1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/clk.txt 10 */ 11 12 #include <linux/clk-provider.h> 13 #include <linux/clk/clk-conf.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/spinlock.h> 17 #include <linux/err.h> 18 #include <linux/list.h> 19 #include <linux/slab.h> 20 #include <linux/of.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/sched.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static long clk_core_get_accuracy(struct clk_core *clk); 41 static unsigned long clk_core_get_rate(struct clk_core *clk); 42 static int clk_core_get_phase(struct clk_core *clk); 43 static bool clk_core_is_prepared(struct clk_core *clk); 44 static bool clk_core_is_enabled(struct clk_core *clk); 45 static struct clk_core *clk_core_lookup(const char *name); 46 47 /*** private data structures ***/ 48 49 struct clk_core { 50 const char *name; 51 const struct clk_ops *ops; 52 struct clk_hw *hw; 53 struct module *owner; 54 struct clk_core *parent; 55 const char **parent_names; 56 struct clk_core **parents; 57 u8 num_parents; 58 u8 new_parent_index; 59 unsigned long rate; 60 unsigned long req_rate; 61 unsigned long new_rate; 62 struct clk_core *new_parent; 63 struct clk_core *new_child; 64 unsigned long flags; 65 unsigned int enable_count; 66 unsigned int prepare_count; 67 unsigned long accuracy; 68 int phase; 69 struct hlist_head children; 70 struct hlist_node child_node; 71 struct hlist_node debug_node; 72 struct hlist_head clks; 73 unsigned int notifier_count; 74 #ifdef CONFIG_DEBUG_FS 75 struct dentry *dentry; 76 #endif 77 struct kref ref; 78 }; 79 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/clk.h> 82 83 struct clk { 84 struct clk_core *core; 85 const char *dev_id; 86 const char *con_id; 87 unsigned long min_rate; 88 unsigned long max_rate; 89 struct hlist_node clks_node; 90 }; 91 92 /*** locking ***/ 93 static void clk_prepare_lock(void) 94 { 95 if (!mutex_trylock(&prepare_lock)) { 96 if (prepare_owner == current) { 97 prepare_refcnt++; 98 return; 99 } 100 mutex_lock(&prepare_lock); 101 } 102 WARN_ON_ONCE(prepare_owner != NULL); 103 WARN_ON_ONCE(prepare_refcnt != 0); 104 prepare_owner = current; 105 prepare_refcnt = 1; 106 } 107 108 static void clk_prepare_unlock(void) 109 { 110 WARN_ON_ONCE(prepare_owner != current); 111 WARN_ON_ONCE(prepare_refcnt == 0); 112 113 if (--prepare_refcnt) 114 return; 115 prepare_owner = NULL; 116 mutex_unlock(&prepare_lock); 117 } 118 119 static unsigned long clk_enable_lock(void) 120 { 121 unsigned long flags; 122 123 if (!spin_trylock_irqsave(&enable_lock, flags)) { 124 if (enable_owner == current) { 125 enable_refcnt++; 126 return flags; 127 } 128 spin_lock_irqsave(&enable_lock, flags); 129 } 130 WARN_ON_ONCE(enable_owner != NULL); 131 WARN_ON_ONCE(enable_refcnt != 0); 132 enable_owner = current; 133 enable_refcnt = 1; 134 return flags; 135 } 136 137 static void clk_enable_unlock(unsigned long flags) 138 { 139 WARN_ON_ONCE(enable_owner != current); 140 WARN_ON_ONCE(enable_refcnt == 0); 141 142 if (--enable_refcnt) 143 return; 144 enable_owner = NULL; 145 spin_unlock_irqrestore(&enable_lock, flags); 146 } 147 148 /*** debugfs support ***/ 149 150 #ifdef CONFIG_DEBUG_FS 151 #include <linux/debugfs.h> 152 153 static struct dentry *rootdir; 154 static int inited = 0; 155 static DEFINE_MUTEX(clk_debug_lock); 156 static HLIST_HEAD(clk_debug_list); 157 158 static struct hlist_head *all_lists[] = { 159 &clk_root_list, 160 &clk_orphan_list, 161 NULL, 162 }; 163 164 static struct hlist_head *orphan_list[] = { 165 &clk_orphan_list, 166 NULL, 167 }; 168 169 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 170 int level) 171 { 172 if (!c) 173 return; 174 175 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n", 176 level * 3 + 1, "", 177 30 - level * 3, c->name, 178 c->enable_count, c->prepare_count, clk_core_get_rate(c), 179 clk_core_get_accuracy(c), clk_core_get_phase(c)); 180 } 181 182 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 183 int level) 184 { 185 struct clk_core *child; 186 187 if (!c) 188 return; 189 190 clk_summary_show_one(s, c, level); 191 192 hlist_for_each_entry(child, &c->children, child_node) 193 clk_summary_show_subtree(s, child, level + 1); 194 } 195 196 static int clk_summary_show(struct seq_file *s, void *data) 197 { 198 struct clk_core *c; 199 struct hlist_head **lists = (struct hlist_head **)s->private; 200 201 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n"); 202 seq_puts(s, "----------------------------------------------------------------------------------------\n"); 203 204 clk_prepare_lock(); 205 206 for (; *lists; lists++) 207 hlist_for_each_entry(c, *lists, child_node) 208 clk_summary_show_subtree(s, c, 0); 209 210 clk_prepare_unlock(); 211 212 return 0; 213 } 214 215 216 static int clk_summary_open(struct inode *inode, struct file *file) 217 { 218 return single_open(file, clk_summary_show, inode->i_private); 219 } 220 221 static const struct file_operations clk_summary_fops = { 222 .open = clk_summary_open, 223 .read = seq_read, 224 .llseek = seq_lseek, 225 .release = single_release, 226 }; 227 228 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 229 { 230 if (!c) 231 return; 232 233 seq_printf(s, "\"%s\": { ", c->name); 234 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 235 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 236 seq_printf(s, "\"rate\": %lu", clk_core_get_rate(c)); 237 seq_printf(s, "\"accuracy\": %lu", clk_core_get_accuracy(c)); 238 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c)); 239 } 240 241 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 242 { 243 struct clk_core *child; 244 245 if (!c) 246 return; 247 248 clk_dump_one(s, c, level); 249 250 hlist_for_each_entry(child, &c->children, child_node) { 251 seq_printf(s, ","); 252 clk_dump_subtree(s, child, level + 1); 253 } 254 255 seq_printf(s, "}"); 256 } 257 258 static int clk_dump(struct seq_file *s, void *data) 259 { 260 struct clk_core *c; 261 bool first_node = true; 262 struct hlist_head **lists = (struct hlist_head **)s->private; 263 264 seq_printf(s, "{"); 265 266 clk_prepare_lock(); 267 268 for (; *lists; lists++) { 269 hlist_for_each_entry(c, *lists, child_node) { 270 if (!first_node) 271 seq_puts(s, ","); 272 first_node = false; 273 clk_dump_subtree(s, c, 0); 274 } 275 } 276 277 clk_prepare_unlock(); 278 279 seq_printf(s, "}"); 280 return 0; 281 } 282 283 284 static int clk_dump_open(struct inode *inode, struct file *file) 285 { 286 return single_open(file, clk_dump, inode->i_private); 287 } 288 289 static const struct file_operations clk_dump_fops = { 290 .open = clk_dump_open, 291 .read = seq_read, 292 .llseek = seq_lseek, 293 .release = single_release, 294 }; 295 296 static int clk_debug_create_one(struct clk_core *clk, struct dentry *pdentry) 297 { 298 struct dentry *d; 299 int ret = -ENOMEM; 300 301 if (!clk || !pdentry) { 302 ret = -EINVAL; 303 goto out; 304 } 305 306 d = debugfs_create_dir(clk->name, pdentry); 307 if (!d) 308 goto out; 309 310 clk->dentry = d; 311 312 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry, 313 (u32 *)&clk->rate); 314 if (!d) 315 goto err_out; 316 317 d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry, 318 (u32 *)&clk->accuracy); 319 if (!d) 320 goto err_out; 321 322 d = debugfs_create_u32("clk_phase", S_IRUGO, clk->dentry, 323 (u32 *)&clk->phase); 324 if (!d) 325 goto err_out; 326 327 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry, 328 (u32 *)&clk->flags); 329 if (!d) 330 goto err_out; 331 332 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry, 333 (u32 *)&clk->prepare_count); 334 if (!d) 335 goto err_out; 336 337 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry, 338 (u32 *)&clk->enable_count); 339 if (!d) 340 goto err_out; 341 342 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry, 343 (u32 *)&clk->notifier_count); 344 if (!d) 345 goto err_out; 346 347 if (clk->ops->debug_init) { 348 ret = clk->ops->debug_init(clk->hw, clk->dentry); 349 if (ret) 350 goto err_out; 351 } 352 353 ret = 0; 354 goto out; 355 356 err_out: 357 debugfs_remove_recursive(clk->dentry); 358 clk->dentry = NULL; 359 out: 360 return ret; 361 } 362 363 /** 364 * clk_debug_register - add a clk node to the debugfs clk tree 365 * @clk: the clk being added to the debugfs clk tree 366 * 367 * Dynamically adds a clk to the debugfs clk tree if debugfs has been 368 * initialized. Otherwise it bails out early since the debugfs clk tree 369 * will be created lazily by clk_debug_init as part of a late_initcall. 370 */ 371 static int clk_debug_register(struct clk_core *clk) 372 { 373 int ret = 0; 374 375 mutex_lock(&clk_debug_lock); 376 hlist_add_head(&clk->debug_node, &clk_debug_list); 377 378 if (!inited) 379 goto unlock; 380 381 ret = clk_debug_create_one(clk, rootdir); 382 unlock: 383 mutex_unlock(&clk_debug_lock); 384 385 return ret; 386 } 387 388 /** 389 * clk_debug_unregister - remove a clk node from the debugfs clk tree 390 * @clk: the clk being removed from the debugfs clk tree 391 * 392 * Dynamically removes a clk and all it's children clk nodes from the 393 * debugfs clk tree if clk->dentry points to debugfs created by 394 * clk_debug_register in __clk_init. 395 */ 396 static void clk_debug_unregister(struct clk_core *clk) 397 { 398 mutex_lock(&clk_debug_lock); 399 hlist_del_init(&clk->debug_node); 400 debugfs_remove_recursive(clk->dentry); 401 clk->dentry = NULL; 402 mutex_unlock(&clk_debug_lock); 403 } 404 405 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode, 406 void *data, const struct file_operations *fops) 407 { 408 struct dentry *d = NULL; 409 410 if (hw->core->dentry) 411 d = debugfs_create_file(name, mode, hw->core->dentry, data, 412 fops); 413 414 return d; 415 } 416 EXPORT_SYMBOL_GPL(clk_debugfs_add_file); 417 418 /** 419 * clk_debug_init - lazily create the debugfs clk tree visualization 420 * 421 * clks are often initialized very early during boot before memory can 422 * be dynamically allocated and well before debugfs is setup. 423 * clk_debug_init walks the clk tree hierarchy while holding 424 * prepare_lock and creates the topology as part of a late_initcall, 425 * thus insuring that clks initialized very early will still be 426 * represented in the debugfs clk tree. This function should only be 427 * called once at boot-time, and all other clks added dynamically will 428 * be done so with clk_debug_register. 429 */ 430 static int __init clk_debug_init(void) 431 { 432 struct clk_core *clk; 433 struct dentry *d; 434 435 rootdir = debugfs_create_dir("clk", NULL); 436 437 if (!rootdir) 438 return -ENOMEM; 439 440 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists, 441 &clk_summary_fops); 442 if (!d) 443 return -ENOMEM; 444 445 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists, 446 &clk_dump_fops); 447 if (!d) 448 return -ENOMEM; 449 450 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir, 451 &orphan_list, &clk_summary_fops); 452 if (!d) 453 return -ENOMEM; 454 455 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir, 456 &orphan_list, &clk_dump_fops); 457 if (!d) 458 return -ENOMEM; 459 460 mutex_lock(&clk_debug_lock); 461 hlist_for_each_entry(clk, &clk_debug_list, debug_node) 462 clk_debug_create_one(clk, rootdir); 463 464 inited = 1; 465 mutex_unlock(&clk_debug_lock); 466 467 return 0; 468 } 469 late_initcall(clk_debug_init); 470 #else 471 static inline int clk_debug_register(struct clk_core *clk) { return 0; } 472 static inline void clk_debug_reparent(struct clk_core *clk, 473 struct clk_core *new_parent) 474 { 475 } 476 static inline void clk_debug_unregister(struct clk_core *clk) 477 { 478 } 479 #endif 480 481 /* caller must hold prepare_lock */ 482 static void clk_unprepare_unused_subtree(struct clk_core *clk) 483 { 484 struct clk_core *child; 485 486 lockdep_assert_held(&prepare_lock); 487 488 hlist_for_each_entry(child, &clk->children, child_node) 489 clk_unprepare_unused_subtree(child); 490 491 if (clk->prepare_count) 492 return; 493 494 if (clk->flags & CLK_IGNORE_UNUSED) 495 return; 496 497 if (clk_core_is_prepared(clk)) { 498 trace_clk_unprepare(clk); 499 if (clk->ops->unprepare_unused) 500 clk->ops->unprepare_unused(clk->hw); 501 else if (clk->ops->unprepare) 502 clk->ops->unprepare(clk->hw); 503 trace_clk_unprepare_complete(clk); 504 } 505 } 506 507 /* caller must hold prepare_lock */ 508 static void clk_disable_unused_subtree(struct clk_core *clk) 509 { 510 struct clk_core *child; 511 unsigned long flags; 512 513 lockdep_assert_held(&prepare_lock); 514 515 hlist_for_each_entry(child, &clk->children, child_node) 516 clk_disable_unused_subtree(child); 517 518 flags = clk_enable_lock(); 519 520 if (clk->enable_count) 521 goto unlock_out; 522 523 if (clk->flags & CLK_IGNORE_UNUSED) 524 goto unlock_out; 525 526 /* 527 * some gate clocks have special needs during the disable-unused 528 * sequence. call .disable_unused if available, otherwise fall 529 * back to .disable 530 */ 531 if (clk_core_is_enabled(clk)) { 532 trace_clk_disable(clk); 533 if (clk->ops->disable_unused) 534 clk->ops->disable_unused(clk->hw); 535 else if (clk->ops->disable) 536 clk->ops->disable(clk->hw); 537 trace_clk_disable_complete(clk); 538 } 539 540 unlock_out: 541 clk_enable_unlock(flags); 542 } 543 544 static bool clk_ignore_unused; 545 static int __init clk_ignore_unused_setup(char *__unused) 546 { 547 clk_ignore_unused = true; 548 return 1; 549 } 550 __setup("clk_ignore_unused", clk_ignore_unused_setup); 551 552 static int clk_disable_unused(void) 553 { 554 struct clk_core *clk; 555 556 if (clk_ignore_unused) { 557 pr_warn("clk: Not disabling unused clocks\n"); 558 return 0; 559 } 560 561 clk_prepare_lock(); 562 563 hlist_for_each_entry(clk, &clk_root_list, child_node) 564 clk_disable_unused_subtree(clk); 565 566 hlist_for_each_entry(clk, &clk_orphan_list, child_node) 567 clk_disable_unused_subtree(clk); 568 569 hlist_for_each_entry(clk, &clk_root_list, child_node) 570 clk_unprepare_unused_subtree(clk); 571 572 hlist_for_each_entry(clk, &clk_orphan_list, child_node) 573 clk_unprepare_unused_subtree(clk); 574 575 clk_prepare_unlock(); 576 577 return 0; 578 } 579 late_initcall_sync(clk_disable_unused); 580 581 /*** helper functions ***/ 582 583 const char *__clk_get_name(struct clk *clk) 584 { 585 return !clk ? NULL : clk->core->name; 586 } 587 EXPORT_SYMBOL_GPL(__clk_get_name); 588 589 struct clk_hw *__clk_get_hw(struct clk *clk) 590 { 591 return !clk ? NULL : clk->core->hw; 592 } 593 EXPORT_SYMBOL_GPL(__clk_get_hw); 594 595 u8 __clk_get_num_parents(struct clk *clk) 596 { 597 return !clk ? 0 : clk->core->num_parents; 598 } 599 EXPORT_SYMBOL_GPL(__clk_get_num_parents); 600 601 struct clk *__clk_get_parent(struct clk *clk) 602 { 603 if (!clk) 604 return NULL; 605 606 /* TODO: Create a per-user clk and change callers to call clk_put */ 607 return !clk->core->parent ? NULL : clk->core->parent->hw->clk; 608 } 609 EXPORT_SYMBOL_GPL(__clk_get_parent); 610 611 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *clk, 612 u8 index) 613 { 614 if (!clk || index >= clk->num_parents) 615 return NULL; 616 else if (!clk->parents) 617 return clk_core_lookup(clk->parent_names[index]); 618 else if (!clk->parents[index]) 619 return clk->parents[index] = 620 clk_core_lookup(clk->parent_names[index]); 621 else 622 return clk->parents[index]; 623 } 624 625 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index) 626 { 627 struct clk_core *parent; 628 629 if (!clk) 630 return NULL; 631 632 parent = clk_core_get_parent_by_index(clk->core, index); 633 634 return !parent ? NULL : parent->hw->clk; 635 } 636 EXPORT_SYMBOL_GPL(clk_get_parent_by_index); 637 638 unsigned int __clk_get_enable_count(struct clk *clk) 639 { 640 return !clk ? 0 : clk->core->enable_count; 641 } 642 643 static unsigned long clk_core_get_rate_nolock(struct clk_core *clk) 644 { 645 unsigned long ret; 646 647 if (!clk) { 648 ret = 0; 649 goto out; 650 } 651 652 ret = clk->rate; 653 654 if (clk->flags & CLK_IS_ROOT) 655 goto out; 656 657 if (!clk->parent) 658 ret = 0; 659 660 out: 661 return ret; 662 } 663 664 unsigned long __clk_get_rate(struct clk *clk) 665 { 666 if (!clk) 667 return 0; 668 669 return clk_core_get_rate_nolock(clk->core); 670 } 671 EXPORT_SYMBOL_GPL(__clk_get_rate); 672 673 static unsigned long __clk_get_accuracy(struct clk_core *clk) 674 { 675 if (!clk) 676 return 0; 677 678 return clk->accuracy; 679 } 680 681 unsigned long __clk_get_flags(struct clk *clk) 682 { 683 return !clk ? 0 : clk->core->flags; 684 } 685 EXPORT_SYMBOL_GPL(__clk_get_flags); 686 687 static bool clk_core_is_prepared(struct clk_core *clk) 688 { 689 int ret; 690 691 if (!clk) 692 return false; 693 694 /* 695 * .is_prepared is optional for clocks that can prepare 696 * fall back to software usage counter if it is missing 697 */ 698 if (!clk->ops->is_prepared) { 699 ret = clk->prepare_count ? 1 : 0; 700 goto out; 701 } 702 703 ret = clk->ops->is_prepared(clk->hw); 704 out: 705 return !!ret; 706 } 707 708 bool __clk_is_prepared(struct clk *clk) 709 { 710 if (!clk) 711 return false; 712 713 return clk_core_is_prepared(clk->core); 714 } 715 716 static bool clk_core_is_enabled(struct clk_core *clk) 717 { 718 int ret; 719 720 if (!clk) 721 return false; 722 723 /* 724 * .is_enabled is only mandatory for clocks that gate 725 * fall back to software usage counter if .is_enabled is missing 726 */ 727 if (!clk->ops->is_enabled) { 728 ret = clk->enable_count ? 1 : 0; 729 goto out; 730 } 731 732 ret = clk->ops->is_enabled(clk->hw); 733 out: 734 return !!ret; 735 } 736 737 bool __clk_is_enabled(struct clk *clk) 738 { 739 if (!clk) 740 return false; 741 742 return clk_core_is_enabled(clk->core); 743 } 744 EXPORT_SYMBOL_GPL(__clk_is_enabled); 745 746 static struct clk_core *__clk_lookup_subtree(const char *name, 747 struct clk_core *clk) 748 { 749 struct clk_core *child; 750 struct clk_core *ret; 751 752 if (!strcmp(clk->name, name)) 753 return clk; 754 755 hlist_for_each_entry(child, &clk->children, child_node) { 756 ret = __clk_lookup_subtree(name, child); 757 if (ret) 758 return ret; 759 } 760 761 return NULL; 762 } 763 764 static struct clk_core *clk_core_lookup(const char *name) 765 { 766 struct clk_core *root_clk; 767 struct clk_core *ret; 768 769 if (!name) 770 return NULL; 771 772 /* search the 'proper' clk tree first */ 773 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 774 ret = __clk_lookup_subtree(name, root_clk); 775 if (ret) 776 return ret; 777 } 778 779 /* if not found, then search the orphan tree */ 780 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 781 ret = __clk_lookup_subtree(name, root_clk); 782 if (ret) 783 return ret; 784 } 785 786 return NULL; 787 } 788 789 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 790 unsigned long best, unsigned long flags) 791 { 792 if (flags & CLK_MUX_ROUND_CLOSEST) 793 return abs(now - rate) < abs(best - rate); 794 795 return now <= rate && now > best; 796 } 797 798 static long 799 clk_mux_determine_rate_flags(struct clk_hw *hw, unsigned long rate, 800 unsigned long min_rate, 801 unsigned long max_rate, 802 unsigned long *best_parent_rate, 803 struct clk_hw **best_parent_p, 804 unsigned long flags) 805 { 806 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 807 int i, num_parents; 808 unsigned long parent_rate, best = 0; 809 810 /* if NO_REPARENT flag set, pass through to current parent */ 811 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 812 parent = core->parent; 813 if (core->flags & CLK_SET_RATE_PARENT) 814 best = __clk_determine_rate(parent ? parent->hw : NULL, 815 rate, min_rate, max_rate); 816 else if (parent) 817 best = clk_core_get_rate_nolock(parent); 818 else 819 best = clk_core_get_rate_nolock(core); 820 goto out; 821 } 822 823 /* find the parent that can provide the fastest rate <= rate */ 824 num_parents = core->num_parents; 825 for (i = 0; i < num_parents; i++) { 826 parent = clk_core_get_parent_by_index(core, i); 827 if (!parent) 828 continue; 829 if (core->flags & CLK_SET_RATE_PARENT) 830 parent_rate = __clk_determine_rate(parent->hw, rate, 831 min_rate, 832 max_rate); 833 else 834 parent_rate = clk_core_get_rate_nolock(parent); 835 if (mux_is_better_rate(rate, parent_rate, best, flags)) { 836 best_parent = parent; 837 best = parent_rate; 838 } 839 } 840 841 out: 842 if (best_parent) 843 *best_parent_p = best_parent->hw; 844 *best_parent_rate = best; 845 846 return best; 847 } 848 849 struct clk *__clk_lookup(const char *name) 850 { 851 struct clk_core *core = clk_core_lookup(name); 852 853 return !core ? NULL : core->hw->clk; 854 } 855 856 static void clk_core_get_boundaries(struct clk_core *clk, 857 unsigned long *min_rate, 858 unsigned long *max_rate) 859 { 860 struct clk *clk_user; 861 862 *min_rate = 0; 863 *max_rate = ULONG_MAX; 864 865 hlist_for_each_entry(clk_user, &clk->clks, clks_node) 866 *min_rate = max(*min_rate, clk_user->min_rate); 867 868 hlist_for_each_entry(clk_user, &clk->clks, clks_node) 869 *max_rate = min(*max_rate, clk_user->max_rate); 870 } 871 872 /* 873 * Helper for finding best parent to provide a given frequency. This can be used 874 * directly as a determine_rate callback (e.g. for a mux), or from a more 875 * complex clock that may combine a mux with other operations. 876 */ 877 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate, 878 unsigned long min_rate, 879 unsigned long max_rate, 880 unsigned long *best_parent_rate, 881 struct clk_hw **best_parent_p) 882 { 883 return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate, 884 best_parent_rate, 885 best_parent_p, 0); 886 } 887 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 888 889 long __clk_mux_determine_rate_closest(struct clk_hw *hw, unsigned long rate, 890 unsigned long min_rate, 891 unsigned long max_rate, 892 unsigned long *best_parent_rate, 893 struct clk_hw **best_parent_p) 894 { 895 return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate, 896 best_parent_rate, 897 best_parent_p, 898 CLK_MUX_ROUND_CLOSEST); 899 } 900 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 901 902 /*** clk api ***/ 903 904 static void clk_core_unprepare(struct clk_core *clk) 905 { 906 if (!clk) 907 return; 908 909 if (WARN_ON(clk->prepare_count == 0)) 910 return; 911 912 if (--clk->prepare_count > 0) 913 return; 914 915 WARN_ON(clk->enable_count > 0); 916 917 trace_clk_unprepare(clk); 918 919 if (clk->ops->unprepare) 920 clk->ops->unprepare(clk->hw); 921 922 trace_clk_unprepare_complete(clk); 923 clk_core_unprepare(clk->parent); 924 } 925 926 /** 927 * clk_unprepare - undo preparation of a clock source 928 * @clk: the clk being unprepared 929 * 930 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 931 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 932 * if the operation may sleep. One example is a clk which is accessed over 933 * I2c. In the complex case a clk gate operation may require a fast and a slow 934 * part. It is this reason that clk_unprepare and clk_disable are not mutually 935 * exclusive. In fact clk_disable must be called before clk_unprepare. 936 */ 937 void clk_unprepare(struct clk *clk) 938 { 939 if (IS_ERR_OR_NULL(clk)) 940 return; 941 942 clk_prepare_lock(); 943 clk_core_unprepare(clk->core); 944 clk_prepare_unlock(); 945 } 946 EXPORT_SYMBOL_GPL(clk_unprepare); 947 948 static int clk_core_prepare(struct clk_core *clk) 949 { 950 int ret = 0; 951 952 if (!clk) 953 return 0; 954 955 if (clk->prepare_count == 0) { 956 ret = clk_core_prepare(clk->parent); 957 if (ret) 958 return ret; 959 960 trace_clk_prepare(clk); 961 962 if (clk->ops->prepare) 963 ret = clk->ops->prepare(clk->hw); 964 965 trace_clk_prepare_complete(clk); 966 967 if (ret) { 968 clk_core_unprepare(clk->parent); 969 return ret; 970 } 971 } 972 973 clk->prepare_count++; 974 975 return 0; 976 } 977 978 /** 979 * clk_prepare - prepare a clock source 980 * @clk: the clk being prepared 981 * 982 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 983 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 984 * operation may sleep. One example is a clk which is accessed over I2c. In 985 * the complex case a clk ungate operation may require a fast and a slow part. 986 * It is this reason that clk_prepare and clk_enable are not mutually 987 * exclusive. In fact clk_prepare must be called before clk_enable. 988 * Returns 0 on success, -EERROR otherwise. 989 */ 990 int clk_prepare(struct clk *clk) 991 { 992 int ret; 993 994 if (!clk) 995 return 0; 996 997 clk_prepare_lock(); 998 ret = clk_core_prepare(clk->core); 999 clk_prepare_unlock(); 1000 1001 return ret; 1002 } 1003 EXPORT_SYMBOL_GPL(clk_prepare); 1004 1005 static void clk_core_disable(struct clk_core *clk) 1006 { 1007 if (!clk) 1008 return; 1009 1010 if (WARN_ON(clk->enable_count == 0)) 1011 return; 1012 1013 if (--clk->enable_count > 0) 1014 return; 1015 1016 trace_clk_disable(clk); 1017 1018 if (clk->ops->disable) 1019 clk->ops->disable(clk->hw); 1020 1021 trace_clk_disable_complete(clk); 1022 1023 clk_core_disable(clk->parent); 1024 } 1025 1026 static void __clk_disable(struct clk *clk) 1027 { 1028 if (!clk) 1029 return; 1030 1031 clk_core_disable(clk->core); 1032 } 1033 1034 /** 1035 * clk_disable - gate a clock 1036 * @clk: the clk being gated 1037 * 1038 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 1039 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 1040 * clk if the operation is fast and will never sleep. One example is a 1041 * SoC-internal clk which is controlled via simple register writes. In the 1042 * complex case a clk gate operation may require a fast and a slow part. It is 1043 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 1044 * In fact clk_disable must be called before clk_unprepare. 1045 */ 1046 void clk_disable(struct clk *clk) 1047 { 1048 unsigned long flags; 1049 1050 if (IS_ERR_OR_NULL(clk)) 1051 return; 1052 1053 flags = clk_enable_lock(); 1054 __clk_disable(clk); 1055 clk_enable_unlock(flags); 1056 } 1057 EXPORT_SYMBOL_GPL(clk_disable); 1058 1059 static int clk_core_enable(struct clk_core *clk) 1060 { 1061 int ret = 0; 1062 1063 if (!clk) 1064 return 0; 1065 1066 if (WARN_ON(clk->prepare_count == 0)) 1067 return -ESHUTDOWN; 1068 1069 if (clk->enable_count == 0) { 1070 ret = clk_core_enable(clk->parent); 1071 1072 if (ret) 1073 return ret; 1074 1075 trace_clk_enable(clk); 1076 1077 if (clk->ops->enable) 1078 ret = clk->ops->enable(clk->hw); 1079 1080 trace_clk_enable_complete(clk); 1081 1082 if (ret) { 1083 clk_core_disable(clk->parent); 1084 return ret; 1085 } 1086 } 1087 1088 clk->enable_count++; 1089 return 0; 1090 } 1091 1092 static int __clk_enable(struct clk *clk) 1093 { 1094 if (!clk) 1095 return 0; 1096 1097 return clk_core_enable(clk->core); 1098 } 1099 1100 /** 1101 * clk_enable - ungate a clock 1102 * @clk: the clk being ungated 1103 * 1104 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1105 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1106 * if the operation will never sleep. One example is a SoC-internal clk which 1107 * is controlled via simple register writes. In the complex case a clk ungate 1108 * operation may require a fast and a slow part. It is this reason that 1109 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1110 * must be called before clk_enable. Returns 0 on success, -EERROR 1111 * otherwise. 1112 */ 1113 int clk_enable(struct clk *clk) 1114 { 1115 unsigned long flags; 1116 int ret; 1117 1118 flags = clk_enable_lock(); 1119 ret = __clk_enable(clk); 1120 clk_enable_unlock(flags); 1121 1122 return ret; 1123 } 1124 EXPORT_SYMBOL_GPL(clk_enable); 1125 1126 static unsigned long clk_core_round_rate_nolock(struct clk_core *clk, 1127 unsigned long rate, 1128 unsigned long min_rate, 1129 unsigned long max_rate) 1130 { 1131 unsigned long parent_rate = 0; 1132 struct clk_core *parent; 1133 struct clk_hw *parent_hw; 1134 1135 lockdep_assert_held(&prepare_lock); 1136 1137 if (!clk) 1138 return 0; 1139 1140 parent = clk->parent; 1141 if (parent) 1142 parent_rate = parent->rate; 1143 1144 if (clk->ops->determine_rate) { 1145 parent_hw = parent ? parent->hw : NULL; 1146 return clk->ops->determine_rate(clk->hw, rate, 1147 min_rate, max_rate, 1148 &parent_rate, &parent_hw); 1149 } else if (clk->ops->round_rate) 1150 return clk->ops->round_rate(clk->hw, rate, &parent_rate); 1151 else if (clk->flags & CLK_SET_RATE_PARENT) 1152 return clk_core_round_rate_nolock(clk->parent, rate, min_rate, 1153 max_rate); 1154 else 1155 return clk->rate; 1156 } 1157 1158 /** 1159 * __clk_determine_rate - get the closest rate actually supported by a clock 1160 * @hw: determine the rate of this clock 1161 * @rate: target rate 1162 * @min_rate: returned rate must be greater than this rate 1163 * @max_rate: returned rate must be less than this rate 1164 * 1165 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate and 1166 * .determine_rate. 1167 */ 1168 unsigned long __clk_determine_rate(struct clk_hw *hw, 1169 unsigned long rate, 1170 unsigned long min_rate, 1171 unsigned long max_rate) 1172 { 1173 if (!hw) 1174 return 0; 1175 1176 return clk_core_round_rate_nolock(hw->core, rate, min_rate, max_rate); 1177 } 1178 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1179 1180 /** 1181 * __clk_round_rate - round the given rate for a clk 1182 * @clk: round the rate of this clock 1183 * @rate: the rate which is to be rounded 1184 * 1185 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate 1186 */ 1187 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate) 1188 { 1189 unsigned long min_rate; 1190 unsigned long max_rate; 1191 1192 if (!clk) 1193 return 0; 1194 1195 clk_core_get_boundaries(clk->core, &min_rate, &max_rate); 1196 1197 return clk_core_round_rate_nolock(clk->core, rate, min_rate, max_rate); 1198 } 1199 EXPORT_SYMBOL_GPL(__clk_round_rate); 1200 1201 /** 1202 * clk_round_rate - round the given rate for a clk 1203 * @clk: the clk for which we are rounding a rate 1204 * @rate: the rate which is to be rounded 1205 * 1206 * Takes in a rate as input and rounds it to a rate that the clk can actually 1207 * use which is then returned. If clk doesn't support round_rate operation 1208 * then the parent rate is returned. 1209 */ 1210 long clk_round_rate(struct clk *clk, unsigned long rate) 1211 { 1212 unsigned long ret; 1213 1214 if (!clk) 1215 return 0; 1216 1217 clk_prepare_lock(); 1218 ret = __clk_round_rate(clk, rate); 1219 clk_prepare_unlock(); 1220 1221 return ret; 1222 } 1223 EXPORT_SYMBOL_GPL(clk_round_rate); 1224 1225 /** 1226 * __clk_notify - call clk notifier chain 1227 * @clk: struct clk * that is changing rate 1228 * @msg: clk notifier type (see include/linux/clk.h) 1229 * @old_rate: old clk rate 1230 * @new_rate: new clk rate 1231 * 1232 * Triggers a notifier call chain on the clk rate-change notification 1233 * for 'clk'. Passes a pointer to the struct clk and the previous 1234 * and current rates to the notifier callback. Intended to be called by 1235 * internal clock code only. Returns NOTIFY_DONE from the last driver 1236 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1237 * a driver returns that. 1238 */ 1239 static int __clk_notify(struct clk_core *clk, unsigned long msg, 1240 unsigned long old_rate, unsigned long new_rate) 1241 { 1242 struct clk_notifier *cn; 1243 struct clk_notifier_data cnd; 1244 int ret = NOTIFY_DONE; 1245 1246 cnd.old_rate = old_rate; 1247 cnd.new_rate = new_rate; 1248 1249 list_for_each_entry(cn, &clk_notifier_list, node) { 1250 if (cn->clk->core == clk) { 1251 cnd.clk = cn->clk; 1252 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1253 &cnd); 1254 } 1255 } 1256 1257 return ret; 1258 } 1259 1260 /** 1261 * __clk_recalc_accuracies 1262 * @clk: first clk in the subtree 1263 * 1264 * Walks the subtree of clks starting with clk and recalculates accuracies as 1265 * it goes. Note that if a clk does not implement the .recalc_accuracy 1266 * callback then it is assumed that the clock will take on the accuracy of it's 1267 * parent. 1268 * 1269 * Caller must hold prepare_lock. 1270 */ 1271 static void __clk_recalc_accuracies(struct clk_core *clk) 1272 { 1273 unsigned long parent_accuracy = 0; 1274 struct clk_core *child; 1275 1276 lockdep_assert_held(&prepare_lock); 1277 1278 if (clk->parent) 1279 parent_accuracy = clk->parent->accuracy; 1280 1281 if (clk->ops->recalc_accuracy) 1282 clk->accuracy = clk->ops->recalc_accuracy(clk->hw, 1283 parent_accuracy); 1284 else 1285 clk->accuracy = parent_accuracy; 1286 1287 hlist_for_each_entry(child, &clk->children, child_node) 1288 __clk_recalc_accuracies(child); 1289 } 1290 1291 static long clk_core_get_accuracy(struct clk_core *clk) 1292 { 1293 unsigned long accuracy; 1294 1295 clk_prepare_lock(); 1296 if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE)) 1297 __clk_recalc_accuracies(clk); 1298 1299 accuracy = __clk_get_accuracy(clk); 1300 clk_prepare_unlock(); 1301 1302 return accuracy; 1303 } 1304 1305 /** 1306 * clk_get_accuracy - return the accuracy of clk 1307 * @clk: the clk whose accuracy is being returned 1308 * 1309 * Simply returns the cached accuracy of the clk, unless 1310 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1311 * issued. 1312 * If clk is NULL then returns 0. 1313 */ 1314 long clk_get_accuracy(struct clk *clk) 1315 { 1316 if (!clk) 1317 return 0; 1318 1319 return clk_core_get_accuracy(clk->core); 1320 } 1321 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1322 1323 static unsigned long clk_recalc(struct clk_core *clk, 1324 unsigned long parent_rate) 1325 { 1326 if (clk->ops->recalc_rate) 1327 return clk->ops->recalc_rate(clk->hw, parent_rate); 1328 return parent_rate; 1329 } 1330 1331 /** 1332 * __clk_recalc_rates 1333 * @clk: first clk in the subtree 1334 * @msg: notification type (see include/linux/clk.h) 1335 * 1336 * Walks the subtree of clks starting with clk and recalculates rates as it 1337 * goes. Note that if a clk does not implement the .recalc_rate callback then 1338 * it is assumed that the clock will take on the rate of its parent. 1339 * 1340 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1341 * if necessary. 1342 * 1343 * Caller must hold prepare_lock. 1344 */ 1345 static void __clk_recalc_rates(struct clk_core *clk, unsigned long msg) 1346 { 1347 unsigned long old_rate; 1348 unsigned long parent_rate = 0; 1349 struct clk_core *child; 1350 1351 lockdep_assert_held(&prepare_lock); 1352 1353 old_rate = clk->rate; 1354 1355 if (clk->parent) 1356 parent_rate = clk->parent->rate; 1357 1358 clk->rate = clk_recalc(clk, parent_rate); 1359 1360 /* 1361 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1362 * & ABORT_RATE_CHANGE notifiers 1363 */ 1364 if (clk->notifier_count && msg) 1365 __clk_notify(clk, msg, old_rate, clk->rate); 1366 1367 hlist_for_each_entry(child, &clk->children, child_node) 1368 __clk_recalc_rates(child, msg); 1369 } 1370 1371 static unsigned long clk_core_get_rate(struct clk_core *clk) 1372 { 1373 unsigned long rate; 1374 1375 clk_prepare_lock(); 1376 1377 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE)) 1378 __clk_recalc_rates(clk, 0); 1379 1380 rate = clk_core_get_rate_nolock(clk); 1381 clk_prepare_unlock(); 1382 1383 return rate; 1384 } 1385 1386 /** 1387 * clk_get_rate - return the rate of clk 1388 * @clk: the clk whose rate is being returned 1389 * 1390 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1391 * is set, which means a recalc_rate will be issued. 1392 * If clk is NULL then returns 0. 1393 */ 1394 unsigned long clk_get_rate(struct clk *clk) 1395 { 1396 if (!clk) 1397 return 0; 1398 1399 return clk_core_get_rate(clk->core); 1400 } 1401 EXPORT_SYMBOL_GPL(clk_get_rate); 1402 1403 static int clk_fetch_parent_index(struct clk_core *clk, 1404 struct clk_core *parent) 1405 { 1406 int i; 1407 1408 if (!clk->parents) { 1409 clk->parents = kcalloc(clk->num_parents, 1410 sizeof(struct clk *), GFP_KERNEL); 1411 if (!clk->parents) 1412 return -ENOMEM; 1413 } 1414 1415 /* 1416 * find index of new parent clock using cached parent ptrs, 1417 * or if not yet cached, use string name comparison and cache 1418 * them now to avoid future calls to clk_core_lookup. 1419 */ 1420 for (i = 0; i < clk->num_parents; i++) { 1421 if (clk->parents[i] == parent) 1422 return i; 1423 1424 if (clk->parents[i]) 1425 continue; 1426 1427 if (!strcmp(clk->parent_names[i], parent->name)) { 1428 clk->parents[i] = clk_core_lookup(parent->name); 1429 return i; 1430 } 1431 } 1432 1433 return -EINVAL; 1434 } 1435 1436 static void clk_reparent(struct clk_core *clk, struct clk_core *new_parent) 1437 { 1438 hlist_del(&clk->child_node); 1439 1440 if (new_parent) { 1441 /* avoid duplicate POST_RATE_CHANGE notifications */ 1442 if (new_parent->new_child == clk) 1443 new_parent->new_child = NULL; 1444 1445 hlist_add_head(&clk->child_node, &new_parent->children); 1446 } else { 1447 hlist_add_head(&clk->child_node, &clk_orphan_list); 1448 } 1449 1450 clk->parent = new_parent; 1451 } 1452 1453 static struct clk_core *__clk_set_parent_before(struct clk_core *clk, 1454 struct clk_core *parent) 1455 { 1456 unsigned long flags; 1457 struct clk_core *old_parent = clk->parent; 1458 1459 /* 1460 * Migrate prepare state between parents and prevent race with 1461 * clk_enable(). 1462 * 1463 * If the clock is not prepared, then a race with 1464 * clk_enable/disable() is impossible since we already have the 1465 * prepare lock (future calls to clk_enable() need to be preceded by 1466 * a clk_prepare()). 1467 * 1468 * If the clock is prepared, migrate the prepared state to the new 1469 * parent and also protect against a race with clk_enable() by 1470 * forcing the clock and the new parent on. This ensures that all 1471 * future calls to clk_enable() are practically NOPs with respect to 1472 * hardware and software states. 1473 * 1474 * See also: Comment for clk_set_parent() below. 1475 */ 1476 if (clk->prepare_count) { 1477 clk_core_prepare(parent); 1478 clk_core_enable(parent); 1479 clk_core_enable(clk); 1480 } 1481 1482 /* update the clk tree topology */ 1483 flags = clk_enable_lock(); 1484 clk_reparent(clk, parent); 1485 clk_enable_unlock(flags); 1486 1487 return old_parent; 1488 } 1489 1490 static void __clk_set_parent_after(struct clk_core *core, 1491 struct clk_core *parent, 1492 struct clk_core *old_parent) 1493 { 1494 /* 1495 * Finish the migration of prepare state and undo the changes done 1496 * for preventing a race with clk_enable(). 1497 */ 1498 if (core->prepare_count) { 1499 clk_core_disable(core); 1500 clk_core_disable(old_parent); 1501 clk_core_unprepare(old_parent); 1502 } 1503 } 1504 1505 static int __clk_set_parent(struct clk_core *clk, struct clk_core *parent, 1506 u8 p_index) 1507 { 1508 unsigned long flags; 1509 int ret = 0; 1510 struct clk_core *old_parent; 1511 1512 old_parent = __clk_set_parent_before(clk, parent); 1513 1514 trace_clk_set_parent(clk, parent); 1515 1516 /* change clock input source */ 1517 if (parent && clk->ops->set_parent) 1518 ret = clk->ops->set_parent(clk->hw, p_index); 1519 1520 trace_clk_set_parent_complete(clk, parent); 1521 1522 if (ret) { 1523 flags = clk_enable_lock(); 1524 clk_reparent(clk, old_parent); 1525 clk_enable_unlock(flags); 1526 1527 if (clk->prepare_count) { 1528 clk_core_disable(clk); 1529 clk_core_disable(parent); 1530 clk_core_unprepare(parent); 1531 } 1532 return ret; 1533 } 1534 1535 __clk_set_parent_after(clk, parent, old_parent); 1536 1537 return 0; 1538 } 1539 1540 /** 1541 * __clk_speculate_rates 1542 * @clk: first clk in the subtree 1543 * @parent_rate: the "future" rate of clk's parent 1544 * 1545 * Walks the subtree of clks starting with clk, speculating rates as it 1546 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1547 * 1548 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1549 * pre-rate change notifications and returns early if no clks in the 1550 * subtree have subscribed to the notifications. Note that if a clk does not 1551 * implement the .recalc_rate callback then it is assumed that the clock will 1552 * take on the rate of its parent. 1553 * 1554 * Caller must hold prepare_lock. 1555 */ 1556 static int __clk_speculate_rates(struct clk_core *clk, 1557 unsigned long parent_rate) 1558 { 1559 struct clk_core *child; 1560 unsigned long new_rate; 1561 int ret = NOTIFY_DONE; 1562 1563 lockdep_assert_held(&prepare_lock); 1564 1565 new_rate = clk_recalc(clk, parent_rate); 1566 1567 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1568 if (clk->notifier_count) 1569 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate); 1570 1571 if (ret & NOTIFY_STOP_MASK) { 1572 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1573 __func__, clk->name, ret); 1574 goto out; 1575 } 1576 1577 hlist_for_each_entry(child, &clk->children, child_node) { 1578 ret = __clk_speculate_rates(child, new_rate); 1579 if (ret & NOTIFY_STOP_MASK) 1580 break; 1581 } 1582 1583 out: 1584 return ret; 1585 } 1586 1587 static void clk_calc_subtree(struct clk_core *clk, unsigned long new_rate, 1588 struct clk_core *new_parent, u8 p_index) 1589 { 1590 struct clk_core *child; 1591 1592 clk->new_rate = new_rate; 1593 clk->new_parent = new_parent; 1594 clk->new_parent_index = p_index; 1595 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1596 clk->new_child = NULL; 1597 if (new_parent && new_parent != clk->parent) 1598 new_parent->new_child = clk; 1599 1600 hlist_for_each_entry(child, &clk->children, child_node) { 1601 child->new_rate = clk_recalc(child, new_rate); 1602 clk_calc_subtree(child, child->new_rate, NULL, 0); 1603 } 1604 } 1605 1606 /* 1607 * calculate the new rates returning the topmost clock that has to be 1608 * changed. 1609 */ 1610 static struct clk_core *clk_calc_new_rates(struct clk_core *clk, 1611 unsigned long rate) 1612 { 1613 struct clk_core *top = clk; 1614 struct clk_core *old_parent, *parent; 1615 struct clk_hw *parent_hw; 1616 unsigned long best_parent_rate = 0; 1617 unsigned long new_rate; 1618 unsigned long min_rate; 1619 unsigned long max_rate; 1620 int p_index = 0; 1621 long ret; 1622 1623 /* sanity */ 1624 if (IS_ERR_OR_NULL(clk)) 1625 return NULL; 1626 1627 /* save parent rate, if it exists */ 1628 parent = old_parent = clk->parent; 1629 if (parent) 1630 best_parent_rate = parent->rate; 1631 1632 clk_core_get_boundaries(clk, &min_rate, &max_rate); 1633 1634 /* find the closest rate and parent clk/rate */ 1635 if (clk->ops->determine_rate) { 1636 parent_hw = parent ? parent->hw : NULL; 1637 ret = clk->ops->determine_rate(clk->hw, rate, 1638 min_rate, 1639 max_rate, 1640 &best_parent_rate, 1641 &parent_hw); 1642 if (ret < 0) 1643 return NULL; 1644 1645 new_rate = ret; 1646 parent = parent_hw ? parent_hw->core : NULL; 1647 } else if (clk->ops->round_rate) { 1648 ret = clk->ops->round_rate(clk->hw, rate, 1649 &best_parent_rate); 1650 if (ret < 0) 1651 return NULL; 1652 1653 new_rate = ret; 1654 if (new_rate < min_rate || new_rate > max_rate) 1655 return NULL; 1656 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) { 1657 /* pass-through clock without adjustable parent */ 1658 clk->new_rate = clk->rate; 1659 return NULL; 1660 } else { 1661 /* pass-through clock with adjustable parent */ 1662 top = clk_calc_new_rates(parent, rate); 1663 new_rate = parent->new_rate; 1664 goto out; 1665 } 1666 1667 /* some clocks must be gated to change parent */ 1668 if (parent != old_parent && 1669 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) { 1670 pr_debug("%s: %s not gated but wants to reparent\n", 1671 __func__, clk->name); 1672 return NULL; 1673 } 1674 1675 /* try finding the new parent index */ 1676 if (parent && clk->num_parents > 1) { 1677 p_index = clk_fetch_parent_index(clk, parent); 1678 if (p_index < 0) { 1679 pr_debug("%s: clk %s can not be parent of clk %s\n", 1680 __func__, parent->name, clk->name); 1681 return NULL; 1682 } 1683 } 1684 1685 if ((clk->flags & CLK_SET_RATE_PARENT) && parent && 1686 best_parent_rate != parent->rate) 1687 top = clk_calc_new_rates(parent, best_parent_rate); 1688 1689 out: 1690 clk_calc_subtree(clk, new_rate, parent, p_index); 1691 1692 return top; 1693 } 1694 1695 /* 1696 * Notify about rate changes in a subtree. Always walk down the whole tree 1697 * so that in case of an error we can walk down the whole tree again and 1698 * abort the change. 1699 */ 1700 static struct clk_core *clk_propagate_rate_change(struct clk_core *clk, 1701 unsigned long event) 1702 { 1703 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1704 int ret = NOTIFY_DONE; 1705 1706 if (clk->rate == clk->new_rate) 1707 return NULL; 1708 1709 if (clk->notifier_count) { 1710 ret = __clk_notify(clk, event, clk->rate, clk->new_rate); 1711 if (ret & NOTIFY_STOP_MASK) 1712 fail_clk = clk; 1713 } 1714 1715 hlist_for_each_entry(child, &clk->children, child_node) { 1716 /* Skip children who will be reparented to another clock */ 1717 if (child->new_parent && child->new_parent != clk) 1718 continue; 1719 tmp_clk = clk_propagate_rate_change(child, event); 1720 if (tmp_clk) 1721 fail_clk = tmp_clk; 1722 } 1723 1724 /* handle the new child who might not be in clk->children yet */ 1725 if (clk->new_child) { 1726 tmp_clk = clk_propagate_rate_change(clk->new_child, event); 1727 if (tmp_clk) 1728 fail_clk = tmp_clk; 1729 } 1730 1731 return fail_clk; 1732 } 1733 1734 /* 1735 * walk down a subtree and set the new rates notifying the rate 1736 * change on the way 1737 */ 1738 static void clk_change_rate(struct clk_core *clk) 1739 { 1740 struct clk_core *child; 1741 struct hlist_node *tmp; 1742 unsigned long old_rate; 1743 unsigned long best_parent_rate = 0; 1744 bool skip_set_rate = false; 1745 struct clk_core *old_parent; 1746 1747 old_rate = clk->rate; 1748 1749 if (clk->new_parent) 1750 best_parent_rate = clk->new_parent->rate; 1751 else if (clk->parent) 1752 best_parent_rate = clk->parent->rate; 1753 1754 if (clk->new_parent && clk->new_parent != clk->parent) { 1755 old_parent = __clk_set_parent_before(clk, clk->new_parent); 1756 trace_clk_set_parent(clk, clk->new_parent); 1757 1758 if (clk->ops->set_rate_and_parent) { 1759 skip_set_rate = true; 1760 clk->ops->set_rate_and_parent(clk->hw, clk->new_rate, 1761 best_parent_rate, 1762 clk->new_parent_index); 1763 } else if (clk->ops->set_parent) { 1764 clk->ops->set_parent(clk->hw, clk->new_parent_index); 1765 } 1766 1767 trace_clk_set_parent_complete(clk, clk->new_parent); 1768 __clk_set_parent_after(clk, clk->new_parent, old_parent); 1769 } 1770 1771 trace_clk_set_rate(clk, clk->new_rate); 1772 1773 if (!skip_set_rate && clk->ops->set_rate) 1774 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate); 1775 1776 trace_clk_set_rate_complete(clk, clk->new_rate); 1777 1778 clk->rate = clk_recalc(clk, best_parent_rate); 1779 1780 if (clk->notifier_count && old_rate != clk->rate) 1781 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate); 1782 1783 /* 1784 * Use safe iteration, as change_rate can actually swap parents 1785 * for certain clock types. 1786 */ 1787 hlist_for_each_entry_safe(child, tmp, &clk->children, child_node) { 1788 /* Skip children who will be reparented to another clock */ 1789 if (child->new_parent && child->new_parent != clk) 1790 continue; 1791 clk_change_rate(child); 1792 } 1793 1794 /* handle the new child who might not be in clk->children yet */ 1795 if (clk->new_child) 1796 clk_change_rate(clk->new_child); 1797 } 1798 1799 static int clk_core_set_rate_nolock(struct clk_core *clk, 1800 unsigned long req_rate) 1801 { 1802 struct clk_core *top, *fail_clk; 1803 unsigned long rate = req_rate; 1804 int ret = 0; 1805 1806 if (!clk) 1807 return 0; 1808 1809 /* bail early if nothing to do */ 1810 if (rate == clk_core_get_rate_nolock(clk)) 1811 return 0; 1812 1813 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) 1814 return -EBUSY; 1815 1816 /* calculate new rates and get the topmost changed clock */ 1817 top = clk_calc_new_rates(clk, rate); 1818 if (!top) 1819 return -EINVAL; 1820 1821 /* notify that we are about to change rates */ 1822 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1823 if (fail_clk) { 1824 pr_debug("%s: failed to set %s rate\n", __func__, 1825 fail_clk->name); 1826 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1827 return -EBUSY; 1828 } 1829 1830 /* change the rates */ 1831 clk_change_rate(top); 1832 1833 clk->req_rate = req_rate; 1834 1835 return ret; 1836 } 1837 1838 /** 1839 * clk_set_rate - specify a new rate for clk 1840 * @clk: the clk whose rate is being changed 1841 * @rate: the new rate for clk 1842 * 1843 * In the simplest case clk_set_rate will only adjust the rate of clk. 1844 * 1845 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1846 * propagate up to clk's parent; whether or not this happens depends on the 1847 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1848 * after calling .round_rate then upstream parent propagation is ignored. If 1849 * *parent_rate comes back with a new rate for clk's parent then we propagate 1850 * up to clk's parent and set its rate. Upward propagation will continue 1851 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1852 * .round_rate stops requesting changes to clk's parent_rate. 1853 * 1854 * Rate changes are accomplished via tree traversal that also recalculates the 1855 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1856 * 1857 * Returns 0 on success, -EERROR otherwise. 1858 */ 1859 int clk_set_rate(struct clk *clk, unsigned long rate) 1860 { 1861 int ret; 1862 1863 if (!clk) 1864 return 0; 1865 1866 /* prevent racing with updates to the clock topology */ 1867 clk_prepare_lock(); 1868 1869 ret = clk_core_set_rate_nolock(clk->core, rate); 1870 1871 clk_prepare_unlock(); 1872 1873 return ret; 1874 } 1875 EXPORT_SYMBOL_GPL(clk_set_rate); 1876 1877 /** 1878 * clk_set_rate_range - set a rate range for a clock source 1879 * @clk: clock source 1880 * @min: desired minimum clock rate in Hz, inclusive 1881 * @max: desired maximum clock rate in Hz, inclusive 1882 * 1883 * Returns success (0) or negative errno. 1884 */ 1885 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 1886 { 1887 int ret = 0; 1888 1889 if (!clk) 1890 return 0; 1891 1892 if (min > max) { 1893 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 1894 __func__, clk->core->name, clk->dev_id, clk->con_id, 1895 min, max); 1896 return -EINVAL; 1897 } 1898 1899 clk_prepare_lock(); 1900 1901 if (min != clk->min_rate || max != clk->max_rate) { 1902 clk->min_rate = min; 1903 clk->max_rate = max; 1904 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 1905 } 1906 1907 clk_prepare_unlock(); 1908 1909 return ret; 1910 } 1911 EXPORT_SYMBOL_GPL(clk_set_rate_range); 1912 1913 /** 1914 * clk_set_min_rate - set a minimum clock rate for a clock source 1915 * @clk: clock source 1916 * @rate: desired minimum clock rate in Hz, inclusive 1917 * 1918 * Returns success (0) or negative errno. 1919 */ 1920 int clk_set_min_rate(struct clk *clk, unsigned long rate) 1921 { 1922 if (!clk) 1923 return 0; 1924 1925 return clk_set_rate_range(clk, rate, clk->max_rate); 1926 } 1927 EXPORT_SYMBOL_GPL(clk_set_min_rate); 1928 1929 /** 1930 * clk_set_max_rate - set a maximum clock rate for a clock source 1931 * @clk: clock source 1932 * @rate: desired maximum clock rate in Hz, inclusive 1933 * 1934 * Returns success (0) or negative errno. 1935 */ 1936 int clk_set_max_rate(struct clk *clk, unsigned long rate) 1937 { 1938 if (!clk) 1939 return 0; 1940 1941 return clk_set_rate_range(clk, clk->min_rate, rate); 1942 } 1943 EXPORT_SYMBOL_GPL(clk_set_max_rate); 1944 1945 /** 1946 * clk_get_parent - return the parent of a clk 1947 * @clk: the clk whose parent gets returned 1948 * 1949 * Simply returns clk->parent. Returns NULL if clk is NULL. 1950 */ 1951 struct clk *clk_get_parent(struct clk *clk) 1952 { 1953 struct clk *parent; 1954 1955 clk_prepare_lock(); 1956 parent = __clk_get_parent(clk); 1957 clk_prepare_unlock(); 1958 1959 return parent; 1960 } 1961 EXPORT_SYMBOL_GPL(clk_get_parent); 1962 1963 /* 1964 * .get_parent is mandatory for clocks with multiple possible parents. It is 1965 * optional for single-parent clocks. Always call .get_parent if it is 1966 * available and WARN if it is missing for multi-parent clocks. 1967 * 1968 * For single-parent clocks without .get_parent, first check to see if the 1969 * .parents array exists, and if so use it to avoid an expensive tree 1970 * traversal. If .parents does not exist then walk the tree. 1971 */ 1972 static struct clk_core *__clk_init_parent(struct clk_core *clk) 1973 { 1974 struct clk_core *ret = NULL; 1975 u8 index; 1976 1977 /* handle the trivial cases */ 1978 1979 if (!clk->num_parents) 1980 goto out; 1981 1982 if (clk->num_parents == 1) { 1983 if (IS_ERR_OR_NULL(clk->parent)) 1984 clk->parent = clk_core_lookup(clk->parent_names[0]); 1985 ret = clk->parent; 1986 goto out; 1987 } 1988 1989 if (!clk->ops->get_parent) { 1990 WARN(!clk->ops->get_parent, 1991 "%s: multi-parent clocks must implement .get_parent\n", 1992 __func__); 1993 goto out; 1994 }; 1995 1996 /* 1997 * Do our best to cache parent clocks in clk->parents. This prevents 1998 * unnecessary and expensive lookups. We don't set clk->parent here; 1999 * that is done by the calling function. 2000 */ 2001 2002 index = clk->ops->get_parent(clk->hw); 2003 2004 if (!clk->parents) 2005 clk->parents = 2006 kcalloc(clk->num_parents, sizeof(struct clk *), 2007 GFP_KERNEL); 2008 2009 ret = clk_core_get_parent_by_index(clk, index); 2010 2011 out: 2012 return ret; 2013 } 2014 2015 static void clk_core_reparent(struct clk_core *clk, 2016 struct clk_core *new_parent) 2017 { 2018 clk_reparent(clk, new_parent); 2019 __clk_recalc_accuracies(clk); 2020 __clk_recalc_rates(clk, POST_RATE_CHANGE); 2021 } 2022 2023 /** 2024 * clk_has_parent - check if a clock is a possible parent for another 2025 * @clk: clock source 2026 * @parent: parent clock source 2027 * 2028 * This function can be used in drivers that need to check that a clock can be 2029 * the parent of another without actually changing the parent. 2030 * 2031 * Returns true if @parent is a possible parent for @clk, false otherwise. 2032 */ 2033 bool clk_has_parent(struct clk *clk, struct clk *parent) 2034 { 2035 struct clk_core *core, *parent_core; 2036 unsigned int i; 2037 2038 /* NULL clocks should be nops, so return success if either is NULL. */ 2039 if (!clk || !parent) 2040 return true; 2041 2042 core = clk->core; 2043 parent_core = parent->core; 2044 2045 /* Optimize for the case where the parent is already the parent. */ 2046 if (core->parent == parent_core) 2047 return true; 2048 2049 for (i = 0; i < core->num_parents; i++) 2050 if (strcmp(core->parent_names[i], parent_core->name) == 0) 2051 return true; 2052 2053 return false; 2054 } 2055 EXPORT_SYMBOL_GPL(clk_has_parent); 2056 2057 static int clk_core_set_parent(struct clk_core *clk, struct clk_core *parent) 2058 { 2059 int ret = 0; 2060 int p_index = 0; 2061 unsigned long p_rate = 0; 2062 2063 if (!clk) 2064 return 0; 2065 2066 /* prevent racing with updates to the clock topology */ 2067 clk_prepare_lock(); 2068 2069 if (clk->parent == parent) 2070 goto out; 2071 2072 /* verify ops for for multi-parent clks */ 2073 if ((clk->num_parents > 1) && (!clk->ops->set_parent)) { 2074 ret = -ENOSYS; 2075 goto out; 2076 } 2077 2078 /* check that we are allowed to re-parent if the clock is in use */ 2079 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) { 2080 ret = -EBUSY; 2081 goto out; 2082 } 2083 2084 /* try finding the new parent index */ 2085 if (parent) { 2086 p_index = clk_fetch_parent_index(clk, parent); 2087 p_rate = parent->rate; 2088 if (p_index < 0) { 2089 pr_debug("%s: clk %s can not be parent of clk %s\n", 2090 __func__, parent->name, clk->name); 2091 ret = p_index; 2092 goto out; 2093 } 2094 } 2095 2096 /* propagate PRE_RATE_CHANGE notifications */ 2097 ret = __clk_speculate_rates(clk, p_rate); 2098 2099 /* abort if a driver objects */ 2100 if (ret & NOTIFY_STOP_MASK) 2101 goto out; 2102 2103 /* do the re-parent */ 2104 ret = __clk_set_parent(clk, parent, p_index); 2105 2106 /* propagate rate an accuracy recalculation accordingly */ 2107 if (ret) { 2108 __clk_recalc_rates(clk, ABORT_RATE_CHANGE); 2109 } else { 2110 __clk_recalc_rates(clk, POST_RATE_CHANGE); 2111 __clk_recalc_accuracies(clk); 2112 } 2113 2114 out: 2115 clk_prepare_unlock(); 2116 2117 return ret; 2118 } 2119 2120 /** 2121 * clk_set_parent - switch the parent of a mux clk 2122 * @clk: the mux clk whose input we are switching 2123 * @parent: the new input to clk 2124 * 2125 * Re-parent clk to use parent as its new input source. If clk is in 2126 * prepared state, the clk will get enabled for the duration of this call. If 2127 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2128 * that, the reparenting is glitchy in hardware, etc), use the 2129 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2130 * 2131 * After successfully changing clk's parent clk_set_parent will update the 2132 * clk topology, sysfs topology and propagate rate recalculation via 2133 * __clk_recalc_rates. 2134 * 2135 * Returns 0 on success, -EERROR otherwise. 2136 */ 2137 int clk_set_parent(struct clk *clk, struct clk *parent) 2138 { 2139 if (!clk) 2140 return 0; 2141 2142 return clk_core_set_parent(clk->core, parent ? parent->core : NULL); 2143 } 2144 EXPORT_SYMBOL_GPL(clk_set_parent); 2145 2146 /** 2147 * clk_set_phase - adjust the phase shift of a clock signal 2148 * @clk: clock signal source 2149 * @degrees: number of degrees the signal is shifted 2150 * 2151 * Shifts the phase of a clock signal by the specified 2152 * degrees. Returns 0 on success, -EERROR otherwise. 2153 * 2154 * This function makes no distinction about the input or reference 2155 * signal that we adjust the clock signal phase against. For example 2156 * phase locked-loop clock signal generators we may shift phase with 2157 * respect to feedback clock signal input, but for other cases the 2158 * clock phase may be shifted with respect to some other, unspecified 2159 * signal. 2160 * 2161 * Additionally the concept of phase shift does not propagate through 2162 * the clock tree hierarchy, which sets it apart from clock rates and 2163 * clock accuracy. A parent clock phase attribute does not have an 2164 * impact on the phase attribute of a child clock. 2165 */ 2166 int clk_set_phase(struct clk *clk, int degrees) 2167 { 2168 int ret = -EINVAL; 2169 2170 if (!clk) 2171 return 0; 2172 2173 /* sanity check degrees */ 2174 degrees %= 360; 2175 if (degrees < 0) 2176 degrees += 360; 2177 2178 clk_prepare_lock(); 2179 2180 trace_clk_set_phase(clk->core, degrees); 2181 2182 if (clk->core->ops->set_phase) 2183 ret = clk->core->ops->set_phase(clk->core->hw, degrees); 2184 2185 trace_clk_set_phase_complete(clk->core, degrees); 2186 2187 if (!ret) 2188 clk->core->phase = degrees; 2189 2190 clk_prepare_unlock(); 2191 2192 return ret; 2193 } 2194 EXPORT_SYMBOL_GPL(clk_set_phase); 2195 2196 static int clk_core_get_phase(struct clk_core *clk) 2197 { 2198 int ret = 0; 2199 2200 if (!clk) 2201 goto out; 2202 2203 clk_prepare_lock(); 2204 ret = clk->phase; 2205 clk_prepare_unlock(); 2206 2207 out: 2208 return ret; 2209 } 2210 EXPORT_SYMBOL_GPL(clk_get_phase); 2211 2212 /** 2213 * clk_get_phase - return the phase shift of a clock signal 2214 * @clk: clock signal source 2215 * 2216 * Returns the phase shift of a clock node in degrees, otherwise returns 2217 * -EERROR. 2218 */ 2219 int clk_get_phase(struct clk *clk) 2220 { 2221 if (!clk) 2222 return 0; 2223 2224 return clk_core_get_phase(clk->core); 2225 } 2226 2227 /** 2228 * clk_is_match - check if two clk's point to the same hardware clock 2229 * @p: clk compared against q 2230 * @q: clk compared against p 2231 * 2232 * Returns true if the two struct clk pointers both point to the same hardware 2233 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2234 * share the same struct clk_core object. 2235 * 2236 * Returns false otherwise. Note that two NULL clks are treated as matching. 2237 */ 2238 bool clk_is_match(const struct clk *p, const struct clk *q) 2239 { 2240 /* trivial case: identical struct clk's or both NULL */ 2241 if (p == q) 2242 return true; 2243 2244 /* true if clk->core pointers match. Avoid derefing garbage */ 2245 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2246 if (p->core == q->core) 2247 return true; 2248 2249 return false; 2250 } 2251 EXPORT_SYMBOL_GPL(clk_is_match); 2252 2253 /** 2254 * __clk_init - initialize the data structures in a struct clk 2255 * @dev: device initializing this clk, placeholder for now 2256 * @clk: clk being initialized 2257 * 2258 * Initializes the lists in struct clk_core, queries the hardware for the 2259 * parent and rate and sets them both. 2260 */ 2261 static int __clk_init(struct device *dev, struct clk *clk_user) 2262 { 2263 int i, ret = 0; 2264 struct clk_core *orphan; 2265 struct hlist_node *tmp2; 2266 struct clk_core *clk; 2267 unsigned long rate; 2268 2269 if (!clk_user) 2270 return -EINVAL; 2271 2272 clk = clk_user->core; 2273 2274 clk_prepare_lock(); 2275 2276 /* check to see if a clock with this name is already registered */ 2277 if (clk_core_lookup(clk->name)) { 2278 pr_debug("%s: clk %s already initialized\n", 2279 __func__, clk->name); 2280 ret = -EEXIST; 2281 goto out; 2282 } 2283 2284 /* check that clk_ops are sane. See Documentation/clk.txt */ 2285 if (clk->ops->set_rate && 2286 !((clk->ops->round_rate || clk->ops->determine_rate) && 2287 clk->ops->recalc_rate)) { 2288 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 2289 __func__, clk->name); 2290 ret = -EINVAL; 2291 goto out; 2292 } 2293 2294 if (clk->ops->set_parent && !clk->ops->get_parent) { 2295 pr_warning("%s: %s must implement .get_parent & .set_parent\n", 2296 __func__, clk->name); 2297 ret = -EINVAL; 2298 goto out; 2299 } 2300 2301 if (clk->ops->set_rate_and_parent && 2302 !(clk->ops->set_parent && clk->ops->set_rate)) { 2303 pr_warn("%s: %s must implement .set_parent & .set_rate\n", 2304 __func__, clk->name); 2305 ret = -EINVAL; 2306 goto out; 2307 } 2308 2309 /* throw a WARN if any entries in parent_names are NULL */ 2310 for (i = 0; i < clk->num_parents; i++) 2311 WARN(!clk->parent_names[i], 2312 "%s: invalid NULL in %s's .parent_names\n", 2313 __func__, clk->name); 2314 2315 /* 2316 * Allocate an array of struct clk *'s to avoid unnecessary string 2317 * look-ups of clk's possible parents. This can fail for clocks passed 2318 * in to clk_init during early boot; thus any access to clk->parents[] 2319 * must always check for a NULL pointer and try to populate it if 2320 * necessary. 2321 * 2322 * If clk->parents is not NULL we skip this entire block. This allows 2323 * for clock drivers to statically initialize clk->parents. 2324 */ 2325 if (clk->num_parents > 1 && !clk->parents) { 2326 clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *), 2327 GFP_KERNEL); 2328 /* 2329 * clk_core_lookup returns NULL for parents that have not been 2330 * clk_init'd; thus any access to clk->parents[] must check 2331 * for a NULL pointer. We can always perform lazy lookups for 2332 * missing parents later on. 2333 */ 2334 if (clk->parents) 2335 for (i = 0; i < clk->num_parents; i++) 2336 clk->parents[i] = 2337 clk_core_lookup(clk->parent_names[i]); 2338 } 2339 2340 clk->parent = __clk_init_parent(clk); 2341 2342 /* 2343 * Populate clk->parent if parent has already been __clk_init'd. If 2344 * parent has not yet been __clk_init'd then place clk in the orphan 2345 * list. If clk has set the CLK_IS_ROOT flag then place it in the root 2346 * clk list. 2347 * 2348 * Every time a new clk is clk_init'd then we walk the list of orphan 2349 * clocks and re-parent any that are children of the clock currently 2350 * being clk_init'd. 2351 */ 2352 if (clk->parent) 2353 hlist_add_head(&clk->child_node, 2354 &clk->parent->children); 2355 else if (clk->flags & CLK_IS_ROOT) 2356 hlist_add_head(&clk->child_node, &clk_root_list); 2357 else 2358 hlist_add_head(&clk->child_node, &clk_orphan_list); 2359 2360 /* 2361 * Set clk's accuracy. The preferred method is to use 2362 * .recalc_accuracy. For simple clocks and lazy developers the default 2363 * fallback is to use the parent's accuracy. If a clock doesn't have a 2364 * parent (or is orphaned) then accuracy is set to zero (perfect 2365 * clock). 2366 */ 2367 if (clk->ops->recalc_accuracy) 2368 clk->accuracy = clk->ops->recalc_accuracy(clk->hw, 2369 __clk_get_accuracy(clk->parent)); 2370 else if (clk->parent) 2371 clk->accuracy = clk->parent->accuracy; 2372 else 2373 clk->accuracy = 0; 2374 2375 /* 2376 * Set clk's phase. 2377 * Since a phase is by definition relative to its parent, just 2378 * query the current clock phase, or just assume it's in phase. 2379 */ 2380 if (clk->ops->get_phase) 2381 clk->phase = clk->ops->get_phase(clk->hw); 2382 else 2383 clk->phase = 0; 2384 2385 /* 2386 * Set clk's rate. The preferred method is to use .recalc_rate. For 2387 * simple clocks and lazy developers the default fallback is to use the 2388 * parent's rate. If a clock doesn't have a parent (or is orphaned) 2389 * then rate is set to zero. 2390 */ 2391 if (clk->ops->recalc_rate) 2392 rate = clk->ops->recalc_rate(clk->hw, 2393 clk_core_get_rate_nolock(clk->parent)); 2394 else if (clk->parent) 2395 rate = clk->parent->rate; 2396 else 2397 rate = 0; 2398 clk->rate = clk->req_rate = rate; 2399 2400 /* 2401 * walk the list of orphan clocks and reparent any that are children of 2402 * this clock 2403 */ 2404 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 2405 if (orphan->num_parents && orphan->ops->get_parent) { 2406 i = orphan->ops->get_parent(orphan->hw); 2407 if (!strcmp(clk->name, orphan->parent_names[i])) 2408 clk_core_reparent(orphan, clk); 2409 continue; 2410 } 2411 2412 for (i = 0; i < orphan->num_parents; i++) 2413 if (!strcmp(clk->name, orphan->parent_names[i])) { 2414 clk_core_reparent(orphan, clk); 2415 break; 2416 } 2417 } 2418 2419 /* 2420 * optional platform-specific magic 2421 * 2422 * The .init callback is not used by any of the basic clock types, but 2423 * exists for weird hardware that must perform initialization magic. 2424 * Please consider other ways of solving initialization problems before 2425 * using this callback, as its use is discouraged. 2426 */ 2427 if (clk->ops->init) 2428 clk->ops->init(clk->hw); 2429 2430 kref_init(&clk->ref); 2431 out: 2432 clk_prepare_unlock(); 2433 2434 if (!ret) 2435 clk_debug_register(clk); 2436 2437 return ret; 2438 } 2439 2440 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id, 2441 const char *con_id) 2442 { 2443 struct clk *clk; 2444 2445 /* This is to allow this function to be chained to others */ 2446 if (!hw || IS_ERR(hw)) 2447 return (struct clk *) hw; 2448 2449 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 2450 if (!clk) 2451 return ERR_PTR(-ENOMEM); 2452 2453 clk->core = hw->core; 2454 clk->dev_id = dev_id; 2455 clk->con_id = con_id; 2456 clk->max_rate = ULONG_MAX; 2457 2458 clk_prepare_lock(); 2459 hlist_add_head(&clk->clks_node, &hw->core->clks); 2460 clk_prepare_unlock(); 2461 2462 return clk; 2463 } 2464 2465 void __clk_free_clk(struct clk *clk) 2466 { 2467 clk_prepare_lock(); 2468 hlist_del(&clk->clks_node); 2469 clk_prepare_unlock(); 2470 2471 kfree(clk); 2472 } 2473 2474 /** 2475 * clk_register - allocate a new clock, register it and return an opaque cookie 2476 * @dev: device that is registering this clock 2477 * @hw: link to hardware-specific clock data 2478 * 2479 * clk_register is the primary interface for populating the clock tree with new 2480 * clock nodes. It returns a pointer to the newly allocated struct clk which 2481 * cannot be dereferenced by driver code but may be used in conjuction with the 2482 * rest of the clock API. In the event of an error clk_register will return an 2483 * error code; drivers must test for an error code after calling clk_register. 2484 */ 2485 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 2486 { 2487 int i, ret; 2488 struct clk_core *clk; 2489 2490 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 2491 if (!clk) { 2492 pr_err("%s: could not allocate clk\n", __func__); 2493 ret = -ENOMEM; 2494 goto fail_out; 2495 } 2496 2497 clk->name = kstrdup_const(hw->init->name, GFP_KERNEL); 2498 if (!clk->name) { 2499 pr_err("%s: could not allocate clk->name\n", __func__); 2500 ret = -ENOMEM; 2501 goto fail_name; 2502 } 2503 clk->ops = hw->init->ops; 2504 if (dev && dev->driver) 2505 clk->owner = dev->driver->owner; 2506 clk->hw = hw; 2507 clk->flags = hw->init->flags; 2508 clk->num_parents = hw->init->num_parents; 2509 hw->core = clk; 2510 2511 /* allocate local copy in case parent_names is __initdata */ 2512 clk->parent_names = kcalloc(clk->num_parents, sizeof(char *), 2513 GFP_KERNEL); 2514 2515 if (!clk->parent_names) { 2516 pr_err("%s: could not allocate clk->parent_names\n", __func__); 2517 ret = -ENOMEM; 2518 goto fail_parent_names; 2519 } 2520 2521 2522 /* copy each string name in case parent_names is __initdata */ 2523 for (i = 0; i < clk->num_parents; i++) { 2524 clk->parent_names[i] = kstrdup_const(hw->init->parent_names[i], 2525 GFP_KERNEL); 2526 if (!clk->parent_names[i]) { 2527 pr_err("%s: could not copy parent_names\n", __func__); 2528 ret = -ENOMEM; 2529 goto fail_parent_names_copy; 2530 } 2531 } 2532 2533 INIT_HLIST_HEAD(&clk->clks); 2534 2535 hw->clk = __clk_create_clk(hw, NULL, NULL); 2536 if (IS_ERR(hw->clk)) { 2537 pr_err("%s: could not allocate per-user clk\n", __func__); 2538 ret = PTR_ERR(hw->clk); 2539 goto fail_parent_names_copy; 2540 } 2541 2542 ret = __clk_init(dev, hw->clk); 2543 if (!ret) 2544 return hw->clk; 2545 2546 __clk_free_clk(hw->clk); 2547 hw->clk = NULL; 2548 2549 fail_parent_names_copy: 2550 while (--i >= 0) 2551 kfree_const(clk->parent_names[i]); 2552 kfree(clk->parent_names); 2553 fail_parent_names: 2554 kfree_const(clk->name); 2555 fail_name: 2556 kfree(clk); 2557 fail_out: 2558 return ERR_PTR(ret); 2559 } 2560 EXPORT_SYMBOL_GPL(clk_register); 2561 2562 /* 2563 * Free memory allocated for a clock. 2564 * Caller must hold prepare_lock. 2565 */ 2566 static void __clk_release(struct kref *ref) 2567 { 2568 struct clk_core *clk = container_of(ref, struct clk_core, ref); 2569 int i = clk->num_parents; 2570 2571 lockdep_assert_held(&prepare_lock); 2572 2573 kfree(clk->parents); 2574 while (--i >= 0) 2575 kfree_const(clk->parent_names[i]); 2576 2577 kfree(clk->parent_names); 2578 kfree_const(clk->name); 2579 kfree(clk); 2580 } 2581 2582 /* 2583 * Empty clk_ops for unregistered clocks. These are used temporarily 2584 * after clk_unregister() was called on a clock and until last clock 2585 * consumer calls clk_put() and the struct clk object is freed. 2586 */ 2587 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 2588 { 2589 return -ENXIO; 2590 } 2591 2592 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 2593 { 2594 WARN_ON_ONCE(1); 2595 } 2596 2597 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 2598 unsigned long parent_rate) 2599 { 2600 return -ENXIO; 2601 } 2602 2603 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 2604 { 2605 return -ENXIO; 2606 } 2607 2608 static const struct clk_ops clk_nodrv_ops = { 2609 .enable = clk_nodrv_prepare_enable, 2610 .disable = clk_nodrv_disable_unprepare, 2611 .prepare = clk_nodrv_prepare_enable, 2612 .unprepare = clk_nodrv_disable_unprepare, 2613 .set_rate = clk_nodrv_set_rate, 2614 .set_parent = clk_nodrv_set_parent, 2615 }; 2616 2617 /** 2618 * clk_unregister - unregister a currently registered clock 2619 * @clk: clock to unregister 2620 */ 2621 void clk_unregister(struct clk *clk) 2622 { 2623 unsigned long flags; 2624 2625 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2626 return; 2627 2628 clk_debug_unregister(clk->core); 2629 2630 clk_prepare_lock(); 2631 2632 if (clk->core->ops == &clk_nodrv_ops) { 2633 pr_err("%s: unregistered clock: %s\n", __func__, 2634 clk->core->name); 2635 return; 2636 } 2637 /* 2638 * Assign empty clock ops for consumers that might still hold 2639 * a reference to this clock. 2640 */ 2641 flags = clk_enable_lock(); 2642 clk->core->ops = &clk_nodrv_ops; 2643 clk_enable_unlock(flags); 2644 2645 if (!hlist_empty(&clk->core->children)) { 2646 struct clk_core *child; 2647 struct hlist_node *t; 2648 2649 /* Reparent all children to the orphan list. */ 2650 hlist_for_each_entry_safe(child, t, &clk->core->children, 2651 child_node) 2652 clk_core_set_parent(child, NULL); 2653 } 2654 2655 hlist_del_init(&clk->core->child_node); 2656 2657 if (clk->core->prepare_count) 2658 pr_warn("%s: unregistering prepared clock: %s\n", 2659 __func__, clk->core->name); 2660 kref_put(&clk->core->ref, __clk_release); 2661 2662 clk_prepare_unlock(); 2663 } 2664 EXPORT_SYMBOL_GPL(clk_unregister); 2665 2666 static void devm_clk_release(struct device *dev, void *res) 2667 { 2668 clk_unregister(*(struct clk **)res); 2669 } 2670 2671 /** 2672 * devm_clk_register - resource managed clk_register() 2673 * @dev: device that is registering this clock 2674 * @hw: link to hardware-specific clock data 2675 * 2676 * Managed clk_register(). Clocks returned from this function are 2677 * automatically clk_unregister()ed on driver detach. See clk_register() for 2678 * more information. 2679 */ 2680 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 2681 { 2682 struct clk *clk; 2683 struct clk **clkp; 2684 2685 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 2686 if (!clkp) 2687 return ERR_PTR(-ENOMEM); 2688 2689 clk = clk_register(dev, hw); 2690 if (!IS_ERR(clk)) { 2691 *clkp = clk; 2692 devres_add(dev, clkp); 2693 } else { 2694 devres_free(clkp); 2695 } 2696 2697 return clk; 2698 } 2699 EXPORT_SYMBOL_GPL(devm_clk_register); 2700 2701 static int devm_clk_match(struct device *dev, void *res, void *data) 2702 { 2703 struct clk *c = res; 2704 if (WARN_ON(!c)) 2705 return 0; 2706 return c == data; 2707 } 2708 2709 /** 2710 * devm_clk_unregister - resource managed clk_unregister() 2711 * @clk: clock to unregister 2712 * 2713 * Deallocate a clock allocated with devm_clk_register(). Normally 2714 * this function will not need to be called and the resource management 2715 * code will ensure that the resource is freed. 2716 */ 2717 void devm_clk_unregister(struct device *dev, struct clk *clk) 2718 { 2719 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 2720 } 2721 EXPORT_SYMBOL_GPL(devm_clk_unregister); 2722 2723 /* 2724 * clkdev helpers 2725 */ 2726 int __clk_get(struct clk *clk) 2727 { 2728 struct clk_core *core = !clk ? NULL : clk->core; 2729 2730 if (core) { 2731 if (!try_module_get(core->owner)) 2732 return 0; 2733 2734 kref_get(&core->ref); 2735 } 2736 return 1; 2737 } 2738 2739 void __clk_put(struct clk *clk) 2740 { 2741 struct module *owner; 2742 2743 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2744 return; 2745 2746 clk_prepare_lock(); 2747 2748 hlist_del(&clk->clks_node); 2749 if (clk->min_rate > clk->core->req_rate || 2750 clk->max_rate < clk->core->req_rate) 2751 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 2752 2753 owner = clk->core->owner; 2754 kref_put(&clk->core->ref, __clk_release); 2755 2756 clk_prepare_unlock(); 2757 2758 module_put(owner); 2759 2760 kfree(clk); 2761 } 2762 2763 /*** clk rate change notifiers ***/ 2764 2765 /** 2766 * clk_notifier_register - add a clk rate change notifier 2767 * @clk: struct clk * to watch 2768 * @nb: struct notifier_block * with callback info 2769 * 2770 * Request notification when clk's rate changes. This uses an SRCU 2771 * notifier because we want it to block and notifier unregistrations are 2772 * uncommon. The callbacks associated with the notifier must not 2773 * re-enter into the clk framework by calling any top-level clk APIs; 2774 * this will cause a nested prepare_lock mutex. 2775 * 2776 * In all notification cases cases (pre, post and abort rate change) the 2777 * original clock rate is passed to the callback via struct 2778 * clk_notifier_data.old_rate and the new frequency is passed via struct 2779 * clk_notifier_data.new_rate. 2780 * 2781 * clk_notifier_register() must be called from non-atomic context. 2782 * Returns -EINVAL if called with null arguments, -ENOMEM upon 2783 * allocation failure; otherwise, passes along the return value of 2784 * srcu_notifier_chain_register(). 2785 */ 2786 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 2787 { 2788 struct clk_notifier *cn; 2789 int ret = -ENOMEM; 2790 2791 if (!clk || !nb) 2792 return -EINVAL; 2793 2794 clk_prepare_lock(); 2795 2796 /* search the list of notifiers for this clk */ 2797 list_for_each_entry(cn, &clk_notifier_list, node) 2798 if (cn->clk == clk) 2799 break; 2800 2801 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 2802 if (cn->clk != clk) { 2803 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL); 2804 if (!cn) 2805 goto out; 2806 2807 cn->clk = clk; 2808 srcu_init_notifier_head(&cn->notifier_head); 2809 2810 list_add(&cn->node, &clk_notifier_list); 2811 } 2812 2813 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 2814 2815 clk->core->notifier_count++; 2816 2817 out: 2818 clk_prepare_unlock(); 2819 2820 return ret; 2821 } 2822 EXPORT_SYMBOL_GPL(clk_notifier_register); 2823 2824 /** 2825 * clk_notifier_unregister - remove a clk rate change notifier 2826 * @clk: struct clk * 2827 * @nb: struct notifier_block * with callback info 2828 * 2829 * Request no further notification for changes to 'clk' and frees memory 2830 * allocated in clk_notifier_register. 2831 * 2832 * Returns -EINVAL if called with null arguments; otherwise, passes 2833 * along the return value of srcu_notifier_chain_unregister(). 2834 */ 2835 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 2836 { 2837 struct clk_notifier *cn = NULL; 2838 int ret = -EINVAL; 2839 2840 if (!clk || !nb) 2841 return -EINVAL; 2842 2843 clk_prepare_lock(); 2844 2845 list_for_each_entry(cn, &clk_notifier_list, node) 2846 if (cn->clk == clk) 2847 break; 2848 2849 if (cn->clk == clk) { 2850 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 2851 2852 clk->core->notifier_count--; 2853 2854 /* XXX the notifier code should handle this better */ 2855 if (!cn->notifier_head.head) { 2856 srcu_cleanup_notifier_head(&cn->notifier_head); 2857 list_del(&cn->node); 2858 kfree(cn); 2859 } 2860 2861 } else { 2862 ret = -ENOENT; 2863 } 2864 2865 clk_prepare_unlock(); 2866 2867 return ret; 2868 } 2869 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 2870 2871 #ifdef CONFIG_OF 2872 /** 2873 * struct of_clk_provider - Clock provider registration structure 2874 * @link: Entry in global list of clock providers 2875 * @node: Pointer to device tree node of clock provider 2876 * @get: Get clock callback. Returns NULL or a struct clk for the 2877 * given clock specifier 2878 * @data: context pointer to be passed into @get callback 2879 */ 2880 struct of_clk_provider { 2881 struct list_head link; 2882 2883 struct device_node *node; 2884 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 2885 void *data; 2886 }; 2887 2888 static const struct of_device_id __clk_of_table_sentinel 2889 __used __section(__clk_of_table_end); 2890 2891 static LIST_HEAD(of_clk_providers); 2892 static DEFINE_MUTEX(of_clk_mutex); 2893 2894 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 2895 void *data) 2896 { 2897 return data; 2898 } 2899 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 2900 2901 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 2902 { 2903 struct clk_onecell_data *clk_data = data; 2904 unsigned int idx = clkspec->args[0]; 2905 2906 if (idx >= clk_data->clk_num) { 2907 pr_err("%s: invalid clock index %d\n", __func__, idx); 2908 return ERR_PTR(-EINVAL); 2909 } 2910 2911 return clk_data->clks[idx]; 2912 } 2913 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 2914 2915 /** 2916 * of_clk_add_provider() - Register a clock provider for a node 2917 * @np: Device node pointer associated with clock provider 2918 * @clk_src_get: callback for decoding clock 2919 * @data: context pointer for @clk_src_get callback. 2920 */ 2921 int of_clk_add_provider(struct device_node *np, 2922 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 2923 void *data), 2924 void *data) 2925 { 2926 struct of_clk_provider *cp; 2927 int ret; 2928 2929 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL); 2930 if (!cp) 2931 return -ENOMEM; 2932 2933 cp->node = of_node_get(np); 2934 cp->data = data; 2935 cp->get = clk_src_get; 2936 2937 mutex_lock(&of_clk_mutex); 2938 list_add(&cp->link, &of_clk_providers); 2939 mutex_unlock(&of_clk_mutex); 2940 pr_debug("Added clock from %s\n", np->full_name); 2941 2942 ret = of_clk_set_defaults(np, true); 2943 if (ret < 0) 2944 of_clk_del_provider(np); 2945 2946 return ret; 2947 } 2948 EXPORT_SYMBOL_GPL(of_clk_add_provider); 2949 2950 /** 2951 * of_clk_del_provider() - Remove a previously registered clock provider 2952 * @np: Device node pointer associated with clock provider 2953 */ 2954 void of_clk_del_provider(struct device_node *np) 2955 { 2956 struct of_clk_provider *cp; 2957 2958 mutex_lock(&of_clk_mutex); 2959 list_for_each_entry(cp, &of_clk_providers, link) { 2960 if (cp->node == np) { 2961 list_del(&cp->link); 2962 of_node_put(cp->node); 2963 kfree(cp); 2964 break; 2965 } 2966 } 2967 mutex_unlock(&of_clk_mutex); 2968 } 2969 EXPORT_SYMBOL_GPL(of_clk_del_provider); 2970 2971 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec, 2972 const char *dev_id, const char *con_id) 2973 { 2974 struct of_clk_provider *provider; 2975 struct clk *clk = ERR_PTR(-EPROBE_DEFER); 2976 2977 if (!clkspec) 2978 return ERR_PTR(-EINVAL); 2979 2980 /* Check if we have such a provider in our array */ 2981 mutex_lock(&of_clk_mutex); 2982 list_for_each_entry(provider, &of_clk_providers, link) { 2983 if (provider->node == clkspec->np) 2984 clk = provider->get(clkspec, provider->data); 2985 if (!IS_ERR(clk)) { 2986 clk = __clk_create_clk(__clk_get_hw(clk), dev_id, 2987 con_id); 2988 2989 if (!IS_ERR(clk) && !__clk_get(clk)) { 2990 __clk_free_clk(clk); 2991 clk = ERR_PTR(-ENOENT); 2992 } 2993 2994 break; 2995 } 2996 } 2997 mutex_unlock(&of_clk_mutex); 2998 2999 return clk; 3000 } 3001 3002 /** 3003 * of_clk_get_from_provider() - Lookup a clock from a clock provider 3004 * @clkspec: pointer to a clock specifier data structure 3005 * 3006 * This function looks up a struct clk from the registered list of clock 3007 * providers, an input is a clock specifier data structure as returned 3008 * from the of_parse_phandle_with_args() function call. 3009 */ 3010 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 3011 { 3012 return __of_clk_get_from_provider(clkspec, NULL, __func__); 3013 } 3014 3015 int of_clk_get_parent_count(struct device_node *np) 3016 { 3017 return of_count_phandle_with_args(np, "clocks", "#clock-cells"); 3018 } 3019 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 3020 3021 const char *of_clk_get_parent_name(struct device_node *np, int index) 3022 { 3023 struct of_phandle_args clkspec; 3024 struct property *prop; 3025 const char *clk_name; 3026 const __be32 *vp; 3027 u32 pv; 3028 int rc; 3029 int count; 3030 3031 if (index < 0) 3032 return NULL; 3033 3034 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 3035 &clkspec); 3036 if (rc) 3037 return NULL; 3038 3039 index = clkspec.args_count ? clkspec.args[0] : 0; 3040 count = 0; 3041 3042 /* if there is an indices property, use it to transfer the index 3043 * specified into an array offset for the clock-output-names property. 3044 */ 3045 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 3046 if (index == pv) { 3047 index = count; 3048 break; 3049 } 3050 count++; 3051 } 3052 3053 if (of_property_read_string_index(clkspec.np, "clock-output-names", 3054 index, 3055 &clk_name) < 0) 3056 clk_name = clkspec.np->name; 3057 3058 of_node_put(clkspec.np); 3059 return clk_name; 3060 } 3061 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 3062 3063 struct clock_provider { 3064 of_clk_init_cb_t clk_init_cb; 3065 struct device_node *np; 3066 struct list_head node; 3067 }; 3068 3069 static LIST_HEAD(clk_provider_list); 3070 3071 /* 3072 * This function looks for a parent clock. If there is one, then it 3073 * checks that the provider for this parent clock was initialized, in 3074 * this case the parent clock will be ready. 3075 */ 3076 static int parent_ready(struct device_node *np) 3077 { 3078 int i = 0; 3079 3080 while (true) { 3081 struct clk *clk = of_clk_get(np, i); 3082 3083 /* this parent is ready we can check the next one */ 3084 if (!IS_ERR(clk)) { 3085 clk_put(clk); 3086 i++; 3087 continue; 3088 } 3089 3090 /* at least one parent is not ready, we exit now */ 3091 if (PTR_ERR(clk) == -EPROBE_DEFER) 3092 return 0; 3093 3094 /* 3095 * Here we make assumption that the device tree is 3096 * written correctly. So an error means that there is 3097 * no more parent. As we didn't exit yet, then the 3098 * previous parent are ready. If there is no clock 3099 * parent, no need to wait for them, then we can 3100 * consider their absence as being ready 3101 */ 3102 return 1; 3103 } 3104 } 3105 3106 /** 3107 * of_clk_init() - Scan and init clock providers from the DT 3108 * @matches: array of compatible values and init functions for providers. 3109 * 3110 * This function scans the device tree for matching clock providers 3111 * and calls their initialization functions. It also does it by trying 3112 * to follow the dependencies. 3113 */ 3114 void __init of_clk_init(const struct of_device_id *matches) 3115 { 3116 const struct of_device_id *match; 3117 struct device_node *np; 3118 struct clock_provider *clk_provider, *next; 3119 bool is_init_done; 3120 bool force = false; 3121 3122 if (!matches) 3123 matches = &__clk_of_table; 3124 3125 /* First prepare the list of the clocks providers */ 3126 for_each_matching_node_and_match(np, matches, &match) { 3127 struct clock_provider *parent = 3128 kzalloc(sizeof(struct clock_provider), GFP_KERNEL); 3129 3130 parent->clk_init_cb = match->data; 3131 parent->np = np; 3132 list_add_tail(&parent->node, &clk_provider_list); 3133 } 3134 3135 while (!list_empty(&clk_provider_list)) { 3136 is_init_done = false; 3137 list_for_each_entry_safe(clk_provider, next, 3138 &clk_provider_list, node) { 3139 if (force || parent_ready(clk_provider->np)) { 3140 3141 clk_provider->clk_init_cb(clk_provider->np); 3142 of_clk_set_defaults(clk_provider->np, true); 3143 3144 list_del(&clk_provider->node); 3145 kfree(clk_provider); 3146 is_init_done = true; 3147 } 3148 } 3149 3150 /* 3151 * We didn't manage to initialize any of the 3152 * remaining providers during the last loop, so now we 3153 * initialize all the remaining ones unconditionally 3154 * in case the clock parent was not mandatory 3155 */ 3156 if (!is_init_done) 3157 force = true; 3158 } 3159 } 3160 #endif 3161