xref: /linux/drivers/clk/clk.c (revision 0da85d1e38b4c186d2248f0239b72d465f5b406c)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk-provider.h>
13 #include <linux/clk/clk-conf.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/list.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/sched.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static long clk_core_get_accuracy(struct clk_core *clk);
41 static unsigned long clk_core_get_rate(struct clk_core *clk);
42 static int clk_core_get_phase(struct clk_core *clk);
43 static bool clk_core_is_prepared(struct clk_core *clk);
44 static bool clk_core_is_enabled(struct clk_core *clk);
45 static struct clk_core *clk_core_lookup(const char *name);
46 
47 /***    private data structures    ***/
48 
49 struct clk_core {
50 	const char		*name;
51 	const struct clk_ops	*ops;
52 	struct clk_hw		*hw;
53 	struct module		*owner;
54 	struct clk_core		*parent;
55 	const char		**parent_names;
56 	struct clk_core		**parents;
57 	u8			num_parents;
58 	u8			new_parent_index;
59 	unsigned long		rate;
60 	unsigned long		req_rate;
61 	unsigned long		new_rate;
62 	struct clk_core		*new_parent;
63 	struct clk_core		*new_child;
64 	unsigned long		flags;
65 	unsigned int		enable_count;
66 	unsigned int		prepare_count;
67 	unsigned long		accuracy;
68 	int			phase;
69 	struct hlist_head	children;
70 	struct hlist_node	child_node;
71 	struct hlist_node	debug_node;
72 	struct hlist_head	clks;
73 	unsigned int		notifier_count;
74 #ifdef CONFIG_DEBUG_FS
75 	struct dentry		*dentry;
76 #endif
77 	struct kref		ref;
78 };
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/clk.h>
82 
83 struct clk {
84 	struct clk_core	*core;
85 	const char *dev_id;
86 	const char *con_id;
87 	unsigned long min_rate;
88 	unsigned long max_rate;
89 	struct hlist_node clks_node;
90 };
91 
92 /***           locking             ***/
93 static void clk_prepare_lock(void)
94 {
95 	if (!mutex_trylock(&prepare_lock)) {
96 		if (prepare_owner == current) {
97 			prepare_refcnt++;
98 			return;
99 		}
100 		mutex_lock(&prepare_lock);
101 	}
102 	WARN_ON_ONCE(prepare_owner != NULL);
103 	WARN_ON_ONCE(prepare_refcnt != 0);
104 	prepare_owner = current;
105 	prepare_refcnt = 1;
106 }
107 
108 static void clk_prepare_unlock(void)
109 {
110 	WARN_ON_ONCE(prepare_owner != current);
111 	WARN_ON_ONCE(prepare_refcnt == 0);
112 
113 	if (--prepare_refcnt)
114 		return;
115 	prepare_owner = NULL;
116 	mutex_unlock(&prepare_lock);
117 }
118 
119 static unsigned long clk_enable_lock(void)
120 {
121 	unsigned long flags;
122 
123 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
124 		if (enable_owner == current) {
125 			enable_refcnt++;
126 			return flags;
127 		}
128 		spin_lock_irqsave(&enable_lock, flags);
129 	}
130 	WARN_ON_ONCE(enable_owner != NULL);
131 	WARN_ON_ONCE(enable_refcnt != 0);
132 	enable_owner = current;
133 	enable_refcnt = 1;
134 	return flags;
135 }
136 
137 static void clk_enable_unlock(unsigned long flags)
138 {
139 	WARN_ON_ONCE(enable_owner != current);
140 	WARN_ON_ONCE(enable_refcnt == 0);
141 
142 	if (--enable_refcnt)
143 		return;
144 	enable_owner = NULL;
145 	spin_unlock_irqrestore(&enable_lock, flags);
146 }
147 
148 /***        debugfs support        ***/
149 
150 #ifdef CONFIG_DEBUG_FS
151 #include <linux/debugfs.h>
152 
153 static struct dentry *rootdir;
154 static int inited = 0;
155 static DEFINE_MUTEX(clk_debug_lock);
156 static HLIST_HEAD(clk_debug_list);
157 
158 static struct hlist_head *all_lists[] = {
159 	&clk_root_list,
160 	&clk_orphan_list,
161 	NULL,
162 };
163 
164 static struct hlist_head *orphan_list[] = {
165 	&clk_orphan_list,
166 	NULL,
167 };
168 
169 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
170 				 int level)
171 {
172 	if (!c)
173 		return;
174 
175 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
176 		   level * 3 + 1, "",
177 		   30 - level * 3, c->name,
178 		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
179 		   clk_core_get_accuracy(c), clk_core_get_phase(c));
180 }
181 
182 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
183 				     int level)
184 {
185 	struct clk_core *child;
186 
187 	if (!c)
188 		return;
189 
190 	clk_summary_show_one(s, c, level);
191 
192 	hlist_for_each_entry(child, &c->children, child_node)
193 		clk_summary_show_subtree(s, child, level + 1);
194 }
195 
196 static int clk_summary_show(struct seq_file *s, void *data)
197 {
198 	struct clk_core *c;
199 	struct hlist_head **lists = (struct hlist_head **)s->private;
200 
201 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
202 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
203 
204 	clk_prepare_lock();
205 
206 	for (; *lists; lists++)
207 		hlist_for_each_entry(c, *lists, child_node)
208 			clk_summary_show_subtree(s, c, 0);
209 
210 	clk_prepare_unlock();
211 
212 	return 0;
213 }
214 
215 
216 static int clk_summary_open(struct inode *inode, struct file *file)
217 {
218 	return single_open(file, clk_summary_show, inode->i_private);
219 }
220 
221 static const struct file_operations clk_summary_fops = {
222 	.open		= clk_summary_open,
223 	.read		= seq_read,
224 	.llseek		= seq_lseek,
225 	.release	= single_release,
226 };
227 
228 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
229 {
230 	if (!c)
231 		return;
232 
233 	seq_printf(s, "\"%s\": { ", c->name);
234 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
235 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
236 	seq_printf(s, "\"rate\": %lu", clk_core_get_rate(c));
237 	seq_printf(s, "\"accuracy\": %lu", clk_core_get_accuracy(c));
238 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
239 }
240 
241 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
242 {
243 	struct clk_core *child;
244 
245 	if (!c)
246 		return;
247 
248 	clk_dump_one(s, c, level);
249 
250 	hlist_for_each_entry(child, &c->children, child_node) {
251 		seq_printf(s, ",");
252 		clk_dump_subtree(s, child, level + 1);
253 	}
254 
255 	seq_printf(s, "}");
256 }
257 
258 static int clk_dump(struct seq_file *s, void *data)
259 {
260 	struct clk_core *c;
261 	bool first_node = true;
262 	struct hlist_head **lists = (struct hlist_head **)s->private;
263 
264 	seq_printf(s, "{");
265 
266 	clk_prepare_lock();
267 
268 	for (; *lists; lists++) {
269 		hlist_for_each_entry(c, *lists, child_node) {
270 			if (!first_node)
271 				seq_puts(s, ",");
272 			first_node = false;
273 			clk_dump_subtree(s, c, 0);
274 		}
275 	}
276 
277 	clk_prepare_unlock();
278 
279 	seq_printf(s, "}");
280 	return 0;
281 }
282 
283 
284 static int clk_dump_open(struct inode *inode, struct file *file)
285 {
286 	return single_open(file, clk_dump, inode->i_private);
287 }
288 
289 static const struct file_operations clk_dump_fops = {
290 	.open		= clk_dump_open,
291 	.read		= seq_read,
292 	.llseek		= seq_lseek,
293 	.release	= single_release,
294 };
295 
296 static int clk_debug_create_one(struct clk_core *clk, struct dentry *pdentry)
297 {
298 	struct dentry *d;
299 	int ret = -ENOMEM;
300 
301 	if (!clk || !pdentry) {
302 		ret = -EINVAL;
303 		goto out;
304 	}
305 
306 	d = debugfs_create_dir(clk->name, pdentry);
307 	if (!d)
308 		goto out;
309 
310 	clk->dentry = d;
311 
312 	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
313 			(u32 *)&clk->rate);
314 	if (!d)
315 		goto err_out;
316 
317 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
318 			(u32 *)&clk->accuracy);
319 	if (!d)
320 		goto err_out;
321 
322 	d = debugfs_create_u32("clk_phase", S_IRUGO, clk->dentry,
323 			(u32 *)&clk->phase);
324 	if (!d)
325 		goto err_out;
326 
327 	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
328 			(u32 *)&clk->flags);
329 	if (!d)
330 		goto err_out;
331 
332 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
333 			(u32 *)&clk->prepare_count);
334 	if (!d)
335 		goto err_out;
336 
337 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
338 			(u32 *)&clk->enable_count);
339 	if (!d)
340 		goto err_out;
341 
342 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
343 			(u32 *)&clk->notifier_count);
344 	if (!d)
345 		goto err_out;
346 
347 	if (clk->ops->debug_init) {
348 		ret = clk->ops->debug_init(clk->hw, clk->dentry);
349 		if (ret)
350 			goto err_out;
351 	}
352 
353 	ret = 0;
354 	goto out;
355 
356 err_out:
357 	debugfs_remove_recursive(clk->dentry);
358 	clk->dentry = NULL;
359 out:
360 	return ret;
361 }
362 
363 /**
364  * clk_debug_register - add a clk node to the debugfs clk tree
365  * @clk: the clk being added to the debugfs clk tree
366  *
367  * Dynamically adds a clk to the debugfs clk tree if debugfs has been
368  * initialized.  Otherwise it bails out early since the debugfs clk tree
369  * will be created lazily by clk_debug_init as part of a late_initcall.
370  */
371 static int clk_debug_register(struct clk_core *clk)
372 {
373 	int ret = 0;
374 
375 	mutex_lock(&clk_debug_lock);
376 	hlist_add_head(&clk->debug_node, &clk_debug_list);
377 
378 	if (!inited)
379 		goto unlock;
380 
381 	ret = clk_debug_create_one(clk, rootdir);
382 unlock:
383 	mutex_unlock(&clk_debug_lock);
384 
385 	return ret;
386 }
387 
388  /**
389  * clk_debug_unregister - remove a clk node from the debugfs clk tree
390  * @clk: the clk being removed from the debugfs clk tree
391  *
392  * Dynamically removes a clk and all it's children clk nodes from the
393  * debugfs clk tree if clk->dentry points to debugfs created by
394  * clk_debug_register in __clk_init.
395  */
396 static void clk_debug_unregister(struct clk_core *clk)
397 {
398 	mutex_lock(&clk_debug_lock);
399 	hlist_del_init(&clk->debug_node);
400 	debugfs_remove_recursive(clk->dentry);
401 	clk->dentry = NULL;
402 	mutex_unlock(&clk_debug_lock);
403 }
404 
405 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
406 				void *data, const struct file_operations *fops)
407 {
408 	struct dentry *d = NULL;
409 
410 	if (hw->core->dentry)
411 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
412 					fops);
413 
414 	return d;
415 }
416 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
417 
418 /**
419  * clk_debug_init - lazily create the debugfs clk tree visualization
420  *
421  * clks are often initialized very early during boot before memory can
422  * be dynamically allocated and well before debugfs is setup.
423  * clk_debug_init walks the clk tree hierarchy while holding
424  * prepare_lock and creates the topology as part of a late_initcall,
425  * thus insuring that clks initialized very early will still be
426  * represented in the debugfs clk tree.  This function should only be
427  * called once at boot-time, and all other clks added dynamically will
428  * be done so with clk_debug_register.
429  */
430 static int __init clk_debug_init(void)
431 {
432 	struct clk_core *clk;
433 	struct dentry *d;
434 
435 	rootdir = debugfs_create_dir("clk", NULL);
436 
437 	if (!rootdir)
438 		return -ENOMEM;
439 
440 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
441 				&clk_summary_fops);
442 	if (!d)
443 		return -ENOMEM;
444 
445 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
446 				&clk_dump_fops);
447 	if (!d)
448 		return -ENOMEM;
449 
450 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
451 				&orphan_list, &clk_summary_fops);
452 	if (!d)
453 		return -ENOMEM;
454 
455 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
456 				&orphan_list, &clk_dump_fops);
457 	if (!d)
458 		return -ENOMEM;
459 
460 	mutex_lock(&clk_debug_lock);
461 	hlist_for_each_entry(clk, &clk_debug_list, debug_node)
462 		clk_debug_create_one(clk, rootdir);
463 
464 	inited = 1;
465 	mutex_unlock(&clk_debug_lock);
466 
467 	return 0;
468 }
469 late_initcall(clk_debug_init);
470 #else
471 static inline int clk_debug_register(struct clk_core *clk) { return 0; }
472 static inline void clk_debug_reparent(struct clk_core *clk,
473 				      struct clk_core *new_parent)
474 {
475 }
476 static inline void clk_debug_unregister(struct clk_core *clk)
477 {
478 }
479 #endif
480 
481 /* caller must hold prepare_lock */
482 static void clk_unprepare_unused_subtree(struct clk_core *clk)
483 {
484 	struct clk_core *child;
485 
486 	lockdep_assert_held(&prepare_lock);
487 
488 	hlist_for_each_entry(child, &clk->children, child_node)
489 		clk_unprepare_unused_subtree(child);
490 
491 	if (clk->prepare_count)
492 		return;
493 
494 	if (clk->flags & CLK_IGNORE_UNUSED)
495 		return;
496 
497 	if (clk_core_is_prepared(clk)) {
498 		trace_clk_unprepare(clk);
499 		if (clk->ops->unprepare_unused)
500 			clk->ops->unprepare_unused(clk->hw);
501 		else if (clk->ops->unprepare)
502 			clk->ops->unprepare(clk->hw);
503 		trace_clk_unprepare_complete(clk);
504 	}
505 }
506 
507 /* caller must hold prepare_lock */
508 static void clk_disable_unused_subtree(struct clk_core *clk)
509 {
510 	struct clk_core *child;
511 	unsigned long flags;
512 
513 	lockdep_assert_held(&prepare_lock);
514 
515 	hlist_for_each_entry(child, &clk->children, child_node)
516 		clk_disable_unused_subtree(child);
517 
518 	flags = clk_enable_lock();
519 
520 	if (clk->enable_count)
521 		goto unlock_out;
522 
523 	if (clk->flags & CLK_IGNORE_UNUSED)
524 		goto unlock_out;
525 
526 	/*
527 	 * some gate clocks have special needs during the disable-unused
528 	 * sequence.  call .disable_unused if available, otherwise fall
529 	 * back to .disable
530 	 */
531 	if (clk_core_is_enabled(clk)) {
532 		trace_clk_disable(clk);
533 		if (clk->ops->disable_unused)
534 			clk->ops->disable_unused(clk->hw);
535 		else if (clk->ops->disable)
536 			clk->ops->disable(clk->hw);
537 		trace_clk_disable_complete(clk);
538 	}
539 
540 unlock_out:
541 	clk_enable_unlock(flags);
542 }
543 
544 static bool clk_ignore_unused;
545 static int __init clk_ignore_unused_setup(char *__unused)
546 {
547 	clk_ignore_unused = true;
548 	return 1;
549 }
550 __setup("clk_ignore_unused", clk_ignore_unused_setup);
551 
552 static int clk_disable_unused(void)
553 {
554 	struct clk_core *clk;
555 
556 	if (clk_ignore_unused) {
557 		pr_warn("clk: Not disabling unused clocks\n");
558 		return 0;
559 	}
560 
561 	clk_prepare_lock();
562 
563 	hlist_for_each_entry(clk, &clk_root_list, child_node)
564 		clk_disable_unused_subtree(clk);
565 
566 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
567 		clk_disable_unused_subtree(clk);
568 
569 	hlist_for_each_entry(clk, &clk_root_list, child_node)
570 		clk_unprepare_unused_subtree(clk);
571 
572 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
573 		clk_unprepare_unused_subtree(clk);
574 
575 	clk_prepare_unlock();
576 
577 	return 0;
578 }
579 late_initcall_sync(clk_disable_unused);
580 
581 /***    helper functions   ***/
582 
583 const char *__clk_get_name(struct clk *clk)
584 {
585 	return !clk ? NULL : clk->core->name;
586 }
587 EXPORT_SYMBOL_GPL(__clk_get_name);
588 
589 struct clk_hw *__clk_get_hw(struct clk *clk)
590 {
591 	return !clk ? NULL : clk->core->hw;
592 }
593 EXPORT_SYMBOL_GPL(__clk_get_hw);
594 
595 u8 __clk_get_num_parents(struct clk *clk)
596 {
597 	return !clk ? 0 : clk->core->num_parents;
598 }
599 EXPORT_SYMBOL_GPL(__clk_get_num_parents);
600 
601 struct clk *__clk_get_parent(struct clk *clk)
602 {
603 	if (!clk)
604 		return NULL;
605 
606 	/* TODO: Create a per-user clk and change callers to call clk_put */
607 	return !clk->core->parent ? NULL : clk->core->parent->hw->clk;
608 }
609 EXPORT_SYMBOL_GPL(__clk_get_parent);
610 
611 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *clk,
612 							 u8 index)
613 {
614 	if (!clk || index >= clk->num_parents)
615 		return NULL;
616 	else if (!clk->parents)
617 		return clk_core_lookup(clk->parent_names[index]);
618 	else if (!clk->parents[index])
619 		return clk->parents[index] =
620 			clk_core_lookup(clk->parent_names[index]);
621 	else
622 		return clk->parents[index];
623 }
624 
625 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
626 {
627 	struct clk_core *parent;
628 
629 	if (!clk)
630 		return NULL;
631 
632 	parent = clk_core_get_parent_by_index(clk->core, index);
633 
634 	return !parent ? NULL : parent->hw->clk;
635 }
636 EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
637 
638 unsigned int __clk_get_enable_count(struct clk *clk)
639 {
640 	return !clk ? 0 : clk->core->enable_count;
641 }
642 
643 static unsigned long clk_core_get_rate_nolock(struct clk_core *clk)
644 {
645 	unsigned long ret;
646 
647 	if (!clk) {
648 		ret = 0;
649 		goto out;
650 	}
651 
652 	ret = clk->rate;
653 
654 	if (clk->flags & CLK_IS_ROOT)
655 		goto out;
656 
657 	if (!clk->parent)
658 		ret = 0;
659 
660 out:
661 	return ret;
662 }
663 
664 unsigned long __clk_get_rate(struct clk *clk)
665 {
666 	if (!clk)
667 		return 0;
668 
669 	return clk_core_get_rate_nolock(clk->core);
670 }
671 EXPORT_SYMBOL_GPL(__clk_get_rate);
672 
673 static unsigned long __clk_get_accuracy(struct clk_core *clk)
674 {
675 	if (!clk)
676 		return 0;
677 
678 	return clk->accuracy;
679 }
680 
681 unsigned long __clk_get_flags(struct clk *clk)
682 {
683 	return !clk ? 0 : clk->core->flags;
684 }
685 EXPORT_SYMBOL_GPL(__clk_get_flags);
686 
687 static bool clk_core_is_prepared(struct clk_core *clk)
688 {
689 	int ret;
690 
691 	if (!clk)
692 		return false;
693 
694 	/*
695 	 * .is_prepared is optional for clocks that can prepare
696 	 * fall back to software usage counter if it is missing
697 	 */
698 	if (!clk->ops->is_prepared) {
699 		ret = clk->prepare_count ? 1 : 0;
700 		goto out;
701 	}
702 
703 	ret = clk->ops->is_prepared(clk->hw);
704 out:
705 	return !!ret;
706 }
707 
708 bool __clk_is_prepared(struct clk *clk)
709 {
710 	if (!clk)
711 		return false;
712 
713 	return clk_core_is_prepared(clk->core);
714 }
715 
716 static bool clk_core_is_enabled(struct clk_core *clk)
717 {
718 	int ret;
719 
720 	if (!clk)
721 		return false;
722 
723 	/*
724 	 * .is_enabled is only mandatory for clocks that gate
725 	 * fall back to software usage counter if .is_enabled is missing
726 	 */
727 	if (!clk->ops->is_enabled) {
728 		ret = clk->enable_count ? 1 : 0;
729 		goto out;
730 	}
731 
732 	ret = clk->ops->is_enabled(clk->hw);
733 out:
734 	return !!ret;
735 }
736 
737 bool __clk_is_enabled(struct clk *clk)
738 {
739 	if (!clk)
740 		return false;
741 
742 	return clk_core_is_enabled(clk->core);
743 }
744 EXPORT_SYMBOL_GPL(__clk_is_enabled);
745 
746 static struct clk_core *__clk_lookup_subtree(const char *name,
747 					     struct clk_core *clk)
748 {
749 	struct clk_core *child;
750 	struct clk_core *ret;
751 
752 	if (!strcmp(clk->name, name))
753 		return clk;
754 
755 	hlist_for_each_entry(child, &clk->children, child_node) {
756 		ret = __clk_lookup_subtree(name, child);
757 		if (ret)
758 			return ret;
759 	}
760 
761 	return NULL;
762 }
763 
764 static struct clk_core *clk_core_lookup(const char *name)
765 {
766 	struct clk_core *root_clk;
767 	struct clk_core *ret;
768 
769 	if (!name)
770 		return NULL;
771 
772 	/* search the 'proper' clk tree first */
773 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
774 		ret = __clk_lookup_subtree(name, root_clk);
775 		if (ret)
776 			return ret;
777 	}
778 
779 	/* if not found, then search the orphan tree */
780 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
781 		ret = __clk_lookup_subtree(name, root_clk);
782 		if (ret)
783 			return ret;
784 	}
785 
786 	return NULL;
787 }
788 
789 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
790 			   unsigned long best, unsigned long flags)
791 {
792 	if (flags & CLK_MUX_ROUND_CLOSEST)
793 		return abs(now - rate) < abs(best - rate);
794 
795 	return now <= rate && now > best;
796 }
797 
798 static long
799 clk_mux_determine_rate_flags(struct clk_hw *hw, unsigned long rate,
800 			     unsigned long min_rate,
801 			     unsigned long max_rate,
802 			     unsigned long *best_parent_rate,
803 			     struct clk_hw **best_parent_p,
804 			     unsigned long flags)
805 {
806 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
807 	int i, num_parents;
808 	unsigned long parent_rate, best = 0;
809 
810 	/* if NO_REPARENT flag set, pass through to current parent */
811 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
812 		parent = core->parent;
813 		if (core->flags & CLK_SET_RATE_PARENT)
814 			best = __clk_determine_rate(parent ? parent->hw : NULL,
815 						    rate, min_rate, max_rate);
816 		else if (parent)
817 			best = clk_core_get_rate_nolock(parent);
818 		else
819 			best = clk_core_get_rate_nolock(core);
820 		goto out;
821 	}
822 
823 	/* find the parent that can provide the fastest rate <= rate */
824 	num_parents = core->num_parents;
825 	for (i = 0; i < num_parents; i++) {
826 		parent = clk_core_get_parent_by_index(core, i);
827 		if (!parent)
828 			continue;
829 		if (core->flags & CLK_SET_RATE_PARENT)
830 			parent_rate = __clk_determine_rate(parent->hw, rate,
831 							   min_rate,
832 							   max_rate);
833 		else
834 			parent_rate = clk_core_get_rate_nolock(parent);
835 		if (mux_is_better_rate(rate, parent_rate, best, flags)) {
836 			best_parent = parent;
837 			best = parent_rate;
838 		}
839 	}
840 
841 out:
842 	if (best_parent)
843 		*best_parent_p = best_parent->hw;
844 	*best_parent_rate = best;
845 
846 	return best;
847 }
848 
849 struct clk *__clk_lookup(const char *name)
850 {
851 	struct clk_core *core = clk_core_lookup(name);
852 
853 	return !core ? NULL : core->hw->clk;
854 }
855 
856 static void clk_core_get_boundaries(struct clk_core *clk,
857 				    unsigned long *min_rate,
858 				    unsigned long *max_rate)
859 {
860 	struct clk *clk_user;
861 
862 	*min_rate = 0;
863 	*max_rate = ULONG_MAX;
864 
865 	hlist_for_each_entry(clk_user, &clk->clks, clks_node)
866 		*min_rate = max(*min_rate, clk_user->min_rate);
867 
868 	hlist_for_each_entry(clk_user, &clk->clks, clks_node)
869 		*max_rate = min(*max_rate, clk_user->max_rate);
870 }
871 
872 /*
873  * Helper for finding best parent to provide a given frequency. This can be used
874  * directly as a determine_rate callback (e.g. for a mux), or from a more
875  * complex clock that may combine a mux with other operations.
876  */
877 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
878 			      unsigned long min_rate,
879 			      unsigned long max_rate,
880 			      unsigned long *best_parent_rate,
881 			      struct clk_hw **best_parent_p)
882 {
883 	return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
884 					    best_parent_rate,
885 					    best_parent_p, 0);
886 }
887 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
888 
889 long __clk_mux_determine_rate_closest(struct clk_hw *hw, unsigned long rate,
890 			      unsigned long min_rate,
891 			      unsigned long max_rate,
892 			      unsigned long *best_parent_rate,
893 			      struct clk_hw **best_parent_p)
894 {
895 	return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
896 					    best_parent_rate,
897 					    best_parent_p,
898 					    CLK_MUX_ROUND_CLOSEST);
899 }
900 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
901 
902 /***        clk api        ***/
903 
904 static void clk_core_unprepare(struct clk_core *clk)
905 {
906 	if (!clk)
907 		return;
908 
909 	if (WARN_ON(clk->prepare_count == 0))
910 		return;
911 
912 	if (--clk->prepare_count > 0)
913 		return;
914 
915 	WARN_ON(clk->enable_count > 0);
916 
917 	trace_clk_unprepare(clk);
918 
919 	if (clk->ops->unprepare)
920 		clk->ops->unprepare(clk->hw);
921 
922 	trace_clk_unprepare_complete(clk);
923 	clk_core_unprepare(clk->parent);
924 }
925 
926 /**
927  * clk_unprepare - undo preparation of a clock source
928  * @clk: the clk being unprepared
929  *
930  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
931  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
932  * if the operation may sleep.  One example is a clk which is accessed over
933  * I2c.  In the complex case a clk gate operation may require a fast and a slow
934  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
935  * exclusive.  In fact clk_disable must be called before clk_unprepare.
936  */
937 void clk_unprepare(struct clk *clk)
938 {
939 	if (IS_ERR_OR_NULL(clk))
940 		return;
941 
942 	clk_prepare_lock();
943 	clk_core_unprepare(clk->core);
944 	clk_prepare_unlock();
945 }
946 EXPORT_SYMBOL_GPL(clk_unprepare);
947 
948 static int clk_core_prepare(struct clk_core *clk)
949 {
950 	int ret = 0;
951 
952 	if (!clk)
953 		return 0;
954 
955 	if (clk->prepare_count == 0) {
956 		ret = clk_core_prepare(clk->parent);
957 		if (ret)
958 			return ret;
959 
960 		trace_clk_prepare(clk);
961 
962 		if (clk->ops->prepare)
963 			ret = clk->ops->prepare(clk->hw);
964 
965 		trace_clk_prepare_complete(clk);
966 
967 		if (ret) {
968 			clk_core_unprepare(clk->parent);
969 			return ret;
970 		}
971 	}
972 
973 	clk->prepare_count++;
974 
975 	return 0;
976 }
977 
978 /**
979  * clk_prepare - prepare a clock source
980  * @clk: the clk being prepared
981  *
982  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
983  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
984  * operation may sleep.  One example is a clk which is accessed over I2c.  In
985  * the complex case a clk ungate operation may require a fast and a slow part.
986  * It is this reason that clk_prepare and clk_enable are not mutually
987  * exclusive.  In fact clk_prepare must be called before clk_enable.
988  * Returns 0 on success, -EERROR otherwise.
989  */
990 int clk_prepare(struct clk *clk)
991 {
992 	int ret;
993 
994 	if (!clk)
995 		return 0;
996 
997 	clk_prepare_lock();
998 	ret = clk_core_prepare(clk->core);
999 	clk_prepare_unlock();
1000 
1001 	return ret;
1002 }
1003 EXPORT_SYMBOL_GPL(clk_prepare);
1004 
1005 static void clk_core_disable(struct clk_core *clk)
1006 {
1007 	if (!clk)
1008 		return;
1009 
1010 	if (WARN_ON(clk->enable_count == 0))
1011 		return;
1012 
1013 	if (--clk->enable_count > 0)
1014 		return;
1015 
1016 	trace_clk_disable(clk);
1017 
1018 	if (clk->ops->disable)
1019 		clk->ops->disable(clk->hw);
1020 
1021 	trace_clk_disable_complete(clk);
1022 
1023 	clk_core_disable(clk->parent);
1024 }
1025 
1026 static void __clk_disable(struct clk *clk)
1027 {
1028 	if (!clk)
1029 		return;
1030 
1031 	clk_core_disable(clk->core);
1032 }
1033 
1034 /**
1035  * clk_disable - gate a clock
1036  * @clk: the clk being gated
1037  *
1038  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1039  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1040  * clk if the operation is fast and will never sleep.  One example is a
1041  * SoC-internal clk which is controlled via simple register writes.  In the
1042  * complex case a clk gate operation may require a fast and a slow part.  It is
1043  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1044  * In fact clk_disable must be called before clk_unprepare.
1045  */
1046 void clk_disable(struct clk *clk)
1047 {
1048 	unsigned long flags;
1049 
1050 	if (IS_ERR_OR_NULL(clk))
1051 		return;
1052 
1053 	flags = clk_enable_lock();
1054 	__clk_disable(clk);
1055 	clk_enable_unlock(flags);
1056 }
1057 EXPORT_SYMBOL_GPL(clk_disable);
1058 
1059 static int clk_core_enable(struct clk_core *clk)
1060 {
1061 	int ret = 0;
1062 
1063 	if (!clk)
1064 		return 0;
1065 
1066 	if (WARN_ON(clk->prepare_count == 0))
1067 		return -ESHUTDOWN;
1068 
1069 	if (clk->enable_count == 0) {
1070 		ret = clk_core_enable(clk->parent);
1071 
1072 		if (ret)
1073 			return ret;
1074 
1075 		trace_clk_enable(clk);
1076 
1077 		if (clk->ops->enable)
1078 			ret = clk->ops->enable(clk->hw);
1079 
1080 		trace_clk_enable_complete(clk);
1081 
1082 		if (ret) {
1083 			clk_core_disable(clk->parent);
1084 			return ret;
1085 		}
1086 	}
1087 
1088 	clk->enable_count++;
1089 	return 0;
1090 }
1091 
1092 static int __clk_enable(struct clk *clk)
1093 {
1094 	if (!clk)
1095 		return 0;
1096 
1097 	return clk_core_enable(clk->core);
1098 }
1099 
1100 /**
1101  * clk_enable - ungate a clock
1102  * @clk: the clk being ungated
1103  *
1104  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1105  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1106  * if the operation will never sleep.  One example is a SoC-internal clk which
1107  * is controlled via simple register writes.  In the complex case a clk ungate
1108  * operation may require a fast and a slow part.  It is this reason that
1109  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1110  * must be called before clk_enable.  Returns 0 on success, -EERROR
1111  * otherwise.
1112  */
1113 int clk_enable(struct clk *clk)
1114 {
1115 	unsigned long flags;
1116 	int ret;
1117 
1118 	flags = clk_enable_lock();
1119 	ret = __clk_enable(clk);
1120 	clk_enable_unlock(flags);
1121 
1122 	return ret;
1123 }
1124 EXPORT_SYMBOL_GPL(clk_enable);
1125 
1126 static unsigned long clk_core_round_rate_nolock(struct clk_core *clk,
1127 						unsigned long rate,
1128 						unsigned long min_rate,
1129 						unsigned long max_rate)
1130 {
1131 	unsigned long parent_rate = 0;
1132 	struct clk_core *parent;
1133 	struct clk_hw *parent_hw;
1134 
1135 	lockdep_assert_held(&prepare_lock);
1136 
1137 	if (!clk)
1138 		return 0;
1139 
1140 	parent = clk->parent;
1141 	if (parent)
1142 		parent_rate = parent->rate;
1143 
1144 	if (clk->ops->determine_rate) {
1145 		parent_hw = parent ? parent->hw : NULL;
1146 		return clk->ops->determine_rate(clk->hw, rate,
1147 						min_rate, max_rate,
1148 						&parent_rate, &parent_hw);
1149 	} else if (clk->ops->round_rate)
1150 		return clk->ops->round_rate(clk->hw, rate, &parent_rate);
1151 	else if (clk->flags & CLK_SET_RATE_PARENT)
1152 		return clk_core_round_rate_nolock(clk->parent, rate, min_rate,
1153 						  max_rate);
1154 	else
1155 		return clk->rate;
1156 }
1157 
1158 /**
1159  * __clk_determine_rate - get the closest rate actually supported by a clock
1160  * @hw: determine the rate of this clock
1161  * @rate: target rate
1162  * @min_rate: returned rate must be greater than this rate
1163  * @max_rate: returned rate must be less than this rate
1164  *
1165  * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate and
1166  * .determine_rate.
1167  */
1168 unsigned long __clk_determine_rate(struct clk_hw *hw,
1169 				   unsigned long rate,
1170 				   unsigned long min_rate,
1171 				   unsigned long max_rate)
1172 {
1173 	if (!hw)
1174 		return 0;
1175 
1176 	return clk_core_round_rate_nolock(hw->core, rate, min_rate, max_rate);
1177 }
1178 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1179 
1180 /**
1181  * __clk_round_rate - round the given rate for a clk
1182  * @clk: round the rate of this clock
1183  * @rate: the rate which is to be rounded
1184  *
1185  * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
1186  */
1187 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
1188 {
1189 	unsigned long min_rate;
1190 	unsigned long max_rate;
1191 
1192 	if (!clk)
1193 		return 0;
1194 
1195 	clk_core_get_boundaries(clk->core, &min_rate, &max_rate);
1196 
1197 	return clk_core_round_rate_nolock(clk->core, rate, min_rate, max_rate);
1198 }
1199 EXPORT_SYMBOL_GPL(__clk_round_rate);
1200 
1201 /**
1202  * clk_round_rate - round the given rate for a clk
1203  * @clk: the clk for which we are rounding a rate
1204  * @rate: the rate which is to be rounded
1205  *
1206  * Takes in a rate as input and rounds it to a rate that the clk can actually
1207  * use which is then returned.  If clk doesn't support round_rate operation
1208  * then the parent rate is returned.
1209  */
1210 long clk_round_rate(struct clk *clk, unsigned long rate)
1211 {
1212 	unsigned long ret;
1213 
1214 	if (!clk)
1215 		return 0;
1216 
1217 	clk_prepare_lock();
1218 	ret = __clk_round_rate(clk, rate);
1219 	clk_prepare_unlock();
1220 
1221 	return ret;
1222 }
1223 EXPORT_SYMBOL_GPL(clk_round_rate);
1224 
1225 /**
1226  * __clk_notify - call clk notifier chain
1227  * @clk: struct clk * that is changing rate
1228  * @msg: clk notifier type (see include/linux/clk.h)
1229  * @old_rate: old clk rate
1230  * @new_rate: new clk rate
1231  *
1232  * Triggers a notifier call chain on the clk rate-change notification
1233  * for 'clk'.  Passes a pointer to the struct clk and the previous
1234  * and current rates to the notifier callback.  Intended to be called by
1235  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1236  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1237  * a driver returns that.
1238  */
1239 static int __clk_notify(struct clk_core *clk, unsigned long msg,
1240 		unsigned long old_rate, unsigned long new_rate)
1241 {
1242 	struct clk_notifier *cn;
1243 	struct clk_notifier_data cnd;
1244 	int ret = NOTIFY_DONE;
1245 
1246 	cnd.old_rate = old_rate;
1247 	cnd.new_rate = new_rate;
1248 
1249 	list_for_each_entry(cn, &clk_notifier_list, node) {
1250 		if (cn->clk->core == clk) {
1251 			cnd.clk = cn->clk;
1252 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1253 					&cnd);
1254 		}
1255 	}
1256 
1257 	return ret;
1258 }
1259 
1260 /**
1261  * __clk_recalc_accuracies
1262  * @clk: first clk in the subtree
1263  *
1264  * Walks the subtree of clks starting with clk and recalculates accuracies as
1265  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1266  * callback then it is assumed that the clock will take on the accuracy of it's
1267  * parent.
1268  *
1269  * Caller must hold prepare_lock.
1270  */
1271 static void __clk_recalc_accuracies(struct clk_core *clk)
1272 {
1273 	unsigned long parent_accuracy = 0;
1274 	struct clk_core *child;
1275 
1276 	lockdep_assert_held(&prepare_lock);
1277 
1278 	if (clk->parent)
1279 		parent_accuracy = clk->parent->accuracy;
1280 
1281 	if (clk->ops->recalc_accuracy)
1282 		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1283 							  parent_accuracy);
1284 	else
1285 		clk->accuracy = parent_accuracy;
1286 
1287 	hlist_for_each_entry(child, &clk->children, child_node)
1288 		__clk_recalc_accuracies(child);
1289 }
1290 
1291 static long clk_core_get_accuracy(struct clk_core *clk)
1292 {
1293 	unsigned long accuracy;
1294 
1295 	clk_prepare_lock();
1296 	if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1297 		__clk_recalc_accuracies(clk);
1298 
1299 	accuracy = __clk_get_accuracy(clk);
1300 	clk_prepare_unlock();
1301 
1302 	return accuracy;
1303 }
1304 
1305 /**
1306  * clk_get_accuracy - return the accuracy of clk
1307  * @clk: the clk whose accuracy is being returned
1308  *
1309  * Simply returns the cached accuracy of the clk, unless
1310  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1311  * issued.
1312  * If clk is NULL then returns 0.
1313  */
1314 long clk_get_accuracy(struct clk *clk)
1315 {
1316 	if (!clk)
1317 		return 0;
1318 
1319 	return clk_core_get_accuracy(clk->core);
1320 }
1321 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1322 
1323 static unsigned long clk_recalc(struct clk_core *clk,
1324 				unsigned long parent_rate)
1325 {
1326 	if (clk->ops->recalc_rate)
1327 		return clk->ops->recalc_rate(clk->hw, parent_rate);
1328 	return parent_rate;
1329 }
1330 
1331 /**
1332  * __clk_recalc_rates
1333  * @clk: first clk in the subtree
1334  * @msg: notification type (see include/linux/clk.h)
1335  *
1336  * Walks the subtree of clks starting with clk and recalculates rates as it
1337  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1338  * it is assumed that the clock will take on the rate of its parent.
1339  *
1340  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1341  * if necessary.
1342  *
1343  * Caller must hold prepare_lock.
1344  */
1345 static void __clk_recalc_rates(struct clk_core *clk, unsigned long msg)
1346 {
1347 	unsigned long old_rate;
1348 	unsigned long parent_rate = 0;
1349 	struct clk_core *child;
1350 
1351 	lockdep_assert_held(&prepare_lock);
1352 
1353 	old_rate = clk->rate;
1354 
1355 	if (clk->parent)
1356 		parent_rate = clk->parent->rate;
1357 
1358 	clk->rate = clk_recalc(clk, parent_rate);
1359 
1360 	/*
1361 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1362 	 * & ABORT_RATE_CHANGE notifiers
1363 	 */
1364 	if (clk->notifier_count && msg)
1365 		__clk_notify(clk, msg, old_rate, clk->rate);
1366 
1367 	hlist_for_each_entry(child, &clk->children, child_node)
1368 		__clk_recalc_rates(child, msg);
1369 }
1370 
1371 static unsigned long clk_core_get_rate(struct clk_core *clk)
1372 {
1373 	unsigned long rate;
1374 
1375 	clk_prepare_lock();
1376 
1377 	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1378 		__clk_recalc_rates(clk, 0);
1379 
1380 	rate = clk_core_get_rate_nolock(clk);
1381 	clk_prepare_unlock();
1382 
1383 	return rate;
1384 }
1385 
1386 /**
1387  * clk_get_rate - return the rate of clk
1388  * @clk: the clk whose rate is being returned
1389  *
1390  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1391  * is set, which means a recalc_rate will be issued.
1392  * If clk is NULL then returns 0.
1393  */
1394 unsigned long clk_get_rate(struct clk *clk)
1395 {
1396 	if (!clk)
1397 		return 0;
1398 
1399 	return clk_core_get_rate(clk->core);
1400 }
1401 EXPORT_SYMBOL_GPL(clk_get_rate);
1402 
1403 static int clk_fetch_parent_index(struct clk_core *clk,
1404 				  struct clk_core *parent)
1405 {
1406 	int i;
1407 
1408 	if (!clk->parents) {
1409 		clk->parents = kcalloc(clk->num_parents,
1410 					sizeof(struct clk *), GFP_KERNEL);
1411 		if (!clk->parents)
1412 			return -ENOMEM;
1413 	}
1414 
1415 	/*
1416 	 * find index of new parent clock using cached parent ptrs,
1417 	 * or if not yet cached, use string name comparison and cache
1418 	 * them now to avoid future calls to clk_core_lookup.
1419 	 */
1420 	for (i = 0; i < clk->num_parents; i++) {
1421 		if (clk->parents[i] == parent)
1422 			return i;
1423 
1424 		if (clk->parents[i])
1425 			continue;
1426 
1427 		if (!strcmp(clk->parent_names[i], parent->name)) {
1428 			clk->parents[i] = clk_core_lookup(parent->name);
1429 			return i;
1430 		}
1431 	}
1432 
1433 	return -EINVAL;
1434 }
1435 
1436 static void clk_reparent(struct clk_core *clk, struct clk_core *new_parent)
1437 {
1438 	hlist_del(&clk->child_node);
1439 
1440 	if (new_parent) {
1441 		/* avoid duplicate POST_RATE_CHANGE notifications */
1442 		if (new_parent->new_child == clk)
1443 			new_parent->new_child = NULL;
1444 
1445 		hlist_add_head(&clk->child_node, &new_parent->children);
1446 	} else {
1447 		hlist_add_head(&clk->child_node, &clk_orphan_list);
1448 	}
1449 
1450 	clk->parent = new_parent;
1451 }
1452 
1453 static struct clk_core *__clk_set_parent_before(struct clk_core *clk,
1454 					   struct clk_core *parent)
1455 {
1456 	unsigned long flags;
1457 	struct clk_core *old_parent = clk->parent;
1458 
1459 	/*
1460 	 * Migrate prepare state between parents and prevent race with
1461 	 * clk_enable().
1462 	 *
1463 	 * If the clock is not prepared, then a race with
1464 	 * clk_enable/disable() is impossible since we already have the
1465 	 * prepare lock (future calls to clk_enable() need to be preceded by
1466 	 * a clk_prepare()).
1467 	 *
1468 	 * If the clock is prepared, migrate the prepared state to the new
1469 	 * parent and also protect against a race with clk_enable() by
1470 	 * forcing the clock and the new parent on.  This ensures that all
1471 	 * future calls to clk_enable() are practically NOPs with respect to
1472 	 * hardware and software states.
1473 	 *
1474 	 * See also: Comment for clk_set_parent() below.
1475 	 */
1476 	if (clk->prepare_count) {
1477 		clk_core_prepare(parent);
1478 		clk_core_enable(parent);
1479 		clk_core_enable(clk);
1480 	}
1481 
1482 	/* update the clk tree topology */
1483 	flags = clk_enable_lock();
1484 	clk_reparent(clk, parent);
1485 	clk_enable_unlock(flags);
1486 
1487 	return old_parent;
1488 }
1489 
1490 static void __clk_set_parent_after(struct clk_core *core,
1491 				   struct clk_core *parent,
1492 				   struct clk_core *old_parent)
1493 {
1494 	/*
1495 	 * Finish the migration of prepare state and undo the changes done
1496 	 * for preventing a race with clk_enable().
1497 	 */
1498 	if (core->prepare_count) {
1499 		clk_core_disable(core);
1500 		clk_core_disable(old_parent);
1501 		clk_core_unprepare(old_parent);
1502 	}
1503 }
1504 
1505 static int __clk_set_parent(struct clk_core *clk, struct clk_core *parent,
1506 			    u8 p_index)
1507 {
1508 	unsigned long flags;
1509 	int ret = 0;
1510 	struct clk_core *old_parent;
1511 
1512 	old_parent = __clk_set_parent_before(clk, parent);
1513 
1514 	trace_clk_set_parent(clk, parent);
1515 
1516 	/* change clock input source */
1517 	if (parent && clk->ops->set_parent)
1518 		ret = clk->ops->set_parent(clk->hw, p_index);
1519 
1520 	trace_clk_set_parent_complete(clk, parent);
1521 
1522 	if (ret) {
1523 		flags = clk_enable_lock();
1524 		clk_reparent(clk, old_parent);
1525 		clk_enable_unlock(flags);
1526 
1527 		if (clk->prepare_count) {
1528 			clk_core_disable(clk);
1529 			clk_core_disable(parent);
1530 			clk_core_unprepare(parent);
1531 		}
1532 		return ret;
1533 	}
1534 
1535 	__clk_set_parent_after(clk, parent, old_parent);
1536 
1537 	return 0;
1538 }
1539 
1540 /**
1541  * __clk_speculate_rates
1542  * @clk: first clk in the subtree
1543  * @parent_rate: the "future" rate of clk's parent
1544  *
1545  * Walks the subtree of clks starting with clk, speculating rates as it
1546  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1547  *
1548  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1549  * pre-rate change notifications and returns early if no clks in the
1550  * subtree have subscribed to the notifications.  Note that if a clk does not
1551  * implement the .recalc_rate callback then it is assumed that the clock will
1552  * take on the rate of its parent.
1553  *
1554  * Caller must hold prepare_lock.
1555  */
1556 static int __clk_speculate_rates(struct clk_core *clk,
1557 				 unsigned long parent_rate)
1558 {
1559 	struct clk_core *child;
1560 	unsigned long new_rate;
1561 	int ret = NOTIFY_DONE;
1562 
1563 	lockdep_assert_held(&prepare_lock);
1564 
1565 	new_rate = clk_recalc(clk, parent_rate);
1566 
1567 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1568 	if (clk->notifier_count)
1569 		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1570 
1571 	if (ret & NOTIFY_STOP_MASK) {
1572 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1573 				__func__, clk->name, ret);
1574 		goto out;
1575 	}
1576 
1577 	hlist_for_each_entry(child, &clk->children, child_node) {
1578 		ret = __clk_speculate_rates(child, new_rate);
1579 		if (ret & NOTIFY_STOP_MASK)
1580 			break;
1581 	}
1582 
1583 out:
1584 	return ret;
1585 }
1586 
1587 static void clk_calc_subtree(struct clk_core *clk, unsigned long new_rate,
1588 			     struct clk_core *new_parent, u8 p_index)
1589 {
1590 	struct clk_core *child;
1591 
1592 	clk->new_rate = new_rate;
1593 	clk->new_parent = new_parent;
1594 	clk->new_parent_index = p_index;
1595 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1596 	clk->new_child = NULL;
1597 	if (new_parent && new_parent != clk->parent)
1598 		new_parent->new_child = clk;
1599 
1600 	hlist_for_each_entry(child, &clk->children, child_node) {
1601 		child->new_rate = clk_recalc(child, new_rate);
1602 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1603 	}
1604 }
1605 
1606 /*
1607  * calculate the new rates returning the topmost clock that has to be
1608  * changed.
1609  */
1610 static struct clk_core *clk_calc_new_rates(struct clk_core *clk,
1611 					   unsigned long rate)
1612 {
1613 	struct clk_core *top = clk;
1614 	struct clk_core *old_parent, *parent;
1615 	struct clk_hw *parent_hw;
1616 	unsigned long best_parent_rate = 0;
1617 	unsigned long new_rate;
1618 	unsigned long min_rate;
1619 	unsigned long max_rate;
1620 	int p_index = 0;
1621 	long ret;
1622 
1623 	/* sanity */
1624 	if (IS_ERR_OR_NULL(clk))
1625 		return NULL;
1626 
1627 	/* save parent rate, if it exists */
1628 	parent = old_parent = clk->parent;
1629 	if (parent)
1630 		best_parent_rate = parent->rate;
1631 
1632 	clk_core_get_boundaries(clk, &min_rate, &max_rate);
1633 
1634 	/* find the closest rate and parent clk/rate */
1635 	if (clk->ops->determine_rate) {
1636 		parent_hw = parent ? parent->hw : NULL;
1637 		ret = clk->ops->determine_rate(clk->hw, rate,
1638 					       min_rate,
1639 					       max_rate,
1640 					       &best_parent_rate,
1641 					       &parent_hw);
1642 		if (ret < 0)
1643 			return NULL;
1644 
1645 		new_rate = ret;
1646 		parent = parent_hw ? parent_hw->core : NULL;
1647 	} else if (clk->ops->round_rate) {
1648 		ret = clk->ops->round_rate(clk->hw, rate,
1649 					   &best_parent_rate);
1650 		if (ret < 0)
1651 			return NULL;
1652 
1653 		new_rate = ret;
1654 		if (new_rate < min_rate || new_rate > max_rate)
1655 			return NULL;
1656 	} else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1657 		/* pass-through clock without adjustable parent */
1658 		clk->new_rate = clk->rate;
1659 		return NULL;
1660 	} else {
1661 		/* pass-through clock with adjustable parent */
1662 		top = clk_calc_new_rates(parent, rate);
1663 		new_rate = parent->new_rate;
1664 		goto out;
1665 	}
1666 
1667 	/* some clocks must be gated to change parent */
1668 	if (parent != old_parent &&
1669 	    (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1670 		pr_debug("%s: %s not gated but wants to reparent\n",
1671 			 __func__, clk->name);
1672 		return NULL;
1673 	}
1674 
1675 	/* try finding the new parent index */
1676 	if (parent && clk->num_parents > 1) {
1677 		p_index = clk_fetch_parent_index(clk, parent);
1678 		if (p_index < 0) {
1679 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1680 				 __func__, parent->name, clk->name);
1681 			return NULL;
1682 		}
1683 	}
1684 
1685 	if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1686 	    best_parent_rate != parent->rate)
1687 		top = clk_calc_new_rates(parent, best_parent_rate);
1688 
1689 out:
1690 	clk_calc_subtree(clk, new_rate, parent, p_index);
1691 
1692 	return top;
1693 }
1694 
1695 /*
1696  * Notify about rate changes in a subtree. Always walk down the whole tree
1697  * so that in case of an error we can walk down the whole tree again and
1698  * abort the change.
1699  */
1700 static struct clk_core *clk_propagate_rate_change(struct clk_core *clk,
1701 						  unsigned long event)
1702 {
1703 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1704 	int ret = NOTIFY_DONE;
1705 
1706 	if (clk->rate == clk->new_rate)
1707 		return NULL;
1708 
1709 	if (clk->notifier_count) {
1710 		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1711 		if (ret & NOTIFY_STOP_MASK)
1712 			fail_clk = clk;
1713 	}
1714 
1715 	hlist_for_each_entry(child, &clk->children, child_node) {
1716 		/* Skip children who will be reparented to another clock */
1717 		if (child->new_parent && child->new_parent != clk)
1718 			continue;
1719 		tmp_clk = clk_propagate_rate_change(child, event);
1720 		if (tmp_clk)
1721 			fail_clk = tmp_clk;
1722 	}
1723 
1724 	/* handle the new child who might not be in clk->children yet */
1725 	if (clk->new_child) {
1726 		tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1727 		if (tmp_clk)
1728 			fail_clk = tmp_clk;
1729 	}
1730 
1731 	return fail_clk;
1732 }
1733 
1734 /*
1735  * walk down a subtree and set the new rates notifying the rate
1736  * change on the way
1737  */
1738 static void clk_change_rate(struct clk_core *clk)
1739 {
1740 	struct clk_core *child;
1741 	struct hlist_node *tmp;
1742 	unsigned long old_rate;
1743 	unsigned long best_parent_rate = 0;
1744 	bool skip_set_rate = false;
1745 	struct clk_core *old_parent;
1746 
1747 	old_rate = clk->rate;
1748 
1749 	if (clk->new_parent)
1750 		best_parent_rate = clk->new_parent->rate;
1751 	else if (clk->parent)
1752 		best_parent_rate = clk->parent->rate;
1753 
1754 	if (clk->new_parent && clk->new_parent != clk->parent) {
1755 		old_parent = __clk_set_parent_before(clk, clk->new_parent);
1756 		trace_clk_set_parent(clk, clk->new_parent);
1757 
1758 		if (clk->ops->set_rate_and_parent) {
1759 			skip_set_rate = true;
1760 			clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1761 					best_parent_rate,
1762 					clk->new_parent_index);
1763 		} else if (clk->ops->set_parent) {
1764 			clk->ops->set_parent(clk->hw, clk->new_parent_index);
1765 		}
1766 
1767 		trace_clk_set_parent_complete(clk, clk->new_parent);
1768 		__clk_set_parent_after(clk, clk->new_parent, old_parent);
1769 	}
1770 
1771 	trace_clk_set_rate(clk, clk->new_rate);
1772 
1773 	if (!skip_set_rate && clk->ops->set_rate)
1774 		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1775 
1776 	trace_clk_set_rate_complete(clk, clk->new_rate);
1777 
1778 	clk->rate = clk_recalc(clk, best_parent_rate);
1779 
1780 	if (clk->notifier_count && old_rate != clk->rate)
1781 		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1782 
1783 	/*
1784 	 * Use safe iteration, as change_rate can actually swap parents
1785 	 * for certain clock types.
1786 	 */
1787 	hlist_for_each_entry_safe(child, tmp, &clk->children, child_node) {
1788 		/* Skip children who will be reparented to another clock */
1789 		if (child->new_parent && child->new_parent != clk)
1790 			continue;
1791 		clk_change_rate(child);
1792 	}
1793 
1794 	/* handle the new child who might not be in clk->children yet */
1795 	if (clk->new_child)
1796 		clk_change_rate(clk->new_child);
1797 }
1798 
1799 static int clk_core_set_rate_nolock(struct clk_core *clk,
1800 				    unsigned long req_rate)
1801 {
1802 	struct clk_core *top, *fail_clk;
1803 	unsigned long rate = req_rate;
1804 	int ret = 0;
1805 
1806 	if (!clk)
1807 		return 0;
1808 
1809 	/* bail early if nothing to do */
1810 	if (rate == clk_core_get_rate_nolock(clk))
1811 		return 0;
1812 
1813 	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count)
1814 		return -EBUSY;
1815 
1816 	/* calculate new rates and get the topmost changed clock */
1817 	top = clk_calc_new_rates(clk, rate);
1818 	if (!top)
1819 		return -EINVAL;
1820 
1821 	/* notify that we are about to change rates */
1822 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1823 	if (fail_clk) {
1824 		pr_debug("%s: failed to set %s rate\n", __func__,
1825 				fail_clk->name);
1826 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1827 		return -EBUSY;
1828 	}
1829 
1830 	/* change the rates */
1831 	clk_change_rate(top);
1832 
1833 	clk->req_rate = req_rate;
1834 
1835 	return ret;
1836 }
1837 
1838 /**
1839  * clk_set_rate - specify a new rate for clk
1840  * @clk: the clk whose rate is being changed
1841  * @rate: the new rate for clk
1842  *
1843  * In the simplest case clk_set_rate will only adjust the rate of clk.
1844  *
1845  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1846  * propagate up to clk's parent; whether or not this happens depends on the
1847  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1848  * after calling .round_rate then upstream parent propagation is ignored.  If
1849  * *parent_rate comes back with a new rate for clk's parent then we propagate
1850  * up to clk's parent and set its rate.  Upward propagation will continue
1851  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1852  * .round_rate stops requesting changes to clk's parent_rate.
1853  *
1854  * Rate changes are accomplished via tree traversal that also recalculates the
1855  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1856  *
1857  * Returns 0 on success, -EERROR otherwise.
1858  */
1859 int clk_set_rate(struct clk *clk, unsigned long rate)
1860 {
1861 	int ret;
1862 
1863 	if (!clk)
1864 		return 0;
1865 
1866 	/* prevent racing with updates to the clock topology */
1867 	clk_prepare_lock();
1868 
1869 	ret = clk_core_set_rate_nolock(clk->core, rate);
1870 
1871 	clk_prepare_unlock();
1872 
1873 	return ret;
1874 }
1875 EXPORT_SYMBOL_GPL(clk_set_rate);
1876 
1877 /**
1878  * clk_set_rate_range - set a rate range for a clock source
1879  * @clk: clock source
1880  * @min: desired minimum clock rate in Hz, inclusive
1881  * @max: desired maximum clock rate in Hz, inclusive
1882  *
1883  * Returns success (0) or negative errno.
1884  */
1885 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1886 {
1887 	int ret = 0;
1888 
1889 	if (!clk)
1890 		return 0;
1891 
1892 	if (min > max) {
1893 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1894 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1895 		       min, max);
1896 		return -EINVAL;
1897 	}
1898 
1899 	clk_prepare_lock();
1900 
1901 	if (min != clk->min_rate || max != clk->max_rate) {
1902 		clk->min_rate = min;
1903 		clk->max_rate = max;
1904 		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1905 	}
1906 
1907 	clk_prepare_unlock();
1908 
1909 	return ret;
1910 }
1911 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1912 
1913 /**
1914  * clk_set_min_rate - set a minimum clock rate for a clock source
1915  * @clk: clock source
1916  * @rate: desired minimum clock rate in Hz, inclusive
1917  *
1918  * Returns success (0) or negative errno.
1919  */
1920 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1921 {
1922 	if (!clk)
1923 		return 0;
1924 
1925 	return clk_set_rate_range(clk, rate, clk->max_rate);
1926 }
1927 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1928 
1929 /**
1930  * clk_set_max_rate - set a maximum clock rate for a clock source
1931  * @clk: clock source
1932  * @rate: desired maximum clock rate in Hz, inclusive
1933  *
1934  * Returns success (0) or negative errno.
1935  */
1936 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1937 {
1938 	if (!clk)
1939 		return 0;
1940 
1941 	return clk_set_rate_range(clk, clk->min_rate, rate);
1942 }
1943 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1944 
1945 /**
1946  * clk_get_parent - return the parent of a clk
1947  * @clk: the clk whose parent gets returned
1948  *
1949  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1950  */
1951 struct clk *clk_get_parent(struct clk *clk)
1952 {
1953 	struct clk *parent;
1954 
1955 	clk_prepare_lock();
1956 	parent = __clk_get_parent(clk);
1957 	clk_prepare_unlock();
1958 
1959 	return parent;
1960 }
1961 EXPORT_SYMBOL_GPL(clk_get_parent);
1962 
1963 /*
1964  * .get_parent is mandatory for clocks with multiple possible parents.  It is
1965  * optional for single-parent clocks.  Always call .get_parent if it is
1966  * available and WARN if it is missing for multi-parent clocks.
1967  *
1968  * For single-parent clocks without .get_parent, first check to see if the
1969  * .parents array exists, and if so use it to avoid an expensive tree
1970  * traversal.  If .parents does not exist then walk the tree.
1971  */
1972 static struct clk_core *__clk_init_parent(struct clk_core *clk)
1973 {
1974 	struct clk_core *ret = NULL;
1975 	u8 index;
1976 
1977 	/* handle the trivial cases */
1978 
1979 	if (!clk->num_parents)
1980 		goto out;
1981 
1982 	if (clk->num_parents == 1) {
1983 		if (IS_ERR_OR_NULL(clk->parent))
1984 			clk->parent = clk_core_lookup(clk->parent_names[0]);
1985 		ret = clk->parent;
1986 		goto out;
1987 	}
1988 
1989 	if (!clk->ops->get_parent) {
1990 		WARN(!clk->ops->get_parent,
1991 			"%s: multi-parent clocks must implement .get_parent\n",
1992 			__func__);
1993 		goto out;
1994 	};
1995 
1996 	/*
1997 	 * Do our best to cache parent clocks in clk->parents.  This prevents
1998 	 * unnecessary and expensive lookups.  We don't set clk->parent here;
1999 	 * that is done by the calling function.
2000 	 */
2001 
2002 	index = clk->ops->get_parent(clk->hw);
2003 
2004 	if (!clk->parents)
2005 		clk->parents =
2006 			kcalloc(clk->num_parents, sizeof(struct clk *),
2007 					GFP_KERNEL);
2008 
2009 	ret = clk_core_get_parent_by_index(clk, index);
2010 
2011 out:
2012 	return ret;
2013 }
2014 
2015 static void clk_core_reparent(struct clk_core *clk,
2016 				  struct clk_core *new_parent)
2017 {
2018 	clk_reparent(clk, new_parent);
2019 	__clk_recalc_accuracies(clk);
2020 	__clk_recalc_rates(clk, POST_RATE_CHANGE);
2021 }
2022 
2023 /**
2024  * clk_has_parent - check if a clock is a possible parent for another
2025  * @clk: clock source
2026  * @parent: parent clock source
2027  *
2028  * This function can be used in drivers that need to check that a clock can be
2029  * the parent of another without actually changing the parent.
2030  *
2031  * Returns true if @parent is a possible parent for @clk, false otherwise.
2032  */
2033 bool clk_has_parent(struct clk *clk, struct clk *parent)
2034 {
2035 	struct clk_core *core, *parent_core;
2036 	unsigned int i;
2037 
2038 	/* NULL clocks should be nops, so return success if either is NULL. */
2039 	if (!clk || !parent)
2040 		return true;
2041 
2042 	core = clk->core;
2043 	parent_core = parent->core;
2044 
2045 	/* Optimize for the case where the parent is already the parent. */
2046 	if (core->parent == parent_core)
2047 		return true;
2048 
2049 	for (i = 0; i < core->num_parents; i++)
2050 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
2051 			return true;
2052 
2053 	return false;
2054 }
2055 EXPORT_SYMBOL_GPL(clk_has_parent);
2056 
2057 static int clk_core_set_parent(struct clk_core *clk, struct clk_core *parent)
2058 {
2059 	int ret = 0;
2060 	int p_index = 0;
2061 	unsigned long p_rate = 0;
2062 
2063 	if (!clk)
2064 		return 0;
2065 
2066 	/* prevent racing with updates to the clock topology */
2067 	clk_prepare_lock();
2068 
2069 	if (clk->parent == parent)
2070 		goto out;
2071 
2072 	/* verify ops for for multi-parent clks */
2073 	if ((clk->num_parents > 1) && (!clk->ops->set_parent)) {
2074 		ret = -ENOSYS;
2075 		goto out;
2076 	}
2077 
2078 	/* check that we are allowed to re-parent if the clock is in use */
2079 	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
2080 		ret = -EBUSY;
2081 		goto out;
2082 	}
2083 
2084 	/* try finding the new parent index */
2085 	if (parent) {
2086 		p_index = clk_fetch_parent_index(clk, parent);
2087 		p_rate = parent->rate;
2088 		if (p_index < 0) {
2089 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2090 					__func__, parent->name, clk->name);
2091 			ret = p_index;
2092 			goto out;
2093 		}
2094 	}
2095 
2096 	/* propagate PRE_RATE_CHANGE notifications */
2097 	ret = __clk_speculate_rates(clk, p_rate);
2098 
2099 	/* abort if a driver objects */
2100 	if (ret & NOTIFY_STOP_MASK)
2101 		goto out;
2102 
2103 	/* do the re-parent */
2104 	ret = __clk_set_parent(clk, parent, p_index);
2105 
2106 	/* propagate rate an accuracy recalculation accordingly */
2107 	if (ret) {
2108 		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
2109 	} else {
2110 		__clk_recalc_rates(clk, POST_RATE_CHANGE);
2111 		__clk_recalc_accuracies(clk);
2112 	}
2113 
2114 out:
2115 	clk_prepare_unlock();
2116 
2117 	return ret;
2118 }
2119 
2120 /**
2121  * clk_set_parent - switch the parent of a mux clk
2122  * @clk: the mux clk whose input we are switching
2123  * @parent: the new input to clk
2124  *
2125  * Re-parent clk to use parent as its new input source.  If clk is in
2126  * prepared state, the clk will get enabled for the duration of this call. If
2127  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2128  * that, the reparenting is glitchy in hardware, etc), use the
2129  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2130  *
2131  * After successfully changing clk's parent clk_set_parent will update the
2132  * clk topology, sysfs topology and propagate rate recalculation via
2133  * __clk_recalc_rates.
2134  *
2135  * Returns 0 on success, -EERROR otherwise.
2136  */
2137 int clk_set_parent(struct clk *clk, struct clk *parent)
2138 {
2139 	if (!clk)
2140 		return 0;
2141 
2142 	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
2143 }
2144 EXPORT_SYMBOL_GPL(clk_set_parent);
2145 
2146 /**
2147  * clk_set_phase - adjust the phase shift of a clock signal
2148  * @clk: clock signal source
2149  * @degrees: number of degrees the signal is shifted
2150  *
2151  * Shifts the phase of a clock signal by the specified
2152  * degrees. Returns 0 on success, -EERROR otherwise.
2153  *
2154  * This function makes no distinction about the input or reference
2155  * signal that we adjust the clock signal phase against. For example
2156  * phase locked-loop clock signal generators we may shift phase with
2157  * respect to feedback clock signal input, but for other cases the
2158  * clock phase may be shifted with respect to some other, unspecified
2159  * signal.
2160  *
2161  * Additionally the concept of phase shift does not propagate through
2162  * the clock tree hierarchy, which sets it apart from clock rates and
2163  * clock accuracy. A parent clock phase attribute does not have an
2164  * impact on the phase attribute of a child clock.
2165  */
2166 int clk_set_phase(struct clk *clk, int degrees)
2167 {
2168 	int ret = -EINVAL;
2169 
2170 	if (!clk)
2171 		return 0;
2172 
2173 	/* sanity check degrees */
2174 	degrees %= 360;
2175 	if (degrees < 0)
2176 		degrees += 360;
2177 
2178 	clk_prepare_lock();
2179 
2180 	trace_clk_set_phase(clk->core, degrees);
2181 
2182 	if (clk->core->ops->set_phase)
2183 		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
2184 
2185 	trace_clk_set_phase_complete(clk->core, degrees);
2186 
2187 	if (!ret)
2188 		clk->core->phase = degrees;
2189 
2190 	clk_prepare_unlock();
2191 
2192 	return ret;
2193 }
2194 EXPORT_SYMBOL_GPL(clk_set_phase);
2195 
2196 static int clk_core_get_phase(struct clk_core *clk)
2197 {
2198 	int ret = 0;
2199 
2200 	if (!clk)
2201 		goto out;
2202 
2203 	clk_prepare_lock();
2204 	ret = clk->phase;
2205 	clk_prepare_unlock();
2206 
2207 out:
2208 	return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(clk_get_phase);
2211 
2212 /**
2213  * clk_get_phase - return the phase shift of a clock signal
2214  * @clk: clock signal source
2215  *
2216  * Returns the phase shift of a clock node in degrees, otherwise returns
2217  * -EERROR.
2218  */
2219 int clk_get_phase(struct clk *clk)
2220 {
2221 	if (!clk)
2222 		return 0;
2223 
2224 	return clk_core_get_phase(clk->core);
2225 }
2226 
2227 /**
2228  * clk_is_match - check if two clk's point to the same hardware clock
2229  * @p: clk compared against q
2230  * @q: clk compared against p
2231  *
2232  * Returns true if the two struct clk pointers both point to the same hardware
2233  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2234  * share the same struct clk_core object.
2235  *
2236  * Returns false otherwise. Note that two NULL clks are treated as matching.
2237  */
2238 bool clk_is_match(const struct clk *p, const struct clk *q)
2239 {
2240 	/* trivial case: identical struct clk's or both NULL */
2241 	if (p == q)
2242 		return true;
2243 
2244 	/* true if clk->core pointers match. Avoid derefing garbage */
2245 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2246 		if (p->core == q->core)
2247 			return true;
2248 
2249 	return false;
2250 }
2251 EXPORT_SYMBOL_GPL(clk_is_match);
2252 
2253 /**
2254  * __clk_init - initialize the data structures in a struct clk
2255  * @dev:	device initializing this clk, placeholder for now
2256  * @clk:	clk being initialized
2257  *
2258  * Initializes the lists in struct clk_core, queries the hardware for the
2259  * parent and rate and sets them both.
2260  */
2261 static int __clk_init(struct device *dev, struct clk *clk_user)
2262 {
2263 	int i, ret = 0;
2264 	struct clk_core *orphan;
2265 	struct hlist_node *tmp2;
2266 	struct clk_core *clk;
2267 	unsigned long rate;
2268 
2269 	if (!clk_user)
2270 		return -EINVAL;
2271 
2272 	clk = clk_user->core;
2273 
2274 	clk_prepare_lock();
2275 
2276 	/* check to see if a clock with this name is already registered */
2277 	if (clk_core_lookup(clk->name)) {
2278 		pr_debug("%s: clk %s already initialized\n",
2279 				__func__, clk->name);
2280 		ret = -EEXIST;
2281 		goto out;
2282 	}
2283 
2284 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2285 	if (clk->ops->set_rate &&
2286 	    !((clk->ops->round_rate || clk->ops->determine_rate) &&
2287 	      clk->ops->recalc_rate)) {
2288 		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2289 				__func__, clk->name);
2290 		ret = -EINVAL;
2291 		goto out;
2292 	}
2293 
2294 	if (clk->ops->set_parent && !clk->ops->get_parent) {
2295 		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2296 				__func__, clk->name);
2297 		ret = -EINVAL;
2298 		goto out;
2299 	}
2300 
2301 	if (clk->ops->set_rate_and_parent &&
2302 			!(clk->ops->set_parent && clk->ops->set_rate)) {
2303 		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2304 				__func__, clk->name);
2305 		ret = -EINVAL;
2306 		goto out;
2307 	}
2308 
2309 	/* throw a WARN if any entries in parent_names are NULL */
2310 	for (i = 0; i < clk->num_parents; i++)
2311 		WARN(!clk->parent_names[i],
2312 				"%s: invalid NULL in %s's .parent_names\n",
2313 				__func__, clk->name);
2314 
2315 	/*
2316 	 * Allocate an array of struct clk *'s to avoid unnecessary string
2317 	 * look-ups of clk's possible parents.  This can fail for clocks passed
2318 	 * in to clk_init during early boot; thus any access to clk->parents[]
2319 	 * must always check for a NULL pointer and try to populate it if
2320 	 * necessary.
2321 	 *
2322 	 * If clk->parents is not NULL we skip this entire block.  This allows
2323 	 * for clock drivers to statically initialize clk->parents.
2324 	 */
2325 	if (clk->num_parents > 1 && !clk->parents) {
2326 		clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
2327 					GFP_KERNEL);
2328 		/*
2329 		 * clk_core_lookup returns NULL for parents that have not been
2330 		 * clk_init'd; thus any access to clk->parents[] must check
2331 		 * for a NULL pointer.  We can always perform lazy lookups for
2332 		 * missing parents later on.
2333 		 */
2334 		if (clk->parents)
2335 			for (i = 0; i < clk->num_parents; i++)
2336 				clk->parents[i] =
2337 					clk_core_lookup(clk->parent_names[i]);
2338 	}
2339 
2340 	clk->parent = __clk_init_parent(clk);
2341 
2342 	/*
2343 	 * Populate clk->parent if parent has already been __clk_init'd.  If
2344 	 * parent has not yet been __clk_init'd then place clk in the orphan
2345 	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
2346 	 * clk list.
2347 	 *
2348 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2349 	 * clocks and re-parent any that are children of the clock currently
2350 	 * being clk_init'd.
2351 	 */
2352 	if (clk->parent)
2353 		hlist_add_head(&clk->child_node,
2354 				&clk->parent->children);
2355 	else if (clk->flags & CLK_IS_ROOT)
2356 		hlist_add_head(&clk->child_node, &clk_root_list);
2357 	else
2358 		hlist_add_head(&clk->child_node, &clk_orphan_list);
2359 
2360 	/*
2361 	 * Set clk's accuracy.  The preferred method is to use
2362 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2363 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2364 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2365 	 * clock).
2366 	 */
2367 	if (clk->ops->recalc_accuracy)
2368 		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
2369 					__clk_get_accuracy(clk->parent));
2370 	else if (clk->parent)
2371 		clk->accuracy = clk->parent->accuracy;
2372 	else
2373 		clk->accuracy = 0;
2374 
2375 	/*
2376 	 * Set clk's phase.
2377 	 * Since a phase is by definition relative to its parent, just
2378 	 * query the current clock phase, or just assume it's in phase.
2379 	 */
2380 	if (clk->ops->get_phase)
2381 		clk->phase = clk->ops->get_phase(clk->hw);
2382 	else
2383 		clk->phase = 0;
2384 
2385 	/*
2386 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2387 	 * simple clocks and lazy developers the default fallback is to use the
2388 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2389 	 * then rate is set to zero.
2390 	 */
2391 	if (clk->ops->recalc_rate)
2392 		rate = clk->ops->recalc_rate(clk->hw,
2393 				clk_core_get_rate_nolock(clk->parent));
2394 	else if (clk->parent)
2395 		rate = clk->parent->rate;
2396 	else
2397 		rate = 0;
2398 	clk->rate = clk->req_rate = rate;
2399 
2400 	/*
2401 	 * walk the list of orphan clocks and reparent any that are children of
2402 	 * this clock
2403 	 */
2404 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2405 		if (orphan->num_parents && orphan->ops->get_parent) {
2406 			i = orphan->ops->get_parent(orphan->hw);
2407 			if (!strcmp(clk->name, orphan->parent_names[i]))
2408 				clk_core_reparent(orphan, clk);
2409 			continue;
2410 		}
2411 
2412 		for (i = 0; i < orphan->num_parents; i++)
2413 			if (!strcmp(clk->name, orphan->parent_names[i])) {
2414 				clk_core_reparent(orphan, clk);
2415 				break;
2416 			}
2417 	 }
2418 
2419 	/*
2420 	 * optional platform-specific magic
2421 	 *
2422 	 * The .init callback is not used by any of the basic clock types, but
2423 	 * exists for weird hardware that must perform initialization magic.
2424 	 * Please consider other ways of solving initialization problems before
2425 	 * using this callback, as its use is discouraged.
2426 	 */
2427 	if (clk->ops->init)
2428 		clk->ops->init(clk->hw);
2429 
2430 	kref_init(&clk->ref);
2431 out:
2432 	clk_prepare_unlock();
2433 
2434 	if (!ret)
2435 		clk_debug_register(clk);
2436 
2437 	return ret;
2438 }
2439 
2440 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2441 			     const char *con_id)
2442 {
2443 	struct clk *clk;
2444 
2445 	/* This is to allow this function to be chained to others */
2446 	if (!hw || IS_ERR(hw))
2447 		return (struct clk *) hw;
2448 
2449 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2450 	if (!clk)
2451 		return ERR_PTR(-ENOMEM);
2452 
2453 	clk->core = hw->core;
2454 	clk->dev_id = dev_id;
2455 	clk->con_id = con_id;
2456 	clk->max_rate = ULONG_MAX;
2457 
2458 	clk_prepare_lock();
2459 	hlist_add_head(&clk->clks_node, &hw->core->clks);
2460 	clk_prepare_unlock();
2461 
2462 	return clk;
2463 }
2464 
2465 void __clk_free_clk(struct clk *clk)
2466 {
2467 	clk_prepare_lock();
2468 	hlist_del(&clk->clks_node);
2469 	clk_prepare_unlock();
2470 
2471 	kfree(clk);
2472 }
2473 
2474 /**
2475  * clk_register - allocate a new clock, register it and return an opaque cookie
2476  * @dev: device that is registering this clock
2477  * @hw: link to hardware-specific clock data
2478  *
2479  * clk_register is the primary interface for populating the clock tree with new
2480  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2481  * cannot be dereferenced by driver code but may be used in conjuction with the
2482  * rest of the clock API.  In the event of an error clk_register will return an
2483  * error code; drivers must test for an error code after calling clk_register.
2484  */
2485 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2486 {
2487 	int i, ret;
2488 	struct clk_core *clk;
2489 
2490 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2491 	if (!clk) {
2492 		pr_err("%s: could not allocate clk\n", __func__);
2493 		ret = -ENOMEM;
2494 		goto fail_out;
2495 	}
2496 
2497 	clk->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2498 	if (!clk->name) {
2499 		pr_err("%s: could not allocate clk->name\n", __func__);
2500 		ret = -ENOMEM;
2501 		goto fail_name;
2502 	}
2503 	clk->ops = hw->init->ops;
2504 	if (dev && dev->driver)
2505 		clk->owner = dev->driver->owner;
2506 	clk->hw = hw;
2507 	clk->flags = hw->init->flags;
2508 	clk->num_parents = hw->init->num_parents;
2509 	hw->core = clk;
2510 
2511 	/* allocate local copy in case parent_names is __initdata */
2512 	clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
2513 					GFP_KERNEL);
2514 
2515 	if (!clk->parent_names) {
2516 		pr_err("%s: could not allocate clk->parent_names\n", __func__);
2517 		ret = -ENOMEM;
2518 		goto fail_parent_names;
2519 	}
2520 
2521 
2522 	/* copy each string name in case parent_names is __initdata */
2523 	for (i = 0; i < clk->num_parents; i++) {
2524 		clk->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2525 						GFP_KERNEL);
2526 		if (!clk->parent_names[i]) {
2527 			pr_err("%s: could not copy parent_names\n", __func__);
2528 			ret = -ENOMEM;
2529 			goto fail_parent_names_copy;
2530 		}
2531 	}
2532 
2533 	INIT_HLIST_HEAD(&clk->clks);
2534 
2535 	hw->clk = __clk_create_clk(hw, NULL, NULL);
2536 	if (IS_ERR(hw->clk)) {
2537 		pr_err("%s: could not allocate per-user clk\n", __func__);
2538 		ret = PTR_ERR(hw->clk);
2539 		goto fail_parent_names_copy;
2540 	}
2541 
2542 	ret = __clk_init(dev, hw->clk);
2543 	if (!ret)
2544 		return hw->clk;
2545 
2546 	__clk_free_clk(hw->clk);
2547 	hw->clk = NULL;
2548 
2549 fail_parent_names_copy:
2550 	while (--i >= 0)
2551 		kfree_const(clk->parent_names[i]);
2552 	kfree(clk->parent_names);
2553 fail_parent_names:
2554 	kfree_const(clk->name);
2555 fail_name:
2556 	kfree(clk);
2557 fail_out:
2558 	return ERR_PTR(ret);
2559 }
2560 EXPORT_SYMBOL_GPL(clk_register);
2561 
2562 /*
2563  * Free memory allocated for a clock.
2564  * Caller must hold prepare_lock.
2565  */
2566 static void __clk_release(struct kref *ref)
2567 {
2568 	struct clk_core *clk = container_of(ref, struct clk_core, ref);
2569 	int i = clk->num_parents;
2570 
2571 	lockdep_assert_held(&prepare_lock);
2572 
2573 	kfree(clk->parents);
2574 	while (--i >= 0)
2575 		kfree_const(clk->parent_names[i]);
2576 
2577 	kfree(clk->parent_names);
2578 	kfree_const(clk->name);
2579 	kfree(clk);
2580 }
2581 
2582 /*
2583  * Empty clk_ops for unregistered clocks. These are used temporarily
2584  * after clk_unregister() was called on a clock and until last clock
2585  * consumer calls clk_put() and the struct clk object is freed.
2586  */
2587 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2588 {
2589 	return -ENXIO;
2590 }
2591 
2592 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2593 {
2594 	WARN_ON_ONCE(1);
2595 }
2596 
2597 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2598 					unsigned long parent_rate)
2599 {
2600 	return -ENXIO;
2601 }
2602 
2603 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2604 {
2605 	return -ENXIO;
2606 }
2607 
2608 static const struct clk_ops clk_nodrv_ops = {
2609 	.enable		= clk_nodrv_prepare_enable,
2610 	.disable	= clk_nodrv_disable_unprepare,
2611 	.prepare	= clk_nodrv_prepare_enable,
2612 	.unprepare	= clk_nodrv_disable_unprepare,
2613 	.set_rate	= clk_nodrv_set_rate,
2614 	.set_parent	= clk_nodrv_set_parent,
2615 };
2616 
2617 /**
2618  * clk_unregister - unregister a currently registered clock
2619  * @clk: clock to unregister
2620  */
2621 void clk_unregister(struct clk *clk)
2622 {
2623 	unsigned long flags;
2624 
2625 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2626 		return;
2627 
2628 	clk_debug_unregister(clk->core);
2629 
2630 	clk_prepare_lock();
2631 
2632 	if (clk->core->ops == &clk_nodrv_ops) {
2633 		pr_err("%s: unregistered clock: %s\n", __func__,
2634 		       clk->core->name);
2635 		return;
2636 	}
2637 	/*
2638 	 * Assign empty clock ops for consumers that might still hold
2639 	 * a reference to this clock.
2640 	 */
2641 	flags = clk_enable_lock();
2642 	clk->core->ops = &clk_nodrv_ops;
2643 	clk_enable_unlock(flags);
2644 
2645 	if (!hlist_empty(&clk->core->children)) {
2646 		struct clk_core *child;
2647 		struct hlist_node *t;
2648 
2649 		/* Reparent all children to the orphan list. */
2650 		hlist_for_each_entry_safe(child, t, &clk->core->children,
2651 					  child_node)
2652 			clk_core_set_parent(child, NULL);
2653 	}
2654 
2655 	hlist_del_init(&clk->core->child_node);
2656 
2657 	if (clk->core->prepare_count)
2658 		pr_warn("%s: unregistering prepared clock: %s\n",
2659 					__func__, clk->core->name);
2660 	kref_put(&clk->core->ref, __clk_release);
2661 
2662 	clk_prepare_unlock();
2663 }
2664 EXPORT_SYMBOL_GPL(clk_unregister);
2665 
2666 static void devm_clk_release(struct device *dev, void *res)
2667 {
2668 	clk_unregister(*(struct clk **)res);
2669 }
2670 
2671 /**
2672  * devm_clk_register - resource managed clk_register()
2673  * @dev: device that is registering this clock
2674  * @hw: link to hardware-specific clock data
2675  *
2676  * Managed clk_register(). Clocks returned from this function are
2677  * automatically clk_unregister()ed on driver detach. See clk_register() for
2678  * more information.
2679  */
2680 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2681 {
2682 	struct clk *clk;
2683 	struct clk **clkp;
2684 
2685 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2686 	if (!clkp)
2687 		return ERR_PTR(-ENOMEM);
2688 
2689 	clk = clk_register(dev, hw);
2690 	if (!IS_ERR(clk)) {
2691 		*clkp = clk;
2692 		devres_add(dev, clkp);
2693 	} else {
2694 		devres_free(clkp);
2695 	}
2696 
2697 	return clk;
2698 }
2699 EXPORT_SYMBOL_GPL(devm_clk_register);
2700 
2701 static int devm_clk_match(struct device *dev, void *res, void *data)
2702 {
2703 	struct clk *c = res;
2704 	if (WARN_ON(!c))
2705 		return 0;
2706 	return c == data;
2707 }
2708 
2709 /**
2710  * devm_clk_unregister - resource managed clk_unregister()
2711  * @clk: clock to unregister
2712  *
2713  * Deallocate a clock allocated with devm_clk_register(). Normally
2714  * this function will not need to be called and the resource management
2715  * code will ensure that the resource is freed.
2716  */
2717 void devm_clk_unregister(struct device *dev, struct clk *clk)
2718 {
2719 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2720 }
2721 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2722 
2723 /*
2724  * clkdev helpers
2725  */
2726 int __clk_get(struct clk *clk)
2727 {
2728 	struct clk_core *core = !clk ? NULL : clk->core;
2729 
2730 	if (core) {
2731 		if (!try_module_get(core->owner))
2732 			return 0;
2733 
2734 		kref_get(&core->ref);
2735 	}
2736 	return 1;
2737 }
2738 
2739 void __clk_put(struct clk *clk)
2740 {
2741 	struct module *owner;
2742 
2743 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2744 		return;
2745 
2746 	clk_prepare_lock();
2747 
2748 	hlist_del(&clk->clks_node);
2749 	if (clk->min_rate > clk->core->req_rate ||
2750 	    clk->max_rate < clk->core->req_rate)
2751 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2752 
2753 	owner = clk->core->owner;
2754 	kref_put(&clk->core->ref, __clk_release);
2755 
2756 	clk_prepare_unlock();
2757 
2758 	module_put(owner);
2759 
2760 	kfree(clk);
2761 }
2762 
2763 /***        clk rate change notifiers        ***/
2764 
2765 /**
2766  * clk_notifier_register - add a clk rate change notifier
2767  * @clk: struct clk * to watch
2768  * @nb: struct notifier_block * with callback info
2769  *
2770  * Request notification when clk's rate changes.  This uses an SRCU
2771  * notifier because we want it to block and notifier unregistrations are
2772  * uncommon.  The callbacks associated with the notifier must not
2773  * re-enter into the clk framework by calling any top-level clk APIs;
2774  * this will cause a nested prepare_lock mutex.
2775  *
2776  * In all notification cases cases (pre, post and abort rate change) the
2777  * original clock rate is passed to the callback via struct
2778  * clk_notifier_data.old_rate and the new frequency is passed via struct
2779  * clk_notifier_data.new_rate.
2780  *
2781  * clk_notifier_register() must be called from non-atomic context.
2782  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2783  * allocation failure; otherwise, passes along the return value of
2784  * srcu_notifier_chain_register().
2785  */
2786 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2787 {
2788 	struct clk_notifier *cn;
2789 	int ret = -ENOMEM;
2790 
2791 	if (!clk || !nb)
2792 		return -EINVAL;
2793 
2794 	clk_prepare_lock();
2795 
2796 	/* search the list of notifiers for this clk */
2797 	list_for_each_entry(cn, &clk_notifier_list, node)
2798 		if (cn->clk == clk)
2799 			break;
2800 
2801 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2802 	if (cn->clk != clk) {
2803 		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2804 		if (!cn)
2805 			goto out;
2806 
2807 		cn->clk = clk;
2808 		srcu_init_notifier_head(&cn->notifier_head);
2809 
2810 		list_add(&cn->node, &clk_notifier_list);
2811 	}
2812 
2813 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2814 
2815 	clk->core->notifier_count++;
2816 
2817 out:
2818 	clk_prepare_unlock();
2819 
2820 	return ret;
2821 }
2822 EXPORT_SYMBOL_GPL(clk_notifier_register);
2823 
2824 /**
2825  * clk_notifier_unregister - remove a clk rate change notifier
2826  * @clk: struct clk *
2827  * @nb: struct notifier_block * with callback info
2828  *
2829  * Request no further notification for changes to 'clk' and frees memory
2830  * allocated in clk_notifier_register.
2831  *
2832  * Returns -EINVAL if called with null arguments; otherwise, passes
2833  * along the return value of srcu_notifier_chain_unregister().
2834  */
2835 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2836 {
2837 	struct clk_notifier *cn = NULL;
2838 	int ret = -EINVAL;
2839 
2840 	if (!clk || !nb)
2841 		return -EINVAL;
2842 
2843 	clk_prepare_lock();
2844 
2845 	list_for_each_entry(cn, &clk_notifier_list, node)
2846 		if (cn->clk == clk)
2847 			break;
2848 
2849 	if (cn->clk == clk) {
2850 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2851 
2852 		clk->core->notifier_count--;
2853 
2854 		/* XXX the notifier code should handle this better */
2855 		if (!cn->notifier_head.head) {
2856 			srcu_cleanup_notifier_head(&cn->notifier_head);
2857 			list_del(&cn->node);
2858 			kfree(cn);
2859 		}
2860 
2861 	} else {
2862 		ret = -ENOENT;
2863 	}
2864 
2865 	clk_prepare_unlock();
2866 
2867 	return ret;
2868 }
2869 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2870 
2871 #ifdef CONFIG_OF
2872 /**
2873  * struct of_clk_provider - Clock provider registration structure
2874  * @link: Entry in global list of clock providers
2875  * @node: Pointer to device tree node of clock provider
2876  * @get: Get clock callback.  Returns NULL or a struct clk for the
2877  *       given clock specifier
2878  * @data: context pointer to be passed into @get callback
2879  */
2880 struct of_clk_provider {
2881 	struct list_head link;
2882 
2883 	struct device_node *node;
2884 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2885 	void *data;
2886 };
2887 
2888 static const struct of_device_id __clk_of_table_sentinel
2889 	__used __section(__clk_of_table_end);
2890 
2891 static LIST_HEAD(of_clk_providers);
2892 static DEFINE_MUTEX(of_clk_mutex);
2893 
2894 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2895 				     void *data)
2896 {
2897 	return data;
2898 }
2899 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2900 
2901 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2902 {
2903 	struct clk_onecell_data *clk_data = data;
2904 	unsigned int idx = clkspec->args[0];
2905 
2906 	if (idx >= clk_data->clk_num) {
2907 		pr_err("%s: invalid clock index %d\n", __func__, idx);
2908 		return ERR_PTR(-EINVAL);
2909 	}
2910 
2911 	return clk_data->clks[idx];
2912 }
2913 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2914 
2915 /**
2916  * of_clk_add_provider() - Register a clock provider for a node
2917  * @np: Device node pointer associated with clock provider
2918  * @clk_src_get: callback for decoding clock
2919  * @data: context pointer for @clk_src_get callback.
2920  */
2921 int of_clk_add_provider(struct device_node *np,
2922 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2923 						   void *data),
2924 			void *data)
2925 {
2926 	struct of_clk_provider *cp;
2927 	int ret;
2928 
2929 	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2930 	if (!cp)
2931 		return -ENOMEM;
2932 
2933 	cp->node = of_node_get(np);
2934 	cp->data = data;
2935 	cp->get = clk_src_get;
2936 
2937 	mutex_lock(&of_clk_mutex);
2938 	list_add(&cp->link, &of_clk_providers);
2939 	mutex_unlock(&of_clk_mutex);
2940 	pr_debug("Added clock from %s\n", np->full_name);
2941 
2942 	ret = of_clk_set_defaults(np, true);
2943 	if (ret < 0)
2944 		of_clk_del_provider(np);
2945 
2946 	return ret;
2947 }
2948 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2949 
2950 /**
2951  * of_clk_del_provider() - Remove a previously registered clock provider
2952  * @np: Device node pointer associated with clock provider
2953  */
2954 void of_clk_del_provider(struct device_node *np)
2955 {
2956 	struct of_clk_provider *cp;
2957 
2958 	mutex_lock(&of_clk_mutex);
2959 	list_for_each_entry(cp, &of_clk_providers, link) {
2960 		if (cp->node == np) {
2961 			list_del(&cp->link);
2962 			of_node_put(cp->node);
2963 			kfree(cp);
2964 			break;
2965 		}
2966 	}
2967 	mutex_unlock(&of_clk_mutex);
2968 }
2969 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2970 
2971 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
2972 				       const char *dev_id, const char *con_id)
2973 {
2974 	struct of_clk_provider *provider;
2975 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2976 
2977 	if (!clkspec)
2978 		return ERR_PTR(-EINVAL);
2979 
2980 	/* Check if we have such a provider in our array */
2981 	mutex_lock(&of_clk_mutex);
2982 	list_for_each_entry(provider, &of_clk_providers, link) {
2983 		if (provider->node == clkspec->np)
2984 			clk = provider->get(clkspec, provider->data);
2985 		if (!IS_ERR(clk)) {
2986 			clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
2987 					       con_id);
2988 
2989 			if (!IS_ERR(clk) && !__clk_get(clk)) {
2990 				__clk_free_clk(clk);
2991 				clk = ERR_PTR(-ENOENT);
2992 			}
2993 
2994 			break;
2995 		}
2996 	}
2997 	mutex_unlock(&of_clk_mutex);
2998 
2999 	return clk;
3000 }
3001 
3002 /**
3003  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3004  * @clkspec: pointer to a clock specifier data structure
3005  *
3006  * This function looks up a struct clk from the registered list of clock
3007  * providers, an input is a clock specifier data structure as returned
3008  * from the of_parse_phandle_with_args() function call.
3009  */
3010 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3011 {
3012 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3013 }
3014 
3015 int of_clk_get_parent_count(struct device_node *np)
3016 {
3017 	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
3018 }
3019 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3020 
3021 const char *of_clk_get_parent_name(struct device_node *np, int index)
3022 {
3023 	struct of_phandle_args clkspec;
3024 	struct property *prop;
3025 	const char *clk_name;
3026 	const __be32 *vp;
3027 	u32 pv;
3028 	int rc;
3029 	int count;
3030 
3031 	if (index < 0)
3032 		return NULL;
3033 
3034 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3035 					&clkspec);
3036 	if (rc)
3037 		return NULL;
3038 
3039 	index = clkspec.args_count ? clkspec.args[0] : 0;
3040 	count = 0;
3041 
3042 	/* if there is an indices property, use it to transfer the index
3043 	 * specified into an array offset for the clock-output-names property.
3044 	 */
3045 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3046 		if (index == pv) {
3047 			index = count;
3048 			break;
3049 		}
3050 		count++;
3051 	}
3052 
3053 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3054 					  index,
3055 					  &clk_name) < 0)
3056 		clk_name = clkspec.np->name;
3057 
3058 	of_node_put(clkspec.np);
3059 	return clk_name;
3060 }
3061 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3062 
3063 struct clock_provider {
3064 	of_clk_init_cb_t clk_init_cb;
3065 	struct device_node *np;
3066 	struct list_head node;
3067 };
3068 
3069 static LIST_HEAD(clk_provider_list);
3070 
3071 /*
3072  * This function looks for a parent clock. If there is one, then it
3073  * checks that the provider for this parent clock was initialized, in
3074  * this case the parent clock will be ready.
3075  */
3076 static int parent_ready(struct device_node *np)
3077 {
3078 	int i = 0;
3079 
3080 	while (true) {
3081 		struct clk *clk = of_clk_get(np, i);
3082 
3083 		/* this parent is ready we can check the next one */
3084 		if (!IS_ERR(clk)) {
3085 			clk_put(clk);
3086 			i++;
3087 			continue;
3088 		}
3089 
3090 		/* at least one parent is not ready, we exit now */
3091 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3092 			return 0;
3093 
3094 		/*
3095 		 * Here we make assumption that the device tree is
3096 		 * written correctly. So an error means that there is
3097 		 * no more parent. As we didn't exit yet, then the
3098 		 * previous parent are ready. If there is no clock
3099 		 * parent, no need to wait for them, then we can
3100 		 * consider their absence as being ready
3101 		 */
3102 		return 1;
3103 	}
3104 }
3105 
3106 /**
3107  * of_clk_init() - Scan and init clock providers from the DT
3108  * @matches: array of compatible values and init functions for providers.
3109  *
3110  * This function scans the device tree for matching clock providers
3111  * and calls their initialization functions. It also does it by trying
3112  * to follow the dependencies.
3113  */
3114 void __init of_clk_init(const struct of_device_id *matches)
3115 {
3116 	const struct of_device_id *match;
3117 	struct device_node *np;
3118 	struct clock_provider *clk_provider, *next;
3119 	bool is_init_done;
3120 	bool force = false;
3121 
3122 	if (!matches)
3123 		matches = &__clk_of_table;
3124 
3125 	/* First prepare the list of the clocks providers */
3126 	for_each_matching_node_and_match(np, matches, &match) {
3127 		struct clock_provider *parent =
3128 			kzalloc(sizeof(struct clock_provider),	GFP_KERNEL);
3129 
3130 		parent->clk_init_cb = match->data;
3131 		parent->np = np;
3132 		list_add_tail(&parent->node, &clk_provider_list);
3133 	}
3134 
3135 	while (!list_empty(&clk_provider_list)) {
3136 		is_init_done = false;
3137 		list_for_each_entry_safe(clk_provider, next,
3138 					&clk_provider_list, node) {
3139 			if (force || parent_ready(clk_provider->np)) {
3140 
3141 				clk_provider->clk_init_cb(clk_provider->np);
3142 				of_clk_set_defaults(clk_provider->np, true);
3143 
3144 				list_del(&clk_provider->node);
3145 				kfree(clk_provider);
3146 				is_init_done = true;
3147 			}
3148 		}
3149 
3150 		/*
3151 		 * We didn't manage to initialize any of the
3152 		 * remaining providers during the last loop, so now we
3153 		 * initialize all the remaining ones unconditionally
3154 		 * in case the clock parent was not mandatory
3155 		 */
3156 		if (!is_init_done)
3157 			force = true;
3158 	}
3159 }
3160 #endif
3161