1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/clk.txt 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/clk-provider.h> 14 #include <linux/clk/clk-conf.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/spinlock.h> 18 #include <linux/err.h> 19 #include <linux/list.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/sched.h> 25 #include <linux/clkdev.h> 26 27 #include "clk.h" 28 29 static DEFINE_SPINLOCK(enable_lock); 30 static DEFINE_MUTEX(prepare_lock); 31 32 static struct task_struct *prepare_owner; 33 static struct task_struct *enable_owner; 34 35 static int prepare_refcnt; 36 static int enable_refcnt; 37 38 static HLIST_HEAD(clk_root_list); 39 static HLIST_HEAD(clk_orphan_list); 40 static LIST_HEAD(clk_notifier_list); 41 42 /*** private data structures ***/ 43 44 struct clk_core { 45 const char *name; 46 const struct clk_ops *ops; 47 struct clk_hw *hw; 48 struct module *owner; 49 struct clk_core *parent; 50 const char **parent_names; 51 struct clk_core **parents; 52 u8 num_parents; 53 u8 new_parent_index; 54 unsigned long rate; 55 unsigned long req_rate; 56 unsigned long new_rate; 57 struct clk_core *new_parent; 58 struct clk_core *new_child; 59 unsigned long flags; 60 bool orphan; 61 unsigned int enable_count; 62 unsigned int prepare_count; 63 unsigned long min_rate; 64 unsigned long max_rate; 65 unsigned long accuracy; 66 int phase; 67 struct hlist_head children; 68 struct hlist_node child_node; 69 struct hlist_head clks; 70 unsigned int notifier_count; 71 #ifdef CONFIG_DEBUG_FS 72 struct dentry *dentry; 73 struct hlist_node debug_node; 74 #endif 75 struct kref ref; 76 }; 77 78 #define CREATE_TRACE_POINTS 79 #include <trace/events/clk.h> 80 81 struct clk { 82 struct clk_core *core; 83 const char *dev_id; 84 const char *con_id; 85 unsigned long min_rate; 86 unsigned long max_rate; 87 struct hlist_node clks_node; 88 }; 89 90 /*** locking ***/ 91 static void clk_prepare_lock(void) 92 { 93 if (!mutex_trylock(&prepare_lock)) { 94 if (prepare_owner == current) { 95 prepare_refcnt++; 96 return; 97 } 98 mutex_lock(&prepare_lock); 99 } 100 WARN_ON_ONCE(prepare_owner != NULL); 101 WARN_ON_ONCE(prepare_refcnt != 0); 102 prepare_owner = current; 103 prepare_refcnt = 1; 104 } 105 106 static void clk_prepare_unlock(void) 107 { 108 WARN_ON_ONCE(prepare_owner != current); 109 WARN_ON_ONCE(prepare_refcnt == 0); 110 111 if (--prepare_refcnt) 112 return; 113 prepare_owner = NULL; 114 mutex_unlock(&prepare_lock); 115 } 116 117 static unsigned long clk_enable_lock(void) 118 __acquires(enable_lock) 119 { 120 unsigned long flags; 121 122 if (!spin_trylock_irqsave(&enable_lock, flags)) { 123 if (enable_owner == current) { 124 enable_refcnt++; 125 __acquire(enable_lock); 126 return flags; 127 } 128 spin_lock_irqsave(&enable_lock, flags); 129 } 130 WARN_ON_ONCE(enable_owner != NULL); 131 WARN_ON_ONCE(enable_refcnt != 0); 132 enable_owner = current; 133 enable_refcnt = 1; 134 return flags; 135 } 136 137 static void clk_enable_unlock(unsigned long flags) 138 __releases(enable_lock) 139 { 140 WARN_ON_ONCE(enable_owner != current); 141 WARN_ON_ONCE(enable_refcnt == 0); 142 143 if (--enable_refcnt) { 144 __release(enable_lock); 145 return; 146 } 147 enable_owner = NULL; 148 spin_unlock_irqrestore(&enable_lock, flags); 149 } 150 151 static bool clk_core_is_prepared(struct clk_core *core) 152 { 153 /* 154 * .is_prepared is optional for clocks that can prepare 155 * fall back to software usage counter if it is missing 156 */ 157 if (!core->ops->is_prepared) 158 return core->prepare_count; 159 160 return core->ops->is_prepared(core->hw); 161 } 162 163 static bool clk_core_is_enabled(struct clk_core *core) 164 { 165 /* 166 * .is_enabled is only mandatory for clocks that gate 167 * fall back to software usage counter if .is_enabled is missing 168 */ 169 if (!core->ops->is_enabled) 170 return core->enable_count; 171 172 return core->ops->is_enabled(core->hw); 173 } 174 175 static void clk_unprepare_unused_subtree(struct clk_core *core) 176 { 177 struct clk_core *child; 178 179 lockdep_assert_held(&prepare_lock); 180 181 hlist_for_each_entry(child, &core->children, child_node) 182 clk_unprepare_unused_subtree(child); 183 184 if (core->prepare_count) 185 return; 186 187 if (core->flags & CLK_IGNORE_UNUSED) 188 return; 189 190 if (clk_core_is_prepared(core)) { 191 trace_clk_unprepare(core); 192 if (core->ops->unprepare_unused) 193 core->ops->unprepare_unused(core->hw); 194 else if (core->ops->unprepare) 195 core->ops->unprepare(core->hw); 196 trace_clk_unprepare_complete(core); 197 } 198 } 199 200 static void clk_disable_unused_subtree(struct clk_core *core) 201 { 202 struct clk_core *child; 203 unsigned long flags; 204 205 lockdep_assert_held(&prepare_lock); 206 207 hlist_for_each_entry(child, &core->children, child_node) 208 clk_disable_unused_subtree(child); 209 210 flags = clk_enable_lock(); 211 212 if (core->enable_count) 213 goto unlock_out; 214 215 if (core->flags & CLK_IGNORE_UNUSED) 216 goto unlock_out; 217 218 /* 219 * some gate clocks have special needs during the disable-unused 220 * sequence. call .disable_unused if available, otherwise fall 221 * back to .disable 222 */ 223 if (clk_core_is_enabled(core)) { 224 trace_clk_disable(core); 225 if (core->ops->disable_unused) 226 core->ops->disable_unused(core->hw); 227 else if (core->ops->disable) 228 core->ops->disable(core->hw); 229 trace_clk_disable_complete(core); 230 } 231 232 unlock_out: 233 clk_enable_unlock(flags); 234 } 235 236 static bool clk_ignore_unused; 237 static int __init clk_ignore_unused_setup(char *__unused) 238 { 239 clk_ignore_unused = true; 240 return 1; 241 } 242 __setup("clk_ignore_unused", clk_ignore_unused_setup); 243 244 static int clk_disable_unused(void) 245 { 246 struct clk_core *core; 247 248 if (clk_ignore_unused) { 249 pr_warn("clk: Not disabling unused clocks\n"); 250 return 0; 251 } 252 253 clk_prepare_lock(); 254 255 hlist_for_each_entry(core, &clk_root_list, child_node) 256 clk_disable_unused_subtree(core); 257 258 hlist_for_each_entry(core, &clk_orphan_list, child_node) 259 clk_disable_unused_subtree(core); 260 261 hlist_for_each_entry(core, &clk_root_list, child_node) 262 clk_unprepare_unused_subtree(core); 263 264 hlist_for_each_entry(core, &clk_orphan_list, child_node) 265 clk_unprepare_unused_subtree(core); 266 267 clk_prepare_unlock(); 268 269 return 0; 270 } 271 late_initcall_sync(clk_disable_unused); 272 273 /*** helper functions ***/ 274 275 const char *__clk_get_name(const struct clk *clk) 276 { 277 return !clk ? NULL : clk->core->name; 278 } 279 EXPORT_SYMBOL_GPL(__clk_get_name); 280 281 const char *clk_hw_get_name(const struct clk_hw *hw) 282 { 283 return hw->core->name; 284 } 285 EXPORT_SYMBOL_GPL(clk_hw_get_name); 286 287 struct clk_hw *__clk_get_hw(struct clk *clk) 288 { 289 return !clk ? NULL : clk->core->hw; 290 } 291 EXPORT_SYMBOL_GPL(__clk_get_hw); 292 293 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 294 { 295 return hw->core->num_parents; 296 } 297 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 298 299 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 300 { 301 return hw->core->parent ? hw->core->parent->hw : NULL; 302 } 303 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 304 305 static struct clk_core *__clk_lookup_subtree(const char *name, 306 struct clk_core *core) 307 { 308 struct clk_core *child; 309 struct clk_core *ret; 310 311 if (!strcmp(core->name, name)) 312 return core; 313 314 hlist_for_each_entry(child, &core->children, child_node) { 315 ret = __clk_lookup_subtree(name, child); 316 if (ret) 317 return ret; 318 } 319 320 return NULL; 321 } 322 323 static struct clk_core *clk_core_lookup(const char *name) 324 { 325 struct clk_core *root_clk; 326 struct clk_core *ret; 327 328 if (!name) 329 return NULL; 330 331 /* search the 'proper' clk tree first */ 332 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 333 ret = __clk_lookup_subtree(name, root_clk); 334 if (ret) 335 return ret; 336 } 337 338 /* if not found, then search the orphan tree */ 339 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 340 ret = __clk_lookup_subtree(name, root_clk); 341 if (ret) 342 return ret; 343 } 344 345 return NULL; 346 } 347 348 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 349 u8 index) 350 { 351 if (!core || index >= core->num_parents) 352 return NULL; 353 else if (!core->parents) 354 return clk_core_lookup(core->parent_names[index]); 355 else if (!core->parents[index]) 356 return core->parents[index] = 357 clk_core_lookup(core->parent_names[index]); 358 else 359 return core->parents[index]; 360 } 361 362 struct clk_hw * 363 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 364 { 365 struct clk_core *parent; 366 367 parent = clk_core_get_parent_by_index(hw->core, index); 368 369 return !parent ? NULL : parent->hw; 370 } 371 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 372 373 unsigned int __clk_get_enable_count(struct clk *clk) 374 { 375 return !clk ? 0 : clk->core->enable_count; 376 } 377 378 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 379 { 380 unsigned long ret; 381 382 if (!core) { 383 ret = 0; 384 goto out; 385 } 386 387 ret = core->rate; 388 389 if (core->flags & CLK_IS_ROOT) 390 goto out; 391 392 if (!core->parent) 393 ret = 0; 394 395 out: 396 return ret; 397 } 398 399 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 400 { 401 return clk_core_get_rate_nolock(hw->core); 402 } 403 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 404 405 static unsigned long __clk_get_accuracy(struct clk_core *core) 406 { 407 if (!core) 408 return 0; 409 410 return core->accuracy; 411 } 412 413 unsigned long __clk_get_flags(struct clk *clk) 414 { 415 return !clk ? 0 : clk->core->flags; 416 } 417 EXPORT_SYMBOL_GPL(__clk_get_flags); 418 419 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 420 { 421 return hw->core->flags; 422 } 423 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 424 425 bool clk_hw_is_prepared(const struct clk_hw *hw) 426 { 427 return clk_core_is_prepared(hw->core); 428 } 429 430 bool clk_hw_is_enabled(const struct clk_hw *hw) 431 { 432 return clk_core_is_enabled(hw->core); 433 } 434 435 bool __clk_is_enabled(struct clk *clk) 436 { 437 if (!clk) 438 return false; 439 440 return clk_core_is_enabled(clk->core); 441 } 442 EXPORT_SYMBOL_GPL(__clk_is_enabled); 443 444 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 445 unsigned long best, unsigned long flags) 446 { 447 if (flags & CLK_MUX_ROUND_CLOSEST) 448 return abs(now - rate) < abs(best - rate); 449 450 return now <= rate && now > best; 451 } 452 453 static int 454 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req, 455 unsigned long flags) 456 { 457 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 458 int i, num_parents, ret; 459 unsigned long best = 0; 460 struct clk_rate_request parent_req = *req; 461 462 /* if NO_REPARENT flag set, pass through to current parent */ 463 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 464 parent = core->parent; 465 if (core->flags & CLK_SET_RATE_PARENT) { 466 ret = __clk_determine_rate(parent ? parent->hw : NULL, 467 &parent_req); 468 if (ret) 469 return ret; 470 471 best = parent_req.rate; 472 } else if (parent) { 473 best = clk_core_get_rate_nolock(parent); 474 } else { 475 best = clk_core_get_rate_nolock(core); 476 } 477 478 goto out; 479 } 480 481 /* find the parent that can provide the fastest rate <= rate */ 482 num_parents = core->num_parents; 483 for (i = 0; i < num_parents; i++) { 484 parent = clk_core_get_parent_by_index(core, i); 485 if (!parent) 486 continue; 487 488 if (core->flags & CLK_SET_RATE_PARENT) { 489 parent_req = *req; 490 ret = __clk_determine_rate(parent->hw, &parent_req); 491 if (ret) 492 continue; 493 } else { 494 parent_req.rate = clk_core_get_rate_nolock(parent); 495 } 496 497 if (mux_is_better_rate(req->rate, parent_req.rate, 498 best, flags)) { 499 best_parent = parent; 500 best = parent_req.rate; 501 } 502 } 503 504 if (!best_parent) 505 return -EINVAL; 506 507 out: 508 if (best_parent) 509 req->best_parent_hw = best_parent->hw; 510 req->best_parent_rate = best; 511 req->rate = best; 512 513 return 0; 514 } 515 516 struct clk *__clk_lookup(const char *name) 517 { 518 struct clk_core *core = clk_core_lookup(name); 519 520 return !core ? NULL : core->hw->clk; 521 } 522 523 static void clk_core_get_boundaries(struct clk_core *core, 524 unsigned long *min_rate, 525 unsigned long *max_rate) 526 { 527 struct clk *clk_user; 528 529 *min_rate = core->min_rate; 530 *max_rate = core->max_rate; 531 532 hlist_for_each_entry(clk_user, &core->clks, clks_node) 533 *min_rate = max(*min_rate, clk_user->min_rate); 534 535 hlist_for_each_entry(clk_user, &core->clks, clks_node) 536 *max_rate = min(*max_rate, clk_user->max_rate); 537 } 538 539 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 540 unsigned long max_rate) 541 { 542 hw->core->min_rate = min_rate; 543 hw->core->max_rate = max_rate; 544 } 545 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 546 547 /* 548 * Helper for finding best parent to provide a given frequency. This can be used 549 * directly as a determine_rate callback (e.g. for a mux), or from a more 550 * complex clock that may combine a mux with other operations. 551 */ 552 int __clk_mux_determine_rate(struct clk_hw *hw, 553 struct clk_rate_request *req) 554 { 555 return clk_mux_determine_rate_flags(hw, req, 0); 556 } 557 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 558 559 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 560 struct clk_rate_request *req) 561 { 562 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 563 } 564 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 565 566 /*** clk api ***/ 567 568 static void clk_core_unprepare(struct clk_core *core) 569 { 570 lockdep_assert_held(&prepare_lock); 571 572 if (!core) 573 return; 574 575 if (WARN_ON(core->prepare_count == 0)) 576 return; 577 578 if (--core->prepare_count > 0) 579 return; 580 581 WARN_ON(core->enable_count > 0); 582 583 trace_clk_unprepare(core); 584 585 if (core->ops->unprepare) 586 core->ops->unprepare(core->hw); 587 588 trace_clk_unprepare_complete(core); 589 clk_core_unprepare(core->parent); 590 } 591 592 /** 593 * clk_unprepare - undo preparation of a clock source 594 * @clk: the clk being unprepared 595 * 596 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 597 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 598 * if the operation may sleep. One example is a clk which is accessed over 599 * I2c. In the complex case a clk gate operation may require a fast and a slow 600 * part. It is this reason that clk_unprepare and clk_disable are not mutually 601 * exclusive. In fact clk_disable must be called before clk_unprepare. 602 */ 603 void clk_unprepare(struct clk *clk) 604 { 605 if (IS_ERR_OR_NULL(clk)) 606 return; 607 608 clk_prepare_lock(); 609 clk_core_unprepare(clk->core); 610 clk_prepare_unlock(); 611 } 612 EXPORT_SYMBOL_GPL(clk_unprepare); 613 614 static int clk_core_prepare(struct clk_core *core) 615 { 616 int ret = 0; 617 618 lockdep_assert_held(&prepare_lock); 619 620 if (!core) 621 return 0; 622 623 if (core->prepare_count == 0) { 624 ret = clk_core_prepare(core->parent); 625 if (ret) 626 return ret; 627 628 trace_clk_prepare(core); 629 630 if (core->ops->prepare) 631 ret = core->ops->prepare(core->hw); 632 633 trace_clk_prepare_complete(core); 634 635 if (ret) { 636 clk_core_unprepare(core->parent); 637 return ret; 638 } 639 } 640 641 core->prepare_count++; 642 643 return 0; 644 } 645 646 /** 647 * clk_prepare - prepare a clock source 648 * @clk: the clk being prepared 649 * 650 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 651 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 652 * operation may sleep. One example is a clk which is accessed over I2c. In 653 * the complex case a clk ungate operation may require a fast and a slow part. 654 * It is this reason that clk_prepare and clk_enable are not mutually 655 * exclusive. In fact clk_prepare must be called before clk_enable. 656 * Returns 0 on success, -EERROR otherwise. 657 */ 658 int clk_prepare(struct clk *clk) 659 { 660 int ret; 661 662 if (!clk) 663 return 0; 664 665 clk_prepare_lock(); 666 ret = clk_core_prepare(clk->core); 667 clk_prepare_unlock(); 668 669 return ret; 670 } 671 EXPORT_SYMBOL_GPL(clk_prepare); 672 673 static void clk_core_disable(struct clk_core *core) 674 { 675 lockdep_assert_held(&enable_lock); 676 677 if (!core) 678 return; 679 680 if (WARN_ON(core->enable_count == 0)) 681 return; 682 683 if (--core->enable_count > 0) 684 return; 685 686 trace_clk_disable(core); 687 688 if (core->ops->disable) 689 core->ops->disable(core->hw); 690 691 trace_clk_disable_complete(core); 692 693 clk_core_disable(core->parent); 694 } 695 696 /** 697 * clk_disable - gate a clock 698 * @clk: the clk being gated 699 * 700 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 701 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 702 * clk if the operation is fast and will never sleep. One example is a 703 * SoC-internal clk which is controlled via simple register writes. In the 704 * complex case a clk gate operation may require a fast and a slow part. It is 705 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 706 * In fact clk_disable must be called before clk_unprepare. 707 */ 708 void clk_disable(struct clk *clk) 709 { 710 unsigned long flags; 711 712 if (IS_ERR_OR_NULL(clk)) 713 return; 714 715 flags = clk_enable_lock(); 716 clk_core_disable(clk->core); 717 clk_enable_unlock(flags); 718 } 719 EXPORT_SYMBOL_GPL(clk_disable); 720 721 static int clk_core_enable(struct clk_core *core) 722 { 723 int ret = 0; 724 725 lockdep_assert_held(&enable_lock); 726 727 if (!core) 728 return 0; 729 730 if (WARN_ON(core->prepare_count == 0)) 731 return -ESHUTDOWN; 732 733 if (core->enable_count == 0) { 734 ret = clk_core_enable(core->parent); 735 736 if (ret) 737 return ret; 738 739 trace_clk_enable(core); 740 741 if (core->ops->enable) 742 ret = core->ops->enable(core->hw); 743 744 trace_clk_enable_complete(core); 745 746 if (ret) { 747 clk_core_disable(core->parent); 748 return ret; 749 } 750 } 751 752 core->enable_count++; 753 return 0; 754 } 755 756 /** 757 * clk_enable - ungate a clock 758 * @clk: the clk being ungated 759 * 760 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 761 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 762 * if the operation will never sleep. One example is a SoC-internal clk which 763 * is controlled via simple register writes. In the complex case a clk ungate 764 * operation may require a fast and a slow part. It is this reason that 765 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 766 * must be called before clk_enable. Returns 0 on success, -EERROR 767 * otherwise. 768 */ 769 int clk_enable(struct clk *clk) 770 { 771 unsigned long flags; 772 int ret; 773 774 if (!clk) 775 return 0; 776 777 flags = clk_enable_lock(); 778 ret = clk_core_enable(clk->core); 779 clk_enable_unlock(flags); 780 781 return ret; 782 } 783 EXPORT_SYMBOL_GPL(clk_enable); 784 785 static int clk_core_round_rate_nolock(struct clk_core *core, 786 struct clk_rate_request *req) 787 { 788 struct clk_core *parent; 789 long rate; 790 791 lockdep_assert_held(&prepare_lock); 792 793 if (!core) 794 return 0; 795 796 parent = core->parent; 797 if (parent) { 798 req->best_parent_hw = parent->hw; 799 req->best_parent_rate = parent->rate; 800 } else { 801 req->best_parent_hw = NULL; 802 req->best_parent_rate = 0; 803 } 804 805 if (core->ops->determine_rate) { 806 return core->ops->determine_rate(core->hw, req); 807 } else if (core->ops->round_rate) { 808 rate = core->ops->round_rate(core->hw, req->rate, 809 &req->best_parent_rate); 810 if (rate < 0) 811 return rate; 812 813 req->rate = rate; 814 } else if (core->flags & CLK_SET_RATE_PARENT) { 815 return clk_core_round_rate_nolock(parent, req); 816 } else { 817 req->rate = core->rate; 818 } 819 820 return 0; 821 } 822 823 /** 824 * __clk_determine_rate - get the closest rate actually supported by a clock 825 * @hw: determine the rate of this clock 826 * @rate: target rate 827 * @min_rate: returned rate must be greater than this rate 828 * @max_rate: returned rate must be less than this rate 829 * 830 * Useful for clk_ops such as .set_rate and .determine_rate. 831 */ 832 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 833 { 834 if (!hw) { 835 req->rate = 0; 836 return 0; 837 } 838 839 return clk_core_round_rate_nolock(hw->core, req); 840 } 841 EXPORT_SYMBOL_GPL(__clk_determine_rate); 842 843 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 844 { 845 int ret; 846 struct clk_rate_request req; 847 848 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 849 req.rate = rate; 850 851 ret = clk_core_round_rate_nolock(hw->core, &req); 852 if (ret) 853 return 0; 854 855 return req.rate; 856 } 857 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 858 859 /** 860 * clk_round_rate - round the given rate for a clk 861 * @clk: the clk for which we are rounding a rate 862 * @rate: the rate which is to be rounded 863 * 864 * Takes in a rate as input and rounds it to a rate that the clk can actually 865 * use which is then returned. If clk doesn't support round_rate operation 866 * then the parent rate is returned. 867 */ 868 long clk_round_rate(struct clk *clk, unsigned long rate) 869 { 870 struct clk_rate_request req; 871 int ret; 872 873 if (!clk) 874 return 0; 875 876 clk_prepare_lock(); 877 878 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 879 req.rate = rate; 880 881 ret = clk_core_round_rate_nolock(clk->core, &req); 882 clk_prepare_unlock(); 883 884 if (ret) 885 return ret; 886 887 return req.rate; 888 } 889 EXPORT_SYMBOL_GPL(clk_round_rate); 890 891 /** 892 * __clk_notify - call clk notifier chain 893 * @core: clk that is changing rate 894 * @msg: clk notifier type (see include/linux/clk.h) 895 * @old_rate: old clk rate 896 * @new_rate: new clk rate 897 * 898 * Triggers a notifier call chain on the clk rate-change notification 899 * for 'clk'. Passes a pointer to the struct clk and the previous 900 * and current rates to the notifier callback. Intended to be called by 901 * internal clock code only. Returns NOTIFY_DONE from the last driver 902 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 903 * a driver returns that. 904 */ 905 static int __clk_notify(struct clk_core *core, unsigned long msg, 906 unsigned long old_rate, unsigned long new_rate) 907 { 908 struct clk_notifier *cn; 909 struct clk_notifier_data cnd; 910 int ret = NOTIFY_DONE; 911 912 cnd.old_rate = old_rate; 913 cnd.new_rate = new_rate; 914 915 list_for_each_entry(cn, &clk_notifier_list, node) { 916 if (cn->clk->core == core) { 917 cnd.clk = cn->clk; 918 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 919 &cnd); 920 } 921 } 922 923 return ret; 924 } 925 926 /** 927 * __clk_recalc_accuracies 928 * @core: first clk in the subtree 929 * 930 * Walks the subtree of clks starting with clk and recalculates accuracies as 931 * it goes. Note that if a clk does not implement the .recalc_accuracy 932 * callback then it is assumed that the clock will take on the accuracy of its 933 * parent. 934 */ 935 static void __clk_recalc_accuracies(struct clk_core *core) 936 { 937 unsigned long parent_accuracy = 0; 938 struct clk_core *child; 939 940 lockdep_assert_held(&prepare_lock); 941 942 if (core->parent) 943 parent_accuracy = core->parent->accuracy; 944 945 if (core->ops->recalc_accuracy) 946 core->accuracy = core->ops->recalc_accuracy(core->hw, 947 parent_accuracy); 948 else 949 core->accuracy = parent_accuracy; 950 951 hlist_for_each_entry(child, &core->children, child_node) 952 __clk_recalc_accuracies(child); 953 } 954 955 static long clk_core_get_accuracy(struct clk_core *core) 956 { 957 unsigned long accuracy; 958 959 clk_prepare_lock(); 960 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 961 __clk_recalc_accuracies(core); 962 963 accuracy = __clk_get_accuracy(core); 964 clk_prepare_unlock(); 965 966 return accuracy; 967 } 968 969 /** 970 * clk_get_accuracy - return the accuracy of clk 971 * @clk: the clk whose accuracy is being returned 972 * 973 * Simply returns the cached accuracy of the clk, unless 974 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 975 * issued. 976 * If clk is NULL then returns 0. 977 */ 978 long clk_get_accuracy(struct clk *clk) 979 { 980 if (!clk) 981 return 0; 982 983 return clk_core_get_accuracy(clk->core); 984 } 985 EXPORT_SYMBOL_GPL(clk_get_accuracy); 986 987 static unsigned long clk_recalc(struct clk_core *core, 988 unsigned long parent_rate) 989 { 990 if (core->ops->recalc_rate) 991 return core->ops->recalc_rate(core->hw, parent_rate); 992 return parent_rate; 993 } 994 995 /** 996 * __clk_recalc_rates 997 * @core: first clk in the subtree 998 * @msg: notification type (see include/linux/clk.h) 999 * 1000 * Walks the subtree of clks starting with clk and recalculates rates as it 1001 * goes. Note that if a clk does not implement the .recalc_rate callback then 1002 * it is assumed that the clock will take on the rate of its parent. 1003 * 1004 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1005 * if necessary. 1006 */ 1007 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1008 { 1009 unsigned long old_rate; 1010 unsigned long parent_rate = 0; 1011 struct clk_core *child; 1012 1013 lockdep_assert_held(&prepare_lock); 1014 1015 old_rate = core->rate; 1016 1017 if (core->parent) 1018 parent_rate = core->parent->rate; 1019 1020 core->rate = clk_recalc(core, parent_rate); 1021 1022 /* 1023 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1024 * & ABORT_RATE_CHANGE notifiers 1025 */ 1026 if (core->notifier_count && msg) 1027 __clk_notify(core, msg, old_rate, core->rate); 1028 1029 hlist_for_each_entry(child, &core->children, child_node) 1030 __clk_recalc_rates(child, msg); 1031 } 1032 1033 static unsigned long clk_core_get_rate(struct clk_core *core) 1034 { 1035 unsigned long rate; 1036 1037 clk_prepare_lock(); 1038 1039 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1040 __clk_recalc_rates(core, 0); 1041 1042 rate = clk_core_get_rate_nolock(core); 1043 clk_prepare_unlock(); 1044 1045 return rate; 1046 } 1047 1048 /** 1049 * clk_get_rate - return the rate of clk 1050 * @clk: the clk whose rate is being returned 1051 * 1052 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1053 * is set, which means a recalc_rate will be issued. 1054 * If clk is NULL then returns 0. 1055 */ 1056 unsigned long clk_get_rate(struct clk *clk) 1057 { 1058 if (!clk) 1059 return 0; 1060 1061 return clk_core_get_rate(clk->core); 1062 } 1063 EXPORT_SYMBOL_GPL(clk_get_rate); 1064 1065 static int clk_fetch_parent_index(struct clk_core *core, 1066 struct clk_core *parent) 1067 { 1068 int i; 1069 1070 if (!core->parents) { 1071 core->parents = kcalloc(core->num_parents, 1072 sizeof(struct clk *), GFP_KERNEL); 1073 if (!core->parents) 1074 return -ENOMEM; 1075 } 1076 1077 /* 1078 * find index of new parent clock using cached parent ptrs, 1079 * or if not yet cached, use string name comparison and cache 1080 * them now to avoid future calls to clk_core_lookup. 1081 */ 1082 for (i = 0; i < core->num_parents; i++) { 1083 if (core->parents[i] == parent) 1084 return i; 1085 1086 if (core->parents[i]) 1087 continue; 1088 1089 if (!strcmp(core->parent_names[i], parent->name)) { 1090 core->parents[i] = clk_core_lookup(parent->name); 1091 return i; 1092 } 1093 } 1094 1095 return -EINVAL; 1096 } 1097 1098 /* 1099 * Update the orphan status of @core and all its children. 1100 */ 1101 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1102 { 1103 struct clk_core *child; 1104 1105 core->orphan = is_orphan; 1106 1107 hlist_for_each_entry(child, &core->children, child_node) 1108 clk_core_update_orphan_status(child, is_orphan); 1109 } 1110 1111 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1112 { 1113 bool was_orphan = core->orphan; 1114 1115 hlist_del(&core->child_node); 1116 1117 if (new_parent) { 1118 bool becomes_orphan = new_parent->orphan; 1119 1120 /* avoid duplicate POST_RATE_CHANGE notifications */ 1121 if (new_parent->new_child == core) 1122 new_parent->new_child = NULL; 1123 1124 hlist_add_head(&core->child_node, &new_parent->children); 1125 1126 if (was_orphan != becomes_orphan) 1127 clk_core_update_orphan_status(core, becomes_orphan); 1128 } else { 1129 hlist_add_head(&core->child_node, &clk_orphan_list); 1130 if (!was_orphan) 1131 clk_core_update_orphan_status(core, true); 1132 } 1133 1134 core->parent = new_parent; 1135 } 1136 1137 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1138 struct clk_core *parent) 1139 { 1140 unsigned long flags; 1141 struct clk_core *old_parent = core->parent; 1142 1143 /* 1144 * Migrate prepare state between parents and prevent race with 1145 * clk_enable(). 1146 * 1147 * If the clock is not prepared, then a race with 1148 * clk_enable/disable() is impossible since we already have the 1149 * prepare lock (future calls to clk_enable() need to be preceded by 1150 * a clk_prepare()). 1151 * 1152 * If the clock is prepared, migrate the prepared state to the new 1153 * parent and also protect against a race with clk_enable() by 1154 * forcing the clock and the new parent on. This ensures that all 1155 * future calls to clk_enable() are practically NOPs with respect to 1156 * hardware and software states. 1157 * 1158 * See also: Comment for clk_set_parent() below. 1159 */ 1160 if (core->prepare_count) { 1161 clk_core_prepare(parent); 1162 flags = clk_enable_lock(); 1163 clk_core_enable(parent); 1164 clk_core_enable(core); 1165 clk_enable_unlock(flags); 1166 } 1167 1168 /* update the clk tree topology */ 1169 flags = clk_enable_lock(); 1170 clk_reparent(core, parent); 1171 clk_enable_unlock(flags); 1172 1173 return old_parent; 1174 } 1175 1176 static void __clk_set_parent_after(struct clk_core *core, 1177 struct clk_core *parent, 1178 struct clk_core *old_parent) 1179 { 1180 unsigned long flags; 1181 1182 /* 1183 * Finish the migration of prepare state and undo the changes done 1184 * for preventing a race with clk_enable(). 1185 */ 1186 if (core->prepare_count) { 1187 flags = clk_enable_lock(); 1188 clk_core_disable(core); 1189 clk_core_disable(old_parent); 1190 clk_enable_unlock(flags); 1191 clk_core_unprepare(old_parent); 1192 } 1193 } 1194 1195 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1196 u8 p_index) 1197 { 1198 unsigned long flags; 1199 int ret = 0; 1200 struct clk_core *old_parent; 1201 1202 old_parent = __clk_set_parent_before(core, parent); 1203 1204 trace_clk_set_parent(core, parent); 1205 1206 /* change clock input source */ 1207 if (parent && core->ops->set_parent) 1208 ret = core->ops->set_parent(core->hw, p_index); 1209 1210 trace_clk_set_parent_complete(core, parent); 1211 1212 if (ret) { 1213 flags = clk_enable_lock(); 1214 clk_reparent(core, old_parent); 1215 clk_enable_unlock(flags); 1216 __clk_set_parent_after(core, old_parent, parent); 1217 1218 return ret; 1219 } 1220 1221 __clk_set_parent_after(core, parent, old_parent); 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * __clk_speculate_rates 1228 * @core: first clk in the subtree 1229 * @parent_rate: the "future" rate of clk's parent 1230 * 1231 * Walks the subtree of clks starting with clk, speculating rates as it 1232 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1233 * 1234 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1235 * pre-rate change notifications and returns early if no clks in the 1236 * subtree have subscribed to the notifications. Note that if a clk does not 1237 * implement the .recalc_rate callback then it is assumed that the clock will 1238 * take on the rate of its parent. 1239 */ 1240 static int __clk_speculate_rates(struct clk_core *core, 1241 unsigned long parent_rate) 1242 { 1243 struct clk_core *child; 1244 unsigned long new_rate; 1245 int ret = NOTIFY_DONE; 1246 1247 lockdep_assert_held(&prepare_lock); 1248 1249 new_rate = clk_recalc(core, parent_rate); 1250 1251 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1252 if (core->notifier_count) 1253 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1254 1255 if (ret & NOTIFY_STOP_MASK) { 1256 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1257 __func__, core->name, ret); 1258 goto out; 1259 } 1260 1261 hlist_for_each_entry(child, &core->children, child_node) { 1262 ret = __clk_speculate_rates(child, new_rate); 1263 if (ret & NOTIFY_STOP_MASK) 1264 break; 1265 } 1266 1267 out: 1268 return ret; 1269 } 1270 1271 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1272 struct clk_core *new_parent, u8 p_index) 1273 { 1274 struct clk_core *child; 1275 1276 core->new_rate = new_rate; 1277 core->new_parent = new_parent; 1278 core->new_parent_index = p_index; 1279 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1280 core->new_child = NULL; 1281 if (new_parent && new_parent != core->parent) 1282 new_parent->new_child = core; 1283 1284 hlist_for_each_entry(child, &core->children, child_node) { 1285 child->new_rate = clk_recalc(child, new_rate); 1286 clk_calc_subtree(child, child->new_rate, NULL, 0); 1287 } 1288 } 1289 1290 /* 1291 * calculate the new rates returning the topmost clock that has to be 1292 * changed. 1293 */ 1294 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1295 unsigned long rate) 1296 { 1297 struct clk_core *top = core; 1298 struct clk_core *old_parent, *parent; 1299 unsigned long best_parent_rate = 0; 1300 unsigned long new_rate; 1301 unsigned long min_rate; 1302 unsigned long max_rate; 1303 int p_index = 0; 1304 long ret; 1305 1306 /* sanity */ 1307 if (IS_ERR_OR_NULL(core)) 1308 return NULL; 1309 1310 /* save parent rate, if it exists */ 1311 parent = old_parent = core->parent; 1312 if (parent) 1313 best_parent_rate = parent->rate; 1314 1315 clk_core_get_boundaries(core, &min_rate, &max_rate); 1316 1317 /* find the closest rate and parent clk/rate */ 1318 if (core->ops->determine_rate) { 1319 struct clk_rate_request req; 1320 1321 req.rate = rate; 1322 req.min_rate = min_rate; 1323 req.max_rate = max_rate; 1324 if (parent) { 1325 req.best_parent_hw = parent->hw; 1326 req.best_parent_rate = parent->rate; 1327 } else { 1328 req.best_parent_hw = NULL; 1329 req.best_parent_rate = 0; 1330 } 1331 1332 ret = core->ops->determine_rate(core->hw, &req); 1333 if (ret < 0) 1334 return NULL; 1335 1336 best_parent_rate = req.best_parent_rate; 1337 new_rate = req.rate; 1338 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1339 } else if (core->ops->round_rate) { 1340 ret = core->ops->round_rate(core->hw, rate, 1341 &best_parent_rate); 1342 if (ret < 0) 1343 return NULL; 1344 1345 new_rate = ret; 1346 if (new_rate < min_rate || new_rate > max_rate) 1347 return NULL; 1348 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1349 /* pass-through clock without adjustable parent */ 1350 core->new_rate = core->rate; 1351 return NULL; 1352 } else { 1353 /* pass-through clock with adjustable parent */ 1354 top = clk_calc_new_rates(parent, rate); 1355 new_rate = parent->new_rate; 1356 goto out; 1357 } 1358 1359 /* some clocks must be gated to change parent */ 1360 if (parent != old_parent && 1361 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1362 pr_debug("%s: %s not gated but wants to reparent\n", 1363 __func__, core->name); 1364 return NULL; 1365 } 1366 1367 /* try finding the new parent index */ 1368 if (parent && core->num_parents > 1) { 1369 p_index = clk_fetch_parent_index(core, parent); 1370 if (p_index < 0) { 1371 pr_debug("%s: clk %s can not be parent of clk %s\n", 1372 __func__, parent->name, core->name); 1373 return NULL; 1374 } 1375 } 1376 1377 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1378 best_parent_rate != parent->rate) 1379 top = clk_calc_new_rates(parent, best_parent_rate); 1380 1381 out: 1382 clk_calc_subtree(core, new_rate, parent, p_index); 1383 1384 return top; 1385 } 1386 1387 /* 1388 * Notify about rate changes in a subtree. Always walk down the whole tree 1389 * so that in case of an error we can walk down the whole tree again and 1390 * abort the change. 1391 */ 1392 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1393 unsigned long event) 1394 { 1395 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1396 int ret = NOTIFY_DONE; 1397 1398 if (core->rate == core->new_rate) 1399 return NULL; 1400 1401 if (core->notifier_count) { 1402 ret = __clk_notify(core, event, core->rate, core->new_rate); 1403 if (ret & NOTIFY_STOP_MASK) 1404 fail_clk = core; 1405 } 1406 1407 hlist_for_each_entry(child, &core->children, child_node) { 1408 /* Skip children who will be reparented to another clock */ 1409 if (child->new_parent && child->new_parent != core) 1410 continue; 1411 tmp_clk = clk_propagate_rate_change(child, event); 1412 if (tmp_clk) 1413 fail_clk = tmp_clk; 1414 } 1415 1416 /* handle the new child who might not be in core->children yet */ 1417 if (core->new_child) { 1418 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1419 if (tmp_clk) 1420 fail_clk = tmp_clk; 1421 } 1422 1423 return fail_clk; 1424 } 1425 1426 /* 1427 * walk down a subtree and set the new rates notifying the rate 1428 * change on the way 1429 */ 1430 static void clk_change_rate(struct clk_core *core) 1431 { 1432 struct clk_core *child; 1433 struct hlist_node *tmp; 1434 unsigned long old_rate; 1435 unsigned long best_parent_rate = 0; 1436 bool skip_set_rate = false; 1437 struct clk_core *old_parent; 1438 1439 old_rate = core->rate; 1440 1441 if (core->new_parent) 1442 best_parent_rate = core->new_parent->rate; 1443 else if (core->parent) 1444 best_parent_rate = core->parent->rate; 1445 1446 if (core->new_parent && core->new_parent != core->parent) { 1447 old_parent = __clk_set_parent_before(core, core->new_parent); 1448 trace_clk_set_parent(core, core->new_parent); 1449 1450 if (core->ops->set_rate_and_parent) { 1451 skip_set_rate = true; 1452 core->ops->set_rate_and_parent(core->hw, core->new_rate, 1453 best_parent_rate, 1454 core->new_parent_index); 1455 } else if (core->ops->set_parent) { 1456 core->ops->set_parent(core->hw, core->new_parent_index); 1457 } 1458 1459 trace_clk_set_parent_complete(core, core->new_parent); 1460 __clk_set_parent_after(core, core->new_parent, old_parent); 1461 } 1462 1463 trace_clk_set_rate(core, core->new_rate); 1464 1465 if (!skip_set_rate && core->ops->set_rate) 1466 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 1467 1468 trace_clk_set_rate_complete(core, core->new_rate); 1469 1470 core->rate = clk_recalc(core, best_parent_rate); 1471 1472 if (core->notifier_count && old_rate != core->rate) 1473 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 1474 1475 if (core->flags & CLK_RECALC_NEW_RATES) 1476 (void)clk_calc_new_rates(core, core->new_rate); 1477 1478 /* 1479 * Use safe iteration, as change_rate can actually swap parents 1480 * for certain clock types. 1481 */ 1482 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 1483 /* Skip children who will be reparented to another clock */ 1484 if (child->new_parent && child->new_parent != core) 1485 continue; 1486 clk_change_rate(child); 1487 } 1488 1489 /* handle the new child who might not be in core->children yet */ 1490 if (core->new_child) 1491 clk_change_rate(core->new_child); 1492 } 1493 1494 static int clk_core_set_rate_nolock(struct clk_core *core, 1495 unsigned long req_rate) 1496 { 1497 struct clk_core *top, *fail_clk; 1498 unsigned long rate = req_rate; 1499 int ret = 0; 1500 1501 if (!core) 1502 return 0; 1503 1504 /* bail early if nothing to do */ 1505 if (rate == clk_core_get_rate_nolock(core)) 1506 return 0; 1507 1508 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count) 1509 return -EBUSY; 1510 1511 /* calculate new rates and get the topmost changed clock */ 1512 top = clk_calc_new_rates(core, rate); 1513 if (!top) 1514 return -EINVAL; 1515 1516 /* notify that we are about to change rates */ 1517 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1518 if (fail_clk) { 1519 pr_debug("%s: failed to set %s rate\n", __func__, 1520 fail_clk->name); 1521 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1522 return -EBUSY; 1523 } 1524 1525 /* change the rates */ 1526 clk_change_rate(top); 1527 1528 core->req_rate = req_rate; 1529 1530 return ret; 1531 } 1532 1533 /** 1534 * clk_set_rate - specify a new rate for clk 1535 * @clk: the clk whose rate is being changed 1536 * @rate: the new rate for clk 1537 * 1538 * In the simplest case clk_set_rate will only adjust the rate of clk. 1539 * 1540 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1541 * propagate up to clk's parent; whether or not this happens depends on the 1542 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1543 * after calling .round_rate then upstream parent propagation is ignored. If 1544 * *parent_rate comes back with a new rate for clk's parent then we propagate 1545 * up to clk's parent and set its rate. Upward propagation will continue 1546 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1547 * .round_rate stops requesting changes to clk's parent_rate. 1548 * 1549 * Rate changes are accomplished via tree traversal that also recalculates the 1550 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1551 * 1552 * Returns 0 on success, -EERROR otherwise. 1553 */ 1554 int clk_set_rate(struct clk *clk, unsigned long rate) 1555 { 1556 int ret; 1557 1558 if (!clk) 1559 return 0; 1560 1561 /* prevent racing with updates to the clock topology */ 1562 clk_prepare_lock(); 1563 1564 ret = clk_core_set_rate_nolock(clk->core, rate); 1565 1566 clk_prepare_unlock(); 1567 1568 return ret; 1569 } 1570 EXPORT_SYMBOL_GPL(clk_set_rate); 1571 1572 /** 1573 * clk_set_rate_range - set a rate range for a clock source 1574 * @clk: clock source 1575 * @min: desired minimum clock rate in Hz, inclusive 1576 * @max: desired maximum clock rate in Hz, inclusive 1577 * 1578 * Returns success (0) or negative errno. 1579 */ 1580 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 1581 { 1582 int ret = 0; 1583 1584 if (!clk) 1585 return 0; 1586 1587 if (min > max) { 1588 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 1589 __func__, clk->core->name, clk->dev_id, clk->con_id, 1590 min, max); 1591 return -EINVAL; 1592 } 1593 1594 clk_prepare_lock(); 1595 1596 if (min != clk->min_rate || max != clk->max_rate) { 1597 clk->min_rate = min; 1598 clk->max_rate = max; 1599 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 1600 } 1601 1602 clk_prepare_unlock(); 1603 1604 return ret; 1605 } 1606 EXPORT_SYMBOL_GPL(clk_set_rate_range); 1607 1608 /** 1609 * clk_set_min_rate - set a minimum clock rate for a clock source 1610 * @clk: clock source 1611 * @rate: desired minimum clock rate in Hz, inclusive 1612 * 1613 * Returns success (0) or negative errno. 1614 */ 1615 int clk_set_min_rate(struct clk *clk, unsigned long rate) 1616 { 1617 if (!clk) 1618 return 0; 1619 1620 return clk_set_rate_range(clk, rate, clk->max_rate); 1621 } 1622 EXPORT_SYMBOL_GPL(clk_set_min_rate); 1623 1624 /** 1625 * clk_set_max_rate - set a maximum clock rate for a clock source 1626 * @clk: clock source 1627 * @rate: desired maximum clock rate in Hz, inclusive 1628 * 1629 * Returns success (0) or negative errno. 1630 */ 1631 int clk_set_max_rate(struct clk *clk, unsigned long rate) 1632 { 1633 if (!clk) 1634 return 0; 1635 1636 return clk_set_rate_range(clk, clk->min_rate, rate); 1637 } 1638 EXPORT_SYMBOL_GPL(clk_set_max_rate); 1639 1640 /** 1641 * clk_get_parent - return the parent of a clk 1642 * @clk: the clk whose parent gets returned 1643 * 1644 * Simply returns clk->parent. Returns NULL if clk is NULL. 1645 */ 1646 struct clk *clk_get_parent(struct clk *clk) 1647 { 1648 struct clk *parent; 1649 1650 if (!clk) 1651 return NULL; 1652 1653 clk_prepare_lock(); 1654 /* TODO: Create a per-user clk and change callers to call clk_put */ 1655 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 1656 clk_prepare_unlock(); 1657 1658 return parent; 1659 } 1660 EXPORT_SYMBOL_GPL(clk_get_parent); 1661 1662 /* 1663 * .get_parent is mandatory for clocks with multiple possible parents. It is 1664 * optional for single-parent clocks. Always call .get_parent if it is 1665 * available and WARN if it is missing for multi-parent clocks. 1666 * 1667 * For single-parent clocks without .get_parent, first check to see if the 1668 * .parents array exists, and if so use it to avoid an expensive tree 1669 * traversal. If .parents does not exist then walk the tree. 1670 */ 1671 static struct clk_core *__clk_init_parent(struct clk_core *core) 1672 { 1673 struct clk_core *ret = NULL; 1674 u8 index; 1675 1676 /* handle the trivial cases */ 1677 1678 if (!core->num_parents) 1679 goto out; 1680 1681 if (core->num_parents == 1) { 1682 if (IS_ERR_OR_NULL(core->parent)) 1683 core->parent = clk_core_lookup(core->parent_names[0]); 1684 ret = core->parent; 1685 goto out; 1686 } 1687 1688 if (!core->ops->get_parent) { 1689 WARN(!core->ops->get_parent, 1690 "%s: multi-parent clocks must implement .get_parent\n", 1691 __func__); 1692 goto out; 1693 } 1694 1695 /* 1696 * Do our best to cache parent clocks in core->parents. This prevents 1697 * unnecessary and expensive lookups. We don't set core->parent here; 1698 * that is done by the calling function. 1699 */ 1700 1701 index = core->ops->get_parent(core->hw); 1702 1703 if (!core->parents) 1704 core->parents = 1705 kcalloc(core->num_parents, sizeof(struct clk *), 1706 GFP_KERNEL); 1707 1708 ret = clk_core_get_parent_by_index(core, index); 1709 1710 out: 1711 return ret; 1712 } 1713 1714 static void clk_core_reparent(struct clk_core *core, 1715 struct clk_core *new_parent) 1716 { 1717 clk_reparent(core, new_parent); 1718 __clk_recalc_accuracies(core); 1719 __clk_recalc_rates(core, POST_RATE_CHANGE); 1720 } 1721 1722 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 1723 { 1724 if (!hw) 1725 return; 1726 1727 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 1728 } 1729 1730 /** 1731 * clk_has_parent - check if a clock is a possible parent for another 1732 * @clk: clock source 1733 * @parent: parent clock source 1734 * 1735 * This function can be used in drivers that need to check that a clock can be 1736 * the parent of another without actually changing the parent. 1737 * 1738 * Returns true if @parent is a possible parent for @clk, false otherwise. 1739 */ 1740 bool clk_has_parent(struct clk *clk, struct clk *parent) 1741 { 1742 struct clk_core *core, *parent_core; 1743 unsigned int i; 1744 1745 /* NULL clocks should be nops, so return success if either is NULL. */ 1746 if (!clk || !parent) 1747 return true; 1748 1749 core = clk->core; 1750 parent_core = parent->core; 1751 1752 /* Optimize for the case where the parent is already the parent. */ 1753 if (core->parent == parent_core) 1754 return true; 1755 1756 for (i = 0; i < core->num_parents; i++) 1757 if (strcmp(core->parent_names[i], parent_core->name) == 0) 1758 return true; 1759 1760 return false; 1761 } 1762 EXPORT_SYMBOL_GPL(clk_has_parent); 1763 1764 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent) 1765 { 1766 int ret = 0; 1767 int p_index = 0; 1768 unsigned long p_rate = 0; 1769 1770 if (!core) 1771 return 0; 1772 1773 /* prevent racing with updates to the clock topology */ 1774 clk_prepare_lock(); 1775 1776 if (core->parent == parent) 1777 goto out; 1778 1779 /* verify ops for for multi-parent clks */ 1780 if ((core->num_parents > 1) && (!core->ops->set_parent)) { 1781 ret = -ENOSYS; 1782 goto out; 1783 } 1784 1785 /* check that we are allowed to re-parent if the clock is in use */ 1786 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1787 ret = -EBUSY; 1788 goto out; 1789 } 1790 1791 /* try finding the new parent index */ 1792 if (parent) { 1793 p_index = clk_fetch_parent_index(core, parent); 1794 p_rate = parent->rate; 1795 if (p_index < 0) { 1796 pr_debug("%s: clk %s can not be parent of clk %s\n", 1797 __func__, parent->name, core->name); 1798 ret = p_index; 1799 goto out; 1800 } 1801 } 1802 1803 /* propagate PRE_RATE_CHANGE notifications */ 1804 ret = __clk_speculate_rates(core, p_rate); 1805 1806 /* abort if a driver objects */ 1807 if (ret & NOTIFY_STOP_MASK) 1808 goto out; 1809 1810 /* do the re-parent */ 1811 ret = __clk_set_parent(core, parent, p_index); 1812 1813 /* propagate rate an accuracy recalculation accordingly */ 1814 if (ret) { 1815 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 1816 } else { 1817 __clk_recalc_rates(core, POST_RATE_CHANGE); 1818 __clk_recalc_accuracies(core); 1819 } 1820 1821 out: 1822 clk_prepare_unlock(); 1823 1824 return ret; 1825 } 1826 1827 /** 1828 * clk_set_parent - switch the parent of a mux clk 1829 * @clk: the mux clk whose input we are switching 1830 * @parent: the new input to clk 1831 * 1832 * Re-parent clk to use parent as its new input source. If clk is in 1833 * prepared state, the clk will get enabled for the duration of this call. If 1834 * that's not acceptable for a specific clk (Eg: the consumer can't handle 1835 * that, the reparenting is glitchy in hardware, etc), use the 1836 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 1837 * 1838 * After successfully changing clk's parent clk_set_parent will update the 1839 * clk topology, sysfs topology and propagate rate recalculation via 1840 * __clk_recalc_rates. 1841 * 1842 * Returns 0 on success, -EERROR otherwise. 1843 */ 1844 int clk_set_parent(struct clk *clk, struct clk *parent) 1845 { 1846 if (!clk) 1847 return 0; 1848 1849 return clk_core_set_parent(clk->core, parent ? parent->core : NULL); 1850 } 1851 EXPORT_SYMBOL_GPL(clk_set_parent); 1852 1853 /** 1854 * clk_set_phase - adjust the phase shift of a clock signal 1855 * @clk: clock signal source 1856 * @degrees: number of degrees the signal is shifted 1857 * 1858 * Shifts the phase of a clock signal by the specified 1859 * degrees. Returns 0 on success, -EERROR otherwise. 1860 * 1861 * This function makes no distinction about the input or reference 1862 * signal that we adjust the clock signal phase against. For example 1863 * phase locked-loop clock signal generators we may shift phase with 1864 * respect to feedback clock signal input, but for other cases the 1865 * clock phase may be shifted with respect to some other, unspecified 1866 * signal. 1867 * 1868 * Additionally the concept of phase shift does not propagate through 1869 * the clock tree hierarchy, which sets it apart from clock rates and 1870 * clock accuracy. A parent clock phase attribute does not have an 1871 * impact on the phase attribute of a child clock. 1872 */ 1873 int clk_set_phase(struct clk *clk, int degrees) 1874 { 1875 int ret = -EINVAL; 1876 1877 if (!clk) 1878 return 0; 1879 1880 /* sanity check degrees */ 1881 degrees %= 360; 1882 if (degrees < 0) 1883 degrees += 360; 1884 1885 clk_prepare_lock(); 1886 1887 trace_clk_set_phase(clk->core, degrees); 1888 1889 if (clk->core->ops->set_phase) 1890 ret = clk->core->ops->set_phase(clk->core->hw, degrees); 1891 1892 trace_clk_set_phase_complete(clk->core, degrees); 1893 1894 if (!ret) 1895 clk->core->phase = degrees; 1896 1897 clk_prepare_unlock(); 1898 1899 return ret; 1900 } 1901 EXPORT_SYMBOL_GPL(clk_set_phase); 1902 1903 static int clk_core_get_phase(struct clk_core *core) 1904 { 1905 int ret; 1906 1907 clk_prepare_lock(); 1908 ret = core->phase; 1909 clk_prepare_unlock(); 1910 1911 return ret; 1912 } 1913 1914 /** 1915 * clk_get_phase - return the phase shift of a clock signal 1916 * @clk: clock signal source 1917 * 1918 * Returns the phase shift of a clock node in degrees, otherwise returns 1919 * -EERROR. 1920 */ 1921 int clk_get_phase(struct clk *clk) 1922 { 1923 if (!clk) 1924 return 0; 1925 1926 return clk_core_get_phase(clk->core); 1927 } 1928 EXPORT_SYMBOL_GPL(clk_get_phase); 1929 1930 /** 1931 * clk_is_match - check if two clk's point to the same hardware clock 1932 * @p: clk compared against q 1933 * @q: clk compared against p 1934 * 1935 * Returns true if the two struct clk pointers both point to the same hardware 1936 * clock node. Put differently, returns true if struct clk *p and struct clk *q 1937 * share the same struct clk_core object. 1938 * 1939 * Returns false otherwise. Note that two NULL clks are treated as matching. 1940 */ 1941 bool clk_is_match(const struct clk *p, const struct clk *q) 1942 { 1943 /* trivial case: identical struct clk's or both NULL */ 1944 if (p == q) 1945 return true; 1946 1947 /* true if clk->core pointers match. Avoid derefing garbage */ 1948 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 1949 if (p->core == q->core) 1950 return true; 1951 1952 return false; 1953 } 1954 EXPORT_SYMBOL_GPL(clk_is_match); 1955 1956 /*** debugfs support ***/ 1957 1958 #ifdef CONFIG_DEBUG_FS 1959 #include <linux/debugfs.h> 1960 1961 static struct dentry *rootdir; 1962 static int inited = 0; 1963 static DEFINE_MUTEX(clk_debug_lock); 1964 static HLIST_HEAD(clk_debug_list); 1965 1966 static struct hlist_head *all_lists[] = { 1967 &clk_root_list, 1968 &clk_orphan_list, 1969 NULL, 1970 }; 1971 1972 static struct hlist_head *orphan_list[] = { 1973 &clk_orphan_list, 1974 NULL, 1975 }; 1976 1977 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 1978 int level) 1979 { 1980 if (!c) 1981 return; 1982 1983 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n", 1984 level * 3 + 1, "", 1985 30 - level * 3, c->name, 1986 c->enable_count, c->prepare_count, clk_core_get_rate(c), 1987 clk_core_get_accuracy(c), clk_core_get_phase(c)); 1988 } 1989 1990 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 1991 int level) 1992 { 1993 struct clk_core *child; 1994 1995 if (!c) 1996 return; 1997 1998 clk_summary_show_one(s, c, level); 1999 2000 hlist_for_each_entry(child, &c->children, child_node) 2001 clk_summary_show_subtree(s, child, level + 1); 2002 } 2003 2004 static int clk_summary_show(struct seq_file *s, void *data) 2005 { 2006 struct clk_core *c; 2007 struct hlist_head **lists = (struct hlist_head **)s->private; 2008 2009 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n"); 2010 seq_puts(s, "----------------------------------------------------------------------------------------\n"); 2011 2012 clk_prepare_lock(); 2013 2014 for (; *lists; lists++) 2015 hlist_for_each_entry(c, *lists, child_node) 2016 clk_summary_show_subtree(s, c, 0); 2017 2018 clk_prepare_unlock(); 2019 2020 return 0; 2021 } 2022 2023 2024 static int clk_summary_open(struct inode *inode, struct file *file) 2025 { 2026 return single_open(file, clk_summary_show, inode->i_private); 2027 } 2028 2029 static const struct file_operations clk_summary_fops = { 2030 .open = clk_summary_open, 2031 .read = seq_read, 2032 .llseek = seq_lseek, 2033 .release = single_release, 2034 }; 2035 2036 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2037 { 2038 if (!c) 2039 return; 2040 2041 /* This should be JSON format, i.e. elements separated with a comma */ 2042 seq_printf(s, "\"%s\": { ", c->name); 2043 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2044 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2045 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2046 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2047 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c)); 2048 } 2049 2050 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2051 { 2052 struct clk_core *child; 2053 2054 if (!c) 2055 return; 2056 2057 clk_dump_one(s, c, level); 2058 2059 hlist_for_each_entry(child, &c->children, child_node) { 2060 seq_printf(s, ","); 2061 clk_dump_subtree(s, child, level + 1); 2062 } 2063 2064 seq_printf(s, "}"); 2065 } 2066 2067 static int clk_dump(struct seq_file *s, void *data) 2068 { 2069 struct clk_core *c; 2070 bool first_node = true; 2071 struct hlist_head **lists = (struct hlist_head **)s->private; 2072 2073 seq_printf(s, "{"); 2074 2075 clk_prepare_lock(); 2076 2077 for (; *lists; lists++) { 2078 hlist_for_each_entry(c, *lists, child_node) { 2079 if (!first_node) 2080 seq_puts(s, ","); 2081 first_node = false; 2082 clk_dump_subtree(s, c, 0); 2083 } 2084 } 2085 2086 clk_prepare_unlock(); 2087 2088 seq_puts(s, "}\n"); 2089 return 0; 2090 } 2091 2092 2093 static int clk_dump_open(struct inode *inode, struct file *file) 2094 { 2095 return single_open(file, clk_dump, inode->i_private); 2096 } 2097 2098 static const struct file_operations clk_dump_fops = { 2099 .open = clk_dump_open, 2100 .read = seq_read, 2101 .llseek = seq_lseek, 2102 .release = single_release, 2103 }; 2104 2105 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 2106 { 2107 struct dentry *d; 2108 int ret = -ENOMEM; 2109 2110 if (!core || !pdentry) { 2111 ret = -EINVAL; 2112 goto out; 2113 } 2114 2115 d = debugfs_create_dir(core->name, pdentry); 2116 if (!d) 2117 goto out; 2118 2119 core->dentry = d; 2120 2121 d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry, 2122 (u32 *)&core->rate); 2123 if (!d) 2124 goto err_out; 2125 2126 d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry, 2127 (u32 *)&core->accuracy); 2128 if (!d) 2129 goto err_out; 2130 2131 d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry, 2132 (u32 *)&core->phase); 2133 if (!d) 2134 goto err_out; 2135 2136 d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry, 2137 (u32 *)&core->flags); 2138 if (!d) 2139 goto err_out; 2140 2141 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry, 2142 (u32 *)&core->prepare_count); 2143 if (!d) 2144 goto err_out; 2145 2146 d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry, 2147 (u32 *)&core->enable_count); 2148 if (!d) 2149 goto err_out; 2150 2151 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry, 2152 (u32 *)&core->notifier_count); 2153 if (!d) 2154 goto err_out; 2155 2156 if (core->ops->debug_init) { 2157 ret = core->ops->debug_init(core->hw, core->dentry); 2158 if (ret) 2159 goto err_out; 2160 } 2161 2162 ret = 0; 2163 goto out; 2164 2165 err_out: 2166 debugfs_remove_recursive(core->dentry); 2167 core->dentry = NULL; 2168 out: 2169 return ret; 2170 } 2171 2172 /** 2173 * clk_debug_register - add a clk node to the debugfs clk directory 2174 * @core: the clk being added to the debugfs clk directory 2175 * 2176 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 2177 * initialized. Otherwise it bails out early since the debugfs clk directory 2178 * will be created lazily by clk_debug_init as part of a late_initcall. 2179 */ 2180 static int clk_debug_register(struct clk_core *core) 2181 { 2182 int ret = 0; 2183 2184 mutex_lock(&clk_debug_lock); 2185 hlist_add_head(&core->debug_node, &clk_debug_list); 2186 2187 if (!inited) 2188 goto unlock; 2189 2190 ret = clk_debug_create_one(core, rootdir); 2191 unlock: 2192 mutex_unlock(&clk_debug_lock); 2193 2194 return ret; 2195 } 2196 2197 /** 2198 * clk_debug_unregister - remove a clk node from the debugfs clk directory 2199 * @core: the clk being removed from the debugfs clk directory 2200 * 2201 * Dynamically removes a clk and all its child nodes from the 2202 * debugfs clk directory if clk->dentry points to debugfs created by 2203 * clk_debug_register in __clk_init. 2204 */ 2205 static void clk_debug_unregister(struct clk_core *core) 2206 { 2207 mutex_lock(&clk_debug_lock); 2208 hlist_del_init(&core->debug_node); 2209 debugfs_remove_recursive(core->dentry); 2210 core->dentry = NULL; 2211 mutex_unlock(&clk_debug_lock); 2212 } 2213 2214 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode, 2215 void *data, const struct file_operations *fops) 2216 { 2217 struct dentry *d = NULL; 2218 2219 if (hw->core->dentry) 2220 d = debugfs_create_file(name, mode, hw->core->dentry, data, 2221 fops); 2222 2223 return d; 2224 } 2225 EXPORT_SYMBOL_GPL(clk_debugfs_add_file); 2226 2227 /** 2228 * clk_debug_init - lazily populate the debugfs clk directory 2229 * 2230 * clks are often initialized very early during boot before memory can be 2231 * dynamically allocated and well before debugfs is setup. This function 2232 * populates the debugfs clk directory once at boot-time when we know that 2233 * debugfs is setup. It should only be called once at boot-time, all other clks 2234 * added dynamically will be done so with clk_debug_register. 2235 */ 2236 static int __init clk_debug_init(void) 2237 { 2238 struct clk_core *core; 2239 struct dentry *d; 2240 2241 rootdir = debugfs_create_dir("clk", NULL); 2242 2243 if (!rootdir) 2244 return -ENOMEM; 2245 2246 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists, 2247 &clk_summary_fops); 2248 if (!d) 2249 return -ENOMEM; 2250 2251 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists, 2252 &clk_dump_fops); 2253 if (!d) 2254 return -ENOMEM; 2255 2256 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir, 2257 &orphan_list, &clk_summary_fops); 2258 if (!d) 2259 return -ENOMEM; 2260 2261 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir, 2262 &orphan_list, &clk_dump_fops); 2263 if (!d) 2264 return -ENOMEM; 2265 2266 mutex_lock(&clk_debug_lock); 2267 hlist_for_each_entry(core, &clk_debug_list, debug_node) 2268 clk_debug_create_one(core, rootdir); 2269 2270 inited = 1; 2271 mutex_unlock(&clk_debug_lock); 2272 2273 return 0; 2274 } 2275 late_initcall(clk_debug_init); 2276 #else 2277 static inline int clk_debug_register(struct clk_core *core) { return 0; } 2278 static inline void clk_debug_reparent(struct clk_core *core, 2279 struct clk_core *new_parent) 2280 { 2281 } 2282 static inline void clk_debug_unregister(struct clk_core *core) 2283 { 2284 } 2285 #endif 2286 2287 /** 2288 * __clk_init - initialize the data structures in a struct clk 2289 * @dev: device initializing this clk, placeholder for now 2290 * @clk: clk being initialized 2291 * 2292 * Initializes the lists in struct clk_core, queries the hardware for the 2293 * parent and rate and sets them both. 2294 */ 2295 static int __clk_init(struct device *dev, struct clk *clk_user) 2296 { 2297 int i, ret = 0; 2298 struct clk_core *orphan; 2299 struct hlist_node *tmp2; 2300 struct clk_core *core; 2301 unsigned long rate; 2302 2303 if (!clk_user) 2304 return -EINVAL; 2305 2306 core = clk_user->core; 2307 2308 clk_prepare_lock(); 2309 2310 /* check to see if a clock with this name is already registered */ 2311 if (clk_core_lookup(core->name)) { 2312 pr_debug("%s: clk %s already initialized\n", 2313 __func__, core->name); 2314 ret = -EEXIST; 2315 goto out; 2316 } 2317 2318 /* check that clk_ops are sane. See Documentation/clk.txt */ 2319 if (core->ops->set_rate && 2320 !((core->ops->round_rate || core->ops->determine_rate) && 2321 core->ops->recalc_rate)) { 2322 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 2323 __func__, core->name); 2324 ret = -EINVAL; 2325 goto out; 2326 } 2327 2328 if (core->ops->set_parent && !core->ops->get_parent) { 2329 pr_warning("%s: %s must implement .get_parent & .set_parent\n", 2330 __func__, core->name); 2331 ret = -EINVAL; 2332 goto out; 2333 } 2334 2335 if (core->ops->set_rate_and_parent && 2336 !(core->ops->set_parent && core->ops->set_rate)) { 2337 pr_warn("%s: %s must implement .set_parent & .set_rate\n", 2338 __func__, core->name); 2339 ret = -EINVAL; 2340 goto out; 2341 } 2342 2343 /* throw a WARN if any entries in parent_names are NULL */ 2344 for (i = 0; i < core->num_parents; i++) 2345 WARN(!core->parent_names[i], 2346 "%s: invalid NULL in %s's .parent_names\n", 2347 __func__, core->name); 2348 2349 /* 2350 * Allocate an array of struct clk *'s to avoid unnecessary string 2351 * look-ups of clk's possible parents. This can fail for clocks passed 2352 * in to clk_init during early boot; thus any access to core->parents[] 2353 * must always check for a NULL pointer and try to populate it if 2354 * necessary. 2355 * 2356 * If core->parents is not NULL we skip this entire block. This allows 2357 * for clock drivers to statically initialize core->parents. 2358 */ 2359 if (core->num_parents > 1 && !core->parents) { 2360 core->parents = kcalloc(core->num_parents, sizeof(struct clk *), 2361 GFP_KERNEL); 2362 /* 2363 * clk_core_lookup returns NULL for parents that have not been 2364 * clk_init'd; thus any access to clk->parents[] must check 2365 * for a NULL pointer. We can always perform lazy lookups for 2366 * missing parents later on. 2367 */ 2368 if (core->parents) 2369 for (i = 0; i < core->num_parents; i++) 2370 core->parents[i] = 2371 clk_core_lookup(core->parent_names[i]); 2372 } 2373 2374 core->parent = __clk_init_parent(core); 2375 2376 /* 2377 * Populate core->parent if parent has already been __clk_init'd. If 2378 * parent has not yet been __clk_init'd then place clk in the orphan 2379 * list. If clk has set the CLK_IS_ROOT flag then place it in the root 2380 * clk list. 2381 * 2382 * Every time a new clk is clk_init'd then we walk the list of orphan 2383 * clocks and re-parent any that are children of the clock currently 2384 * being clk_init'd. 2385 */ 2386 if (core->parent) { 2387 hlist_add_head(&core->child_node, 2388 &core->parent->children); 2389 core->orphan = core->parent->orphan; 2390 } else if (core->flags & CLK_IS_ROOT) { 2391 hlist_add_head(&core->child_node, &clk_root_list); 2392 core->orphan = false; 2393 } else { 2394 hlist_add_head(&core->child_node, &clk_orphan_list); 2395 core->orphan = true; 2396 } 2397 2398 /* 2399 * Set clk's accuracy. The preferred method is to use 2400 * .recalc_accuracy. For simple clocks and lazy developers the default 2401 * fallback is to use the parent's accuracy. If a clock doesn't have a 2402 * parent (or is orphaned) then accuracy is set to zero (perfect 2403 * clock). 2404 */ 2405 if (core->ops->recalc_accuracy) 2406 core->accuracy = core->ops->recalc_accuracy(core->hw, 2407 __clk_get_accuracy(core->parent)); 2408 else if (core->parent) 2409 core->accuracy = core->parent->accuracy; 2410 else 2411 core->accuracy = 0; 2412 2413 /* 2414 * Set clk's phase. 2415 * Since a phase is by definition relative to its parent, just 2416 * query the current clock phase, or just assume it's in phase. 2417 */ 2418 if (core->ops->get_phase) 2419 core->phase = core->ops->get_phase(core->hw); 2420 else 2421 core->phase = 0; 2422 2423 /* 2424 * Set clk's rate. The preferred method is to use .recalc_rate. For 2425 * simple clocks and lazy developers the default fallback is to use the 2426 * parent's rate. If a clock doesn't have a parent (or is orphaned) 2427 * then rate is set to zero. 2428 */ 2429 if (core->ops->recalc_rate) 2430 rate = core->ops->recalc_rate(core->hw, 2431 clk_core_get_rate_nolock(core->parent)); 2432 else if (core->parent) 2433 rate = core->parent->rate; 2434 else 2435 rate = 0; 2436 core->rate = core->req_rate = rate; 2437 2438 /* 2439 * walk the list of orphan clocks and reparent any that are children of 2440 * this clock 2441 */ 2442 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 2443 if (orphan->num_parents && orphan->ops->get_parent) { 2444 i = orphan->ops->get_parent(orphan->hw); 2445 if (i >= 0 && i < orphan->num_parents && 2446 !strcmp(core->name, orphan->parent_names[i])) 2447 clk_core_reparent(orphan, core); 2448 continue; 2449 } 2450 2451 for (i = 0; i < orphan->num_parents; i++) 2452 if (!strcmp(core->name, orphan->parent_names[i])) { 2453 clk_core_reparent(orphan, core); 2454 break; 2455 } 2456 } 2457 2458 /* 2459 * optional platform-specific magic 2460 * 2461 * The .init callback is not used by any of the basic clock types, but 2462 * exists for weird hardware that must perform initialization magic. 2463 * Please consider other ways of solving initialization problems before 2464 * using this callback, as its use is discouraged. 2465 */ 2466 if (core->ops->init) 2467 core->ops->init(core->hw); 2468 2469 kref_init(&core->ref); 2470 out: 2471 clk_prepare_unlock(); 2472 2473 if (!ret) 2474 clk_debug_register(core); 2475 2476 return ret; 2477 } 2478 2479 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id, 2480 const char *con_id) 2481 { 2482 struct clk *clk; 2483 2484 /* This is to allow this function to be chained to others */ 2485 if (!hw || IS_ERR(hw)) 2486 return (struct clk *) hw; 2487 2488 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 2489 if (!clk) 2490 return ERR_PTR(-ENOMEM); 2491 2492 clk->core = hw->core; 2493 clk->dev_id = dev_id; 2494 clk->con_id = con_id; 2495 clk->max_rate = ULONG_MAX; 2496 2497 clk_prepare_lock(); 2498 hlist_add_head(&clk->clks_node, &hw->core->clks); 2499 clk_prepare_unlock(); 2500 2501 return clk; 2502 } 2503 2504 void __clk_free_clk(struct clk *clk) 2505 { 2506 clk_prepare_lock(); 2507 hlist_del(&clk->clks_node); 2508 clk_prepare_unlock(); 2509 2510 kfree(clk); 2511 } 2512 2513 /** 2514 * clk_register - allocate a new clock, register it and return an opaque cookie 2515 * @dev: device that is registering this clock 2516 * @hw: link to hardware-specific clock data 2517 * 2518 * clk_register is the primary interface for populating the clock tree with new 2519 * clock nodes. It returns a pointer to the newly allocated struct clk which 2520 * cannot be dereferenced by driver code but may be used in conjunction with the 2521 * rest of the clock API. In the event of an error clk_register will return an 2522 * error code; drivers must test for an error code after calling clk_register. 2523 */ 2524 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 2525 { 2526 int i, ret; 2527 struct clk_core *core; 2528 2529 core = kzalloc(sizeof(*core), GFP_KERNEL); 2530 if (!core) { 2531 ret = -ENOMEM; 2532 goto fail_out; 2533 } 2534 2535 core->name = kstrdup_const(hw->init->name, GFP_KERNEL); 2536 if (!core->name) { 2537 ret = -ENOMEM; 2538 goto fail_name; 2539 } 2540 core->ops = hw->init->ops; 2541 if (dev && dev->driver) 2542 core->owner = dev->driver->owner; 2543 core->hw = hw; 2544 core->flags = hw->init->flags; 2545 core->num_parents = hw->init->num_parents; 2546 core->min_rate = 0; 2547 core->max_rate = ULONG_MAX; 2548 hw->core = core; 2549 2550 /* allocate local copy in case parent_names is __initdata */ 2551 core->parent_names = kcalloc(core->num_parents, sizeof(char *), 2552 GFP_KERNEL); 2553 2554 if (!core->parent_names) { 2555 ret = -ENOMEM; 2556 goto fail_parent_names; 2557 } 2558 2559 2560 /* copy each string name in case parent_names is __initdata */ 2561 for (i = 0; i < core->num_parents; i++) { 2562 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i], 2563 GFP_KERNEL); 2564 if (!core->parent_names[i]) { 2565 ret = -ENOMEM; 2566 goto fail_parent_names_copy; 2567 } 2568 } 2569 2570 INIT_HLIST_HEAD(&core->clks); 2571 2572 hw->clk = __clk_create_clk(hw, NULL, NULL); 2573 if (IS_ERR(hw->clk)) { 2574 ret = PTR_ERR(hw->clk); 2575 goto fail_parent_names_copy; 2576 } 2577 2578 ret = __clk_init(dev, hw->clk); 2579 if (!ret) 2580 return hw->clk; 2581 2582 __clk_free_clk(hw->clk); 2583 hw->clk = NULL; 2584 2585 fail_parent_names_copy: 2586 while (--i >= 0) 2587 kfree_const(core->parent_names[i]); 2588 kfree(core->parent_names); 2589 fail_parent_names: 2590 kfree_const(core->name); 2591 fail_name: 2592 kfree(core); 2593 fail_out: 2594 return ERR_PTR(ret); 2595 } 2596 EXPORT_SYMBOL_GPL(clk_register); 2597 2598 /* Free memory allocated for a clock. */ 2599 static void __clk_release(struct kref *ref) 2600 { 2601 struct clk_core *core = container_of(ref, struct clk_core, ref); 2602 int i = core->num_parents; 2603 2604 lockdep_assert_held(&prepare_lock); 2605 2606 kfree(core->parents); 2607 while (--i >= 0) 2608 kfree_const(core->parent_names[i]); 2609 2610 kfree(core->parent_names); 2611 kfree_const(core->name); 2612 kfree(core); 2613 } 2614 2615 /* 2616 * Empty clk_ops for unregistered clocks. These are used temporarily 2617 * after clk_unregister() was called on a clock and until last clock 2618 * consumer calls clk_put() and the struct clk object is freed. 2619 */ 2620 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 2621 { 2622 return -ENXIO; 2623 } 2624 2625 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 2626 { 2627 WARN_ON_ONCE(1); 2628 } 2629 2630 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 2631 unsigned long parent_rate) 2632 { 2633 return -ENXIO; 2634 } 2635 2636 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 2637 { 2638 return -ENXIO; 2639 } 2640 2641 static const struct clk_ops clk_nodrv_ops = { 2642 .enable = clk_nodrv_prepare_enable, 2643 .disable = clk_nodrv_disable_unprepare, 2644 .prepare = clk_nodrv_prepare_enable, 2645 .unprepare = clk_nodrv_disable_unprepare, 2646 .set_rate = clk_nodrv_set_rate, 2647 .set_parent = clk_nodrv_set_parent, 2648 }; 2649 2650 /** 2651 * clk_unregister - unregister a currently registered clock 2652 * @clk: clock to unregister 2653 */ 2654 void clk_unregister(struct clk *clk) 2655 { 2656 unsigned long flags; 2657 2658 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2659 return; 2660 2661 clk_debug_unregister(clk->core); 2662 2663 clk_prepare_lock(); 2664 2665 if (clk->core->ops == &clk_nodrv_ops) { 2666 pr_err("%s: unregistered clock: %s\n", __func__, 2667 clk->core->name); 2668 return; 2669 } 2670 /* 2671 * Assign empty clock ops for consumers that might still hold 2672 * a reference to this clock. 2673 */ 2674 flags = clk_enable_lock(); 2675 clk->core->ops = &clk_nodrv_ops; 2676 clk_enable_unlock(flags); 2677 2678 if (!hlist_empty(&clk->core->children)) { 2679 struct clk_core *child; 2680 struct hlist_node *t; 2681 2682 /* Reparent all children to the orphan list. */ 2683 hlist_for_each_entry_safe(child, t, &clk->core->children, 2684 child_node) 2685 clk_core_set_parent(child, NULL); 2686 } 2687 2688 hlist_del_init(&clk->core->child_node); 2689 2690 if (clk->core->prepare_count) 2691 pr_warn("%s: unregistering prepared clock: %s\n", 2692 __func__, clk->core->name); 2693 kref_put(&clk->core->ref, __clk_release); 2694 2695 clk_prepare_unlock(); 2696 } 2697 EXPORT_SYMBOL_GPL(clk_unregister); 2698 2699 static void devm_clk_release(struct device *dev, void *res) 2700 { 2701 clk_unregister(*(struct clk **)res); 2702 } 2703 2704 /** 2705 * devm_clk_register - resource managed clk_register() 2706 * @dev: device that is registering this clock 2707 * @hw: link to hardware-specific clock data 2708 * 2709 * Managed clk_register(). Clocks returned from this function are 2710 * automatically clk_unregister()ed on driver detach. See clk_register() for 2711 * more information. 2712 */ 2713 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 2714 { 2715 struct clk *clk; 2716 struct clk **clkp; 2717 2718 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 2719 if (!clkp) 2720 return ERR_PTR(-ENOMEM); 2721 2722 clk = clk_register(dev, hw); 2723 if (!IS_ERR(clk)) { 2724 *clkp = clk; 2725 devres_add(dev, clkp); 2726 } else { 2727 devres_free(clkp); 2728 } 2729 2730 return clk; 2731 } 2732 EXPORT_SYMBOL_GPL(devm_clk_register); 2733 2734 static int devm_clk_match(struct device *dev, void *res, void *data) 2735 { 2736 struct clk *c = res; 2737 if (WARN_ON(!c)) 2738 return 0; 2739 return c == data; 2740 } 2741 2742 /** 2743 * devm_clk_unregister - resource managed clk_unregister() 2744 * @clk: clock to unregister 2745 * 2746 * Deallocate a clock allocated with devm_clk_register(). Normally 2747 * this function will not need to be called and the resource management 2748 * code will ensure that the resource is freed. 2749 */ 2750 void devm_clk_unregister(struct device *dev, struct clk *clk) 2751 { 2752 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 2753 } 2754 EXPORT_SYMBOL_GPL(devm_clk_unregister); 2755 2756 /* 2757 * clkdev helpers 2758 */ 2759 int __clk_get(struct clk *clk) 2760 { 2761 struct clk_core *core = !clk ? NULL : clk->core; 2762 2763 if (core) { 2764 if (!try_module_get(core->owner)) 2765 return 0; 2766 2767 kref_get(&core->ref); 2768 } 2769 return 1; 2770 } 2771 2772 void __clk_put(struct clk *clk) 2773 { 2774 struct module *owner; 2775 2776 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2777 return; 2778 2779 clk_prepare_lock(); 2780 2781 hlist_del(&clk->clks_node); 2782 if (clk->min_rate > clk->core->req_rate || 2783 clk->max_rate < clk->core->req_rate) 2784 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 2785 2786 owner = clk->core->owner; 2787 kref_put(&clk->core->ref, __clk_release); 2788 2789 clk_prepare_unlock(); 2790 2791 module_put(owner); 2792 2793 kfree(clk); 2794 } 2795 2796 /*** clk rate change notifiers ***/ 2797 2798 /** 2799 * clk_notifier_register - add a clk rate change notifier 2800 * @clk: struct clk * to watch 2801 * @nb: struct notifier_block * with callback info 2802 * 2803 * Request notification when clk's rate changes. This uses an SRCU 2804 * notifier because we want it to block and notifier unregistrations are 2805 * uncommon. The callbacks associated with the notifier must not 2806 * re-enter into the clk framework by calling any top-level clk APIs; 2807 * this will cause a nested prepare_lock mutex. 2808 * 2809 * In all notification cases cases (pre, post and abort rate change) the 2810 * original clock rate is passed to the callback via struct 2811 * clk_notifier_data.old_rate and the new frequency is passed via struct 2812 * clk_notifier_data.new_rate. 2813 * 2814 * clk_notifier_register() must be called from non-atomic context. 2815 * Returns -EINVAL if called with null arguments, -ENOMEM upon 2816 * allocation failure; otherwise, passes along the return value of 2817 * srcu_notifier_chain_register(). 2818 */ 2819 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 2820 { 2821 struct clk_notifier *cn; 2822 int ret = -ENOMEM; 2823 2824 if (!clk || !nb) 2825 return -EINVAL; 2826 2827 clk_prepare_lock(); 2828 2829 /* search the list of notifiers for this clk */ 2830 list_for_each_entry(cn, &clk_notifier_list, node) 2831 if (cn->clk == clk) 2832 break; 2833 2834 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 2835 if (cn->clk != clk) { 2836 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL); 2837 if (!cn) 2838 goto out; 2839 2840 cn->clk = clk; 2841 srcu_init_notifier_head(&cn->notifier_head); 2842 2843 list_add(&cn->node, &clk_notifier_list); 2844 } 2845 2846 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 2847 2848 clk->core->notifier_count++; 2849 2850 out: 2851 clk_prepare_unlock(); 2852 2853 return ret; 2854 } 2855 EXPORT_SYMBOL_GPL(clk_notifier_register); 2856 2857 /** 2858 * clk_notifier_unregister - remove a clk rate change notifier 2859 * @clk: struct clk * 2860 * @nb: struct notifier_block * with callback info 2861 * 2862 * Request no further notification for changes to 'clk' and frees memory 2863 * allocated in clk_notifier_register. 2864 * 2865 * Returns -EINVAL if called with null arguments; otherwise, passes 2866 * along the return value of srcu_notifier_chain_unregister(). 2867 */ 2868 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 2869 { 2870 struct clk_notifier *cn = NULL; 2871 int ret = -EINVAL; 2872 2873 if (!clk || !nb) 2874 return -EINVAL; 2875 2876 clk_prepare_lock(); 2877 2878 list_for_each_entry(cn, &clk_notifier_list, node) 2879 if (cn->clk == clk) 2880 break; 2881 2882 if (cn->clk == clk) { 2883 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 2884 2885 clk->core->notifier_count--; 2886 2887 /* XXX the notifier code should handle this better */ 2888 if (!cn->notifier_head.head) { 2889 srcu_cleanup_notifier_head(&cn->notifier_head); 2890 list_del(&cn->node); 2891 kfree(cn); 2892 } 2893 2894 } else { 2895 ret = -ENOENT; 2896 } 2897 2898 clk_prepare_unlock(); 2899 2900 return ret; 2901 } 2902 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 2903 2904 #ifdef CONFIG_OF 2905 /** 2906 * struct of_clk_provider - Clock provider registration structure 2907 * @link: Entry in global list of clock providers 2908 * @node: Pointer to device tree node of clock provider 2909 * @get: Get clock callback. Returns NULL or a struct clk for the 2910 * given clock specifier 2911 * @data: context pointer to be passed into @get callback 2912 */ 2913 struct of_clk_provider { 2914 struct list_head link; 2915 2916 struct device_node *node; 2917 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 2918 void *data; 2919 }; 2920 2921 static const struct of_device_id __clk_of_table_sentinel 2922 __used __section(__clk_of_table_end); 2923 2924 static LIST_HEAD(of_clk_providers); 2925 static DEFINE_MUTEX(of_clk_mutex); 2926 2927 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 2928 void *data) 2929 { 2930 return data; 2931 } 2932 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 2933 2934 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 2935 { 2936 struct clk_onecell_data *clk_data = data; 2937 unsigned int idx = clkspec->args[0]; 2938 2939 if (idx >= clk_data->clk_num) { 2940 pr_err("%s: invalid clock index %u\n", __func__, idx); 2941 return ERR_PTR(-EINVAL); 2942 } 2943 2944 return clk_data->clks[idx]; 2945 } 2946 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 2947 2948 /** 2949 * of_clk_add_provider() - Register a clock provider for a node 2950 * @np: Device node pointer associated with clock provider 2951 * @clk_src_get: callback for decoding clock 2952 * @data: context pointer for @clk_src_get callback. 2953 */ 2954 int of_clk_add_provider(struct device_node *np, 2955 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 2956 void *data), 2957 void *data) 2958 { 2959 struct of_clk_provider *cp; 2960 int ret; 2961 2962 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL); 2963 if (!cp) 2964 return -ENOMEM; 2965 2966 cp->node = of_node_get(np); 2967 cp->data = data; 2968 cp->get = clk_src_get; 2969 2970 mutex_lock(&of_clk_mutex); 2971 list_add(&cp->link, &of_clk_providers); 2972 mutex_unlock(&of_clk_mutex); 2973 pr_debug("Added clock from %s\n", np->full_name); 2974 2975 ret = of_clk_set_defaults(np, true); 2976 if (ret < 0) 2977 of_clk_del_provider(np); 2978 2979 return ret; 2980 } 2981 EXPORT_SYMBOL_GPL(of_clk_add_provider); 2982 2983 /** 2984 * of_clk_del_provider() - Remove a previously registered clock provider 2985 * @np: Device node pointer associated with clock provider 2986 */ 2987 void of_clk_del_provider(struct device_node *np) 2988 { 2989 struct of_clk_provider *cp; 2990 2991 mutex_lock(&of_clk_mutex); 2992 list_for_each_entry(cp, &of_clk_providers, link) { 2993 if (cp->node == np) { 2994 list_del(&cp->link); 2995 of_node_put(cp->node); 2996 kfree(cp); 2997 break; 2998 } 2999 } 3000 mutex_unlock(&of_clk_mutex); 3001 } 3002 EXPORT_SYMBOL_GPL(of_clk_del_provider); 3003 3004 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec, 3005 const char *dev_id, const char *con_id) 3006 { 3007 struct of_clk_provider *provider; 3008 struct clk *clk = ERR_PTR(-EPROBE_DEFER); 3009 3010 if (!clkspec) 3011 return ERR_PTR(-EINVAL); 3012 3013 /* Check if we have such a provider in our array */ 3014 mutex_lock(&of_clk_mutex); 3015 list_for_each_entry(provider, &of_clk_providers, link) { 3016 if (provider->node == clkspec->np) 3017 clk = provider->get(clkspec, provider->data); 3018 if (!IS_ERR(clk)) { 3019 clk = __clk_create_clk(__clk_get_hw(clk), dev_id, 3020 con_id); 3021 3022 if (!IS_ERR(clk) && !__clk_get(clk)) { 3023 __clk_free_clk(clk); 3024 clk = ERR_PTR(-ENOENT); 3025 } 3026 3027 break; 3028 } 3029 } 3030 mutex_unlock(&of_clk_mutex); 3031 3032 return clk; 3033 } 3034 3035 /** 3036 * of_clk_get_from_provider() - Lookup a clock from a clock provider 3037 * @clkspec: pointer to a clock specifier data structure 3038 * 3039 * This function looks up a struct clk from the registered list of clock 3040 * providers, an input is a clock specifier data structure as returned 3041 * from the of_parse_phandle_with_args() function call. 3042 */ 3043 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 3044 { 3045 return __of_clk_get_from_provider(clkspec, NULL, __func__); 3046 } 3047 3048 int of_clk_get_parent_count(struct device_node *np) 3049 { 3050 return of_count_phandle_with_args(np, "clocks", "#clock-cells"); 3051 } 3052 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 3053 3054 const char *of_clk_get_parent_name(struct device_node *np, int index) 3055 { 3056 struct of_phandle_args clkspec; 3057 struct property *prop; 3058 const char *clk_name; 3059 const __be32 *vp; 3060 u32 pv; 3061 int rc; 3062 int count; 3063 struct clk *clk; 3064 3065 if (index < 0) 3066 return NULL; 3067 3068 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 3069 &clkspec); 3070 if (rc) 3071 return NULL; 3072 3073 index = clkspec.args_count ? clkspec.args[0] : 0; 3074 count = 0; 3075 3076 /* if there is an indices property, use it to transfer the index 3077 * specified into an array offset for the clock-output-names property. 3078 */ 3079 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 3080 if (index == pv) { 3081 index = count; 3082 break; 3083 } 3084 count++; 3085 } 3086 3087 if (of_property_read_string_index(clkspec.np, "clock-output-names", 3088 index, 3089 &clk_name) < 0) { 3090 /* 3091 * Best effort to get the name if the clock has been 3092 * registered with the framework. If the clock isn't 3093 * registered, we return the node name as the name of 3094 * the clock as long as #clock-cells = 0. 3095 */ 3096 clk = of_clk_get_from_provider(&clkspec); 3097 if (IS_ERR(clk)) { 3098 if (clkspec.args_count == 0) 3099 clk_name = clkspec.np->name; 3100 else 3101 clk_name = NULL; 3102 } else { 3103 clk_name = __clk_get_name(clk); 3104 clk_put(clk); 3105 } 3106 } 3107 3108 3109 of_node_put(clkspec.np); 3110 return clk_name; 3111 } 3112 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 3113 3114 /** 3115 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 3116 * number of parents 3117 * @np: Device node pointer associated with clock provider 3118 * @parents: pointer to char array that hold the parents' names 3119 * @size: size of the @parents array 3120 * 3121 * Return: number of parents for the clock node. 3122 */ 3123 int of_clk_parent_fill(struct device_node *np, const char **parents, 3124 unsigned int size) 3125 { 3126 unsigned int i = 0; 3127 3128 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 3129 i++; 3130 3131 return i; 3132 } 3133 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 3134 3135 struct clock_provider { 3136 of_clk_init_cb_t clk_init_cb; 3137 struct device_node *np; 3138 struct list_head node; 3139 }; 3140 3141 /* 3142 * This function looks for a parent clock. If there is one, then it 3143 * checks that the provider for this parent clock was initialized, in 3144 * this case the parent clock will be ready. 3145 */ 3146 static int parent_ready(struct device_node *np) 3147 { 3148 int i = 0; 3149 3150 while (true) { 3151 struct clk *clk = of_clk_get(np, i); 3152 3153 /* this parent is ready we can check the next one */ 3154 if (!IS_ERR(clk)) { 3155 clk_put(clk); 3156 i++; 3157 continue; 3158 } 3159 3160 /* at least one parent is not ready, we exit now */ 3161 if (PTR_ERR(clk) == -EPROBE_DEFER) 3162 return 0; 3163 3164 /* 3165 * Here we make assumption that the device tree is 3166 * written correctly. So an error means that there is 3167 * no more parent. As we didn't exit yet, then the 3168 * previous parent are ready. If there is no clock 3169 * parent, no need to wait for them, then we can 3170 * consider their absence as being ready 3171 */ 3172 return 1; 3173 } 3174 } 3175 3176 /** 3177 * of_clk_init() - Scan and init clock providers from the DT 3178 * @matches: array of compatible values and init functions for providers. 3179 * 3180 * This function scans the device tree for matching clock providers 3181 * and calls their initialization functions. It also does it by trying 3182 * to follow the dependencies. 3183 */ 3184 void __init of_clk_init(const struct of_device_id *matches) 3185 { 3186 const struct of_device_id *match; 3187 struct device_node *np; 3188 struct clock_provider *clk_provider, *next; 3189 bool is_init_done; 3190 bool force = false; 3191 LIST_HEAD(clk_provider_list); 3192 3193 if (!matches) 3194 matches = &__clk_of_table; 3195 3196 /* First prepare the list of the clocks providers */ 3197 for_each_matching_node_and_match(np, matches, &match) { 3198 struct clock_provider *parent; 3199 3200 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 3201 if (!parent) { 3202 list_for_each_entry_safe(clk_provider, next, 3203 &clk_provider_list, node) { 3204 list_del(&clk_provider->node); 3205 of_node_put(clk_provider->np); 3206 kfree(clk_provider); 3207 } 3208 of_node_put(np); 3209 return; 3210 } 3211 3212 parent->clk_init_cb = match->data; 3213 parent->np = of_node_get(np); 3214 list_add_tail(&parent->node, &clk_provider_list); 3215 } 3216 3217 while (!list_empty(&clk_provider_list)) { 3218 is_init_done = false; 3219 list_for_each_entry_safe(clk_provider, next, 3220 &clk_provider_list, node) { 3221 if (force || parent_ready(clk_provider->np)) { 3222 3223 clk_provider->clk_init_cb(clk_provider->np); 3224 of_clk_set_defaults(clk_provider->np, true); 3225 3226 list_del(&clk_provider->node); 3227 of_node_put(clk_provider->np); 3228 kfree(clk_provider); 3229 is_init_done = true; 3230 } 3231 } 3232 3233 /* 3234 * We didn't manage to initialize any of the 3235 * remaining providers during the last loop, so now we 3236 * initialize all the remaining ones unconditionally 3237 * in case the clock parent was not mandatory 3238 */ 3239 if (!is_init_done) 3240 force = true; 3241 } 3242 } 3243 #endif 3244