1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static const struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44 }; 45 46 /*** private data structures ***/ 47 48 struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54 }; 55 56 struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87 #ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90 #endif 91 struct kref ref; 92 }; 93 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/clk.h> 96 97 struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106 }; 107 108 /*** runtime pm ***/ 109 static int clk_pm_runtime_get(struct clk_core *core) 110 { 111 if (!core->rpm_enabled) 112 return 0; 113 114 return pm_runtime_resume_and_get(core->dev); 115 } 116 117 static void clk_pm_runtime_put(struct clk_core *core) 118 { 119 if (!core->rpm_enabled) 120 return; 121 122 pm_runtime_put_sync(core->dev); 123 } 124 125 /*** locking ***/ 126 static void clk_prepare_lock(void) 127 { 128 if (!mutex_trylock(&prepare_lock)) { 129 if (prepare_owner == current) { 130 prepare_refcnt++; 131 return; 132 } 133 mutex_lock(&prepare_lock); 134 } 135 WARN_ON_ONCE(prepare_owner != NULL); 136 WARN_ON_ONCE(prepare_refcnt != 0); 137 prepare_owner = current; 138 prepare_refcnt = 1; 139 } 140 141 static void clk_prepare_unlock(void) 142 { 143 WARN_ON_ONCE(prepare_owner != current); 144 WARN_ON_ONCE(prepare_refcnt == 0); 145 146 if (--prepare_refcnt) 147 return; 148 prepare_owner = NULL; 149 mutex_unlock(&prepare_lock); 150 } 151 152 static unsigned long clk_enable_lock(void) 153 __acquires(enable_lock) 154 { 155 unsigned long flags; 156 157 /* 158 * On UP systems, spin_trylock_irqsave() always returns true, even if 159 * we already hold the lock. So, in that case, we rely only on 160 * reference counting. 161 */ 162 if (!IS_ENABLED(CONFIG_SMP) || 163 !spin_trylock_irqsave(&enable_lock, flags)) { 164 if (enable_owner == current) { 165 enable_refcnt++; 166 __acquire(enable_lock); 167 if (!IS_ENABLED(CONFIG_SMP)) 168 local_save_flags(flags); 169 return flags; 170 } 171 spin_lock_irqsave(&enable_lock, flags); 172 } 173 WARN_ON_ONCE(enable_owner != NULL); 174 WARN_ON_ONCE(enable_refcnt != 0); 175 enable_owner = current; 176 enable_refcnt = 1; 177 return flags; 178 } 179 180 static void clk_enable_unlock(unsigned long flags) 181 __releases(enable_lock) 182 { 183 WARN_ON_ONCE(enable_owner != current); 184 WARN_ON_ONCE(enable_refcnt == 0); 185 186 if (--enable_refcnt) { 187 __release(enable_lock); 188 return; 189 } 190 enable_owner = NULL; 191 spin_unlock_irqrestore(&enable_lock, flags); 192 } 193 194 static bool clk_core_rate_is_protected(struct clk_core *core) 195 { 196 return core->protect_count; 197 } 198 199 static bool clk_core_is_prepared(struct clk_core *core) 200 { 201 bool ret = false; 202 203 /* 204 * .is_prepared is optional for clocks that can prepare 205 * fall back to software usage counter if it is missing 206 */ 207 if (!core->ops->is_prepared) 208 return core->prepare_count; 209 210 if (!clk_pm_runtime_get(core)) { 211 ret = core->ops->is_prepared(core->hw); 212 clk_pm_runtime_put(core); 213 } 214 215 return ret; 216 } 217 218 static bool clk_core_is_enabled(struct clk_core *core) 219 { 220 bool ret = false; 221 222 /* 223 * .is_enabled is only mandatory for clocks that gate 224 * fall back to software usage counter if .is_enabled is missing 225 */ 226 if (!core->ops->is_enabled) 227 return core->enable_count; 228 229 /* 230 * Check if clock controller's device is runtime active before 231 * calling .is_enabled callback. If not, assume that clock is 232 * disabled, because we might be called from atomic context, from 233 * which pm_runtime_get() is not allowed. 234 * This function is called mainly from clk_disable_unused_subtree, 235 * which ensures proper runtime pm activation of controller before 236 * taking enable spinlock, but the below check is needed if one tries 237 * to call it from other places. 238 */ 239 if (core->rpm_enabled) { 240 pm_runtime_get_noresume(core->dev); 241 if (!pm_runtime_active(core->dev)) { 242 ret = false; 243 goto done; 244 } 245 } 246 247 ret = core->ops->is_enabled(core->hw); 248 done: 249 if (core->rpm_enabled) 250 pm_runtime_put(core->dev); 251 252 return ret; 253 } 254 255 /*** helper functions ***/ 256 257 const char *__clk_get_name(const struct clk *clk) 258 { 259 return !clk ? NULL : clk->core->name; 260 } 261 EXPORT_SYMBOL_GPL(__clk_get_name); 262 263 const char *clk_hw_get_name(const struct clk_hw *hw) 264 { 265 return hw->core->name; 266 } 267 EXPORT_SYMBOL_GPL(clk_hw_get_name); 268 269 struct clk_hw *__clk_get_hw(struct clk *clk) 270 { 271 return !clk ? NULL : clk->core->hw; 272 } 273 EXPORT_SYMBOL_GPL(__clk_get_hw); 274 275 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 276 { 277 return hw->core->num_parents; 278 } 279 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 280 281 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 282 { 283 return hw->core->parent ? hw->core->parent->hw : NULL; 284 } 285 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 286 287 static struct clk_core *__clk_lookup_subtree(const char *name, 288 struct clk_core *core) 289 { 290 struct clk_core *child; 291 struct clk_core *ret; 292 293 if (!strcmp(core->name, name)) 294 return core; 295 296 hlist_for_each_entry(child, &core->children, child_node) { 297 ret = __clk_lookup_subtree(name, child); 298 if (ret) 299 return ret; 300 } 301 302 return NULL; 303 } 304 305 static struct clk_core *clk_core_lookup(const char *name) 306 { 307 struct clk_core *root_clk; 308 struct clk_core *ret; 309 310 if (!name) 311 return NULL; 312 313 /* search the 'proper' clk tree first */ 314 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 315 ret = __clk_lookup_subtree(name, root_clk); 316 if (ret) 317 return ret; 318 } 319 320 /* if not found, then search the orphan tree */ 321 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 322 ret = __clk_lookup_subtree(name, root_clk); 323 if (ret) 324 return ret; 325 } 326 327 return NULL; 328 } 329 330 #ifdef CONFIG_OF 331 static int of_parse_clkspec(const struct device_node *np, int index, 332 const char *name, struct of_phandle_args *out_args); 333 static struct clk_hw * 334 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 335 #else 336 static inline int of_parse_clkspec(const struct device_node *np, int index, 337 const char *name, 338 struct of_phandle_args *out_args) 339 { 340 return -ENOENT; 341 } 342 static inline struct clk_hw * 343 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 344 { 345 return ERR_PTR(-ENOENT); 346 } 347 #endif 348 349 /** 350 * clk_core_get - Find the clk_core parent of a clk 351 * @core: clk to find parent of 352 * @p_index: parent index to search for 353 * 354 * This is the preferred method for clk providers to find the parent of a 355 * clk when that parent is external to the clk controller. The parent_names 356 * array is indexed and treated as a local name matching a string in the device 357 * node's 'clock-names' property or as the 'con_id' matching the device's 358 * dev_name() in a clk_lookup. This allows clk providers to use their own 359 * namespace instead of looking for a globally unique parent string. 360 * 361 * For example the following DT snippet would allow a clock registered by the 362 * clock-controller@c001 that has a clk_init_data::parent_data array 363 * with 'xtal' in the 'name' member to find the clock provided by the 364 * clock-controller@f00abcd without needing to get the globally unique name of 365 * the xtal clk. 366 * 367 * parent: clock-controller@f00abcd { 368 * reg = <0xf00abcd 0xabcd>; 369 * #clock-cells = <0>; 370 * }; 371 * 372 * clock-controller@c001 { 373 * reg = <0xc001 0xf00d>; 374 * clocks = <&parent>; 375 * clock-names = "xtal"; 376 * #clock-cells = <1>; 377 * }; 378 * 379 * Returns: -ENOENT when the provider can't be found or the clk doesn't 380 * exist in the provider or the name can't be found in the DT node or 381 * in a clkdev lookup. NULL when the provider knows about the clk but it 382 * isn't provided on this system. 383 * A valid clk_core pointer when the clk can be found in the provider. 384 */ 385 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 386 { 387 const char *name = core->parents[p_index].fw_name; 388 int index = core->parents[p_index].index; 389 struct clk_hw *hw = ERR_PTR(-ENOENT); 390 struct device *dev = core->dev; 391 const char *dev_id = dev ? dev_name(dev) : NULL; 392 struct device_node *np = core->of_node; 393 struct of_phandle_args clkspec; 394 395 if (np && (name || index >= 0) && 396 !of_parse_clkspec(np, index, name, &clkspec)) { 397 hw = of_clk_get_hw_from_clkspec(&clkspec); 398 of_node_put(clkspec.np); 399 } else if (name) { 400 /* 401 * If the DT search above couldn't find the provider fallback to 402 * looking up via clkdev based clk_lookups. 403 */ 404 hw = clk_find_hw(dev_id, name); 405 } 406 407 if (IS_ERR(hw)) 408 return ERR_CAST(hw); 409 410 return hw->core; 411 } 412 413 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 414 { 415 struct clk_parent_map *entry = &core->parents[index]; 416 struct clk_core *parent; 417 418 if (entry->hw) { 419 parent = entry->hw->core; 420 } else { 421 parent = clk_core_get(core, index); 422 if (PTR_ERR(parent) == -ENOENT && entry->name) 423 parent = clk_core_lookup(entry->name); 424 } 425 426 /* 427 * We have a direct reference but it isn't registered yet? 428 * Orphan it and let clk_reparent() update the orphan status 429 * when the parent is registered. 430 */ 431 if (!parent) 432 parent = ERR_PTR(-EPROBE_DEFER); 433 434 /* Only cache it if it's not an error */ 435 if (!IS_ERR(parent)) 436 entry->core = parent; 437 } 438 439 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 440 u8 index) 441 { 442 if (!core || index >= core->num_parents || !core->parents) 443 return NULL; 444 445 if (!core->parents[index].core) 446 clk_core_fill_parent_index(core, index); 447 448 return core->parents[index].core; 449 } 450 451 struct clk_hw * 452 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 453 { 454 struct clk_core *parent; 455 456 parent = clk_core_get_parent_by_index(hw->core, index); 457 458 return !parent ? NULL : parent->hw; 459 } 460 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 461 462 unsigned int __clk_get_enable_count(struct clk *clk) 463 { 464 return !clk ? 0 : clk->core->enable_count; 465 } 466 467 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 468 { 469 if (!core) 470 return 0; 471 472 if (!core->num_parents || core->parent) 473 return core->rate; 474 475 /* 476 * Clk must have a parent because num_parents > 0 but the parent isn't 477 * known yet. Best to return 0 as the rate of this clk until we can 478 * properly recalc the rate based on the parent's rate. 479 */ 480 return 0; 481 } 482 483 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 484 { 485 return clk_core_get_rate_nolock(hw->core); 486 } 487 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 488 489 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 490 { 491 if (!core) 492 return 0; 493 494 return core->accuracy; 495 } 496 497 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 498 { 499 return hw->core->flags; 500 } 501 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 502 503 bool clk_hw_is_prepared(const struct clk_hw *hw) 504 { 505 return clk_core_is_prepared(hw->core); 506 } 507 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 508 509 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 510 { 511 return clk_core_rate_is_protected(hw->core); 512 } 513 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 514 515 bool clk_hw_is_enabled(const struct clk_hw *hw) 516 { 517 return clk_core_is_enabled(hw->core); 518 } 519 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 520 521 bool __clk_is_enabled(struct clk *clk) 522 { 523 if (!clk) 524 return false; 525 526 return clk_core_is_enabled(clk->core); 527 } 528 EXPORT_SYMBOL_GPL(__clk_is_enabled); 529 530 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 531 unsigned long best, unsigned long flags) 532 { 533 if (flags & CLK_MUX_ROUND_CLOSEST) 534 return abs(now - rate) < abs(best - rate); 535 536 return now <= rate && now > best; 537 } 538 539 int clk_mux_determine_rate_flags(struct clk_hw *hw, 540 struct clk_rate_request *req, 541 unsigned long flags) 542 { 543 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 544 int i, num_parents, ret; 545 unsigned long best = 0; 546 struct clk_rate_request parent_req = *req; 547 548 /* if NO_REPARENT flag set, pass through to current parent */ 549 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 550 parent = core->parent; 551 if (core->flags & CLK_SET_RATE_PARENT) { 552 ret = __clk_determine_rate(parent ? parent->hw : NULL, 553 &parent_req); 554 if (ret) 555 return ret; 556 557 best = parent_req.rate; 558 } else if (parent) { 559 best = clk_core_get_rate_nolock(parent); 560 } else { 561 best = clk_core_get_rate_nolock(core); 562 } 563 564 goto out; 565 } 566 567 /* find the parent that can provide the fastest rate <= rate */ 568 num_parents = core->num_parents; 569 for (i = 0; i < num_parents; i++) { 570 parent = clk_core_get_parent_by_index(core, i); 571 if (!parent) 572 continue; 573 574 if (core->flags & CLK_SET_RATE_PARENT) { 575 parent_req = *req; 576 ret = __clk_determine_rate(parent->hw, &parent_req); 577 if (ret) 578 continue; 579 } else { 580 parent_req.rate = clk_core_get_rate_nolock(parent); 581 } 582 583 if (mux_is_better_rate(req->rate, parent_req.rate, 584 best, flags)) { 585 best_parent = parent; 586 best = parent_req.rate; 587 } 588 } 589 590 if (!best_parent) 591 return -EINVAL; 592 593 out: 594 if (best_parent) 595 req->best_parent_hw = best_parent->hw; 596 req->best_parent_rate = best; 597 req->rate = best; 598 599 return 0; 600 } 601 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 602 603 struct clk *__clk_lookup(const char *name) 604 { 605 struct clk_core *core = clk_core_lookup(name); 606 607 return !core ? NULL : core->hw->clk; 608 } 609 610 static void clk_core_get_boundaries(struct clk_core *core, 611 unsigned long *min_rate, 612 unsigned long *max_rate) 613 { 614 struct clk *clk_user; 615 616 lockdep_assert_held(&prepare_lock); 617 618 *min_rate = core->min_rate; 619 *max_rate = core->max_rate; 620 621 hlist_for_each_entry(clk_user, &core->clks, clks_node) 622 *min_rate = max(*min_rate, clk_user->min_rate); 623 624 hlist_for_each_entry(clk_user, &core->clks, clks_node) 625 *max_rate = min(*max_rate, clk_user->max_rate); 626 } 627 628 static bool clk_core_check_boundaries(struct clk_core *core, 629 unsigned long min_rate, 630 unsigned long max_rate) 631 { 632 struct clk *user; 633 634 lockdep_assert_held(&prepare_lock); 635 636 if (min_rate > core->max_rate || max_rate < core->min_rate) 637 return false; 638 639 hlist_for_each_entry(user, &core->clks, clks_node) 640 if (min_rate > user->max_rate || max_rate < user->min_rate) 641 return false; 642 643 return true; 644 } 645 646 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 647 unsigned long max_rate) 648 { 649 hw->core->min_rate = min_rate; 650 hw->core->max_rate = max_rate; 651 } 652 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 653 654 /* 655 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 656 * @hw: mux type clk to determine rate on 657 * @req: rate request, also used to return preferred parent and frequencies 658 * 659 * Helper for finding best parent to provide a given frequency. This can be used 660 * directly as a determine_rate callback (e.g. for a mux), or from a more 661 * complex clock that may combine a mux with other operations. 662 * 663 * Returns: 0 on success, -EERROR value on error 664 */ 665 int __clk_mux_determine_rate(struct clk_hw *hw, 666 struct clk_rate_request *req) 667 { 668 return clk_mux_determine_rate_flags(hw, req, 0); 669 } 670 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 671 672 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 673 struct clk_rate_request *req) 674 { 675 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 676 } 677 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 678 679 /*** clk api ***/ 680 681 static void clk_core_rate_unprotect(struct clk_core *core) 682 { 683 lockdep_assert_held(&prepare_lock); 684 685 if (!core) 686 return; 687 688 if (WARN(core->protect_count == 0, 689 "%s already unprotected\n", core->name)) 690 return; 691 692 if (--core->protect_count > 0) 693 return; 694 695 clk_core_rate_unprotect(core->parent); 696 } 697 698 static int clk_core_rate_nuke_protect(struct clk_core *core) 699 { 700 int ret; 701 702 lockdep_assert_held(&prepare_lock); 703 704 if (!core) 705 return -EINVAL; 706 707 if (core->protect_count == 0) 708 return 0; 709 710 ret = core->protect_count; 711 core->protect_count = 1; 712 clk_core_rate_unprotect(core); 713 714 return ret; 715 } 716 717 /** 718 * clk_rate_exclusive_put - release exclusivity over clock rate control 719 * @clk: the clk over which the exclusivity is released 720 * 721 * clk_rate_exclusive_put() completes a critical section during which a clock 722 * consumer cannot tolerate any other consumer making any operation on the 723 * clock which could result in a rate change or rate glitch. Exclusive clocks 724 * cannot have their rate changed, either directly or indirectly due to changes 725 * further up the parent chain of clocks. As a result, clocks up parent chain 726 * also get under exclusive control of the calling consumer. 727 * 728 * If exlusivity is claimed more than once on clock, even by the same consumer, 729 * the rate effectively gets locked as exclusivity can't be preempted. 730 * 731 * Calls to clk_rate_exclusive_put() must be balanced with calls to 732 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 733 * error status. 734 */ 735 void clk_rate_exclusive_put(struct clk *clk) 736 { 737 if (!clk) 738 return; 739 740 clk_prepare_lock(); 741 742 /* 743 * if there is something wrong with this consumer protect count, stop 744 * here before messing with the provider 745 */ 746 if (WARN_ON(clk->exclusive_count <= 0)) 747 goto out; 748 749 clk_core_rate_unprotect(clk->core); 750 clk->exclusive_count--; 751 out: 752 clk_prepare_unlock(); 753 } 754 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 755 756 static void clk_core_rate_protect(struct clk_core *core) 757 { 758 lockdep_assert_held(&prepare_lock); 759 760 if (!core) 761 return; 762 763 if (core->protect_count == 0) 764 clk_core_rate_protect(core->parent); 765 766 core->protect_count++; 767 } 768 769 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 770 { 771 lockdep_assert_held(&prepare_lock); 772 773 if (!core) 774 return; 775 776 if (count == 0) 777 return; 778 779 clk_core_rate_protect(core); 780 core->protect_count = count; 781 } 782 783 /** 784 * clk_rate_exclusive_get - get exclusivity over the clk rate control 785 * @clk: the clk over which the exclusity of rate control is requested 786 * 787 * clk_rate_exclusive_get() begins a critical section during which a clock 788 * consumer cannot tolerate any other consumer making any operation on the 789 * clock which could result in a rate change or rate glitch. Exclusive clocks 790 * cannot have their rate changed, either directly or indirectly due to changes 791 * further up the parent chain of clocks. As a result, clocks up parent chain 792 * also get under exclusive control of the calling consumer. 793 * 794 * If exlusivity is claimed more than once on clock, even by the same consumer, 795 * the rate effectively gets locked as exclusivity can't be preempted. 796 * 797 * Calls to clk_rate_exclusive_get() should be balanced with calls to 798 * clk_rate_exclusive_put(). Calls to this function may sleep. 799 * Returns 0 on success, -EERROR otherwise 800 */ 801 int clk_rate_exclusive_get(struct clk *clk) 802 { 803 if (!clk) 804 return 0; 805 806 clk_prepare_lock(); 807 clk_core_rate_protect(clk->core); 808 clk->exclusive_count++; 809 clk_prepare_unlock(); 810 811 return 0; 812 } 813 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 814 815 static void clk_core_unprepare(struct clk_core *core) 816 { 817 lockdep_assert_held(&prepare_lock); 818 819 if (!core) 820 return; 821 822 if (WARN(core->prepare_count == 0, 823 "%s already unprepared\n", core->name)) 824 return; 825 826 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 827 "Unpreparing critical %s\n", core->name)) 828 return; 829 830 if (core->flags & CLK_SET_RATE_GATE) 831 clk_core_rate_unprotect(core); 832 833 if (--core->prepare_count > 0) 834 return; 835 836 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 837 838 trace_clk_unprepare(core); 839 840 if (core->ops->unprepare) 841 core->ops->unprepare(core->hw); 842 843 trace_clk_unprepare_complete(core); 844 clk_core_unprepare(core->parent); 845 clk_pm_runtime_put(core); 846 } 847 848 static void clk_core_unprepare_lock(struct clk_core *core) 849 { 850 clk_prepare_lock(); 851 clk_core_unprepare(core); 852 clk_prepare_unlock(); 853 } 854 855 /** 856 * clk_unprepare - undo preparation of a clock source 857 * @clk: the clk being unprepared 858 * 859 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 860 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 861 * if the operation may sleep. One example is a clk which is accessed over 862 * I2c. In the complex case a clk gate operation may require a fast and a slow 863 * part. It is this reason that clk_unprepare and clk_disable are not mutually 864 * exclusive. In fact clk_disable must be called before clk_unprepare. 865 */ 866 void clk_unprepare(struct clk *clk) 867 { 868 if (IS_ERR_OR_NULL(clk)) 869 return; 870 871 clk_core_unprepare_lock(clk->core); 872 } 873 EXPORT_SYMBOL_GPL(clk_unprepare); 874 875 static int clk_core_prepare(struct clk_core *core) 876 { 877 int ret = 0; 878 879 lockdep_assert_held(&prepare_lock); 880 881 if (!core) 882 return 0; 883 884 if (core->prepare_count == 0) { 885 ret = clk_pm_runtime_get(core); 886 if (ret) 887 return ret; 888 889 ret = clk_core_prepare(core->parent); 890 if (ret) 891 goto runtime_put; 892 893 trace_clk_prepare(core); 894 895 if (core->ops->prepare) 896 ret = core->ops->prepare(core->hw); 897 898 trace_clk_prepare_complete(core); 899 900 if (ret) 901 goto unprepare; 902 } 903 904 core->prepare_count++; 905 906 /* 907 * CLK_SET_RATE_GATE is a special case of clock protection 908 * Instead of a consumer claiming exclusive rate control, it is 909 * actually the provider which prevents any consumer from making any 910 * operation which could result in a rate change or rate glitch while 911 * the clock is prepared. 912 */ 913 if (core->flags & CLK_SET_RATE_GATE) 914 clk_core_rate_protect(core); 915 916 return 0; 917 unprepare: 918 clk_core_unprepare(core->parent); 919 runtime_put: 920 clk_pm_runtime_put(core); 921 return ret; 922 } 923 924 static int clk_core_prepare_lock(struct clk_core *core) 925 { 926 int ret; 927 928 clk_prepare_lock(); 929 ret = clk_core_prepare(core); 930 clk_prepare_unlock(); 931 932 return ret; 933 } 934 935 /** 936 * clk_prepare - prepare a clock source 937 * @clk: the clk being prepared 938 * 939 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 940 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 941 * operation may sleep. One example is a clk which is accessed over I2c. In 942 * the complex case a clk ungate operation may require a fast and a slow part. 943 * It is this reason that clk_prepare and clk_enable are not mutually 944 * exclusive. In fact clk_prepare must be called before clk_enable. 945 * Returns 0 on success, -EERROR otherwise. 946 */ 947 int clk_prepare(struct clk *clk) 948 { 949 if (!clk) 950 return 0; 951 952 return clk_core_prepare_lock(clk->core); 953 } 954 EXPORT_SYMBOL_GPL(clk_prepare); 955 956 static void clk_core_disable(struct clk_core *core) 957 { 958 lockdep_assert_held(&enable_lock); 959 960 if (!core) 961 return; 962 963 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 964 return; 965 966 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 967 "Disabling critical %s\n", core->name)) 968 return; 969 970 if (--core->enable_count > 0) 971 return; 972 973 trace_clk_disable_rcuidle(core); 974 975 if (core->ops->disable) 976 core->ops->disable(core->hw); 977 978 trace_clk_disable_complete_rcuidle(core); 979 980 clk_core_disable(core->parent); 981 } 982 983 static void clk_core_disable_lock(struct clk_core *core) 984 { 985 unsigned long flags; 986 987 flags = clk_enable_lock(); 988 clk_core_disable(core); 989 clk_enable_unlock(flags); 990 } 991 992 /** 993 * clk_disable - gate a clock 994 * @clk: the clk being gated 995 * 996 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 997 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 998 * clk if the operation is fast and will never sleep. One example is a 999 * SoC-internal clk which is controlled via simple register writes. In the 1000 * complex case a clk gate operation may require a fast and a slow part. It is 1001 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 1002 * In fact clk_disable must be called before clk_unprepare. 1003 */ 1004 void clk_disable(struct clk *clk) 1005 { 1006 if (IS_ERR_OR_NULL(clk)) 1007 return; 1008 1009 clk_core_disable_lock(clk->core); 1010 } 1011 EXPORT_SYMBOL_GPL(clk_disable); 1012 1013 static int clk_core_enable(struct clk_core *core) 1014 { 1015 int ret = 0; 1016 1017 lockdep_assert_held(&enable_lock); 1018 1019 if (!core) 1020 return 0; 1021 1022 if (WARN(core->prepare_count == 0, 1023 "Enabling unprepared %s\n", core->name)) 1024 return -ESHUTDOWN; 1025 1026 if (core->enable_count == 0) { 1027 ret = clk_core_enable(core->parent); 1028 1029 if (ret) 1030 return ret; 1031 1032 trace_clk_enable_rcuidle(core); 1033 1034 if (core->ops->enable) 1035 ret = core->ops->enable(core->hw); 1036 1037 trace_clk_enable_complete_rcuidle(core); 1038 1039 if (ret) { 1040 clk_core_disable(core->parent); 1041 return ret; 1042 } 1043 } 1044 1045 core->enable_count++; 1046 return 0; 1047 } 1048 1049 static int clk_core_enable_lock(struct clk_core *core) 1050 { 1051 unsigned long flags; 1052 int ret; 1053 1054 flags = clk_enable_lock(); 1055 ret = clk_core_enable(core); 1056 clk_enable_unlock(flags); 1057 1058 return ret; 1059 } 1060 1061 /** 1062 * clk_gate_restore_context - restore context for poweroff 1063 * @hw: the clk_hw pointer of clock whose state is to be restored 1064 * 1065 * The clock gate restore context function enables or disables 1066 * the gate clocks based on the enable_count. This is done in cases 1067 * where the clock context is lost and based on the enable_count 1068 * the clock either needs to be enabled/disabled. This 1069 * helps restore the state of gate clocks. 1070 */ 1071 void clk_gate_restore_context(struct clk_hw *hw) 1072 { 1073 struct clk_core *core = hw->core; 1074 1075 if (core->enable_count) 1076 core->ops->enable(hw); 1077 else 1078 core->ops->disable(hw); 1079 } 1080 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1081 1082 static int clk_core_save_context(struct clk_core *core) 1083 { 1084 struct clk_core *child; 1085 int ret = 0; 1086 1087 hlist_for_each_entry(child, &core->children, child_node) { 1088 ret = clk_core_save_context(child); 1089 if (ret < 0) 1090 return ret; 1091 } 1092 1093 if (core->ops && core->ops->save_context) 1094 ret = core->ops->save_context(core->hw); 1095 1096 return ret; 1097 } 1098 1099 static void clk_core_restore_context(struct clk_core *core) 1100 { 1101 struct clk_core *child; 1102 1103 if (core->ops && core->ops->restore_context) 1104 core->ops->restore_context(core->hw); 1105 1106 hlist_for_each_entry(child, &core->children, child_node) 1107 clk_core_restore_context(child); 1108 } 1109 1110 /** 1111 * clk_save_context - save clock context for poweroff 1112 * 1113 * Saves the context of the clock register for powerstates in which the 1114 * contents of the registers will be lost. Occurs deep within the suspend 1115 * code. Returns 0 on success. 1116 */ 1117 int clk_save_context(void) 1118 { 1119 struct clk_core *clk; 1120 int ret; 1121 1122 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1123 ret = clk_core_save_context(clk); 1124 if (ret < 0) 1125 return ret; 1126 } 1127 1128 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1129 ret = clk_core_save_context(clk); 1130 if (ret < 0) 1131 return ret; 1132 } 1133 1134 return 0; 1135 } 1136 EXPORT_SYMBOL_GPL(clk_save_context); 1137 1138 /** 1139 * clk_restore_context - restore clock context after poweroff 1140 * 1141 * Restore the saved clock context upon resume. 1142 * 1143 */ 1144 void clk_restore_context(void) 1145 { 1146 struct clk_core *core; 1147 1148 hlist_for_each_entry(core, &clk_root_list, child_node) 1149 clk_core_restore_context(core); 1150 1151 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1152 clk_core_restore_context(core); 1153 } 1154 EXPORT_SYMBOL_GPL(clk_restore_context); 1155 1156 /** 1157 * clk_enable - ungate a clock 1158 * @clk: the clk being ungated 1159 * 1160 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1161 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1162 * if the operation will never sleep. One example is a SoC-internal clk which 1163 * is controlled via simple register writes. In the complex case a clk ungate 1164 * operation may require a fast and a slow part. It is this reason that 1165 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1166 * must be called before clk_enable. Returns 0 on success, -EERROR 1167 * otherwise. 1168 */ 1169 int clk_enable(struct clk *clk) 1170 { 1171 if (!clk) 1172 return 0; 1173 1174 return clk_core_enable_lock(clk->core); 1175 } 1176 EXPORT_SYMBOL_GPL(clk_enable); 1177 1178 /** 1179 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it. 1180 * @clk: clock source 1181 * 1182 * Returns true if clk_prepare() implicitly enables the clock, effectively 1183 * making clk_enable()/clk_disable() no-ops, false otherwise. 1184 * 1185 * This is of interest mainly to power management code where actually 1186 * disabling the clock also requires unpreparing it to have any material 1187 * effect. 1188 * 1189 * Regardless of the value returned here, the caller must always invoke 1190 * clk_enable() or clk_prepare_enable() and counterparts for usage counts 1191 * to be right. 1192 */ 1193 bool clk_is_enabled_when_prepared(struct clk *clk) 1194 { 1195 return clk && !(clk->core->ops->enable && clk->core->ops->disable); 1196 } 1197 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared); 1198 1199 static int clk_core_prepare_enable(struct clk_core *core) 1200 { 1201 int ret; 1202 1203 ret = clk_core_prepare_lock(core); 1204 if (ret) 1205 return ret; 1206 1207 ret = clk_core_enable_lock(core); 1208 if (ret) 1209 clk_core_unprepare_lock(core); 1210 1211 return ret; 1212 } 1213 1214 static void clk_core_disable_unprepare(struct clk_core *core) 1215 { 1216 clk_core_disable_lock(core); 1217 clk_core_unprepare_lock(core); 1218 } 1219 1220 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1221 { 1222 struct clk_core *child; 1223 1224 lockdep_assert_held(&prepare_lock); 1225 1226 hlist_for_each_entry(child, &core->children, child_node) 1227 clk_unprepare_unused_subtree(child); 1228 1229 if (core->prepare_count) 1230 return; 1231 1232 if (core->flags & CLK_IGNORE_UNUSED) 1233 return; 1234 1235 if (clk_pm_runtime_get(core)) 1236 return; 1237 1238 if (clk_core_is_prepared(core)) { 1239 trace_clk_unprepare(core); 1240 if (core->ops->unprepare_unused) 1241 core->ops->unprepare_unused(core->hw); 1242 else if (core->ops->unprepare) 1243 core->ops->unprepare(core->hw); 1244 trace_clk_unprepare_complete(core); 1245 } 1246 1247 clk_pm_runtime_put(core); 1248 } 1249 1250 static void __init clk_disable_unused_subtree(struct clk_core *core) 1251 { 1252 struct clk_core *child; 1253 unsigned long flags; 1254 1255 lockdep_assert_held(&prepare_lock); 1256 1257 hlist_for_each_entry(child, &core->children, child_node) 1258 clk_disable_unused_subtree(child); 1259 1260 if (core->flags & CLK_OPS_PARENT_ENABLE) 1261 clk_core_prepare_enable(core->parent); 1262 1263 if (clk_pm_runtime_get(core)) 1264 goto unprepare_out; 1265 1266 flags = clk_enable_lock(); 1267 1268 if (core->enable_count) 1269 goto unlock_out; 1270 1271 if (core->flags & CLK_IGNORE_UNUSED) 1272 goto unlock_out; 1273 1274 /* 1275 * some gate clocks have special needs during the disable-unused 1276 * sequence. call .disable_unused if available, otherwise fall 1277 * back to .disable 1278 */ 1279 if (clk_core_is_enabled(core)) { 1280 trace_clk_disable(core); 1281 if (core->ops->disable_unused) 1282 core->ops->disable_unused(core->hw); 1283 else if (core->ops->disable) 1284 core->ops->disable(core->hw); 1285 trace_clk_disable_complete(core); 1286 } 1287 1288 unlock_out: 1289 clk_enable_unlock(flags); 1290 clk_pm_runtime_put(core); 1291 unprepare_out: 1292 if (core->flags & CLK_OPS_PARENT_ENABLE) 1293 clk_core_disable_unprepare(core->parent); 1294 } 1295 1296 static bool clk_ignore_unused __initdata; 1297 static int __init clk_ignore_unused_setup(char *__unused) 1298 { 1299 clk_ignore_unused = true; 1300 return 1; 1301 } 1302 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1303 1304 static int __init clk_disable_unused(void) 1305 { 1306 struct clk_core *core; 1307 1308 if (clk_ignore_unused) { 1309 pr_warn("clk: Not disabling unused clocks\n"); 1310 return 0; 1311 } 1312 1313 clk_prepare_lock(); 1314 1315 hlist_for_each_entry(core, &clk_root_list, child_node) 1316 clk_disable_unused_subtree(core); 1317 1318 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1319 clk_disable_unused_subtree(core); 1320 1321 hlist_for_each_entry(core, &clk_root_list, child_node) 1322 clk_unprepare_unused_subtree(core); 1323 1324 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1325 clk_unprepare_unused_subtree(core); 1326 1327 clk_prepare_unlock(); 1328 1329 return 0; 1330 } 1331 late_initcall_sync(clk_disable_unused); 1332 1333 static int clk_core_determine_round_nolock(struct clk_core *core, 1334 struct clk_rate_request *req) 1335 { 1336 long rate; 1337 1338 lockdep_assert_held(&prepare_lock); 1339 1340 if (!core) 1341 return 0; 1342 1343 req->rate = clamp(req->rate, req->min_rate, req->max_rate); 1344 1345 /* 1346 * At this point, core protection will be disabled 1347 * - if the provider is not protected at all 1348 * - if the calling consumer is the only one which has exclusivity 1349 * over the provider 1350 */ 1351 if (clk_core_rate_is_protected(core)) { 1352 req->rate = core->rate; 1353 } else if (core->ops->determine_rate) { 1354 return core->ops->determine_rate(core->hw, req); 1355 } else if (core->ops->round_rate) { 1356 rate = core->ops->round_rate(core->hw, req->rate, 1357 &req->best_parent_rate); 1358 if (rate < 0) 1359 return rate; 1360 1361 req->rate = rate; 1362 } else { 1363 return -EINVAL; 1364 } 1365 1366 return 0; 1367 } 1368 1369 static void clk_core_init_rate_req(struct clk_core * const core, 1370 struct clk_rate_request *req) 1371 { 1372 struct clk_core *parent; 1373 1374 if (WARN_ON(!core || !req)) 1375 return; 1376 1377 parent = core->parent; 1378 if (parent) { 1379 req->best_parent_hw = parent->hw; 1380 req->best_parent_rate = parent->rate; 1381 } else { 1382 req->best_parent_hw = NULL; 1383 req->best_parent_rate = 0; 1384 } 1385 } 1386 1387 static bool clk_core_can_round(struct clk_core * const core) 1388 { 1389 return core->ops->determine_rate || core->ops->round_rate; 1390 } 1391 1392 static int clk_core_round_rate_nolock(struct clk_core *core, 1393 struct clk_rate_request *req) 1394 { 1395 lockdep_assert_held(&prepare_lock); 1396 1397 if (!core) { 1398 req->rate = 0; 1399 return 0; 1400 } 1401 1402 clk_core_init_rate_req(core, req); 1403 1404 if (clk_core_can_round(core)) 1405 return clk_core_determine_round_nolock(core, req); 1406 else if (core->flags & CLK_SET_RATE_PARENT) 1407 return clk_core_round_rate_nolock(core->parent, req); 1408 1409 req->rate = core->rate; 1410 return 0; 1411 } 1412 1413 /** 1414 * __clk_determine_rate - get the closest rate actually supported by a clock 1415 * @hw: determine the rate of this clock 1416 * @req: target rate request 1417 * 1418 * Useful for clk_ops such as .set_rate and .determine_rate. 1419 */ 1420 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1421 { 1422 if (!hw) { 1423 req->rate = 0; 1424 return 0; 1425 } 1426 1427 return clk_core_round_rate_nolock(hw->core, req); 1428 } 1429 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1430 1431 /** 1432 * clk_hw_round_rate() - round the given rate for a hw clk 1433 * @hw: the hw clk for which we are rounding a rate 1434 * @rate: the rate which is to be rounded 1435 * 1436 * Takes in a rate as input and rounds it to a rate that the clk can actually 1437 * use. 1438 * 1439 * Context: prepare_lock must be held. 1440 * For clk providers to call from within clk_ops such as .round_rate, 1441 * .determine_rate. 1442 * 1443 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1444 * else returns the parent rate. 1445 */ 1446 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1447 { 1448 int ret; 1449 struct clk_rate_request req; 1450 1451 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1452 req.rate = rate; 1453 1454 ret = clk_core_round_rate_nolock(hw->core, &req); 1455 if (ret) 1456 return 0; 1457 1458 return req.rate; 1459 } 1460 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1461 1462 /** 1463 * clk_round_rate - round the given rate for a clk 1464 * @clk: the clk for which we are rounding a rate 1465 * @rate: the rate which is to be rounded 1466 * 1467 * Takes in a rate as input and rounds it to a rate that the clk can actually 1468 * use which is then returned. If clk doesn't support round_rate operation 1469 * then the parent rate is returned. 1470 */ 1471 long clk_round_rate(struct clk *clk, unsigned long rate) 1472 { 1473 struct clk_rate_request req; 1474 int ret; 1475 1476 if (!clk) 1477 return 0; 1478 1479 clk_prepare_lock(); 1480 1481 if (clk->exclusive_count) 1482 clk_core_rate_unprotect(clk->core); 1483 1484 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1485 req.rate = rate; 1486 1487 ret = clk_core_round_rate_nolock(clk->core, &req); 1488 1489 if (clk->exclusive_count) 1490 clk_core_rate_protect(clk->core); 1491 1492 clk_prepare_unlock(); 1493 1494 if (ret) 1495 return ret; 1496 1497 return req.rate; 1498 } 1499 EXPORT_SYMBOL_GPL(clk_round_rate); 1500 1501 /** 1502 * __clk_notify - call clk notifier chain 1503 * @core: clk that is changing rate 1504 * @msg: clk notifier type (see include/linux/clk.h) 1505 * @old_rate: old clk rate 1506 * @new_rate: new clk rate 1507 * 1508 * Triggers a notifier call chain on the clk rate-change notification 1509 * for 'clk'. Passes a pointer to the struct clk and the previous 1510 * and current rates to the notifier callback. Intended to be called by 1511 * internal clock code only. Returns NOTIFY_DONE from the last driver 1512 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1513 * a driver returns that. 1514 */ 1515 static int __clk_notify(struct clk_core *core, unsigned long msg, 1516 unsigned long old_rate, unsigned long new_rate) 1517 { 1518 struct clk_notifier *cn; 1519 struct clk_notifier_data cnd; 1520 int ret = NOTIFY_DONE; 1521 1522 cnd.old_rate = old_rate; 1523 cnd.new_rate = new_rate; 1524 1525 list_for_each_entry(cn, &clk_notifier_list, node) { 1526 if (cn->clk->core == core) { 1527 cnd.clk = cn->clk; 1528 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1529 &cnd); 1530 if (ret & NOTIFY_STOP_MASK) 1531 return ret; 1532 } 1533 } 1534 1535 return ret; 1536 } 1537 1538 /** 1539 * __clk_recalc_accuracies 1540 * @core: first clk in the subtree 1541 * 1542 * Walks the subtree of clks starting with clk and recalculates accuracies as 1543 * it goes. Note that if a clk does not implement the .recalc_accuracy 1544 * callback then it is assumed that the clock will take on the accuracy of its 1545 * parent. 1546 */ 1547 static void __clk_recalc_accuracies(struct clk_core *core) 1548 { 1549 unsigned long parent_accuracy = 0; 1550 struct clk_core *child; 1551 1552 lockdep_assert_held(&prepare_lock); 1553 1554 if (core->parent) 1555 parent_accuracy = core->parent->accuracy; 1556 1557 if (core->ops->recalc_accuracy) 1558 core->accuracy = core->ops->recalc_accuracy(core->hw, 1559 parent_accuracy); 1560 else 1561 core->accuracy = parent_accuracy; 1562 1563 hlist_for_each_entry(child, &core->children, child_node) 1564 __clk_recalc_accuracies(child); 1565 } 1566 1567 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1568 { 1569 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1570 __clk_recalc_accuracies(core); 1571 1572 return clk_core_get_accuracy_no_lock(core); 1573 } 1574 1575 /** 1576 * clk_get_accuracy - return the accuracy of clk 1577 * @clk: the clk whose accuracy is being returned 1578 * 1579 * Simply returns the cached accuracy of the clk, unless 1580 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1581 * issued. 1582 * If clk is NULL then returns 0. 1583 */ 1584 long clk_get_accuracy(struct clk *clk) 1585 { 1586 long accuracy; 1587 1588 if (!clk) 1589 return 0; 1590 1591 clk_prepare_lock(); 1592 accuracy = clk_core_get_accuracy_recalc(clk->core); 1593 clk_prepare_unlock(); 1594 1595 return accuracy; 1596 } 1597 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1598 1599 static unsigned long clk_recalc(struct clk_core *core, 1600 unsigned long parent_rate) 1601 { 1602 unsigned long rate = parent_rate; 1603 1604 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1605 rate = core->ops->recalc_rate(core->hw, parent_rate); 1606 clk_pm_runtime_put(core); 1607 } 1608 return rate; 1609 } 1610 1611 /** 1612 * __clk_recalc_rates 1613 * @core: first clk in the subtree 1614 * @msg: notification type (see include/linux/clk.h) 1615 * 1616 * Walks the subtree of clks starting with clk and recalculates rates as it 1617 * goes. Note that if a clk does not implement the .recalc_rate callback then 1618 * it is assumed that the clock will take on the rate of its parent. 1619 * 1620 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1621 * if necessary. 1622 */ 1623 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1624 { 1625 unsigned long old_rate; 1626 unsigned long parent_rate = 0; 1627 struct clk_core *child; 1628 1629 lockdep_assert_held(&prepare_lock); 1630 1631 old_rate = core->rate; 1632 1633 if (core->parent) 1634 parent_rate = core->parent->rate; 1635 1636 core->rate = clk_recalc(core, parent_rate); 1637 1638 /* 1639 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1640 * & ABORT_RATE_CHANGE notifiers 1641 */ 1642 if (core->notifier_count && msg) 1643 __clk_notify(core, msg, old_rate, core->rate); 1644 1645 hlist_for_each_entry(child, &core->children, child_node) 1646 __clk_recalc_rates(child, msg); 1647 } 1648 1649 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1650 { 1651 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1652 __clk_recalc_rates(core, 0); 1653 1654 return clk_core_get_rate_nolock(core); 1655 } 1656 1657 /** 1658 * clk_get_rate - return the rate of clk 1659 * @clk: the clk whose rate is being returned 1660 * 1661 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1662 * is set, which means a recalc_rate will be issued. 1663 * If clk is NULL then returns 0. 1664 */ 1665 unsigned long clk_get_rate(struct clk *clk) 1666 { 1667 unsigned long rate; 1668 1669 if (!clk) 1670 return 0; 1671 1672 clk_prepare_lock(); 1673 rate = clk_core_get_rate_recalc(clk->core); 1674 clk_prepare_unlock(); 1675 1676 return rate; 1677 } 1678 EXPORT_SYMBOL_GPL(clk_get_rate); 1679 1680 static int clk_fetch_parent_index(struct clk_core *core, 1681 struct clk_core *parent) 1682 { 1683 int i; 1684 1685 if (!parent) 1686 return -EINVAL; 1687 1688 for (i = 0; i < core->num_parents; i++) { 1689 /* Found it first try! */ 1690 if (core->parents[i].core == parent) 1691 return i; 1692 1693 /* Something else is here, so keep looking */ 1694 if (core->parents[i].core) 1695 continue; 1696 1697 /* Maybe core hasn't been cached but the hw is all we know? */ 1698 if (core->parents[i].hw) { 1699 if (core->parents[i].hw == parent->hw) 1700 break; 1701 1702 /* Didn't match, but we're expecting a clk_hw */ 1703 continue; 1704 } 1705 1706 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1707 if (parent == clk_core_get(core, i)) 1708 break; 1709 1710 /* Fallback to comparing globally unique names */ 1711 if (core->parents[i].name && 1712 !strcmp(parent->name, core->parents[i].name)) 1713 break; 1714 } 1715 1716 if (i == core->num_parents) 1717 return -EINVAL; 1718 1719 core->parents[i].core = parent; 1720 return i; 1721 } 1722 1723 /** 1724 * clk_hw_get_parent_index - return the index of the parent clock 1725 * @hw: clk_hw associated with the clk being consumed 1726 * 1727 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1728 * clock does not have a current parent. 1729 */ 1730 int clk_hw_get_parent_index(struct clk_hw *hw) 1731 { 1732 struct clk_hw *parent = clk_hw_get_parent(hw); 1733 1734 if (WARN_ON(parent == NULL)) 1735 return -EINVAL; 1736 1737 return clk_fetch_parent_index(hw->core, parent->core); 1738 } 1739 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1740 1741 /* 1742 * Update the orphan status of @core and all its children. 1743 */ 1744 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1745 { 1746 struct clk_core *child; 1747 1748 core->orphan = is_orphan; 1749 1750 hlist_for_each_entry(child, &core->children, child_node) 1751 clk_core_update_orphan_status(child, is_orphan); 1752 } 1753 1754 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1755 { 1756 bool was_orphan = core->orphan; 1757 1758 hlist_del(&core->child_node); 1759 1760 if (new_parent) { 1761 bool becomes_orphan = new_parent->orphan; 1762 1763 /* avoid duplicate POST_RATE_CHANGE notifications */ 1764 if (new_parent->new_child == core) 1765 new_parent->new_child = NULL; 1766 1767 hlist_add_head(&core->child_node, &new_parent->children); 1768 1769 if (was_orphan != becomes_orphan) 1770 clk_core_update_orphan_status(core, becomes_orphan); 1771 } else { 1772 hlist_add_head(&core->child_node, &clk_orphan_list); 1773 if (!was_orphan) 1774 clk_core_update_orphan_status(core, true); 1775 } 1776 1777 core->parent = new_parent; 1778 } 1779 1780 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1781 struct clk_core *parent) 1782 { 1783 unsigned long flags; 1784 struct clk_core *old_parent = core->parent; 1785 1786 /* 1787 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1788 * 1789 * 2. Migrate prepare state between parents and prevent race with 1790 * clk_enable(). 1791 * 1792 * If the clock is not prepared, then a race with 1793 * clk_enable/disable() is impossible since we already have the 1794 * prepare lock (future calls to clk_enable() need to be preceded by 1795 * a clk_prepare()). 1796 * 1797 * If the clock is prepared, migrate the prepared state to the new 1798 * parent and also protect against a race with clk_enable() by 1799 * forcing the clock and the new parent on. This ensures that all 1800 * future calls to clk_enable() are practically NOPs with respect to 1801 * hardware and software states. 1802 * 1803 * See also: Comment for clk_set_parent() below. 1804 */ 1805 1806 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1807 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1808 clk_core_prepare_enable(old_parent); 1809 clk_core_prepare_enable(parent); 1810 } 1811 1812 /* migrate prepare count if > 0 */ 1813 if (core->prepare_count) { 1814 clk_core_prepare_enable(parent); 1815 clk_core_enable_lock(core); 1816 } 1817 1818 /* update the clk tree topology */ 1819 flags = clk_enable_lock(); 1820 clk_reparent(core, parent); 1821 clk_enable_unlock(flags); 1822 1823 return old_parent; 1824 } 1825 1826 static void __clk_set_parent_after(struct clk_core *core, 1827 struct clk_core *parent, 1828 struct clk_core *old_parent) 1829 { 1830 /* 1831 * Finish the migration of prepare state and undo the changes done 1832 * for preventing a race with clk_enable(). 1833 */ 1834 if (core->prepare_count) { 1835 clk_core_disable_lock(core); 1836 clk_core_disable_unprepare(old_parent); 1837 } 1838 1839 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1840 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1841 clk_core_disable_unprepare(parent); 1842 clk_core_disable_unprepare(old_parent); 1843 } 1844 } 1845 1846 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1847 u8 p_index) 1848 { 1849 unsigned long flags; 1850 int ret = 0; 1851 struct clk_core *old_parent; 1852 1853 old_parent = __clk_set_parent_before(core, parent); 1854 1855 trace_clk_set_parent(core, parent); 1856 1857 /* change clock input source */ 1858 if (parent && core->ops->set_parent) 1859 ret = core->ops->set_parent(core->hw, p_index); 1860 1861 trace_clk_set_parent_complete(core, parent); 1862 1863 if (ret) { 1864 flags = clk_enable_lock(); 1865 clk_reparent(core, old_parent); 1866 clk_enable_unlock(flags); 1867 __clk_set_parent_after(core, old_parent, parent); 1868 1869 return ret; 1870 } 1871 1872 __clk_set_parent_after(core, parent, old_parent); 1873 1874 return 0; 1875 } 1876 1877 /** 1878 * __clk_speculate_rates 1879 * @core: first clk in the subtree 1880 * @parent_rate: the "future" rate of clk's parent 1881 * 1882 * Walks the subtree of clks starting with clk, speculating rates as it 1883 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1884 * 1885 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1886 * pre-rate change notifications and returns early if no clks in the 1887 * subtree have subscribed to the notifications. Note that if a clk does not 1888 * implement the .recalc_rate callback then it is assumed that the clock will 1889 * take on the rate of its parent. 1890 */ 1891 static int __clk_speculate_rates(struct clk_core *core, 1892 unsigned long parent_rate) 1893 { 1894 struct clk_core *child; 1895 unsigned long new_rate; 1896 int ret = NOTIFY_DONE; 1897 1898 lockdep_assert_held(&prepare_lock); 1899 1900 new_rate = clk_recalc(core, parent_rate); 1901 1902 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1903 if (core->notifier_count) 1904 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1905 1906 if (ret & NOTIFY_STOP_MASK) { 1907 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1908 __func__, core->name, ret); 1909 goto out; 1910 } 1911 1912 hlist_for_each_entry(child, &core->children, child_node) { 1913 ret = __clk_speculate_rates(child, new_rate); 1914 if (ret & NOTIFY_STOP_MASK) 1915 break; 1916 } 1917 1918 out: 1919 return ret; 1920 } 1921 1922 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1923 struct clk_core *new_parent, u8 p_index) 1924 { 1925 struct clk_core *child; 1926 1927 core->new_rate = new_rate; 1928 core->new_parent = new_parent; 1929 core->new_parent_index = p_index; 1930 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1931 core->new_child = NULL; 1932 if (new_parent && new_parent != core->parent) 1933 new_parent->new_child = core; 1934 1935 hlist_for_each_entry(child, &core->children, child_node) { 1936 child->new_rate = clk_recalc(child, new_rate); 1937 clk_calc_subtree(child, child->new_rate, NULL, 0); 1938 } 1939 } 1940 1941 /* 1942 * calculate the new rates returning the topmost clock that has to be 1943 * changed. 1944 */ 1945 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1946 unsigned long rate) 1947 { 1948 struct clk_core *top = core; 1949 struct clk_core *old_parent, *parent; 1950 unsigned long best_parent_rate = 0; 1951 unsigned long new_rate; 1952 unsigned long min_rate; 1953 unsigned long max_rate; 1954 int p_index = 0; 1955 long ret; 1956 1957 /* sanity */ 1958 if (IS_ERR_OR_NULL(core)) 1959 return NULL; 1960 1961 /* save parent rate, if it exists */ 1962 parent = old_parent = core->parent; 1963 if (parent) 1964 best_parent_rate = parent->rate; 1965 1966 clk_core_get_boundaries(core, &min_rate, &max_rate); 1967 1968 /* find the closest rate and parent clk/rate */ 1969 if (clk_core_can_round(core)) { 1970 struct clk_rate_request req; 1971 1972 req.rate = rate; 1973 req.min_rate = min_rate; 1974 req.max_rate = max_rate; 1975 1976 clk_core_init_rate_req(core, &req); 1977 1978 ret = clk_core_determine_round_nolock(core, &req); 1979 if (ret < 0) 1980 return NULL; 1981 1982 best_parent_rate = req.best_parent_rate; 1983 new_rate = req.rate; 1984 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1985 1986 if (new_rate < min_rate || new_rate > max_rate) 1987 return NULL; 1988 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1989 /* pass-through clock without adjustable parent */ 1990 core->new_rate = core->rate; 1991 return NULL; 1992 } else { 1993 /* pass-through clock with adjustable parent */ 1994 top = clk_calc_new_rates(parent, rate); 1995 new_rate = parent->new_rate; 1996 goto out; 1997 } 1998 1999 /* some clocks must be gated to change parent */ 2000 if (parent != old_parent && 2001 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 2002 pr_debug("%s: %s not gated but wants to reparent\n", 2003 __func__, core->name); 2004 return NULL; 2005 } 2006 2007 /* try finding the new parent index */ 2008 if (parent && core->num_parents > 1) { 2009 p_index = clk_fetch_parent_index(core, parent); 2010 if (p_index < 0) { 2011 pr_debug("%s: clk %s can not be parent of clk %s\n", 2012 __func__, parent->name, core->name); 2013 return NULL; 2014 } 2015 } 2016 2017 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 2018 best_parent_rate != parent->rate) 2019 top = clk_calc_new_rates(parent, best_parent_rate); 2020 2021 out: 2022 clk_calc_subtree(core, new_rate, parent, p_index); 2023 2024 return top; 2025 } 2026 2027 /* 2028 * Notify about rate changes in a subtree. Always walk down the whole tree 2029 * so that in case of an error we can walk down the whole tree again and 2030 * abort the change. 2031 */ 2032 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2033 unsigned long event) 2034 { 2035 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2036 int ret = NOTIFY_DONE; 2037 2038 if (core->rate == core->new_rate) 2039 return NULL; 2040 2041 if (core->notifier_count) { 2042 ret = __clk_notify(core, event, core->rate, core->new_rate); 2043 if (ret & NOTIFY_STOP_MASK) 2044 fail_clk = core; 2045 } 2046 2047 hlist_for_each_entry(child, &core->children, child_node) { 2048 /* Skip children who will be reparented to another clock */ 2049 if (child->new_parent && child->new_parent != core) 2050 continue; 2051 tmp_clk = clk_propagate_rate_change(child, event); 2052 if (tmp_clk) 2053 fail_clk = tmp_clk; 2054 } 2055 2056 /* handle the new child who might not be in core->children yet */ 2057 if (core->new_child) { 2058 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2059 if (tmp_clk) 2060 fail_clk = tmp_clk; 2061 } 2062 2063 return fail_clk; 2064 } 2065 2066 /* 2067 * walk down a subtree and set the new rates notifying the rate 2068 * change on the way 2069 */ 2070 static void clk_change_rate(struct clk_core *core) 2071 { 2072 struct clk_core *child; 2073 struct hlist_node *tmp; 2074 unsigned long old_rate; 2075 unsigned long best_parent_rate = 0; 2076 bool skip_set_rate = false; 2077 struct clk_core *old_parent; 2078 struct clk_core *parent = NULL; 2079 2080 old_rate = core->rate; 2081 2082 if (core->new_parent) { 2083 parent = core->new_parent; 2084 best_parent_rate = core->new_parent->rate; 2085 } else if (core->parent) { 2086 parent = core->parent; 2087 best_parent_rate = core->parent->rate; 2088 } 2089 2090 if (clk_pm_runtime_get(core)) 2091 return; 2092 2093 if (core->flags & CLK_SET_RATE_UNGATE) { 2094 clk_core_prepare(core); 2095 clk_core_enable_lock(core); 2096 } 2097 2098 if (core->new_parent && core->new_parent != core->parent) { 2099 old_parent = __clk_set_parent_before(core, core->new_parent); 2100 trace_clk_set_parent(core, core->new_parent); 2101 2102 if (core->ops->set_rate_and_parent) { 2103 skip_set_rate = true; 2104 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2105 best_parent_rate, 2106 core->new_parent_index); 2107 } else if (core->ops->set_parent) { 2108 core->ops->set_parent(core->hw, core->new_parent_index); 2109 } 2110 2111 trace_clk_set_parent_complete(core, core->new_parent); 2112 __clk_set_parent_after(core, core->new_parent, old_parent); 2113 } 2114 2115 if (core->flags & CLK_OPS_PARENT_ENABLE) 2116 clk_core_prepare_enable(parent); 2117 2118 trace_clk_set_rate(core, core->new_rate); 2119 2120 if (!skip_set_rate && core->ops->set_rate) 2121 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2122 2123 trace_clk_set_rate_complete(core, core->new_rate); 2124 2125 core->rate = clk_recalc(core, best_parent_rate); 2126 2127 if (core->flags & CLK_SET_RATE_UNGATE) { 2128 clk_core_disable_lock(core); 2129 clk_core_unprepare(core); 2130 } 2131 2132 if (core->flags & CLK_OPS_PARENT_ENABLE) 2133 clk_core_disable_unprepare(parent); 2134 2135 if (core->notifier_count && old_rate != core->rate) 2136 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2137 2138 if (core->flags & CLK_RECALC_NEW_RATES) 2139 (void)clk_calc_new_rates(core, core->new_rate); 2140 2141 /* 2142 * Use safe iteration, as change_rate can actually swap parents 2143 * for certain clock types. 2144 */ 2145 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2146 /* Skip children who will be reparented to another clock */ 2147 if (child->new_parent && child->new_parent != core) 2148 continue; 2149 clk_change_rate(child); 2150 } 2151 2152 /* handle the new child who might not be in core->children yet */ 2153 if (core->new_child) 2154 clk_change_rate(core->new_child); 2155 2156 clk_pm_runtime_put(core); 2157 } 2158 2159 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2160 unsigned long req_rate) 2161 { 2162 int ret, cnt; 2163 struct clk_rate_request req; 2164 2165 lockdep_assert_held(&prepare_lock); 2166 2167 if (!core) 2168 return 0; 2169 2170 /* simulate what the rate would be if it could be freely set */ 2171 cnt = clk_core_rate_nuke_protect(core); 2172 if (cnt < 0) 2173 return cnt; 2174 2175 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2176 req.rate = req_rate; 2177 2178 ret = clk_core_round_rate_nolock(core, &req); 2179 2180 /* restore the protection */ 2181 clk_core_rate_restore_protect(core, cnt); 2182 2183 return ret ? 0 : req.rate; 2184 } 2185 2186 static int clk_core_set_rate_nolock(struct clk_core *core, 2187 unsigned long req_rate) 2188 { 2189 struct clk_core *top, *fail_clk; 2190 unsigned long rate; 2191 int ret = 0; 2192 2193 if (!core) 2194 return 0; 2195 2196 rate = clk_core_req_round_rate_nolock(core, req_rate); 2197 2198 /* bail early if nothing to do */ 2199 if (rate == clk_core_get_rate_nolock(core)) 2200 return 0; 2201 2202 /* fail on a direct rate set of a protected provider */ 2203 if (clk_core_rate_is_protected(core)) 2204 return -EBUSY; 2205 2206 /* calculate new rates and get the topmost changed clock */ 2207 top = clk_calc_new_rates(core, req_rate); 2208 if (!top) 2209 return -EINVAL; 2210 2211 ret = clk_pm_runtime_get(core); 2212 if (ret) 2213 return ret; 2214 2215 /* notify that we are about to change rates */ 2216 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2217 if (fail_clk) { 2218 pr_debug("%s: failed to set %s rate\n", __func__, 2219 fail_clk->name); 2220 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2221 ret = -EBUSY; 2222 goto err; 2223 } 2224 2225 /* change the rates */ 2226 clk_change_rate(top); 2227 2228 core->req_rate = req_rate; 2229 err: 2230 clk_pm_runtime_put(core); 2231 2232 return ret; 2233 } 2234 2235 /** 2236 * clk_set_rate - specify a new rate for clk 2237 * @clk: the clk whose rate is being changed 2238 * @rate: the new rate for clk 2239 * 2240 * In the simplest case clk_set_rate will only adjust the rate of clk. 2241 * 2242 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2243 * propagate up to clk's parent; whether or not this happens depends on the 2244 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2245 * after calling .round_rate then upstream parent propagation is ignored. If 2246 * *parent_rate comes back with a new rate for clk's parent then we propagate 2247 * up to clk's parent and set its rate. Upward propagation will continue 2248 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2249 * .round_rate stops requesting changes to clk's parent_rate. 2250 * 2251 * Rate changes are accomplished via tree traversal that also recalculates the 2252 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2253 * 2254 * Returns 0 on success, -EERROR otherwise. 2255 */ 2256 int clk_set_rate(struct clk *clk, unsigned long rate) 2257 { 2258 int ret; 2259 2260 if (!clk) 2261 return 0; 2262 2263 /* prevent racing with updates to the clock topology */ 2264 clk_prepare_lock(); 2265 2266 if (clk->exclusive_count) 2267 clk_core_rate_unprotect(clk->core); 2268 2269 ret = clk_core_set_rate_nolock(clk->core, rate); 2270 2271 if (clk->exclusive_count) 2272 clk_core_rate_protect(clk->core); 2273 2274 clk_prepare_unlock(); 2275 2276 return ret; 2277 } 2278 EXPORT_SYMBOL_GPL(clk_set_rate); 2279 2280 /** 2281 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2282 * @clk: the clk whose rate is being changed 2283 * @rate: the new rate for clk 2284 * 2285 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2286 * within a critical section 2287 * 2288 * This can be used initially to ensure that at least 1 consumer is 2289 * satisfied when several consumers are competing for exclusivity over the 2290 * same clock provider. 2291 * 2292 * The exclusivity is not applied if setting the rate failed. 2293 * 2294 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2295 * clk_rate_exclusive_put(). 2296 * 2297 * Returns 0 on success, -EERROR otherwise. 2298 */ 2299 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2300 { 2301 int ret; 2302 2303 if (!clk) 2304 return 0; 2305 2306 /* prevent racing with updates to the clock topology */ 2307 clk_prepare_lock(); 2308 2309 /* 2310 * The temporary protection removal is not here, on purpose 2311 * This function is meant to be used instead of clk_rate_protect, 2312 * so before the consumer code path protect the clock provider 2313 */ 2314 2315 ret = clk_core_set_rate_nolock(clk->core, rate); 2316 if (!ret) { 2317 clk_core_rate_protect(clk->core); 2318 clk->exclusive_count++; 2319 } 2320 2321 clk_prepare_unlock(); 2322 2323 return ret; 2324 } 2325 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2326 2327 /** 2328 * clk_set_rate_range - set a rate range for a clock source 2329 * @clk: clock source 2330 * @min: desired minimum clock rate in Hz, inclusive 2331 * @max: desired maximum clock rate in Hz, inclusive 2332 * 2333 * Returns success (0) or negative errno. 2334 */ 2335 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2336 { 2337 int ret = 0; 2338 unsigned long old_min, old_max, rate; 2339 2340 if (!clk) 2341 return 0; 2342 2343 trace_clk_set_rate_range(clk->core, min, max); 2344 2345 if (min > max) { 2346 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2347 __func__, clk->core->name, clk->dev_id, clk->con_id, 2348 min, max); 2349 return -EINVAL; 2350 } 2351 2352 clk_prepare_lock(); 2353 2354 if (clk->exclusive_count) 2355 clk_core_rate_unprotect(clk->core); 2356 2357 /* Save the current values in case we need to rollback the change */ 2358 old_min = clk->min_rate; 2359 old_max = clk->max_rate; 2360 clk->min_rate = min; 2361 clk->max_rate = max; 2362 2363 if (!clk_core_check_boundaries(clk->core, min, max)) { 2364 ret = -EINVAL; 2365 goto out; 2366 } 2367 2368 /* 2369 * Since the boundaries have been changed, let's give the 2370 * opportunity to the provider to adjust the clock rate based on 2371 * the new boundaries. 2372 * 2373 * We also need to handle the case where the clock is currently 2374 * outside of the boundaries. Clamping the last requested rate 2375 * to the current minimum and maximum will also handle this. 2376 * 2377 * FIXME: 2378 * There is a catch. It may fail for the usual reason (clock 2379 * broken, clock protected, etc) but also because: 2380 * - round_rate() was not favorable and fell on the wrong 2381 * side of the boundary 2382 * - the determine_rate() callback does not really check for 2383 * this corner case when determining the rate 2384 */ 2385 rate = clamp(clk->core->req_rate, min, max); 2386 ret = clk_core_set_rate_nolock(clk->core, rate); 2387 if (ret) { 2388 /* rollback the changes */ 2389 clk->min_rate = old_min; 2390 clk->max_rate = old_max; 2391 } 2392 2393 out: 2394 if (clk->exclusive_count) 2395 clk_core_rate_protect(clk->core); 2396 2397 clk_prepare_unlock(); 2398 2399 return ret; 2400 } 2401 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2402 2403 /** 2404 * clk_set_min_rate - set a minimum clock rate for a clock source 2405 * @clk: clock source 2406 * @rate: desired minimum clock rate in Hz, inclusive 2407 * 2408 * Returns success (0) or negative errno. 2409 */ 2410 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2411 { 2412 if (!clk) 2413 return 0; 2414 2415 trace_clk_set_min_rate(clk->core, rate); 2416 2417 return clk_set_rate_range(clk, rate, clk->max_rate); 2418 } 2419 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2420 2421 /** 2422 * clk_set_max_rate - set a maximum clock rate for a clock source 2423 * @clk: clock source 2424 * @rate: desired maximum clock rate in Hz, inclusive 2425 * 2426 * Returns success (0) or negative errno. 2427 */ 2428 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2429 { 2430 if (!clk) 2431 return 0; 2432 2433 trace_clk_set_max_rate(clk->core, rate); 2434 2435 return clk_set_rate_range(clk, clk->min_rate, rate); 2436 } 2437 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2438 2439 /** 2440 * clk_get_parent - return the parent of a clk 2441 * @clk: the clk whose parent gets returned 2442 * 2443 * Simply returns clk->parent. Returns NULL if clk is NULL. 2444 */ 2445 struct clk *clk_get_parent(struct clk *clk) 2446 { 2447 struct clk *parent; 2448 2449 if (!clk) 2450 return NULL; 2451 2452 clk_prepare_lock(); 2453 /* TODO: Create a per-user clk and change callers to call clk_put */ 2454 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2455 clk_prepare_unlock(); 2456 2457 return parent; 2458 } 2459 EXPORT_SYMBOL_GPL(clk_get_parent); 2460 2461 static struct clk_core *__clk_init_parent(struct clk_core *core) 2462 { 2463 u8 index = 0; 2464 2465 if (core->num_parents > 1 && core->ops->get_parent) 2466 index = core->ops->get_parent(core->hw); 2467 2468 return clk_core_get_parent_by_index(core, index); 2469 } 2470 2471 static void clk_core_reparent(struct clk_core *core, 2472 struct clk_core *new_parent) 2473 { 2474 clk_reparent(core, new_parent); 2475 __clk_recalc_accuracies(core); 2476 __clk_recalc_rates(core, POST_RATE_CHANGE); 2477 } 2478 2479 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2480 { 2481 if (!hw) 2482 return; 2483 2484 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2485 } 2486 2487 /** 2488 * clk_has_parent - check if a clock is a possible parent for another 2489 * @clk: clock source 2490 * @parent: parent clock source 2491 * 2492 * This function can be used in drivers that need to check that a clock can be 2493 * the parent of another without actually changing the parent. 2494 * 2495 * Returns true if @parent is a possible parent for @clk, false otherwise. 2496 */ 2497 bool clk_has_parent(struct clk *clk, struct clk *parent) 2498 { 2499 struct clk_core *core, *parent_core; 2500 int i; 2501 2502 /* NULL clocks should be nops, so return success if either is NULL. */ 2503 if (!clk || !parent) 2504 return true; 2505 2506 core = clk->core; 2507 parent_core = parent->core; 2508 2509 /* Optimize for the case where the parent is already the parent. */ 2510 if (core->parent == parent_core) 2511 return true; 2512 2513 for (i = 0; i < core->num_parents; i++) 2514 if (!strcmp(core->parents[i].name, parent_core->name)) 2515 return true; 2516 2517 return false; 2518 } 2519 EXPORT_SYMBOL_GPL(clk_has_parent); 2520 2521 static int clk_core_set_parent_nolock(struct clk_core *core, 2522 struct clk_core *parent) 2523 { 2524 int ret = 0; 2525 int p_index = 0; 2526 unsigned long p_rate = 0; 2527 2528 lockdep_assert_held(&prepare_lock); 2529 2530 if (!core) 2531 return 0; 2532 2533 if (core->parent == parent) 2534 return 0; 2535 2536 /* verify ops for multi-parent clks */ 2537 if (core->num_parents > 1 && !core->ops->set_parent) 2538 return -EPERM; 2539 2540 /* check that we are allowed to re-parent if the clock is in use */ 2541 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2542 return -EBUSY; 2543 2544 if (clk_core_rate_is_protected(core)) 2545 return -EBUSY; 2546 2547 /* try finding the new parent index */ 2548 if (parent) { 2549 p_index = clk_fetch_parent_index(core, parent); 2550 if (p_index < 0) { 2551 pr_debug("%s: clk %s can not be parent of clk %s\n", 2552 __func__, parent->name, core->name); 2553 return p_index; 2554 } 2555 p_rate = parent->rate; 2556 } 2557 2558 ret = clk_pm_runtime_get(core); 2559 if (ret) 2560 return ret; 2561 2562 /* propagate PRE_RATE_CHANGE notifications */ 2563 ret = __clk_speculate_rates(core, p_rate); 2564 2565 /* abort if a driver objects */ 2566 if (ret & NOTIFY_STOP_MASK) 2567 goto runtime_put; 2568 2569 /* do the re-parent */ 2570 ret = __clk_set_parent(core, parent, p_index); 2571 2572 /* propagate rate an accuracy recalculation accordingly */ 2573 if (ret) { 2574 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2575 } else { 2576 __clk_recalc_rates(core, POST_RATE_CHANGE); 2577 __clk_recalc_accuracies(core); 2578 } 2579 2580 runtime_put: 2581 clk_pm_runtime_put(core); 2582 2583 return ret; 2584 } 2585 2586 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2587 { 2588 return clk_core_set_parent_nolock(hw->core, parent->core); 2589 } 2590 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2591 2592 /** 2593 * clk_set_parent - switch the parent of a mux clk 2594 * @clk: the mux clk whose input we are switching 2595 * @parent: the new input to clk 2596 * 2597 * Re-parent clk to use parent as its new input source. If clk is in 2598 * prepared state, the clk will get enabled for the duration of this call. If 2599 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2600 * that, the reparenting is glitchy in hardware, etc), use the 2601 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2602 * 2603 * After successfully changing clk's parent clk_set_parent will update the 2604 * clk topology, sysfs topology and propagate rate recalculation via 2605 * __clk_recalc_rates. 2606 * 2607 * Returns 0 on success, -EERROR otherwise. 2608 */ 2609 int clk_set_parent(struct clk *clk, struct clk *parent) 2610 { 2611 int ret; 2612 2613 if (!clk) 2614 return 0; 2615 2616 clk_prepare_lock(); 2617 2618 if (clk->exclusive_count) 2619 clk_core_rate_unprotect(clk->core); 2620 2621 ret = clk_core_set_parent_nolock(clk->core, 2622 parent ? parent->core : NULL); 2623 2624 if (clk->exclusive_count) 2625 clk_core_rate_protect(clk->core); 2626 2627 clk_prepare_unlock(); 2628 2629 return ret; 2630 } 2631 EXPORT_SYMBOL_GPL(clk_set_parent); 2632 2633 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2634 { 2635 int ret = -EINVAL; 2636 2637 lockdep_assert_held(&prepare_lock); 2638 2639 if (!core) 2640 return 0; 2641 2642 if (clk_core_rate_is_protected(core)) 2643 return -EBUSY; 2644 2645 trace_clk_set_phase(core, degrees); 2646 2647 if (core->ops->set_phase) { 2648 ret = core->ops->set_phase(core->hw, degrees); 2649 if (!ret) 2650 core->phase = degrees; 2651 } 2652 2653 trace_clk_set_phase_complete(core, degrees); 2654 2655 return ret; 2656 } 2657 2658 /** 2659 * clk_set_phase - adjust the phase shift of a clock signal 2660 * @clk: clock signal source 2661 * @degrees: number of degrees the signal is shifted 2662 * 2663 * Shifts the phase of a clock signal by the specified 2664 * degrees. Returns 0 on success, -EERROR otherwise. 2665 * 2666 * This function makes no distinction about the input or reference 2667 * signal that we adjust the clock signal phase against. For example 2668 * phase locked-loop clock signal generators we may shift phase with 2669 * respect to feedback clock signal input, but for other cases the 2670 * clock phase may be shifted with respect to some other, unspecified 2671 * signal. 2672 * 2673 * Additionally the concept of phase shift does not propagate through 2674 * the clock tree hierarchy, which sets it apart from clock rates and 2675 * clock accuracy. A parent clock phase attribute does not have an 2676 * impact on the phase attribute of a child clock. 2677 */ 2678 int clk_set_phase(struct clk *clk, int degrees) 2679 { 2680 int ret; 2681 2682 if (!clk) 2683 return 0; 2684 2685 /* sanity check degrees */ 2686 degrees %= 360; 2687 if (degrees < 0) 2688 degrees += 360; 2689 2690 clk_prepare_lock(); 2691 2692 if (clk->exclusive_count) 2693 clk_core_rate_unprotect(clk->core); 2694 2695 ret = clk_core_set_phase_nolock(clk->core, degrees); 2696 2697 if (clk->exclusive_count) 2698 clk_core_rate_protect(clk->core); 2699 2700 clk_prepare_unlock(); 2701 2702 return ret; 2703 } 2704 EXPORT_SYMBOL_GPL(clk_set_phase); 2705 2706 static int clk_core_get_phase(struct clk_core *core) 2707 { 2708 int ret; 2709 2710 lockdep_assert_held(&prepare_lock); 2711 if (!core->ops->get_phase) 2712 return 0; 2713 2714 /* Always try to update cached phase if possible */ 2715 ret = core->ops->get_phase(core->hw); 2716 if (ret >= 0) 2717 core->phase = ret; 2718 2719 return ret; 2720 } 2721 2722 /** 2723 * clk_get_phase - return the phase shift of a clock signal 2724 * @clk: clock signal source 2725 * 2726 * Returns the phase shift of a clock node in degrees, otherwise returns 2727 * -EERROR. 2728 */ 2729 int clk_get_phase(struct clk *clk) 2730 { 2731 int ret; 2732 2733 if (!clk) 2734 return 0; 2735 2736 clk_prepare_lock(); 2737 ret = clk_core_get_phase(clk->core); 2738 clk_prepare_unlock(); 2739 2740 return ret; 2741 } 2742 EXPORT_SYMBOL_GPL(clk_get_phase); 2743 2744 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2745 { 2746 /* Assume a default value of 50% */ 2747 core->duty.num = 1; 2748 core->duty.den = 2; 2749 } 2750 2751 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2752 2753 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2754 { 2755 struct clk_duty *duty = &core->duty; 2756 int ret = 0; 2757 2758 if (!core->ops->get_duty_cycle) 2759 return clk_core_update_duty_cycle_parent_nolock(core); 2760 2761 ret = core->ops->get_duty_cycle(core->hw, duty); 2762 if (ret) 2763 goto reset; 2764 2765 /* Don't trust the clock provider too much */ 2766 if (duty->den == 0 || duty->num > duty->den) { 2767 ret = -EINVAL; 2768 goto reset; 2769 } 2770 2771 return 0; 2772 2773 reset: 2774 clk_core_reset_duty_cycle_nolock(core); 2775 return ret; 2776 } 2777 2778 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2779 { 2780 int ret = 0; 2781 2782 if (core->parent && 2783 core->flags & CLK_DUTY_CYCLE_PARENT) { 2784 ret = clk_core_update_duty_cycle_nolock(core->parent); 2785 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2786 } else { 2787 clk_core_reset_duty_cycle_nolock(core); 2788 } 2789 2790 return ret; 2791 } 2792 2793 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2794 struct clk_duty *duty); 2795 2796 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2797 struct clk_duty *duty) 2798 { 2799 int ret; 2800 2801 lockdep_assert_held(&prepare_lock); 2802 2803 if (clk_core_rate_is_protected(core)) 2804 return -EBUSY; 2805 2806 trace_clk_set_duty_cycle(core, duty); 2807 2808 if (!core->ops->set_duty_cycle) 2809 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2810 2811 ret = core->ops->set_duty_cycle(core->hw, duty); 2812 if (!ret) 2813 memcpy(&core->duty, duty, sizeof(*duty)); 2814 2815 trace_clk_set_duty_cycle_complete(core, duty); 2816 2817 return ret; 2818 } 2819 2820 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2821 struct clk_duty *duty) 2822 { 2823 int ret = 0; 2824 2825 if (core->parent && 2826 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2827 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2828 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2829 } 2830 2831 return ret; 2832 } 2833 2834 /** 2835 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2836 * @clk: clock signal source 2837 * @num: numerator of the duty cycle ratio to be applied 2838 * @den: denominator of the duty cycle ratio to be applied 2839 * 2840 * Apply the duty cycle ratio if the ratio is valid and the clock can 2841 * perform this operation 2842 * 2843 * Returns (0) on success, a negative errno otherwise. 2844 */ 2845 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2846 { 2847 int ret; 2848 struct clk_duty duty; 2849 2850 if (!clk) 2851 return 0; 2852 2853 /* sanity check the ratio */ 2854 if (den == 0 || num > den) 2855 return -EINVAL; 2856 2857 duty.num = num; 2858 duty.den = den; 2859 2860 clk_prepare_lock(); 2861 2862 if (clk->exclusive_count) 2863 clk_core_rate_unprotect(clk->core); 2864 2865 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2866 2867 if (clk->exclusive_count) 2868 clk_core_rate_protect(clk->core); 2869 2870 clk_prepare_unlock(); 2871 2872 return ret; 2873 } 2874 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2875 2876 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2877 unsigned int scale) 2878 { 2879 struct clk_duty *duty = &core->duty; 2880 int ret; 2881 2882 clk_prepare_lock(); 2883 2884 ret = clk_core_update_duty_cycle_nolock(core); 2885 if (!ret) 2886 ret = mult_frac(scale, duty->num, duty->den); 2887 2888 clk_prepare_unlock(); 2889 2890 return ret; 2891 } 2892 2893 /** 2894 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2895 * @clk: clock signal source 2896 * @scale: scaling factor to be applied to represent the ratio as an integer 2897 * 2898 * Returns the duty cycle ratio of a clock node multiplied by the provided 2899 * scaling factor, or negative errno on error. 2900 */ 2901 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2902 { 2903 if (!clk) 2904 return 0; 2905 2906 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2907 } 2908 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2909 2910 /** 2911 * clk_is_match - check if two clk's point to the same hardware clock 2912 * @p: clk compared against q 2913 * @q: clk compared against p 2914 * 2915 * Returns true if the two struct clk pointers both point to the same hardware 2916 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2917 * share the same struct clk_core object. 2918 * 2919 * Returns false otherwise. Note that two NULL clks are treated as matching. 2920 */ 2921 bool clk_is_match(const struct clk *p, const struct clk *q) 2922 { 2923 /* trivial case: identical struct clk's or both NULL */ 2924 if (p == q) 2925 return true; 2926 2927 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2928 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2929 if (p->core == q->core) 2930 return true; 2931 2932 return false; 2933 } 2934 EXPORT_SYMBOL_GPL(clk_is_match); 2935 2936 /*** debugfs support ***/ 2937 2938 #ifdef CONFIG_DEBUG_FS 2939 #include <linux/debugfs.h> 2940 2941 static struct dentry *rootdir; 2942 static int inited = 0; 2943 static DEFINE_MUTEX(clk_debug_lock); 2944 static HLIST_HEAD(clk_debug_list); 2945 2946 static struct hlist_head *orphan_list[] = { 2947 &clk_orphan_list, 2948 NULL, 2949 }; 2950 2951 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2952 int level) 2953 { 2954 int phase; 2955 2956 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ", 2957 level * 3 + 1, "", 2958 30 - level * 3, c->name, 2959 c->enable_count, c->prepare_count, c->protect_count, 2960 clk_core_get_rate_recalc(c), 2961 clk_core_get_accuracy_recalc(c)); 2962 2963 phase = clk_core_get_phase(c); 2964 if (phase >= 0) 2965 seq_printf(s, "%5d", phase); 2966 else 2967 seq_puts(s, "-----"); 2968 2969 seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000)); 2970 2971 if (c->ops->is_enabled) 2972 seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N'); 2973 else if (!c->ops->enable) 2974 seq_printf(s, " %9c\n", 'Y'); 2975 else 2976 seq_printf(s, " %9c\n", '?'); 2977 } 2978 2979 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2980 int level) 2981 { 2982 struct clk_core *child; 2983 2984 clk_pm_runtime_get(c); 2985 clk_summary_show_one(s, c, level); 2986 clk_pm_runtime_put(c); 2987 2988 hlist_for_each_entry(child, &c->children, child_node) 2989 clk_summary_show_subtree(s, child, level + 1); 2990 } 2991 2992 static int clk_summary_show(struct seq_file *s, void *data) 2993 { 2994 struct clk_core *c; 2995 struct hlist_head **lists = (struct hlist_head **)s->private; 2996 2997 seq_puts(s, " enable prepare protect duty hardware\n"); 2998 seq_puts(s, " clock count count count rate accuracy phase cycle enable\n"); 2999 seq_puts(s, "-------------------------------------------------------------------------------------------------------\n"); 3000 3001 clk_prepare_lock(); 3002 3003 for (; *lists; lists++) 3004 hlist_for_each_entry(c, *lists, child_node) 3005 clk_summary_show_subtree(s, c, 0); 3006 3007 clk_prepare_unlock(); 3008 3009 return 0; 3010 } 3011 DEFINE_SHOW_ATTRIBUTE(clk_summary); 3012 3013 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 3014 { 3015 int phase; 3016 unsigned long min_rate, max_rate; 3017 3018 clk_core_get_boundaries(c, &min_rate, &max_rate); 3019 3020 /* This should be JSON format, i.e. elements separated with a comma */ 3021 seq_printf(s, "\"%s\": { ", c->name); 3022 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 3023 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 3024 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 3025 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 3026 seq_printf(s, "\"min_rate\": %lu,", min_rate); 3027 seq_printf(s, "\"max_rate\": %lu,", max_rate); 3028 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 3029 phase = clk_core_get_phase(c); 3030 if (phase >= 0) 3031 seq_printf(s, "\"phase\": %d,", phase); 3032 seq_printf(s, "\"duty_cycle\": %u", 3033 clk_core_get_scaled_duty_cycle(c, 100000)); 3034 } 3035 3036 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3037 { 3038 struct clk_core *child; 3039 3040 clk_dump_one(s, c, level); 3041 3042 hlist_for_each_entry(child, &c->children, child_node) { 3043 seq_putc(s, ','); 3044 clk_dump_subtree(s, child, level + 1); 3045 } 3046 3047 seq_putc(s, '}'); 3048 } 3049 3050 static int clk_dump_show(struct seq_file *s, void *data) 3051 { 3052 struct clk_core *c; 3053 bool first_node = true; 3054 struct hlist_head **lists = (struct hlist_head **)s->private; 3055 3056 seq_putc(s, '{'); 3057 clk_prepare_lock(); 3058 3059 for (; *lists; lists++) { 3060 hlist_for_each_entry(c, *lists, child_node) { 3061 if (!first_node) 3062 seq_putc(s, ','); 3063 first_node = false; 3064 clk_dump_subtree(s, c, 0); 3065 } 3066 } 3067 3068 clk_prepare_unlock(); 3069 3070 seq_puts(s, "}\n"); 3071 return 0; 3072 } 3073 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3074 3075 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3076 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3077 /* 3078 * This can be dangerous, therefore don't provide any real compile time 3079 * configuration option for this feature. 3080 * People who want to use this will need to modify the source code directly. 3081 */ 3082 static int clk_rate_set(void *data, u64 val) 3083 { 3084 struct clk_core *core = data; 3085 int ret; 3086 3087 clk_prepare_lock(); 3088 ret = clk_core_set_rate_nolock(core, val); 3089 clk_prepare_unlock(); 3090 3091 return ret; 3092 } 3093 3094 #define clk_rate_mode 0644 3095 3096 static int clk_prepare_enable_set(void *data, u64 val) 3097 { 3098 struct clk_core *core = data; 3099 int ret = 0; 3100 3101 if (val) 3102 ret = clk_prepare_enable(core->hw->clk); 3103 else 3104 clk_disable_unprepare(core->hw->clk); 3105 3106 return ret; 3107 } 3108 3109 static int clk_prepare_enable_get(void *data, u64 *val) 3110 { 3111 struct clk_core *core = data; 3112 3113 *val = core->enable_count && core->prepare_count; 3114 return 0; 3115 } 3116 3117 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3118 clk_prepare_enable_set, "%llu\n"); 3119 3120 #else 3121 #define clk_rate_set NULL 3122 #define clk_rate_mode 0444 3123 #endif 3124 3125 static int clk_rate_get(void *data, u64 *val) 3126 { 3127 struct clk_core *core = data; 3128 3129 clk_prepare_lock(); 3130 *val = clk_core_get_rate_recalc(core); 3131 clk_prepare_unlock(); 3132 3133 return 0; 3134 } 3135 3136 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3137 3138 static const struct { 3139 unsigned long flag; 3140 const char *name; 3141 } clk_flags[] = { 3142 #define ENTRY(f) { f, #f } 3143 ENTRY(CLK_SET_RATE_GATE), 3144 ENTRY(CLK_SET_PARENT_GATE), 3145 ENTRY(CLK_SET_RATE_PARENT), 3146 ENTRY(CLK_IGNORE_UNUSED), 3147 ENTRY(CLK_GET_RATE_NOCACHE), 3148 ENTRY(CLK_SET_RATE_NO_REPARENT), 3149 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3150 ENTRY(CLK_RECALC_NEW_RATES), 3151 ENTRY(CLK_SET_RATE_UNGATE), 3152 ENTRY(CLK_IS_CRITICAL), 3153 ENTRY(CLK_OPS_PARENT_ENABLE), 3154 ENTRY(CLK_DUTY_CYCLE_PARENT), 3155 #undef ENTRY 3156 }; 3157 3158 static int clk_flags_show(struct seq_file *s, void *data) 3159 { 3160 struct clk_core *core = s->private; 3161 unsigned long flags = core->flags; 3162 unsigned int i; 3163 3164 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3165 if (flags & clk_flags[i].flag) { 3166 seq_printf(s, "%s\n", clk_flags[i].name); 3167 flags &= ~clk_flags[i].flag; 3168 } 3169 } 3170 if (flags) { 3171 /* Unknown flags */ 3172 seq_printf(s, "0x%lx\n", flags); 3173 } 3174 3175 return 0; 3176 } 3177 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3178 3179 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3180 unsigned int i, char terminator) 3181 { 3182 struct clk_core *parent; 3183 3184 /* 3185 * Go through the following options to fetch a parent's name. 3186 * 3187 * 1. Fetch the registered parent clock and use its name 3188 * 2. Use the global (fallback) name if specified 3189 * 3. Use the local fw_name if provided 3190 * 4. Fetch parent clock's clock-output-name if DT index was set 3191 * 3192 * This may still fail in some cases, such as when the parent is 3193 * specified directly via a struct clk_hw pointer, but it isn't 3194 * registered (yet). 3195 */ 3196 parent = clk_core_get_parent_by_index(core, i); 3197 if (parent) 3198 seq_puts(s, parent->name); 3199 else if (core->parents[i].name) 3200 seq_puts(s, core->parents[i].name); 3201 else if (core->parents[i].fw_name) 3202 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3203 else if (core->parents[i].index >= 0) 3204 seq_puts(s, 3205 of_clk_get_parent_name(core->of_node, 3206 core->parents[i].index)); 3207 else 3208 seq_puts(s, "(missing)"); 3209 3210 seq_putc(s, terminator); 3211 } 3212 3213 static int possible_parents_show(struct seq_file *s, void *data) 3214 { 3215 struct clk_core *core = s->private; 3216 int i; 3217 3218 for (i = 0; i < core->num_parents - 1; i++) 3219 possible_parent_show(s, core, i, ' '); 3220 3221 possible_parent_show(s, core, i, '\n'); 3222 3223 return 0; 3224 } 3225 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3226 3227 static int current_parent_show(struct seq_file *s, void *data) 3228 { 3229 struct clk_core *core = s->private; 3230 3231 if (core->parent) 3232 seq_printf(s, "%s\n", core->parent->name); 3233 3234 return 0; 3235 } 3236 DEFINE_SHOW_ATTRIBUTE(current_parent); 3237 3238 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3239 static ssize_t current_parent_write(struct file *file, const char __user *ubuf, 3240 size_t count, loff_t *ppos) 3241 { 3242 struct seq_file *s = file->private_data; 3243 struct clk_core *core = s->private; 3244 struct clk_core *parent; 3245 u8 idx; 3246 int err; 3247 3248 err = kstrtou8_from_user(ubuf, count, 0, &idx); 3249 if (err < 0) 3250 return err; 3251 3252 parent = clk_core_get_parent_by_index(core, idx); 3253 if (!parent) 3254 return -ENOENT; 3255 3256 clk_prepare_lock(); 3257 err = clk_core_set_parent_nolock(core, parent); 3258 clk_prepare_unlock(); 3259 if (err) 3260 return err; 3261 3262 return count; 3263 } 3264 3265 static const struct file_operations current_parent_rw_fops = { 3266 .open = current_parent_open, 3267 .write = current_parent_write, 3268 .read = seq_read, 3269 .llseek = seq_lseek, 3270 .release = single_release, 3271 }; 3272 #endif 3273 3274 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3275 { 3276 struct clk_core *core = s->private; 3277 struct clk_duty *duty = &core->duty; 3278 3279 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3280 3281 return 0; 3282 } 3283 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3284 3285 static int clk_min_rate_show(struct seq_file *s, void *data) 3286 { 3287 struct clk_core *core = s->private; 3288 unsigned long min_rate, max_rate; 3289 3290 clk_prepare_lock(); 3291 clk_core_get_boundaries(core, &min_rate, &max_rate); 3292 clk_prepare_unlock(); 3293 seq_printf(s, "%lu\n", min_rate); 3294 3295 return 0; 3296 } 3297 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3298 3299 static int clk_max_rate_show(struct seq_file *s, void *data) 3300 { 3301 struct clk_core *core = s->private; 3302 unsigned long min_rate, max_rate; 3303 3304 clk_prepare_lock(); 3305 clk_core_get_boundaries(core, &min_rate, &max_rate); 3306 clk_prepare_unlock(); 3307 seq_printf(s, "%lu\n", max_rate); 3308 3309 return 0; 3310 } 3311 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3312 3313 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3314 { 3315 struct dentry *root; 3316 3317 if (!core || !pdentry) 3318 return; 3319 3320 root = debugfs_create_dir(core->name, pdentry); 3321 core->dentry = root; 3322 3323 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3324 &clk_rate_fops); 3325 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3326 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3327 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3328 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3329 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3330 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3331 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3332 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3333 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3334 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3335 &clk_duty_cycle_fops); 3336 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3337 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3338 &clk_prepare_enable_fops); 3339 3340 if (core->num_parents > 1) 3341 debugfs_create_file("clk_parent", 0644, root, core, 3342 ¤t_parent_rw_fops); 3343 else 3344 #endif 3345 if (core->num_parents > 0) 3346 debugfs_create_file("clk_parent", 0444, root, core, 3347 ¤t_parent_fops); 3348 3349 if (core->num_parents > 1) 3350 debugfs_create_file("clk_possible_parents", 0444, root, core, 3351 &possible_parents_fops); 3352 3353 if (core->ops->debug_init) 3354 core->ops->debug_init(core->hw, core->dentry); 3355 } 3356 3357 /** 3358 * clk_debug_register - add a clk node to the debugfs clk directory 3359 * @core: the clk being added to the debugfs clk directory 3360 * 3361 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3362 * initialized. Otherwise it bails out early since the debugfs clk directory 3363 * will be created lazily by clk_debug_init as part of a late_initcall. 3364 */ 3365 static void clk_debug_register(struct clk_core *core) 3366 { 3367 mutex_lock(&clk_debug_lock); 3368 hlist_add_head(&core->debug_node, &clk_debug_list); 3369 if (inited) 3370 clk_debug_create_one(core, rootdir); 3371 mutex_unlock(&clk_debug_lock); 3372 } 3373 3374 /** 3375 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3376 * @core: the clk being removed from the debugfs clk directory 3377 * 3378 * Dynamically removes a clk and all its child nodes from the 3379 * debugfs clk directory if clk->dentry points to debugfs created by 3380 * clk_debug_register in __clk_core_init. 3381 */ 3382 static void clk_debug_unregister(struct clk_core *core) 3383 { 3384 mutex_lock(&clk_debug_lock); 3385 hlist_del_init(&core->debug_node); 3386 debugfs_remove_recursive(core->dentry); 3387 core->dentry = NULL; 3388 mutex_unlock(&clk_debug_lock); 3389 } 3390 3391 /** 3392 * clk_debug_init - lazily populate the debugfs clk directory 3393 * 3394 * clks are often initialized very early during boot before memory can be 3395 * dynamically allocated and well before debugfs is setup. This function 3396 * populates the debugfs clk directory once at boot-time when we know that 3397 * debugfs is setup. It should only be called once at boot-time, all other clks 3398 * added dynamically will be done so with clk_debug_register. 3399 */ 3400 static int __init clk_debug_init(void) 3401 { 3402 struct clk_core *core; 3403 3404 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3405 pr_warn("\n"); 3406 pr_warn("********************************************************************\n"); 3407 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3408 pr_warn("** **\n"); 3409 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n"); 3410 pr_warn("** **\n"); 3411 pr_warn("** This means that this kernel is built to expose clk operations **\n"); 3412 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n"); 3413 pr_warn("** to userspace, which may compromise security on your system. **\n"); 3414 pr_warn("** **\n"); 3415 pr_warn("** If you see this message and you are not debugging the **\n"); 3416 pr_warn("** kernel, report this immediately to your vendor! **\n"); 3417 pr_warn("** **\n"); 3418 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3419 pr_warn("********************************************************************\n"); 3420 #endif 3421 3422 rootdir = debugfs_create_dir("clk", NULL); 3423 3424 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3425 &clk_summary_fops); 3426 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3427 &clk_dump_fops); 3428 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3429 &clk_summary_fops); 3430 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3431 &clk_dump_fops); 3432 3433 mutex_lock(&clk_debug_lock); 3434 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3435 clk_debug_create_one(core, rootdir); 3436 3437 inited = 1; 3438 mutex_unlock(&clk_debug_lock); 3439 3440 return 0; 3441 } 3442 late_initcall(clk_debug_init); 3443 #else 3444 static inline void clk_debug_register(struct clk_core *core) { } 3445 static inline void clk_debug_unregister(struct clk_core *core) 3446 { 3447 } 3448 #endif 3449 3450 static void clk_core_reparent_orphans_nolock(void) 3451 { 3452 struct clk_core *orphan; 3453 struct hlist_node *tmp2; 3454 3455 /* 3456 * walk the list of orphan clocks and reparent any that newly finds a 3457 * parent. 3458 */ 3459 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3460 struct clk_core *parent = __clk_init_parent(orphan); 3461 3462 /* 3463 * We need to use __clk_set_parent_before() and _after() to 3464 * to properly migrate any prepare/enable count of the orphan 3465 * clock. This is important for CLK_IS_CRITICAL clocks, which 3466 * are enabled during init but might not have a parent yet. 3467 */ 3468 if (parent) { 3469 /* update the clk tree topology */ 3470 __clk_set_parent_before(orphan, parent); 3471 __clk_set_parent_after(orphan, parent, NULL); 3472 __clk_recalc_accuracies(orphan); 3473 __clk_recalc_rates(orphan, 0); 3474 3475 /* 3476 * __clk_init_parent() will set the initial req_rate to 3477 * 0 if the clock doesn't have clk_ops::recalc_rate and 3478 * is an orphan when it's registered. 3479 * 3480 * 'req_rate' is used by clk_set_rate_range() and 3481 * clk_put() to trigger a clk_set_rate() call whenever 3482 * the boundaries are modified. Let's make sure 3483 * 'req_rate' is set to something non-zero so that 3484 * clk_set_rate_range() doesn't drop the frequency. 3485 */ 3486 orphan->req_rate = orphan->rate; 3487 } 3488 } 3489 } 3490 3491 /** 3492 * __clk_core_init - initialize the data structures in a struct clk_core 3493 * @core: clk_core being initialized 3494 * 3495 * Initializes the lists in struct clk_core, queries the hardware for the 3496 * parent and rate and sets them both. 3497 */ 3498 static int __clk_core_init(struct clk_core *core) 3499 { 3500 int ret; 3501 struct clk_core *parent; 3502 unsigned long rate; 3503 int phase; 3504 3505 clk_prepare_lock(); 3506 3507 /* 3508 * Set hw->core after grabbing the prepare_lock to synchronize with 3509 * callers of clk_core_fill_parent_index() where we treat hw->core 3510 * being NULL as the clk not being registered yet. This is crucial so 3511 * that clks aren't parented until their parent is fully registered. 3512 */ 3513 core->hw->core = core; 3514 3515 ret = clk_pm_runtime_get(core); 3516 if (ret) 3517 goto unlock; 3518 3519 /* check to see if a clock with this name is already registered */ 3520 if (clk_core_lookup(core->name)) { 3521 pr_debug("%s: clk %s already initialized\n", 3522 __func__, core->name); 3523 ret = -EEXIST; 3524 goto out; 3525 } 3526 3527 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3528 if (core->ops->set_rate && 3529 !((core->ops->round_rate || core->ops->determine_rate) && 3530 core->ops->recalc_rate)) { 3531 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3532 __func__, core->name); 3533 ret = -EINVAL; 3534 goto out; 3535 } 3536 3537 if (core->ops->set_parent && !core->ops->get_parent) { 3538 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3539 __func__, core->name); 3540 ret = -EINVAL; 3541 goto out; 3542 } 3543 3544 if (core->num_parents > 1 && !core->ops->get_parent) { 3545 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3546 __func__, core->name); 3547 ret = -EINVAL; 3548 goto out; 3549 } 3550 3551 if (core->ops->set_rate_and_parent && 3552 !(core->ops->set_parent && core->ops->set_rate)) { 3553 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3554 __func__, core->name); 3555 ret = -EINVAL; 3556 goto out; 3557 } 3558 3559 /* 3560 * optional platform-specific magic 3561 * 3562 * The .init callback is not used by any of the basic clock types, but 3563 * exists for weird hardware that must perform initialization magic for 3564 * CCF to get an accurate view of clock for any other callbacks. It may 3565 * also be used needs to perform dynamic allocations. Such allocation 3566 * must be freed in the terminate() callback. 3567 * This callback shall not be used to initialize the parameters state, 3568 * such as rate, parent, etc ... 3569 * 3570 * If it exist, this callback should called before any other callback of 3571 * the clock 3572 */ 3573 if (core->ops->init) { 3574 ret = core->ops->init(core->hw); 3575 if (ret) 3576 goto out; 3577 } 3578 3579 parent = core->parent = __clk_init_parent(core); 3580 3581 /* 3582 * Populate core->parent if parent has already been clk_core_init'd. If 3583 * parent has not yet been clk_core_init'd then place clk in the orphan 3584 * list. If clk doesn't have any parents then place it in the root 3585 * clk list. 3586 * 3587 * Every time a new clk is clk_init'd then we walk the list of orphan 3588 * clocks and re-parent any that are children of the clock currently 3589 * being clk_init'd. 3590 */ 3591 if (parent) { 3592 hlist_add_head(&core->child_node, &parent->children); 3593 core->orphan = parent->orphan; 3594 } else if (!core->num_parents) { 3595 hlist_add_head(&core->child_node, &clk_root_list); 3596 core->orphan = false; 3597 } else { 3598 hlist_add_head(&core->child_node, &clk_orphan_list); 3599 core->orphan = true; 3600 } 3601 3602 /* 3603 * Set clk's accuracy. The preferred method is to use 3604 * .recalc_accuracy. For simple clocks and lazy developers the default 3605 * fallback is to use the parent's accuracy. If a clock doesn't have a 3606 * parent (or is orphaned) then accuracy is set to zero (perfect 3607 * clock). 3608 */ 3609 if (core->ops->recalc_accuracy) 3610 core->accuracy = core->ops->recalc_accuracy(core->hw, 3611 clk_core_get_accuracy_no_lock(parent)); 3612 else if (parent) 3613 core->accuracy = parent->accuracy; 3614 else 3615 core->accuracy = 0; 3616 3617 /* 3618 * Set clk's phase by clk_core_get_phase() caching the phase. 3619 * Since a phase is by definition relative to its parent, just 3620 * query the current clock phase, or just assume it's in phase. 3621 */ 3622 phase = clk_core_get_phase(core); 3623 if (phase < 0) { 3624 ret = phase; 3625 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 3626 core->name); 3627 goto out; 3628 } 3629 3630 /* 3631 * Set clk's duty cycle. 3632 */ 3633 clk_core_update_duty_cycle_nolock(core); 3634 3635 /* 3636 * Set clk's rate. The preferred method is to use .recalc_rate. For 3637 * simple clocks and lazy developers the default fallback is to use the 3638 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3639 * then rate is set to zero. 3640 */ 3641 if (core->ops->recalc_rate) 3642 rate = core->ops->recalc_rate(core->hw, 3643 clk_core_get_rate_nolock(parent)); 3644 else if (parent) 3645 rate = parent->rate; 3646 else 3647 rate = 0; 3648 core->rate = core->req_rate = rate; 3649 3650 /* 3651 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3652 * don't get accidentally disabled when walking the orphan tree and 3653 * reparenting clocks 3654 */ 3655 if (core->flags & CLK_IS_CRITICAL) { 3656 ret = clk_core_prepare(core); 3657 if (ret) { 3658 pr_warn("%s: critical clk '%s' failed to prepare\n", 3659 __func__, core->name); 3660 goto out; 3661 } 3662 3663 ret = clk_core_enable_lock(core); 3664 if (ret) { 3665 pr_warn("%s: critical clk '%s' failed to enable\n", 3666 __func__, core->name); 3667 clk_core_unprepare(core); 3668 goto out; 3669 } 3670 } 3671 3672 clk_core_reparent_orphans_nolock(); 3673 3674 3675 kref_init(&core->ref); 3676 out: 3677 clk_pm_runtime_put(core); 3678 unlock: 3679 if (ret) { 3680 hlist_del_init(&core->child_node); 3681 core->hw->core = NULL; 3682 } 3683 3684 clk_prepare_unlock(); 3685 3686 if (!ret) 3687 clk_debug_register(core); 3688 3689 return ret; 3690 } 3691 3692 /** 3693 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3694 * @core: clk to add consumer to 3695 * @clk: consumer to link to a clk 3696 */ 3697 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3698 { 3699 clk_prepare_lock(); 3700 hlist_add_head(&clk->clks_node, &core->clks); 3701 clk_prepare_unlock(); 3702 } 3703 3704 /** 3705 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3706 * @clk: consumer to unlink 3707 */ 3708 static void clk_core_unlink_consumer(struct clk *clk) 3709 { 3710 lockdep_assert_held(&prepare_lock); 3711 hlist_del(&clk->clks_node); 3712 } 3713 3714 /** 3715 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3716 * @core: clk to allocate a consumer for 3717 * @dev_id: string describing device name 3718 * @con_id: connection ID string on device 3719 * 3720 * Returns: clk consumer left unlinked from the consumer list 3721 */ 3722 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3723 const char *con_id) 3724 { 3725 struct clk *clk; 3726 3727 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3728 if (!clk) 3729 return ERR_PTR(-ENOMEM); 3730 3731 clk->core = core; 3732 clk->dev_id = dev_id; 3733 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3734 clk->max_rate = ULONG_MAX; 3735 3736 return clk; 3737 } 3738 3739 /** 3740 * free_clk - Free a clk consumer 3741 * @clk: clk consumer to free 3742 * 3743 * Note, this assumes the clk has been unlinked from the clk_core consumer 3744 * list. 3745 */ 3746 static void free_clk(struct clk *clk) 3747 { 3748 kfree_const(clk->con_id); 3749 kfree(clk); 3750 } 3751 3752 /** 3753 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3754 * a clk_hw 3755 * @dev: clk consumer device 3756 * @hw: clk_hw associated with the clk being consumed 3757 * @dev_id: string describing device name 3758 * @con_id: connection ID string on device 3759 * 3760 * This is the main function used to create a clk pointer for use by clk 3761 * consumers. It connects a consumer to the clk_core and clk_hw structures 3762 * used by the framework and clk provider respectively. 3763 */ 3764 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3765 const char *dev_id, const char *con_id) 3766 { 3767 struct clk *clk; 3768 struct clk_core *core; 3769 3770 /* This is to allow this function to be chained to others */ 3771 if (IS_ERR_OR_NULL(hw)) 3772 return ERR_CAST(hw); 3773 3774 core = hw->core; 3775 clk = alloc_clk(core, dev_id, con_id); 3776 if (IS_ERR(clk)) 3777 return clk; 3778 clk->dev = dev; 3779 3780 if (!try_module_get(core->owner)) { 3781 free_clk(clk); 3782 return ERR_PTR(-ENOENT); 3783 } 3784 3785 kref_get(&core->ref); 3786 clk_core_link_consumer(core, clk); 3787 3788 return clk; 3789 } 3790 3791 /** 3792 * clk_hw_get_clk - get clk consumer given an clk_hw 3793 * @hw: clk_hw associated with the clk being consumed 3794 * @con_id: connection ID string on device 3795 * 3796 * Returns: new clk consumer 3797 * This is the function to be used by providers which need 3798 * to get a consumer clk and act on the clock element 3799 * Calls to this function must be balanced with calls clk_put() 3800 */ 3801 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id) 3802 { 3803 struct device *dev = hw->core->dev; 3804 const char *name = dev ? dev_name(dev) : NULL; 3805 3806 return clk_hw_create_clk(dev, hw, name, con_id); 3807 } 3808 EXPORT_SYMBOL(clk_hw_get_clk); 3809 3810 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3811 { 3812 const char *dst; 3813 3814 if (!src) { 3815 if (must_exist) 3816 return -EINVAL; 3817 return 0; 3818 } 3819 3820 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3821 if (!dst) 3822 return -ENOMEM; 3823 3824 return 0; 3825 } 3826 3827 static int clk_core_populate_parent_map(struct clk_core *core, 3828 const struct clk_init_data *init) 3829 { 3830 u8 num_parents = init->num_parents; 3831 const char * const *parent_names = init->parent_names; 3832 const struct clk_hw **parent_hws = init->parent_hws; 3833 const struct clk_parent_data *parent_data = init->parent_data; 3834 int i, ret = 0; 3835 struct clk_parent_map *parents, *parent; 3836 3837 if (!num_parents) 3838 return 0; 3839 3840 /* 3841 * Avoid unnecessary string look-ups of clk_core's possible parents by 3842 * having a cache of names/clk_hw pointers to clk_core pointers. 3843 */ 3844 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3845 core->parents = parents; 3846 if (!parents) 3847 return -ENOMEM; 3848 3849 /* Copy everything over because it might be __initdata */ 3850 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3851 parent->index = -1; 3852 if (parent_names) { 3853 /* throw a WARN if any entries are NULL */ 3854 WARN(!parent_names[i], 3855 "%s: invalid NULL in %s's .parent_names\n", 3856 __func__, core->name); 3857 ret = clk_cpy_name(&parent->name, parent_names[i], 3858 true); 3859 } else if (parent_data) { 3860 parent->hw = parent_data[i].hw; 3861 parent->index = parent_data[i].index; 3862 ret = clk_cpy_name(&parent->fw_name, 3863 parent_data[i].fw_name, false); 3864 if (!ret) 3865 ret = clk_cpy_name(&parent->name, 3866 parent_data[i].name, 3867 false); 3868 } else if (parent_hws) { 3869 parent->hw = parent_hws[i]; 3870 } else { 3871 ret = -EINVAL; 3872 WARN(1, "Must specify parents if num_parents > 0\n"); 3873 } 3874 3875 if (ret) { 3876 do { 3877 kfree_const(parents[i].name); 3878 kfree_const(parents[i].fw_name); 3879 } while (--i >= 0); 3880 kfree(parents); 3881 3882 return ret; 3883 } 3884 } 3885 3886 return 0; 3887 } 3888 3889 static void clk_core_free_parent_map(struct clk_core *core) 3890 { 3891 int i = core->num_parents; 3892 3893 if (!core->num_parents) 3894 return; 3895 3896 while (--i >= 0) { 3897 kfree_const(core->parents[i].name); 3898 kfree_const(core->parents[i].fw_name); 3899 } 3900 3901 kfree(core->parents); 3902 } 3903 3904 static struct clk * 3905 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3906 { 3907 int ret; 3908 struct clk_core *core; 3909 const struct clk_init_data *init = hw->init; 3910 3911 /* 3912 * The init data is not supposed to be used outside of registration path. 3913 * Set it to NULL so that provider drivers can't use it either and so that 3914 * we catch use of hw->init early on in the core. 3915 */ 3916 hw->init = NULL; 3917 3918 core = kzalloc(sizeof(*core), GFP_KERNEL); 3919 if (!core) { 3920 ret = -ENOMEM; 3921 goto fail_out; 3922 } 3923 3924 core->name = kstrdup_const(init->name, GFP_KERNEL); 3925 if (!core->name) { 3926 ret = -ENOMEM; 3927 goto fail_name; 3928 } 3929 3930 if (WARN_ON(!init->ops)) { 3931 ret = -EINVAL; 3932 goto fail_ops; 3933 } 3934 core->ops = init->ops; 3935 3936 if (dev && pm_runtime_enabled(dev)) 3937 core->rpm_enabled = true; 3938 core->dev = dev; 3939 core->of_node = np; 3940 if (dev && dev->driver) 3941 core->owner = dev->driver->owner; 3942 core->hw = hw; 3943 core->flags = init->flags; 3944 core->num_parents = init->num_parents; 3945 core->min_rate = 0; 3946 core->max_rate = ULONG_MAX; 3947 3948 ret = clk_core_populate_parent_map(core, init); 3949 if (ret) 3950 goto fail_parents; 3951 3952 INIT_HLIST_HEAD(&core->clks); 3953 3954 /* 3955 * Don't call clk_hw_create_clk() here because that would pin the 3956 * provider module to itself and prevent it from ever being removed. 3957 */ 3958 hw->clk = alloc_clk(core, NULL, NULL); 3959 if (IS_ERR(hw->clk)) { 3960 ret = PTR_ERR(hw->clk); 3961 goto fail_create_clk; 3962 } 3963 3964 clk_core_link_consumer(core, hw->clk); 3965 3966 ret = __clk_core_init(core); 3967 if (!ret) 3968 return hw->clk; 3969 3970 clk_prepare_lock(); 3971 clk_core_unlink_consumer(hw->clk); 3972 clk_prepare_unlock(); 3973 3974 free_clk(hw->clk); 3975 hw->clk = NULL; 3976 3977 fail_create_clk: 3978 clk_core_free_parent_map(core); 3979 fail_parents: 3980 fail_ops: 3981 kfree_const(core->name); 3982 fail_name: 3983 kfree(core); 3984 fail_out: 3985 return ERR_PTR(ret); 3986 } 3987 3988 /** 3989 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 3990 * @dev: Device to get device node of 3991 * 3992 * Return: device node pointer of @dev, or the device node pointer of 3993 * @dev->parent if dev doesn't have a device node, or NULL if neither 3994 * @dev or @dev->parent have a device node. 3995 */ 3996 static struct device_node *dev_or_parent_of_node(struct device *dev) 3997 { 3998 struct device_node *np; 3999 4000 if (!dev) 4001 return NULL; 4002 4003 np = dev_of_node(dev); 4004 if (!np) 4005 np = dev_of_node(dev->parent); 4006 4007 return np; 4008 } 4009 4010 /** 4011 * clk_register - allocate a new clock, register it and return an opaque cookie 4012 * @dev: device that is registering this clock 4013 * @hw: link to hardware-specific clock data 4014 * 4015 * clk_register is the *deprecated* interface for populating the clock tree with 4016 * new clock nodes. Use clk_hw_register() instead. 4017 * 4018 * Returns: a pointer to the newly allocated struct clk which 4019 * cannot be dereferenced by driver code but may be used in conjunction with the 4020 * rest of the clock API. In the event of an error clk_register will return an 4021 * error code; drivers must test for an error code after calling clk_register. 4022 */ 4023 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 4024 { 4025 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 4026 } 4027 EXPORT_SYMBOL_GPL(clk_register); 4028 4029 /** 4030 * clk_hw_register - register a clk_hw and return an error code 4031 * @dev: device that is registering this clock 4032 * @hw: link to hardware-specific clock data 4033 * 4034 * clk_hw_register is the primary interface for populating the clock tree with 4035 * new clock nodes. It returns an integer equal to zero indicating success or 4036 * less than zero indicating failure. Drivers must test for an error code after 4037 * calling clk_hw_register(). 4038 */ 4039 int clk_hw_register(struct device *dev, struct clk_hw *hw) 4040 { 4041 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 4042 hw)); 4043 } 4044 EXPORT_SYMBOL_GPL(clk_hw_register); 4045 4046 /* 4047 * of_clk_hw_register - register a clk_hw and return an error code 4048 * @node: device_node of device that is registering this clock 4049 * @hw: link to hardware-specific clock data 4050 * 4051 * of_clk_hw_register() is the primary interface for populating the clock tree 4052 * with new clock nodes when a struct device is not available, but a struct 4053 * device_node is. It returns an integer equal to zero indicating success or 4054 * less than zero indicating failure. Drivers must test for an error code after 4055 * calling of_clk_hw_register(). 4056 */ 4057 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 4058 { 4059 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 4060 } 4061 EXPORT_SYMBOL_GPL(of_clk_hw_register); 4062 4063 /* Free memory allocated for a clock. */ 4064 static void __clk_release(struct kref *ref) 4065 { 4066 struct clk_core *core = container_of(ref, struct clk_core, ref); 4067 4068 lockdep_assert_held(&prepare_lock); 4069 4070 clk_core_free_parent_map(core); 4071 kfree_const(core->name); 4072 kfree(core); 4073 } 4074 4075 /* 4076 * Empty clk_ops for unregistered clocks. These are used temporarily 4077 * after clk_unregister() was called on a clock and until last clock 4078 * consumer calls clk_put() and the struct clk object is freed. 4079 */ 4080 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 4081 { 4082 return -ENXIO; 4083 } 4084 4085 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 4086 { 4087 WARN_ON_ONCE(1); 4088 } 4089 4090 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 4091 unsigned long parent_rate) 4092 { 4093 return -ENXIO; 4094 } 4095 4096 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 4097 { 4098 return -ENXIO; 4099 } 4100 4101 static const struct clk_ops clk_nodrv_ops = { 4102 .enable = clk_nodrv_prepare_enable, 4103 .disable = clk_nodrv_disable_unprepare, 4104 .prepare = clk_nodrv_prepare_enable, 4105 .unprepare = clk_nodrv_disable_unprepare, 4106 .set_rate = clk_nodrv_set_rate, 4107 .set_parent = clk_nodrv_set_parent, 4108 }; 4109 4110 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4111 const struct clk_core *target) 4112 { 4113 int i; 4114 struct clk_core *child; 4115 4116 for (i = 0; i < root->num_parents; i++) 4117 if (root->parents[i].core == target) 4118 root->parents[i].core = NULL; 4119 4120 hlist_for_each_entry(child, &root->children, child_node) 4121 clk_core_evict_parent_cache_subtree(child, target); 4122 } 4123 4124 /* Remove this clk from all parent caches */ 4125 static void clk_core_evict_parent_cache(struct clk_core *core) 4126 { 4127 const struct hlist_head **lists; 4128 struct clk_core *root; 4129 4130 lockdep_assert_held(&prepare_lock); 4131 4132 for (lists = all_lists; *lists; lists++) 4133 hlist_for_each_entry(root, *lists, child_node) 4134 clk_core_evict_parent_cache_subtree(root, core); 4135 4136 } 4137 4138 /** 4139 * clk_unregister - unregister a currently registered clock 4140 * @clk: clock to unregister 4141 */ 4142 void clk_unregister(struct clk *clk) 4143 { 4144 unsigned long flags; 4145 const struct clk_ops *ops; 4146 4147 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4148 return; 4149 4150 clk_debug_unregister(clk->core); 4151 4152 clk_prepare_lock(); 4153 4154 ops = clk->core->ops; 4155 if (ops == &clk_nodrv_ops) { 4156 pr_err("%s: unregistered clock: %s\n", __func__, 4157 clk->core->name); 4158 goto unlock; 4159 } 4160 /* 4161 * Assign empty clock ops for consumers that might still hold 4162 * a reference to this clock. 4163 */ 4164 flags = clk_enable_lock(); 4165 clk->core->ops = &clk_nodrv_ops; 4166 clk_enable_unlock(flags); 4167 4168 if (ops->terminate) 4169 ops->terminate(clk->core->hw); 4170 4171 if (!hlist_empty(&clk->core->children)) { 4172 struct clk_core *child; 4173 struct hlist_node *t; 4174 4175 /* Reparent all children to the orphan list. */ 4176 hlist_for_each_entry_safe(child, t, &clk->core->children, 4177 child_node) 4178 clk_core_set_parent_nolock(child, NULL); 4179 } 4180 4181 clk_core_evict_parent_cache(clk->core); 4182 4183 hlist_del_init(&clk->core->child_node); 4184 4185 if (clk->core->prepare_count) 4186 pr_warn("%s: unregistering prepared clock: %s\n", 4187 __func__, clk->core->name); 4188 4189 if (clk->core->protect_count) 4190 pr_warn("%s: unregistering protected clock: %s\n", 4191 __func__, clk->core->name); 4192 4193 kref_put(&clk->core->ref, __clk_release); 4194 free_clk(clk); 4195 unlock: 4196 clk_prepare_unlock(); 4197 } 4198 EXPORT_SYMBOL_GPL(clk_unregister); 4199 4200 /** 4201 * clk_hw_unregister - unregister a currently registered clk_hw 4202 * @hw: hardware-specific clock data to unregister 4203 */ 4204 void clk_hw_unregister(struct clk_hw *hw) 4205 { 4206 clk_unregister(hw->clk); 4207 } 4208 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4209 4210 static void devm_clk_unregister_cb(struct device *dev, void *res) 4211 { 4212 clk_unregister(*(struct clk **)res); 4213 } 4214 4215 static void devm_clk_hw_unregister_cb(struct device *dev, void *res) 4216 { 4217 clk_hw_unregister(*(struct clk_hw **)res); 4218 } 4219 4220 /** 4221 * devm_clk_register - resource managed clk_register() 4222 * @dev: device that is registering this clock 4223 * @hw: link to hardware-specific clock data 4224 * 4225 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4226 * 4227 * Clocks returned from this function are automatically clk_unregister()ed on 4228 * driver detach. See clk_register() for more information. 4229 */ 4230 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4231 { 4232 struct clk *clk; 4233 struct clk **clkp; 4234 4235 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL); 4236 if (!clkp) 4237 return ERR_PTR(-ENOMEM); 4238 4239 clk = clk_register(dev, hw); 4240 if (!IS_ERR(clk)) { 4241 *clkp = clk; 4242 devres_add(dev, clkp); 4243 } else { 4244 devres_free(clkp); 4245 } 4246 4247 return clk; 4248 } 4249 EXPORT_SYMBOL_GPL(devm_clk_register); 4250 4251 /** 4252 * devm_clk_hw_register - resource managed clk_hw_register() 4253 * @dev: device that is registering this clock 4254 * @hw: link to hardware-specific clock data 4255 * 4256 * Managed clk_hw_register(). Clocks registered by this function are 4257 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4258 * for more information. 4259 */ 4260 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4261 { 4262 struct clk_hw **hwp; 4263 int ret; 4264 4265 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL); 4266 if (!hwp) 4267 return -ENOMEM; 4268 4269 ret = clk_hw_register(dev, hw); 4270 if (!ret) { 4271 *hwp = hw; 4272 devres_add(dev, hwp); 4273 } else { 4274 devres_free(hwp); 4275 } 4276 4277 return ret; 4278 } 4279 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4280 4281 static void devm_clk_release(struct device *dev, void *res) 4282 { 4283 clk_put(*(struct clk **)res); 4284 } 4285 4286 /** 4287 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk() 4288 * @dev: device that is registering this clock 4289 * @hw: clk_hw associated with the clk being consumed 4290 * @con_id: connection ID string on device 4291 * 4292 * Managed clk_hw_get_clk(). Clocks got with this function are 4293 * automatically clk_put() on driver detach. See clk_put() 4294 * for more information. 4295 */ 4296 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw, 4297 const char *con_id) 4298 { 4299 struct clk *clk; 4300 struct clk **clkp; 4301 4302 /* This should not happen because it would mean we have drivers 4303 * passing around clk_hw pointers instead of having the caller use 4304 * proper clk_get() style APIs 4305 */ 4306 WARN_ON_ONCE(dev != hw->core->dev); 4307 4308 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4309 if (!clkp) 4310 return ERR_PTR(-ENOMEM); 4311 4312 clk = clk_hw_get_clk(hw, con_id); 4313 if (!IS_ERR(clk)) { 4314 *clkp = clk; 4315 devres_add(dev, clkp); 4316 } else { 4317 devres_free(clkp); 4318 } 4319 4320 return clk; 4321 } 4322 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk); 4323 4324 /* 4325 * clkdev helpers 4326 */ 4327 4328 void __clk_put(struct clk *clk) 4329 { 4330 struct module *owner; 4331 4332 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4333 return; 4334 4335 clk_prepare_lock(); 4336 4337 /* 4338 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4339 * given user should be balanced with calls to clk_rate_exclusive_put() 4340 * and by that same consumer 4341 */ 4342 if (WARN_ON(clk->exclusive_count)) { 4343 /* We voiced our concern, let's sanitize the situation */ 4344 clk->core->protect_count -= (clk->exclusive_count - 1); 4345 clk_core_rate_unprotect(clk->core); 4346 clk->exclusive_count = 0; 4347 } 4348 4349 hlist_del(&clk->clks_node); 4350 if (clk->min_rate > clk->core->req_rate || 4351 clk->max_rate < clk->core->req_rate) 4352 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 4353 4354 owner = clk->core->owner; 4355 kref_put(&clk->core->ref, __clk_release); 4356 4357 clk_prepare_unlock(); 4358 4359 module_put(owner); 4360 4361 free_clk(clk); 4362 } 4363 4364 /*** clk rate change notifiers ***/ 4365 4366 /** 4367 * clk_notifier_register - add a clk rate change notifier 4368 * @clk: struct clk * to watch 4369 * @nb: struct notifier_block * with callback info 4370 * 4371 * Request notification when clk's rate changes. This uses an SRCU 4372 * notifier because we want it to block and notifier unregistrations are 4373 * uncommon. The callbacks associated with the notifier must not 4374 * re-enter into the clk framework by calling any top-level clk APIs; 4375 * this will cause a nested prepare_lock mutex. 4376 * 4377 * In all notification cases (pre, post and abort rate change) the original 4378 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4379 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4380 * 4381 * clk_notifier_register() must be called from non-atomic context. 4382 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4383 * allocation failure; otherwise, passes along the return value of 4384 * srcu_notifier_chain_register(). 4385 */ 4386 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4387 { 4388 struct clk_notifier *cn; 4389 int ret = -ENOMEM; 4390 4391 if (!clk || !nb) 4392 return -EINVAL; 4393 4394 clk_prepare_lock(); 4395 4396 /* search the list of notifiers for this clk */ 4397 list_for_each_entry(cn, &clk_notifier_list, node) 4398 if (cn->clk == clk) 4399 goto found; 4400 4401 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4402 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4403 if (!cn) 4404 goto out; 4405 4406 cn->clk = clk; 4407 srcu_init_notifier_head(&cn->notifier_head); 4408 4409 list_add(&cn->node, &clk_notifier_list); 4410 4411 found: 4412 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4413 4414 clk->core->notifier_count++; 4415 4416 out: 4417 clk_prepare_unlock(); 4418 4419 return ret; 4420 } 4421 EXPORT_SYMBOL_GPL(clk_notifier_register); 4422 4423 /** 4424 * clk_notifier_unregister - remove a clk rate change notifier 4425 * @clk: struct clk * 4426 * @nb: struct notifier_block * with callback info 4427 * 4428 * Request no further notification for changes to 'clk' and frees memory 4429 * allocated in clk_notifier_register. 4430 * 4431 * Returns -EINVAL if called with null arguments; otherwise, passes 4432 * along the return value of srcu_notifier_chain_unregister(). 4433 */ 4434 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4435 { 4436 struct clk_notifier *cn; 4437 int ret = -ENOENT; 4438 4439 if (!clk || !nb) 4440 return -EINVAL; 4441 4442 clk_prepare_lock(); 4443 4444 list_for_each_entry(cn, &clk_notifier_list, node) { 4445 if (cn->clk == clk) { 4446 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4447 4448 clk->core->notifier_count--; 4449 4450 /* XXX the notifier code should handle this better */ 4451 if (!cn->notifier_head.head) { 4452 srcu_cleanup_notifier_head(&cn->notifier_head); 4453 list_del(&cn->node); 4454 kfree(cn); 4455 } 4456 break; 4457 } 4458 } 4459 4460 clk_prepare_unlock(); 4461 4462 return ret; 4463 } 4464 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4465 4466 struct clk_notifier_devres { 4467 struct clk *clk; 4468 struct notifier_block *nb; 4469 }; 4470 4471 static void devm_clk_notifier_release(struct device *dev, void *res) 4472 { 4473 struct clk_notifier_devres *devres = res; 4474 4475 clk_notifier_unregister(devres->clk, devres->nb); 4476 } 4477 4478 int devm_clk_notifier_register(struct device *dev, struct clk *clk, 4479 struct notifier_block *nb) 4480 { 4481 struct clk_notifier_devres *devres; 4482 int ret; 4483 4484 devres = devres_alloc(devm_clk_notifier_release, 4485 sizeof(*devres), GFP_KERNEL); 4486 4487 if (!devres) 4488 return -ENOMEM; 4489 4490 ret = clk_notifier_register(clk, nb); 4491 if (!ret) { 4492 devres->clk = clk; 4493 devres->nb = nb; 4494 } else { 4495 devres_free(devres); 4496 } 4497 4498 return ret; 4499 } 4500 EXPORT_SYMBOL_GPL(devm_clk_notifier_register); 4501 4502 #ifdef CONFIG_OF 4503 static void clk_core_reparent_orphans(void) 4504 { 4505 clk_prepare_lock(); 4506 clk_core_reparent_orphans_nolock(); 4507 clk_prepare_unlock(); 4508 } 4509 4510 /** 4511 * struct of_clk_provider - Clock provider registration structure 4512 * @link: Entry in global list of clock providers 4513 * @node: Pointer to device tree node of clock provider 4514 * @get: Get clock callback. Returns NULL or a struct clk for the 4515 * given clock specifier 4516 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4517 * struct clk_hw for the given clock specifier 4518 * @data: context pointer to be passed into @get callback 4519 */ 4520 struct of_clk_provider { 4521 struct list_head link; 4522 4523 struct device_node *node; 4524 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4525 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4526 void *data; 4527 }; 4528 4529 extern struct of_device_id __clk_of_table; 4530 static const struct of_device_id __clk_of_table_sentinel 4531 __used __section("__clk_of_table_end"); 4532 4533 static LIST_HEAD(of_clk_providers); 4534 static DEFINE_MUTEX(of_clk_mutex); 4535 4536 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4537 void *data) 4538 { 4539 return data; 4540 } 4541 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4542 4543 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4544 { 4545 return data; 4546 } 4547 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4548 4549 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4550 { 4551 struct clk_onecell_data *clk_data = data; 4552 unsigned int idx = clkspec->args[0]; 4553 4554 if (idx >= clk_data->clk_num) { 4555 pr_err("%s: invalid clock index %u\n", __func__, idx); 4556 return ERR_PTR(-EINVAL); 4557 } 4558 4559 return clk_data->clks[idx]; 4560 } 4561 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4562 4563 struct clk_hw * 4564 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4565 { 4566 struct clk_hw_onecell_data *hw_data = data; 4567 unsigned int idx = clkspec->args[0]; 4568 4569 if (idx >= hw_data->num) { 4570 pr_err("%s: invalid index %u\n", __func__, idx); 4571 return ERR_PTR(-EINVAL); 4572 } 4573 4574 return hw_data->hws[idx]; 4575 } 4576 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4577 4578 /** 4579 * of_clk_add_provider() - Register a clock provider for a node 4580 * @np: Device node pointer associated with clock provider 4581 * @clk_src_get: callback for decoding clock 4582 * @data: context pointer for @clk_src_get callback. 4583 * 4584 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4585 */ 4586 int of_clk_add_provider(struct device_node *np, 4587 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4588 void *data), 4589 void *data) 4590 { 4591 struct of_clk_provider *cp; 4592 int ret; 4593 4594 if (!np) 4595 return 0; 4596 4597 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4598 if (!cp) 4599 return -ENOMEM; 4600 4601 cp->node = of_node_get(np); 4602 cp->data = data; 4603 cp->get = clk_src_get; 4604 4605 mutex_lock(&of_clk_mutex); 4606 list_add(&cp->link, &of_clk_providers); 4607 mutex_unlock(&of_clk_mutex); 4608 pr_debug("Added clock from %pOF\n", np); 4609 4610 clk_core_reparent_orphans(); 4611 4612 ret = of_clk_set_defaults(np, true); 4613 if (ret < 0) 4614 of_clk_del_provider(np); 4615 4616 fwnode_dev_initialized(&np->fwnode, true); 4617 4618 return ret; 4619 } 4620 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4621 4622 /** 4623 * of_clk_add_hw_provider() - Register a clock provider for a node 4624 * @np: Device node pointer associated with clock provider 4625 * @get: callback for decoding clk_hw 4626 * @data: context pointer for @get callback. 4627 */ 4628 int of_clk_add_hw_provider(struct device_node *np, 4629 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4630 void *data), 4631 void *data) 4632 { 4633 struct of_clk_provider *cp; 4634 int ret; 4635 4636 if (!np) 4637 return 0; 4638 4639 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4640 if (!cp) 4641 return -ENOMEM; 4642 4643 cp->node = of_node_get(np); 4644 cp->data = data; 4645 cp->get_hw = get; 4646 4647 mutex_lock(&of_clk_mutex); 4648 list_add(&cp->link, &of_clk_providers); 4649 mutex_unlock(&of_clk_mutex); 4650 pr_debug("Added clk_hw provider from %pOF\n", np); 4651 4652 clk_core_reparent_orphans(); 4653 4654 ret = of_clk_set_defaults(np, true); 4655 if (ret < 0) 4656 of_clk_del_provider(np); 4657 4658 fwnode_dev_initialized(&np->fwnode, true); 4659 4660 return ret; 4661 } 4662 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4663 4664 static void devm_of_clk_release_provider(struct device *dev, void *res) 4665 { 4666 of_clk_del_provider(*(struct device_node **)res); 4667 } 4668 4669 /* 4670 * We allow a child device to use its parent device as the clock provider node 4671 * for cases like MFD sub-devices where the child device driver wants to use 4672 * devm_*() APIs but not list the device in DT as a sub-node. 4673 */ 4674 static struct device_node *get_clk_provider_node(struct device *dev) 4675 { 4676 struct device_node *np, *parent_np; 4677 4678 np = dev->of_node; 4679 parent_np = dev->parent ? dev->parent->of_node : NULL; 4680 4681 if (!of_find_property(np, "#clock-cells", NULL)) 4682 if (of_find_property(parent_np, "#clock-cells", NULL)) 4683 np = parent_np; 4684 4685 return np; 4686 } 4687 4688 /** 4689 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4690 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4691 * @get: callback for decoding clk_hw 4692 * @data: context pointer for @get callback 4693 * 4694 * Registers clock provider for given device's node. If the device has no DT 4695 * node or if the device node lacks of clock provider information (#clock-cells) 4696 * then the parent device's node is scanned for this information. If parent node 4697 * has the #clock-cells then it is used in registration. Provider is 4698 * automatically released at device exit. 4699 * 4700 * Return: 0 on success or an errno on failure. 4701 */ 4702 int devm_of_clk_add_hw_provider(struct device *dev, 4703 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4704 void *data), 4705 void *data) 4706 { 4707 struct device_node **ptr, *np; 4708 int ret; 4709 4710 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4711 GFP_KERNEL); 4712 if (!ptr) 4713 return -ENOMEM; 4714 4715 np = get_clk_provider_node(dev); 4716 ret = of_clk_add_hw_provider(np, get, data); 4717 if (!ret) { 4718 *ptr = np; 4719 devres_add(dev, ptr); 4720 } else { 4721 devres_free(ptr); 4722 } 4723 4724 return ret; 4725 } 4726 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4727 4728 /** 4729 * of_clk_del_provider() - Remove a previously registered clock provider 4730 * @np: Device node pointer associated with clock provider 4731 */ 4732 void of_clk_del_provider(struct device_node *np) 4733 { 4734 struct of_clk_provider *cp; 4735 4736 if (!np) 4737 return; 4738 4739 mutex_lock(&of_clk_mutex); 4740 list_for_each_entry(cp, &of_clk_providers, link) { 4741 if (cp->node == np) { 4742 list_del(&cp->link); 4743 fwnode_dev_initialized(&np->fwnode, false); 4744 of_node_put(cp->node); 4745 kfree(cp); 4746 break; 4747 } 4748 } 4749 mutex_unlock(&of_clk_mutex); 4750 } 4751 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4752 4753 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4754 { 4755 struct device_node **np = res; 4756 4757 if (WARN_ON(!np || !*np)) 4758 return 0; 4759 4760 return *np == data; 4761 } 4762 4763 /** 4764 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4765 * @dev: Device to whose lifetime the clock provider was bound 4766 */ 4767 void devm_of_clk_del_provider(struct device *dev) 4768 { 4769 int ret; 4770 struct device_node *np = get_clk_provider_node(dev); 4771 4772 ret = devres_release(dev, devm_of_clk_release_provider, 4773 devm_clk_provider_match, np); 4774 4775 WARN_ON(ret); 4776 } 4777 EXPORT_SYMBOL(devm_of_clk_del_provider); 4778 4779 /** 4780 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4781 * @np: device node to parse clock specifier from 4782 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4783 * @name: clock name to find and parse. If name is NULL, the index is used 4784 * @out_args: Result of parsing the clock specifier 4785 * 4786 * Parses a device node's "clocks" and "clock-names" properties to find the 4787 * phandle and cells for the index or name that is desired. The resulting clock 4788 * specifier is placed into @out_args, or an errno is returned when there's a 4789 * parsing error. The @index argument is ignored if @name is non-NULL. 4790 * 4791 * Example: 4792 * 4793 * phandle1: clock-controller@1 { 4794 * #clock-cells = <2>; 4795 * } 4796 * 4797 * phandle2: clock-controller@2 { 4798 * #clock-cells = <1>; 4799 * } 4800 * 4801 * clock-consumer@3 { 4802 * clocks = <&phandle1 1 2 &phandle2 3>; 4803 * clock-names = "name1", "name2"; 4804 * } 4805 * 4806 * To get a device_node for `clock-controller@2' node you may call this 4807 * function a few different ways: 4808 * 4809 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4810 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4811 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4812 * 4813 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4814 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4815 * the "clock-names" property of @np. 4816 */ 4817 static int of_parse_clkspec(const struct device_node *np, int index, 4818 const char *name, struct of_phandle_args *out_args) 4819 { 4820 int ret = -ENOENT; 4821 4822 /* Walk up the tree of devices looking for a clock property that matches */ 4823 while (np) { 4824 /* 4825 * For named clocks, first look up the name in the 4826 * "clock-names" property. If it cannot be found, then index 4827 * will be an error code and of_parse_phandle_with_args() will 4828 * return -EINVAL. 4829 */ 4830 if (name) 4831 index = of_property_match_string(np, "clock-names", name); 4832 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4833 index, out_args); 4834 if (!ret) 4835 break; 4836 if (name && index >= 0) 4837 break; 4838 4839 /* 4840 * No matching clock found on this node. If the parent node 4841 * has a "clock-ranges" property, then we can try one of its 4842 * clocks. 4843 */ 4844 np = np->parent; 4845 if (np && !of_get_property(np, "clock-ranges", NULL)) 4846 break; 4847 index = 0; 4848 } 4849 4850 return ret; 4851 } 4852 4853 static struct clk_hw * 4854 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4855 struct of_phandle_args *clkspec) 4856 { 4857 struct clk *clk; 4858 4859 if (provider->get_hw) 4860 return provider->get_hw(clkspec, provider->data); 4861 4862 clk = provider->get(clkspec, provider->data); 4863 if (IS_ERR(clk)) 4864 return ERR_CAST(clk); 4865 return __clk_get_hw(clk); 4866 } 4867 4868 static struct clk_hw * 4869 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4870 { 4871 struct of_clk_provider *provider; 4872 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4873 4874 if (!clkspec) 4875 return ERR_PTR(-EINVAL); 4876 4877 mutex_lock(&of_clk_mutex); 4878 list_for_each_entry(provider, &of_clk_providers, link) { 4879 if (provider->node == clkspec->np) { 4880 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4881 if (!IS_ERR(hw)) 4882 break; 4883 } 4884 } 4885 mutex_unlock(&of_clk_mutex); 4886 4887 return hw; 4888 } 4889 4890 /** 4891 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4892 * @clkspec: pointer to a clock specifier data structure 4893 * 4894 * This function looks up a struct clk from the registered list of clock 4895 * providers, an input is a clock specifier data structure as returned 4896 * from the of_parse_phandle_with_args() function call. 4897 */ 4898 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4899 { 4900 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4901 4902 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4903 } 4904 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4905 4906 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4907 const char *con_id) 4908 { 4909 int ret; 4910 struct clk_hw *hw; 4911 struct of_phandle_args clkspec; 4912 4913 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4914 if (ret) 4915 return ERR_PTR(ret); 4916 4917 hw = of_clk_get_hw_from_clkspec(&clkspec); 4918 of_node_put(clkspec.np); 4919 4920 return hw; 4921 } 4922 4923 static struct clk *__of_clk_get(struct device_node *np, 4924 int index, const char *dev_id, 4925 const char *con_id) 4926 { 4927 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4928 4929 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4930 } 4931 4932 struct clk *of_clk_get(struct device_node *np, int index) 4933 { 4934 return __of_clk_get(np, index, np->full_name, NULL); 4935 } 4936 EXPORT_SYMBOL(of_clk_get); 4937 4938 /** 4939 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4940 * @np: pointer to clock consumer node 4941 * @name: name of consumer's clock input, or NULL for the first clock reference 4942 * 4943 * This function parses the clocks and clock-names properties, 4944 * and uses them to look up the struct clk from the registered list of clock 4945 * providers. 4946 */ 4947 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4948 { 4949 if (!np) 4950 return ERR_PTR(-ENOENT); 4951 4952 return __of_clk_get(np, 0, np->full_name, name); 4953 } 4954 EXPORT_SYMBOL(of_clk_get_by_name); 4955 4956 /** 4957 * of_clk_get_parent_count() - Count the number of clocks a device node has 4958 * @np: device node to count 4959 * 4960 * Returns: The number of clocks that are possible parents of this node 4961 */ 4962 unsigned int of_clk_get_parent_count(const struct device_node *np) 4963 { 4964 int count; 4965 4966 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4967 if (count < 0) 4968 return 0; 4969 4970 return count; 4971 } 4972 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4973 4974 const char *of_clk_get_parent_name(const struct device_node *np, int index) 4975 { 4976 struct of_phandle_args clkspec; 4977 struct property *prop; 4978 const char *clk_name; 4979 const __be32 *vp; 4980 u32 pv; 4981 int rc; 4982 int count; 4983 struct clk *clk; 4984 4985 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 4986 &clkspec); 4987 if (rc) 4988 return NULL; 4989 4990 index = clkspec.args_count ? clkspec.args[0] : 0; 4991 count = 0; 4992 4993 /* if there is an indices property, use it to transfer the index 4994 * specified into an array offset for the clock-output-names property. 4995 */ 4996 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 4997 if (index == pv) { 4998 index = count; 4999 break; 5000 } 5001 count++; 5002 } 5003 /* We went off the end of 'clock-indices' without finding it */ 5004 if (prop && !vp) 5005 return NULL; 5006 5007 if (of_property_read_string_index(clkspec.np, "clock-output-names", 5008 index, 5009 &clk_name) < 0) { 5010 /* 5011 * Best effort to get the name if the clock has been 5012 * registered with the framework. If the clock isn't 5013 * registered, we return the node name as the name of 5014 * the clock as long as #clock-cells = 0. 5015 */ 5016 clk = of_clk_get_from_provider(&clkspec); 5017 if (IS_ERR(clk)) { 5018 if (clkspec.args_count == 0) 5019 clk_name = clkspec.np->name; 5020 else 5021 clk_name = NULL; 5022 } else { 5023 clk_name = __clk_get_name(clk); 5024 clk_put(clk); 5025 } 5026 } 5027 5028 5029 of_node_put(clkspec.np); 5030 return clk_name; 5031 } 5032 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 5033 5034 /** 5035 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 5036 * number of parents 5037 * @np: Device node pointer associated with clock provider 5038 * @parents: pointer to char array that hold the parents' names 5039 * @size: size of the @parents array 5040 * 5041 * Return: number of parents for the clock node. 5042 */ 5043 int of_clk_parent_fill(struct device_node *np, const char **parents, 5044 unsigned int size) 5045 { 5046 unsigned int i = 0; 5047 5048 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 5049 i++; 5050 5051 return i; 5052 } 5053 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 5054 5055 struct clock_provider { 5056 void (*clk_init_cb)(struct device_node *); 5057 struct device_node *np; 5058 struct list_head node; 5059 }; 5060 5061 /* 5062 * This function looks for a parent clock. If there is one, then it 5063 * checks that the provider for this parent clock was initialized, in 5064 * this case the parent clock will be ready. 5065 */ 5066 static int parent_ready(struct device_node *np) 5067 { 5068 int i = 0; 5069 5070 while (true) { 5071 struct clk *clk = of_clk_get(np, i); 5072 5073 /* this parent is ready we can check the next one */ 5074 if (!IS_ERR(clk)) { 5075 clk_put(clk); 5076 i++; 5077 continue; 5078 } 5079 5080 /* at least one parent is not ready, we exit now */ 5081 if (PTR_ERR(clk) == -EPROBE_DEFER) 5082 return 0; 5083 5084 /* 5085 * Here we make assumption that the device tree is 5086 * written correctly. So an error means that there is 5087 * no more parent. As we didn't exit yet, then the 5088 * previous parent are ready. If there is no clock 5089 * parent, no need to wait for them, then we can 5090 * consider their absence as being ready 5091 */ 5092 return 1; 5093 } 5094 } 5095 5096 /** 5097 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5098 * @np: Device node pointer associated with clock provider 5099 * @index: clock index 5100 * @flags: pointer to top-level framework flags 5101 * 5102 * Detects if the clock-critical property exists and, if so, sets the 5103 * corresponding CLK_IS_CRITICAL flag. 5104 * 5105 * Do not use this function. It exists only for legacy Device Tree 5106 * bindings, such as the one-clock-per-node style that are outdated. 5107 * Those bindings typically put all clock data into .dts and the Linux 5108 * driver has no clock data, thus making it impossible to set this flag 5109 * correctly from the driver. Only those drivers may call 5110 * of_clk_detect_critical from their setup functions. 5111 * 5112 * Return: error code or zero on success 5113 */ 5114 int of_clk_detect_critical(struct device_node *np, int index, 5115 unsigned long *flags) 5116 { 5117 struct property *prop; 5118 const __be32 *cur; 5119 uint32_t idx; 5120 5121 if (!np || !flags) 5122 return -EINVAL; 5123 5124 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 5125 if (index == idx) 5126 *flags |= CLK_IS_CRITICAL; 5127 5128 return 0; 5129 } 5130 5131 /** 5132 * of_clk_init() - Scan and init clock providers from the DT 5133 * @matches: array of compatible values and init functions for providers. 5134 * 5135 * This function scans the device tree for matching clock providers 5136 * and calls their initialization functions. It also does it by trying 5137 * to follow the dependencies. 5138 */ 5139 void __init of_clk_init(const struct of_device_id *matches) 5140 { 5141 const struct of_device_id *match; 5142 struct device_node *np; 5143 struct clock_provider *clk_provider, *next; 5144 bool is_init_done; 5145 bool force = false; 5146 LIST_HEAD(clk_provider_list); 5147 5148 if (!matches) 5149 matches = &__clk_of_table; 5150 5151 /* First prepare the list of the clocks providers */ 5152 for_each_matching_node_and_match(np, matches, &match) { 5153 struct clock_provider *parent; 5154 5155 if (!of_device_is_available(np)) 5156 continue; 5157 5158 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5159 if (!parent) { 5160 list_for_each_entry_safe(clk_provider, next, 5161 &clk_provider_list, node) { 5162 list_del(&clk_provider->node); 5163 of_node_put(clk_provider->np); 5164 kfree(clk_provider); 5165 } 5166 of_node_put(np); 5167 return; 5168 } 5169 5170 parent->clk_init_cb = match->data; 5171 parent->np = of_node_get(np); 5172 list_add_tail(&parent->node, &clk_provider_list); 5173 } 5174 5175 while (!list_empty(&clk_provider_list)) { 5176 is_init_done = false; 5177 list_for_each_entry_safe(clk_provider, next, 5178 &clk_provider_list, node) { 5179 if (force || parent_ready(clk_provider->np)) { 5180 5181 /* Don't populate platform devices */ 5182 of_node_set_flag(clk_provider->np, 5183 OF_POPULATED); 5184 5185 clk_provider->clk_init_cb(clk_provider->np); 5186 of_clk_set_defaults(clk_provider->np, true); 5187 5188 list_del(&clk_provider->node); 5189 of_node_put(clk_provider->np); 5190 kfree(clk_provider); 5191 is_init_done = true; 5192 } 5193 } 5194 5195 /* 5196 * We didn't manage to initialize any of the 5197 * remaining providers during the last loop, so now we 5198 * initialize all the remaining ones unconditionally 5199 * in case the clock parent was not mandatory 5200 */ 5201 if (!is_init_done) 5202 force = true; 5203 } 5204 } 5205 #endif 5206