notifier_count && old_rate != core->rate) 2473 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2474 2475 if (core->flags & CLK_RECALC_NEW_RATES) 2476 (void)clk_calc_new_rates(core, core->new_rate); 2477 2478 /* 2479 * Use safe iteration, as change_rate can actually swap parents 2480 * for certain clock types. 2481 */ 2482 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2483 /* Skip children who will be reparented to another clock */ 2484 if (child->new_parent && child->new_parent != core) 2485 continue; 2486 clk_change_rate(child); 2487 } 2488 2489 /* handle the new child who might not be in core->children yet */ 2490 if (core->new_child) 2491 clk_change_rate(core->new_child); 2492 2493 clk_pm_runtime_put(core); 2494 } 2495 2496 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2497 unsigned long req_rate) 2498 { 2499 int ret, cnt; 2500 struct clk_rate_request req; 2501 2502 lockdep_assert_held(&prepare_lock); 2503 2504 if (!core) 2505 return 0; 2506 2507 /* simulate what the rate would be if it could be freely set */ 2508 cnt = clk_core_rate_nuke_protect(core); 2509 if (cnt < 0) 2510 return cnt; 2511 2512 clk_core_init_rate_req(core, &req, req_rate); 2513 2514 trace_clk_rate_request_start(&req); 2515 2516 ret = clk_core_round_rate_nolock(core, &req); 2517 2518 trace_clk_rate_request_done(&req); 2519 2520 /* restore the protection */ 2521 clk_core_rate_restore_protect(core, cnt); 2522 2523 return ret ? 0 : req.rate; 2524 } 2525 2526 static int clk_core_set_rate_nolock(struct clk_core *core, 2527 unsigned long req_rate) 2528 { 2529 struct clk_core *top, *fail_clk; 2530 unsigned long rate; 2531 int ret; 2532 2533 if (!core) 2534 return 0; 2535 2536 rate = clk_core_req_round_rate_nolock(core, req_rate); 2537 2538 /* bail early if nothing to do */ 2539 if (rate == clk_core_get_rate_nolock(core)) 2540 return 0; 2541 2542 /* fail on a direct rate set of a protected provider */ 2543 if (clk_core_rate_is_protected(core)) 2544 return -EBUSY; 2545 2546 /* calculate new rates and get the topmost changed clock */ 2547 top = clk_calc_new_rates(core, req_rate); 2548 if (!top) 2549 return -EINVAL; 2550 2551 ret = clk_pm_runtime_get(core); 2552 if (ret) 2553 return ret; 2554 2555 /* notify that we are about to change rates */ 2556 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2557 if (fail_clk) { 2558 pr_debug("%s: failed to set %s rate\n", __func__, 2559 fail_clk->name); 2560 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2561 ret = -EBUSY; 2562 goto err; 2563 } 2564 2565 /* change the rates */ 2566 clk_change_rate(top); 2567 2568 core->req_rate = req_rate; 2569 err: 2570 clk_pm_runtime_put(core); 2571 2572 return ret; 2573 } 2574 2575 /** 2576 * clk_set_rate - specify a new rate for clk 2577 * @clk: the clk whose rate is being changed 2578 * @rate: the new rate for clk 2579 * 2580 * In the simplest case clk_set_rate will only adjust the rate of clk. 2581 * 2582 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2583 * propagate up to clk's parent; whether or not this happens depends on the 2584 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2585 * after calling .round_rate then upstream parent propagation is ignored. If 2586 * *parent_rate comes back with a new rate for clk's parent then we propagate 2587 * up to clk's parent and set its rate. Upward propagation will continue 2588 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2589 * .round_rate stops requesting changes to clk's parent_rate. 2590 * 2591 * Rate changes are accomplished via tree traversal that also recalculates the 2592 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2593 * 2594 * Returns 0 on success, -EERROR otherwise. 2595 */ 2596 int clk_set_rate(struct clk *clk, unsigned long rate) 2597 { 2598 int ret; 2599 2600 if (!clk) 2601 return 0; 2602 2603 /* prevent racing with updates to the clock topology */ 2604 clk_prepare_lock(); 2605 2606 if (clk->exclusive_count) 2607 clk_core_rate_unprotect(clk->core); 2608 2609 ret = clk_core_set_rate_nolock(clk->core, rate); 2610 2611 if (clk->exclusive_count) 2612 clk_core_rate_protect(clk->core); 2613 2614 clk_prepare_unlock(); 2615 2616 return ret; 2617 } 2618 EXPORT_SYMBOL_GPL(clk_set_rate); 2619 2620 /** 2621 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2622 * @clk: the clk whose rate is being changed 2623 * @rate: the new rate for clk 2624 * 2625 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2626 * within a critical section 2627 * 2628 * This can be used initially to ensure that at least 1 consumer is 2629 * satisfied when several consumers are competing for exclusivity over the 2630 * same clock provider. 2631 * 2632 * The exclusivity is not applied if setting the rate failed. 2633 * 2634 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2635 * clk_rate_exclusive_put(). 2636 * 2637 * Returns 0 on success, -EERROR otherwise. 2638 */ 2639 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2640 { 2641 int ret; 2642 2643 if (!clk) 2644 return 0; 2645 2646 /* prevent racing with updates to the clock topology */ 2647 clk_prepare_lock(); 2648 2649 /* 2650 * The temporary protection removal is not here, on purpose 2651 * This function is meant to be used instead of clk_rate_protect, 2652 * so before the consumer code path protect the clock provider 2653 */ 2654 2655 ret = clk_core_set_rate_nolock(clk->core, rate); 2656 if (!ret) { 2657 clk_core_rate_protect(clk->core); 2658 clk->exclusive_count++; 2659 } 2660 2661 clk_prepare_unlock(); 2662 2663 return ret; 2664 } 2665 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2666 2667 static int clk_set_rate_range_nolock(struct clk *clk, 2668 unsigned long min, 2669 unsigned long max) 2670 { 2671 int ret = 0; 2672 unsigned long old_min, old_max, rate; 2673 2674 lockdep_assert_held(&prepare_lock); 2675 2676 if (!clk) 2677 return 0; 2678 2679 trace_clk_set_rate_range(clk->core, min, max); 2680 2681 if (min > max) { 2682 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2683 __func__, clk->core->name, clk->dev_id, clk->con_id, 2684 min, max); 2685 return -EINVAL; 2686 } 2687 2688 if (clk->exclusive_count) 2689 clk_core_rate_unprotect(clk->core); 2690 2691 /* Save the current values in case we need to rollback the change */ 2692 old_min = clk->min_rate; 2693 old_max = clk->max_rate; 2694 clk->min_rate = min; 2695 clk->max_rate = max; 2696 2697 if (!clk_core_check_boundaries(clk->core, min, max)) { 2698 ret = -EINVAL; 2699 goto out; 2700 } 2701 2702 rate = clk->core->req_rate; 2703 if (clk->core->flags & CLK_GET_RATE_NOCACHE) 2704 rate = clk_core_get_rate_recalc(clk->core); 2705 2706 /* 2707 * Since the boundaries have been changed, let's give the 2708 * opportunity to the provider to adjust the clock rate based on 2709 * the new boundaries. 2710 * 2711 * We also need to handle the case where the clock is currently 2712 * outside of the boundaries. Clamping the last requested rate 2713 * to the current minimum and maximum will also handle this. 2714 * 2715 * FIXME: 2716 * There is a catch. It may fail for the usual reason (clock 2717 * broken, clock protected, etc) but also because: 2718 * - round_rate() was not favorable and fell on the wrong 2719 * side of the boundary 2720 * - the determine_rate() callback does not really check for 2721 * this corner case when determining the rate 2722 */ 2723 rate = clamp(rate, min, max); 2724 ret = clk_core_set_rate_nolock(clk->core, rate); 2725 if (ret) { 2726 /* rollback the changes */ 2727 clk->min_rate = old_min; 2728 clk->max_rate = old_max; 2729 } 2730 2731 out: 2732 if (clk->exclusive_count) 2733 clk_core_rate_protect(clk->core); 2734 2735 return ret; 2736 } 2737 2738 /** 2739 * clk_set_rate_range - set a rate range for a clock source 2740 * @clk: clock source 2741 * @min: desired minimum clock rate in Hz, inclusive 2742 * @max: desired maximum clock rate in Hz, inclusive 2743 * 2744 * Return: 0 for success or negative errno on failure. 2745 */ 2746 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2747 { 2748 int ret; 2749 2750 if (!clk) 2751 return 0; 2752 2753 clk_prepare_lock(); 2754 2755 ret = clk_set_rate_range_nolock(clk, min, max); 2756 2757 clk_prepare_unlock(); 2758 2759 return ret; 2760 } 2761 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2762 2763 /** 2764 * clk_set_min_rate - set a minimum clock rate for a clock source 2765 * @clk: clock source 2766 * @rate: desired minimum clock rate in Hz, inclusive 2767 * 2768 * Returns success (0) or negative errno. 2769 */ 2770 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2771 { 2772 if (!clk) 2773 return 0; 2774 2775 trace_clk_set_min_rate(clk->core, rate); 2776 2777 return clk_set_rate_range(clk, rate, clk->max_rate); 2778 } 2779 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2780 2781 /** 2782 * clk_set_max_rate - set a maximum clock rate for a clock source 2783 * @clk: clock source 2784 * @rate: desired maximum clock rate in Hz, inclusive 2785 * 2786 * Returns success (0) or negative errno. 2787 */ 2788 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2789 { 2790 if (!clk) 2791 return 0; 2792 2793 trace_clk_set_max_rate(clk->core, rate); 2794 2795 return clk_set_rate_range(clk, clk->min_rate, rate); 2796 } 2797 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2798 2799 /** 2800 * clk_get_parent - return the parent of a clk 2801 * @clk: the clk whose parent gets returned 2802 * 2803 * Simply returns clk->parent. Returns NULL if clk is NULL. 2804 */ 2805 struct clk *clk_get_parent(struct clk *clk) 2806 { 2807 struct clk *parent; 2808 2809 if (!clk) 2810 return NULL; 2811 2812 clk_prepare_lock(); 2813 /* TODO: Create a per-user clk and change callers to call clk_put */ 2814 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2815 clk_prepare_unlock(); 2816 2817 return parent; 2818 } 2819 EXPORT_SYMBOL_GPL(clk_get_parent); 2820 2821 static struct clk_core *__clk_init_parent(struct clk_core *core) 2822 { 2823 u8 index = 0; 2824 2825 if (core->num_parents > 1 && core->ops->get_parent) 2826 index = core->ops->get_parent(core->hw); 2827 2828 return clk_core_get_parent_by_index(core, index); 2829 } 2830 2831 static void clk_core_reparent(struct clk_core *core, 2832 struct clk_core *new_parent) 2833 { 2834 clk_reparent(core, new_parent); 2835 __clk_recalc_accuracies(core); 2836 __clk_recalc_rates(core, true, POST_RATE_CHANGE); 2837 } 2838 2839 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2840 { 2841 if (!hw) 2842 return; 2843 2844 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2845 } 2846 2847 /** 2848 * clk_has_parent - check if a clock is a possible parent for another 2849 * @clk: clock source 2850 * @parent: parent clock source 2851 * 2852 * This function can be used in drivers that need to check that a clock can be 2853 * the parent of another without actually changing the parent. 2854 * 2855 * Returns true if @parent is a possible parent for @clk, false otherwise. 2856 */ 2857 bool clk_has_parent(const struct clk *clk, const struct clk *parent) 2858 { 2859 /* NULL clocks should be nops, so return success if either is NULL. */ 2860 if (!clk || !parent) 2861 return true; 2862 2863 return clk_core_has_parent(clk->core, parent->core); 2864 } 2865 EXPORT_SYMBOL_GPL(clk_has_parent); 2866 2867 static int clk_core_set_parent_nolock(struct clk_core *core, 2868 struct clk_core *parent) 2869 { 2870 int ret = 0; 2871 int p_index = 0; 2872 unsigned long p_rate = 0; 2873 2874 lockdep_assert_held(&prepare_lock); 2875 2876 if (!core) 2877 return 0; 2878 2879 if (core->parent == parent) 2880 return 0; 2881 2882 /* verify ops for multi-parent clks */ 2883 if (core->num_parents > 1 && !core->ops->set_parent) 2884 return -EPERM; 2885 2886 /* check that we are allowed to re-parent if the clock is in use */ 2887 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2888 return -EBUSY; 2889 2890 if (clk_core_rate_is_protected(core)) 2891 return -EBUSY; 2892 2893 /* try finding the new parent index */ 2894 if (parent) { 2895 p_index = clk_fetch_parent_index(core, parent); 2896 if (p_index < 0) { 2897 pr_debug("%s: clk %s can not be parent of clk %s\n", 2898 __func__, parent->name, core->name); 2899 return p_index; 2900 } 2901 p_rate = parent->rate; 2902 } 2903 2904 ret = clk_pm_runtime_get(core); 2905 if (ret) 2906 return ret; 2907 2908 /* propagate PRE_RATE_CHANGE notifications */ 2909 ret = __clk_speculate_rates(core, p_rate); 2910 2911 /* abort if a driver objects */ 2912 if (ret & NOTIFY_STOP_MASK) 2913 goto runtime_put; 2914 2915 /* do the re-parent */ 2916 ret = __clk_set_parent(core, parent, p_index); 2917 2918 /* propagate rate an accuracy recalculation accordingly */ 2919 if (ret) { 2920 __clk_recalc_rates(core, true, ABORT_RATE_CHANGE); 2921 } else { 2922 __clk_recalc_rates(core, true, POST_RATE_CHANGE); 2923 __clk_recalc_accuracies(core); 2924 } 2925 2926 runtime_put: 2927 clk_pm_runtime_put(core); 2928 2929 return ret; 2930 } 2931 2932 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2933 { 2934 return clk_core_set_parent_nolock(hw->core, parent->core); 2935 } 2936 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2937 2938 /** 2939 * clk_set_parent - switch the parent of a mux clk 2940 * @clk: the mux clk whose input we are switching 2941 * @parent: the new input to clk 2942 * 2943 * Re-parent clk to use parent as its new input source. If clk is in 2944 * prepared state, the clk will get enabled for the duration of this call. If 2945 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2946 * that, the reparenting is glitchy in hardware, etc), use the 2947 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2948 * 2949 * After successfully changing clk's parent clk_set_parent will update the 2950 * clk topology, sysfs topology and propagate rate recalculation via 2951 * __clk_recalc_rates. 2952 * 2953 * Returns 0 on success, -EERROR otherwise. 2954 */ 2955 int clk_set_parent(struct clk *clk, struct clk *parent) 2956 { 2957 int ret; 2958 2959 if (!clk) 2960 return 0; 2961 2962 clk_prepare_lock(); 2963 2964 if (clk->exclusive_count) 2965 clk_core_rate_unprotect(clk->core); 2966 2967 ret = clk_core_set_parent_nolock(clk->core, 2968 parent ? parent->core : NULL); 2969 2970 if (clk->exclusive_count) 2971 clk_core_rate_protect(clk->core); 2972 2973 clk_prepare_unlock(); 2974 2975 return ret; 2976 } 2977 EXPORT_SYMBOL_GPL(clk_set_parent); 2978 2979 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2980 { 2981 int ret = -EINVAL; 2982 2983 lockdep_assert_held(&prepare_lock); 2984 2985 if (!core) 2986 return 0; 2987 2988 if (clk_core_rate_is_protected(core)) 2989 return -EBUSY; 2990 2991 trace_clk_set_phase(core, degrees); 2992 2993 if (core->ops->set_phase) { 2994 ret = core->ops->set_phase(core->hw, degrees); 2995 if (!ret) 2996 core->phase = degrees; 2997 } 2998 2999 trace_clk_set_phase_complete(core, degrees); 3000 3001 return ret; 3002 } 3003 3004 /** 3005 * clk_set_phase - adjust the phase shift of a clock signal 3006 * @clk: clock signal source 3007 * @degrees: number of degrees the signal is shifted 3008 * 3009 * Shifts the phase of a clock signal by the specified 3010 * degrees. Returns 0 on success, -EERROR otherwise. 3011 * 3012 * This function makes no distinction about the input or reference 3013 * signal that we adjust the clock signal phase against. For example 3014 * phase locked-loop clock signal generators we may shift phase with 3015 * respect to feedback clock signal input, but for other cases the 3016 * clock phase may be shifted with respect to some other, unspecified 3017 * signal. 3018 * 3019 * Additionally the concept of phase shift does not propagate through 3020 * the clock tree hierarchy, which sets it apart from clock rates and 3021 * clock accuracy. A parent clock phase attribute does not have an 3022 * impact on the phase attribute of a child clock. 3023 */ 3024 int clk_set_phase(struct clk *clk, int degrees) 3025 { 3026 int ret; 3027 3028 if (!clk) 3029 return 0; 3030 3031 /* sanity check degrees */ 3032 degrees %= 360; 3033 if (degrees < 0) 3034 degrees += 360; 3035 3036 clk_prepare_lock(); 3037 3038 if (clk->exclusive_count) 3039 clk_core_rate_unprotect(clk->core); 3040 3041 ret = clk_core_set_phase_nolock(clk->core, degrees); 3042 3043 if (clk->exclusive_count) 3044 clk_core_rate_protect(clk->core); 3045 3046 clk_prepare_unlock(); 3047 3048 return ret; 3049 } 3050 EXPORT_SYMBOL_GPL(clk_set_phase); 3051 3052 static int clk_core_get_phase(struct clk_core *core) 3053 { 3054 int ret; 3055 3056 lockdep_assert_held(&prepare_lock); 3057 if (!core->ops->get_phase) 3058 return 0; 3059 3060 /* Always try to update cached phase if possible */ 3061 ret = core->ops->get_phase(core->hw); 3062 if (ret >= 0) 3063 core->phase = ret; 3064 3065 return ret; 3066 } 3067 3068 /** 3069 * clk_get_phase - return the phase shift of a clock signal 3070 * @clk: clock signal source 3071 * 3072 * Returns the phase shift of a clock node in degrees, otherwise returns 3073 * -EERROR. 3074 */ 3075 int clk_get_phase(struct clk *clk) 3076 { 3077 int ret; 3078 3079 if (!clk) 3080 return 0; 3081 3082 clk_prepare_lock(); 3083 ret = clk_core_get_phase(clk->core); 3084 clk_prepare_unlock(); 3085 3086 return ret; 3087 } 3088 EXPORT_SYMBOL_GPL(clk_get_phase); 3089 3090 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 3091 { 3092 /* Assume a default value of 50% */ 3093 core->duty.num = 1; 3094 core->duty.den = 2; 3095 } 3096 3097 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 3098 3099 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 3100 { 3101 struct clk_duty *duty = &core->duty; 3102 int ret = 0; 3103 3104 if (!core->ops->get_duty_cycle) 3105 return clk_core_update_duty_cycle_parent_nolock(core); 3106 3107 ret = core->ops->get_duty_cycle(core->hw, duty); 3108 if (ret) 3109 goto reset; 3110 3111 /* Don't trust the clock provider too much */ 3112 if (duty->den == 0 || duty->num > duty->den) { 3113 ret = -EINVAL; 3114 goto reset; 3115 } 3116 3117 return 0; 3118 3119 reset: 3120 clk_core_reset_duty_cycle_nolock(core); 3121 return ret; 3122 } 3123 3124 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 3125 { 3126 int ret = 0; 3127 3128 if (core->parent && 3129 core->flags & CLK_DUTY_CYCLE_PARENT) { 3130 ret = clk_core_update_duty_cycle_nolock(core->parent); 3131 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 3132 } else { 3133 clk_core_reset_duty_cycle_nolock(core); 3134 } 3135 3136 return ret; 3137 } 3138 3139 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 3140 struct clk_duty *duty); 3141 3142 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 3143 struct clk_duty *duty) 3144 { 3145 int ret; 3146 3147 lockdep_assert_held(&prepare_lock); 3148 3149 if (clk_core_rate_is_protected(core)) 3150 return -EBUSY; 3151 3152 trace_clk_set_duty_cycle(core, duty); 3153 3154 if (!core->ops->set_duty_cycle) 3155 return clk_core_set_duty_cycle_parent_nolock(core, duty); 3156 3157 ret = core->ops->set_duty_cycle(core->hw, duty); 3158 if (!ret) 3159 memcpy(&core->duty, duty, sizeof(*duty)); 3160 3161 trace_clk_set_duty_cycle_complete(core, duty); 3162 3163 return ret; 3164 } 3165 3166 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 3167 struct clk_duty *duty) 3168 { 3169 int ret = 0; 3170 3171 if (core->parent && 3172 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 3173 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 3174 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 3175 } 3176 3177 return ret; 3178 } 3179 3180 /** 3181 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 3182 * @clk: clock signal source 3183 * @num: numerator of the duty cycle ratio to be applied 3184 * @den: denominator of the duty cycle ratio to be applied 3185 * 3186 * Apply the duty cycle ratio if the ratio is valid and the clock can 3187 * perform this operation 3188 * 3189 * Returns (0) on success, a negative errno otherwise. 3190 */ 3191 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 3192 { 3193 int ret; 3194 struct clk_duty duty; 3195 3196 if (!clk) 3197 return 0; 3198 3199 /* sanity check the ratio */ 3200 if (den == 0 || num > den) 3201 return -EINVAL; 3202 3203 duty.num = num; 3204 duty.den = den; 3205 3206 clk_prepare_lock(); 3207 3208 if (clk->exclusive_count) 3209 clk_core_rate_unprotect(clk->core); 3210 3211 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 3212 3213 if (clk->exclusive_count) 3214 clk_core_rate_protect(clk->core); 3215 3216 clk_prepare_unlock(); 3217 3218 return ret; 3219 } 3220 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 3221 3222 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 3223 unsigned int scale) 3224 { 3225 struct clk_duty *duty = &core->duty; 3226 int ret; 3227 3228 clk_prepare_lock(); 3229 3230 ret = clk_core_update_duty_cycle_nolock(core); 3231 if (!ret) 3232 ret = mult_frac(scale, duty->num, duty->den); 3233 3234 clk_prepare_unlock(); 3235 3236 return ret; 3237 } 3238 3239 /** 3240 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 3241 * @clk: clock signal source 3242 * @scale: scaling factor to be applied to represent the ratio as an integer 3243 * 3244 * Returns the duty cycle ratio of a clock node multiplied by the provided 3245 * scaling factor, or negative errno on error. 3246 */ 3247 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 3248 { 3249 if (!clk) 3250 return 0; 3251 3252 return clk_core_get_scaled_duty_cycle(clk->core, scale); 3253 } 3254 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 3255 3256 /** 3257 * clk_is_match - check if two clk's point to the same hardware clock 3258 * @p: clk compared against q 3259 * @q: clk compared against p 3260 * 3261 * Returns true if the two struct clk pointers both point to the same hardware 3262 * clock node. Put differently, returns true if struct clk *p and struct clk *q 3263 * share the same struct clk_core object. 3264 * 3265 * Returns false otherwise. Note that two NULL clks are treated as matching. 3266 */ 3267 bool clk_is_match(const struct clk *p, const struct clk *q) 3268 { 3269 /* trivial case: identical struct clk's or both NULL */ 3270 if (p == q) 3271 return true; 3272 3273 /* true if clk->core pointers match. Avoid dereferencing garbage */ 3274 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 3275 if (p->core == q->core) 3276 return true; 3277 3278 return false; 3279 } 3280 EXPORT_SYMBOL_GPL(clk_is_match); 3281 3282 /*** debugfs support ***/ 3283 3284 #ifdef CONFIG_DEBUG_FS 3285 #include <linux/debugfs.h> 3286 3287 static struct dentry *rootdir; 3288 static int inited = 0; 3289 static DEFINE_MUTEX(clk_debug_lock); 3290 static HLIST_HEAD(clk_debug_list); 3291 3292 static struct hlist_head *orphan_list[] = { 3293 &clk_orphan_list, 3294 NULL, 3295 }; 3296 3297 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 3298 int level) 3299 { 3300 int phase; 3301 struct clk *clk_user; 3302 int multi_node = 0; 3303 3304 seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ", 3305 level * 3 + 1, "", 3306 35 - level * 3, c->name, 3307 c->enable_count, c->prepare_count, c->protect_count, 3308 clk_core_get_rate_recalc(c), 3309 clk_core_get_accuracy_recalc(c)); 3310 3311 phase = clk_core_get_phase(c); 3312 if (phase >= 0) 3313 seq_printf(s, "%-5d", phase); 3314 else 3315 seq_puts(s, "-----"); 3316 3317 seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000)); 3318 3319 if (c->ops->is_enabled) 3320 seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N'); 3321 else if (!c->ops->enable) 3322 seq_printf(s, " %5c ", 'Y'); 3323 else 3324 seq_printf(s, " %5c ", '?'); 3325 3326 hlist_for_each_entry(clk_user, &c->clks, clks_node) { 3327 seq_printf(s, "%*s%-*s %-25s\n", 3328 level * 3 + 2 + 105 * multi_node, "", 3329 30, 3330 clk_user->dev_id ? clk_user->dev_id : "deviceless", 3331 clk_user->con_id ? clk_user->con_id : "no_connection_id"); 3332 3333 multi_node = 1; 3334 } 3335 3336 } 3337 3338 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 3339 int level) 3340 { 3341 struct clk_core *child; 3342 3343 clk_summary_show_one(s, c, level); 3344 3345 hlist_for_each_entry(child, &c->children, child_node) 3346 clk_summary_show_subtree(s, child, level + 1); 3347 } 3348 3349 static int clk_summary_show(struct seq_file *s, void *data) 3350 { 3351 struct clk_core *c; 3352 struct hlist_head **lists = s->private; 3353 int ret; 3354 3355 seq_puts(s, " enable prepare protect duty hardware connection\n"); 3356 seq_puts(s, " clock count count count rate accuracy phase cycle enable consumer id\n"); 3357 seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n"); 3358 3359 ret = clk_pm_runtime_get_all(); 3360 if (ret) 3361 return ret; 3362 3363 clk_prepare_lock(); 3364 3365 for (; *lists; lists++) 3366 hlist_for_each_entry(c, *lists, child_node) 3367 clk_summary_show_subtree(s, c, 0); 3368 3369 clk_prepare_unlock(); 3370 clk_pm_runtime_put_all(); 3371 3372 return 0; 3373 } 3374 DEFINE_SHOW_ATTRIBUTE(clk_summary); 3375 3376 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 3377 { 3378 int phase; 3379 unsigned long min_rate, max_rate; 3380 3381 clk_core_get_boundaries(c, &min_rate, &max_rate); 3382 3383 /* This should be JSON format, i.e. elements separated with a comma */ 3384 seq_printf(s, "\"%s\": { ", c->name); 3385 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 3386 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 3387 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 3388 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 3389 seq_printf(s, "\"min_rate\": %lu,", min_rate); 3390 seq_printf(s, "\"max_rate\": %lu,", max_rate); 3391 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 3392 phase = clk_core_get_phase(c); 3393 if (phase >= 0) 3394 seq_printf(s, "\"phase\": %d,", phase); 3395 seq_printf(s, "\"duty_cycle\": %u", 3396 clk_core_get_scaled_duty_cycle(c, 100000)); 3397 } 3398 3399 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3400 { 3401 struct clk_core *child; 3402 3403 clk_dump_one(s, c, level); 3404 3405 hlist_for_each_entry(child, &c->children, child_node) { 3406 seq_putc(s, ','); 3407 clk_dump_subtree(s, child, level + 1); 3408 } 3409 3410 seq_putc(s, '}'); 3411 } 3412 3413 static int clk_dump_show(struct seq_file *s, void *data) 3414 { 3415 struct clk_core *c; 3416 bool first_node = true; 3417 struct hlist_head **lists = s->private; 3418 int ret; 3419 3420 ret = clk_pm_runtime_get_all(); 3421 if (ret) 3422 return ret; 3423 3424 seq_putc(s, '{'); 3425 3426 clk_prepare_lock(); 3427 3428 for (; *lists; lists++) { 3429 hlist_for_each_entry(c, *lists, child_node) { 3430 if (!first_node) 3431 seq_putc(s, ','); 3432 first_node = false; 3433 clk_dump_subtree(s, c, 0); 3434 } 3435 } 3436 3437 clk_prepare_unlock(); 3438 clk_pm_runtime_put_all(); 3439 3440 seq_puts(s, "}\n"); 3441 return 0; 3442 } 3443 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3444 3445 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3446 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3447 /* 3448 * This can be dangerous, therefore don't provide any real compile time 3449 * configuration option for this feature. 3450 * People who want to use this will need to modify the source code directly. 3451 */ 3452 static int clk_rate_set(void *data, u64 val) 3453 { 3454 struct clk_core *core = data; 3455 int ret; 3456 3457 clk_prepare_lock(); 3458 ret = clk_core_set_rate_nolock(core, val); 3459 clk_prepare_unlock(); 3460 3461 return ret; 3462 } 3463 3464 #define clk_rate_mode 0644 3465 3466 static int clk_phase_set(void *data, u64 val) 3467 { 3468 struct clk_core *core = data; 3469 int degrees = do_div(val, 360); 3470 int ret; 3471 3472 clk_prepare_lock(); 3473 ret = clk_core_set_phase_nolock(core, degrees); 3474 clk_prepare_unlock(); 3475 3476 return ret; 3477 } 3478 3479 #define clk_phase_mode 0644 3480 3481 static int clk_prepare_enable_set(void *data, u64 val) 3482 { 3483 struct clk_core *core = data; 3484 int ret = 0; 3485 3486 if (val) 3487 ret = clk_prepare_enable(core->hw->clk); 3488 else 3489 clk_disable_unprepare(core->hw->clk); 3490 3491 return ret; 3492 } 3493 3494 static int clk_prepare_enable_get(void *data, u64 *val) 3495 { 3496 struct clk_core *core = data; 3497 3498 *val = core->enable_count && core->prepare_count; 3499 return 0; 3500 } 3501 3502 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3503 clk_prepare_enable_set, "%llu\n"); 3504 3505 #else 3506 #define clk_rate_set NULL 3507 #define clk_rate_mode 0444 3508 3509 #define clk_phase_set NULL 3510 #define clk_phase_mode 0644 3511 #endif 3512 3513 static int clk_rate_get(void *data, u64 *val) 3514 { 3515 struct clk_core *core = data; 3516 3517 clk_prepare_lock(); 3518 *val = clk_core_get_rate_recalc(core); 3519 clk_prepare_unlock(); 3520 3521 return 0; 3522 } 3523 3524 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3525 3526 static int clk_phase_get(void *data, u64 *val) 3527 { 3528 struct clk_core *core = data; 3529 3530 *val = core->phase; 3531 return 0; 3532 } 3533 3534 DEFINE_DEBUGFS_ATTRIBUTE(clk_phase_fops, clk_phase_get, clk_phase_set, "%llu\n"); 3535 3536 static const struct { 3537 unsigned long flag; 3538 const char *name; 3539 } clk_flags[] = { 3540 #define ENTRY(f) { f, #f } 3541 ENTRY(CLK_SET_RATE_GATE), 3542 ENTRY(CLK_SET_PARENT_GATE), 3543 ENTRY(CLK_SET_RATE_PARENT), 3544 ENTRY(CLK_IGNORE_UNUSED), 3545 ENTRY(CLK_GET_RATE_NOCACHE), 3546 ENTRY(CLK_SET_RATE_NO_REPARENT), 3547 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3548 ENTRY(CLK_RECALC_NEW_RATES), 3549 ENTRY(CLK_SET_RATE_UNGATE), 3550 ENTRY(CLK_IS_CRITICAL), 3551 ENTRY(CLK_OPS_PARENT_ENABLE), 3552 ENTRY(CLK_DUTY_CYCLE_PARENT), 3553 #undef ENTRY 3554 }; 3555 3556 static int clk_flags_show(struct seq_file *s, void *data) 3557 { 3558 struct clk_core *core = s->private; 3559 unsigned long flags = core->flags; 3560 unsigned int i; 3561 3562 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3563 if (flags & clk_flags[i].flag) { 3564 seq_printf(s, "%s\n", clk_flags[i].name); 3565 flags &= ~clk_flags[i].flag; 3566 } 3567 } 3568 if (flags) { 3569 /* Unknown flags */ 3570 seq_printf(s, "0x%lx\n", flags); 3571 } 3572 3573 return 0; 3574 } 3575 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3576 3577 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3578 unsigned int i, char terminator) 3579 { 3580 struct clk_core *parent; 3581 const char *name = NULL; 3582 3583 /* 3584 * Go through the following options to fetch a parent's name. 3585 * 3586 * 1. Fetch the registered parent clock and use its name 3587 * 2. Use the global (fallback) name if specified 3588 * 3. Use the local fw_name if provided 3589 * 4. Fetch parent clock's clock-output-name if DT index was set 3590 * 3591 * This may still fail in some cases, such as when the parent is 3592 * specified directly via a struct clk_hw pointer, but it isn't 3593 * registered (yet). 3594 */ 3595 parent = clk_core_get_parent_by_index(core, i); 3596 if (parent) { 3597 seq_puts(s, parent->name); 3598 } else if (core->parents[i].name) { 3599 seq_puts(s, core->parents[i].name); 3600 } else if (core->parents[i].fw_name) { 3601 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3602 } else { 3603 if (core->parents[i].index >= 0) 3604 name = of_clk_get_parent_name(core->of_node, core->parents[i].index); 3605 if (!name) 3606 name = "(missing)"; 3607 3608 seq_puts(s, name); 3609 } 3610 3611 seq_putc(s, terminator); 3612 } 3613 3614 static int possible_parents_show(struct seq_file *s, void *data) 3615 { 3616 struct clk_core *core = s->private; 3617 int i; 3618 3619 for (i = 0; i < core->num_parents - 1; i++) 3620 possible_parent_show(s, core, i, ' '); 3621 3622 possible_parent_show(s, core, i, '\n'); 3623 3624 return 0; 3625 } 3626 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3627 3628 static int current_parent_show(struct seq_file *s, void *data) 3629 { 3630 struct clk_core *core = s->private; 3631 3632 if (core->parent) 3633 seq_printf(s, "%s\n", core->parent->name); 3634 3635 return 0; 3636 } 3637 DEFINE_SHOW_ATTRIBUTE(current_parent); 3638 3639 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3640 static ssize_t current_parent_write(struct file *file, const char __user *ubuf, 3641 size_t count, loff_t *ppos) 3642 { 3643 struct seq_file *s = file->private_data; 3644 struct clk_core *core = s->private; 3645 struct clk_core *parent; 3646 u8 idx; 3647 int err; 3648 3649 err = kstrtou8_from_user(ubuf, count, 0, &idx); 3650 if (err < 0) 3651 return err; 3652 3653 parent = clk_core_get_parent_by_index(core, idx); 3654 if (!parent) 3655 return -ENOENT; 3656 3657 clk_prepare_lock(); 3658 err = clk_core_set_parent_nolock(core, parent); 3659 clk_prepare_unlock(); 3660 if (err) 3661 return err; 3662 3663 return count; 3664 } 3665 3666 static const struct file_operations current_parent_rw_fops = { 3667 .open = current_parent_open, 3668 .write = current_parent_write, 3669 .read = seq_read, 3670 .llseek = seq_lseek, 3671 .release = single_release, 3672 }; 3673 #endif 3674 3675 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3676 { 3677 struct clk_core *core = s->private; 3678 struct clk_duty *duty = &core->duty; 3679 3680 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3681 3682 return 0; 3683 } 3684 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3685 3686 static int clk_min_rate_show(struct seq_file *s, void *data) 3687 { 3688 struct clk_core *core = s->private; 3689 unsigned long min_rate, max_rate; 3690 3691 clk_prepare_lock(); 3692 clk_core_get_boundaries(core, &min_rate, &max_rate); 3693 clk_prepare_unlock(); 3694 seq_printf(s, "%lu\n", min_rate); 3695 3696 return 0; 3697 } 3698 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3699 3700 static int clk_max_rate_show(struct seq_file *s, void *data) 3701 { 3702 struct clk_core *core = s->private; 3703 unsigned long min_rate, max_rate; 3704 3705 clk_prepare_lock(); 3706 clk_core_get_boundaries(core, &min_rate, &max_rate); 3707 clk_prepare_unlock(); 3708 seq_printf(s, "%lu\n", max_rate); 3709 3710 return 0; 3711 } 3712 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3713 3714 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3715 { 3716 struct dentry *root; 3717 3718 if (!core || !pdentry) 3719 return; 3720 3721 root = debugfs_create_dir(core->name, pdentry); 3722 core->dentry = root; 3723 3724 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3725 &clk_rate_fops); 3726 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3727 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3728 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3729 debugfs_create_file("clk_phase", clk_phase_mode, root, core, 3730 &clk_phase_fops); 3731 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3732 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3733 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3734 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3735 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3736 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3737 &clk_duty_cycle_fops); 3738 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3739 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3740 &clk_prepare_enable_fops); 3741 3742 if (core->num_parents > 1) 3743 debugfs_create_file("clk_parent", 0644, root, core, 3744 ¤t_parent_rw_fops); 3745 else 3746 #endif 3747 if (core->num_parents > 0) 3748 debugfs_create_file("clk_parent", 0444, root, core, 3749 ¤t_parent_fops); 3750 3751 if (core->num_parents > 1) 3752 debugfs_create_file("clk_possible_parents", 0444, root, core, 3753 &possible_parents_fops); 3754 3755 if (core->ops->debug_init) 3756 core->ops->debug_init(core->hw, core->dentry); 3757 } 3758 3759 /** 3760 * clk_debug_register - add a clk node to the debugfs clk directory 3761 * @core: the clk being added to the debugfs clk directory 3762 * 3763 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3764 * initialized. Otherwise it bails out early since the debugfs clk directory 3765 * will be created lazily by clk_debug_init as part of a late_initcall. 3766 */ 3767 static void clk_debug_register(struct clk_core *core) 3768 { 3769 mutex_lock(&clk_debug_lock); 3770 hlist_add_head(&core->debug_node, &clk_debug_list); 3771 if (inited) 3772 clk_debug_create_one(core, rootdir); 3773 mutex_unlock(&clk_debug_lock); 3774 } 3775 3776 /** 3777 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3778 * @core: the clk being removed from the debugfs clk directory 3779 * 3780 * Dynamically removes a clk and all its child nodes from the 3781 * debugfs clk directory if clk->dentry points to debugfs created by 3782 * clk_debug_register in __clk_core_init. 3783 */ 3784 static void clk_debug_unregister(struct clk_core *core) 3785 { 3786 mutex_lock(&clk_debug_lock); 3787 hlist_del_init(&core->debug_node); 3788 debugfs_remove_recursive(core->dentry); 3789 core->dentry = NULL; 3790 mutex_unlock(&clk_debug_lock); 3791 } 3792 3793 /** 3794 * clk_debug_init - lazily populate the debugfs clk directory 3795 * 3796 * clks are often initialized very early during boot before memory can be 3797 * dynamically allocated and well before debugfs is setup. This function 3798 * populates the debugfs clk directory once at boot-time when we know that 3799 * debugfs is setup. It should only be called once at boot-time, all other clks 3800 * added dynamically will be done so with clk_debug_register. 3801 */ 3802 static int __init clk_debug_init(void) 3803 { 3804 struct clk_core *core; 3805 3806 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3807 pr_warn("\n"); 3808 pr_warn("********************************************************************\n"); 3809 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3810 pr_warn("** **\n"); 3811 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n"); 3812 pr_warn("** **\n"); 3813 pr_warn("** This means that this kernel is built to expose clk operations **\n"); 3814 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n"); 3815 pr_warn("** to userspace, which may compromise security on your system. **\n"); 3816 pr_warn("** **\n"); 3817 pr_warn("** If you see this message and you are not debugging the **\n"); 3818 pr_warn("** kernel, report this immediately to your vendor! **\n"); 3819 pr_warn("** **\n"); 3820 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3821 pr_warn("********************************************************************\n"); 3822 #endif 3823 3824 rootdir = debugfs_create_dir("clk", NULL); 3825 3826 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3827 &clk_summary_fops); 3828 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3829 &clk_dump_fops); 3830 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3831 &clk_summary_fops); 3832 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3833 &clk_dump_fops); 3834 3835 mutex_lock(&clk_debug_lock); 3836 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3837 clk_debug_create_one(core, rootdir); 3838 3839 inited = 1; 3840 mutex_unlock(&clk_debug_lock); 3841 3842 return 0; 3843 } 3844 late_initcall(clk_debug_init); 3845 #else 3846 static inline void clk_debug_register(struct clk_core *core) { } 3847 static inline void clk_debug_unregister(struct clk_core *core) 3848 { 3849 } 3850 #endif 3851 3852 static void clk_core_reparent_orphans_nolock(void) 3853 { 3854 struct clk_core *orphan; 3855 struct hlist_node *tmp2; 3856 3857 /* 3858 * walk the list of orphan clocks and reparent any that newly finds a 3859 * parent. 3860 */ 3861 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3862 struct clk_core *parent = __clk_init_parent(orphan); 3863 3864 /* 3865 * We need to use __clk_set_parent_before() and _after() to 3866 * properly migrate any prepare/enable count of the orphan 3867 * clock. This is important for CLK_IS_CRITICAL clocks, which 3868 * are enabled during init but might not have a parent yet. 3869 */ 3870 if (parent) { 3871 /* update the clk tree topology */ 3872 __clk_set_parent_before(orphan, parent); 3873 __clk_set_parent_after(orphan, parent, NULL); 3874 __clk_recalc_accuracies(orphan); 3875 __clk_recalc_rates(orphan, true, 0); 3876 3877 /* 3878 * __clk_init_parent() will set the initial req_rate to 3879 * 0 if the clock doesn't have clk_ops::recalc_rate and 3880 * is an orphan when it's registered. 3881 * 3882 * 'req_rate' is used by clk_set_rate_range() and 3883 * clk_put() to trigger a clk_set_rate() call whenever 3884 * the boundaries are modified. Let's make sure 3885 * 'req_rate' is set to something non-zero so that 3886 * clk_set_rate_range() doesn't drop the frequency. 3887 */ 3888 orphan->req_rate = orphan->rate; 3889 } 3890 } 3891 } 3892 3893 /** 3894 * __clk_core_init - initialize the data structures in a struct clk_core 3895 * @core: clk_core being initialized 3896 * 3897 * Initializes the lists in struct clk_core, queries the hardware for the 3898 * parent and rate and sets them both. 3899 */ 3900 static int __clk_core_init(struct clk_core *core) 3901 { 3902 int ret; 3903 struct clk_core *parent; 3904 unsigned long rate; 3905 int phase; 3906 3907 clk_prepare_lock(); 3908 3909 /* 3910 * Set hw->core after grabbing the prepare_lock to synchronize with 3911 * callers of clk_core_fill_parent_index() where we treat hw->core 3912 * being NULL as the clk not being registered yet. This is crucial so 3913 * that clks aren't parented until their parent is fully registered. 3914 */ 3915 core->hw->core = core; 3916 3917 ret = clk_pm_runtime_get(core); 3918 if (ret) 3919 goto unlock; 3920 3921 /* check to see if a clock with this name is already registered */ 3922 if (clk_core_lookup(core->name)) { 3923 pr_debug("%s: clk %s already initialized\n", 3924 __func__, core->name); 3925 ret = -EEXIST; 3926 goto out; 3927 } 3928 3929 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3930 if (core->ops->set_rate && 3931 !((core->ops->round_rate || core->ops->determine_rate) && 3932 core->ops->recalc_rate)) { 3933 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3934 __func__, core->name); 3935 ret = -EINVAL; 3936 goto out; 3937 } 3938 3939 if (core->ops->set_parent && !core->ops->get_parent) { 3940 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3941 __func__, core->name); 3942 ret = -EINVAL; 3943 goto out; 3944 } 3945 3946 if (core->ops->set_parent && !core->ops->determine_rate) { 3947 pr_err("%s: %s must implement .set_parent & .determine_rate\n", 3948 __func__, core->name); 3949 ret = -EINVAL; 3950 goto out; 3951 } 3952 3953 if (core->num_parents > 1 && !core->ops->get_parent) { 3954 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3955 __func__, core->name); 3956 ret = -EINVAL; 3957 goto out; 3958 } 3959 3960 if (core->ops->set_rate_and_parent && 3961 !(core->ops->set_parent && core->ops->set_rate)) { 3962 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3963 __func__, core->name); 3964 ret = -EINVAL; 3965 goto out; 3966 } 3967 3968 /* 3969 * optional platform-specific magic 3970 * 3971 * The .init callback is not used by any of the basic clock types, but 3972 * exists for weird hardware that must perform initialization magic for 3973 * CCF to get an accurate view of clock for any other callbacks. It may 3974 * also be used needs to perform dynamic allocations. Such allocation 3975 * must be freed in the terminate() callback. 3976 * This callback shall not be used to initialize the parameters state, 3977 * such as rate, parent, etc ... 3978 * 3979 * If it exist, this callback should called before any other callback of 3980 * the clock 3981 */ 3982 if (core->ops->init) { 3983 ret = core->ops->init(core->hw); 3984 if (ret) 3985 goto out; 3986 } 3987 3988 parent = core->parent = __clk_init_parent(core); 3989 3990 /* 3991 * Populate core->parent if parent has already been clk_core_init'd. If 3992 * parent has not yet been clk_core_init'd then place clk in the orphan 3993 * list. If clk doesn't have any parents then place it in the root 3994 * clk list. 3995 * 3996 * Every time a new clk is clk_init'd then we walk the list of orphan 3997 * clocks and re-parent any that are children of the clock currently 3998 * being clk_init'd. 3999 */ 4000 if (parent) { 4001 hlist_add_head(&core->child_node, &parent->children); 4002 core->orphan = parent->orphan; 4003 } else if (!core->num_parents) { 4004 hlist_add_head(&core->child_node, &clk_root_list); 4005 core->orphan = false; 4006 } else { 4007 hlist_add_head(&core->child_node, &clk_orphan_list); 4008 core->orphan = true; 4009 } 4010 4011 /* 4012 * Set clk's accuracy. The preferred method is to use 4013 * .recalc_accuracy. For simple clocks and lazy developers the default 4014 * fallback is to use the parent's accuracy. If a clock doesn't have a 4015 * parent (or is orphaned) then accuracy is set to zero (perfect 4016 * clock). 4017 */ 4018 if (core->ops->recalc_accuracy) 4019 core->accuracy = core->ops->recalc_accuracy(core->hw, 4020 clk_core_get_accuracy_no_lock(parent)); 4021 else if (parent) 4022 core->accuracy = parent->accuracy; 4023 else 4024 core->accuracy = 0; 4025 4026 /* 4027 * Set clk's phase by clk_core_get_phase() caching the phase. 4028 * Since a phase is by definition relative to its parent, just 4029 * query the current clock phase, or just assume it's in phase. 4030 */ 4031 phase = clk_core_get_phase(core); 4032 if (phase < 0) { 4033 ret = phase; 4034 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 4035 core->name); 4036 goto out; 4037 } 4038 4039 /* 4040 * Set clk's duty cycle. 4041 */ 4042 clk_core_update_duty_cycle_nolock(core); 4043 4044 /* 4045 * Set clk's rate. The preferred method is to use .recalc_rate. For 4046 * simple clocks and lazy developers the default fallback is to use the 4047 * parent's rate. If a clock doesn't have a parent (or is orphaned) 4048 * then rate is set to zero. 4049 */ 4050 if (core->ops->recalc_rate) 4051 rate = core->ops->recalc_rate(core->hw, 4052 clk_core_get_rate_nolock(parent)); 4053 else if (parent) 4054 rate = parent->rate; 4055 else 4056 rate = 0; 4057 core->rate = core->req_rate = rate; 4058 4059 /* 4060 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 4061 * don't get accidentally disabled when walking the orphan tree and 4062 * reparenting clocks 4063 */ 4064 if (core->flags & CLK_IS_CRITICAL) { 4065 ret = clk_core_prepare(core); 4066 if (ret) { 4067 pr_warn("%s: critical clk '%s' failed to prepare\n", 4068 __func__, core->name); 4069 goto out; 4070 } 4071 4072 ret = clk_core_enable_lock(core); 4073 if (ret) { 4074 pr_warn("%s: critical clk '%s' failed to enable\n", 4075 __func__, core->name); 4076 clk_core_unprepare(core); 4077 goto out; 4078 } 4079 } 4080 4081 clk_core_reparent_orphans_nolock(); 4082 out: 4083 clk_pm_runtime_put(core); 4084 unlock: 4085 if (ret) { 4086 hlist_del_init(&core->child_node); 4087 core->hw->core = NULL; 4088 } 4089 4090 clk_prepare_unlock(); 4091 4092 if (!ret) 4093 clk_debug_register(core); 4094 4095 return ret; 4096 } 4097 4098 /** 4099 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 4100 * @core: clk to add consumer to 4101 * @clk: consumer to link to a clk 4102 */ 4103 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 4104 { 4105 clk_prepare_lock(); 4106 hlist_add_head(&clk->clks_node, &core->clks); 4107 clk_prepare_unlock(); 4108 } 4109 4110 /** 4111 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 4112 * @clk: consumer to unlink 4113 */ 4114 static void clk_core_unlink_consumer(struct clk *clk) 4115 { 4116 lockdep_assert_held(&prepare_lock); 4117 hlist_del(&clk->clks_node); 4118 } 4119 4120 /** 4121 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 4122 * @core: clk to allocate a consumer for 4123 * @dev_id: string describing device name 4124 * @con_id: connection ID string on device 4125 * 4126 * Returns: clk consumer left unlinked from the consumer list 4127 */ 4128 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 4129 const char *con_id) 4130 { 4131 struct clk *clk; 4132 4133 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 4134 if (!clk) 4135 return ERR_PTR(-ENOMEM); 4136 4137 clk->core = core; 4138 clk->dev_id = dev_id; 4139 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 4140 clk->max_rate = ULONG_MAX; 4141 4142 return clk; 4143 } 4144 4145 /** 4146 * free_clk - Free a clk consumer 4147 * @clk: clk consumer to free 4148 * 4149 * Note, this assumes the clk has been unlinked from the clk_core consumer 4150 * list. 4151 */ 4152 static void free_clk(struct clk *clk) 4153 { 4154 kfree_const(clk->con_id); 4155 kfree(clk); 4156 } 4157 4158 /** 4159 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 4160 * a clk_hw 4161 * @dev: clk consumer device 4162 * @hw: clk_hw associated with the clk being consumed 4163 * @dev_id: string describing device name 4164 * @con_id: connection ID string on device 4165 * 4166 * This is the main function used to create a clk pointer for use by clk 4167 * consumers. It connects a consumer to the clk_core and clk_hw structures 4168 * used by the framework and clk provider respectively. 4169 */ 4170 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 4171 const char *dev_id, const char *con_id) 4172 { 4173 struct clk *clk; 4174 struct clk_core *core; 4175 4176 /* This is to allow this function to be chained to others */ 4177 if (IS_ERR_OR_NULL(hw)) 4178 return ERR_CAST(hw); 4179 4180 core = hw->core; 4181 clk = alloc_clk(core, dev_id, con_id); 4182 if (IS_ERR(clk)) 4183 return clk; 4184 clk->dev = dev; 4185 4186 if (!try_module_get(core->owner)) { 4187 free_clk(clk); 4188 return ERR_PTR(-ENOENT); 4189 } 4190 4191 kref_get(&core->ref); 4192 clk_core_link_consumer(core, clk); 4193 4194 return clk; 4195 } 4196 4197 /** 4198 * clk_hw_get_clk - get clk consumer given an clk_hw 4199 * @hw: clk_hw associated with the clk being consumed 4200 * @con_id: connection ID string on device 4201 * 4202 * Returns: new clk consumer 4203 * This is the function to be used by providers which need 4204 * to get a consumer clk and act on the clock element 4205 * Calls to this function must be balanced with calls clk_put() 4206 */ 4207 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id) 4208 { 4209 struct device *dev = hw->core->dev; 4210 const char *name = dev ? dev_name(dev) : NULL; 4211 4212 return clk_hw_create_clk(dev, hw, name, con_id); 4213 } 4214 EXPORT_SYMBOL(clk_hw_get_clk); 4215 4216 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 4217 { 4218 const char *dst; 4219 4220 if (!src) { 4221 if (must_exist) 4222 return -EINVAL; 4223 return 0; 4224 } 4225 4226 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 4227 if (!dst) 4228 return -ENOMEM; 4229 4230 return 0; 4231 } 4232 4233 static int clk_core_populate_parent_map(struct clk_core *core, 4234 const struct clk_init_data *init) 4235 { 4236 u8 num_parents = init->num_parents; 4237 const char * const *parent_names = init->parent_names; 4238 const struct clk_hw **parent_hws = init->parent_hws; 4239 const struct clk_parent_data *parent_data = init->parent_data; 4240 int i, ret = 0; 4241 struct clk_parent_map *parents, *parent; 4242 4243 if (!num_parents) 4244 return 0; 4245 4246 /* 4247 * Avoid unnecessary string look-ups of clk_core's possible parents by 4248 * having a cache of names/clk_hw pointers to clk_core pointers. 4249 */ 4250 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 4251 core->parents = parents; 4252 if (!parents) 4253 return -ENOMEM; 4254 4255 /* Copy everything over because it might be __initdata */ 4256 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 4257 parent->index = -1; 4258 if (parent_names) { 4259 /* throw a WARN if any entries are NULL */ 4260 WARN(!parent_names[i], 4261 "%s: invalid NULL in %s's .parent_names\n", 4262 __func__, core->name); 4263 ret = clk_cpy_name(&parent->name, parent_names[i], 4264 true); 4265 } else if (parent_data) { 4266 parent->hw = parent_data[i].hw; 4267 parent->index = parent_data[i].index; 4268 ret = clk_cpy_name(&parent->fw_name, 4269 parent_data[i].fw_name, false); 4270 if (!ret) 4271 ret = clk_cpy_name(&parent->name, 4272 parent_data[i].name, 4273 false); 4274 } else if (parent_hws) { 4275 parent->hw = parent_hws[i]; 4276 } else { 4277 ret = -EINVAL; 4278 WARN(1, "Must specify parents if num_parents > 0\n"); 4279 } 4280 4281 if (ret) { 4282 do { 4283 kfree_const(parents[i].name); 4284 kfree_const(parents[i].fw_name); 4285 } while (--i >= 0); 4286 kfree(parents); 4287 4288 return ret; 4289 } 4290 } 4291 4292 return 0; 4293 } 4294 4295 static void clk_core_free_parent_map(struct clk_core *core) 4296 { 4297 int i = core->num_parents; 4298 4299 if (!core->num_parents) 4300 return; 4301 4302 while (--i >= 0) { 4303 kfree_const(core->parents[i].name); 4304 kfree_const(core->parents[i].fw_name); 4305 } 4306 4307 kfree(core->parents); 4308 } 4309 4310 /* Free memory allocated for a struct clk_core */ 4311 static void __clk_release(struct kref *ref) 4312 { 4313 struct clk_core *core = container_of(ref, struct clk_core, ref); 4314 4315 if (core->rpm_enabled) { 4316 mutex_lock(&clk_rpm_list_lock); 4317 hlist_del(&core->rpm_node); 4318 mutex_unlock(&clk_rpm_list_lock); 4319 } 4320 4321 clk_core_free_parent_map(core); 4322 kfree_const(core->name); 4323 kfree(core); 4324 } 4325 4326 static struct clk * 4327 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 4328 { 4329 int ret; 4330 struct clk_core *core; 4331 const struct clk_init_data *init = hw->init; 4332 4333 /* 4334 * The init data is not supposed to be used outside of registration path. 4335 * Set it to NULL so that provider drivers can't use it either and so that 4336 * we catch use of hw->init early on in the core. 4337 */ 4338 hw->init = NULL; 4339 4340 core = kzalloc(sizeof(*core), GFP_KERNEL); 4341 if (!core) { 4342 ret = -ENOMEM; 4343 goto fail_out; 4344 } 4345 4346 kref_init(&core->ref); 4347 4348 core->name = kstrdup_const(init->name, GFP_KERNEL); 4349 if (!core->name) { 4350 ret = -ENOMEM; 4351 goto fail_name; 4352 } 4353 4354 if (WARN_ON(!init->ops)) { 4355 ret = -EINVAL; 4356 goto fail_ops; 4357 } 4358 core->ops = init->ops; 4359 4360 core->dev = dev; 4361 clk_pm_runtime_init(core); 4362 core->of_node = np; 4363 if (dev && dev->driver) 4364 core->owner = dev->driver->owner; 4365 core->hw = hw; 4366 core->flags = init->flags; 4367 core->num_parents = init->num_parents; 4368 core->min_rate = 0; 4369 core->max_rate = ULONG_MAX; 4370 4371 ret = clk_core_populate_parent_map(core, init); 4372 if (ret) 4373 goto fail_parents; 4374 4375 INIT_HLIST_HEAD(&core->clks); 4376 4377 /* 4378 * Don't call clk_hw_create_clk() here because that would pin the 4379 * provider module to itself and prevent it from ever being removed. 4380 */ 4381 hw->clk = alloc_clk(core, NULL, NULL); 4382 if (IS_ERR(hw->clk)) { 4383 ret = PTR_ERR(hw->clk); 4384 goto fail_create_clk; 4385 } 4386 4387 clk_core_link_consumer(core, hw->clk); 4388 4389 ret = __clk_core_init(core); 4390 if (!ret) 4391 return hw->clk; 4392 4393 clk_prepare_lock(); 4394 clk_core_unlink_consumer(hw->clk); 4395 clk_prepare_unlock(); 4396 4397 free_clk(hw->clk); 4398 hw->clk = NULL; 4399 4400 fail_create_clk: 4401 fail_parents: 4402 fail_ops: 4403 fail_name: 4404 kref_put(&core->ref, __clk_release); 4405 fail_out: 4406 return ERR_PTR(ret); 4407 } 4408 4409 /** 4410 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 4411 * @dev: Device to get device node of 4412 * 4413 * Return: device node pointer of @dev, or the device node pointer of 4414 * @dev->parent if dev doesn't have a device node, or NULL if neither 4415 * @dev or @dev->parent have a device node. 4416 */ 4417 static struct device_node *dev_or_parent_of_node(struct device *dev) 4418 { 4419 struct device_node *np; 4420 4421 if (!dev) 4422 return NULL; 4423 4424 np = dev_of_node(dev); 4425 if (!np) 4426 np = dev_of_node(dev->parent); 4427 4428 return np; 4429 } 4430 4431 /** 4432 * clk_register - allocate a new clock, register it and return an opaque cookie 4433 * @dev: device that is registering this clock 4434 * @hw: link to hardware-specific clock data 4435 * 4436 * clk_register is the *deprecated* interface for populating the clock tree with 4437 * new clock nodes. Use clk_hw_register() instead. 4438 * 4439 * Returns: a pointer to the newly allocated struct clk which 4440 * cannot be dereferenced by driver code but may be used in conjunction with the 4441 * rest of the clock API. In the event of an error clk_register will return an 4442 * error code; drivers must test for an error code after calling clk_register. 4443 */ 4444 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 4445 { 4446 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 4447 } 4448 EXPORT_SYMBOL_GPL(clk_register); 4449 4450 /** 4451 * clk_hw_register - register a clk_hw and return an error code 4452 * @dev: device that is registering this clock 4453 * @hw: link to hardware-specific clock data 4454 * 4455 * clk_hw_register is the primary interface for populating the clock tree with 4456 * new clock nodes. It returns an integer equal to zero indicating success or 4457 * less than zero indicating failure. Drivers must test for an error code after 4458 * calling clk_hw_register(). 4459 */ 4460 int clk_hw_register(struct device *dev, struct clk_hw *hw) 4461 { 4462 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 4463 hw)); 4464 } 4465 EXPORT_SYMBOL_GPL(clk_hw_register); 4466 4467 /* 4468 * of_clk_hw_register - register a clk_hw and return an error code 4469 * @node: device_node of device that is registering this clock 4470 * @hw: link to hardware-specific clock data 4471 * 4472 * of_clk_hw_register() is the primary interface for populating the clock tree 4473 * with new clock nodes when a struct device is not available, but a struct 4474 * device_node is. It returns an integer equal to zero indicating success or 4475 * less than zero indicating failure. Drivers must test for an error code after 4476 * calling of_clk_hw_register(). 4477 */ 4478 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 4479 { 4480 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 4481 } 4482 EXPORT_SYMBOL_GPL(of_clk_hw_register); 4483 4484 /* 4485 * Empty clk_ops for unregistered clocks. These are used temporarily 4486 * after clk_unregister() was called on a clock and until last clock 4487 * consumer calls clk_put() and the struct clk object is freed. 4488 */ 4489 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 4490 { 4491 return -ENXIO; 4492 } 4493 4494 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 4495 { 4496 WARN_ON_ONCE(1); 4497 } 4498 4499 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 4500 unsigned long parent_rate) 4501 { 4502 return -ENXIO; 4503 } 4504 4505 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 4506 { 4507 return -ENXIO; 4508 } 4509 4510 static int clk_nodrv_determine_rate(struct clk_hw *hw, 4511 struct clk_rate_request *req) 4512 { 4513 return -ENXIO; 4514 } 4515 4516 static const struct clk_ops clk_nodrv_ops = { 4517 .enable = clk_nodrv_prepare_enable, 4518 .disable = clk_nodrv_disable_unprepare, 4519 .prepare = clk_nodrv_prepare_enable, 4520 .unprepare = clk_nodrv_disable_unprepare, 4521 .determine_rate = clk_nodrv_determine_rate, 4522 .set_rate = clk_nodrv_set_rate, 4523 .set_parent = clk_nodrv_set_parent, 4524 }; 4525 4526 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4527 const struct clk_core *target) 4528 { 4529 int i; 4530 struct clk_core *child; 4531 4532 for (i = 0; i < root->num_parents; i++) 4533 if (root->parents[i].core == target) 4534 root->parents[i].core = NULL; 4535 4536 hlist_for_each_entry(child, &root->children, child_node) 4537 clk_core_evict_parent_cache_subtree(child, target); 4538 } 4539 4540 /* Remove this clk from all parent caches */ 4541 static void clk_core_evict_parent_cache(struct clk_core *core) 4542 { 4543 const struct hlist_head **lists; 4544 struct clk_core *root; 4545 4546 lockdep_assert_held(&prepare_lock); 4547 4548 for (lists = all_lists; *lists; lists++) 4549 hlist_for_each_entry(root, *lists, child_node) 4550 clk_core_evict_parent_cache_subtree(root, core); 4551 4552 } 4553 4554 /** 4555 * clk_unregister - unregister a currently registered clock 4556 * @clk: clock to unregister 4557 */ 4558 void clk_unregister(struct clk *clk) 4559 { 4560 unsigned long flags; 4561 const struct clk_ops *ops; 4562 4563 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4564 return; 4565 4566 clk_debug_unregister(clk->core); 4567 4568 clk_prepare_lock(); 4569 4570 ops = clk->core->ops; 4571 if (ops == &clk_nodrv_ops) { 4572 pr_err("%s: unregistered clock: %s\n", __func__, 4573 clk->core->name); 4574 clk_prepare_unlock(); 4575 return; 4576 } 4577 /* 4578 * Assign empty clock ops for consumers that might still hold 4579 * a reference to this clock. 4580 */ 4581 flags = clk_enable_lock(); 4582 clk->core->ops = &clk_nodrv_ops; 4583 clk_enable_unlock(flags); 4584 4585 if (ops->terminate) 4586 ops->terminate(clk->core->hw); 4587 4588 if (!hlist_empty(&clk->core->children)) { 4589 struct clk_core *child; 4590 struct hlist_node *t; 4591 4592 /* Reparent all children to the orphan list. */ 4593 hlist_for_each_entry_safe(child, t, &clk->core->children, 4594 child_node) 4595 clk_core_set_parent_nolock(child, NULL); 4596 } 4597 4598 clk_core_evict_parent_cache(clk->core); 4599 4600 hlist_del_init(&clk->core->child_node); 4601 4602 if (clk->core->prepare_count) 4603 pr_warn("%s: unregistering prepared clock: %s\n", 4604 __func__, clk->core->name); 4605 4606 if (clk->core->protect_count) 4607 pr_warn("%s: unregistering protected clock: %s\n", 4608 __func__, clk->core->name); 4609 clk_prepare_unlock(); 4610 4611 kref_put(&clk->core->ref, __clk_release); 4612 free_clk(clk); 4613 } 4614 EXPORT_SYMBOL_GPL(clk_unregister); 4615 4616 /** 4617 * clk_hw_unregister - unregister a currently registered clk_hw 4618 * @hw: hardware-specific clock data to unregister 4619 */ 4620 void clk_hw_unregister(struct clk_hw *hw) 4621 { 4622 clk_unregister(hw->clk); 4623 } 4624 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4625 4626 static void devm_clk_unregister_cb(struct device *dev, void *res) 4627 { 4628 clk_unregister(*(struct clk **)res); 4629 } 4630 4631 static void devm_clk_hw_unregister_cb(struct device *dev, void *res) 4632 { 4633 clk_hw_unregister(*(struct clk_hw **)res); 4634 } 4635 4636 /** 4637 * devm_clk_register - resource managed clk_register() 4638 * @dev: device that is registering this clock 4639 * @hw: link to hardware-specific clock data 4640 * 4641 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4642 * 4643 * Clocks returned from this function are automatically clk_unregister()ed on 4644 * driver detach. See clk_register() for more information. 4645 */ 4646 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4647 { 4648 struct clk *clk; 4649 struct clk **clkp; 4650 4651 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL); 4652 if (!clkp) 4653 return ERR_PTR(-ENOMEM); 4654 4655 clk = clk_register(dev, hw); 4656 if (!IS_ERR(clk)) { 4657 *clkp = clk; 4658 devres_add(dev, clkp); 4659 } else { 4660 devres_free(clkp); 4661 } 4662 4663 return clk; 4664 } 4665 EXPORT_SYMBOL_GPL(devm_clk_register); 4666 4667 /** 4668 * devm_clk_hw_register - resource managed clk_hw_register() 4669 * @dev: device that is registering this clock 4670 * @hw: link to hardware-specific clock data 4671 * 4672 * Managed clk_hw_register(). Clocks registered by this function are 4673 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4674 * for more information. 4675 */ 4676 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4677 { 4678 struct clk_hw **hwp; 4679 int ret; 4680 4681 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL); 4682 if (!hwp) 4683 return -ENOMEM; 4684 4685 ret = clk_hw_register(dev, hw); 4686 if (!ret) { 4687 *hwp = hw; 4688 devres_add(dev, hwp); 4689 } else { 4690 devres_free(hwp); 4691 } 4692 4693 return ret; 4694 } 4695 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4696 4697 static void devm_clk_release(struct device *dev, void *res) 4698 { 4699 clk_put(*(struct clk **)res); 4700 } 4701 4702 /** 4703 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk() 4704 * @dev: device that is registering this clock 4705 * @hw: clk_hw associated with the clk being consumed 4706 * @con_id: connection ID string on device 4707 * 4708 * Managed clk_hw_get_clk(). Clocks got with this function are 4709 * automatically clk_put() on driver detach. See clk_put() 4710 * for more information. 4711 */ 4712 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw, 4713 const char *con_id) 4714 { 4715 struct clk *clk; 4716 struct clk **clkp; 4717 4718 /* This should not happen because it would mean we have drivers 4719 * passing around clk_hw pointers instead of having the caller use 4720 * proper clk_get() style APIs 4721 */ 4722 WARN_ON_ONCE(dev != hw->core->dev); 4723 4724 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4725 if (!clkp) 4726 return ERR_PTR(-ENOMEM); 4727 4728 clk = clk_hw_get_clk(hw, con_id); 4729 if (!IS_ERR(clk)) { 4730 *clkp = clk; 4731 devres_add(dev, clkp); 4732 } else { 4733 devres_free(clkp); 4734 } 4735 4736 return clk; 4737 } 4738 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk); 4739 4740 /* 4741 * clkdev helpers 4742 */ 4743 4744 void __clk_put(struct clk *clk) 4745 { 4746 struct module *owner; 4747 4748 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4749 return; 4750 4751 clk_prepare_lock(); 4752 4753 /* 4754 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4755 * given user should be balanced with calls to clk_rate_exclusive_put() 4756 * and by that same consumer 4757 */ 4758 if (WARN_ON(clk->exclusive_count)) { 4759 /* We voiced our concern, let's sanitize the situation */ 4760 clk->core->protect_count -= (clk->exclusive_count - 1); 4761 clk_core_rate_unprotect(clk->core); 4762 clk->exclusive_count = 0; 4763 } 4764 4765 hlist_del(&clk->clks_node); 4766 4767 /* If we had any boundaries on that clock, let's drop them. */ 4768 if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX) 4769 clk_set_rate_range_nolock(clk, 0, ULONG_MAX); 4770 4771 clk_prepare_unlock(); 4772 4773 owner = clk->core->owner; 4774 kref_put(&clk->core->ref, __clk_release); 4775 module_put(owner); 4776 free_clk(clk); 4777 } 4778 4779 /*** clk rate change notifiers ***/ 4780 4781 /** 4782 * clk_notifier_register - add a clk rate change notifier 4783 * @clk: struct clk * to watch 4784 * @nb: struct notifier_block * with callback info 4785 * 4786 * Request notification when clk's rate changes. This uses an SRCU 4787 * notifier because we want it to block and notifier unregistrations are 4788 * uncommon. The callbacks associated with the notifier must not 4789 * re-enter into the clk framework by calling any top-level clk APIs; 4790 * this will cause a nested prepare_lock mutex. 4791 * 4792 * In all notification cases (pre, post and abort rate change) the original 4793 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4794 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4795 * 4796 * clk_notifier_register() must be called from non-atomic context. 4797 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4798 * allocation failure; otherwise, passes along the return value of 4799 * srcu_notifier_chain_register(). 4800 */ 4801 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4802 { 4803 struct clk_notifier *cn; 4804 int ret = -ENOMEM; 4805 4806 if (!clk || !nb) 4807 return -EINVAL; 4808 4809 clk_prepare_lock(); 4810 4811 /* search the list of notifiers for this clk */ 4812 list_for_each_entry(cn, &clk_notifier_list, node) 4813 if (cn->clk == clk) 4814 goto found; 4815 4816 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4817 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4818 if (!cn) 4819 goto out; 4820 4821 cn->clk = clk; 4822 srcu_init_notifier_head(&cn->notifier_head); 4823 4824 list_add(&cn->node, &clk_notifier_list); 4825 4826 found: 4827 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4828 4829 clk->core->notifier_count++; 4830 4831 out: 4832 clk_prepare_unlock(); 4833 4834 return ret; 4835 } 4836 EXPORT_SYMBOL_GPL(clk_notifier_register); 4837 4838 /** 4839 * clk_notifier_unregister - remove a clk rate change notifier 4840 * @clk: struct clk * 4841 * @nb: struct notifier_block * with callback info 4842 * 4843 * Request no further notification for changes to 'clk' and frees memory 4844 * allocated in clk_notifier_register. 4845 * 4846 * Returns -EINVAL if called with null arguments; otherwise, passes 4847 * along the return value of srcu_notifier_chain_unregister(). 4848 */ 4849 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4850 { 4851 struct clk_notifier *cn; 4852 int ret = -ENOENT; 4853 4854 if (!clk || !nb) 4855 return -EINVAL; 4856 4857 clk_prepare_lock(); 4858 4859 list_for_each_entry(cn, &clk_notifier_list, node) { 4860 if (cn->clk == clk) { 4861 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4862 4863 clk->core->notifier_count--; 4864 4865 /* XXX the notifier code should handle this better */ 4866 if (!cn->notifier_head.head) { 4867 srcu_cleanup_notifier_head(&cn->notifier_head); 4868 list_del(&cn->node); 4869 kfree(cn); 4870 } 4871 break; 4872 } 4873 } 4874 4875 clk_prepare_unlock(); 4876 4877 return ret; 4878 } 4879 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4880 4881 struct clk_notifier_devres { 4882 struct clk *clk; 4883 struct notifier_block *nb; 4884 }; 4885 4886 static void devm_clk_notifier_release(struct device *dev, void *res) 4887 { 4888 struct clk_notifier_devres *devres = res; 4889 4890 clk_notifier_unregister(devres->clk, devres->nb); 4891 } 4892 4893 int devm_clk_notifier_register(struct device *dev, struct clk *clk, 4894 struct notifier_block *nb) 4895 { 4896 struct clk_notifier_devres *devres; 4897 int ret; 4898 4899 devres = devres_alloc(devm_clk_notifier_release, 4900 sizeof(*devres), GFP_KERNEL); 4901 4902 if (!devres) 4903 return -ENOMEM; 4904 4905 ret = clk_notifier_register(clk, nb); 4906 if (!ret) { 4907 devres->clk = clk; 4908 devres->nb = nb; 4909 devres_add(dev, devres); 4910 } else { 4911 devres_free(devres); 4912 } 4913 4914 return ret; 4915 } 4916 EXPORT_SYMBOL_GPL(devm_clk_notifier_register); 4917 4918 #ifdef CONFIG_OF 4919 static void clk_core_reparent_orphans(void) 4920 { 4921 clk_prepare_lock(); 4922 clk_core_reparent_orphans_nolock(); 4923 clk_prepare_unlock(); 4924 } 4925 4926 /** 4927 * struct of_clk_provider - Clock provider registration structure 4928 * @link: Entry in global list of clock providers 4929 * @node: Pointer to device tree node of clock provider 4930 * @get: Get clock callback. Returns NULL or a struct clk for the 4931 * given clock specifier 4932 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4933 * struct clk_hw for the given clock specifier 4934 * @data: context pointer to be passed into @get callback 4935 */ 4936 struct of_clk_provider { 4937 struct list_head link; 4938 4939 struct device_node *node; 4940 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4941 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4942 void *data; 4943 }; 4944 4945 extern struct of_device_id __clk_of_table; 4946 static const struct of_device_id __clk_of_table_sentinel 4947 __used __section("__clk_of_table_end"); 4948 4949 static LIST_HEAD(of_clk_providers); 4950 static DEFINE_MUTEX(of_clk_mutex); 4951 4952 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4953 void *data) 4954 { 4955 return data; 4956 } 4957 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4958 4959 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4960 { 4961 return data; 4962 } 4963 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4964 4965 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4966 { 4967 struct clk_onecell_data *clk_data = data; 4968 unsigned int idx = clkspec->args[0]; 4969 4970 if (idx >= clk_data->clk_num) { 4971 pr_err("%s: invalid clock index %u\n", __func__, idx); 4972 return ERR_PTR(-EINVAL); 4973 } 4974 4975 return clk_data->clks[idx]; 4976 } 4977 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4978 4979 struct clk_hw * 4980 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4981 { 4982 struct clk_hw_onecell_data *hw_data = data; 4983 unsigned int idx = clkspec->args[0]; 4984 4985 if (idx >= hw_data->num) { 4986 pr_err("%s: invalid index %u\n", __func__, idx); 4987 return ERR_PTR(-EINVAL); 4988 } 4989 4990 return hw_data->hws[idx]; 4991 } 4992 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4993 4994 /** 4995 * of_clk_add_provider() - Register a clock provider for a node 4996 * @np: Device node pointer associated with clock provider 4997 * @clk_src_get: callback for decoding clock 4998 * @data: context pointer for @clk_src_get callback. 4999 * 5000 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 5001 */ 5002 int of_clk_add_provider(struct device_node *np, 5003 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 5004 void *data), 5005 void *data) 5006 { 5007 struct of_clk_provider *cp; 5008 int ret; 5009 5010 if (!np) 5011 return 0; 5012 5013 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 5014 if (!cp) 5015 return -ENOMEM; 5016 5017 cp->node = of_node_get(np); 5018 cp->data = data; 5019 cp->get = clk_src_get; 5020 5021 mutex_lock(&of_clk_mutex); 5022 list_add(&cp->link, &of_clk_providers); 5023 mutex_unlock(&of_clk_mutex); 5024 pr_debug("Added clock from %pOF\n", np); 5025 5026 clk_core_reparent_orphans(); 5027 5028 ret = of_clk_set_defaults(np, true); 5029 if (ret < 0) 5030 of_clk_del_provider(np); 5031 5032 fwnode_dev_initialized(&np->fwnode, true); 5033 5034 return ret; 5035 } 5036 EXPORT_SYMBOL_GPL(of_clk_add_provider); 5037 5038 /** 5039 * of_clk_add_hw_provider() - Register a clock provider for a node 5040 * @np: Device node pointer associated with clock provider 5041 * @get: callback for decoding clk_hw 5042 * @data: context pointer for @get callback. 5043 */ 5044 int of_clk_add_hw_provider(struct device_node *np, 5045 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 5046 void *data), 5047 void *data) 5048 { 5049 struct of_clk_provider *cp; 5050 int ret; 5051 5052 if (!np) 5053 return 0; 5054 5055 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 5056 if (!cp) 5057 return -ENOMEM; 5058 5059 cp->node = of_node_get(np); 5060 cp->data = data; 5061 cp->get_hw = get; 5062 5063 mutex_lock(&of_clk_mutex); 5064 list_add(&cp->link, &of_clk_providers); 5065 mutex_unlock(&of_clk_mutex); 5066 pr_debug("Added clk_hw provider from %pOF\n", np); 5067 5068 clk_core_reparent_orphans(); 5069 5070 ret = of_clk_set_defaults(np, true); 5071 if (ret < 0) 5072 of_clk_del_provider(np); 5073 5074 fwnode_dev_initialized(&np->fwnode, true); 5075 5076 return ret; 5077 } 5078 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 5079 5080 static void devm_of_clk_release_provider(struct device *dev, void *res) 5081 { 5082 of_clk_del_provider(*(struct device_node **)res); 5083 } 5084 5085 /* 5086 * We allow a child device to use its parent device as the clock provider node 5087 * for cases like MFD sub-devices where the child device driver wants to use 5088 * devm_*() APIs but not list the device in DT as a sub-node. 5089 */ 5090 static struct device_node *get_clk_provider_node(struct device *dev) 5091 { 5092 struct device_node *np, *parent_np; 5093 5094 np = dev->of_node; 5095 parent_np = dev->parent ? dev->parent->of_node : NULL; 5096 5097 if (!of_property_present(np, "#clock-cells")) 5098 if (of_property_present(parent_np, "#clock-cells")) 5099 np = parent_np; 5100 5101 return np; 5102 } 5103 5104 /** 5105 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 5106 * @dev: Device acting as the clock provider (used for DT node and lifetime) 5107 * @get: callback for decoding clk_hw 5108 * @data: context pointer for @get callback 5109 * 5110 * Registers clock provider for given device's node. If the device has no DT 5111 * node or if the device node lacks of clock provider information (#clock-cells) 5112 * then the parent device's node is scanned for this information. If parent node 5113 * has the #clock-cells then it is used in registration. Provider is 5114 * automatically released at device exit. 5115 * 5116 * Return: 0 on success or an errno on failure. 5117 */ 5118 int devm_of_clk_add_hw_provider(struct device *dev, 5119 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 5120 void *data), 5121 void *data) 5122 { 5123 struct device_node **ptr, *np; 5124 int ret; 5125 5126 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 5127 GFP_KERNEL); 5128 if (!ptr) 5129 return -ENOMEM; 5130 5131 np = get_clk_provider_node(dev); 5132 ret = of_clk_add_hw_provider(np, get, data); 5133 if (!ret) { 5134 *ptr = np; 5135 devres_add(dev, ptr); 5136 } else { 5137 devres_free(ptr); 5138 } 5139 5140 return ret; 5141 } 5142 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 5143 5144 /** 5145 * of_clk_del_provider() - Remove a previously registered clock provider 5146 * @np: Device node pointer associated with clock provider 5147 */ 5148 void of_clk_del_provider(struct device_node *np) 5149 { 5150 struct of_clk_provider *cp; 5151 5152 if (!np) 5153 return; 5154 5155 mutex_lock(&of_clk_mutex); 5156 list_for_each_entry(cp, &of_clk_providers, link) { 5157 if (cp->node == np) { 5158 list_del(&cp->link); 5159 fwnode_dev_initialized(&np->fwnode, false); 5160 of_node_put(cp->node); 5161 kfree(cp); 5162 break; 5163 } 5164 } 5165 mutex_unlock(&of_clk_mutex); 5166 } 5167 EXPORT_SYMBOL_GPL(of_clk_del_provider); 5168 5169 /** 5170 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 5171 * @np: device node to parse clock specifier from 5172 * @index: index of phandle to parse clock out of. If index < 0, @name is used 5173 * @name: clock name to find and parse. If name is NULL, the index is used 5174 * @out_args: Result of parsing the clock specifier 5175 * 5176 * Parses a device node's "clocks" and "clock-names" properties to find the 5177 * phandle and cells for the index or name that is desired. The resulting clock 5178 * specifier is placed into @out_args, or an errno is returned when there's a 5179 * parsing error. The @index argument is ignored if @name is non-NULL. 5180 * 5181 * Example: 5182 * 5183 * phandle1: clock-controller@1 { 5184 * #clock-cells = <2>; 5185 * } 5186 * 5187 * phandle2: clock-controller@2 { 5188 * #clock-cells = <1>; 5189 * } 5190 * 5191 * clock-consumer@3 { 5192 * clocks = <&phandle1 1 2 &phandle2 3>; 5193 * clock-names = "name1", "name2"; 5194 * } 5195 * 5196 * To get a device_node for `clock-controller@2' node you may call this 5197 * function a few different ways: 5198 * 5199 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 5200 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 5201 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 5202 * 5203 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 5204 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 5205 * the "clock-names" property of @np. 5206 */ 5207 static int of_parse_clkspec(const struct device_node *np, int index, 5208 const char *name, struct of_phandle_args *out_args) 5209 { 5210 int ret = -ENOENT; 5211 5212 /* Walk up the tree of devices looking for a clock property that matches */ 5213 while (np) { 5214 /* 5215 * For named clocks, first look up the name in the 5216 * "clock-names" property. If it cannot be found, then index 5217 * will be an error code and of_parse_phandle_with_args() will 5218 * return -EINVAL. 5219 */ 5220 if (name) 5221 index = of_property_match_string(np, "clock-names", name); 5222 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 5223 index, out_args); 5224 if (!ret) 5225 break; 5226 if (name && index >= 0) 5227 break; 5228 5229 /* 5230 * No matching clock found on this node. If the parent node 5231 * has a "clock-ranges" property, then we can try one of its 5232 * clocks. 5233 */ 5234 np = np->parent; 5235 if (np && !of_get_property(np, "clock-ranges", NULL)) 5236 break; 5237 index = 0; 5238 } 5239 5240 return ret; 5241 } 5242 5243 static struct clk_hw * 5244 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 5245 struct of_phandle_args *clkspec) 5246 { 5247 struct clk *clk; 5248 5249 if (provider->get_hw) 5250 return provider->get_hw(clkspec, provider->data); 5251 5252 clk = provider->get(clkspec, provider->data); 5253 if (IS_ERR(clk)) 5254 return ERR_CAST(clk); 5255 return __clk_get_hw(clk); 5256 } 5257 5258 static struct clk_hw * 5259 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 5260 { 5261 struct of_clk_provider *provider; 5262 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 5263 5264 if (!clkspec) 5265 return ERR_PTR(-EINVAL); 5266 5267 mutex_lock(&of_clk_mutex); 5268 list_for_each_entry(provider, &of_clk_providers, link) { 5269 if (provider->node == clkspec->np) { 5270 hw = __of_clk_get_hw_from_provider(provider, clkspec); 5271 if (!IS_ERR(hw)) 5272 break; 5273 } 5274 } 5275 mutex_unlock(&of_clk_mutex); 5276 5277 return hw; 5278 } 5279 5280 /** 5281 * of_clk_get_from_provider() - Lookup a clock from a clock provider 5282 * @clkspec: pointer to a clock specifier data structure 5283 * 5284 * This function looks up a struct clk from the registered list of clock 5285 * providers, an input is a clock specifier data structure as returned 5286 * from the of_parse_phandle_with_args() function call. 5287 */ 5288 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 5289 { 5290 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 5291 5292 return clk_hw_create_clk(NULL, hw, NULL, __func__); 5293 } 5294 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 5295 5296 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 5297 const char *con_id) 5298 { 5299 int ret; 5300 struct clk_hw *hw; 5301 struct of_phandle_args clkspec; 5302 5303 ret = of_parse_clkspec(np, index, con_id, &clkspec); 5304 if (ret) 5305 return ERR_PTR(ret); 5306 5307 hw = of_clk_get_hw_from_clkspec(&clkspec); 5308 of_node_put(clkspec.np); 5309 5310 return hw; 5311 } 5312 5313 static struct clk *__of_clk_get(struct device_node *np, 5314 int index, const char *dev_id, 5315 const char *con_id) 5316 { 5317 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 5318 5319 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 5320 } 5321 5322 struct clk *of_clk_get(struct device_node *np, int index) 5323 { 5324 return __of_clk_get(np, index, np->full_name, NULL); 5325 } 5326 EXPORT_SYMBOL(of_clk_get); 5327 5328 /** 5329 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 5330 * @np: pointer to clock consumer node 5331 * @name: name of consumer's clock input, or NULL for the first clock reference 5332 * 5333 * This function parses the clocks and clock-names properties, 5334 * and uses them to look up the struct clk from the registered list of clock 5335 * providers. 5336 */ 5337 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 5338 { 5339 if (!np) 5340 return ERR_PTR(-ENOENT); 5341 5342 return __of_clk_get(np, 0, np->full_name, name); 5343 } 5344 EXPORT_SYMBOL(of_clk_get_by_name); 5345 5346 /** 5347 * of_clk_get_parent_count() - Count the number of clocks a device node has 5348 * @np: device node to count 5349 * 5350 * Returns: The number of clocks that are possible parents of this node 5351 */ 5352 unsigned int of_clk_get_parent_count(const struct device_node *np) 5353 { 5354 int count; 5355 5356 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 5357 if (count < 0) 5358 return 0; 5359 5360 return count; 5361 } 5362 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 5363 5364 const char *of_clk_get_parent_name(const struct device_node *np, int index) 5365 { 5366 struct of_phandle_args clkspec; 5367 struct property *prop; 5368 const char *clk_name; 5369 const __be32 *vp; 5370 u32 pv; 5371 int rc; 5372 int count; 5373 struct clk *clk; 5374 5375 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 5376 &clkspec); 5377 if (rc) 5378 return NULL; 5379 5380 index = clkspec.args_count ? clkspec.args[0] : 0; 5381 count = 0; 5382 5383 /* if there is an indices property, use it to transfer the index 5384 * specified into an array offset for the clock-output-names property. 5385 */ 5386 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 5387 if (index == pv) { 5388 index = count; 5389 break; 5390 } 5391 count++; 5392 } 5393 /* We went off the end of 'clock-indices' without finding it */ 5394 if (prop && !vp) 5395 return NULL; 5396 5397 if (of_property_read_string_index(clkspec.np, "clock-output-names", 5398 index, 5399 &clk_name) < 0) { 5400 /* 5401 * Best effort to get the name if the clock has been 5402 * registered with the framework. If the clock isn't 5403 * registered, we return the node name as the name of 5404 * the clock as long as #clock-cells = 0. 5405 */ 5406 clk = of_clk_get_from_provider(&clkspec); 5407 if (IS_ERR(clk)) { 5408 if (clkspec.args_count == 0) 5409 clk_name = clkspec.np->name; 5410 else 5411 clk_name = NULL; 5412 } else { 5413 clk_name = __clk_get_name(clk); 5414 clk_put(clk); 5415 } 5416 } 5417 5418 5419 of_node_put(clkspec.np); 5420 return clk_name; 5421 } 5422 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 5423 5424 /** 5425 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 5426 * number of parents 5427 * @np: Device node pointer associated with clock provider 5428 * @parents: pointer to char array that hold the parents' names 5429 * @size: size of the @parents array 5430 * 5431 * Return: number of parents for the clock node. 5432 */ 5433 int of_clk_parent_fill(struct device_node *np, const char **parents, 5434 unsigned int size) 5435 { 5436 unsigned int i = 0; 5437 5438 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 5439 i++; 5440 5441 return i; 5442 } 5443 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 5444 5445 struct clock_provider { 5446 void (*clk_init_cb)(struct device_node *); 5447 struct device_node *np; 5448 struct list_head node; 5449 }; 5450 5451 /* 5452 * This function looks for a parent clock. If there is one, then it 5453 * checks that the provider for this parent clock was initialized, in 5454 * this case the parent clock will be ready. 5455 */ 5456 static int parent_ready(struct device_node *np) 5457 { 5458 int i = 0; 5459 5460 while (true) { 5461 struct clk *clk = of_clk_get(np, i); 5462 5463 /* this parent is ready we can check the next one */ 5464 if (!IS_ERR(clk)) { 5465 clk_put(clk); 5466 i++; 5467 continue; 5468 } 5469 5470 /* at least one parent is not ready, we exit now */ 5471 if (PTR_ERR(clk) == -EPROBE_DEFER) 5472 return 0; 5473 5474 /* 5475 * Here we make assumption that the device tree is 5476 * written correctly. So an error means that there is 5477 * no more parent. As we didn't exit yet, then the 5478 * previous parent are ready. If there is no clock 5479 * parent, no need to wait for them, then we can 5480 * consider their absence as being ready 5481 */ 5482 return 1; 5483 } 5484 } 5485 5486 /** 5487 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5488 * @np: Device node pointer associated with clock provider 5489 * @index: clock index 5490 * @flags: pointer to top-level framework flags 5491 * 5492 * Detects if the clock-critical property exists and, if so, sets the 5493 * corresponding CLK_IS_CRITICAL flag. 5494 * 5495 * Do not use this function. It exists only for legacy Device Tree 5496 * bindings, such as the one-clock-per-node style that are outdated. 5497 * Those bindings typically put all clock data into .dts and the Linux 5498 * driver has no clock data, thus making it impossible to set this flag 5499 * correctly from the driver. Only those drivers may call 5500 * of_clk_detect_critical from their setup functions. 5501 * 5502 * Return: error code or zero on success 5503 */ 5504 int of_clk_detect_critical(struct device_node *np, int index, 5505 unsigned long *flags) 5506 { 5507 struct property *prop; 5508 const __be32 *cur; 5509 uint32_t idx; 5510 5511 if (!np || !flags) 5512 return -EINVAL; 5513 5514 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 5515 if (index == idx) 5516 *flags |= CLK_IS_CRITICAL; 5517 5518 return 0; 5519 } 5520 5521 /** 5522 * of_clk_init() - Scan and init clock providers from the DT 5523 * @matches: array of compatible values and init functions for providers. 5524 * 5525 * This function scans the device tree for matching clock providers 5526 * and calls their initialization functions. It also does it by trying 5527 * to follow the dependencies. 5528 */ 5529 void __init of_clk_init(const struct of_device_id *matches) 5530 { 5531 const struct of_device_id *match; 5532 struct device_node *np; 5533 struct clock_provider *clk_provider, *next; 5534 bool is_init_done; 5535 bool force = false; 5536 LIST_HEAD(clk_provider_list); 5537 5538 if (!matches) 5539 matches = &__clk_of_table; 5540 5541 /* First prepare the list of the clocks providers */ 5542 for_each_matching_node_and_match(np, matches, &match) { 5543 struct clock_provider *parent; 5544 5545 if (!of_device_is_available(np)) 5546 continue; 5547 5548 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5549 if (!parent) { 5550 list_for_each_entry_safe(clk_provider, next, 5551 &clk_provider_list, node) { 5552 list_del(&clk_provider->node); 5553 of_node_put(clk_provider->np); 5554 kfree(clk_provider); 5555 } 5556 of_node_put(np); 5557 return; 5558 } 5559 5560 parent->clk_init_cb = match->data; 5561 parent->np = of_node_get(np); 5562 list_add_tail(&parent->node, &clk_provider_list); 5563 } 5564 5565 while (!list_empty(&clk_provider_list)) { 5566 is_init_done = false; 5567 list_for_each_entry_safe(clk_provider, next, 5568 &clk_provider_list, node) { 5569 if (force || parent_ready(clk_provider->np)) { 5570 5571 /* Don't populate platform devices */ 5572 of_node_set_flag(clk_provider->np, 5573 OF_POPULATED); 5574 5575 clk_provider->clk_init_cb(clk_provider->np); 5576 of_clk_set_defaults(clk_provider->np, true); 5577 5578 list_del(&clk_provider->node); 5579 of_node_put(clk_provider->np); 5580 kfree(clk_provider); 5581 is_init_done = true; 5582 } 5583 } 5584 5585 /* 5586 * We didn't manage to initialize any of the 5587 * remaining providers during the last loop, so now we 5588 * initialize all the remaining ones unconditionally 5589 * in case the clock parent was not mandatory 5590 */ 5591 if (!is_init_done) 5592 force = true; 5593 } 5594 } 5595 #endif 5596