1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44 }; 45 46 /*** private data structures ***/ 47 48 struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54 }; 55 56 struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87 #ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90 #endif 91 struct kref ref; 92 }; 93 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/clk.h> 96 97 struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106 }; 107 108 /*** runtime pm ***/ 109 static int clk_pm_runtime_get(struct clk_core *core) 110 { 111 int ret; 112 113 if (!core->rpm_enabled) 114 return 0; 115 116 ret = pm_runtime_get_sync(core->dev); 117 return ret < 0 ? ret : 0; 118 } 119 120 static void clk_pm_runtime_put(struct clk_core *core) 121 { 122 if (!core->rpm_enabled) 123 return; 124 125 pm_runtime_put_sync(core->dev); 126 } 127 128 /*** locking ***/ 129 static void clk_prepare_lock(void) 130 { 131 if (!mutex_trylock(&prepare_lock)) { 132 if (prepare_owner == current) { 133 prepare_refcnt++; 134 return; 135 } 136 mutex_lock(&prepare_lock); 137 } 138 WARN_ON_ONCE(prepare_owner != NULL); 139 WARN_ON_ONCE(prepare_refcnt != 0); 140 prepare_owner = current; 141 prepare_refcnt = 1; 142 } 143 144 static void clk_prepare_unlock(void) 145 { 146 WARN_ON_ONCE(prepare_owner != current); 147 WARN_ON_ONCE(prepare_refcnt == 0); 148 149 if (--prepare_refcnt) 150 return; 151 prepare_owner = NULL; 152 mutex_unlock(&prepare_lock); 153 } 154 155 static unsigned long clk_enable_lock(void) 156 __acquires(enable_lock) 157 { 158 unsigned long flags; 159 160 /* 161 * On UP systems, spin_trylock_irqsave() always returns true, even if 162 * we already hold the lock. So, in that case, we rely only on 163 * reference counting. 164 */ 165 if (!IS_ENABLED(CONFIG_SMP) || 166 !spin_trylock_irqsave(&enable_lock, flags)) { 167 if (enable_owner == current) { 168 enable_refcnt++; 169 __acquire(enable_lock); 170 if (!IS_ENABLED(CONFIG_SMP)) 171 local_save_flags(flags); 172 return flags; 173 } 174 spin_lock_irqsave(&enable_lock, flags); 175 } 176 WARN_ON_ONCE(enable_owner != NULL); 177 WARN_ON_ONCE(enable_refcnt != 0); 178 enable_owner = current; 179 enable_refcnt = 1; 180 return flags; 181 } 182 183 static void clk_enable_unlock(unsigned long flags) 184 __releases(enable_lock) 185 { 186 WARN_ON_ONCE(enable_owner != current); 187 WARN_ON_ONCE(enable_refcnt == 0); 188 189 if (--enable_refcnt) { 190 __release(enable_lock); 191 return; 192 } 193 enable_owner = NULL; 194 spin_unlock_irqrestore(&enable_lock, flags); 195 } 196 197 static bool clk_core_rate_is_protected(struct clk_core *core) 198 { 199 return core->protect_count; 200 } 201 202 static bool clk_core_is_prepared(struct clk_core *core) 203 { 204 bool ret = false; 205 206 /* 207 * .is_prepared is optional for clocks that can prepare 208 * fall back to software usage counter if it is missing 209 */ 210 if (!core->ops->is_prepared) 211 return core->prepare_count; 212 213 if (!clk_pm_runtime_get(core)) { 214 ret = core->ops->is_prepared(core->hw); 215 clk_pm_runtime_put(core); 216 } 217 218 return ret; 219 } 220 221 static bool clk_core_is_enabled(struct clk_core *core) 222 { 223 bool ret = false; 224 225 /* 226 * .is_enabled is only mandatory for clocks that gate 227 * fall back to software usage counter if .is_enabled is missing 228 */ 229 if (!core->ops->is_enabled) 230 return core->enable_count; 231 232 /* 233 * Check if clock controller's device is runtime active before 234 * calling .is_enabled callback. If not, assume that clock is 235 * disabled, because we might be called from atomic context, from 236 * which pm_runtime_get() is not allowed. 237 * This function is called mainly from clk_disable_unused_subtree, 238 * which ensures proper runtime pm activation of controller before 239 * taking enable spinlock, but the below check is needed if one tries 240 * to call it from other places. 241 */ 242 if (core->rpm_enabled) { 243 pm_runtime_get_noresume(core->dev); 244 if (!pm_runtime_active(core->dev)) { 245 ret = false; 246 goto done; 247 } 248 } 249 250 ret = core->ops->is_enabled(core->hw); 251 done: 252 if (core->rpm_enabled) 253 pm_runtime_put(core->dev); 254 255 return ret; 256 } 257 258 /*** helper functions ***/ 259 260 const char *__clk_get_name(const struct clk *clk) 261 { 262 return !clk ? NULL : clk->core->name; 263 } 264 EXPORT_SYMBOL_GPL(__clk_get_name); 265 266 const char *clk_hw_get_name(const struct clk_hw *hw) 267 { 268 return hw->core->name; 269 } 270 EXPORT_SYMBOL_GPL(clk_hw_get_name); 271 272 struct clk_hw *__clk_get_hw(struct clk *clk) 273 { 274 return !clk ? NULL : clk->core->hw; 275 } 276 EXPORT_SYMBOL_GPL(__clk_get_hw); 277 278 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 279 { 280 return hw->core->num_parents; 281 } 282 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 283 284 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 285 { 286 return hw->core->parent ? hw->core->parent->hw : NULL; 287 } 288 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 289 290 static struct clk_core *__clk_lookup_subtree(const char *name, 291 struct clk_core *core) 292 { 293 struct clk_core *child; 294 struct clk_core *ret; 295 296 if (!strcmp(core->name, name)) 297 return core; 298 299 hlist_for_each_entry(child, &core->children, child_node) { 300 ret = __clk_lookup_subtree(name, child); 301 if (ret) 302 return ret; 303 } 304 305 return NULL; 306 } 307 308 static struct clk_core *clk_core_lookup(const char *name) 309 { 310 struct clk_core *root_clk; 311 struct clk_core *ret; 312 313 if (!name) 314 return NULL; 315 316 /* search the 'proper' clk tree first */ 317 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 318 ret = __clk_lookup_subtree(name, root_clk); 319 if (ret) 320 return ret; 321 } 322 323 /* if not found, then search the orphan tree */ 324 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 325 ret = __clk_lookup_subtree(name, root_clk); 326 if (ret) 327 return ret; 328 } 329 330 return NULL; 331 } 332 333 #ifdef CONFIG_OF 334 static int of_parse_clkspec(const struct device_node *np, int index, 335 const char *name, struct of_phandle_args *out_args); 336 static struct clk_hw * 337 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 338 #else 339 static inline int of_parse_clkspec(const struct device_node *np, int index, 340 const char *name, 341 struct of_phandle_args *out_args) 342 { 343 return -ENOENT; 344 } 345 static inline struct clk_hw * 346 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 347 { 348 return ERR_PTR(-ENOENT); 349 } 350 #endif 351 352 /** 353 * clk_core_get - Find the clk_core parent of a clk 354 * @core: clk to find parent of 355 * @p_index: parent index to search for 356 * 357 * This is the preferred method for clk providers to find the parent of a 358 * clk when that parent is external to the clk controller. The parent_names 359 * array is indexed and treated as a local name matching a string in the device 360 * node's 'clock-names' property or as the 'con_id' matching the device's 361 * dev_name() in a clk_lookup. This allows clk providers to use their own 362 * namespace instead of looking for a globally unique parent string. 363 * 364 * For example the following DT snippet would allow a clock registered by the 365 * clock-controller@c001 that has a clk_init_data::parent_data array 366 * with 'xtal' in the 'name' member to find the clock provided by the 367 * clock-controller@f00abcd without needing to get the globally unique name of 368 * the xtal clk. 369 * 370 * parent: clock-controller@f00abcd { 371 * reg = <0xf00abcd 0xabcd>; 372 * #clock-cells = <0>; 373 * }; 374 * 375 * clock-controller@c001 { 376 * reg = <0xc001 0xf00d>; 377 * clocks = <&parent>; 378 * clock-names = "xtal"; 379 * #clock-cells = <1>; 380 * }; 381 * 382 * Returns: -ENOENT when the provider can't be found or the clk doesn't 383 * exist in the provider or the name can't be found in the DT node or 384 * in a clkdev lookup. NULL when the provider knows about the clk but it 385 * isn't provided on this system. 386 * A valid clk_core pointer when the clk can be found in the provider. 387 */ 388 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 389 { 390 const char *name = core->parents[p_index].fw_name; 391 int index = core->parents[p_index].index; 392 struct clk_hw *hw = ERR_PTR(-ENOENT); 393 struct device *dev = core->dev; 394 const char *dev_id = dev ? dev_name(dev) : NULL; 395 struct device_node *np = core->of_node; 396 struct of_phandle_args clkspec; 397 398 if (np && (name || index >= 0) && 399 !of_parse_clkspec(np, index, name, &clkspec)) { 400 hw = of_clk_get_hw_from_clkspec(&clkspec); 401 of_node_put(clkspec.np); 402 } else if (name) { 403 /* 404 * If the DT search above couldn't find the provider fallback to 405 * looking up via clkdev based clk_lookups. 406 */ 407 hw = clk_find_hw(dev_id, name); 408 } 409 410 if (IS_ERR(hw)) 411 return ERR_CAST(hw); 412 413 return hw->core; 414 } 415 416 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 417 { 418 struct clk_parent_map *entry = &core->parents[index]; 419 struct clk_core *parent = ERR_PTR(-ENOENT); 420 421 if (entry->hw) { 422 parent = entry->hw->core; 423 /* 424 * We have a direct reference but it isn't registered yet? 425 * Orphan it and let clk_reparent() update the orphan status 426 * when the parent is registered. 427 */ 428 if (!parent) 429 parent = ERR_PTR(-EPROBE_DEFER); 430 } else { 431 parent = clk_core_get(core, index); 432 if (PTR_ERR(parent) == -ENOENT && entry->name) 433 parent = clk_core_lookup(entry->name); 434 } 435 436 /* Only cache it if it's not an error */ 437 if (!IS_ERR(parent)) 438 entry->core = parent; 439 } 440 441 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 442 u8 index) 443 { 444 if (!core || index >= core->num_parents || !core->parents) 445 return NULL; 446 447 if (!core->parents[index].core) 448 clk_core_fill_parent_index(core, index); 449 450 return core->parents[index].core; 451 } 452 453 struct clk_hw * 454 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 455 { 456 struct clk_core *parent; 457 458 parent = clk_core_get_parent_by_index(hw->core, index); 459 460 return !parent ? NULL : parent->hw; 461 } 462 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 463 464 unsigned int __clk_get_enable_count(struct clk *clk) 465 { 466 return !clk ? 0 : clk->core->enable_count; 467 } 468 469 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 470 { 471 if (!core) 472 return 0; 473 474 if (!core->num_parents || core->parent) 475 return core->rate; 476 477 /* 478 * Clk must have a parent because num_parents > 0 but the parent isn't 479 * known yet. Best to return 0 as the rate of this clk until we can 480 * properly recalc the rate based on the parent's rate. 481 */ 482 return 0; 483 } 484 485 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 486 { 487 return clk_core_get_rate_nolock(hw->core); 488 } 489 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 490 491 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 492 { 493 if (!core) 494 return 0; 495 496 return core->accuracy; 497 } 498 499 unsigned long __clk_get_flags(struct clk *clk) 500 { 501 return !clk ? 0 : clk->core->flags; 502 } 503 EXPORT_SYMBOL_GPL(__clk_get_flags); 504 505 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 506 { 507 return hw->core->flags; 508 } 509 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 510 511 bool clk_hw_is_prepared(const struct clk_hw *hw) 512 { 513 return clk_core_is_prepared(hw->core); 514 } 515 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 516 517 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 518 { 519 return clk_core_rate_is_protected(hw->core); 520 } 521 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 522 523 bool clk_hw_is_enabled(const struct clk_hw *hw) 524 { 525 return clk_core_is_enabled(hw->core); 526 } 527 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 528 529 bool __clk_is_enabled(struct clk *clk) 530 { 531 if (!clk) 532 return false; 533 534 return clk_core_is_enabled(clk->core); 535 } 536 EXPORT_SYMBOL_GPL(__clk_is_enabled); 537 538 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 539 unsigned long best, unsigned long flags) 540 { 541 if (flags & CLK_MUX_ROUND_CLOSEST) 542 return abs(now - rate) < abs(best - rate); 543 544 return now <= rate && now > best; 545 } 546 547 int clk_mux_determine_rate_flags(struct clk_hw *hw, 548 struct clk_rate_request *req, 549 unsigned long flags) 550 { 551 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 552 int i, num_parents, ret; 553 unsigned long best = 0; 554 struct clk_rate_request parent_req = *req; 555 556 /* if NO_REPARENT flag set, pass through to current parent */ 557 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 558 parent = core->parent; 559 if (core->flags & CLK_SET_RATE_PARENT) { 560 ret = __clk_determine_rate(parent ? parent->hw : NULL, 561 &parent_req); 562 if (ret) 563 return ret; 564 565 best = parent_req.rate; 566 } else if (parent) { 567 best = clk_core_get_rate_nolock(parent); 568 } else { 569 best = clk_core_get_rate_nolock(core); 570 } 571 572 goto out; 573 } 574 575 /* find the parent that can provide the fastest rate <= rate */ 576 num_parents = core->num_parents; 577 for (i = 0; i < num_parents; i++) { 578 parent = clk_core_get_parent_by_index(core, i); 579 if (!parent) 580 continue; 581 582 if (core->flags & CLK_SET_RATE_PARENT) { 583 parent_req = *req; 584 ret = __clk_determine_rate(parent->hw, &parent_req); 585 if (ret) 586 continue; 587 } else { 588 parent_req.rate = clk_core_get_rate_nolock(parent); 589 } 590 591 if (mux_is_better_rate(req->rate, parent_req.rate, 592 best, flags)) { 593 best_parent = parent; 594 best = parent_req.rate; 595 } 596 } 597 598 if (!best_parent) 599 return -EINVAL; 600 601 out: 602 if (best_parent) 603 req->best_parent_hw = best_parent->hw; 604 req->best_parent_rate = best; 605 req->rate = best; 606 607 return 0; 608 } 609 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 610 611 struct clk *__clk_lookup(const char *name) 612 { 613 struct clk_core *core = clk_core_lookup(name); 614 615 return !core ? NULL : core->hw->clk; 616 } 617 618 static void clk_core_get_boundaries(struct clk_core *core, 619 unsigned long *min_rate, 620 unsigned long *max_rate) 621 { 622 struct clk *clk_user; 623 624 lockdep_assert_held(&prepare_lock); 625 626 *min_rate = core->min_rate; 627 *max_rate = core->max_rate; 628 629 hlist_for_each_entry(clk_user, &core->clks, clks_node) 630 *min_rate = max(*min_rate, clk_user->min_rate); 631 632 hlist_for_each_entry(clk_user, &core->clks, clks_node) 633 *max_rate = min(*max_rate, clk_user->max_rate); 634 } 635 636 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 637 unsigned long max_rate) 638 { 639 hw->core->min_rate = min_rate; 640 hw->core->max_rate = max_rate; 641 } 642 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 643 644 /* 645 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 646 * @hw: mux type clk to determine rate on 647 * @req: rate request, also used to return preferred parent and frequencies 648 * 649 * Helper for finding best parent to provide a given frequency. This can be used 650 * directly as a determine_rate callback (e.g. for a mux), or from a more 651 * complex clock that may combine a mux with other operations. 652 * 653 * Returns: 0 on success, -EERROR value on error 654 */ 655 int __clk_mux_determine_rate(struct clk_hw *hw, 656 struct clk_rate_request *req) 657 { 658 return clk_mux_determine_rate_flags(hw, req, 0); 659 } 660 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 661 662 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 663 struct clk_rate_request *req) 664 { 665 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 666 } 667 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 668 669 /*** clk api ***/ 670 671 static void clk_core_rate_unprotect(struct clk_core *core) 672 { 673 lockdep_assert_held(&prepare_lock); 674 675 if (!core) 676 return; 677 678 if (WARN(core->protect_count == 0, 679 "%s already unprotected\n", core->name)) 680 return; 681 682 if (--core->protect_count > 0) 683 return; 684 685 clk_core_rate_unprotect(core->parent); 686 } 687 688 static int clk_core_rate_nuke_protect(struct clk_core *core) 689 { 690 int ret; 691 692 lockdep_assert_held(&prepare_lock); 693 694 if (!core) 695 return -EINVAL; 696 697 if (core->protect_count == 0) 698 return 0; 699 700 ret = core->protect_count; 701 core->protect_count = 1; 702 clk_core_rate_unprotect(core); 703 704 return ret; 705 } 706 707 /** 708 * clk_rate_exclusive_put - release exclusivity over clock rate control 709 * @clk: the clk over which the exclusivity is released 710 * 711 * clk_rate_exclusive_put() completes a critical section during which a clock 712 * consumer cannot tolerate any other consumer making any operation on the 713 * clock which could result in a rate change or rate glitch. Exclusive clocks 714 * cannot have their rate changed, either directly or indirectly due to changes 715 * further up the parent chain of clocks. As a result, clocks up parent chain 716 * also get under exclusive control of the calling consumer. 717 * 718 * If exlusivity is claimed more than once on clock, even by the same consumer, 719 * the rate effectively gets locked as exclusivity can't be preempted. 720 * 721 * Calls to clk_rate_exclusive_put() must be balanced with calls to 722 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 723 * error status. 724 */ 725 void clk_rate_exclusive_put(struct clk *clk) 726 { 727 if (!clk) 728 return; 729 730 clk_prepare_lock(); 731 732 /* 733 * if there is something wrong with this consumer protect count, stop 734 * here before messing with the provider 735 */ 736 if (WARN_ON(clk->exclusive_count <= 0)) 737 goto out; 738 739 clk_core_rate_unprotect(clk->core); 740 clk->exclusive_count--; 741 out: 742 clk_prepare_unlock(); 743 } 744 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 745 746 static void clk_core_rate_protect(struct clk_core *core) 747 { 748 lockdep_assert_held(&prepare_lock); 749 750 if (!core) 751 return; 752 753 if (core->protect_count == 0) 754 clk_core_rate_protect(core->parent); 755 756 core->protect_count++; 757 } 758 759 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 760 { 761 lockdep_assert_held(&prepare_lock); 762 763 if (!core) 764 return; 765 766 if (count == 0) 767 return; 768 769 clk_core_rate_protect(core); 770 core->protect_count = count; 771 } 772 773 /** 774 * clk_rate_exclusive_get - get exclusivity over the clk rate control 775 * @clk: the clk over which the exclusity of rate control is requested 776 * 777 * clk_rate_exclusive_get() begins a critical section during which a clock 778 * consumer cannot tolerate any other consumer making any operation on the 779 * clock which could result in a rate change or rate glitch. Exclusive clocks 780 * cannot have their rate changed, either directly or indirectly due to changes 781 * further up the parent chain of clocks. As a result, clocks up parent chain 782 * also get under exclusive control of the calling consumer. 783 * 784 * If exlusivity is claimed more than once on clock, even by the same consumer, 785 * the rate effectively gets locked as exclusivity can't be preempted. 786 * 787 * Calls to clk_rate_exclusive_get() should be balanced with calls to 788 * clk_rate_exclusive_put(). Calls to this function may sleep. 789 * Returns 0 on success, -EERROR otherwise 790 */ 791 int clk_rate_exclusive_get(struct clk *clk) 792 { 793 if (!clk) 794 return 0; 795 796 clk_prepare_lock(); 797 clk_core_rate_protect(clk->core); 798 clk->exclusive_count++; 799 clk_prepare_unlock(); 800 801 return 0; 802 } 803 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 804 805 static void clk_core_unprepare(struct clk_core *core) 806 { 807 lockdep_assert_held(&prepare_lock); 808 809 if (!core) 810 return; 811 812 if (WARN(core->prepare_count == 0, 813 "%s already unprepared\n", core->name)) 814 return; 815 816 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 817 "Unpreparing critical %s\n", core->name)) 818 return; 819 820 if (core->flags & CLK_SET_RATE_GATE) 821 clk_core_rate_unprotect(core); 822 823 if (--core->prepare_count > 0) 824 return; 825 826 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 827 828 trace_clk_unprepare(core); 829 830 if (core->ops->unprepare) 831 core->ops->unprepare(core->hw); 832 833 clk_pm_runtime_put(core); 834 835 trace_clk_unprepare_complete(core); 836 clk_core_unprepare(core->parent); 837 } 838 839 static void clk_core_unprepare_lock(struct clk_core *core) 840 { 841 clk_prepare_lock(); 842 clk_core_unprepare(core); 843 clk_prepare_unlock(); 844 } 845 846 /** 847 * clk_unprepare - undo preparation of a clock source 848 * @clk: the clk being unprepared 849 * 850 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 851 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 852 * if the operation may sleep. One example is a clk which is accessed over 853 * I2c. In the complex case a clk gate operation may require a fast and a slow 854 * part. It is this reason that clk_unprepare and clk_disable are not mutually 855 * exclusive. In fact clk_disable must be called before clk_unprepare. 856 */ 857 void clk_unprepare(struct clk *clk) 858 { 859 if (IS_ERR_OR_NULL(clk)) 860 return; 861 862 clk_core_unprepare_lock(clk->core); 863 } 864 EXPORT_SYMBOL_GPL(clk_unprepare); 865 866 static int clk_core_prepare(struct clk_core *core) 867 { 868 int ret = 0; 869 870 lockdep_assert_held(&prepare_lock); 871 872 if (!core) 873 return 0; 874 875 if (core->prepare_count == 0) { 876 ret = clk_pm_runtime_get(core); 877 if (ret) 878 return ret; 879 880 ret = clk_core_prepare(core->parent); 881 if (ret) 882 goto runtime_put; 883 884 trace_clk_prepare(core); 885 886 if (core->ops->prepare) 887 ret = core->ops->prepare(core->hw); 888 889 trace_clk_prepare_complete(core); 890 891 if (ret) 892 goto unprepare; 893 } 894 895 core->prepare_count++; 896 897 /* 898 * CLK_SET_RATE_GATE is a special case of clock protection 899 * Instead of a consumer claiming exclusive rate control, it is 900 * actually the provider which prevents any consumer from making any 901 * operation which could result in a rate change or rate glitch while 902 * the clock is prepared. 903 */ 904 if (core->flags & CLK_SET_RATE_GATE) 905 clk_core_rate_protect(core); 906 907 return 0; 908 unprepare: 909 clk_core_unprepare(core->parent); 910 runtime_put: 911 clk_pm_runtime_put(core); 912 return ret; 913 } 914 915 static int clk_core_prepare_lock(struct clk_core *core) 916 { 917 int ret; 918 919 clk_prepare_lock(); 920 ret = clk_core_prepare(core); 921 clk_prepare_unlock(); 922 923 return ret; 924 } 925 926 /** 927 * clk_prepare - prepare a clock source 928 * @clk: the clk being prepared 929 * 930 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 931 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 932 * operation may sleep. One example is a clk which is accessed over I2c. In 933 * the complex case a clk ungate operation may require a fast and a slow part. 934 * It is this reason that clk_prepare and clk_enable are not mutually 935 * exclusive. In fact clk_prepare must be called before clk_enable. 936 * Returns 0 on success, -EERROR otherwise. 937 */ 938 int clk_prepare(struct clk *clk) 939 { 940 if (!clk) 941 return 0; 942 943 return clk_core_prepare_lock(clk->core); 944 } 945 EXPORT_SYMBOL_GPL(clk_prepare); 946 947 static void clk_core_disable(struct clk_core *core) 948 { 949 lockdep_assert_held(&enable_lock); 950 951 if (!core) 952 return; 953 954 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 955 return; 956 957 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 958 "Disabling critical %s\n", core->name)) 959 return; 960 961 if (--core->enable_count > 0) 962 return; 963 964 trace_clk_disable_rcuidle(core); 965 966 if (core->ops->disable) 967 core->ops->disable(core->hw); 968 969 trace_clk_disable_complete_rcuidle(core); 970 971 clk_core_disable(core->parent); 972 } 973 974 static void clk_core_disable_lock(struct clk_core *core) 975 { 976 unsigned long flags; 977 978 flags = clk_enable_lock(); 979 clk_core_disable(core); 980 clk_enable_unlock(flags); 981 } 982 983 /** 984 * clk_disable - gate a clock 985 * @clk: the clk being gated 986 * 987 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 988 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 989 * clk if the operation is fast and will never sleep. One example is a 990 * SoC-internal clk which is controlled via simple register writes. In the 991 * complex case a clk gate operation may require a fast and a slow part. It is 992 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 993 * In fact clk_disable must be called before clk_unprepare. 994 */ 995 void clk_disable(struct clk *clk) 996 { 997 if (IS_ERR_OR_NULL(clk)) 998 return; 999 1000 clk_core_disable_lock(clk->core); 1001 } 1002 EXPORT_SYMBOL_GPL(clk_disable); 1003 1004 static int clk_core_enable(struct clk_core *core) 1005 { 1006 int ret = 0; 1007 1008 lockdep_assert_held(&enable_lock); 1009 1010 if (!core) 1011 return 0; 1012 1013 if (WARN(core->prepare_count == 0, 1014 "Enabling unprepared %s\n", core->name)) 1015 return -ESHUTDOWN; 1016 1017 if (core->enable_count == 0) { 1018 ret = clk_core_enable(core->parent); 1019 1020 if (ret) 1021 return ret; 1022 1023 trace_clk_enable_rcuidle(core); 1024 1025 if (core->ops->enable) 1026 ret = core->ops->enable(core->hw); 1027 1028 trace_clk_enable_complete_rcuidle(core); 1029 1030 if (ret) { 1031 clk_core_disable(core->parent); 1032 return ret; 1033 } 1034 } 1035 1036 core->enable_count++; 1037 return 0; 1038 } 1039 1040 static int clk_core_enable_lock(struct clk_core *core) 1041 { 1042 unsigned long flags; 1043 int ret; 1044 1045 flags = clk_enable_lock(); 1046 ret = clk_core_enable(core); 1047 clk_enable_unlock(flags); 1048 1049 return ret; 1050 } 1051 1052 /** 1053 * clk_gate_restore_context - restore context for poweroff 1054 * @hw: the clk_hw pointer of clock whose state is to be restored 1055 * 1056 * The clock gate restore context function enables or disables 1057 * the gate clocks based on the enable_count. This is done in cases 1058 * where the clock context is lost and based on the enable_count 1059 * the clock either needs to be enabled/disabled. This 1060 * helps restore the state of gate clocks. 1061 */ 1062 void clk_gate_restore_context(struct clk_hw *hw) 1063 { 1064 struct clk_core *core = hw->core; 1065 1066 if (core->enable_count) 1067 core->ops->enable(hw); 1068 else 1069 core->ops->disable(hw); 1070 } 1071 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1072 1073 static int clk_core_save_context(struct clk_core *core) 1074 { 1075 struct clk_core *child; 1076 int ret = 0; 1077 1078 hlist_for_each_entry(child, &core->children, child_node) { 1079 ret = clk_core_save_context(child); 1080 if (ret < 0) 1081 return ret; 1082 } 1083 1084 if (core->ops && core->ops->save_context) 1085 ret = core->ops->save_context(core->hw); 1086 1087 return ret; 1088 } 1089 1090 static void clk_core_restore_context(struct clk_core *core) 1091 { 1092 struct clk_core *child; 1093 1094 if (core->ops && core->ops->restore_context) 1095 core->ops->restore_context(core->hw); 1096 1097 hlist_for_each_entry(child, &core->children, child_node) 1098 clk_core_restore_context(child); 1099 } 1100 1101 /** 1102 * clk_save_context - save clock context for poweroff 1103 * 1104 * Saves the context of the clock register for powerstates in which the 1105 * contents of the registers will be lost. Occurs deep within the suspend 1106 * code. Returns 0 on success. 1107 */ 1108 int clk_save_context(void) 1109 { 1110 struct clk_core *clk; 1111 int ret; 1112 1113 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1114 ret = clk_core_save_context(clk); 1115 if (ret < 0) 1116 return ret; 1117 } 1118 1119 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1120 ret = clk_core_save_context(clk); 1121 if (ret < 0) 1122 return ret; 1123 } 1124 1125 return 0; 1126 } 1127 EXPORT_SYMBOL_GPL(clk_save_context); 1128 1129 /** 1130 * clk_restore_context - restore clock context after poweroff 1131 * 1132 * Restore the saved clock context upon resume. 1133 * 1134 */ 1135 void clk_restore_context(void) 1136 { 1137 struct clk_core *core; 1138 1139 hlist_for_each_entry(core, &clk_root_list, child_node) 1140 clk_core_restore_context(core); 1141 1142 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1143 clk_core_restore_context(core); 1144 } 1145 EXPORT_SYMBOL_GPL(clk_restore_context); 1146 1147 /** 1148 * clk_enable - ungate a clock 1149 * @clk: the clk being ungated 1150 * 1151 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1152 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1153 * if the operation will never sleep. One example is a SoC-internal clk which 1154 * is controlled via simple register writes. In the complex case a clk ungate 1155 * operation may require a fast and a slow part. It is this reason that 1156 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1157 * must be called before clk_enable. Returns 0 on success, -EERROR 1158 * otherwise. 1159 */ 1160 int clk_enable(struct clk *clk) 1161 { 1162 if (!clk) 1163 return 0; 1164 1165 return clk_core_enable_lock(clk->core); 1166 } 1167 EXPORT_SYMBOL_GPL(clk_enable); 1168 1169 static int clk_core_prepare_enable(struct clk_core *core) 1170 { 1171 int ret; 1172 1173 ret = clk_core_prepare_lock(core); 1174 if (ret) 1175 return ret; 1176 1177 ret = clk_core_enable_lock(core); 1178 if (ret) 1179 clk_core_unprepare_lock(core); 1180 1181 return ret; 1182 } 1183 1184 static void clk_core_disable_unprepare(struct clk_core *core) 1185 { 1186 clk_core_disable_lock(core); 1187 clk_core_unprepare_lock(core); 1188 } 1189 1190 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1191 { 1192 struct clk_core *child; 1193 1194 lockdep_assert_held(&prepare_lock); 1195 1196 hlist_for_each_entry(child, &core->children, child_node) 1197 clk_unprepare_unused_subtree(child); 1198 1199 if (core->prepare_count) 1200 return; 1201 1202 if (core->flags & CLK_IGNORE_UNUSED) 1203 return; 1204 1205 if (clk_pm_runtime_get(core)) 1206 return; 1207 1208 if (clk_core_is_prepared(core)) { 1209 trace_clk_unprepare(core); 1210 if (core->ops->unprepare_unused) 1211 core->ops->unprepare_unused(core->hw); 1212 else if (core->ops->unprepare) 1213 core->ops->unprepare(core->hw); 1214 trace_clk_unprepare_complete(core); 1215 } 1216 1217 clk_pm_runtime_put(core); 1218 } 1219 1220 static void __init clk_disable_unused_subtree(struct clk_core *core) 1221 { 1222 struct clk_core *child; 1223 unsigned long flags; 1224 1225 lockdep_assert_held(&prepare_lock); 1226 1227 hlist_for_each_entry(child, &core->children, child_node) 1228 clk_disable_unused_subtree(child); 1229 1230 if (core->flags & CLK_OPS_PARENT_ENABLE) 1231 clk_core_prepare_enable(core->parent); 1232 1233 if (clk_pm_runtime_get(core)) 1234 goto unprepare_out; 1235 1236 flags = clk_enable_lock(); 1237 1238 if (core->enable_count) 1239 goto unlock_out; 1240 1241 if (core->flags & CLK_IGNORE_UNUSED) 1242 goto unlock_out; 1243 1244 /* 1245 * some gate clocks have special needs during the disable-unused 1246 * sequence. call .disable_unused if available, otherwise fall 1247 * back to .disable 1248 */ 1249 if (clk_core_is_enabled(core)) { 1250 trace_clk_disable(core); 1251 if (core->ops->disable_unused) 1252 core->ops->disable_unused(core->hw); 1253 else if (core->ops->disable) 1254 core->ops->disable(core->hw); 1255 trace_clk_disable_complete(core); 1256 } 1257 1258 unlock_out: 1259 clk_enable_unlock(flags); 1260 clk_pm_runtime_put(core); 1261 unprepare_out: 1262 if (core->flags & CLK_OPS_PARENT_ENABLE) 1263 clk_core_disable_unprepare(core->parent); 1264 } 1265 1266 static bool clk_ignore_unused __initdata; 1267 static int __init clk_ignore_unused_setup(char *__unused) 1268 { 1269 clk_ignore_unused = true; 1270 return 1; 1271 } 1272 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1273 1274 static int __init clk_disable_unused(void) 1275 { 1276 struct clk_core *core; 1277 1278 if (clk_ignore_unused) { 1279 pr_warn("clk: Not disabling unused clocks\n"); 1280 return 0; 1281 } 1282 1283 clk_prepare_lock(); 1284 1285 hlist_for_each_entry(core, &clk_root_list, child_node) 1286 clk_disable_unused_subtree(core); 1287 1288 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1289 clk_disable_unused_subtree(core); 1290 1291 hlist_for_each_entry(core, &clk_root_list, child_node) 1292 clk_unprepare_unused_subtree(core); 1293 1294 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1295 clk_unprepare_unused_subtree(core); 1296 1297 clk_prepare_unlock(); 1298 1299 return 0; 1300 } 1301 late_initcall_sync(clk_disable_unused); 1302 1303 static int clk_core_determine_round_nolock(struct clk_core *core, 1304 struct clk_rate_request *req) 1305 { 1306 long rate; 1307 1308 lockdep_assert_held(&prepare_lock); 1309 1310 if (!core) 1311 return 0; 1312 1313 /* 1314 * At this point, core protection will be disabled if 1315 * - if the provider is not protected at all 1316 * - if the calling consumer is the only one which has exclusivity 1317 * over the provider 1318 */ 1319 if (clk_core_rate_is_protected(core)) { 1320 req->rate = core->rate; 1321 } else if (core->ops->determine_rate) { 1322 return core->ops->determine_rate(core->hw, req); 1323 } else if (core->ops->round_rate) { 1324 rate = core->ops->round_rate(core->hw, req->rate, 1325 &req->best_parent_rate); 1326 if (rate < 0) 1327 return rate; 1328 1329 req->rate = rate; 1330 } else { 1331 return -EINVAL; 1332 } 1333 1334 return 0; 1335 } 1336 1337 static void clk_core_init_rate_req(struct clk_core * const core, 1338 struct clk_rate_request *req) 1339 { 1340 struct clk_core *parent; 1341 1342 if (WARN_ON(!core || !req)) 1343 return; 1344 1345 parent = core->parent; 1346 if (parent) { 1347 req->best_parent_hw = parent->hw; 1348 req->best_parent_rate = parent->rate; 1349 } else { 1350 req->best_parent_hw = NULL; 1351 req->best_parent_rate = 0; 1352 } 1353 } 1354 1355 static bool clk_core_can_round(struct clk_core * const core) 1356 { 1357 return core->ops->determine_rate || core->ops->round_rate; 1358 } 1359 1360 static int clk_core_round_rate_nolock(struct clk_core *core, 1361 struct clk_rate_request *req) 1362 { 1363 lockdep_assert_held(&prepare_lock); 1364 1365 if (!core) { 1366 req->rate = 0; 1367 return 0; 1368 } 1369 1370 clk_core_init_rate_req(core, req); 1371 1372 if (clk_core_can_round(core)) 1373 return clk_core_determine_round_nolock(core, req); 1374 else if (core->flags & CLK_SET_RATE_PARENT) 1375 return clk_core_round_rate_nolock(core->parent, req); 1376 1377 req->rate = core->rate; 1378 return 0; 1379 } 1380 1381 /** 1382 * __clk_determine_rate - get the closest rate actually supported by a clock 1383 * @hw: determine the rate of this clock 1384 * @req: target rate request 1385 * 1386 * Useful for clk_ops such as .set_rate and .determine_rate. 1387 */ 1388 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1389 { 1390 if (!hw) { 1391 req->rate = 0; 1392 return 0; 1393 } 1394 1395 return clk_core_round_rate_nolock(hw->core, req); 1396 } 1397 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1398 1399 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1400 { 1401 int ret; 1402 struct clk_rate_request req; 1403 1404 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1405 req.rate = rate; 1406 1407 ret = clk_core_round_rate_nolock(hw->core, &req); 1408 if (ret) 1409 return 0; 1410 1411 return req.rate; 1412 } 1413 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1414 1415 /** 1416 * clk_round_rate - round the given rate for a clk 1417 * @clk: the clk for which we are rounding a rate 1418 * @rate: the rate which is to be rounded 1419 * 1420 * Takes in a rate as input and rounds it to a rate that the clk can actually 1421 * use which is then returned. If clk doesn't support round_rate operation 1422 * then the parent rate is returned. 1423 */ 1424 long clk_round_rate(struct clk *clk, unsigned long rate) 1425 { 1426 struct clk_rate_request req; 1427 int ret; 1428 1429 if (!clk) 1430 return 0; 1431 1432 clk_prepare_lock(); 1433 1434 if (clk->exclusive_count) 1435 clk_core_rate_unprotect(clk->core); 1436 1437 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1438 req.rate = rate; 1439 1440 ret = clk_core_round_rate_nolock(clk->core, &req); 1441 1442 if (clk->exclusive_count) 1443 clk_core_rate_protect(clk->core); 1444 1445 clk_prepare_unlock(); 1446 1447 if (ret) 1448 return ret; 1449 1450 return req.rate; 1451 } 1452 EXPORT_SYMBOL_GPL(clk_round_rate); 1453 1454 /** 1455 * __clk_notify - call clk notifier chain 1456 * @core: clk that is changing rate 1457 * @msg: clk notifier type (see include/linux/clk.h) 1458 * @old_rate: old clk rate 1459 * @new_rate: new clk rate 1460 * 1461 * Triggers a notifier call chain on the clk rate-change notification 1462 * for 'clk'. Passes a pointer to the struct clk and the previous 1463 * and current rates to the notifier callback. Intended to be called by 1464 * internal clock code only. Returns NOTIFY_DONE from the last driver 1465 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1466 * a driver returns that. 1467 */ 1468 static int __clk_notify(struct clk_core *core, unsigned long msg, 1469 unsigned long old_rate, unsigned long new_rate) 1470 { 1471 struct clk_notifier *cn; 1472 struct clk_notifier_data cnd; 1473 int ret = NOTIFY_DONE; 1474 1475 cnd.old_rate = old_rate; 1476 cnd.new_rate = new_rate; 1477 1478 list_for_each_entry(cn, &clk_notifier_list, node) { 1479 if (cn->clk->core == core) { 1480 cnd.clk = cn->clk; 1481 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1482 &cnd); 1483 if (ret & NOTIFY_STOP_MASK) 1484 return ret; 1485 } 1486 } 1487 1488 return ret; 1489 } 1490 1491 /** 1492 * __clk_recalc_accuracies 1493 * @core: first clk in the subtree 1494 * 1495 * Walks the subtree of clks starting with clk and recalculates accuracies as 1496 * it goes. Note that if a clk does not implement the .recalc_accuracy 1497 * callback then it is assumed that the clock will take on the accuracy of its 1498 * parent. 1499 */ 1500 static void __clk_recalc_accuracies(struct clk_core *core) 1501 { 1502 unsigned long parent_accuracy = 0; 1503 struct clk_core *child; 1504 1505 lockdep_assert_held(&prepare_lock); 1506 1507 if (core->parent) 1508 parent_accuracy = core->parent->accuracy; 1509 1510 if (core->ops->recalc_accuracy) 1511 core->accuracy = core->ops->recalc_accuracy(core->hw, 1512 parent_accuracy); 1513 else 1514 core->accuracy = parent_accuracy; 1515 1516 hlist_for_each_entry(child, &core->children, child_node) 1517 __clk_recalc_accuracies(child); 1518 } 1519 1520 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1521 { 1522 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1523 __clk_recalc_accuracies(core); 1524 1525 return clk_core_get_accuracy_no_lock(core); 1526 } 1527 1528 /** 1529 * clk_get_accuracy - return the accuracy of clk 1530 * @clk: the clk whose accuracy is being returned 1531 * 1532 * Simply returns the cached accuracy of the clk, unless 1533 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1534 * issued. 1535 * If clk is NULL then returns 0. 1536 */ 1537 long clk_get_accuracy(struct clk *clk) 1538 { 1539 long accuracy; 1540 1541 if (!clk) 1542 return 0; 1543 1544 clk_prepare_lock(); 1545 accuracy = clk_core_get_accuracy_recalc(clk->core); 1546 clk_prepare_unlock(); 1547 1548 return accuracy; 1549 } 1550 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1551 1552 static unsigned long clk_recalc(struct clk_core *core, 1553 unsigned long parent_rate) 1554 { 1555 unsigned long rate = parent_rate; 1556 1557 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1558 rate = core->ops->recalc_rate(core->hw, parent_rate); 1559 clk_pm_runtime_put(core); 1560 } 1561 return rate; 1562 } 1563 1564 /** 1565 * __clk_recalc_rates 1566 * @core: first clk in the subtree 1567 * @msg: notification type (see include/linux/clk.h) 1568 * 1569 * Walks the subtree of clks starting with clk and recalculates rates as it 1570 * goes. Note that if a clk does not implement the .recalc_rate callback then 1571 * it is assumed that the clock will take on the rate of its parent. 1572 * 1573 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1574 * if necessary. 1575 */ 1576 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1577 { 1578 unsigned long old_rate; 1579 unsigned long parent_rate = 0; 1580 struct clk_core *child; 1581 1582 lockdep_assert_held(&prepare_lock); 1583 1584 old_rate = core->rate; 1585 1586 if (core->parent) 1587 parent_rate = core->parent->rate; 1588 1589 core->rate = clk_recalc(core, parent_rate); 1590 1591 /* 1592 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1593 * & ABORT_RATE_CHANGE notifiers 1594 */ 1595 if (core->notifier_count && msg) 1596 __clk_notify(core, msg, old_rate, core->rate); 1597 1598 hlist_for_each_entry(child, &core->children, child_node) 1599 __clk_recalc_rates(child, msg); 1600 } 1601 1602 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1603 { 1604 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1605 __clk_recalc_rates(core, 0); 1606 1607 return clk_core_get_rate_nolock(core); 1608 } 1609 1610 /** 1611 * clk_get_rate - return the rate of clk 1612 * @clk: the clk whose rate is being returned 1613 * 1614 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1615 * is set, which means a recalc_rate will be issued. 1616 * If clk is NULL then returns 0. 1617 */ 1618 unsigned long clk_get_rate(struct clk *clk) 1619 { 1620 unsigned long rate; 1621 1622 if (!clk) 1623 return 0; 1624 1625 clk_prepare_lock(); 1626 rate = clk_core_get_rate_recalc(clk->core); 1627 clk_prepare_unlock(); 1628 1629 return rate; 1630 } 1631 EXPORT_SYMBOL_GPL(clk_get_rate); 1632 1633 static int clk_fetch_parent_index(struct clk_core *core, 1634 struct clk_core *parent) 1635 { 1636 int i; 1637 1638 if (!parent) 1639 return -EINVAL; 1640 1641 for (i = 0; i < core->num_parents; i++) { 1642 /* Found it first try! */ 1643 if (core->parents[i].core == parent) 1644 return i; 1645 1646 /* Something else is here, so keep looking */ 1647 if (core->parents[i].core) 1648 continue; 1649 1650 /* Maybe core hasn't been cached but the hw is all we know? */ 1651 if (core->parents[i].hw) { 1652 if (core->parents[i].hw == parent->hw) 1653 break; 1654 1655 /* Didn't match, but we're expecting a clk_hw */ 1656 continue; 1657 } 1658 1659 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1660 if (parent == clk_core_get(core, i)) 1661 break; 1662 1663 /* Fallback to comparing globally unique names */ 1664 if (core->parents[i].name && 1665 !strcmp(parent->name, core->parents[i].name)) 1666 break; 1667 } 1668 1669 if (i == core->num_parents) 1670 return -EINVAL; 1671 1672 core->parents[i].core = parent; 1673 return i; 1674 } 1675 1676 /** 1677 * clk_hw_get_parent_index - return the index of the parent clock 1678 * @hw: clk_hw associated with the clk being consumed 1679 * 1680 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1681 * clock does not have a current parent. 1682 */ 1683 int clk_hw_get_parent_index(struct clk_hw *hw) 1684 { 1685 struct clk_hw *parent = clk_hw_get_parent(hw); 1686 1687 if (WARN_ON(parent == NULL)) 1688 return -EINVAL; 1689 1690 return clk_fetch_parent_index(hw->core, parent->core); 1691 } 1692 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1693 1694 /* 1695 * Update the orphan status of @core and all its children. 1696 */ 1697 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1698 { 1699 struct clk_core *child; 1700 1701 core->orphan = is_orphan; 1702 1703 hlist_for_each_entry(child, &core->children, child_node) 1704 clk_core_update_orphan_status(child, is_orphan); 1705 } 1706 1707 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1708 { 1709 bool was_orphan = core->orphan; 1710 1711 hlist_del(&core->child_node); 1712 1713 if (new_parent) { 1714 bool becomes_orphan = new_parent->orphan; 1715 1716 /* avoid duplicate POST_RATE_CHANGE notifications */ 1717 if (new_parent->new_child == core) 1718 new_parent->new_child = NULL; 1719 1720 hlist_add_head(&core->child_node, &new_parent->children); 1721 1722 if (was_orphan != becomes_orphan) 1723 clk_core_update_orphan_status(core, becomes_orphan); 1724 } else { 1725 hlist_add_head(&core->child_node, &clk_orphan_list); 1726 if (!was_orphan) 1727 clk_core_update_orphan_status(core, true); 1728 } 1729 1730 core->parent = new_parent; 1731 } 1732 1733 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1734 struct clk_core *parent) 1735 { 1736 unsigned long flags; 1737 struct clk_core *old_parent = core->parent; 1738 1739 /* 1740 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1741 * 1742 * 2. Migrate prepare state between parents and prevent race with 1743 * clk_enable(). 1744 * 1745 * If the clock is not prepared, then a race with 1746 * clk_enable/disable() is impossible since we already have the 1747 * prepare lock (future calls to clk_enable() need to be preceded by 1748 * a clk_prepare()). 1749 * 1750 * If the clock is prepared, migrate the prepared state to the new 1751 * parent and also protect against a race with clk_enable() by 1752 * forcing the clock and the new parent on. This ensures that all 1753 * future calls to clk_enable() are practically NOPs with respect to 1754 * hardware and software states. 1755 * 1756 * See also: Comment for clk_set_parent() below. 1757 */ 1758 1759 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1760 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1761 clk_core_prepare_enable(old_parent); 1762 clk_core_prepare_enable(parent); 1763 } 1764 1765 /* migrate prepare count if > 0 */ 1766 if (core->prepare_count) { 1767 clk_core_prepare_enable(parent); 1768 clk_core_enable_lock(core); 1769 } 1770 1771 /* update the clk tree topology */ 1772 flags = clk_enable_lock(); 1773 clk_reparent(core, parent); 1774 clk_enable_unlock(flags); 1775 1776 return old_parent; 1777 } 1778 1779 static void __clk_set_parent_after(struct clk_core *core, 1780 struct clk_core *parent, 1781 struct clk_core *old_parent) 1782 { 1783 /* 1784 * Finish the migration of prepare state and undo the changes done 1785 * for preventing a race with clk_enable(). 1786 */ 1787 if (core->prepare_count) { 1788 clk_core_disable_lock(core); 1789 clk_core_disable_unprepare(old_parent); 1790 } 1791 1792 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1793 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1794 clk_core_disable_unprepare(parent); 1795 clk_core_disable_unprepare(old_parent); 1796 } 1797 } 1798 1799 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1800 u8 p_index) 1801 { 1802 unsigned long flags; 1803 int ret = 0; 1804 struct clk_core *old_parent; 1805 1806 old_parent = __clk_set_parent_before(core, parent); 1807 1808 trace_clk_set_parent(core, parent); 1809 1810 /* change clock input source */ 1811 if (parent && core->ops->set_parent) 1812 ret = core->ops->set_parent(core->hw, p_index); 1813 1814 trace_clk_set_parent_complete(core, parent); 1815 1816 if (ret) { 1817 flags = clk_enable_lock(); 1818 clk_reparent(core, old_parent); 1819 clk_enable_unlock(flags); 1820 __clk_set_parent_after(core, old_parent, parent); 1821 1822 return ret; 1823 } 1824 1825 __clk_set_parent_after(core, parent, old_parent); 1826 1827 return 0; 1828 } 1829 1830 /** 1831 * __clk_speculate_rates 1832 * @core: first clk in the subtree 1833 * @parent_rate: the "future" rate of clk's parent 1834 * 1835 * Walks the subtree of clks starting with clk, speculating rates as it 1836 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1837 * 1838 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1839 * pre-rate change notifications and returns early if no clks in the 1840 * subtree have subscribed to the notifications. Note that if a clk does not 1841 * implement the .recalc_rate callback then it is assumed that the clock will 1842 * take on the rate of its parent. 1843 */ 1844 static int __clk_speculate_rates(struct clk_core *core, 1845 unsigned long parent_rate) 1846 { 1847 struct clk_core *child; 1848 unsigned long new_rate; 1849 int ret = NOTIFY_DONE; 1850 1851 lockdep_assert_held(&prepare_lock); 1852 1853 new_rate = clk_recalc(core, parent_rate); 1854 1855 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1856 if (core->notifier_count) 1857 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1858 1859 if (ret & NOTIFY_STOP_MASK) { 1860 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1861 __func__, core->name, ret); 1862 goto out; 1863 } 1864 1865 hlist_for_each_entry(child, &core->children, child_node) { 1866 ret = __clk_speculate_rates(child, new_rate); 1867 if (ret & NOTIFY_STOP_MASK) 1868 break; 1869 } 1870 1871 out: 1872 return ret; 1873 } 1874 1875 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1876 struct clk_core *new_parent, u8 p_index) 1877 { 1878 struct clk_core *child; 1879 1880 core->new_rate = new_rate; 1881 core->new_parent = new_parent; 1882 core->new_parent_index = p_index; 1883 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1884 core->new_child = NULL; 1885 if (new_parent && new_parent != core->parent) 1886 new_parent->new_child = core; 1887 1888 hlist_for_each_entry(child, &core->children, child_node) { 1889 child->new_rate = clk_recalc(child, new_rate); 1890 clk_calc_subtree(child, child->new_rate, NULL, 0); 1891 } 1892 } 1893 1894 /* 1895 * calculate the new rates returning the topmost clock that has to be 1896 * changed. 1897 */ 1898 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1899 unsigned long rate) 1900 { 1901 struct clk_core *top = core; 1902 struct clk_core *old_parent, *parent; 1903 unsigned long best_parent_rate = 0; 1904 unsigned long new_rate; 1905 unsigned long min_rate; 1906 unsigned long max_rate; 1907 int p_index = 0; 1908 long ret; 1909 1910 /* sanity */ 1911 if (IS_ERR_OR_NULL(core)) 1912 return NULL; 1913 1914 /* save parent rate, if it exists */ 1915 parent = old_parent = core->parent; 1916 if (parent) 1917 best_parent_rate = parent->rate; 1918 1919 clk_core_get_boundaries(core, &min_rate, &max_rate); 1920 1921 /* find the closest rate and parent clk/rate */ 1922 if (clk_core_can_round(core)) { 1923 struct clk_rate_request req; 1924 1925 req.rate = rate; 1926 req.min_rate = min_rate; 1927 req.max_rate = max_rate; 1928 1929 clk_core_init_rate_req(core, &req); 1930 1931 ret = clk_core_determine_round_nolock(core, &req); 1932 if (ret < 0) 1933 return NULL; 1934 1935 best_parent_rate = req.best_parent_rate; 1936 new_rate = req.rate; 1937 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1938 1939 if (new_rate < min_rate || new_rate > max_rate) 1940 return NULL; 1941 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1942 /* pass-through clock without adjustable parent */ 1943 core->new_rate = core->rate; 1944 return NULL; 1945 } else { 1946 /* pass-through clock with adjustable parent */ 1947 top = clk_calc_new_rates(parent, rate); 1948 new_rate = parent->new_rate; 1949 goto out; 1950 } 1951 1952 /* some clocks must be gated to change parent */ 1953 if (parent != old_parent && 1954 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1955 pr_debug("%s: %s not gated but wants to reparent\n", 1956 __func__, core->name); 1957 return NULL; 1958 } 1959 1960 /* try finding the new parent index */ 1961 if (parent && core->num_parents > 1) { 1962 p_index = clk_fetch_parent_index(core, parent); 1963 if (p_index < 0) { 1964 pr_debug("%s: clk %s can not be parent of clk %s\n", 1965 __func__, parent->name, core->name); 1966 return NULL; 1967 } 1968 } 1969 1970 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1971 best_parent_rate != parent->rate) 1972 top = clk_calc_new_rates(parent, best_parent_rate); 1973 1974 out: 1975 clk_calc_subtree(core, new_rate, parent, p_index); 1976 1977 return top; 1978 } 1979 1980 /* 1981 * Notify about rate changes in a subtree. Always walk down the whole tree 1982 * so that in case of an error we can walk down the whole tree again and 1983 * abort the change. 1984 */ 1985 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1986 unsigned long event) 1987 { 1988 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1989 int ret = NOTIFY_DONE; 1990 1991 if (core->rate == core->new_rate) 1992 return NULL; 1993 1994 if (core->notifier_count) { 1995 ret = __clk_notify(core, event, core->rate, core->new_rate); 1996 if (ret & NOTIFY_STOP_MASK) 1997 fail_clk = core; 1998 } 1999 2000 hlist_for_each_entry(child, &core->children, child_node) { 2001 /* Skip children who will be reparented to another clock */ 2002 if (child->new_parent && child->new_parent != core) 2003 continue; 2004 tmp_clk = clk_propagate_rate_change(child, event); 2005 if (tmp_clk) 2006 fail_clk = tmp_clk; 2007 } 2008 2009 /* handle the new child who might not be in core->children yet */ 2010 if (core->new_child) { 2011 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2012 if (tmp_clk) 2013 fail_clk = tmp_clk; 2014 } 2015 2016 return fail_clk; 2017 } 2018 2019 /* 2020 * walk down a subtree and set the new rates notifying the rate 2021 * change on the way 2022 */ 2023 static void clk_change_rate(struct clk_core *core) 2024 { 2025 struct clk_core *child; 2026 struct hlist_node *tmp; 2027 unsigned long old_rate; 2028 unsigned long best_parent_rate = 0; 2029 bool skip_set_rate = false; 2030 struct clk_core *old_parent; 2031 struct clk_core *parent = NULL; 2032 2033 old_rate = core->rate; 2034 2035 if (core->new_parent) { 2036 parent = core->new_parent; 2037 best_parent_rate = core->new_parent->rate; 2038 } else if (core->parent) { 2039 parent = core->parent; 2040 best_parent_rate = core->parent->rate; 2041 } 2042 2043 if (clk_pm_runtime_get(core)) 2044 return; 2045 2046 if (core->flags & CLK_SET_RATE_UNGATE) { 2047 unsigned long flags; 2048 2049 clk_core_prepare(core); 2050 flags = clk_enable_lock(); 2051 clk_core_enable(core); 2052 clk_enable_unlock(flags); 2053 } 2054 2055 if (core->new_parent && core->new_parent != core->parent) { 2056 old_parent = __clk_set_parent_before(core, core->new_parent); 2057 trace_clk_set_parent(core, core->new_parent); 2058 2059 if (core->ops->set_rate_and_parent) { 2060 skip_set_rate = true; 2061 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2062 best_parent_rate, 2063 core->new_parent_index); 2064 } else if (core->ops->set_parent) { 2065 core->ops->set_parent(core->hw, core->new_parent_index); 2066 } 2067 2068 trace_clk_set_parent_complete(core, core->new_parent); 2069 __clk_set_parent_after(core, core->new_parent, old_parent); 2070 } 2071 2072 if (core->flags & CLK_OPS_PARENT_ENABLE) 2073 clk_core_prepare_enable(parent); 2074 2075 trace_clk_set_rate(core, core->new_rate); 2076 2077 if (!skip_set_rate && core->ops->set_rate) 2078 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2079 2080 trace_clk_set_rate_complete(core, core->new_rate); 2081 2082 core->rate = clk_recalc(core, best_parent_rate); 2083 2084 if (core->flags & CLK_SET_RATE_UNGATE) { 2085 unsigned long flags; 2086 2087 flags = clk_enable_lock(); 2088 clk_core_disable(core); 2089 clk_enable_unlock(flags); 2090 clk_core_unprepare(core); 2091 } 2092 2093 if (core->flags & CLK_OPS_PARENT_ENABLE) 2094 clk_core_disable_unprepare(parent); 2095 2096 if (core->notifier_count && old_rate != core->rate) 2097 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2098 2099 if (core->flags & CLK_RECALC_NEW_RATES) 2100 (void)clk_calc_new_rates(core, core->new_rate); 2101 2102 /* 2103 * Use safe iteration, as change_rate can actually swap parents 2104 * for certain clock types. 2105 */ 2106 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2107 /* Skip children who will be reparented to another clock */ 2108 if (child->new_parent && child->new_parent != core) 2109 continue; 2110 clk_change_rate(child); 2111 } 2112 2113 /* handle the new child who might not be in core->children yet */ 2114 if (core->new_child) 2115 clk_change_rate(core->new_child); 2116 2117 clk_pm_runtime_put(core); 2118 } 2119 2120 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2121 unsigned long req_rate) 2122 { 2123 int ret, cnt; 2124 struct clk_rate_request req; 2125 2126 lockdep_assert_held(&prepare_lock); 2127 2128 if (!core) 2129 return 0; 2130 2131 /* simulate what the rate would be if it could be freely set */ 2132 cnt = clk_core_rate_nuke_protect(core); 2133 if (cnt < 0) 2134 return cnt; 2135 2136 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2137 req.rate = req_rate; 2138 2139 ret = clk_core_round_rate_nolock(core, &req); 2140 2141 /* restore the protection */ 2142 clk_core_rate_restore_protect(core, cnt); 2143 2144 return ret ? 0 : req.rate; 2145 } 2146 2147 static int clk_core_set_rate_nolock(struct clk_core *core, 2148 unsigned long req_rate) 2149 { 2150 struct clk_core *top, *fail_clk; 2151 unsigned long rate; 2152 int ret = 0; 2153 2154 if (!core) 2155 return 0; 2156 2157 rate = clk_core_req_round_rate_nolock(core, req_rate); 2158 2159 /* bail early if nothing to do */ 2160 if (rate == clk_core_get_rate_nolock(core)) 2161 return 0; 2162 2163 /* fail on a direct rate set of a protected provider */ 2164 if (clk_core_rate_is_protected(core)) 2165 return -EBUSY; 2166 2167 /* calculate new rates and get the topmost changed clock */ 2168 top = clk_calc_new_rates(core, req_rate); 2169 if (!top) 2170 return -EINVAL; 2171 2172 ret = clk_pm_runtime_get(core); 2173 if (ret) 2174 return ret; 2175 2176 /* notify that we are about to change rates */ 2177 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2178 if (fail_clk) { 2179 pr_debug("%s: failed to set %s rate\n", __func__, 2180 fail_clk->name); 2181 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2182 ret = -EBUSY; 2183 goto err; 2184 } 2185 2186 /* change the rates */ 2187 clk_change_rate(top); 2188 2189 core->req_rate = req_rate; 2190 err: 2191 clk_pm_runtime_put(core); 2192 2193 return ret; 2194 } 2195 2196 /** 2197 * clk_set_rate - specify a new rate for clk 2198 * @clk: the clk whose rate is being changed 2199 * @rate: the new rate for clk 2200 * 2201 * In the simplest case clk_set_rate will only adjust the rate of clk. 2202 * 2203 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2204 * propagate up to clk's parent; whether or not this happens depends on the 2205 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2206 * after calling .round_rate then upstream parent propagation is ignored. If 2207 * *parent_rate comes back with a new rate for clk's parent then we propagate 2208 * up to clk's parent and set its rate. Upward propagation will continue 2209 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2210 * .round_rate stops requesting changes to clk's parent_rate. 2211 * 2212 * Rate changes are accomplished via tree traversal that also recalculates the 2213 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2214 * 2215 * Returns 0 on success, -EERROR otherwise. 2216 */ 2217 int clk_set_rate(struct clk *clk, unsigned long rate) 2218 { 2219 int ret; 2220 2221 if (!clk) 2222 return 0; 2223 2224 /* prevent racing with updates to the clock topology */ 2225 clk_prepare_lock(); 2226 2227 if (clk->exclusive_count) 2228 clk_core_rate_unprotect(clk->core); 2229 2230 ret = clk_core_set_rate_nolock(clk->core, rate); 2231 2232 if (clk->exclusive_count) 2233 clk_core_rate_protect(clk->core); 2234 2235 clk_prepare_unlock(); 2236 2237 return ret; 2238 } 2239 EXPORT_SYMBOL_GPL(clk_set_rate); 2240 2241 /** 2242 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2243 * @clk: the clk whose rate is being changed 2244 * @rate: the new rate for clk 2245 * 2246 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2247 * within a critical section 2248 * 2249 * This can be used initially to ensure that at least 1 consumer is 2250 * satisfied when several consumers are competing for exclusivity over the 2251 * same clock provider. 2252 * 2253 * The exclusivity is not applied if setting the rate failed. 2254 * 2255 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2256 * clk_rate_exclusive_put(). 2257 * 2258 * Returns 0 on success, -EERROR otherwise. 2259 */ 2260 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2261 { 2262 int ret; 2263 2264 if (!clk) 2265 return 0; 2266 2267 /* prevent racing with updates to the clock topology */ 2268 clk_prepare_lock(); 2269 2270 /* 2271 * The temporary protection removal is not here, on purpose 2272 * This function is meant to be used instead of clk_rate_protect, 2273 * so before the consumer code path protect the clock provider 2274 */ 2275 2276 ret = clk_core_set_rate_nolock(clk->core, rate); 2277 if (!ret) { 2278 clk_core_rate_protect(clk->core); 2279 clk->exclusive_count++; 2280 } 2281 2282 clk_prepare_unlock(); 2283 2284 return ret; 2285 } 2286 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2287 2288 /** 2289 * clk_set_rate_range - set a rate range for a clock source 2290 * @clk: clock source 2291 * @min: desired minimum clock rate in Hz, inclusive 2292 * @max: desired maximum clock rate in Hz, inclusive 2293 * 2294 * Returns success (0) or negative errno. 2295 */ 2296 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2297 { 2298 int ret = 0; 2299 unsigned long old_min, old_max, rate; 2300 2301 if (!clk) 2302 return 0; 2303 2304 if (min > max) { 2305 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2306 __func__, clk->core->name, clk->dev_id, clk->con_id, 2307 min, max); 2308 return -EINVAL; 2309 } 2310 2311 clk_prepare_lock(); 2312 2313 if (clk->exclusive_count) 2314 clk_core_rate_unprotect(clk->core); 2315 2316 /* Save the current values in case we need to rollback the change */ 2317 old_min = clk->min_rate; 2318 old_max = clk->max_rate; 2319 clk->min_rate = min; 2320 clk->max_rate = max; 2321 2322 rate = clk_core_get_rate_nolock(clk->core); 2323 if (rate < min || rate > max) { 2324 /* 2325 * FIXME: 2326 * We are in bit of trouble here, current rate is outside the 2327 * the requested range. We are going try to request appropriate 2328 * range boundary but there is a catch. It may fail for the 2329 * usual reason (clock broken, clock protected, etc) but also 2330 * because: 2331 * - round_rate() was not favorable and fell on the wrong 2332 * side of the boundary 2333 * - the determine_rate() callback does not really check for 2334 * this corner case when determining the rate 2335 */ 2336 2337 if (rate < min) 2338 rate = min; 2339 else 2340 rate = max; 2341 2342 ret = clk_core_set_rate_nolock(clk->core, rate); 2343 if (ret) { 2344 /* rollback the changes */ 2345 clk->min_rate = old_min; 2346 clk->max_rate = old_max; 2347 } 2348 } 2349 2350 if (clk->exclusive_count) 2351 clk_core_rate_protect(clk->core); 2352 2353 clk_prepare_unlock(); 2354 2355 return ret; 2356 } 2357 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2358 2359 /** 2360 * clk_set_min_rate - set a minimum clock rate for a clock source 2361 * @clk: clock source 2362 * @rate: desired minimum clock rate in Hz, inclusive 2363 * 2364 * Returns success (0) or negative errno. 2365 */ 2366 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2367 { 2368 if (!clk) 2369 return 0; 2370 2371 return clk_set_rate_range(clk, rate, clk->max_rate); 2372 } 2373 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2374 2375 /** 2376 * clk_set_max_rate - set a maximum clock rate for a clock source 2377 * @clk: clock source 2378 * @rate: desired maximum clock rate in Hz, inclusive 2379 * 2380 * Returns success (0) or negative errno. 2381 */ 2382 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2383 { 2384 if (!clk) 2385 return 0; 2386 2387 return clk_set_rate_range(clk, clk->min_rate, rate); 2388 } 2389 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2390 2391 /** 2392 * clk_get_parent - return the parent of a clk 2393 * @clk: the clk whose parent gets returned 2394 * 2395 * Simply returns clk->parent. Returns NULL if clk is NULL. 2396 */ 2397 struct clk *clk_get_parent(struct clk *clk) 2398 { 2399 struct clk *parent; 2400 2401 if (!clk) 2402 return NULL; 2403 2404 clk_prepare_lock(); 2405 /* TODO: Create a per-user clk and change callers to call clk_put */ 2406 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2407 clk_prepare_unlock(); 2408 2409 return parent; 2410 } 2411 EXPORT_SYMBOL_GPL(clk_get_parent); 2412 2413 static struct clk_core *__clk_init_parent(struct clk_core *core) 2414 { 2415 u8 index = 0; 2416 2417 if (core->num_parents > 1 && core->ops->get_parent) 2418 index = core->ops->get_parent(core->hw); 2419 2420 return clk_core_get_parent_by_index(core, index); 2421 } 2422 2423 static void clk_core_reparent(struct clk_core *core, 2424 struct clk_core *new_parent) 2425 { 2426 clk_reparent(core, new_parent); 2427 __clk_recalc_accuracies(core); 2428 __clk_recalc_rates(core, POST_RATE_CHANGE); 2429 } 2430 2431 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2432 { 2433 if (!hw) 2434 return; 2435 2436 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2437 } 2438 2439 /** 2440 * clk_has_parent - check if a clock is a possible parent for another 2441 * @clk: clock source 2442 * @parent: parent clock source 2443 * 2444 * This function can be used in drivers that need to check that a clock can be 2445 * the parent of another without actually changing the parent. 2446 * 2447 * Returns true if @parent is a possible parent for @clk, false otherwise. 2448 */ 2449 bool clk_has_parent(struct clk *clk, struct clk *parent) 2450 { 2451 struct clk_core *core, *parent_core; 2452 int i; 2453 2454 /* NULL clocks should be nops, so return success if either is NULL. */ 2455 if (!clk || !parent) 2456 return true; 2457 2458 core = clk->core; 2459 parent_core = parent->core; 2460 2461 /* Optimize for the case where the parent is already the parent. */ 2462 if (core->parent == parent_core) 2463 return true; 2464 2465 for (i = 0; i < core->num_parents; i++) 2466 if (!strcmp(core->parents[i].name, parent_core->name)) 2467 return true; 2468 2469 return false; 2470 } 2471 EXPORT_SYMBOL_GPL(clk_has_parent); 2472 2473 static int clk_core_set_parent_nolock(struct clk_core *core, 2474 struct clk_core *parent) 2475 { 2476 int ret = 0; 2477 int p_index = 0; 2478 unsigned long p_rate = 0; 2479 2480 lockdep_assert_held(&prepare_lock); 2481 2482 if (!core) 2483 return 0; 2484 2485 if (core->parent == parent) 2486 return 0; 2487 2488 /* verify ops for multi-parent clks */ 2489 if (core->num_parents > 1 && !core->ops->set_parent) 2490 return -EPERM; 2491 2492 /* check that we are allowed to re-parent if the clock is in use */ 2493 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2494 return -EBUSY; 2495 2496 if (clk_core_rate_is_protected(core)) 2497 return -EBUSY; 2498 2499 /* try finding the new parent index */ 2500 if (parent) { 2501 p_index = clk_fetch_parent_index(core, parent); 2502 if (p_index < 0) { 2503 pr_debug("%s: clk %s can not be parent of clk %s\n", 2504 __func__, parent->name, core->name); 2505 return p_index; 2506 } 2507 p_rate = parent->rate; 2508 } 2509 2510 ret = clk_pm_runtime_get(core); 2511 if (ret) 2512 return ret; 2513 2514 /* propagate PRE_RATE_CHANGE notifications */ 2515 ret = __clk_speculate_rates(core, p_rate); 2516 2517 /* abort if a driver objects */ 2518 if (ret & NOTIFY_STOP_MASK) 2519 goto runtime_put; 2520 2521 /* do the re-parent */ 2522 ret = __clk_set_parent(core, parent, p_index); 2523 2524 /* propagate rate an accuracy recalculation accordingly */ 2525 if (ret) { 2526 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2527 } else { 2528 __clk_recalc_rates(core, POST_RATE_CHANGE); 2529 __clk_recalc_accuracies(core); 2530 } 2531 2532 runtime_put: 2533 clk_pm_runtime_put(core); 2534 2535 return ret; 2536 } 2537 2538 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2539 { 2540 return clk_core_set_parent_nolock(hw->core, parent->core); 2541 } 2542 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2543 2544 /** 2545 * clk_set_parent - switch the parent of a mux clk 2546 * @clk: the mux clk whose input we are switching 2547 * @parent: the new input to clk 2548 * 2549 * Re-parent clk to use parent as its new input source. If clk is in 2550 * prepared state, the clk will get enabled for the duration of this call. If 2551 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2552 * that, the reparenting is glitchy in hardware, etc), use the 2553 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2554 * 2555 * After successfully changing clk's parent clk_set_parent will update the 2556 * clk topology, sysfs topology and propagate rate recalculation via 2557 * __clk_recalc_rates. 2558 * 2559 * Returns 0 on success, -EERROR otherwise. 2560 */ 2561 int clk_set_parent(struct clk *clk, struct clk *parent) 2562 { 2563 int ret; 2564 2565 if (!clk) 2566 return 0; 2567 2568 clk_prepare_lock(); 2569 2570 if (clk->exclusive_count) 2571 clk_core_rate_unprotect(clk->core); 2572 2573 ret = clk_core_set_parent_nolock(clk->core, 2574 parent ? parent->core : NULL); 2575 2576 if (clk->exclusive_count) 2577 clk_core_rate_protect(clk->core); 2578 2579 clk_prepare_unlock(); 2580 2581 return ret; 2582 } 2583 EXPORT_SYMBOL_GPL(clk_set_parent); 2584 2585 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2586 { 2587 int ret = -EINVAL; 2588 2589 lockdep_assert_held(&prepare_lock); 2590 2591 if (!core) 2592 return 0; 2593 2594 if (clk_core_rate_is_protected(core)) 2595 return -EBUSY; 2596 2597 trace_clk_set_phase(core, degrees); 2598 2599 if (core->ops->set_phase) { 2600 ret = core->ops->set_phase(core->hw, degrees); 2601 if (!ret) 2602 core->phase = degrees; 2603 } 2604 2605 trace_clk_set_phase_complete(core, degrees); 2606 2607 return ret; 2608 } 2609 2610 /** 2611 * clk_set_phase - adjust the phase shift of a clock signal 2612 * @clk: clock signal source 2613 * @degrees: number of degrees the signal is shifted 2614 * 2615 * Shifts the phase of a clock signal by the specified 2616 * degrees. Returns 0 on success, -EERROR otherwise. 2617 * 2618 * This function makes no distinction about the input or reference 2619 * signal that we adjust the clock signal phase against. For example 2620 * phase locked-loop clock signal generators we may shift phase with 2621 * respect to feedback clock signal input, but for other cases the 2622 * clock phase may be shifted with respect to some other, unspecified 2623 * signal. 2624 * 2625 * Additionally the concept of phase shift does not propagate through 2626 * the clock tree hierarchy, which sets it apart from clock rates and 2627 * clock accuracy. A parent clock phase attribute does not have an 2628 * impact on the phase attribute of a child clock. 2629 */ 2630 int clk_set_phase(struct clk *clk, int degrees) 2631 { 2632 int ret; 2633 2634 if (!clk) 2635 return 0; 2636 2637 /* sanity check degrees */ 2638 degrees %= 360; 2639 if (degrees < 0) 2640 degrees += 360; 2641 2642 clk_prepare_lock(); 2643 2644 if (clk->exclusive_count) 2645 clk_core_rate_unprotect(clk->core); 2646 2647 ret = clk_core_set_phase_nolock(clk->core, degrees); 2648 2649 if (clk->exclusive_count) 2650 clk_core_rate_protect(clk->core); 2651 2652 clk_prepare_unlock(); 2653 2654 return ret; 2655 } 2656 EXPORT_SYMBOL_GPL(clk_set_phase); 2657 2658 static int clk_core_get_phase(struct clk_core *core) 2659 { 2660 int ret; 2661 2662 lockdep_assert_held(&prepare_lock); 2663 if (!core->ops->get_phase) 2664 return 0; 2665 2666 /* Always try to update cached phase if possible */ 2667 ret = core->ops->get_phase(core->hw); 2668 if (ret >= 0) 2669 core->phase = ret; 2670 2671 return ret; 2672 } 2673 2674 /** 2675 * clk_get_phase - return the phase shift of a clock signal 2676 * @clk: clock signal source 2677 * 2678 * Returns the phase shift of a clock node in degrees, otherwise returns 2679 * -EERROR. 2680 */ 2681 int clk_get_phase(struct clk *clk) 2682 { 2683 int ret; 2684 2685 if (!clk) 2686 return 0; 2687 2688 clk_prepare_lock(); 2689 ret = clk_core_get_phase(clk->core); 2690 clk_prepare_unlock(); 2691 2692 return ret; 2693 } 2694 EXPORT_SYMBOL_GPL(clk_get_phase); 2695 2696 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2697 { 2698 /* Assume a default value of 50% */ 2699 core->duty.num = 1; 2700 core->duty.den = 2; 2701 } 2702 2703 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2704 2705 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2706 { 2707 struct clk_duty *duty = &core->duty; 2708 int ret = 0; 2709 2710 if (!core->ops->get_duty_cycle) 2711 return clk_core_update_duty_cycle_parent_nolock(core); 2712 2713 ret = core->ops->get_duty_cycle(core->hw, duty); 2714 if (ret) 2715 goto reset; 2716 2717 /* Don't trust the clock provider too much */ 2718 if (duty->den == 0 || duty->num > duty->den) { 2719 ret = -EINVAL; 2720 goto reset; 2721 } 2722 2723 return 0; 2724 2725 reset: 2726 clk_core_reset_duty_cycle_nolock(core); 2727 return ret; 2728 } 2729 2730 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2731 { 2732 int ret = 0; 2733 2734 if (core->parent && 2735 core->flags & CLK_DUTY_CYCLE_PARENT) { 2736 ret = clk_core_update_duty_cycle_nolock(core->parent); 2737 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2738 } else { 2739 clk_core_reset_duty_cycle_nolock(core); 2740 } 2741 2742 return ret; 2743 } 2744 2745 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2746 struct clk_duty *duty); 2747 2748 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2749 struct clk_duty *duty) 2750 { 2751 int ret; 2752 2753 lockdep_assert_held(&prepare_lock); 2754 2755 if (clk_core_rate_is_protected(core)) 2756 return -EBUSY; 2757 2758 trace_clk_set_duty_cycle(core, duty); 2759 2760 if (!core->ops->set_duty_cycle) 2761 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2762 2763 ret = core->ops->set_duty_cycle(core->hw, duty); 2764 if (!ret) 2765 memcpy(&core->duty, duty, sizeof(*duty)); 2766 2767 trace_clk_set_duty_cycle_complete(core, duty); 2768 2769 return ret; 2770 } 2771 2772 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2773 struct clk_duty *duty) 2774 { 2775 int ret = 0; 2776 2777 if (core->parent && 2778 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2779 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2780 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2781 } 2782 2783 return ret; 2784 } 2785 2786 /** 2787 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2788 * @clk: clock signal source 2789 * @num: numerator of the duty cycle ratio to be applied 2790 * @den: denominator of the duty cycle ratio to be applied 2791 * 2792 * Apply the duty cycle ratio if the ratio is valid and the clock can 2793 * perform this operation 2794 * 2795 * Returns (0) on success, a negative errno otherwise. 2796 */ 2797 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2798 { 2799 int ret; 2800 struct clk_duty duty; 2801 2802 if (!clk) 2803 return 0; 2804 2805 /* sanity check the ratio */ 2806 if (den == 0 || num > den) 2807 return -EINVAL; 2808 2809 duty.num = num; 2810 duty.den = den; 2811 2812 clk_prepare_lock(); 2813 2814 if (clk->exclusive_count) 2815 clk_core_rate_unprotect(clk->core); 2816 2817 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2818 2819 if (clk->exclusive_count) 2820 clk_core_rate_protect(clk->core); 2821 2822 clk_prepare_unlock(); 2823 2824 return ret; 2825 } 2826 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2827 2828 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2829 unsigned int scale) 2830 { 2831 struct clk_duty *duty = &core->duty; 2832 int ret; 2833 2834 clk_prepare_lock(); 2835 2836 ret = clk_core_update_duty_cycle_nolock(core); 2837 if (!ret) 2838 ret = mult_frac(scale, duty->num, duty->den); 2839 2840 clk_prepare_unlock(); 2841 2842 return ret; 2843 } 2844 2845 /** 2846 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2847 * @clk: clock signal source 2848 * @scale: scaling factor to be applied to represent the ratio as an integer 2849 * 2850 * Returns the duty cycle ratio of a clock node multiplied by the provided 2851 * scaling factor, or negative errno on error. 2852 */ 2853 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2854 { 2855 if (!clk) 2856 return 0; 2857 2858 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2859 } 2860 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2861 2862 /** 2863 * clk_is_match - check if two clk's point to the same hardware clock 2864 * @p: clk compared against q 2865 * @q: clk compared against p 2866 * 2867 * Returns true if the two struct clk pointers both point to the same hardware 2868 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2869 * share the same struct clk_core object. 2870 * 2871 * Returns false otherwise. Note that two NULL clks are treated as matching. 2872 */ 2873 bool clk_is_match(const struct clk *p, const struct clk *q) 2874 { 2875 /* trivial case: identical struct clk's or both NULL */ 2876 if (p == q) 2877 return true; 2878 2879 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2880 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2881 if (p->core == q->core) 2882 return true; 2883 2884 return false; 2885 } 2886 EXPORT_SYMBOL_GPL(clk_is_match); 2887 2888 /*** debugfs support ***/ 2889 2890 #ifdef CONFIG_DEBUG_FS 2891 #include <linux/debugfs.h> 2892 2893 static struct dentry *rootdir; 2894 static int inited = 0; 2895 static DEFINE_MUTEX(clk_debug_lock); 2896 static HLIST_HEAD(clk_debug_list); 2897 2898 static struct hlist_head *orphan_list[] = { 2899 &clk_orphan_list, 2900 NULL, 2901 }; 2902 2903 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2904 int level) 2905 { 2906 int phase; 2907 2908 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ", 2909 level * 3 + 1, "", 2910 30 - level * 3, c->name, 2911 c->enable_count, c->prepare_count, c->protect_count, 2912 clk_core_get_rate_recalc(c), 2913 clk_core_get_accuracy_recalc(c)); 2914 2915 phase = clk_core_get_phase(c); 2916 if (phase >= 0) 2917 seq_printf(s, "%5d", phase); 2918 else 2919 seq_puts(s, "-----"); 2920 2921 seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000)); 2922 } 2923 2924 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2925 int level) 2926 { 2927 struct clk_core *child; 2928 2929 clk_summary_show_one(s, c, level); 2930 2931 hlist_for_each_entry(child, &c->children, child_node) 2932 clk_summary_show_subtree(s, child, level + 1); 2933 } 2934 2935 static int clk_summary_show(struct seq_file *s, void *data) 2936 { 2937 struct clk_core *c; 2938 struct hlist_head **lists = (struct hlist_head **)s->private; 2939 2940 seq_puts(s, " enable prepare protect duty\n"); 2941 seq_puts(s, " clock count count count rate accuracy phase cycle\n"); 2942 seq_puts(s, "---------------------------------------------------------------------------------------------\n"); 2943 2944 clk_prepare_lock(); 2945 2946 for (; *lists; lists++) 2947 hlist_for_each_entry(c, *lists, child_node) 2948 clk_summary_show_subtree(s, c, 0); 2949 2950 clk_prepare_unlock(); 2951 2952 return 0; 2953 } 2954 DEFINE_SHOW_ATTRIBUTE(clk_summary); 2955 2956 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2957 { 2958 int phase; 2959 unsigned long min_rate, max_rate; 2960 2961 clk_core_get_boundaries(c, &min_rate, &max_rate); 2962 2963 /* This should be JSON format, i.e. elements separated with a comma */ 2964 seq_printf(s, "\"%s\": { ", c->name); 2965 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2966 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2967 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2968 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 2969 seq_printf(s, "\"min_rate\": %lu,", min_rate); 2970 seq_printf(s, "\"max_rate\": %lu,", max_rate); 2971 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 2972 phase = clk_core_get_phase(c); 2973 if (phase >= 0) 2974 seq_printf(s, "\"phase\": %d,", phase); 2975 seq_printf(s, "\"duty_cycle\": %u", 2976 clk_core_get_scaled_duty_cycle(c, 100000)); 2977 } 2978 2979 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2980 { 2981 struct clk_core *child; 2982 2983 clk_dump_one(s, c, level); 2984 2985 hlist_for_each_entry(child, &c->children, child_node) { 2986 seq_putc(s, ','); 2987 clk_dump_subtree(s, child, level + 1); 2988 } 2989 2990 seq_putc(s, '}'); 2991 } 2992 2993 static int clk_dump_show(struct seq_file *s, void *data) 2994 { 2995 struct clk_core *c; 2996 bool first_node = true; 2997 struct hlist_head **lists = (struct hlist_head **)s->private; 2998 2999 seq_putc(s, '{'); 3000 clk_prepare_lock(); 3001 3002 for (; *lists; lists++) { 3003 hlist_for_each_entry(c, *lists, child_node) { 3004 if (!first_node) 3005 seq_putc(s, ','); 3006 first_node = false; 3007 clk_dump_subtree(s, c, 0); 3008 } 3009 } 3010 3011 clk_prepare_unlock(); 3012 3013 seq_puts(s, "}\n"); 3014 return 0; 3015 } 3016 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3017 3018 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3019 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3020 /* 3021 * This can be dangerous, therefore don't provide any real compile time 3022 * configuration option for this feature. 3023 * People who want to use this will need to modify the source code directly. 3024 */ 3025 static int clk_rate_set(void *data, u64 val) 3026 { 3027 struct clk_core *core = data; 3028 int ret; 3029 3030 clk_prepare_lock(); 3031 ret = clk_core_set_rate_nolock(core, val); 3032 clk_prepare_unlock(); 3033 3034 return ret; 3035 } 3036 3037 #define clk_rate_mode 0644 3038 #else 3039 #define clk_rate_set NULL 3040 #define clk_rate_mode 0444 3041 #endif 3042 3043 static int clk_rate_get(void *data, u64 *val) 3044 { 3045 struct clk_core *core = data; 3046 3047 *val = core->rate; 3048 return 0; 3049 } 3050 3051 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3052 3053 static const struct { 3054 unsigned long flag; 3055 const char *name; 3056 } clk_flags[] = { 3057 #define ENTRY(f) { f, #f } 3058 ENTRY(CLK_SET_RATE_GATE), 3059 ENTRY(CLK_SET_PARENT_GATE), 3060 ENTRY(CLK_SET_RATE_PARENT), 3061 ENTRY(CLK_IGNORE_UNUSED), 3062 ENTRY(CLK_GET_RATE_NOCACHE), 3063 ENTRY(CLK_SET_RATE_NO_REPARENT), 3064 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3065 ENTRY(CLK_RECALC_NEW_RATES), 3066 ENTRY(CLK_SET_RATE_UNGATE), 3067 ENTRY(CLK_IS_CRITICAL), 3068 ENTRY(CLK_OPS_PARENT_ENABLE), 3069 ENTRY(CLK_DUTY_CYCLE_PARENT), 3070 #undef ENTRY 3071 }; 3072 3073 static int clk_flags_show(struct seq_file *s, void *data) 3074 { 3075 struct clk_core *core = s->private; 3076 unsigned long flags = core->flags; 3077 unsigned int i; 3078 3079 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3080 if (flags & clk_flags[i].flag) { 3081 seq_printf(s, "%s\n", clk_flags[i].name); 3082 flags &= ~clk_flags[i].flag; 3083 } 3084 } 3085 if (flags) { 3086 /* Unknown flags */ 3087 seq_printf(s, "0x%lx\n", flags); 3088 } 3089 3090 return 0; 3091 } 3092 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3093 3094 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3095 unsigned int i, char terminator) 3096 { 3097 struct clk_core *parent; 3098 3099 /* 3100 * Go through the following options to fetch a parent's name. 3101 * 3102 * 1. Fetch the registered parent clock and use its name 3103 * 2. Use the global (fallback) name if specified 3104 * 3. Use the local fw_name if provided 3105 * 4. Fetch parent clock's clock-output-name if DT index was set 3106 * 3107 * This may still fail in some cases, such as when the parent is 3108 * specified directly via a struct clk_hw pointer, but it isn't 3109 * registered (yet). 3110 */ 3111 parent = clk_core_get_parent_by_index(core, i); 3112 if (parent) 3113 seq_puts(s, parent->name); 3114 else if (core->parents[i].name) 3115 seq_puts(s, core->parents[i].name); 3116 else if (core->parents[i].fw_name) 3117 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3118 else if (core->parents[i].index >= 0) 3119 seq_puts(s, 3120 of_clk_get_parent_name(core->of_node, 3121 core->parents[i].index)); 3122 else 3123 seq_puts(s, "(missing)"); 3124 3125 seq_putc(s, terminator); 3126 } 3127 3128 static int possible_parents_show(struct seq_file *s, void *data) 3129 { 3130 struct clk_core *core = s->private; 3131 int i; 3132 3133 for (i = 0; i < core->num_parents - 1; i++) 3134 possible_parent_show(s, core, i, ' '); 3135 3136 possible_parent_show(s, core, i, '\n'); 3137 3138 return 0; 3139 } 3140 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3141 3142 static int current_parent_show(struct seq_file *s, void *data) 3143 { 3144 struct clk_core *core = s->private; 3145 3146 if (core->parent) 3147 seq_printf(s, "%s\n", core->parent->name); 3148 3149 return 0; 3150 } 3151 DEFINE_SHOW_ATTRIBUTE(current_parent); 3152 3153 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3154 { 3155 struct clk_core *core = s->private; 3156 struct clk_duty *duty = &core->duty; 3157 3158 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3159 3160 return 0; 3161 } 3162 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3163 3164 static int clk_min_rate_show(struct seq_file *s, void *data) 3165 { 3166 struct clk_core *core = s->private; 3167 unsigned long min_rate, max_rate; 3168 3169 clk_prepare_lock(); 3170 clk_core_get_boundaries(core, &min_rate, &max_rate); 3171 clk_prepare_unlock(); 3172 seq_printf(s, "%lu\n", min_rate); 3173 3174 return 0; 3175 } 3176 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3177 3178 static int clk_max_rate_show(struct seq_file *s, void *data) 3179 { 3180 struct clk_core *core = s->private; 3181 unsigned long min_rate, max_rate; 3182 3183 clk_prepare_lock(); 3184 clk_core_get_boundaries(core, &min_rate, &max_rate); 3185 clk_prepare_unlock(); 3186 seq_printf(s, "%lu\n", max_rate); 3187 3188 return 0; 3189 } 3190 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3191 3192 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3193 { 3194 struct dentry *root; 3195 3196 if (!core || !pdentry) 3197 return; 3198 3199 root = debugfs_create_dir(core->name, pdentry); 3200 core->dentry = root; 3201 3202 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3203 &clk_rate_fops); 3204 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3205 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3206 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3207 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3208 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3209 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3210 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3211 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3212 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3213 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3214 &clk_duty_cycle_fops); 3215 3216 if (core->num_parents > 0) 3217 debugfs_create_file("clk_parent", 0444, root, core, 3218 ¤t_parent_fops); 3219 3220 if (core->num_parents > 1) 3221 debugfs_create_file("clk_possible_parents", 0444, root, core, 3222 &possible_parents_fops); 3223 3224 if (core->ops->debug_init) 3225 core->ops->debug_init(core->hw, core->dentry); 3226 } 3227 3228 /** 3229 * clk_debug_register - add a clk node to the debugfs clk directory 3230 * @core: the clk being added to the debugfs clk directory 3231 * 3232 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3233 * initialized. Otherwise it bails out early since the debugfs clk directory 3234 * will be created lazily by clk_debug_init as part of a late_initcall. 3235 */ 3236 static void clk_debug_register(struct clk_core *core) 3237 { 3238 mutex_lock(&clk_debug_lock); 3239 hlist_add_head(&core->debug_node, &clk_debug_list); 3240 if (inited) 3241 clk_debug_create_one(core, rootdir); 3242 mutex_unlock(&clk_debug_lock); 3243 } 3244 3245 /** 3246 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3247 * @core: the clk being removed from the debugfs clk directory 3248 * 3249 * Dynamically removes a clk and all its child nodes from the 3250 * debugfs clk directory if clk->dentry points to debugfs created by 3251 * clk_debug_register in __clk_core_init. 3252 */ 3253 static void clk_debug_unregister(struct clk_core *core) 3254 { 3255 mutex_lock(&clk_debug_lock); 3256 hlist_del_init(&core->debug_node); 3257 debugfs_remove_recursive(core->dentry); 3258 core->dentry = NULL; 3259 mutex_unlock(&clk_debug_lock); 3260 } 3261 3262 /** 3263 * clk_debug_init - lazily populate the debugfs clk directory 3264 * 3265 * clks are often initialized very early during boot before memory can be 3266 * dynamically allocated and well before debugfs is setup. This function 3267 * populates the debugfs clk directory once at boot-time when we know that 3268 * debugfs is setup. It should only be called once at boot-time, all other clks 3269 * added dynamically will be done so with clk_debug_register. 3270 */ 3271 static int __init clk_debug_init(void) 3272 { 3273 struct clk_core *core; 3274 3275 rootdir = debugfs_create_dir("clk", NULL); 3276 3277 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3278 &clk_summary_fops); 3279 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3280 &clk_dump_fops); 3281 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3282 &clk_summary_fops); 3283 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3284 &clk_dump_fops); 3285 3286 mutex_lock(&clk_debug_lock); 3287 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3288 clk_debug_create_one(core, rootdir); 3289 3290 inited = 1; 3291 mutex_unlock(&clk_debug_lock); 3292 3293 return 0; 3294 } 3295 late_initcall(clk_debug_init); 3296 #else 3297 static inline void clk_debug_register(struct clk_core *core) { } 3298 static inline void clk_debug_reparent(struct clk_core *core, 3299 struct clk_core *new_parent) 3300 { 3301 } 3302 static inline void clk_debug_unregister(struct clk_core *core) 3303 { 3304 } 3305 #endif 3306 3307 static void clk_core_reparent_orphans_nolock(void) 3308 { 3309 struct clk_core *orphan; 3310 struct hlist_node *tmp2; 3311 3312 /* 3313 * walk the list of orphan clocks and reparent any that newly finds a 3314 * parent. 3315 */ 3316 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3317 struct clk_core *parent = __clk_init_parent(orphan); 3318 3319 /* 3320 * We need to use __clk_set_parent_before() and _after() to 3321 * to properly migrate any prepare/enable count of the orphan 3322 * clock. This is important for CLK_IS_CRITICAL clocks, which 3323 * are enabled during init but might not have a parent yet. 3324 */ 3325 if (parent) { 3326 /* update the clk tree topology */ 3327 __clk_set_parent_before(orphan, parent); 3328 __clk_set_parent_after(orphan, parent, NULL); 3329 __clk_recalc_accuracies(orphan); 3330 __clk_recalc_rates(orphan, 0); 3331 } 3332 } 3333 } 3334 3335 /** 3336 * __clk_core_init - initialize the data structures in a struct clk_core 3337 * @core: clk_core being initialized 3338 * 3339 * Initializes the lists in struct clk_core, queries the hardware for the 3340 * parent and rate and sets them both. 3341 */ 3342 static int __clk_core_init(struct clk_core *core) 3343 { 3344 int ret; 3345 struct clk_core *parent; 3346 unsigned long rate; 3347 int phase; 3348 3349 if (!core) 3350 return -EINVAL; 3351 3352 clk_prepare_lock(); 3353 3354 ret = clk_pm_runtime_get(core); 3355 if (ret) 3356 goto unlock; 3357 3358 /* check to see if a clock with this name is already registered */ 3359 if (clk_core_lookup(core->name)) { 3360 pr_debug("%s: clk %s already initialized\n", 3361 __func__, core->name); 3362 ret = -EEXIST; 3363 goto out; 3364 } 3365 3366 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3367 if (core->ops->set_rate && 3368 !((core->ops->round_rate || core->ops->determine_rate) && 3369 core->ops->recalc_rate)) { 3370 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3371 __func__, core->name); 3372 ret = -EINVAL; 3373 goto out; 3374 } 3375 3376 if (core->ops->set_parent && !core->ops->get_parent) { 3377 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3378 __func__, core->name); 3379 ret = -EINVAL; 3380 goto out; 3381 } 3382 3383 if (core->num_parents > 1 && !core->ops->get_parent) { 3384 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3385 __func__, core->name); 3386 ret = -EINVAL; 3387 goto out; 3388 } 3389 3390 if (core->ops->set_rate_and_parent && 3391 !(core->ops->set_parent && core->ops->set_rate)) { 3392 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3393 __func__, core->name); 3394 ret = -EINVAL; 3395 goto out; 3396 } 3397 3398 /* 3399 * optional platform-specific magic 3400 * 3401 * The .init callback is not used by any of the basic clock types, but 3402 * exists for weird hardware that must perform initialization magic for 3403 * CCF to get an accurate view of clock for any other callbacks. It may 3404 * also be used needs to perform dynamic allocations. Such allocation 3405 * must be freed in the terminate() callback. 3406 * This callback shall not be used to initialize the parameters state, 3407 * such as rate, parent, etc ... 3408 * 3409 * If it exist, this callback should called before any other callback of 3410 * the clock 3411 */ 3412 if (core->ops->init) { 3413 ret = core->ops->init(core->hw); 3414 if (ret) 3415 goto out; 3416 } 3417 3418 parent = core->parent = __clk_init_parent(core); 3419 3420 /* 3421 * Populate core->parent if parent has already been clk_core_init'd. If 3422 * parent has not yet been clk_core_init'd then place clk in the orphan 3423 * list. If clk doesn't have any parents then place it in the root 3424 * clk list. 3425 * 3426 * Every time a new clk is clk_init'd then we walk the list of orphan 3427 * clocks and re-parent any that are children of the clock currently 3428 * being clk_init'd. 3429 */ 3430 if (parent) { 3431 hlist_add_head(&core->child_node, &parent->children); 3432 core->orphan = parent->orphan; 3433 } else if (!core->num_parents) { 3434 hlist_add_head(&core->child_node, &clk_root_list); 3435 core->orphan = false; 3436 } else { 3437 hlist_add_head(&core->child_node, &clk_orphan_list); 3438 core->orphan = true; 3439 } 3440 3441 /* 3442 * Set clk's accuracy. The preferred method is to use 3443 * .recalc_accuracy. For simple clocks and lazy developers the default 3444 * fallback is to use the parent's accuracy. If a clock doesn't have a 3445 * parent (or is orphaned) then accuracy is set to zero (perfect 3446 * clock). 3447 */ 3448 if (core->ops->recalc_accuracy) 3449 core->accuracy = core->ops->recalc_accuracy(core->hw, 3450 clk_core_get_accuracy_no_lock(parent)); 3451 else if (parent) 3452 core->accuracy = parent->accuracy; 3453 else 3454 core->accuracy = 0; 3455 3456 /* 3457 * Set clk's phase by clk_core_get_phase() caching the phase. 3458 * Since a phase is by definition relative to its parent, just 3459 * query the current clock phase, or just assume it's in phase. 3460 */ 3461 phase = clk_core_get_phase(core); 3462 if (phase < 0) { 3463 ret = phase; 3464 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 3465 core->name); 3466 goto out; 3467 } 3468 3469 /* 3470 * Set clk's duty cycle. 3471 */ 3472 clk_core_update_duty_cycle_nolock(core); 3473 3474 /* 3475 * Set clk's rate. The preferred method is to use .recalc_rate. For 3476 * simple clocks and lazy developers the default fallback is to use the 3477 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3478 * then rate is set to zero. 3479 */ 3480 if (core->ops->recalc_rate) 3481 rate = core->ops->recalc_rate(core->hw, 3482 clk_core_get_rate_nolock(parent)); 3483 else if (parent) 3484 rate = parent->rate; 3485 else 3486 rate = 0; 3487 core->rate = core->req_rate = rate; 3488 3489 /* 3490 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3491 * don't get accidentally disabled when walking the orphan tree and 3492 * reparenting clocks 3493 */ 3494 if (core->flags & CLK_IS_CRITICAL) { 3495 unsigned long flags; 3496 3497 ret = clk_core_prepare(core); 3498 if (ret) { 3499 pr_warn("%s: critical clk '%s' failed to prepare\n", 3500 __func__, core->name); 3501 goto out; 3502 } 3503 3504 flags = clk_enable_lock(); 3505 ret = clk_core_enable(core); 3506 clk_enable_unlock(flags); 3507 if (ret) { 3508 pr_warn("%s: critical clk '%s' failed to enable\n", 3509 __func__, core->name); 3510 clk_core_unprepare(core); 3511 goto out; 3512 } 3513 } 3514 3515 clk_core_reparent_orphans_nolock(); 3516 3517 3518 kref_init(&core->ref); 3519 out: 3520 clk_pm_runtime_put(core); 3521 unlock: 3522 if (ret) 3523 hlist_del_init(&core->child_node); 3524 3525 clk_prepare_unlock(); 3526 3527 if (!ret) 3528 clk_debug_register(core); 3529 3530 return ret; 3531 } 3532 3533 /** 3534 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3535 * @core: clk to add consumer to 3536 * @clk: consumer to link to a clk 3537 */ 3538 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3539 { 3540 clk_prepare_lock(); 3541 hlist_add_head(&clk->clks_node, &core->clks); 3542 clk_prepare_unlock(); 3543 } 3544 3545 /** 3546 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3547 * @clk: consumer to unlink 3548 */ 3549 static void clk_core_unlink_consumer(struct clk *clk) 3550 { 3551 lockdep_assert_held(&prepare_lock); 3552 hlist_del(&clk->clks_node); 3553 } 3554 3555 /** 3556 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3557 * @core: clk to allocate a consumer for 3558 * @dev_id: string describing device name 3559 * @con_id: connection ID string on device 3560 * 3561 * Returns: clk consumer left unlinked from the consumer list 3562 */ 3563 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3564 const char *con_id) 3565 { 3566 struct clk *clk; 3567 3568 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3569 if (!clk) 3570 return ERR_PTR(-ENOMEM); 3571 3572 clk->core = core; 3573 clk->dev_id = dev_id; 3574 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3575 clk->max_rate = ULONG_MAX; 3576 3577 return clk; 3578 } 3579 3580 /** 3581 * free_clk - Free a clk consumer 3582 * @clk: clk consumer to free 3583 * 3584 * Note, this assumes the clk has been unlinked from the clk_core consumer 3585 * list. 3586 */ 3587 static void free_clk(struct clk *clk) 3588 { 3589 kfree_const(clk->con_id); 3590 kfree(clk); 3591 } 3592 3593 /** 3594 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3595 * a clk_hw 3596 * @dev: clk consumer device 3597 * @hw: clk_hw associated with the clk being consumed 3598 * @dev_id: string describing device name 3599 * @con_id: connection ID string on device 3600 * 3601 * This is the main function used to create a clk pointer for use by clk 3602 * consumers. It connects a consumer to the clk_core and clk_hw structures 3603 * used by the framework and clk provider respectively. 3604 */ 3605 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3606 const char *dev_id, const char *con_id) 3607 { 3608 struct clk *clk; 3609 struct clk_core *core; 3610 3611 /* This is to allow this function to be chained to others */ 3612 if (IS_ERR_OR_NULL(hw)) 3613 return ERR_CAST(hw); 3614 3615 core = hw->core; 3616 clk = alloc_clk(core, dev_id, con_id); 3617 if (IS_ERR(clk)) 3618 return clk; 3619 clk->dev = dev; 3620 3621 if (!try_module_get(core->owner)) { 3622 free_clk(clk); 3623 return ERR_PTR(-ENOENT); 3624 } 3625 3626 kref_get(&core->ref); 3627 clk_core_link_consumer(core, clk); 3628 3629 return clk; 3630 } 3631 3632 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3633 { 3634 const char *dst; 3635 3636 if (!src) { 3637 if (must_exist) 3638 return -EINVAL; 3639 return 0; 3640 } 3641 3642 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3643 if (!dst) 3644 return -ENOMEM; 3645 3646 return 0; 3647 } 3648 3649 static int clk_core_populate_parent_map(struct clk_core *core, 3650 const struct clk_init_data *init) 3651 { 3652 u8 num_parents = init->num_parents; 3653 const char * const *parent_names = init->parent_names; 3654 const struct clk_hw **parent_hws = init->parent_hws; 3655 const struct clk_parent_data *parent_data = init->parent_data; 3656 int i, ret = 0; 3657 struct clk_parent_map *parents, *parent; 3658 3659 if (!num_parents) 3660 return 0; 3661 3662 /* 3663 * Avoid unnecessary string look-ups of clk_core's possible parents by 3664 * having a cache of names/clk_hw pointers to clk_core pointers. 3665 */ 3666 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3667 core->parents = parents; 3668 if (!parents) 3669 return -ENOMEM; 3670 3671 /* Copy everything over because it might be __initdata */ 3672 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3673 parent->index = -1; 3674 if (parent_names) { 3675 /* throw a WARN if any entries are NULL */ 3676 WARN(!parent_names[i], 3677 "%s: invalid NULL in %s's .parent_names\n", 3678 __func__, core->name); 3679 ret = clk_cpy_name(&parent->name, parent_names[i], 3680 true); 3681 } else if (parent_data) { 3682 parent->hw = parent_data[i].hw; 3683 parent->index = parent_data[i].index; 3684 ret = clk_cpy_name(&parent->fw_name, 3685 parent_data[i].fw_name, false); 3686 if (!ret) 3687 ret = clk_cpy_name(&parent->name, 3688 parent_data[i].name, 3689 false); 3690 } else if (parent_hws) { 3691 parent->hw = parent_hws[i]; 3692 } else { 3693 ret = -EINVAL; 3694 WARN(1, "Must specify parents if num_parents > 0\n"); 3695 } 3696 3697 if (ret) { 3698 do { 3699 kfree_const(parents[i].name); 3700 kfree_const(parents[i].fw_name); 3701 } while (--i >= 0); 3702 kfree(parents); 3703 3704 return ret; 3705 } 3706 } 3707 3708 return 0; 3709 } 3710 3711 static void clk_core_free_parent_map(struct clk_core *core) 3712 { 3713 int i = core->num_parents; 3714 3715 if (!core->num_parents) 3716 return; 3717 3718 while (--i >= 0) { 3719 kfree_const(core->parents[i].name); 3720 kfree_const(core->parents[i].fw_name); 3721 } 3722 3723 kfree(core->parents); 3724 } 3725 3726 static struct clk * 3727 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3728 { 3729 int ret; 3730 struct clk_core *core; 3731 const struct clk_init_data *init = hw->init; 3732 3733 /* 3734 * The init data is not supposed to be used outside of registration path. 3735 * Set it to NULL so that provider drivers can't use it either and so that 3736 * we catch use of hw->init early on in the core. 3737 */ 3738 hw->init = NULL; 3739 3740 core = kzalloc(sizeof(*core), GFP_KERNEL); 3741 if (!core) { 3742 ret = -ENOMEM; 3743 goto fail_out; 3744 } 3745 3746 core->name = kstrdup_const(init->name, GFP_KERNEL); 3747 if (!core->name) { 3748 ret = -ENOMEM; 3749 goto fail_name; 3750 } 3751 3752 if (WARN_ON(!init->ops)) { 3753 ret = -EINVAL; 3754 goto fail_ops; 3755 } 3756 core->ops = init->ops; 3757 3758 if (dev && pm_runtime_enabled(dev)) 3759 core->rpm_enabled = true; 3760 core->dev = dev; 3761 core->of_node = np; 3762 if (dev && dev->driver) 3763 core->owner = dev->driver->owner; 3764 core->hw = hw; 3765 core->flags = init->flags; 3766 core->num_parents = init->num_parents; 3767 core->min_rate = 0; 3768 core->max_rate = ULONG_MAX; 3769 hw->core = core; 3770 3771 ret = clk_core_populate_parent_map(core, init); 3772 if (ret) 3773 goto fail_parents; 3774 3775 INIT_HLIST_HEAD(&core->clks); 3776 3777 /* 3778 * Don't call clk_hw_create_clk() here because that would pin the 3779 * provider module to itself and prevent it from ever being removed. 3780 */ 3781 hw->clk = alloc_clk(core, NULL, NULL); 3782 if (IS_ERR(hw->clk)) { 3783 ret = PTR_ERR(hw->clk); 3784 goto fail_create_clk; 3785 } 3786 3787 clk_core_link_consumer(hw->core, hw->clk); 3788 3789 ret = __clk_core_init(core); 3790 if (!ret) 3791 return hw->clk; 3792 3793 clk_prepare_lock(); 3794 clk_core_unlink_consumer(hw->clk); 3795 clk_prepare_unlock(); 3796 3797 free_clk(hw->clk); 3798 hw->clk = NULL; 3799 3800 fail_create_clk: 3801 clk_core_free_parent_map(core); 3802 fail_parents: 3803 fail_ops: 3804 kfree_const(core->name); 3805 fail_name: 3806 kfree(core); 3807 fail_out: 3808 return ERR_PTR(ret); 3809 } 3810 3811 /** 3812 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 3813 * @dev: Device to get device node of 3814 * 3815 * Return: device node pointer of @dev, or the device node pointer of 3816 * @dev->parent if dev doesn't have a device node, or NULL if neither 3817 * @dev or @dev->parent have a device node. 3818 */ 3819 static struct device_node *dev_or_parent_of_node(struct device *dev) 3820 { 3821 struct device_node *np; 3822 3823 if (!dev) 3824 return NULL; 3825 3826 np = dev_of_node(dev); 3827 if (!np) 3828 np = dev_of_node(dev->parent); 3829 3830 return np; 3831 } 3832 3833 /** 3834 * clk_register - allocate a new clock, register it and return an opaque cookie 3835 * @dev: device that is registering this clock 3836 * @hw: link to hardware-specific clock data 3837 * 3838 * clk_register is the *deprecated* interface for populating the clock tree with 3839 * new clock nodes. Use clk_hw_register() instead. 3840 * 3841 * Returns: a pointer to the newly allocated struct clk which 3842 * cannot be dereferenced by driver code but may be used in conjunction with the 3843 * rest of the clock API. In the event of an error clk_register will return an 3844 * error code; drivers must test for an error code after calling clk_register. 3845 */ 3846 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3847 { 3848 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 3849 } 3850 EXPORT_SYMBOL_GPL(clk_register); 3851 3852 /** 3853 * clk_hw_register - register a clk_hw and return an error code 3854 * @dev: device that is registering this clock 3855 * @hw: link to hardware-specific clock data 3856 * 3857 * clk_hw_register is the primary interface for populating the clock tree with 3858 * new clock nodes. It returns an integer equal to zero indicating success or 3859 * less than zero indicating failure. Drivers must test for an error code after 3860 * calling clk_hw_register(). 3861 */ 3862 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3863 { 3864 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 3865 hw)); 3866 } 3867 EXPORT_SYMBOL_GPL(clk_hw_register); 3868 3869 /* 3870 * of_clk_hw_register - register a clk_hw and return an error code 3871 * @node: device_node of device that is registering this clock 3872 * @hw: link to hardware-specific clock data 3873 * 3874 * of_clk_hw_register() is the primary interface for populating the clock tree 3875 * with new clock nodes when a struct device is not available, but a struct 3876 * device_node is. It returns an integer equal to zero indicating success or 3877 * less than zero indicating failure. Drivers must test for an error code after 3878 * calling of_clk_hw_register(). 3879 */ 3880 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 3881 { 3882 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 3883 } 3884 EXPORT_SYMBOL_GPL(of_clk_hw_register); 3885 3886 /* Free memory allocated for a clock. */ 3887 static void __clk_release(struct kref *ref) 3888 { 3889 struct clk_core *core = container_of(ref, struct clk_core, ref); 3890 3891 lockdep_assert_held(&prepare_lock); 3892 3893 clk_core_free_parent_map(core); 3894 kfree_const(core->name); 3895 kfree(core); 3896 } 3897 3898 /* 3899 * Empty clk_ops for unregistered clocks. These are used temporarily 3900 * after clk_unregister() was called on a clock and until last clock 3901 * consumer calls clk_put() and the struct clk object is freed. 3902 */ 3903 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3904 { 3905 return -ENXIO; 3906 } 3907 3908 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3909 { 3910 WARN_ON_ONCE(1); 3911 } 3912 3913 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3914 unsigned long parent_rate) 3915 { 3916 return -ENXIO; 3917 } 3918 3919 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3920 { 3921 return -ENXIO; 3922 } 3923 3924 static const struct clk_ops clk_nodrv_ops = { 3925 .enable = clk_nodrv_prepare_enable, 3926 .disable = clk_nodrv_disable_unprepare, 3927 .prepare = clk_nodrv_prepare_enable, 3928 .unprepare = clk_nodrv_disable_unprepare, 3929 .set_rate = clk_nodrv_set_rate, 3930 .set_parent = clk_nodrv_set_parent, 3931 }; 3932 3933 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 3934 struct clk_core *target) 3935 { 3936 int i; 3937 struct clk_core *child; 3938 3939 for (i = 0; i < root->num_parents; i++) 3940 if (root->parents[i].core == target) 3941 root->parents[i].core = NULL; 3942 3943 hlist_for_each_entry(child, &root->children, child_node) 3944 clk_core_evict_parent_cache_subtree(child, target); 3945 } 3946 3947 /* Remove this clk from all parent caches */ 3948 static void clk_core_evict_parent_cache(struct clk_core *core) 3949 { 3950 struct hlist_head **lists; 3951 struct clk_core *root; 3952 3953 lockdep_assert_held(&prepare_lock); 3954 3955 for (lists = all_lists; *lists; lists++) 3956 hlist_for_each_entry(root, *lists, child_node) 3957 clk_core_evict_parent_cache_subtree(root, core); 3958 3959 } 3960 3961 /** 3962 * clk_unregister - unregister a currently registered clock 3963 * @clk: clock to unregister 3964 */ 3965 void clk_unregister(struct clk *clk) 3966 { 3967 unsigned long flags; 3968 const struct clk_ops *ops; 3969 3970 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3971 return; 3972 3973 clk_debug_unregister(clk->core); 3974 3975 clk_prepare_lock(); 3976 3977 ops = clk->core->ops; 3978 if (ops == &clk_nodrv_ops) { 3979 pr_err("%s: unregistered clock: %s\n", __func__, 3980 clk->core->name); 3981 goto unlock; 3982 } 3983 /* 3984 * Assign empty clock ops for consumers that might still hold 3985 * a reference to this clock. 3986 */ 3987 flags = clk_enable_lock(); 3988 clk->core->ops = &clk_nodrv_ops; 3989 clk_enable_unlock(flags); 3990 3991 if (ops->terminate) 3992 ops->terminate(clk->core->hw); 3993 3994 if (!hlist_empty(&clk->core->children)) { 3995 struct clk_core *child; 3996 struct hlist_node *t; 3997 3998 /* Reparent all children to the orphan list. */ 3999 hlist_for_each_entry_safe(child, t, &clk->core->children, 4000 child_node) 4001 clk_core_set_parent_nolock(child, NULL); 4002 } 4003 4004 clk_core_evict_parent_cache(clk->core); 4005 4006 hlist_del_init(&clk->core->child_node); 4007 4008 if (clk->core->prepare_count) 4009 pr_warn("%s: unregistering prepared clock: %s\n", 4010 __func__, clk->core->name); 4011 4012 if (clk->core->protect_count) 4013 pr_warn("%s: unregistering protected clock: %s\n", 4014 __func__, clk->core->name); 4015 4016 kref_put(&clk->core->ref, __clk_release); 4017 free_clk(clk); 4018 unlock: 4019 clk_prepare_unlock(); 4020 } 4021 EXPORT_SYMBOL_GPL(clk_unregister); 4022 4023 /** 4024 * clk_hw_unregister - unregister a currently registered clk_hw 4025 * @hw: hardware-specific clock data to unregister 4026 */ 4027 void clk_hw_unregister(struct clk_hw *hw) 4028 { 4029 clk_unregister(hw->clk); 4030 } 4031 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4032 4033 static void devm_clk_release(struct device *dev, void *res) 4034 { 4035 clk_unregister(*(struct clk **)res); 4036 } 4037 4038 static void devm_clk_hw_release(struct device *dev, void *res) 4039 { 4040 clk_hw_unregister(*(struct clk_hw **)res); 4041 } 4042 4043 /** 4044 * devm_clk_register - resource managed clk_register() 4045 * @dev: device that is registering this clock 4046 * @hw: link to hardware-specific clock data 4047 * 4048 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4049 * 4050 * Clocks returned from this function are automatically clk_unregister()ed on 4051 * driver detach. See clk_register() for more information. 4052 */ 4053 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4054 { 4055 struct clk *clk; 4056 struct clk **clkp; 4057 4058 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4059 if (!clkp) 4060 return ERR_PTR(-ENOMEM); 4061 4062 clk = clk_register(dev, hw); 4063 if (!IS_ERR(clk)) { 4064 *clkp = clk; 4065 devres_add(dev, clkp); 4066 } else { 4067 devres_free(clkp); 4068 } 4069 4070 return clk; 4071 } 4072 EXPORT_SYMBOL_GPL(devm_clk_register); 4073 4074 /** 4075 * devm_clk_hw_register - resource managed clk_hw_register() 4076 * @dev: device that is registering this clock 4077 * @hw: link to hardware-specific clock data 4078 * 4079 * Managed clk_hw_register(). Clocks registered by this function are 4080 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4081 * for more information. 4082 */ 4083 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4084 { 4085 struct clk_hw **hwp; 4086 int ret; 4087 4088 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 4089 if (!hwp) 4090 return -ENOMEM; 4091 4092 ret = clk_hw_register(dev, hw); 4093 if (!ret) { 4094 *hwp = hw; 4095 devres_add(dev, hwp); 4096 } else { 4097 devres_free(hwp); 4098 } 4099 4100 return ret; 4101 } 4102 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4103 4104 static int devm_clk_match(struct device *dev, void *res, void *data) 4105 { 4106 struct clk *c = res; 4107 if (WARN_ON(!c)) 4108 return 0; 4109 return c == data; 4110 } 4111 4112 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 4113 { 4114 struct clk_hw *hw = res; 4115 4116 if (WARN_ON(!hw)) 4117 return 0; 4118 return hw == data; 4119 } 4120 4121 /** 4122 * devm_clk_unregister - resource managed clk_unregister() 4123 * @clk: clock to unregister 4124 * 4125 * Deallocate a clock allocated with devm_clk_register(). Normally 4126 * this function will not need to be called and the resource management 4127 * code will ensure that the resource is freed. 4128 */ 4129 void devm_clk_unregister(struct device *dev, struct clk *clk) 4130 { 4131 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 4132 } 4133 EXPORT_SYMBOL_GPL(devm_clk_unregister); 4134 4135 /** 4136 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 4137 * @dev: device that is unregistering the hardware-specific clock data 4138 * @hw: link to hardware-specific clock data 4139 * 4140 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 4141 * this function will not need to be called and the resource management 4142 * code will ensure that the resource is freed. 4143 */ 4144 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 4145 { 4146 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 4147 hw)); 4148 } 4149 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 4150 4151 /* 4152 * clkdev helpers 4153 */ 4154 4155 void __clk_put(struct clk *clk) 4156 { 4157 struct module *owner; 4158 4159 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4160 return; 4161 4162 clk_prepare_lock(); 4163 4164 /* 4165 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4166 * given user should be balanced with calls to clk_rate_exclusive_put() 4167 * and by that same consumer 4168 */ 4169 if (WARN_ON(clk->exclusive_count)) { 4170 /* We voiced our concern, let's sanitize the situation */ 4171 clk->core->protect_count -= (clk->exclusive_count - 1); 4172 clk_core_rate_unprotect(clk->core); 4173 clk->exclusive_count = 0; 4174 } 4175 4176 hlist_del(&clk->clks_node); 4177 if (clk->min_rate > clk->core->req_rate || 4178 clk->max_rate < clk->core->req_rate) 4179 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 4180 4181 owner = clk->core->owner; 4182 kref_put(&clk->core->ref, __clk_release); 4183 4184 clk_prepare_unlock(); 4185 4186 module_put(owner); 4187 4188 free_clk(clk); 4189 } 4190 4191 /*** clk rate change notifiers ***/ 4192 4193 /** 4194 * clk_notifier_register - add a clk rate change notifier 4195 * @clk: struct clk * to watch 4196 * @nb: struct notifier_block * with callback info 4197 * 4198 * Request notification when clk's rate changes. This uses an SRCU 4199 * notifier because we want it to block and notifier unregistrations are 4200 * uncommon. The callbacks associated with the notifier must not 4201 * re-enter into the clk framework by calling any top-level clk APIs; 4202 * this will cause a nested prepare_lock mutex. 4203 * 4204 * In all notification cases (pre, post and abort rate change) the original 4205 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4206 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4207 * 4208 * clk_notifier_register() must be called from non-atomic context. 4209 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4210 * allocation failure; otherwise, passes along the return value of 4211 * srcu_notifier_chain_register(). 4212 */ 4213 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4214 { 4215 struct clk_notifier *cn; 4216 int ret = -ENOMEM; 4217 4218 if (!clk || !nb) 4219 return -EINVAL; 4220 4221 clk_prepare_lock(); 4222 4223 /* search the list of notifiers for this clk */ 4224 list_for_each_entry(cn, &clk_notifier_list, node) 4225 if (cn->clk == clk) 4226 break; 4227 4228 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4229 if (cn->clk != clk) { 4230 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4231 if (!cn) 4232 goto out; 4233 4234 cn->clk = clk; 4235 srcu_init_notifier_head(&cn->notifier_head); 4236 4237 list_add(&cn->node, &clk_notifier_list); 4238 } 4239 4240 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4241 4242 clk->core->notifier_count++; 4243 4244 out: 4245 clk_prepare_unlock(); 4246 4247 return ret; 4248 } 4249 EXPORT_SYMBOL_GPL(clk_notifier_register); 4250 4251 /** 4252 * clk_notifier_unregister - remove a clk rate change notifier 4253 * @clk: struct clk * 4254 * @nb: struct notifier_block * with callback info 4255 * 4256 * Request no further notification for changes to 'clk' and frees memory 4257 * allocated in clk_notifier_register. 4258 * 4259 * Returns -EINVAL if called with null arguments; otherwise, passes 4260 * along the return value of srcu_notifier_chain_unregister(). 4261 */ 4262 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4263 { 4264 struct clk_notifier *cn = NULL; 4265 int ret = -EINVAL; 4266 4267 if (!clk || !nb) 4268 return -EINVAL; 4269 4270 clk_prepare_lock(); 4271 4272 list_for_each_entry(cn, &clk_notifier_list, node) 4273 if (cn->clk == clk) 4274 break; 4275 4276 if (cn->clk == clk) { 4277 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4278 4279 clk->core->notifier_count--; 4280 4281 /* XXX the notifier code should handle this better */ 4282 if (!cn->notifier_head.head) { 4283 srcu_cleanup_notifier_head(&cn->notifier_head); 4284 list_del(&cn->node); 4285 kfree(cn); 4286 } 4287 4288 } else { 4289 ret = -ENOENT; 4290 } 4291 4292 clk_prepare_unlock(); 4293 4294 return ret; 4295 } 4296 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4297 4298 #ifdef CONFIG_OF 4299 static void clk_core_reparent_orphans(void) 4300 { 4301 clk_prepare_lock(); 4302 clk_core_reparent_orphans_nolock(); 4303 clk_prepare_unlock(); 4304 } 4305 4306 /** 4307 * struct of_clk_provider - Clock provider registration structure 4308 * @link: Entry in global list of clock providers 4309 * @node: Pointer to device tree node of clock provider 4310 * @get: Get clock callback. Returns NULL or a struct clk for the 4311 * given clock specifier 4312 * @data: context pointer to be passed into @get callback 4313 */ 4314 struct of_clk_provider { 4315 struct list_head link; 4316 4317 struct device_node *node; 4318 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4319 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4320 void *data; 4321 }; 4322 4323 extern struct of_device_id __clk_of_table; 4324 static const struct of_device_id __clk_of_table_sentinel 4325 __used __section(__clk_of_table_end); 4326 4327 static LIST_HEAD(of_clk_providers); 4328 static DEFINE_MUTEX(of_clk_mutex); 4329 4330 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4331 void *data) 4332 { 4333 return data; 4334 } 4335 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4336 4337 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4338 { 4339 return data; 4340 } 4341 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4342 4343 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4344 { 4345 struct clk_onecell_data *clk_data = data; 4346 unsigned int idx = clkspec->args[0]; 4347 4348 if (idx >= clk_data->clk_num) { 4349 pr_err("%s: invalid clock index %u\n", __func__, idx); 4350 return ERR_PTR(-EINVAL); 4351 } 4352 4353 return clk_data->clks[idx]; 4354 } 4355 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4356 4357 struct clk_hw * 4358 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4359 { 4360 struct clk_hw_onecell_data *hw_data = data; 4361 unsigned int idx = clkspec->args[0]; 4362 4363 if (idx >= hw_data->num) { 4364 pr_err("%s: invalid index %u\n", __func__, idx); 4365 return ERR_PTR(-EINVAL); 4366 } 4367 4368 return hw_data->hws[idx]; 4369 } 4370 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4371 4372 /** 4373 * of_clk_add_provider() - Register a clock provider for a node 4374 * @np: Device node pointer associated with clock provider 4375 * @clk_src_get: callback for decoding clock 4376 * @data: context pointer for @clk_src_get callback. 4377 * 4378 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4379 */ 4380 int of_clk_add_provider(struct device_node *np, 4381 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4382 void *data), 4383 void *data) 4384 { 4385 struct of_clk_provider *cp; 4386 int ret; 4387 4388 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4389 if (!cp) 4390 return -ENOMEM; 4391 4392 cp->node = of_node_get(np); 4393 cp->data = data; 4394 cp->get = clk_src_get; 4395 4396 mutex_lock(&of_clk_mutex); 4397 list_add(&cp->link, &of_clk_providers); 4398 mutex_unlock(&of_clk_mutex); 4399 pr_debug("Added clock from %pOF\n", np); 4400 4401 clk_core_reparent_orphans(); 4402 4403 ret = of_clk_set_defaults(np, true); 4404 if (ret < 0) 4405 of_clk_del_provider(np); 4406 4407 return ret; 4408 } 4409 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4410 4411 /** 4412 * of_clk_add_hw_provider() - Register a clock provider for a node 4413 * @np: Device node pointer associated with clock provider 4414 * @get: callback for decoding clk_hw 4415 * @data: context pointer for @get callback. 4416 */ 4417 int of_clk_add_hw_provider(struct device_node *np, 4418 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4419 void *data), 4420 void *data) 4421 { 4422 struct of_clk_provider *cp; 4423 int ret; 4424 4425 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4426 if (!cp) 4427 return -ENOMEM; 4428 4429 cp->node = of_node_get(np); 4430 cp->data = data; 4431 cp->get_hw = get; 4432 4433 mutex_lock(&of_clk_mutex); 4434 list_add(&cp->link, &of_clk_providers); 4435 mutex_unlock(&of_clk_mutex); 4436 pr_debug("Added clk_hw provider from %pOF\n", np); 4437 4438 clk_core_reparent_orphans(); 4439 4440 ret = of_clk_set_defaults(np, true); 4441 if (ret < 0) 4442 of_clk_del_provider(np); 4443 4444 return ret; 4445 } 4446 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4447 4448 static void devm_of_clk_release_provider(struct device *dev, void *res) 4449 { 4450 of_clk_del_provider(*(struct device_node **)res); 4451 } 4452 4453 /* 4454 * We allow a child device to use its parent device as the clock provider node 4455 * for cases like MFD sub-devices where the child device driver wants to use 4456 * devm_*() APIs but not list the device in DT as a sub-node. 4457 */ 4458 static struct device_node *get_clk_provider_node(struct device *dev) 4459 { 4460 struct device_node *np, *parent_np; 4461 4462 np = dev->of_node; 4463 parent_np = dev->parent ? dev->parent->of_node : NULL; 4464 4465 if (!of_find_property(np, "#clock-cells", NULL)) 4466 if (of_find_property(parent_np, "#clock-cells", NULL)) 4467 np = parent_np; 4468 4469 return np; 4470 } 4471 4472 /** 4473 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4474 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4475 * @get: callback for decoding clk_hw 4476 * @data: context pointer for @get callback 4477 * 4478 * Registers clock provider for given device's node. If the device has no DT 4479 * node or if the device node lacks of clock provider information (#clock-cells) 4480 * then the parent device's node is scanned for this information. If parent node 4481 * has the #clock-cells then it is used in registration. Provider is 4482 * automatically released at device exit. 4483 * 4484 * Return: 0 on success or an errno on failure. 4485 */ 4486 int devm_of_clk_add_hw_provider(struct device *dev, 4487 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4488 void *data), 4489 void *data) 4490 { 4491 struct device_node **ptr, *np; 4492 int ret; 4493 4494 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4495 GFP_KERNEL); 4496 if (!ptr) 4497 return -ENOMEM; 4498 4499 np = get_clk_provider_node(dev); 4500 ret = of_clk_add_hw_provider(np, get, data); 4501 if (!ret) { 4502 *ptr = np; 4503 devres_add(dev, ptr); 4504 } else { 4505 devres_free(ptr); 4506 } 4507 4508 return ret; 4509 } 4510 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4511 4512 /** 4513 * of_clk_del_provider() - Remove a previously registered clock provider 4514 * @np: Device node pointer associated with clock provider 4515 */ 4516 void of_clk_del_provider(struct device_node *np) 4517 { 4518 struct of_clk_provider *cp; 4519 4520 mutex_lock(&of_clk_mutex); 4521 list_for_each_entry(cp, &of_clk_providers, link) { 4522 if (cp->node == np) { 4523 list_del(&cp->link); 4524 of_node_put(cp->node); 4525 kfree(cp); 4526 break; 4527 } 4528 } 4529 mutex_unlock(&of_clk_mutex); 4530 } 4531 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4532 4533 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4534 { 4535 struct device_node **np = res; 4536 4537 if (WARN_ON(!np || !*np)) 4538 return 0; 4539 4540 return *np == data; 4541 } 4542 4543 /** 4544 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4545 * @dev: Device to whose lifetime the clock provider was bound 4546 */ 4547 void devm_of_clk_del_provider(struct device *dev) 4548 { 4549 int ret; 4550 struct device_node *np = get_clk_provider_node(dev); 4551 4552 ret = devres_release(dev, devm_of_clk_release_provider, 4553 devm_clk_provider_match, np); 4554 4555 WARN_ON(ret); 4556 } 4557 EXPORT_SYMBOL(devm_of_clk_del_provider); 4558 4559 /** 4560 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4561 * @np: device node to parse clock specifier from 4562 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4563 * @name: clock name to find and parse. If name is NULL, the index is used 4564 * @out_args: Result of parsing the clock specifier 4565 * 4566 * Parses a device node's "clocks" and "clock-names" properties to find the 4567 * phandle and cells for the index or name that is desired. The resulting clock 4568 * specifier is placed into @out_args, or an errno is returned when there's a 4569 * parsing error. The @index argument is ignored if @name is non-NULL. 4570 * 4571 * Example: 4572 * 4573 * phandle1: clock-controller@1 { 4574 * #clock-cells = <2>; 4575 * } 4576 * 4577 * phandle2: clock-controller@2 { 4578 * #clock-cells = <1>; 4579 * } 4580 * 4581 * clock-consumer@3 { 4582 * clocks = <&phandle1 1 2 &phandle2 3>; 4583 * clock-names = "name1", "name2"; 4584 * } 4585 * 4586 * To get a device_node for `clock-controller@2' node you may call this 4587 * function a few different ways: 4588 * 4589 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4590 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4591 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4592 * 4593 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4594 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4595 * the "clock-names" property of @np. 4596 */ 4597 static int of_parse_clkspec(const struct device_node *np, int index, 4598 const char *name, struct of_phandle_args *out_args) 4599 { 4600 int ret = -ENOENT; 4601 4602 /* Walk up the tree of devices looking for a clock property that matches */ 4603 while (np) { 4604 /* 4605 * For named clocks, first look up the name in the 4606 * "clock-names" property. If it cannot be found, then index 4607 * will be an error code and of_parse_phandle_with_args() will 4608 * return -EINVAL. 4609 */ 4610 if (name) 4611 index = of_property_match_string(np, "clock-names", name); 4612 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4613 index, out_args); 4614 if (!ret) 4615 break; 4616 if (name && index >= 0) 4617 break; 4618 4619 /* 4620 * No matching clock found on this node. If the parent node 4621 * has a "clock-ranges" property, then we can try one of its 4622 * clocks. 4623 */ 4624 np = np->parent; 4625 if (np && !of_get_property(np, "clock-ranges", NULL)) 4626 break; 4627 index = 0; 4628 } 4629 4630 return ret; 4631 } 4632 4633 static struct clk_hw * 4634 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4635 struct of_phandle_args *clkspec) 4636 { 4637 struct clk *clk; 4638 4639 if (provider->get_hw) 4640 return provider->get_hw(clkspec, provider->data); 4641 4642 clk = provider->get(clkspec, provider->data); 4643 if (IS_ERR(clk)) 4644 return ERR_CAST(clk); 4645 return __clk_get_hw(clk); 4646 } 4647 4648 static struct clk_hw * 4649 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4650 { 4651 struct of_clk_provider *provider; 4652 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4653 4654 if (!clkspec) 4655 return ERR_PTR(-EINVAL); 4656 4657 mutex_lock(&of_clk_mutex); 4658 list_for_each_entry(provider, &of_clk_providers, link) { 4659 if (provider->node == clkspec->np) { 4660 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4661 if (!IS_ERR(hw)) 4662 break; 4663 } 4664 } 4665 mutex_unlock(&of_clk_mutex); 4666 4667 return hw; 4668 } 4669 4670 /** 4671 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4672 * @clkspec: pointer to a clock specifier data structure 4673 * 4674 * This function looks up a struct clk from the registered list of clock 4675 * providers, an input is a clock specifier data structure as returned 4676 * from the of_parse_phandle_with_args() function call. 4677 */ 4678 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4679 { 4680 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4681 4682 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4683 } 4684 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4685 4686 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4687 const char *con_id) 4688 { 4689 int ret; 4690 struct clk_hw *hw; 4691 struct of_phandle_args clkspec; 4692 4693 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4694 if (ret) 4695 return ERR_PTR(ret); 4696 4697 hw = of_clk_get_hw_from_clkspec(&clkspec); 4698 of_node_put(clkspec.np); 4699 4700 return hw; 4701 } 4702 4703 static struct clk *__of_clk_get(struct device_node *np, 4704 int index, const char *dev_id, 4705 const char *con_id) 4706 { 4707 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4708 4709 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4710 } 4711 4712 struct clk *of_clk_get(struct device_node *np, int index) 4713 { 4714 return __of_clk_get(np, index, np->full_name, NULL); 4715 } 4716 EXPORT_SYMBOL(of_clk_get); 4717 4718 /** 4719 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4720 * @np: pointer to clock consumer node 4721 * @name: name of consumer's clock input, or NULL for the first clock reference 4722 * 4723 * This function parses the clocks and clock-names properties, 4724 * and uses them to look up the struct clk from the registered list of clock 4725 * providers. 4726 */ 4727 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4728 { 4729 if (!np) 4730 return ERR_PTR(-ENOENT); 4731 4732 return __of_clk_get(np, 0, np->full_name, name); 4733 } 4734 EXPORT_SYMBOL(of_clk_get_by_name); 4735 4736 /** 4737 * of_clk_get_parent_count() - Count the number of clocks a device node has 4738 * @np: device node to count 4739 * 4740 * Returns: The number of clocks that are possible parents of this node 4741 */ 4742 unsigned int of_clk_get_parent_count(const struct device_node *np) 4743 { 4744 int count; 4745 4746 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4747 if (count < 0) 4748 return 0; 4749 4750 return count; 4751 } 4752 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4753 4754 const char *of_clk_get_parent_name(const struct device_node *np, int index) 4755 { 4756 struct of_phandle_args clkspec; 4757 struct property *prop; 4758 const char *clk_name; 4759 const __be32 *vp; 4760 u32 pv; 4761 int rc; 4762 int count; 4763 struct clk *clk; 4764 4765 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 4766 &clkspec); 4767 if (rc) 4768 return NULL; 4769 4770 index = clkspec.args_count ? clkspec.args[0] : 0; 4771 count = 0; 4772 4773 /* if there is an indices property, use it to transfer the index 4774 * specified into an array offset for the clock-output-names property. 4775 */ 4776 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 4777 if (index == pv) { 4778 index = count; 4779 break; 4780 } 4781 count++; 4782 } 4783 /* We went off the end of 'clock-indices' without finding it */ 4784 if (prop && !vp) 4785 return NULL; 4786 4787 if (of_property_read_string_index(clkspec.np, "clock-output-names", 4788 index, 4789 &clk_name) < 0) { 4790 /* 4791 * Best effort to get the name if the clock has been 4792 * registered with the framework. If the clock isn't 4793 * registered, we return the node name as the name of 4794 * the clock as long as #clock-cells = 0. 4795 */ 4796 clk = of_clk_get_from_provider(&clkspec); 4797 if (IS_ERR(clk)) { 4798 if (clkspec.args_count == 0) 4799 clk_name = clkspec.np->name; 4800 else 4801 clk_name = NULL; 4802 } else { 4803 clk_name = __clk_get_name(clk); 4804 clk_put(clk); 4805 } 4806 } 4807 4808 4809 of_node_put(clkspec.np); 4810 return clk_name; 4811 } 4812 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 4813 4814 /** 4815 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 4816 * number of parents 4817 * @np: Device node pointer associated with clock provider 4818 * @parents: pointer to char array that hold the parents' names 4819 * @size: size of the @parents array 4820 * 4821 * Return: number of parents for the clock node. 4822 */ 4823 int of_clk_parent_fill(struct device_node *np, const char **parents, 4824 unsigned int size) 4825 { 4826 unsigned int i = 0; 4827 4828 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 4829 i++; 4830 4831 return i; 4832 } 4833 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 4834 4835 struct clock_provider { 4836 void (*clk_init_cb)(struct device_node *); 4837 struct device_node *np; 4838 struct list_head node; 4839 }; 4840 4841 /* 4842 * This function looks for a parent clock. If there is one, then it 4843 * checks that the provider for this parent clock was initialized, in 4844 * this case the parent clock will be ready. 4845 */ 4846 static int parent_ready(struct device_node *np) 4847 { 4848 int i = 0; 4849 4850 while (true) { 4851 struct clk *clk = of_clk_get(np, i); 4852 4853 /* this parent is ready we can check the next one */ 4854 if (!IS_ERR(clk)) { 4855 clk_put(clk); 4856 i++; 4857 continue; 4858 } 4859 4860 /* at least one parent is not ready, we exit now */ 4861 if (PTR_ERR(clk) == -EPROBE_DEFER) 4862 return 0; 4863 4864 /* 4865 * Here we make assumption that the device tree is 4866 * written correctly. So an error means that there is 4867 * no more parent. As we didn't exit yet, then the 4868 * previous parent are ready. If there is no clock 4869 * parent, no need to wait for them, then we can 4870 * consider their absence as being ready 4871 */ 4872 return 1; 4873 } 4874 } 4875 4876 /** 4877 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 4878 * @np: Device node pointer associated with clock provider 4879 * @index: clock index 4880 * @flags: pointer to top-level framework flags 4881 * 4882 * Detects if the clock-critical property exists and, if so, sets the 4883 * corresponding CLK_IS_CRITICAL flag. 4884 * 4885 * Do not use this function. It exists only for legacy Device Tree 4886 * bindings, such as the one-clock-per-node style that are outdated. 4887 * Those bindings typically put all clock data into .dts and the Linux 4888 * driver has no clock data, thus making it impossible to set this flag 4889 * correctly from the driver. Only those drivers may call 4890 * of_clk_detect_critical from their setup functions. 4891 * 4892 * Return: error code or zero on success 4893 */ 4894 int of_clk_detect_critical(struct device_node *np, int index, 4895 unsigned long *flags) 4896 { 4897 struct property *prop; 4898 const __be32 *cur; 4899 uint32_t idx; 4900 4901 if (!np || !flags) 4902 return -EINVAL; 4903 4904 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 4905 if (index == idx) 4906 *flags |= CLK_IS_CRITICAL; 4907 4908 return 0; 4909 } 4910 4911 /** 4912 * of_clk_init() - Scan and init clock providers from the DT 4913 * @matches: array of compatible values and init functions for providers. 4914 * 4915 * This function scans the device tree for matching clock providers 4916 * and calls their initialization functions. It also does it by trying 4917 * to follow the dependencies. 4918 */ 4919 void __init of_clk_init(const struct of_device_id *matches) 4920 { 4921 const struct of_device_id *match; 4922 struct device_node *np; 4923 struct clock_provider *clk_provider, *next; 4924 bool is_init_done; 4925 bool force = false; 4926 LIST_HEAD(clk_provider_list); 4927 4928 if (!matches) 4929 matches = &__clk_of_table; 4930 4931 /* First prepare the list of the clocks providers */ 4932 for_each_matching_node_and_match(np, matches, &match) { 4933 struct clock_provider *parent; 4934 4935 if (!of_device_is_available(np)) 4936 continue; 4937 4938 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 4939 if (!parent) { 4940 list_for_each_entry_safe(clk_provider, next, 4941 &clk_provider_list, node) { 4942 list_del(&clk_provider->node); 4943 of_node_put(clk_provider->np); 4944 kfree(clk_provider); 4945 } 4946 of_node_put(np); 4947 return; 4948 } 4949 4950 parent->clk_init_cb = match->data; 4951 parent->np = of_node_get(np); 4952 list_add_tail(&parent->node, &clk_provider_list); 4953 } 4954 4955 while (!list_empty(&clk_provider_list)) { 4956 is_init_done = false; 4957 list_for_each_entry_safe(clk_provider, next, 4958 &clk_provider_list, node) { 4959 if (force || parent_ready(clk_provider->np)) { 4960 4961 /* Don't populate platform devices */ 4962 of_node_set_flag(clk_provider->np, 4963 OF_POPULATED); 4964 4965 clk_provider->clk_init_cb(clk_provider->np); 4966 of_clk_set_defaults(clk_provider->np, true); 4967 4968 list_del(&clk_provider->node); 4969 of_node_put(clk_provider->np); 4970 kfree(clk_provider); 4971 is_init_done = true; 4972 } 4973 } 4974 4975 /* 4976 * We didn't manage to initialize any of the 4977 * remaining providers during the last loop, so now we 4978 * initialize all the remaining ones unconditionally 4979 * in case the clock parent was not mandatory 4980 */ 4981 if (!is_init_done) 4982 force = true; 4983 } 4984 } 4985 #endif 4986