1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 /*** private data structures ***/ 41 42 struct clk_parent_map { 43 const struct clk_hw *hw; 44 struct clk_core *core; 45 const char *fw_name; 46 const char *name; 47 int index; 48 }; 49 50 struct clk_core { 51 const char *name; 52 const struct clk_ops *ops; 53 struct clk_hw *hw; 54 struct module *owner; 55 struct device *dev; 56 struct device_node *of_node; 57 struct clk_core *parent; 58 struct clk_parent_map *parents; 59 u8 num_parents; 60 u8 new_parent_index; 61 unsigned long rate; 62 unsigned long req_rate; 63 unsigned long new_rate; 64 struct clk_core *new_parent; 65 struct clk_core *new_child; 66 unsigned long flags; 67 bool orphan; 68 bool rpm_enabled; 69 unsigned int enable_count; 70 unsigned int prepare_count; 71 unsigned int protect_count; 72 unsigned long min_rate; 73 unsigned long max_rate; 74 unsigned long accuracy; 75 int phase; 76 struct clk_duty duty; 77 struct hlist_head children; 78 struct hlist_node child_node; 79 struct hlist_head clks; 80 unsigned int notifier_count; 81 #ifdef CONFIG_DEBUG_FS 82 struct dentry *dentry; 83 struct hlist_node debug_node; 84 #endif 85 struct kref ref; 86 }; 87 88 #define CREATE_TRACE_POINTS 89 #include <trace/events/clk.h> 90 91 struct clk { 92 struct clk_core *core; 93 struct device *dev; 94 const char *dev_id; 95 const char *con_id; 96 unsigned long min_rate; 97 unsigned long max_rate; 98 unsigned int exclusive_count; 99 struct hlist_node clks_node; 100 }; 101 102 /*** runtime pm ***/ 103 static int clk_pm_runtime_get(struct clk_core *core) 104 { 105 int ret; 106 107 if (!core->rpm_enabled) 108 return 0; 109 110 ret = pm_runtime_get_sync(core->dev); 111 return ret < 0 ? ret : 0; 112 } 113 114 static void clk_pm_runtime_put(struct clk_core *core) 115 { 116 if (!core->rpm_enabled) 117 return; 118 119 pm_runtime_put_sync(core->dev); 120 } 121 122 /*** locking ***/ 123 static void clk_prepare_lock(void) 124 { 125 if (!mutex_trylock(&prepare_lock)) { 126 if (prepare_owner == current) { 127 prepare_refcnt++; 128 return; 129 } 130 mutex_lock(&prepare_lock); 131 } 132 WARN_ON_ONCE(prepare_owner != NULL); 133 WARN_ON_ONCE(prepare_refcnt != 0); 134 prepare_owner = current; 135 prepare_refcnt = 1; 136 } 137 138 static void clk_prepare_unlock(void) 139 { 140 WARN_ON_ONCE(prepare_owner != current); 141 WARN_ON_ONCE(prepare_refcnt == 0); 142 143 if (--prepare_refcnt) 144 return; 145 prepare_owner = NULL; 146 mutex_unlock(&prepare_lock); 147 } 148 149 static unsigned long clk_enable_lock(void) 150 __acquires(enable_lock) 151 { 152 unsigned long flags; 153 154 /* 155 * On UP systems, spin_trylock_irqsave() always returns true, even if 156 * we already hold the lock. So, in that case, we rely only on 157 * reference counting. 158 */ 159 if (!IS_ENABLED(CONFIG_SMP) || 160 !spin_trylock_irqsave(&enable_lock, flags)) { 161 if (enable_owner == current) { 162 enable_refcnt++; 163 __acquire(enable_lock); 164 if (!IS_ENABLED(CONFIG_SMP)) 165 local_save_flags(flags); 166 return flags; 167 } 168 spin_lock_irqsave(&enable_lock, flags); 169 } 170 WARN_ON_ONCE(enable_owner != NULL); 171 WARN_ON_ONCE(enable_refcnt != 0); 172 enable_owner = current; 173 enable_refcnt = 1; 174 return flags; 175 } 176 177 static void clk_enable_unlock(unsigned long flags) 178 __releases(enable_lock) 179 { 180 WARN_ON_ONCE(enable_owner != current); 181 WARN_ON_ONCE(enable_refcnt == 0); 182 183 if (--enable_refcnt) { 184 __release(enable_lock); 185 return; 186 } 187 enable_owner = NULL; 188 spin_unlock_irqrestore(&enable_lock, flags); 189 } 190 191 static bool clk_core_rate_is_protected(struct clk_core *core) 192 { 193 return core->protect_count; 194 } 195 196 static bool clk_core_is_prepared(struct clk_core *core) 197 { 198 bool ret = false; 199 200 /* 201 * .is_prepared is optional for clocks that can prepare 202 * fall back to software usage counter if it is missing 203 */ 204 if (!core->ops->is_prepared) 205 return core->prepare_count; 206 207 if (!clk_pm_runtime_get(core)) { 208 ret = core->ops->is_prepared(core->hw); 209 clk_pm_runtime_put(core); 210 } 211 212 return ret; 213 } 214 215 static bool clk_core_is_enabled(struct clk_core *core) 216 { 217 bool ret = false; 218 219 /* 220 * .is_enabled is only mandatory for clocks that gate 221 * fall back to software usage counter if .is_enabled is missing 222 */ 223 if (!core->ops->is_enabled) 224 return core->enable_count; 225 226 /* 227 * Check if clock controller's device is runtime active before 228 * calling .is_enabled callback. If not, assume that clock is 229 * disabled, because we might be called from atomic context, from 230 * which pm_runtime_get() is not allowed. 231 * This function is called mainly from clk_disable_unused_subtree, 232 * which ensures proper runtime pm activation of controller before 233 * taking enable spinlock, but the below check is needed if one tries 234 * to call it from other places. 235 */ 236 if (core->rpm_enabled) { 237 pm_runtime_get_noresume(core->dev); 238 if (!pm_runtime_active(core->dev)) { 239 ret = false; 240 goto done; 241 } 242 } 243 244 ret = core->ops->is_enabled(core->hw); 245 done: 246 if (core->rpm_enabled) 247 pm_runtime_put(core->dev); 248 249 return ret; 250 } 251 252 /*** helper functions ***/ 253 254 const char *__clk_get_name(const struct clk *clk) 255 { 256 return !clk ? NULL : clk->core->name; 257 } 258 EXPORT_SYMBOL_GPL(__clk_get_name); 259 260 const char *clk_hw_get_name(const struct clk_hw *hw) 261 { 262 return hw->core->name; 263 } 264 EXPORT_SYMBOL_GPL(clk_hw_get_name); 265 266 struct clk_hw *__clk_get_hw(struct clk *clk) 267 { 268 return !clk ? NULL : clk->core->hw; 269 } 270 EXPORT_SYMBOL_GPL(__clk_get_hw); 271 272 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 273 { 274 return hw->core->num_parents; 275 } 276 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 277 278 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 279 { 280 return hw->core->parent ? hw->core->parent->hw : NULL; 281 } 282 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 283 284 static struct clk_core *__clk_lookup_subtree(const char *name, 285 struct clk_core *core) 286 { 287 struct clk_core *child; 288 struct clk_core *ret; 289 290 if (!strcmp(core->name, name)) 291 return core; 292 293 hlist_for_each_entry(child, &core->children, child_node) { 294 ret = __clk_lookup_subtree(name, child); 295 if (ret) 296 return ret; 297 } 298 299 return NULL; 300 } 301 302 static struct clk_core *clk_core_lookup(const char *name) 303 { 304 struct clk_core *root_clk; 305 struct clk_core *ret; 306 307 if (!name) 308 return NULL; 309 310 /* search the 'proper' clk tree first */ 311 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 312 ret = __clk_lookup_subtree(name, root_clk); 313 if (ret) 314 return ret; 315 } 316 317 /* if not found, then search the orphan tree */ 318 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 319 ret = __clk_lookup_subtree(name, root_clk); 320 if (ret) 321 return ret; 322 } 323 324 return NULL; 325 } 326 327 /** 328 * clk_core_get - Find the clk_core parent of a clk 329 * @core: clk to find parent of 330 * @p_index: parent index to search for 331 * 332 * This is the preferred method for clk providers to find the parent of a 333 * clk when that parent is external to the clk controller. The parent_names 334 * array is indexed and treated as a local name matching a string in the device 335 * node's 'clock-names' property or as the 'con_id' matching the device's 336 * dev_name() in a clk_lookup. This allows clk providers to use their own 337 * namespace instead of looking for a globally unique parent string. 338 * 339 * For example the following DT snippet would allow a clock registered by the 340 * clock-controller@c001 that has a clk_init_data::parent_data array 341 * with 'xtal' in the 'name' member to find the clock provided by the 342 * clock-controller@f00abcd without needing to get the globally unique name of 343 * the xtal clk. 344 * 345 * parent: clock-controller@f00abcd { 346 * reg = <0xf00abcd 0xabcd>; 347 * #clock-cells = <0>; 348 * }; 349 * 350 * clock-controller@c001 { 351 * reg = <0xc001 0xf00d>; 352 * clocks = <&parent>; 353 * clock-names = "xtal"; 354 * #clock-cells = <1>; 355 * }; 356 * 357 * Returns: -ENOENT when the provider can't be found or the clk doesn't 358 * exist in the provider. -EINVAL when the name can't be found. NULL when the 359 * provider knows about the clk but it isn't provided on this system. 360 * A valid clk_core pointer when the clk can be found in the provider. 361 */ 362 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 363 { 364 const char *name = core->parents[p_index].fw_name; 365 int index = core->parents[p_index].index; 366 struct clk_hw *hw = ERR_PTR(-ENOENT); 367 struct device *dev = core->dev; 368 const char *dev_id = dev ? dev_name(dev) : NULL; 369 struct device_node *np = core->of_node; 370 371 if (np && (name || index >= 0)) 372 hw = of_clk_get_hw(np, index, name); 373 374 /* 375 * If the DT search above couldn't find the provider or the provider 376 * didn't know about this clk, fallback to looking up via clkdev based 377 * clk_lookups 378 */ 379 if (PTR_ERR(hw) == -ENOENT && name) 380 hw = clk_find_hw(dev_id, name); 381 382 if (IS_ERR(hw)) 383 return ERR_CAST(hw); 384 385 return hw->core; 386 } 387 388 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 389 { 390 struct clk_parent_map *entry = &core->parents[index]; 391 struct clk_core *parent = ERR_PTR(-ENOENT); 392 393 if (entry->hw) { 394 parent = entry->hw->core; 395 /* 396 * We have a direct reference but it isn't registered yet? 397 * Orphan it and let clk_reparent() update the orphan status 398 * when the parent is registered. 399 */ 400 if (!parent) 401 parent = ERR_PTR(-EPROBE_DEFER); 402 } else { 403 parent = clk_core_get(core, index); 404 if (IS_ERR(parent) && PTR_ERR(parent) == -ENOENT) 405 parent = clk_core_lookup(entry->name); 406 } 407 408 /* Only cache it if it's not an error */ 409 if (!IS_ERR(parent)) 410 entry->core = parent; 411 } 412 413 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 414 u8 index) 415 { 416 if (!core || index >= core->num_parents || !core->parents) 417 return NULL; 418 419 if (!core->parents[index].core) 420 clk_core_fill_parent_index(core, index); 421 422 return core->parents[index].core; 423 } 424 425 struct clk_hw * 426 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 427 { 428 struct clk_core *parent; 429 430 parent = clk_core_get_parent_by_index(hw->core, index); 431 432 return !parent ? NULL : parent->hw; 433 } 434 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 435 436 unsigned int __clk_get_enable_count(struct clk *clk) 437 { 438 return !clk ? 0 : clk->core->enable_count; 439 } 440 441 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 442 { 443 if (!core) 444 return 0; 445 446 if (!core->num_parents || core->parent) 447 return core->rate; 448 449 /* 450 * Clk must have a parent because num_parents > 0 but the parent isn't 451 * known yet. Best to return 0 as the rate of this clk until we can 452 * properly recalc the rate based on the parent's rate. 453 */ 454 return 0; 455 } 456 457 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 458 { 459 return clk_core_get_rate_nolock(hw->core); 460 } 461 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 462 463 static unsigned long __clk_get_accuracy(struct clk_core *core) 464 { 465 if (!core) 466 return 0; 467 468 return core->accuracy; 469 } 470 471 unsigned long __clk_get_flags(struct clk *clk) 472 { 473 return !clk ? 0 : clk->core->flags; 474 } 475 EXPORT_SYMBOL_GPL(__clk_get_flags); 476 477 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 478 { 479 return hw->core->flags; 480 } 481 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 482 483 bool clk_hw_is_prepared(const struct clk_hw *hw) 484 { 485 return clk_core_is_prepared(hw->core); 486 } 487 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 488 489 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 490 { 491 return clk_core_rate_is_protected(hw->core); 492 } 493 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 494 495 bool clk_hw_is_enabled(const struct clk_hw *hw) 496 { 497 return clk_core_is_enabled(hw->core); 498 } 499 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 500 501 bool __clk_is_enabled(struct clk *clk) 502 { 503 if (!clk) 504 return false; 505 506 return clk_core_is_enabled(clk->core); 507 } 508 EXPORT_SYMBOL_GPL(__clk_is_enabled); 509 510 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 511 unsigned long best, unsigned long flags) 512 { 513 if (flags & CLK_MUX_ROUND_CLOSEST) 514 return abs(now - rate) < abs(best - rate); 515 516 return now <= rate && now > best; 517 } 518 519 int clk_mux_determine_rate_flags(struct clk_hw *hw, 520 struct clk_rate_request *req, 521 unsigned long flags) 522 { 523 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 524 int i, num_parents, ret; 525 unsigned long best = 0; 526 struct clk_rate_request parent_req = *req; 527 528 /* if NO_REPARENT flag set, pass through to current parent */ 529 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 530 parent = core->parent; 531 if (core->flags & CLK_SET_RATE_PARENT) { 532 ret = __clk_determine_rate(parent ? parent->hw : NULL, 533 &parent_req); 534 if (ret) 535 return ret; 536 537 best = parent_req.rate; 538 } else if (parent) { 539 best = clk_core_get_rate_nolock(parent); 540 } else { 541 best = clk_core_get_rate_nolock(core); 542 } 543 544 goto out; 545 } 546 547 /* find the parent that can provide the fastest rate <= rate */ 548 num_parents = core->num_parents; 549 for (i = 0; i < num_parents; i++) { 550 parent = clk_core_get_parent_by_index(core, i); 551 if (!parent) 552 continue; 553 554 if (core->flags & CLK_SET_RATE_PARENT) { 555 parent_req = *req; 556 ret = __clk_determine_rate(parent->hw, &parent_req); 557 if (ret) 558 continue; 559 } else { 560 parent_req.rate = clk_core_get_rate_nolock(parent); 561 } 562 563 if (mux_is_better_rate(req->rate, parent_req.rate, 564 best, flags)) { 565 best_parent = parent; 566 best = parent_req.rate; 567 } 568 } 569 570 if (!best_parent) 571 return -EINVAL; 572 573 out: 574 if (best_parent) 575 req->best_parent_hw = best_parent->hw; 576 req->best_parent_rate = best; 577 req->rate = best; 578 579 return 0; 580 } 581 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 582 583 struct clk *__clk_lookup(const char *name) 584 { 585 struct clk_core *core = clk_core_lookup(name); 586 587 return !core ? NULL : core->hw->clk; 588 } 589 590 static void clk_core_get_boundaries(struct clk_core *core, 591 unsigned long *min_rate, 592 unsigned long *max_rate) 593 { 594 struct clk *clk_user; 595 596 *min_rate = core->min_rate; 597 *max_rate = core->max_rate; 598 599 hlist_for_each_entry(clk_user, &core->clks, clks_node) 600 *min_rate = max(*min_rate, clk_user->min_rate); 601 602 hlist_for_each_entry(clk_user, &core->clks, clks_node) 603 *max_rate = min(*max_rate, clk_user->max_rate); 604 } 605 606 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 607 unsigned long max_rate) 608 { 609 hw->core->min_rate = min_rate; 610 hw->core->max_rate = max_rate; 611 } 612 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 613 614 /* 615 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 616 * @hw: mux type clk to determine rate on 617 * @req: rate request, also used to return preferred parent and frequencies 618 * 619 * Helper for finding best parent to provide a given frequency. This can be used 620 * directly as a determine_rate callback (e.g. for a mux), or from a more 621 * complex clock that may combine a mux with other operations. 622 * 623 * Returns: 0 on success, -EERROR value on error 624 */ 625 int __clk_mux_determine_rate(struct clk_hw *hw, 626 struct clk_rate_request *req) 627 { 628 return clk_mux_determine_rate_flags(hw, req, 0); 629 } 630 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 631 632 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 633 struct clk_rate_request *req) 634 { 635 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 636 } 637 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 638 639 /*** clk api ***/ 640 641 static void clk_core_rate_unprotect(struct clk_core *core) 642 { 643 lockdep_assert_held(&prepare_lock); 644 645 if (!core) 646 return; 647 648 if (WARN(core->protect_count == 0, 649 "%s already unprotected\n", core->name)) 650 return; 651 652 if (--core->protect_count > 0) 653 return; 654 655 clk_core_rate_unprotect(core->parent); 656 } 657 658 static int clk_core_rate_nuke_protect(struct clk_core *core) 659 { 660 int ret; 661 662 lockdep_assert_held(&prepare_lock); 663 664 if (!core) 665 return -EINVAL; 666 667 if (core->protect_count == 0) 668 return 0; 669 670 ret = core->protect_count; 671 core->protect_count = 1; 672 clk_core_rate_unprotect(core); 673 674 return ret; 675 } 676 677 /** 678 * clk_rate_exclusive_put - release exclusivity over clock rate control 679 * @clk: the clk over which the exclusivity is released 680 * 681 * clk_rate_exclusive_put() completes a critical section during which a clock 682 * consumer cannot tolerate any other consumer making any operation on the 683 * clock which could result in a rate change or rate glitch. Exclusive clocks 684 * cannot have their rate changed, either directly or indirectly due to changes 685 * further up the parent chain of clocks. As a result, clocks up parent chain 686 * also get under exclusive control of the calling consumer. 687 * 688 * If exlusivity is claimed more than once on clock, even by the same consumer, 689 * the rate effectively gets locked as exclusivity can't be preempted. 690 * 691 * Calls to clk_rate_exclusive_put() must be balanced with calls to 692 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 693 * error status. 694 */ 695 void clk_rate_exclusive_put(struct clk *clk) 696 { 697 if (!clk) 698 return; 699 700 clk_prepare_lock(); 701 702 /* 703 * if there is something wrong with this consumer protect count, stop 704 * here before messing with the provider 705 */ 706 if (WARN_ON(clk->exclusive_count <= 0)) 707 goto out; 708 709 clk_core_rate_unprotect(clk->core); 710 clk->exclusive_count--; 711 out: 712 clk_prepare_unlock(); 713 } 714 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 715 716 static void clk_core_rate_protect(struct clk_core *core) 717 { 718 lockdep_assert_held(&prepare_lock); 719 720 if (!core) 721 return; 722 723 if (core->protect_count == 0) 724 clk_core_rate_protect(core->parent); 725 726 core->protect_count++; 727 } 728 729 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 730 { 731 lockdep_assert_held(&prepare_lock); 732 733 if (!core) 734 return; 735 736 if (count == 0) 737 return; 738 739 clk_core_rate_protect(core); 740 core->protect_count = count; 741 } 742 743 /** 744 * clk_rate_exclusive_get - get exclusivity over the clk rate control 745 * @clk: the clk over which the exclusity of rate control is requested 746 * 747 * clk_rate_exlusive_get() begins a critical section during which a clock 748 * consumer cannot tolerate any other consumer making any operation on the 749 * clock which could result in a rate change or rate glitch. Exclusive clocks 750 * cannot have their rate changed, either directly or indirectly due to changes 751 * further up the parent chain of clocks. As a result, clocks up parent chain 752 * also get under exclusive control of the calling consumer. 753 * 754 * If exlusivity is claimed more than once on clock, even by the same consumer, 755 * the rate effectively gets locked as exclusivity can't be preempted. 756 * 757 * Calls to clk_rate_exclusive_get() should be balanced with calls to 758 * clk_rate_exclusive_put(). Calls to this function may sleep. 759 * Returns 0 on success, -EERROR otherwise 760 */ 761 int clk_rate_exclusive_get(struct clk *clk) 762 { 763 if (!clk) 764 return 0; 765 766 clk_prepare_lock(); 767 clk_core_rate_protect(clk->core); 768 clk->exclusive_count++; 769 clk_prepare_unlock(); 770 771 return 0; 772 } 773 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 774 775 static void clk_core_unprepare(struct clk_core *core) 776 { 777 lockdep_assert_held(&prepare_lock); 778 779 if (!core) 780 return; 781 782 if (WARN(core->prepare_count == 0, 783 "%s already unprepared\n", core->name)) 784 return; 785 786 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 787 "Unpreparing critical %s\n", core->name)) 788 return; 789 790 if (core->flags & CLK_SET_RATE_GATE) 791 clk_core_rate_unprotect(core); 792 793 if (--core->prepare_count > 0) 794 return; 795 796 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 797 798 trace_clk_unprepare(core); 799 800 if (core->ops->unprepare) 801 core->ops->unprepare(core->hw); 802 803 clk_pm_runtime_put(core); 804 805 trace_clk_unprepare_complete(core); 806 clk_core_unprepare(core->parent); 807 } 808 809 static void clk_core_unprepare_lock(struct clk_core *core) 810 { 811 clk_prepare_lock(); 812 clk_core_unprepare(core); 813 clk_prepare_unlock(); 814 } 815 816 /** 817 * clk_unprepare - undo preparation of a clock source 818 * @clk: the clk being unprepared 819 * 820 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 821 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 822 * if the operation may sleep. One example is a clk which is accessed over 823 * I2c. In the complex case a clk gate operation may require a fast and a slow 824 * part. It is this reason that clk_unprepare and clk_disable are not mutually 825 * exclusive. In fact clk_disable must be called before clk_unprepare. 826 */ 827 void clk_unprepare(struct clk *clk) 828 { 829 if (IS_ERR_OR_NULL(clk)) 830 return; 831 832 clk_core_unprepare_lock(clk->core); 833 } 834 EXPORT_SYMBOL_GPL(clk_unprepare); 835 836 static int clk_core_prepare(struct clk_core *core) 837 { 838 int ret = 0; 839 840 lockdep_assert_held(&prepare_lock); 841 842 if (!core) 843 return 0; 844 845 if (core->prepare_count == 0) { 846 ret = clk_pm_runtime_get(core); 847 if (ret) 848 return ret; 849 850 ret = clk_core_prepare(core->parent); 851 if (ret) 852 goto runtime_put; 853 854 trace_clk_prepare(core); 855 856 if (core->ops->prepare) 857 ret = core->ops->prepare(core->hw); 858 859 trace_clk_prepare_complete(core); 860 861 if (ret) 862 goto unprepare; 863 } 864 865 core->prepare_count++; 866 867 /* 868 * CLK_SET_RATE_GATE is a special case of clock protection 869 * Instead of a consumer claiming exclusive rate control, it is 870 * actually the provider which prevents any consumer from making any 871 * operation which could result in a rate change or rate glitch while 872 * the clock is prepared. 873 */ 874 if (core->flags & CLK_SET_RATE_GATE) 875 clk_core_rate_protect(core); 876 877 return 0; 878 unprepare: 879 clk_core_unprepare(core->parent); 880 runtime_put: 881 clk_pm_runtime_put(core); 882 return ret; 883 } 884 885 static int clk_core_prepare_lock(struct clk_core *core) 886 { 887 int ret; 888 889 clk_prepare_lock(); 890 ret = clk_core_prepare(core); 891 clk_prepare_unlock(); 892 893 return ret; 894 } 895 896 /** 897 * clk_prepare - prepare a clock source 898 * @clk: the clk being prepared 899 * 900 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 901 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 902 * operation may sleep. One example is a clk which is accessed over I2c. In 903 * the complex case a clk ungate operation may require a fast and a slow part. 904 * It is this reason that clk_prepare and clk_enable are not mutually 905 * exclusive. In fact clk_prepare must be called before clk_enable. 906 * Returns 0 on success, -EERROR otherwise. 907 */ 908 int clk_prepare(struct clk *clk) 909 { 910 if (!clk) 911 return 0; 912 913 return clk_core_prepare_lock(clk->core); 914 } 915 EXPORT_SYMBOL_GPL(clk_prepare); 916 917 static void clk_core_disable(struct clk_core *core) 918 { 919 lockdep_assert_held(&enable_lock); 920 921 if (!core) 922 return; 923 924 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 925 return; 926 927 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 928 "Disabling critical %s\n", core->name)) 929 return; 930 931 if (--core->enable_count > 0) 932 return; 933 934 trace_clk_disable_rcuidle(core); 935 936 if (core->ops->disable) 937 core->ops->disable(core->hw); 938 939 trace_clk_disable_complete_rcuidle(core); 940 941 clk_core_disable(core->parent); 942 } 943 944 static void clk_core_disable_lock(struct clk_core *core) 945 { 946 unsigned long flags; 947 948 flags = clk_enable_lock(); 949 clk_core_disable(core); 950 clk_enable_unlock(flags); 951 } 952 953 /** 954 * clk_disable - gate a clock 955 * @clk: the clk being gated 956 * 957 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 958 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 959 * clk if the operation is fast and will never sleep. One example is a 960 * SoC-internal clk which is controlled via simple register writes. In the 961 * complex case a clk gate operation may require a fast and a slow part. It is 962 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 963 * In fact clk_disable must be called before clk_unprepare. 964 */ 965 void clk_disable(struct clk *clk) 966 { 967 if (IS_ERR_OR_NULL(clk)) 968 return; 969 970 clk_core_disable_lock(clk->core); 971 } 972 EXPORT_SYMBOL_GPL(clk_disable); 973 974 static int clk_core_enable(struct clk_core *core) 975 { 976 int ret = 0; 977 978 lockdep_assert_held(&enable_lock); 979 980 if (!core) 981 return 0; 982 983 if (WARN(core->prepare_count == 0, 984 "Enabling unprepared %s\n", core->name)) 985 return -ESHUTDOWN; 986 987 if (core->enable_count == 0) { 988 ret = clk_core_enable(core->parent); 989 990 if (ret) 991 return ret; 992 993 trace_clk_enable_rcuidle(core); 994 995 if (core->ops->enable) 996 ret = core->ops->enable(core->hw); 997 998 trace_clk_enable_complete_rcuidle(core); 999 1000 if (ret) { 1001 clk_core_disable(core->parent); 1002 return ret; 1003 } 1004 } 1005 1006 core->enable_count++; 1007 return 0; 1008 } 1009 1010 static int clk_core_enable_lock(struct clk_core *core) 1011 { 1012 unsigned long flags; 1013 int ret; 1014 1015 flags = clk_enable_lock(); 1016 ret = clk_core_enable(core); 1017 clk_enable_unlock(flags); 1018 1019 return ret; 1020 } 1021 1022 /** 1023 * clk_gate_restore_context - restore context for poweroff 1024 * @hw: the clk_hw pointer of clock whose state is to be restored 1025 * 1026 * The clock gate restore context function enables or disables 1027 * the gate clocks based on the enable_count. This is done in cases 1028 * where the clock context is lost and based on the enable_count 1029 * the clock either needs to be enabled/disabled. This 1030 * helps restore the state of gate clocks. 1031 */ 1032 void clk_gate_restore_context(struct clk_hw *hw) 1033 { 1034 struct clk_core *core = hw->core; 1035 1036 if (core->enable_count) 1037 core->ops->enable(hw); 1038 else 1039 core->ops->disable(hw); 1040 } 1041 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1042 1043 static int clk_core_save_context(struct clk_core *core) 1044 { 1045 struct clk_core *child; 1046 int ret = 0; 1047 1048 hlist_for_each_entry(child, &core->children, child_node) { 1049 ret = clk_core_save_context(child); 1050 if (ret < 0) 1051 return ret; 1052 } 1053 1054 if (core->ops && core->ops->save_context) 1055 ret = core->ops->save_context(core->hw); 1056 1057 return ret; 1058 } 1059 1060 static void clk_core_restore_context(struct clk_core *core) 1061 { 1062 struct clk_core *child; 1063 1064 if (core->ops && core->ops->restore_context) 1065 core->ops->restore_context(core->hw); 1066 1067 hlist_for_each_entry(child, &core->children, child_node) 1068 clk_core_restore_context(child); 1069 } 1070 1071 /** 1072 * clk_save_context - save clock context for poweroff 1073 * 1074 * Saves the context of the clock register for powerstates in which the 1075 * contents of the registers will be lost. Occurs deep within the suspend 1076 * code. Returns 0 on success. 1077 */ 1078 int clk_save_context(void) 1079 { 1080 struct clk_core *clk; 1081 int ret; 1082 1083 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1084 ret = clk_core_save_context(clk); 1085 if (ret < 0) 1086 return ret; 1087 } 1088 1089 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1090 ret = clk_core_save_context(clk); 1091 if (ret < 0) 1092 return ret; 1093 } 1094 1095 return 0; 1096 } 1097 EXPORT_SYMBOL_GPL(clk_save_context); 1098 1099 /** 1100 * clk_restore_context - restore clock context after poweroff 1101 * 1102 * Restore the saved clock context upon resume. 1103 * 1104 */ 1105 void clk_restore_context(void) 1106 { 1107 struct clk_core *core; 1108 1109 hlist_for_each_entry(core, &clk_root_list, child_node) 1110 clk_core_restore_context(core); 1111 1112 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1113 clk_core_restore_context(core); 1114 } 1115 EXPORT_SYMBOL_GPL(clk_restore_context); 1116 1117 /** 1118 * clk_enable - ungate a clock 1119 * @clk: the clk being ungated 1120 * 1121 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1122 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1123 * if the operation will never sleep. One example is a SoC-internal clk which 1124 * is controlled via simple register writes. In the complex case a clk ungate 1125 * operation may require a fast and a slow part. It is this reason that 1126 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1127 * must be called before clk_enable. Returns 0 on success, -EERROR 1128 * otherwise. 1129 */ 1130 int clk_enable(struct clk *clk) 1131 { 1132 if (!clk) 1133 return 0; 1134 1135 return clk_core_enable_lock(clk->core); 1136 } 1137 EXPORT_SYMBOL_GPL(clk_enable); 1138 1139 static int clk_core_prepare_enable(struct clk_core *core) 1140 { 1141 int ret; 1142 1143 ret = clk_core_prepare_lock(core); 1144 if (ret) 1145 return ret; 1146 1147 ret = clk_core_enable_lock(core); 1148 if (ret) 1149 clk_core_unprepare_lock(core); 1150 1151 return ret; 1152 } 1153 1154 static void clk_core_disable_unprepare(struct clk_core *core) 1155 { 1156 clk_core_disable_lock(core); 1157 clk_core_unprepare_lock(core); 1158 } 1159 1160 static void clk_unprepare_unused_subtree(struct clk_core *core) 1161 { 1162 struct clk_core *child; 1163 1164 lockdep_assert_held(&prepare_lock); 1165 1166 hlist_for_each_entry(child, &core->children, child_node) 1167 clk_unprepare_unused_subtree(child); 1168 1169 if (core->prepare_count) 1170 return; 1171 1172 if (core->flags & CLK_IGNORE_UNUSED) 1173 return; 1174 1175 if (clk_pm_runtime_get(core)) 1176 return; 1177 1178 if (clk_core_is_prepared(core)) { 1179 trace_clk_unprepare(core); 1180 if (core->ops->unprepare_unused) 1181 core->ops->unprepare_unused(core->hw); 1182 else if (core->ops->unprepare) 1183 core->ops->unprepare(core->hw); 1184 trace_clk_unprepare_complete(core); 1185 } 1186 1187 clk_pm_runtime_put(core); 1188 } 1189 1190 static void clk_disable_unused_subtree(struct clk_core *core) 1191 { 1192 struct clk_core *child; 1193 unsigned long flags; 1194 1195 lockdep_assert_held(&prepare_lock); 1196 1197 hlist_for_each_entry(child, &core->children, child_node) 1198 clk_disable_unused_subtree(child); 1199 1200 if (core->flags & CLK_OPS_PARENT_ENABLE) 1201 clk_core_prepare_enable(core->parent); 1202 1203 if (clk_pm_runtime_get(core)) 1204 goto unprepare_out; 1205 1206 flags = clk_enable_lock(); 1207 1208 if (core->enable_count) 1209 goto unlock_out; 1210 1211 if (core->flags & CLK_IGNORE_UNUSED) 1212 goto unlock_out; 1213 1214 /* 1215 * some gate clocks have special needs during the disable-unused 1216 * sequence. call .disable_unused if available, otherwise fall 1217 * back to .disable 1218 */ 1219 if (clk_core_is_enabled(core)) { 1220 trace_clk_disable(core); 1221 if (core->ops->disable_unused) 1222 core->ops->disable_unused(core->hw); 1223 else if (core->ops->disable) 1224 core->ops->disable(core->hw); 1225 trace_clk_disable_complete(core); 1226 } 1227 1228 unlock_out: 1229 clk_enable_unlock(flags); 1230 clk_pm_runtime_put(core); 1231 unprepare_out: 1232 if (core->flags & CLK_OPS_PARENT_ENABLE) 1233 clk_core_disable_unprepare(core->parent); 1234 } 1235 1236 static bool clk_ignore_unused; 1237 static int __init clk_ignore_unused_setup(char *__unused) 1238 { 1239 clk_ignore_unused = true; 1240 return 1; 1241 } 1242 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1243 1244 static int clk_disable_unused(void) 1245 { 1246 struct clk_core *core; 1247 1248 if (clk_ignore_unused) { 1249 pr_warn("clk: Not disabling unused clocks\n"); 1250 return 0; 1251 } 1252 1253 clk_prepare_lock(); 1254 1255 hlist_for_each_entry(core, &clk_root_list, child_node) 1256 clk_disable_unused_subtree(core); 1257 1258 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1259 clk_disable_unused_subtree(core); 1260 1261 hlist_for_each_entry(core, &clk_root_list, child_node) 1262 clk_unprepare_unused_subtree(core); 1263 1264 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1265 clk_unprepare_unused_subtree(core); 1266 1267 clk_prepare_unlock(); 1268 1269 return 0; 1270 } 1271 late_initcall_sync(clk_disable_unused); 1272 1273 static int clk_core_determine_round_nolock(struct clk_core *core, 1274 struct clk_rate_request *req) 1275 { 1276 long rate; 1277 1278 lockdep_assert_held(&prepare_lock); 1279 1280 if (!core) 1281 return 0; 1282 1283 /* 1284 * At this point, core protection will be disabled if 1285 * - if the provider is not protected at all 1286 * - if the calling consumer is the only one which has exclusivity 1287 * over the provider 1288 */ 1289 if (clk_core_rate_is_protected(core)) { 1290 req->rate = core->rate; 1291 } else if (core->ops->determine_rate) { 1292 return core->ops->determine_rate(core->hw, req); 1293 } else if (core->ops->round_rate) { 1294 rate = core->ops->round_rate(core->hw, req->rate, 1295 &req->best_parent_rate); 1296 if (rate < 0) 1297 return rate; 1298 1299 req->rate = rate; 1300 } else { 1301 return -EINVAL; 1302 } 1303 1304 return 0; 1305 } 1306 1307 static void clk_core_init_rate_req(struct clk_core * const core, 1308 struct clk_rate_request *req) 1309 { 1310 struct clk_core *parent; 1311 1312 if (WARN_ON(!core || !req)) 1313 return; 1314 1315 parent = core->parent; 1316 if (parent) { 1317 req->best_parent_hw = parent->hw; 1318 req->best_parent_rate = parent->rate; 1319 } else { 1320 req->best_parent_hw = NULL; 1321 req->best_parent_rate = 0; 1322 } 1323 } 1324 1325 static bool clk_core_can_round(struct clk_core * const core) 1326 { 1327 return core->ops->determine_rate || core->ops->round_rate; 1328 } 1329 1330 static int clk_core_round_rate_nolock(struct clk_core *core, 1331 struct clk_rate_request *req) 1332 { 1333 lockdep_assert_held(&prepare_lock); 1334 1335 if (!core) { 1336 req->rate = 0; 1337 return 0; 1338 } 1339 1340 clk_core_init_rate_req(core, req); 1341 1342 if (clk_core_can_round(core)) 1343 return clk_core_determine_round_nolock(core, req); 1344 else if (core->flags & CLK_SET_RATE_PARENT) 1345 return clk_core_round_rate_nolock(core->parent, req); 1346 1347 req->rate = core->rate; 1348 return 0; 1349 } 1350 1351 /** 1352 * __clk_determine_rate - get the closest rate actually supported by a clock 1353 * @hw: determine the rate of this clock 1354 * @req: target rate request 1355 * 1356 * Useful for clk_ops such as .set_rate and .determine_rate. 1357 */ 1358 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1359 { 1360 if (!hw) { 1361 req->rate = 0; 1362 return 0; 1363 } 1364 1365 return clk_core_round_rate_nolock(hw->core, req); 1366 } 1367 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1368 1369 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1370 { 1371 int ret; 1372 struct clk_rate_request req; 1373 1374 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1375 req.rate = rate; 1376 1377 ret = clk_core_round_rate_nolock(hw->core, &req); 1378 if (ret) 1379 return 0; 1380 1381 return req.rate; 1382 } 1383 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1384 1385 /** 1386 * clk_round_rate - round the given rate for a clk 1387 * @clk: the clk for which we are rounding a rate 1388 * @rate: the rate which is to be rounded 1389 * 1390 * Takes in a rate as input and rounds it to a rate that the clk can actually 1391 * use which is then returned. If clk doesn't support round_rate operation 1392 * then the parent rate is returned. 1393 */ 1394 long clk_round_rate(struct clk *clk, unsigned long rate) 1395 { 1396 struct clk_rate_request req; 1397 int ret; 1398 1399 if (!clk) 1400 return 0; 1401 1402 clk_prepare_lock(); 1403 1404 if (clk->exclusive_count) 1405 clk_core_rate_unprotect(clk->core); 1406 1407 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1408 req.rate = rate; 1409 1410 ret = clk_core_round_rate_nolock(clk->core, &req); 1411 1412 if (clk->exclusive_count) 1413 clk_core_rate_protect(clk->core); 1414 1415 clk_prepare_unlock(); 1416 1417 if (ret) 1418 return ret; 1419 1420 return req.rate; 1421 } 1422 EXPORT_SYMBOL_GPL(clk_round_rate); 1423 1424 /** 1425 * __clk_notify - call clk notifier chain 1426 * @core: clk that is changing rate 1427 * @msg: clk notifier type (see include/linux/clk.h) 1428 * @old_rate: old clk rate 1429 * @new_rate: new clk rate 1430 * 1431 * Triggers a notifier call chain on the clk rate-change notification 1432 * for 'clk'. Passes a pointer to the struct clk and the previous 1433 * and current rates to the notifier callback. Intended to be called by 1434 * internal clock code only. Returns NOTIFY_DONE from the last driver 1435 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1436 * a driver returns that. 1437 */ 1438 static int __clk_notify(struct clk_core *core, unsigned long msg, 1439 unsigned long old_rate, unsigned long new_rate) 1440 { 1441 struct clk_notifier *cn; 1442 struct clk_notifier_data cnd; 1443 int ret = NOTIFY_DONE; 1444 1445 cnd.old_rate = old_rate; 1446 cnd.new_rate = new_rate; 1447 1448 list_for_each_entry(cn, &clk_notifier_list, node) { 1449 if (cn->clk->core == core) { 1450 cnd.clk = cn->clk; 1451 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1452 &cnd); 1453 if (ret & NOTIFY_STOP_MASK) 1454 return ret; 1455 } 1456 } 1457 1458 return ret; 1459 } 1460 1461 /** 1462 * __clk_recalc_accuracies 1463 * @core: first clk in the subtree 1464 * 1465 * Walks the subtree of clks starting with clk and recalculates accuracies as 1466 * it goes. Note that if a clk does not implement the .recalc_accuracy 1467 * callback then it is assumed that the clock will take on the accuracy of its 1468 * parent. 1469 */ 1470 static void __clk_recalc_accuracies(struct clk_core *core) 1471 { 1472 unsigned long parent_accuracy = 0; 1473 struct clk_core *child; 1474 1475 lockdep_assert_held(&prepare_lock); 1476 1477 if (core->parent) 1478 parent_accuracy = core->parent->accuracy; 1479 1480 if (core->ops->recalc_accuracy) 1481 core->accuracy = core->ops->recalc_accuracy(core->hw, 1482 parent_accuracy); 1483 else 1484 core->accuracy = parent_accuracy; 1485 1486 hlist_for_each_entry(child, &core->children, child_node) 1487 __clk_recalc_accuracies(child); 1488 } 1489 1490 static long clk_core_get_accuracy(struct clk_core *core) 1491 { 1492 unsigned long accuracy; 1493 1494 clk_prepare_lock(); 1495 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1496 __clk_recalc_accuracies(core); 1497 1498 accuracy = __clk_get_accuracy(core); 1499 clk_prepare_unlock(); 1500 1501 return accuracy; 1502 } 1503 1504 /** 1505 * clk_get_accuracy - return the accuracy of clk 1506 * @clk: the clk whose accuracy is being returned 1507 * 1508 * Simply returns the cached accuracy of the clk, unless 1509 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1510 * issued. 1511 * If clk is NULL then returns 0. 1512 */ 1513 long clk_get_accuracy(struct clk *clk) 1514 { 1515 if (!clk) 1516 return 0; 1517 1518 return clk_core_get_accuracy(clk->core); 1519 } 1520 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1521 1522 static unsigned long clk_recalc(struct clk_core *core, 1523 unsigned long parent_rate) 1524 { 1525 unsigned long rate = parent_rate; 1526 1527 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1528 rate = core->ops->recalc_rate(core->hw, parent_rate); 1529 clk_pm_runtime_put(core); 1530 } 1531 return rate; 1532 } 1533 1534 /** 1535 * __clk_recalc_rates 1536 * @core: first clk in the subtree 1537 * @msg: notification type (see include/linux/clk.h) 1538 * 1539 * Walks the subtree of clks starting with clk and recalculates rates as it 1540 * goes. Note that if a clk does not implement the .recalc_rate callback then 1541 * it is assumed that the clock will take on the rate of its parent. 1542 * 1543 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1544 * if necessary. 1545 */ 1546 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1547 { 1548 unsigned long old_rate; 1549 unsigned long parent_rate = 0; 1550 struct clk_core *child; 1551 1552 lockdep_assert_held(&prepare_lock); 1553 1554 old_rate = core->rate; 1555 1556 if (core->parent) 1557 parent_rate = core->parent->rate; 1558 1559 core->rate = clk_recalc(core, parent_rate); 1560 1561 /* 1562 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1563 * & ABORT_RATE_CHANGE notifiers 1564 */ 1565 if (core->notifier_count && msg) 1566 __clk_notify(core, msg, old_rate, core->rate); 1567 1568 hlist_for_each_entry(child, &core->children, child_node) 1569 __clk_recalc_rates(child, msg); 1570 } 1571 1572 static unsigned long clk_core_get_rate(struct clk_core *core) 1573 { 1574 unsigned long rate; 1575 1576 clk_prepare_lock(); 1577 1578 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1579 __clk_recalc_rates(core, 0); 1580 1581 rate = clk_core_get_rate_nolock(core); 1582 clk_prepare_unlock(); 1583 1584 return rate; 1585 } 1586 1587 /** 1588 * clk_get_rate - return the rate of clk 1589 * @clk: the clk whose rate is being returned 1590 * 1591 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1592 * is set, which means a recalc_rate will be issued. 1593 * If clk is NULL then returns 0. 1594 */ 1595 unsigned long clk_get_rate(struct clk *clk) 1596 { 1597 if (!clk) 1598 return 0; 1599 1600 return clk_core_get_rate(clk->core); 1601 } 1602 EXPORT_SYMBOL_GPL(clk_get_rate); 1603 1604 static int clk_fetch_parent_index(struct clk_core *core, 1605 struct clk_core *parent) 1606 { 1607 int i; 1608 1609 if (!parent) 1610 return -EINVAL; 1611 1612 for (i = 0; i < core->num_parents; i++) { 1613 /* Found it first try! */ 1614 if (core->parents[i].core == parent) 1615 return i; 1616 1617 /* Something else is here, so keep looking */ 1618 if (core->parents[i].core) 1619 continue; 1620 1621 /* Maybe core hasn't been cached but the hw is all we know? */ 1622 if (core->parents[i].hw) { 1623 if (core->parents[i].hw == parent->hw) 1624 break; 1625 1626 /* Didn't match, but we're expecting a clk_hw */ 1627 continue; 1628 } 1629 1630 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1631 if (parent == clk_core_get(core, i)) 1632 break; 1633 1634 /* Fallback to comparing globally unique names */ 1635 if (!strcmp(parent->name, core->parents[i].name)) 1636 break; 1637 } 1638 1639 if (i == core->num_parents) 1640 return -EINVAL; 1641 1642 core->parents[i].core = parent; 1643 return i; 1644 } 1645 1646 /* 1647 * Update the orphan status of @core and all its children. 1648 */ 1649 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1650 { 1651 struct clk_core *child; 1652 1653 core->orphan = is_orphan; 1654 1655 hlist_for_each_entry(child, &core->children, child_node) 1656 clk_core_update_orphan_status(child, is_orphan); 1657 } 1658 1659 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1660 { 1661 bool was_orphan = core->orphan; 1662 1663 hlist_del(&core->child_node); 1664 1665 if (new_parent) { 1666 bool becomes_orphan = new_parent->orphan; 1667 1668 /* avoid duplicate POST_RATE_CHANGE notifications */ 1669 if (new_parent->new_child == core) 1670 new_parent->new_child = NULL; 1671 1672 hlist_add_head(&core->child_node, &new_parent->children); 1673 1674 if (was_orphan != becomes_orphan) 1675 clk_core_update_orphan_status(core, becomes_orphan); 1676 } else { 1677 hlist_add_head(&core->child_node, &clk_orphan_list); 1678 if (!was_orphan) 1679 clk_core_update_orphan_status(core, true); 1680 } 1681 1682 core->parent = new_parent; 1683 } 1684 1685 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1686 struct clk_core *parent) 1687 { 1688 unsigned long flags; 1689 struct clk_core *old_parent = core->parent; 1690 1691 /* 1692 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1693 * 1694 * 2. Migrate prepare state between parents and prevent race with 1695 * clk_enable(). 1696 * 1697 * If the clock is not prepared, then a race with 1698 * clk_enable/disable() is impossible since we already have the 1699 * prepare lock (future calls to clk_enable() need to be preceded by 1700 * a clk_prepare()). 1701 * 1702 * If the clock is prepared, migrate the prepared state to the new 1703 * parent and also protect against a race with clk_enable() by 1704 * forcing the clock and the new parent on. This ensures that all 1705 * future calls to clk_enable() are practically NOPs with respect to 1706 * hardware and software states. 1707 * 1708 * See also: Comment for clk_set_parent() below. 1709 */ 1710 1711 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1712 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1713 clk_core_prepare_enable(old_parent); 1714 clk_core_prepare_enable(parent); 1715 } 1716 1717 /* migrate prepare count if > 0 */ 1718 if (core->prepare_count) { 1719 clk_core_prepare_enable(parent); 1720 clk_core_enable_lock(core); 1721 } 1722 1723 /* update the clk tree topology */ 1724 flags = clk_enable_lock(); 1725 clk_reparent(core, parent); 1726 clk_enable_unlock(flags); 1727 1728 return old_parent; 1729 } 1730 1731 static void __clk_set_parent_after(struct clk_core *core, 1732 struct clk_core *parent, 1733 struct clk_core *old_parent) 1734 { 1735 /* 1736 * Finish the migration of prepare state and undo the changes done 1737 * for preventing a race with clk_enable(). 1738 */ 1739 if (core->prepare_count) { 1740 clk_core_disable_lock(core); 1741 clk_core_disable_unprepare(old_parent); 1742 } 1743 1744 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1745 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1746 clk_core_disable_unprepare(parent); 1747 clk_core_disable_unprepare(old_parent); 1748 } 1749 } 1750 1751 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1752 u8 p_index) 1753 { 1754 unsigned long flags; 1755 int ret = 0; 1756 struct clk_core *old_parent; 1757 1758 old_parent = __clk_set_parent_before(core, parent); 1759 1760 trace_clk_set_parent(core, parent); 1761 1762 /* change clock input source */ 1763 if (parent && core->ops->set_parent) 1764 ret = core->ops->set_parent(core->hw, p_index); 1765 1766 trace_clk_set_parent_complete(core, parent); 1767 1768 if (ret) { 1769 flags = clk_enable_lock(); 1770 clk_reparent(core, old_parent); 1771 clk_enable_unlock(flags); 1772 __clk_set_parent_after(core, old_parent, parent); 1773 1774 return ret; 1775 } 1776 1777 __clk_set_parent_after(core, parent, old_parent); 1778 1779 return 0; 1780 } 1781 1782 /** 1783 * __clk_speculate_rates 1784 * @core: first clk in the subtree 1785 * @parent_rate: the "future" rate of clk's parent 1786 * 1787 * Walks the subtree of clks starting with clk, speculating rates as it 1788 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1789 * 1790 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1791 * pre-rate change notifications and returns early if no clks in the 1792 * subtree have subscribed to the notifications. Note that if a clk does not 1793 * implement the .recalc_rate callback then it is assumed that the clock will 1794 * take on the rate of its parent. 1795 */ 1796 static int __clk_speculate_rates(struct clk_core *core, 1797 unsigned long parent_rate) 1798 { 1799 struct clk_core *child; 1800 unsigned long new_rate; 1801 int ret = NOTIFY_DONE; 1802 1803 lockdep_assert_held(&prepare_lock); 1804 1805 new_rate = clk_recalc(core, parent_rate); 1806 1807 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1808 if (core->notifier_count) 1809 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1810 1811 if (ret & NOTIFY_STOP_MASK) { 1812 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1813 __func__, core->name, ret); 1814 goto out; 1815 } 1816 1817 hlist_for_each_entry(child, &core->children, child_node) { 1818 ret = __clk_speculate_rates(child, new_rate); 1819 if (ret & NOTIFY_STOP_MASK) 1820 break; 1821 } 1822 1823 out: 1824 return ret; 1825 } 1826 1827 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1828 struct clk_core *new_parent, u8 p_index) 1829 { 1830 struct clk_core *child; 1831 1832 core->new_rate = new_rate; 1833 core->new_parent = new_parent; 1834 core->new_parent_index = p_index; 1835 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1836 core->new_child = NULL; 1837 if (new_parent && new_parent != core->parent) 1838 new_parent->new_child = core; 1839 1840 hlist_for_each_entry(child, &core->children, child_node) { 1841 child->new_rate = clk_recalc(child, new_rate); 1842 clk_calc_subtree(child, child->new_rate, NULL, 0); 1843 } 1844 } 1845 1846 /* 1847 * calculate the new rates returning the topmost clock that has to be 1848 * changed. 1849 */ 1850 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1851 unsigned long rate) 1852 { 1853 struct clk_core *top = core; 1854 struct clk_core *old_parent, *parent; 1855 unsigned long best_parent_rate = 0; 1856 unsigned long new_rate; 1857 unsigned long min_rate; 1858 unsigned long max_rate; 1859 int p_index = 0; 1860 long ret; 1861 1862 /* sanity */ 1863 if (IS_ERR_OR_NULL(core)) 1864 return NULL; 1865 1866 /* save parent rate, if it exists */ 1867 parent = old_parent = core->parent; 1868 if (parent) 1869 best_parent_rate = parent->rate; 1870 1871 clk_core_get_boundaries(core, &min_rate, &max_rate); 1872 1873 /* find the closest rate and parent clk/rate */ 1874 if (clk_core_can_round(core)) { 1875 struct clk_rate_request req; 1876 1877 req.rate = rate; 1878 req.min_rate = min_rate; 1879 req.max_rate = max_rate; 1880 1881 clk_core_init_rate_req(core, &req); 1882 1883 ret = clk_core_determine_round_nolock(core, &req); 1884 if (ret < 0) 1885 return NULL; 1886 1887 best_parent_rate = req.best_parent_rate; 1888 new_rate = req.rate; 1889 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1890 1891 if (new_rate < min_rate || new_rate > max_rate) 1892 return NULL; 1893 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1894 /* pass-through clock without adjustable parent */ 1895 core->new_rate = core->rate; 1896 return NULL; 1897 } else { 1898 /* pass-through clock with adjustable parent */ 1899 top = clk_calc_new_rates(parent, rate); 1900 new_rate = parent->new_rate; 1901 goto out; 1902 } 1903 1904 /* some clocks must be gated to change parent */ 1905 if (parent != old_parent && 1906 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1907 pr_debug("%s: %s not gated but wants to reparent\n", 1908 __func__, core->name); 1909 return NULL; 1910 } 1911 1912 /* try finding the new parent index */ 1913 if (parent && core->num_parents > 1) { 1914 p_index = clk_fetch_parent_index(core, parent); 1915 if (p_index < 0) { 1916 pr_debug("%s: clk %s can not be parent of clk %s\n", 1917 __func__, parent->name, core->name); 1918 return NULL; 1919 } 1920 } 1921 1922 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1923 best_parent_rate != parent->rate) 1924 top = clk_calc_new_rates(parent, best_parent_rate); 1925 1926 out: 1927 clk_calc_subtree(core, new_rate, parent, p_index); 1928 1929 return top; 1930 } 1931 1932 /* 1933 * Notify about rate changes in a subtree. Always walk down the whole tree 1934 * so that in case of an error we can walk down the whole tree again and 1935 * abort the change. 1936 */ 1937 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1938 unsigned long event) 1939 { 1940 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1941 int ret = NOTIFY_DONE; 1942 1943 if (core->rate == core->new_rate) 1944 return NULL; 1945 1946 if (core->notifier_count) { 1947 ret = __clk_notify(core, event, core->rate, core->new_rate); 1948 if (ret & NOTIFY_STOP_MASK) 1949 fail_clk = core; 1950 } 1951 1952 hlist_for_each_entry(child, &core->children, child_node) { 1953 /* Skip children who will be reparented to another clock */ 1954 if (child->new_parent && child->new_parent != core) 1955 continue; 1956 tmp_clk = clk_propagate_rate_change(child, event); 1957 if (tmp_clk) 1958 fail_clk = tmp_clk; 1959 } 1960 1961 /* handle the new child who might not be in core->children yet */ 1962 if (core->new_child) { 1963 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1964 if (tmp_clk) 1965 fail_clk = tmp_clk; 1966 } 1967 1968 return fail_clk; 1969 } 1970 1971 /* 1972 * walk down a subtree and set the new rates notifying the rate 1973 * change on the way 1974 */ 1975 static void clk_change_rate(struct clk_core *core) 1976 { 1977 struct clk_core *child; 1978 struct hlist_node *tmp; 1979 unsigned long old_rate; 1980 unsigned long best_parent_rate = 0; 1981 bool skip_set_rate = false; 1982 struct clk_core *old_parent; 1983 struct clk_core *parent = NULL; 1984 1985 old_rate = core->rate; 1986 1987 if (core->new_parent) { 1988 parent = core->new_parent; 1989 best_parent_rate = core->new_parent->rate; 1990 } else if (core->parent) { 1991 parent = core->parent; 1992 best_parent_rate = core->parent->rate; 1993 } 1994 1995 if (clk_pm_runtime_get(core)) 1996 return; 1997 1998 if (core->flags & CLK_SET_RATE_UNGATE) { 1999 unsigned long flags; 2000 2001 clk_core_prepare(core); 2002 flags = clk_enable_lock(); 2003 clk_core_enable(core); 2004 clk_enable_unlock(flags); 2005 } 2006 2007 if (core->new_parent && core->new_parent != core->parent) { 2008 old_parent = __clk_set_parent_before(core, core->new_parent); 2009 trace_clk_set_parent(core, core->new_parent); 2010 2011 if (core->ops->set_rate_and_parent) { 2012 skip_set_rate = true; 2013 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2014 best_parent_rate, 2015 core->new_parent_index); 2016 } else if (core->ops->set_parent) { 2017 core->ops->set_parent(core->hw, core->new_parent_index); 2018 } 2019 2020 trace_clk_set_parent_complete(core, core->new_parent); 2021 __clk_set_parent_after(core, core->new_parent, old_parent); 2022 } 2023 2024 if (core->flags & CLK_OPS_PARENT_ENABLE) 2025 clk_core_prepare_enable(parent); 2026 2027 trace_clk_set_rate(core, core->new_rate); 2028 2029 if (!skip_set_rate && core->ops->set_rate) 2030 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2031 2032 trace_clk_set_rate_complete(core, core->new_rate); 2033 2034 core->rate = clk_recalc(core, best_parent_rate); 2035 2036 if (core->flags & CLK_SET_RATE_UNGATE) { 2037 unsigned long flags; 2038 2039 flags = clk_enable_lock(); 2040 clk_core_disable(core); 2041 clk_enable_unlock(flags); 2042 clk_core_unprepare(core); 2043 } 2044 2045 if (core->flags & CLK_OPS_PARENT_ENABLE) 2046 clk_core_disable_unprepare(parent); 2047 2048 if (core->notifier_count && old_rate != core->rate) 2049 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2050 2051 if (core->flags & CLK_RECALC_NEW_RATES) 2052 (void)clk_calc_new_rates(core, core->new_rate); 2053 2054 /* 2055 * Use safe iteration, as change_rate can actually swap parents 2056 * for certain clock types. 2057 */ 2058 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2059 /* Skip children who will be reparented to another clock */ 2060 if (child->new_parent && child->new_parent != core) 2061 continue; 2062 clk_change_rate(child); 2063 } 2064 2065 /* handle the new child who might not be in core->children yet */ 2066 if (core->new_child) 2067 clk_change_rate(core->new_child); 2068 2069 clk_pm_runtime_put(core); 2070 } 2071 2072 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2073 unsigned long req_rate) 2074 { 2075 int ret, cnt; 2076 struct clk_rate_request req; 2077 2078 lockdep_assert_held(&prepare_lock); 2079 2080 if (!core) 2081 return 0; 2082 2083 /* simulate what the rate would be if it could be freely set */ 2084 cnt = clk_core_rate_nuke_protect(core); 2085 if (cnt < 0) 2086 return cnt; 2087 2088 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2089 req.rate = req_rate; 2090 2091 ret = clk_core_round_rate_nolock(core, &req); 2092 2093 /* restore the protection */ 2094 clk_core_rate_restore_protect(core, cnt); 2095 2096 return ret ? 0 : req.rate; 2097 } 2098 2099 static int clk_core_set_rate_nolock(struct clk_core *core, 2100 unsigned long req_rate) 2101 { 2102 struct clk_core *top, *fail_clk; 2103 unsigned long rate; 2104 int ret = 0; 2105 2106 if (!core) 2107 return 0; 2108 2109 rate = clk_core_req_round_rate_nolock(core, req_rate); 2110 2111 /* bail early if nothing to do */ 2112 if (rate == clk_core_get_rate_nolock(core)) 2113 return 0; 2114 2115 /* fail on a direct rate set of a protected provider */ 2116 if (clk_core_rate_is_protected(core)) 2117 return -EBUSY; 2118 2119 /* calculate new rates and get the topmost changed clock */ 2120 top = clk_calc_new_rates(core, req_rate); 2121 if (!top) 2122 return -EINVAL; 2123 2124 ret = clk_pm_runtime_get(core); 2125 if (ret) 2126 return ret; 2127 2128 /* notify that we are about to change rates */ 2129 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2130 if (fail_clk) { 2131 pr_debug("%s: failed to set %s rate\n", __func__, 2132 fail_clk->name); 2133 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2134 ret = -EBUSY; 2135 goto err; 2136 } 2137 2138 /* change the rates */ 2139 clk_change_rate(top); 2140 2141 core->req_rate = req_rate; 2142 err: 2143 clk_pm_runtime_put(core); 2144 2145 return ret; 2146 } 2147 2148 /** 2149 * clk_set_rate - specify a new rate for clk 2150 * @clk: the clk whose rate is being changed 2151 * @rate: the new rate for clk 2152 * 2153 * In the simplest case clk_set_rate will only adjust the rate of clk. 2154 * 2155 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2156 * propagate up to clk's parent; whether or not this happens depends on the 2157 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2158 * after calling .round_rate then upstream parent propagation is ignored. If 2159 * *parent_rate comes back with a new rate for clk's parent then we propagate 2160 * up to clk's parent and set its rate. Upward propagation will continue 2161 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2162 * .round_rate stops requesting changes to clk's parent_rate. 2163 * 2164 * Rate changes are accomplished via tree traversal that also recalculates the 2165 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2166 * 2167 * Returns 0 on success, -EERROR otherwise. 2168 */ 2169 int clk_set_rate(struct clk *clk, unsigned long rate) 2170 { 2171 int ret; 2172 2173 if (!clk) 2174 return 0; 2175 2176 /* prevent racing with updates to the clock topology */ 2177 clk_prepare_lock(); 2178 2179 if (clk->exclusive_count) 2180 clk_core_rate_unprotect(clk->core); 2181 2182 ret = clk_core_set_rate_nolock(clk->core, rate); 2183 2184 if (clk->exclusive_count) 2185 clk_core_rate_protect(clk->core); 2186 2187 clk_prepare_unlock(); 2188 2189 return ret; 2190 } 2191 EXPORT_SYMBOL_GPL(clk_set_rate); 2192 2193 /** 2194 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2195 * @clk: the clk whose rate is being changed 2196 * @rate: the new rate for clk 2197 * 2198 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2199 * within a critical section 2200 * 2201 * This can be used initially to ensure that at least 1 consumer is 2202 * satisfied when several consumers are competing for exclusivity over the 2203 * same clock provider. 2204 * 2205 * The exclusivity is not applied if setting the rate failed. 2206 * 2207 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2208 * clk_rate_exclusive_put(). 2209 * 2210 * Returns 0 on success, -EERROR otherwise. 2211 */ 2212 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2213 { 2214 int ret; 2215 2216 if (!clk) 2217 return 0; 2218 2219 /* prevent racing with updates to the clock topology */ 2220 clk_prepare_lock(); 2221 2222 /* 2223 * The temporary protection removal is not here, on purpose 2224 * This function is meant to be used instead of clk_rate_protect, 2225 * so before the consumer code path protect the clock provider 2226 */ 2227 2228 ret = clk_core_set_rate_nolock(clk->core, rate); 2229 if (!ret) { 2230 clk_core_rate_protect(clk->core); 2231 clk->exclusive_count++; 2232 } 2233 2234 clk_prepare_unlock(); 2235 2236 return ret; 2237 } 2238 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2239 2240 /** 2241 * clk_set_rate_range - set a rate range for a clock source 2242 * @clk: clock source 2243 * @min: desired minimum clock rate in Hz, inclusive 2244 * @max: desired maximum clock rate in Hz, inclusive 2245 * 2246 * Returns success (0) or negative errno. 2247 */ 2248 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2249 { 2250 int ret = 0; 2251 unsigned long old_min, old_max, rate; 2252 2253 if (!clk) 2254 return 0; 2255 2256 if (min > max) { 2257 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2258 __func__, clk->core->name, clk->dev_id, clk->con_id, 2259 min, max); 2260 return -EINVAL; 2261 } 2262 2263 clk_prepare_lock(); 2264 2265 if (clk->exclusive_count) 2266 clk_core_rate_unprotect(clk->core); 2267 2268 /* Save the current values in case we need to rollback the change */ 2269 old_min = clk->min_rate; 2270 old_max = clk->max_rate; 2271 clk->min_rate = min; 2272 clk->max_rate = max; 2273 2274 rate = clk_core_get_rate_nolock(clk->core); 2275 if (rate < min || rate > max) { 2276 /* 2277 * FIXME: 2278 * We are in bit of trouble here, current rate is outside the 2279 * the requested range. We are going try to request appropriate 2280 * range boundary but there is a catch. It may fail for the 2281 * usual reason (clock broken, clock protected, etc) but also 2282 * because: 2283 * - round_rate() was not favorable and fell on the wrong 2284 * side of the boundary 2285 * - the determine_rate() callback does not really check for 2286 * this corner case when determining the rate 2287 */ 2288 2289 if (rate < min) 2290 rate = min; 2291 else 2292 rate = max; 2293 2294 ret = clk_core_set_rate_nolock(clk->core, rate); 2295 if (ret) { 2296 /* rollback the changes */ 2297 clk->min_rate = old_min; 2298 clk->max_rate = old_max; 2299 } 2300 } 2301 2302 if (clk->exclusive_count) 2303 clk_core_rate_protect(clk->core); 2304 2305 clk_prepare_unlock(); 2306 2307 return ret; 2308 } 2309 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2310 2311 /** 2312 * clk_set_min_rate - set a minimum clock rate for a clock source 2313 * @clk: clock source 2314 * @rate: desired minimum clock rate in Hz, inclusive 2315 * 2316 * Returns success (0) or negative errno. 2317 */ 2318 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2319 { 2320 if (!clk) 2321 return 0; 2322 2323 return clk_set_rate_range(clk, rate, clk->max_rate); 2324 } 2325 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2326 2327 /** 2328 * clk_set_max_rate - set a maximum clock rate for a clock source 2329 * @clk: clock source 2330 * @rate: desired maximum clock rate in Hz, inclusive 2331 * 2332 * Returns success (0) or negative errno. 2333 */ 2334 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2335 { 2336 if (!clk) 2337 return 0; 2338 2339 return clk_set_rate_range(clk, clk->min_rate, rate); 2340 } 2341 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2342 2343 /** 2344 * clk_get_parent - return the parent of a clk 2345 * @clk: the clk whose parent gets returned 2346 * 2347 * Simply returns clk->parent. Returns NULL if clk is NULL. 2348 */ 2349 struct clk *clk_get_parent(struct clk *clk) 2350 { 2351 struct clk *parent; 2352 2353 if (!clk) 2354 return NULL; 2355 2356 clk_prepare_lock(); 2357 /* TODO: Create a per-user clk and change callers to call clk_put */ 2358 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2359 clk_prepare_unlock(); 2360 2361 return parent; 2362 } 2363 EXPORT_SYMBOL_GPL(clk_get_parent); 2364 2365 static struct clk_core *__clk_init_parent(struct clk_core *core) 2366 { 2367 u8 index = 0; 2368 2369 if (core->num_parents > 1 && core->ops->get_parent) 2370 index = core->ops->get_parent(core->hw); 2371 2372 return clk_core_get_parent_by_index(core, index); 2373 } 2374 2375 static void clk_core_reparent(struct clk_core *core, 2376 struct clk_core *new_parent) 2377 { 2378 clk_reparent(core, new_parent); 2379 __clk_recalc_accuracies(core); 2380 __clk_recalc_rates(core, POST_RATE_CHANGE); 2381 } 2382 2383 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2384 { 2385 if (!hw) 2386 return; 2387 2388 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2389 } 2390 2391 /** 2392 * clk_has_parent - check if a clock is a possible parent for another 2393 * @clk: clock source 2394 * @parent: parent clock source 2395 * 2396 * This function can be used in drivers that need to check that a clock can be 2397 * the parent of another without actually changing the parent. 2398 * 2399 * Returns true if @parent is a possible parent for @clk, false otherwise. 2400 */ 2401 bool clk_has_parent(struct clk *clk, struct clk *parent) 2402 { 2403 struct clk_core *core, *parent_core; 2404 int i; 2405 2406 /* NULL clocks should be nops, so return success if either is NULL. */ 2407 if (!clk || !parent) 2408 return true; 2409 2410 core = clk->core; 2411 parent_core = parent->core; 2412 2413 /* Optimize for the case where the parent is already the parent. */ 2414 if (core->parent == parent_core) 2415 return true; 2416 2417 for (i = 0; i < core->num_parents; i++) 2418 if (!strcmp(core->parents[i].name, parent_core->name)) 2419 return true; 2420 2421 return false; 2422 } 2423 EXPORT_SYMBOL_GPL(clk_has_parent); 2424 2425 static int clk_core_set_parent_nolock(struct clk_core *core, 2426 struct clk_core *parent) 2427 { 2428 int ret = 0; 2429 int p_index = 0; 2430 unsigned long p_rate = 0; 2431 2432 lockdep_assert_held(&prepare_lock); 2433 2434 if (!core) 2435 return 0; 2436 2437 if (core->parent == parent) 2438 return 0; 2439 2440 /* verify ops for for multi-parent clks */ 2441 if (core->num_parents > 1 && !core->ops->set_parent) 2442 return -EPERM; 2443 2444 /* check that we are allowed to re-parent if the clock is in use */ 2445 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2446 return -EBUSY; 2447 2448 if (clk_core_rate_is_protected(core)) 2449 return -EBUSY; 2450 2451 /* try finding the new parent index */ 2452 if (parent) { 2453 p_index = clk_fetch_parent_index(core, parent); 2454 if (p_index < 0) { 2455 pr_debug("%s: clk %s can not be parent of clk %s\n", 2456 __func__, parent->name, core->name); 2457 return p_index; 2458 } 2459 p_rate = parent->rate; 2460 } 2461 2462 ret = clk_pm_runtime_get(core); 2463 if (ret) 2464 return ret; 2465 2466 /* propagate PRE_RATE_CHANGE notifications */ 2467 ret = __clk_speculate_rates(core, p_rate); 2468 2469 /* abort if a driver objects */ 2470 if (ret & NOTIFY_STOP_MASK) 2471 goto runtime_put; 2472 2473 /* do the re-parent */ 2474 ret = __clk_set_parent(core, parent, p_index); 2475 2476 /* propagate rate an accuracy recalculation accordingly */ 2477 if (ret) { 2478 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2479 } else { 2480 __clk_recalc_rates(core, POST_RATE_CHANGE); 2481 __clk_recalc_accuracies(core); 2482 } 2483 2484 runtime_put: 2485 clk_pm_runtime_put(core); 2486 2487 return ret; 2488 } 2489 2490 /** 2491 * clk_set_parent - switch the parent of a mux clk 2492 * @clk: the mux clk whose input we are switching 2493 * @parent: the new input to clk 2494 * 2495 * Re-parent clk to use parent as its new input source. If clk is in 2496 * prepared state, the clk will get enabled for the duration of this call. If 2497 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2498 * that, the reparenting is glitchy in hardware, etc), use the 2499 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2500 * 2501 * After successfully changing clk's parent clk_set_parent will update the 2502 * clk topology, sysfs topology and propagate rate recalculation via 2503 * __clk_recalc_rates. 2504 * 2505 * Returns 0 on success, -EERROR otherwise. 2506 */ 2507 int clk_set_parent(struct clk *clk, struct clk *parent) 2508 { 2509 int ret; 2510 2511 if (!clk) 2512 return 0; 2513 2514 clk_prepare_lock(); 2515 2516 if (clk->exclusive_count) 2517 clk_core_rate_unprotect(clk->core); 2518 2519 ret = clk_core_set_parent_nolock(clk->core, 2520 parent ? parent->core : NULL); 2521 2522 if (clk->exclusive_count) 2523 clk_core_rate_protect(clk->core); 2524 2525 clk_prepare_unlock(); 2526 2527 return ret; 2528 } 2529 EXPORT_SYMBOL_GPL(clk_set_parent); 2530 2531 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2532 { 2533 int ret = -EINVAL; 2534 2535 lockdep_assert_held(&prepare_lock); 2536 2537 if (!core) 2538 return 0; 2539 2540 if (clk_core_rate_is_protected(core)) 2541 return -EBUSY; 2542 2543 trace_clk_set_phase(core, degrees); 2544 2545 if (core->ops->set_phase) { 2546 ret = core->ops->set_phase(core->hw, degrees); 2547 if (!ret) 2548 core->phase = degrees; 2549 } 2550 2551 trace_clk_set_phase_complete(core, degrees); 2552 2553 return ret; 2554 } 2555 2556 /** 2557 * clk_set_phase - adjust the phase shift of a clock signal 2558 * @clk: clock signal source 2559 * @degrees: number of degrees the signal is shifted 2560 * 2561 * Shifts the phase of a clock signal by the specified 2562 * degrees. Returns 0 on success, -EERROR otherwise. 2563 * 2564 * This function makes no distinction about the input or reference 2565 * signal that we adjust the clock signal phase against. For example 2566 * phase locked-loop clock signal generators we may shift phase with 2567 * respect to feedback clock signal input, but for other cases the 2568 * clock phase may be shifted with respect to some other, unspecified 2569 * signal. 2570 * 2571 * Additionally the concept of phase shift does not propagate through 2572 * the clock tree hierarchy, which sets it apart from clock rates and 2573 * clock accuracy. A parent clock phase attribute does not have an 2574 * impact on the phase attribute of a child clock. 2575 */ 2576 int clk_set_phase(struct clk *clk, int degrees) 2577 { 2578 int ret; 2579 2580 if (!clk) 2581 return 0; 2582 2583 /* sanity check degrees */ 2584 degrees %= 360; 2585 if (degrees < 0) 2586 degrees += 360; 2587 2588 clk_prepare_lock(); 2589 2590 if (clk->exclusive_count) 2591 clk_core_rate_unprotect(clk->core); 2592 2593 ret = clk_core_set_phase_nolock(clk->core, degrees); 2594 2595 if (clk->exclusive_count) 2596 clk_core_rate_protect(clk->core); 2597 2598 clk_prepare_unlock(); 2599 2600 return ret; 2601 } 2602 EXPORT_SYMBOL_GPL(clk_set_phase); 2603 2604 static int clk_core_get_phase(struct clk_core *core) 2605 { 2606 int ret; 2607 2608 clk_prepare_lock(); 2609 /* Always try to update cached phase if possible */ 2610 if (core->ops->get_phase) 2611 core->phase = core->ops->get_phase(core->hw); 2612 ret = core->phase; 2613 clk_prepare_unlock(); 2614 2615 return ret; 2616 } 2617 2618 /** 2619 * clk_get_phase - return the phase shift of a clock signal 2620 * @clk: clock signal source 2621 * 2622 * Returns the phase shift of a clock node in degrees, otherwise returns 2623 * -EERROR. 2624 */ 2625 int clk_get_phase(struct clk *clk) 2626 { 2627 if (!clk) 2628 return 0; 2629 2630 return clk_core_get_phase(clk->core); 2631 } 2632 EXPORT_SYMBOL_GPL(clk_get_phase); 2633 2634 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2635 { 2636 /* Assume a default value of 50% */ 2637 core->duty.num = 1; 2638 core->duty.den = 2; 2639 } 2640 2641 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2642 2643 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2644 { 2645 struct clk_duty *duty = &core->duty; 2646 int ret = 0; 2647 2648 if (!core->ops->get_duty_cycle) 2649 return clk_core_update_duty_cycle_parent_nolock(core); 2650 2651 ret = core->ops->get_duty_cycle(core->hw, duty); 2652 if (ret) 2653 goto reset; 2654 2655 /* Don't trust the clock provider too much */ 2656 if (duty->den == 0 || duty->num > duty->den) { 2657 ret = -EINVAL; 2658 goto reset; 2659 } 2660 2661 return 0; 2662 2663 reset: 2664 clk_core_reset_duty_cycle_nolock(core); 2665 return ret; 2666 } 2667 2668 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2669 { 2670 int ret = 0; 2671 2672 if (core->parent && 2673 core->flags & CLK_DUTY_CYCLE_PARENT) { 2674 ret = clk_core_update_duty_cycle_nolock(core->parent); 2675 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2676 } else { 2677 clk_core_reset_duty_cycle_nolock(core); 2678 } 2679 2680 return ret; 2681 } 2682 2683 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2684 struct clk_duty *duty); 2685 2686 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2687 struct clk_duty *duty) 2688 { 2689 int ret; 2690 2691 lockdep_assert_held(&prepare_lock); 2692 2693 if (clk_core_rate_is_protected(core)) 2694 return -EBUSY; 2695 2696 trace_clk_set_duty_cycle(core, duty); 2697 2698 if (!core->ops->set_duty_cycle) 2699 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2700 2701 ret = core->ops->set_duty_cycle(core->hw, duty); 2702 if (!ret) 2703 memcpy(&core->duty, duty, sizeof(*duty)); 2704 2705 trace_clk_set_duty_cycle_complete(core, duty); 2706 2707 return ret; 2708 } 2709 2710 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2711 struct clk_duty *duty) 2712 { 2713 int ret = 0; 2714 2715 if (core->parent && 2716 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2717 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2718 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2719 } 2720 2721 return ret; 2722 } 2723 2724 /** 2725 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2726 * @clk: clock signal source 2727 * @num: numerator of the duty cycle ratio to be applied 2728 * @den: denominator of the duty cycle ratio to be applied 2729 * 2730 * Apply the duty cycle ratio if the ratio is valid and the clock can 2731 * perform this operation 2732 * 2733 * Returns (0) on success, a negative errno otherwise. 2734 */ 2735 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2736 { 2737 int ret; 2738 struct clk_duty duty; 2739 2740 if (!clk) 2741 return 0; 2742 2743 /* sanity check the ratio */ 2744 if (den == 0 || num > den) 2745 return -EINVAL; 2746 2747 duty.num = num; 2748 duty.den = den; 2749 2750 clk_prepare_lock(); 2751 2752 if (clk->exclusive_count) 2753 clk_core_rate_unprotect(clk->core); 2754 2755 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2756 2757 if (clk->exclusive_count) 2758 clk_core_rate_protect(clk->core); 2759 2760 clk_prepare_unlock(); 2761 2762 return ret; 2763 } 2764 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2765 2766 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2767 unsigned int scale) 2768 { 2769 struct clk_duty *duty = &core->duty; 2770 int ret; 2771 2772 clk_prepare_lock(); 2773 2774 ret = clk_core_update_duty_cycle_nolock(core); 2775 if (!ret) 2776 ret = mult_frac(scale, duty->num, duty->den); 2777 2778 clk_prepare_unlock(); 2779 2780 return ret; 2781 } 2782 2783 /** 2784 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2785 * @clk: clock signal source 2786 * @scale: scaling factor to be applied to represent the ratio as an integer 2787 * 2788 * Returns the duty cycle ratio of a clock node multiplied by the provided 2789 * scaling factor, or negative errno on error. 2790 */ 2791 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2792 { 2793 if (!clk) 2794 return 0; 2795 2796 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2797 } 2798 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2799 2800 /** 2801 * clk_is_match - check if two clk's point to the same hardware clock 2802 * @p: clk compared against q 2803 * @q: clk compared against p 2804 * 2805 * Returns true if the two struct clk pointers both point to the same hardware 2806 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2807 * share the same struct clk_core object. 2808 * 2809 * Returns false otherwise. Note that two NULL clks are treated as matching. 2810 */ 2811 bool clk_is_match(const struct clk *p, const struct clk *q) 2812 { 2813 /* trivial case: identical struct clk's or both NULL */ 2814 if (p == q) 2815 return true; 2816 2817 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2818 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2819 if (p->core == q->core) 2820 return true; 2821 2822 return false; 2823 } 2824 EXPORT_SYMBOL_GPL(clk_is_match); 2825 2826 /*** debugfs support ***/ 2827 2828 #ifdef CONFIG_DEBUG_FS 2829 #include <linux/debugfs.h> 2830 2831 static struct dentry *rootdir; 2832 static int inited = 0; 2833 static DEFINE_MUTEX(clk_debug_lock); 2834 static HLIST_HEAD(clk_debug_list); 2835 2836 static struct hlist_head *all_lists[] = { 2837 &clk_root_list, 2838 &clk_orphan_list, 2839 NULL, 2840 }; 2841 2842 static struct hlist_head *orphan_list[] = { 2843 &clk_orphan_list, 2844 NULL, 2845 }; 2846 2847 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2848 int level) 2849 { 2850 if (!c) 2851 return; 2852 2853 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n", 2854 level * 3 + 1, "", 2855 30 - level * 3, c->name, 2856 c->enable_count, c->prepare_count, c->protect_count, 2857 clk_core_get_rate(c), clk_core_get_accuracy(c), 2858 clk_core_get_phase(c), 2859 clk_core_get_scaled_duty_cycle(c, 100000)); 2860 } 2861 2862 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2863 int level) 2864 { 2865 struct clk_core *child; 2866 2867 if (!c) 2868 return; 2869 2870 clk_summary_show_one(s, c, level); 2871 2872 hlist_for_each_entry(child, &c->children, child_node) 2873 clk_summary_show_subtree(s, child, level + 1); 2874 } 2875 2876 static int clk_summary_show(struct seq_file *s, void *data) 2877 { 2878 struct clk_core *c; 2879 struct hlist_head **lists = (struct hlist_head **)s->private; 2880 2881 seq_puts(s, " enable prepare protect duty\n"); 2882 seq_puts(s, " clock count count count rate accuracy phase cycle\n"); 2883 seq_puts(s, "---------------------------------------------------------------------------------------------\n"); 2884 2885 clk_prepare_lock(); 2886 2887 for (; *lists; lists++) 2888 hlist_for_each_entry(c, *lists, child_node) 2889 clk_summary_show_subtree(s, c, 0); 2890 2891 clk_prepare_unlock(); 2892 2893 return 0; 2894 } 2895 DEFINE_SHOW_ATTRIBUTE(clk_summary); 2896 2897 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2898 { 2899 if (!c) 2900 return; 2901 2902 /* This should be JSON format, i.e. elements separated with a comma */ 2903 seq_printf(s, "\"%s\": { ", c->name); 2904 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2905 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2906 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2907 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2908 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2909 seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c)); 2910 seq_printf(s, "\"duty_cycle\": %u", 2911 clk_core_get_scaled_duty_cycle(c, 100000)); 2912 } 2913 2914 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2915 { 2916 struct clk_core *child; 2917 2918 if (!c) 2919 return; 2920 2921 clk_dump_one(s, c, level); 2922 2923 hlist_for_each_entry(child, &c->children, child_node) { 2924 seq_putc(s, ','); 2925 clk_dump_subtree(s, child, level + 1); 2926 } 2927 2928 seq_putc(s, '}'); 2929 } 2930 2931 static int clk_dump_show(struct seq_file *s, void *data) 2932 { 2933 struct clk_core *c; 2934 bool first_node = true; 2935 struct hlist_head **lists = (struct hlist_head **)s->private; 2936 2937 seq_putc(s, '{'); 2938 clk_prepare_lock(); 2939 2940 for (; *lists; lists++) { 2941 hlist_for_each_entry(c, *lists, child_node) { 2942 if (!first_node) 2943 seq_putc(s, ','); 2944 first_node = false; 2945 clk_dump_subtree(s, c, 0); 2946 } 2947 } 2948 2949 clk_prepare_unlock(); 2950 2951 seq_puts(s, "}\n"); 2952 return 0; 2953 } 2954 DEFINE_SHOW_ATTRIBUTE(clk_dump); 2955 2956 static const struct { 2957 unsigned long flag; 2958 const char *name; 2959 } clk_flags[] = { 2960 #define ENTRY(f) { f, #f } 2961 ENTRY(CLK_SET_RATE_GATE), 2962 ENTRY(CLK_SET_PARENT_GATE), 2963 ENTRY(CLK_SET_RATE_PARENT), 2964 ENTRY(CLK_IGNORE_UNUSED), 2965 ENTRY(CLK_GET_RATE_NOCACHE), 2966 ENTRY(CLK_SET_RATE_NO_REPARENT), 2967 ENTRY(CLK_GET_ACCURACY_NOCACHE), 2968 ENTRY(CLK_RECALC_NEW_RATES), 2969 ENTRY(CLK_SET_RATE_UNGATE), 2970 ENTRY(CLK_IS_CRITICAL), 2971 ENTRY(CLK_OPS_PARENT_ENABLE), 2972 ENTRY(CLK_DUTY_CYCLE_PARENT), 2973 #undef ENTRY 2974 }; 2975 2976 static int clk_flags_show(struct seq_file *s, void *data) 2977 { 2978 struct clk_core *core = s->private; 2979 unsigned long flags = core->flags; 2980 unsigned int i; 2981 2982 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 2983 if (flags & clk_flags[i].flag) { 2984 seq_printf(s, "%s\n", clk_flags[i].name); 2985 flags &= ~clk_flags[i].flag; 2986 } 2987 } 2988 if (flags) { 2989 /* Unknown flags */ 2990 seq_printf(s, "0x%lx\n", flags); 2991 } 2992 2993 return 0; 2994 } 2995 DEFINE_SHOW_ATTRIBUTE(clk_flags); 2996 2997 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 2998 unsigned int i, char terminator) 2999 { 3000 struct clk_core *parent; 3001 3002 /* 3003 * Go through the following options to fetch a parent's name. 3004 * 3005 * 1. Fetch the registered parent clock and use its name 3006 * 2. Use the global (fallback) name if specified 3007 * 3. Use the local fw_name if provided 3008 * 4. Fetch parent clock's clock-output-name if DT index was set 3009 * 3010 * This may still fail in some cases, such as when the parent is 3011 * specified directly via a struct clk_hw pointer, but it isn't 3012 * registered (yet). 3013 */ 3014 parent = clk_core_get_parent_by_index(core, i); 3015 if (parent) 3016 seq_printf(s, "%s", parent->name); 3017 else if (core->parents[i].name) 3018 seq_printf(s, "%s", core->parents[i].name); 3019 else if (core->parents[i].fw_name) 3020 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3021 else if (core->parents[i].index >= 0) 3022 seq_printf(s, "%s", 3023 of_clk_get_parent_name(core->of_node, 3024 core->parents[i].index)); 3025 else 3026 seq_puts(s, "(missing)"); 3027 3028 seq_putc(s, terminator); 3029 } 3030 3031 static int possible_parents_show(struct seq_file *s, void *data) 3032 { 3033 struct clk_core *core = s->private; 3034 int i; 3035 3036 for (i = 0; i < core->num_parents - 1; i++) 3037 possible_parent_show(s, core, i, ' '); 3038 3039 possible_parent_show(s, core, i, '\n'); 3040 3041 return 0; 3042 } 3043 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3044 3045 static int current_parent_show(struct seq_file *s, void *data) 3046 { 3047 struct clk_core *core = s->private; 3048 3049 if (core->parent) 3050 seq_printf(s, "%s\n", core->parent->name); 3051 3052 return 0; 3053 } 3054 DEFINE_SHOW_ATTRIBUTE(current_parent); 3055 3056 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3057 { 3058 struct clk_core *core = s->private; 3059 struct clk_duty *duty = &core->duty; 3060 3061 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3062 3063 return 0; 3064 } 3065 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3066 3067 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3068 { 3069 struct dentry *root; 3070 3071 if (!core || !pdentry) 3072 return; 3073 3074 root = debugfs_create_dir(core->name, pdentry); 3075 core->dentry = root; 3076 3077 debugfs_create_ulong("clk_rate", 0444, root, &core->rate); 3078 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3079 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3080 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3081 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3082 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3083 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3084 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3085 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3086 &clk_duty_cycle_fops); 3087 3088 if (core->num_parents > 0) 3089 debugfs_create_file("clk_parent", 0444, root, core, 3090 ¤t_parent_fops); 3091 3092 if (core->num_parents > 1) 3093 debugfs_create_file("clk_possible_parents", 0444, root, core, 3094 &possible_parents_fops); 3095 3096 if (core->ops->debug_init) 3097 core->ops->debug_init(core->hw, core->dentry); 3098 } 3099 3100 /** 3101 * clk_debug_register - add a clk node to the debugfs clk directory 3102 * @core: the clk being added to the debugfs clk directory 3103 * 3104 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3105 * initialized. Otherwise it bails out early since the debugfs clk directory 3106 * will be created lazily by clk_debug_init as part of a late_initcall. 3107 */ 3108 static void clk_debug_register(struct clk_core *core) 3109 { 3110 mutex_lock(&clk_debug_lock); 3111 hlist_add_head(&core->debug_node, &clk_debug_list); 3112 if (inited) 3113 clk_debug_create_one(core, rootdir); 3114 mutex_unlock(&clk_debug_lock); 3115 } 3116 3117 /** 3118 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3119 * @core: the clk being removed from the debugfs clk directory 3120 * 3121 * Dynamically removes a clk and all its child nodes from the 3122 * debugfs clk directory if clk->dentry points to debugfs created by 3123 * clk_debug_register in __clk_core_init. 3124 */ 3125 static void clk_debug_unregister(struct clk_core *core) 3126 { 3127 mutex_lock(&clk_debug_lock); 3128 hlist_del_init(&core->debug_node); 3129 debugfs_remove_recursive(core->dentry); 3130 core->dentry = NULL; 3131 mutex_unlock(&clk_debug_lock); 3132 } 3133 3134 /** 3135 * clk_debug_init - lazily populate the debugfs clk directory 3136 * 3137 * clks are often initialized very early during boot before memory can be 3138 * dynamically allocated and well before debugfs is setup. This function 3139 * populates the debugfs clk directory once at boot-time when we know that 3140 * debugfs is setup. It should only be called once at boot-time, all other clks 3141 * added dynamically will be done so with clk_debug_register. 3142 */ 3143 static int __init clk_debug_init(void) 3144 { 3145 struct clk_core *core; 3146 3147 rootdir = debugfs_create_dir("clk", NULL); 3148 3149 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3150 &clk_summary_fops); 3151 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3152 &clk_dump_fops); 3153 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3154 &clk_summary_fops); 3155 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3156 &clk_dump_fops); 3157 3158 mutex_lock(&clk_debug_lock); 3159 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3160 clk_debug_create_one(core, rootdir); 3161 3162 inited = 1; 3163 mutex_unlock(&clk_debug_lock); 3164 3165 return 0; 3166 } 3167 late_initcall(clk_debug_init); 3168 #else 3169 static inline void clk_debug_register(struct clk_core *core) { } 3170 static inline void clk_debug_reparent(struct clk_core *core, 3171 struct clk_core *new_parent) 3172 { 3173 } 3174 static inline void clk_debug_unregister(struct clk_core *core) 3175 { 3176 } 3177 #endif 3178 3179 /** 3180 * __clk_core_init - initialize the data structures in a struct clk_core 3181 * @core: clk_core being initialized 3182 * 3183 * Initializes the lists in struct clk_core, queries the hardware for the 3184 * parent and rate and sets them both. 3185 */ 3186 static int __clk_core_init(struct clk_core *core) 3187 { 3188 int ret; 3189 struct clk_core *orphan; 3190 struct hlist_node *tmp2; 3191 unsigned long rate; 3192 3193 if (!core) 3194 return -EINVAL; 3195 3196 clk_prepare_lock(); 3197 3198 ret = clk_pm_runtime_get(core); 3199 if (ret) 3200 goto unlock; 3201 3202 /* check to see if a clock with this name is already registered */ 3203 if (clk_core_lookup(core->name)) { 3204 pr_debug("%s: clk %s already initialized\n", 3205 __func__, core->name); 3206 ret = -EEXIST; 3207 goto out; 3208 } 3209 3210 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3211 if (core->ops->set_rate && 3212 !((core->ops->round_rate || core->ops->determine_rate) && 3213 core->ops->recalc_rate)) { 3214 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3215 __func__, core->name); 3216 ret = -EINVAL; 3217 goto out; 3218 } 3219 3220 if (core->ops->set_parent && !core->ops->get_parent) { 3221 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3222 __func__, core->name); 3223 ret = -EINVAL; 3224 goto out; 3225 } 3226 3227 if (core->num_parents > 1 && !core->ops->get_parent) { 3228 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3229 __func__, core->name); 3230 ret = -EINVAL; 3231 goto out; 3232 } 3233 3234 if (core->ops->set_rate_and_parent && 3235 !(core->ops->set_parent && core->ops->set_rate)) { 3236 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3237 __func__, core->name); 3238 ret = -EINVAL; 3239 goto out; 3240 } 3241 3242 core->parent = __clk_init_parent(core); 3243 3244 /* 3245 * Populate core->parent if parent has already been clk_core_init'd. If 3246 * parent has not yet been clk_core_init'd then place clk in the orphan 3247 * list. If clk doesn't have any parents then place it in the root 3248 * clk list. 3249 * 3250 * Every time a new clk is clk_init'd then we walk the list of orphan 3251 * clocks and re-parent any that are children of the clock currently 3252 * being clk_init'd. 3253 */ 3254 if (core->parent) { 3255 hlist_add_head(&core->child_node, 3256 &core->parent->children); 3257 core->orphan = core->parent->orphan; 3258 } else if (!core->num_parents) { 3259 hlist_add_head(&core->child_node, &clk_root_list); 3260 core->orphan = false; 3261 } else { 3262 hlist_add_head(&core->child_node, &clk_orphan_list); 3263 core->orphan = true; 3264 } 3265 3266 /* 3267 * optional platform-specific magic 3268 * 3269 * The .init callback is not used by any of the basic clock types, but 3270 * exists for weird hardware that must perform initialization magic. 3271 * Please consider other ways of solving initialization problems before 3272 * using this callback, as its use is discouraged. 3273 */ 3274 if (core->ops->init) 3275 core->ops->init(core->hw); 3276 3277 /* 3278 * Set clk's accuracy. The preferred method is to use 3279 * .recalc_accuracy. For simple clocks and lazy developers the default 3280 * fallback is to use the parent's accuracy. If a clock doesn't have a 3281 * parent (or is orphaned) then accuracy is set to zero (perfect 3282 * clock). 3283 */ 3284 if (core->ops->recalc_accuracy) 3285 core->accuracy = core->ops->recalc_accuracy(core->hw, 3286 __clk_get_accuracy(core->parent)); 3287 else if (core->parent) 3288 core->accuracy = core->parent->accuracy; 3289 else 3290 core->accuracy = 0; 3291 3292 /* 3293 * Set clk's phase. 3294 * Since a phase is by definition relative to its parent, just 3295 * query the current clock phase, or just assume it's in phase. 3296 */ 3297 if (core->ops->get_phase) 3298 core->phase = core->ops->get_phase(core->hw); 3299 else 3300 core->phase = 0; 3301 3302 /* 3303 * Set clk's duty cycle. 3304 */ 3305 clk_core_update_duty_cycle_nolock(core); 3306 3307 /* 3308 * Set clk's rate. The preferred method is to use .recalc_rate. For 3309 * simple clocks and lazy developers the default fallback is to use the 3310 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3311 * then rate is set to zero. 3312 */ 3313 if (core->ops->recalc_rate) 3314 rate = core->ops->recalc_rate(core->hw, 3315 clk_core_get_rate_nolock(core->parent)); 3316 else if (core->parent) 3317 rate = core->parent->rate; 3318 else 3319 rate = 0; 3320 core->rate = core->req_rate = rate; 3321 3322 /* 3323 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3324 * don't get accidentally disabled when walking the orphan tree and 3325 * reparenting clocks 3326 */ 3327 if (core->flags & CLK_IS_CRITICAL) { 3328 unsigned long flags; 3329 3330 clk_core_prepare(core); 3331 3332 flags = clk_enable_lock(); 3333 clk_core_enable(core); 3334 clk_enable_unlock(flags); 3335 } 3336 3337 /* 3338 * walk the list of orphan clocks and reparent any that newly finds a 3339 * parent. 3340 */ 3341 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3342 struct clk_core *parent = __clk_init_parent(orphan); 3343 3344 /* 3345 * We need to use __clk_set_parent_before() and _after() to 3346 * to properly migrate any prepare/enable count of the orphan 3347 * clock. This is important for CLK_IS_CRITICAL clocks, which 3348 * are enabled during init but might not have a parent yet. 3349 */ 3350 if (parent) { 3351 /* update the clk tree topology */ 3352 __clk_set_parent_before(orphan, parent); 3353 __clk_set_parent_after(orphan, parent, NULL); 3354 __clk_recalc_accuracies(orphan); 3355 __clk_recalc_rates(orphan, 0); 3356 } 3357 } 3358 3359 kref_init(&core->ref); 3360 out: 3361 clk_pm_runtime_put(core); 3362 unlock: 3363 clk_prepare_unlock(); 3364 3365 if (!ret) 3366 clk_debug_register(core); 3367 3368 return ret; 3369 } 3370 3371 /** 3372 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3373 * @core: clk to add consumer to 3374 * @clk: consumer to link to a clk 3375 */ 3376 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3377 { 3378 clk_prepare_lock(); 3379 hlist_add_head(&clk->clks_node, &core->clks); 3380 clk_prepare_unlock(); 3381 } 3382 3383 /** 3384 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3385 * @clk: consumer to unlink 3386 */ 3387 static void clk_core_unlink_consumer(struct clk *clk) 3388 { 3389 lockdep_assert_held(&prepare_lock); 3390 hlist_del(&clk->clks_node); 3391 } 3392 3393 /** 3394 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3395 * @core: clk to allocate a consumer for 3396 * @dev_id: string describing device name 3397 * @con_id: connection ID string on device 3398 * 3399 * Returns: clk consumer left unlinked from the consumer list 3400 */ 3401 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3402 const char *con_id) 3403 { 3404 struct clk *clk; 3405 3406 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3407 if (!clk) 3408 return ERR_PTR(-ENOMEM); 3409 3410 clk->core = core; 3411 clk->dev_id = dev_id; 3412 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3413 clk->max_rate = ULONG_MAX; 3414 3415 return clk; 3416 } 3417 3418 /** 3419 * free_clk - Free a clk consumer 3420 * @clk: clk consumer to free 3421 * 3422 * Note, this assumes the clk has been unlinked from the clk_core consumer 3423 * list. 3424 */ 3425 static void free_clk(struct clk *clk) 3426 { 3427 kfree_const(clk->con_id); 3428 kfree(clk); 3429 } 3430 3431 /** 3432 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3433 * a clk_hw 3434 * @dev: clk consumer device 3435 * @hw: clk_hw associated with the clk being consumed 3436 * @dev_id: string describing device name 3437 * @con_id: connection ID string on device 3438 * 3439 * This is the main function used to create a clk pointer for use by clk 3440 * consumers. It connects a consumer to the clk_core and clk_hw structures 3441 * used by the framework and clk provider respectively. 3442 */ 3443 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3444 const char *dev_id, const char *con_id) 3445 { 3446 struct clk *clk; 3447 struct clk_core *core; 3448 3449 /* This is to allow this function to be chained to others */ 3450 if (IS_ERR_OR_NULL(hw)) 3451 return ERR_CAST(hw); 3452 3453 core = hw->core; 3454 clk = alloc_clk(core, dev_id, con_id); 3455 if (IS_ERR(clk)) 3456 return clk; 3457 clk->dev = dev; 3458 3459 if (!try_module_get(core->owner)) { 3460 free_clk(clk); 3461 return ERR_PTR(-ENOENT); 3462 } 3463 3464 kref_get(&core->ref); 3465 clk_core_link_consumer(core, clk); 3466 3467 return clk; 3468 } 3469 3470 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3471 { 3472 const char *dst; 3473 3474 if (!src) { 3475 if (must_exist) 3476 return -EINVAL; 3477 return 0; 3478 } 3479 3480 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3481 if (!dst) 3482 return -ENOMEM; 3483 3484 return 0; 3485 } 3486 3487 static int clk_core_populate_parent_map(struct clk_core *core) 3488 { 3489 const struct clk_init_data *init = core->hw->init; 3490 u8 num_parents = init->num_parents; 3491 const char * const *parent_names = init->parent_names; 3492 const struct clk_hw **parent_hws = init->parent_hws; 3493 const struct clk_parent_data *parent_data = init->parent_data; 3494 int i, ret = 0; 3495 struct clk_parent_map *parents, *parent; 3496 3497 if (!num_parents) 3498 return 0; 3499 3500 /* 3501 * Avoid unnecessary string look-ups of clk_core's possible parents by 3502 * having a cache of names/clk_hw pointers to clk_core pointers. 3503 */ 3504 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3505 core->parents = parents; 3506 if (!parents) 3507 return -ENOMEM; 3508 3509 /* Copy everything over because it might be __initdata */ 3510 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3511 parent->index = -1; 3512 if (parent_names) { 3513 /* throw a WARN if any entries are NULL */ 3514 WARN(!parent_names[i], 3515 "%s: invalid NULL in %s's .parent_names\n", 3516 __func__, core->name); 3517 ret = clk_cpy_name(&parent->name, parent_names[i], 3518 true); 3519 } else if (parent_data) { 3520 parent->hw = parent_data[i].hw; 3521 parent->index = parent_data[i].index; 3522 ret = clk_cpy_name(&parent->fw_name, 3523 parent_data[i].fw_name, false); 3524 if (!ret) 3525 ret = clk_cpy_name(&parent->name, 3526 parent_data[i].name, 3527 false); 3528 } else if (parent_hws) { 3529 parent->hw = parent_hws[i]; 3530 } else { 3531 ret = -EINVAL; 3532 WARN(1, "Must specify parents if num_parents > 0\n"); 3533 } 3534 3535 if (ret) { 3536 do { 3537 kfree_const(parents[i].name); 3538 kfree_const(parents[i].fw_name); 3539 } while (--i >= 0); 3540 kfree(parents); 3541 3542 return ret; 3543 } 3544 } 3545 3546 return 0; 3547 } 3548 3549 static void clk_core_free_parent_map(struct clk_core *core) 3550 { 3551 int i = core->num_parents; 3552 3553 if (!core->num_parents) 3554 return; 3555 3556 while (--i >= 0) { 3557 kfree_const(core->parents[i].name); 3558 kfree_const(core->parents[i].fw_name); 3559 } 3560 3561 kfree(core->parents); 3562 } 3563 3564 static struct clk * 3565 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3566 { 3567 int ret; 3568 struct clk_core *core; 3569 3570 core = kzalloc(sizeof(*core), GFP_KERNEL); 3571 if (!core) { 3572 ret = -ENOMEM; 3573 goto fail_out; 3574 } 3575 3576 core->name = kstrdup_const(hw->init->name, GFP_KERNEL); 3577 if (!core->name) { 3578 ret = -ENOMEM; 3579 goto fail_name; 3580 } 3581 3582 if (WARN_ON(!hw->init->ops)) { 3583 ret = -EINVAL; 3584 goto fail_ops; 3585 } 3586 core->ops = hw->init->ops; 3587 3588 if (dev && pm_runtime_enabled(dev)) 3589 core->rpm_enabled = true; 3590 core->dev = dev; 3591 core->of_node = np; 3592 if (dev && dev->driver) 3593 core->owner = dev->driver->owner; 3594 core->hw = hw; 3595 core->flags = hw->init->flags; 3596 core->num_parents = hw->init->num_parents; 3597 core->min_rate = 0; 3598 core->max_rate = ULONG_MAX; 3599 hw->core = core; 3600 3601 ret = clk_core_populate_parent_map(core); 3602 if (ret) 3603 goto fail_parents; 3604 3605 INIT_HLIST_HEAD(&core->clks); 3606 3607 /* 3608 * Don't call clk_hw_create_clk() here because that would pin the 3609 * provider module to itself and prevent it from ever being removed. 3610 */ 3611 hw->clk = alloc_clk(core, NULL, NULL); 3612 if (IS_ERR(hw->clk)) { 3613 ret = PTR_ERR(hw->clk); 3614 goto fail_create_clk; 3615 } 3616 3617 clk_core_link_consumer(hw->core, hw->clk); 3618 3619 ret = __clk_core_init(core); 3620 if (!ret) 3621 return hw->clk; 3622 3623 clk_prepare_lock(); 3624 clk_core_unlink_consumer(hw->clk); 3625 clk_prepare_unlock(); 3626 3627 free_clk(hw->clk); 3628 hw->clk = NULL; 3629 3630 fail_create_clk: 3631 clk_core_free_parent_map(core); 3632 fail_parents: 3633 fail_ops: 3634 kfree_const(core->name); 3635 fail_name: 3636 kfree(core); 3637 fail_out: 3638 return ERR_PTR(ret); 3639 } 3640 3641 /** 3642 * clk_register - allocate a new clock, register it and return an opaque cookie 3643 * @dev: device that is registering this clock 3644 * @hw: link to hardware-specific clock data 3645 * 3646 * clk_register is the *deprecated* interface for populating the clock tree with 3647 * new clock nodes. Use clk_hw_register() instead. 3648 * 3649 * Returns: a pointer to the newly allocated struct clk which 3650 * cannot be dereferenced by driver code but may be used in conjunction with the 3651 * rest of the clock API. In the event of an error clk_register will return an 3652 * error code; drivers must test for an error code after calling clk_register. 3653 */ 3654 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3655 { 3656 return __clk_register(dev, dev_of_node(dev), hw); 3657 } 3658 EXPORT_SYMBOL_GPL(clk_register); 3659 3660 /** 3661 * clk_hw_register - register a clk_hw and return an error code 3662 * @dev: device that is registering this clock 3663 * @hw: link to hardware-specific clock data 3664 * 3665 * clk_hw_register is the primary interface for populating the clock tree with 3666 * new clock nodes. It returns an integer equal to zero indicating success or 3667 * less than zero indicating failure. Drivers must test for an error code after 3668 * calling clk_hw_register(). 3669 */ 3670 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3671 { 3672 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_of_node(dev), hw)); 3673 } 3674 EXPORT_SYMBOL_GPL(clk_hw_register); 3675 3676 /* 3677 * of_clk_hw_register - register a clk_hw and return an error code 3678 * @node: device_node of device that is registering this clock 3679 * @hw: link to hardware-specific clock data 3680 * 3681 * of_clk_hw_register() is the primary interface for populating the clock tree 3682 * with new clock nodes when a struct device is not available, but a struct 3683 * device_node is. It returns an integer equal to zero indicating success or 3684 * less than zero indicating failure. Drivers must test for an error code after 3685 * calling of_clk_hw_register(). 3686 */ 3687 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 3688 { 3689 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 3690 } 3691 EXPORT_SYMBOL_GPL(of_clk_hw_register); 3692 3693 /* Free memory allocated for a clock. */ 3694 static void __clk_release(struct kref *ref) 3695 { 3696 struct clk_core *core = container_of(ref, struct clk_core, ref); 3697 3698 lockdep_assert_held(&prepare_lock); 3699 3700 clk_core_free_parent_map(core); 3701 kfree_const(core->name); 3702 kfree(core); 3703 } 3704 3705 /* 3706 * Empty clk_ops for unregistered clocks. These are used temporarily 3707 * after clk_unregister() was called on a clock and until last clock 3708 * consumer calls clk_put() and the struct clk object is freed. 3709 */ 3710 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3711 { 3712 return -ENXIO; 3713 } 3714 3715 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3716 { 3717 WARN_ON_ONCE(1); 3718 } 3719 3720 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3721 unsigned long parent_rate) 3722 { 3723 return -ENXIO; 3724 } 3725 3726 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3727 { 3728 return -ENXIO; 3729 } 3730 3731 static const struct clk_ops clk_nodrv_ops = { 3732 .enable = clk_nodrv_prepare_enable, 3733 .disable = clk_nodrv_disable_unprepare, 3734 .prepare = clk_nodrv_prepare_enable, 3735 .unprepare = clk_nodrv_disable_unprepare, 3736 .set_rate = clk_nodrv_set_rate, 3737 .set_parent = clk_nodrv_set_parent, 3738 }; 3739 3740 /** 3741 * clk_unregister - unregister a currently registered clock 3742 * @clk: clock to unregister 3743 */ 3744 void clk_unregister(struct clk *clk) 3745 { 3746 unsigned long flags; 3747 3748 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3749 return; 3750 3751 clk_debug_unregister(clk->core); 3752 3753 clk_prepare_lock(); 3754 3755 if (clk->core->ops == &clk_nodrv_ops) { 3756 pr_err("%s: unregistered clock: %s\n", __func__, 3757 clk->core->name); 3758 goto unlock; 3759 } 3760 /* 3761 * Assign empty clock ops for consumers that might still hold 3762 * a reference to this clock. 3763 */ 3764 flags = clk_enable_lock(); 3765 clk->core->ops = &clk_nodrv_ops; 3766 clk_enable_unlock(flags); 3767 3768 if (!hlist_empty(&clk->core->children)) { 3769 struct clk_core *child; 3770 struct hlist_node *t; 3771 3772 /* Reparent all children to the orphan list. */ 3773 hlist_for_each_entry_safe(child, t, &clk->core->children, 3774 child_node) 3775 clk_core_set_parent_nolock(child, NULL); 3776 } 3777 3778 hlist_del_init(&clk->core->child_node); 3779 3780 if (clk->core->prepare_count) 3781 pr_warn("%s: unregistering prepared clock: %s\n", 3782 __func__, clk->core->name); 3783 3784 if (clk->core->protect_count) 3785 pr_warn("%s: unregistering protected clock: %s\n", 3786 __func__, clk->core->name); 3787 3788 kref_put(&clk->core->ref, __clk_release); 3789 unlock: 3790 clk_prepare_unlock(); 3791 } 3792 EXPORT_SYMBOL_GPL(clk_unregister); 3793 3794 /** 3795 * clk_hw_unregister - unregister a currently registered clk_hw 3796 * @hw: hardware-specific clock data to unregister 3797 */ 3798 void clk_hw_unregister(struct clk_hw *hw) 3799 { 3800 clk_unregister(hw->clk); 3801 } 3802 EXPORT_SYMBOL_GPL(clk_hw_unregister); 3803 3804 static void devm_clk_release(struct device *dev, void *res) 3805 { 3806 clk_unregister(*(struct clk **)res); 3807 } 3808 3809 static void devm_clk_hw_release(struct device *dev, void *res) 3810 { 3811 clk_hw_unregister(*(struct clk_hw **)res); 3812 } 3813 3814 /** 3815 * devm_clk_register - resource managed clk_register() 3816 * @dev: device that is registering this clock 3817 * @hw: link to hardware-specific clock data 3818 * 3819 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 3820 * 3821 * Clocks returned from this function are automatically clk_unregister()ed on 3822 * driver detach. See clk_register() for more information. 3823 */ 3824 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 3825 { 3826 struct clk *clk; 3827 struct clk **clkp; 3828 3829 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 3830 if (!clkp) 3831 return ERR_PTR(-ENOMEM); 3832 3833 clk = clk_register(dev, hw); 3834 if (!IS_ERR(clk)) { 3835 *clkp = clk; 3836 devres_add(dev, clkp); 3837 } else { 3838 devres_free(clkp); 3839 } 3840 3841 return clk; 3842 } 3843 EXPORT_SYMBOL_GPL(devm_clk_register); 3844 3845 /** 3846 * devm_clk_hw_register - resource managed clk_hw_register() 3847 * @dev: device that is registering this clock 3848 * @hw: link to hardware-specific clock data 3849 * 3850 * Managed clk_hw_register(). Clocks registered by this function are 3851 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 3852 * for more information. 3853 */ 3854 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 3855 { 3856 struct clk_hw **hwp; 3857 int ret; 3858 3859 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 3860 if (!hwp) 3861 return -ENOMEM; 3862 3863 ret = clk_hw_register(dev, hw); 3864 if (!ret) { 3865 *hwp = hw; 3866 devres_add(dev, hwp); 3867 } else { 3868 devres_free(hwp); 3869 } 3870 3871 return ret; 3872 } 3873 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 3874 3875 static int devm_clk_match(struct device *dev, void *res, void *data) 3876 { 3877 struct clk *c = res; 3878 if (WARN_ON(!c)) 3879 return 0; 3880 return c == data; 3881 } 3882 3883 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 3884 { 3885 struct clk_hw *hw = res; 3886 3887 if (WARN_ON(!hw)) 3888 return 0; 3889 return hw == data; 3890 } 3891 3892 /** 3893 * devm_clk_unregister - resource managed clk_unregister() 3894 * @clk: clock to unregister 3895 * 3896 * Deallocate a clock allocated with devm_clk_register(). Normally 3897 * this function will not need to be called and the resource management 3898 * code will ensure that the resource is freed. 3899 */ 3900 void devm_clk_unregister(struct device *dev, struct clk *clk) 3901 { 3902 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 3903 } 3904 EXPORT_SYMBOL_GPL(devm_clk_unregister); 3905 3906 /** 3907 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 3908 * @dev: device that is unregistering the hardware-specific clock data 3909 * @hw: link to hardware-specific clock data 3910 * 3911 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 3912 * this function will not need to be called and the resource management 3913 * code will ensure that the resource is freed. 3914 */ 3915 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 3916 { 3917 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 3918 hw)); 3919 } 3920 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 3921 3922 /* 3923 * clkdev helpers 3924 */ 3925 3926 void __clk_put(struct clk *clk) 3927 { 3928 struct module *owner; 3929 3930 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3931 return; 3932 3933 clk_prepare_lock(); 3934 3935 /* 3936 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 3937 * given user should be balanced with calls to clk_rate_exclusive_put() 3938 * and by that same consumer 3939 */ 3940 if (WARN_ON(clk->exclusive_count)) { 3941 /* We voiced our concern, let's sanitize the situation */ 3942 clk->core->protect_count -= (clk->exclusive_count - 1); 3943 clk_core_rate_unprotect(clk->core); 3944 clk->exclusive_count = 0; 3945 } 3946 3947 hlist_del(&clk->clks_node); 3948 if (clk->min_rate > clk->core->req_rate || 3949 clk->max_rate < clk->core->req_rate) 3950 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 3951 3952 owner = clk->core->owner; 3953 kref_put(&clk->core->ref, __clk_release); 3954 3955 clk_prepare_unlock(); 3956 3957 module_put(owner); 3958 3959 free_clk(clk); 3960 } 3961 3962 /*** clk rate change notifiers ***/ 3963 3964 /** 3965 * clk_notifier_register - add a clk rate change notifier 3966 * @clk: struct clk * to watch 3967 * @nb: struct notifier_block * with callback info 3968 * 3969 * Request notification when clk's rate changes. This uses an SRCU 3970 * notifier because we want it to block and notifier unregistrations are 3971 * uncommon. The callbacks associated with the notifier must not 3972 * re-enter into the clk framework by calling any top-level clk APIs; 3973 * this will cause a nested prepare_lock mutex. 3974 * 3975 * In all notification cases (pre, post and abort rate change) the original 3976 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 3977 * and the new frequency is passed via struct clk_notifier_data.new_rate. 3978 * 3979 * clk_notifier_register() must be called from non-atomic context. 3980 * Returns -EINVAL if called with null arguments, -ENOMEM upon 3981 * allocation failure; otherwise, passes along the return value of 3982 * srcu_notifier_chain_register(). 3983 */ 3984 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 3985 { 3986 struct clk_notifier *cn; 3987 int ret = -ENOMEM; 3988 3989 if (!clk || !nb) 3990 return -EINVAL; 3991 3992 clk_prepare_lock(); 3993 3994 /* search the list of notifiers for this clk */ 3995 list_for_each_entry(cn, &clk_notifier_list, node) 3996 if (cn->clk == clk) 3997 break; 3998 3999 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4000 if (cn->clk != clk) { 4001 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4002 if (!cn) 4003 goto out; 4004 4005 cn->clk = clk; 4006 srcu_init_notifier_head(&cn->notifier_head); 4007 4008 list_add(&cn->node, &clk_notifier_list); 4009 } 4010 4011 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4012 4013 clk->core->notifier_count++; 4014 4015 out: 4016 clk_prepare_unlock(); 4017 4018 return ret; 4019 } 4020 EXPORT_SYMBOL_GPL(clk_notifier_register); 4021 4022 /** 4023 * clk_notifier_unregister - remove a clk rate change notifier 4024 * @clk: struct clk * 4025 * @nb: struct notifier_block * with callback info 4026 * 4027 * Request no further notification for changes to 'clk' and frees memory 4028 * allocated in clk_notifier_register. 4029 * 4030 * Returns -EINVAL if called with null arguments; otherwise, passes 4031 * along the return value of srcu_notifier_chain_unregister(). 4032 */ 4033 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4034 { 4035 struct clk_notifier *cn = NULL; 4036 int ret = -EINVAL; 4037 4038 if (!clk || !nb) 4039 return -EINVAL; 4040 4041 clk_prepare_lock(); 4042 4043 list_for_each_entry(cn, &clk_notifier_list, node) 4044 if (cn->clk == clk) 4045 break; 4046 4047 if (cn->clk == clk) { 4048 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4049 4050 clk->core->notifier_count--; 4051 4052 /* XXX the notifier code should handle this better */ 4053 if (!cn->notifier_head.head) { 4054 srcu_cleanup_notifier_head(&cn->notifier_head); 4055 list_del(&cn->node); 4056 kfree(cn); 4057 } 4058 4059 } else { 4060 ret = -ENOENT; 4061 } 4062 4063 clk_prepare_unlock(); 4064 4065 return ret; 4066 } 4067 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4068 4069 #ifdef CONFIG_OF 4070 /** 4071 * struct of_clk_provider - Clock provider registration structure 4072 * @link: Entry in global list of clock providers 4073 * @node: Pointer to device tree node of clock provider 4074 * @get: Get clock callback. Returns NULL or a struct clk for the 4075 * given clock specifier 4076 * @data: context pointer to be passed into @get callback 4077 */ 4078 struct of_clk_provider { 4079 struct list_head link; 4080 4081 struct device_node *node; 4082 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4083 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4084 void *data; 4085 }; 4086 4087 extern struct of_device_id __clk_of_table; 4088 static const struct of_device_id __clk_of_table_sentinel 4089 __used __section(__clk_of_table_end); 4090 4091 static LIST_HEAD(of_clk_providers); 4092 static DEFINE_MUTEX(of_clk_mutex); 4093 4094 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4095 void *data) 4096 { 4097 return data; 4098 } 4099 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4100 4101 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4102 { 4103 return data; 4104 } 4105 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4106 4107 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4108 { 4109 struct clk_onecell_data *clk_data = data; 4110 unsigned int idx = clkspec->args[0]; 4111 4112 if (idx >= clk_data->clk_num) { 4113 pr_err("%s: invalid clock index %u\n", __func__, idx); 4114 return ERR_PTR(-EINVAL); 4115 } 4116 4117 return clk_data->clks[idx]; 4118 } 4119 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4120 4121 struct clk_hw * 4122 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4123 { 4124 struct clk_hw_onecell_data *hw_data = data; 4125 unsigned int idx = clkspec->args[0]; 4126 4127 if (idx >= hw_data->num) { 4128 pr_err("%s: invalid index %u\n", __func__, idx); 4129 return ERR_PTR(-EINVAL); 4130 } 4131 4132 return hw_data->hws[idx]; 4133 } 4134 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4135 4136 /** 4137 * of_clk_add_provider() - Register a clock provider for a node 4138 * @np: Device node pointer associated with clock provider 4139 * @clk_src_get: callback for decoding clock 4140 * @data: context pointer for @clk_src_get callback. 4141 * 4142 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4143 */ 4144 int of_clk_add_provider(struct device_node *np, 4145 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4146 void *data), 4147 void *data) 4148 { 4149 struct of_clk_provider *cp; 4150 int ret; 4151 4152 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4153 if (!cp) 4154 return -ENOMEM; 4155 4156 cp->node = of_node_get(np); 4157 cp->data = data; 4158 cp->get = clk_src_get; 4159 4160 mutex_lock(&of_clk_mutex); 4161 list_add(&cp->link, &of_clk_providers); 4162 mutex_unlock(&of_clk_mutex); 4163 pr_debug("Added clock from %pOF\n", np); 4164 4165 ret = of_clk_set_defaults(np, true); 4166 if (ret < 0) 4167 of_clk_del_provider(np); 4168 4169 return ret; 4170 } 4171 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4172 4173 /** 4174 * of_clk_add_hw_provider() - Register a clock provider for a node 4175 * @np: Device node pointer associated with clock provider 4176 * @get: callback for decoding clk_hw 4177 * @data: context pointer for @get callback. 4178 */ 4179 int of_clk_add_hw_provider(struct device_node *np, 4180 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4181 void *data), 4182 void *data) 4183 { 4184 struct of_clk_provider *cp; 4185 int ret; 4186 4187 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4188 if (!cp) 4189 return -ENOMEM; 4190 4191 cp->node = of_node_get(np); 4192 cp->data = data; 4193 cp->get_hw = get; 4194 4195 mutex_lock(&of_clk_mutex); 4196 list_add(&cp->link, &of_clk_providers); 4197 mutex_unlock(&of_clk_mutex); 4198 pr_debug("Added clk_hw provider from %pOF\n", np); 4199 4200 ret = of_clk_set_defaults(np, true); 4201 if (ret < 0) 4202 of_clk_del_provider(np); 4203 4204 return ret; 4205 } 4206 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4207 4208 static void devm_of_clk_release_provider(struct device *dev, void *res) 4209 { 4210 of_clk_del_provider(*(struct device_node **)res); 4211 } 4212 4213 /* 4214 * We allow a child device to use its parent device as the clock provider node 4215 * for cases like MFD sub-devices where the child device driver wants to use 4216 * devm_*() APIs but not list the device in DT as a sub-node. 4217 */ 4218 static struct device_node *get_clk_provider_node(struct device *dev) 4219 { 4220 struct device_node *np, *parent_np; 4221 4222 np = dev->of_node; 4223 parent_np = dev->parent ? dev->parent->of_node : NULL; 4224 4225 if (!of_find_property(np, "#clock-cells", NULL)) 4226 if (of_find_property(parent_np, "#clock-cells", NULL)) 4227 np = parent_np; 4228 4229 return np; 4230 } 4231 4232 /** 4233 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4234 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4235 * @get: callback for decoding clk_hw 4236 * @data: context pointer for @get callback 4237 * 4238 * Registers clock provider for given device's node. If the device has no DT 4239 * node or if the device node lacks of clock provider information (#clock-cells) 4240 * then the parent device's node is scanned for this information. If parent node 4241 * has the #clock-cells then it is used in registration. Provider is 4242 * automatically released at device exit. 4243 * 4244 * Return: 0 on success or an errno on failure. 4245 */ 4246 int devm_of_clk_add_hw_provider(struct device *dev, 4247 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4248 void *data), 4249 void *data) 4250 { 4251 struct device_node **ptr, *np; 4252 int ret; 4253 4254 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4255 GFP_KERNEL); 4256 if (!ptr) 4257 return -ENOMEM; 4258 4259 np = get_clk_provider_node(dev); 4260 ret = of_clk_add_hw_provider(np, get, data); 4261 if (!ret) { 4262 *ptr = np; 4263 devres_add(dev, ptr); 4264 } else { 4265 devres_free(ptr); 4266 } 4267 4268 return ret; 4269 } 4270 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4271 4272 /** 4273 * of_clk_del_provider() - Remove a previously registered clock provider 4274 * @np: Device node pointer associated with clock provider 4275 */ 4276 void of_clk_del_provider(struct device_node *np) 4277 { 4278 struct of_clk_provider *cp; 4279 4280 mutex_lock(&of_clk_mutex); 4281 list_for_each_entry(cp, &of_clk_providers, link) { 4282 if (cp->node == np) { 4283 list_del(&cp->link); 4284 of_node_put(cp->node); 4285 kfree(cp); 4286 break; 4287 } 4288 } 4289 mutex_unlock(&of_clk_mutex); 4290 } 4291 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4292 4293 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4294 { 4295 struct device_node **np = res; 4296 4297 if (WARN_ON(!np || !*np)) 4298 return 0; 4299 4300 return *np == data; 4301 } 4302 4303 /** 4304 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4305 * @dev: Device to whose lifetime the clock provider was bound 4306 */ 4307 void devm_of_clk_del_provider(struct device *dev) 4308 { 4309 int ret; 4310 struct device_node *np = get_clk_provider_node(dev); 4311 4312 ret = devres_release(dev, devm_of_clk_release_provider, 4313 devm_clk_provider_match, np); 4314 4315 WARN_ON(ret); 4316 } 4317 EXPORT_SYMBOL(devm_of_clk_del_provider); 4318 4319 /* 4320 * Beware the return values when np is valid, but no clock provider is found. 4321 * If name == NULL, the function returns -ENOENT. 4322 * If name != NULL, the function returns -EINVAL. This is because 4323 * of_parse_phandle_with_args() is called even if of_property_match_string() 4324 * returns an error. 4325 */ 4326 static int of_parse_clkspec(const struct device_node *np, int index, 4327 const char *name, struct of_phandle_args *out_args) 4328 { 4329 int ret = -ENOENT; 4330 4331 /* Walk up the tree of devices looking for a clock property that matches */ 4332 while (np) { 4333 /* 4334 * For named clocks, first look up the name in the 4335 * "clock-names" property. If it cannot be found, then index 4336 * will be an error code and of_parse_phandle_with_args() will 4337 * return -EINVAL. 4338 */ 4339 if (name) 4340 index = of_property_match_string(np, "clock-names", name); 4341 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4342 index, out_args); 4343 if (!ret) 4344 break; 4345 if (name && index >= 0) 4346 break; 4347 4348 /* 4349 * No matching clock found on this node. If the parent node 4350 * has a "clock-ranges" property, then we can try one of its 4351 * clocks. 4352 */ 4353 np = np->parent; 4354 if (np && !of_get_property(np, "clock-ranges", NULL)) 4355 break; 4356 index = 0; 4357 } 4358 4359 return ret; 4360 } 4361 4362 static struct clk_hw * 4363 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4364 struct of_phandle_args *clkspec) 4365 { 4366 struct clk *clk; 4367 4368 if (provider->get_hw) 4369 return provider->get_hw(clkspec, provider->data); 4370 4371 clk = provider->get(clkspec, provider->data); 4372 if (IS_ERR(clk)) 4373 return ERR_CAST(clk); 4374 return __clk_get_hw(clk); 4375 } 4376 4377 static struct clk_hw * 4378 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4379 { 4380 struct of_clk_provider *provider; 4381 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4382 4383 if (!clkspec) 4384 return ERR_PTR(-EINVAL); 4385 4386 mutex_lock(&of_clk_mutex); 4387 list_for_each_entry(provider, &of_clk_providers, link) { 4388 if (provider->node == clkspec->np) { 4389 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4390 if (!IS_ERR(hw)) 4391 break; 4392 } 4393 } 4394 mutex_unlock(&of_clk_mutex); 4395 4396 return hw; 4397 } 4398 4399 /** 4400 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4401 * @clkspec: pointer to a clock specifier data structure 4402 * 4403 * This function looks up a struct clk from the registered list of clock 4404 * providers, an input is a clock specifier data structure as returned 4405 * from the of_parse_phandle_with_args() function call. 4406 */ 4407 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4408 { 4409 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4410 4411 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4412 } 4413 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4414 4415 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4416 const char *con_id) 4417 { 4418 int ret; 4419 struct clk_hw *hw; 4420 struct of_phandle_args clkspec; 4421 4422 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4423 if (ret) 4424 return ERR_PTR(ret); 4425 4426 hw = of_clk_get_hw_from_clkspec(&clkspec); 4427 of_node_put(clkspec.np); 4428 4429 return hw; 4430 } 4431 4432 static struct clk *__of_clk_get(struct device_node *np, 4433 int index, const char *dev_id, 4434 const char *con_id) 4435 { 4436 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4437 4438 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4439 } 4440 4441 struct clk *of_clk_get(struct device_node *np, int index) 4442 { 4443 return __of_clk_get(np, index, np->full_name, NULL); 4444 } 4445 EXPORT_SYMBOL(of_clk_get); 4446 4447 /** 4448 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4449 * @np: pointer to clock consumer node 4450 * @name: name of consumer's clock input, or NULL for the first clock reference 4451 * 4452 * This function parses the clocks and clock-names properties, 4453 * and uses them to look up the struct clk from the registered list of clock 4454 * providers. 4455 */ 4456 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4457 { 4458 if (!np) 4459 return ERR_PTR(-ENOENT); 4460 4461 return __of_clk_get(np, 0, np->full_name, name); 4462 } 4463 EXPORT_SYMBOL(of_clk_get_by_name); 4464 4465 /** 4466 * of_clk_get_parent_count() - Count the number of clocks a device node has 4467 * @np: device node to count 4468 * 4469 * Returns: The number of clocks that are possible parents of this node 4470 */ 4471 unsigned int of_clk_get_parent_count(struct device_node *np) 4472 { 4473 int count; 4474 4475 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4476 if (count < 0) 4477 return 0; 4478 4479 return count; 4480 } 4481 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4482 4483 const char *of_clk_get_parent_name(struct device_node *np, int index) 4484 { 4485 struct of_phandle_args clkspec; 4486 struct property *prop; 4487 const char *clk_name; 4488 const __be32 *vp; 4489 u32 pv; 4490 int rc; 4491 int count; 4492 struct clk *clk; 4493 4494 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 4495 &clkspec); 4496 if (rc) 4497 return NULL; 4498 4499 index = clkspec.args_count ? clkspec.args[0] : 0; 4500 count = 0; 4501 4502 /* if there is an indices property, use it to transfer the index 4503 * specified into an array offset for the clock-output-names property. 4504 */ 4505 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 4506 if (index == pv) { 4507 index = count; 4508 break; 4509 } 4510 count++; 4511 } 4512 /* We went off the end of 'clock-indices' without finding it */ 4513 if (prop && !vp) 4514 return NULL; 4515 4516 if (of_property_read_string_index(clkspec.np, "clock-output-names", 4517 index, 4518 &clk_name) < 0) { 4519 /* 4520 * Best effort to get the name if the clock has been 4521 * registered with the framework. If the clock isn't 4522 * registered, we return the node name as the name of 4523 * the clock as long as #clock-cells = 0. 4524 */ 4525 clk = of_clk_get_from_provider(&clkspec); 4526 if (IS_ERR(clk)) { 4527 if (clkspec.args_count == 0) 4528 clk_name = clkspec.np->name; 4529 else 4530 clk_name = NULL; 4531 } else { 4532 clk_name = __clk_get_name(clk); 4533 clk_put(clk); 4534 } 4535 } 4536 4537 4538 of_node_put(clkspec.np); 4539 return clk_name; 4540 } 4541 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 4542 4543 /** 4544 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 4545 * number of parents 4546 * @np: Device node pointer associated with clock provider 4547 * @parents: pointer to char array that hold the parents' names 4548 * @size: size of the @parents array 4549 * 4550 * Return: number of parents for the clock node. 4551 */ 4552 int of_clk_parent_fill(struct device_node *np, const char **parents, 4553 unsigned int size) 4554 { 4555 unsigned int i = 0; 4556 4557 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 4558 i++; 4559 4560 return i; 4561 } 4562 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 4563 4564 struct clock_provider { 4565 void (*clk_init_cb)(struct device_node *); 4566 struct device_node *np; 4567 struct list_head node; 4568 }; 4569 4570 /* 4571 * This function looks for a parent clock. If there is one, then it 4572 * checks that the provider for this parent clock was initialized, in 4573 * this case the parent clock will be ready. 4574 */ 4575 static int parent_ready(struct device_node *np) 4576 { 4577 int i = 0; 4578 4579 while (true) { 4580 struct clk *clk = of_clk_get(np, i); 4581 4582 /* this parent is ready we can check the next one */ 4583 if (!IS_ERR(clk)) { 4584 clk_put(clk); 4585 i++; 4586 continue; 4587 } 4588 4589 /* at least one parent is not ready, we exit now */ 4590 if (PTR_ERR(clk) == -EPROBE_DEFER) 4591 return 0; 4592 4593 /* 4594 * Here we make assumption that the device tree is 4595 * written correctly. So an error means that there is 4596 * no more parent. As we didn't exit yet, then the 4597 * previous parent are ready. If there is no clock 4598 * parent, no need to wait for them, then we can 4599 * consider their absence as being ready 4600 */ 4601 return 1; 4602 } 4603 } 4604 4605 /** 4606 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 4607 * @np: Device node pointer associated with clock provider 4608 * @index: clock index 4609 * @flags: pointer to top-level framework flags 4610 * 4611 * Detects if the clock-critical property exists and, if so, sets the 4612 * corresponding CLK_IS_CRITICAL flag. 4613 * 4614 * Do not use this function. It exists only for legacy Device Tree 4615 * bindings, such as the one-clock-per-node style that are outdated. 4616 * Those bindings typically put all clock data into .dts and the Linux 4617 * driver has no clock data, thus making it impossible to set this flag 4618 * correctly from the driver. Only those drivers may call 4619 * of_clk_detect_critical from their setup functions. 4620 * 4621 * Return: error code or zero on success 4622 */ 4623 int of_clk_detect_critical(struct device_node *np, 4624 int index, unsigned long *flags) 4625 { 4626 struct property *prop; 4627 const __be32 *cur; 4628 uint32_t idx; 4629 4630 if (!np || !flags) 4631 return -EINVAL; 4632 4633 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 4634 if (index == idx) 4635 *flags |= CLK_IS_CRITICAL; 4636 4637 return 0; 4638 } 4639 4640 /** 4641 * of_clk_init() - Scan and init clock providers from the DT 4642 * @matches: array of compatible values and init functions for providers. 4643 * 4644 * This function scans the device tree for matching clock providers 4645 * and calls their initialization functions. It also does it by trying 4646 * to follow the dependencies. 4647 */ 4648 void __init of_clk_init(const struct of_device_id *matches) 4649 { 4650 const struct of_device_id *match; 4651 struct device_node *np; 4652 struct clock_provider *clk_provider, *next; 4653 bool is_init_done; 4654 bool force = false; 4655 LIST_HEAD(clk_provider_list); 4656 4657 if (!matches) 4658 matches = &__clk_of_table; 4659 4660 /* First prepare the list of the clocks providers */ 4661 for_each_matching_node_and_match(np, matches, &match) { 4662 struct clock_provider *parent; 4663 4664 if (!of_device_is_available(np)) 4665 continue; 4666 4667 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 4668 if (!parent) { 4669 list_for_each_entry_safe(clk_provider, next, 4670 &clk_provider_list, node) { 4671 list_del(&clk_provider->node); 4672 of_node_put(clk_provider->np); 4673 kfree(clk_provider); 4674 } 4675 of_node_put(np); 4676 return; 4677 } 4678 4679 parent->clk_init_cb = match->data; 4680 parent->np = of_node_get(np); 4681 list_add_tail(&parent->node, &clk_provider_list); 4682 } 4683 4684 while (!list_empty(&clk_provider_list)) { 4685 is_init_done = false; 4686 list_for_each_entry_safe(clk_provider, next, 4687 &clk_provider_list, node) { 4688 if (force || parent_ready(clk_provider->np)) { 4689 4690 /* Don't populate platform devices */ 4691 of_node_set_flag(clk_provider->np, 4692 OF_POPULATED); 4693 4694 clk_provider->clk_init_cb(clk_provider->np); 4695 of_clk_set_defaults(clk_provider->np, true); 4696 4697 list_del(&clk_provider->node); 4698 of_node_put(clk_provider->np); 4699 kfree(clk_provider); 4700 is_init_done = true; 4701 } 4702 } 4703 4704 /* 4705 * We didn't manage to initialize any of the 4706 * remaining providers during the last loop, so now we 4707 * initialize all the remaining ones unconditionally 4708 * in case the clock parent was not mandatory 4709 */ 4710 if (!is_init_done) 4711 force = true; 4712 } 4713 } 4714 #endif 4715