xref: /linux/drivers/clk/clk.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/clkdev.h>
26 
27 #include "clk.h"
28 
29 static DEFINE_SPINLOCK(enable_lock);
30 static DEFINE_MUTEX(prepare_lock);
31 
32 static struct task_struct *prepare_owner;
33 static struct task_struct *enable_owner;
34 
35 static int prepare_refcnt;
36 static int enable_refcnt;
37 
38 static HLIST_HEAD(clk_root_list);
39 static HLIST_HEAD(clk_orphan_list);
40 static LIST_HEAD(clk_notifier_list);
41 
42 /***    private data structures    ***/
43 
44 struct clk_core {
45 	const char		*name;
46 	const struct clk_ops	*ops;
47 	struct clk_hw		*hw;
48 	struct module		*owner;
49 	struct clk_core		*parent;
50 	const char		**parent_names;
51 	struct clk_core		**parents;
52 	u8			num_parents;
53 	u8			new_parent_index;
54 	unsigned long		rate;
55 	unsigned long		req_rate;
56 	unsigned long		new_rate;
57 	struct clk_core		*new_parent;
58 	struct clk_core		*new_child;
59 	unsigned long		flags;
60 	bool			orphan;
61 	unsigned int		enable_count;
62 	unsigned int		prepare_count;
63 	unsigned long		min_rate;
64 	unsigned long		max_rate;
65 	unsigned long		accuracy;
66 	int			phase;
67 	struct hlist_head	children;
68 	struct hlist_node	child_node;
69 	struct hlist_head	clks;
70 	unsigned int		notifier_count;
71 #ifdef CONFIG_DEBUG_FS
72 	struct dentry		*dentry;
73 	struct hlist_node	debug_node;
74 #endif
75 	struct kref		ref;
76 };
77 
78 #define CREATE_TRACE_POINTS
79 #include <trace/events/clk.h>
80 
81 struct clk {
82 	struct clk_core	*core;
83 	const char *dev_id;
84 	const char *con_id;
85 	unsigned long min_rate;
86 	unsigned long max_rate;
87 	struct hlist_node clks_node;
88 };
89 
90 /***           locking             ***/
91 static void clk_prepare_lock(void)
92 {
93 	if (!mutex_trylock(&prepare_lock)) {
94 		if (prepare_owner == current) {
95 			prepare_refcnt++;
96 			return;
97 		}
98 		mutex_lock(&prepare_lock);
99 	}
100 	WARN_ON_ONCE(prepare_owner != NULL);
101 	WARN_ON_ONCE(prepare_refcnt != 0);
102 	prepare_owner = current;
103 	prepare_refcnt = 1;
104 }
105 
106 static void clk_prepare_unlock(void)
107 {
108 	WARN_ON_ONCE(prepare_owner != current);
109 	WARN_ON_ONCE(prepare_refcnt == 0);
110 
111 	if (--prepare_refcnt)
112 		return;
113 	prepare_owner = NULL;
114 	mutex_unlock(&prepare_lock);
115 }
116 
117 static unsigned long clk_enable_lock(void)
118 	__acquires(enable_lock)
119 {
120 	unsigned long flags;
121 
122 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
123 		if (enable_owner == current) {
124 			enable_refcnt++;
125 			__acquire(enable_lock);
126 			return flags;
127 		}
128 		spin_lock_irqsave(&enable_lock, flags);
129 	}
130 	WARN_ON_ONCE(enable_owner != NULL);
131 	WARN_ON_ONCE(enable_refcnt != 0);
132 	enable_owner = current;
133 	enable_refcnt = 1;
134 	return flags;
135 }
136 
137 static void clk_enable_unlock(unsigned long flags)
138 	__releases(enable_lock)
139 {
140 	WARN_ON_ONCE(enable_owner != current);
141 	WARN_ON_ONCE(enable_refcnt == 0);
142 
143 	if (--enable_refcnt) {
144 		__release(enable_lock);
145 		return;
146 	}
147 	enable_owner = NULL;
148 	spin_unlock_irqrestore(&enable_lock, flags);
149 }
150 
151 static bool clk_core_is_prepared(struct clk_core *core)
152 {
153 	/*
154 	 * .is_prepared is optional for clocks that can prepare
155 	 * fall back to software usage counter if it is missing
156 	 */
157 	if (!core->ops->is_prepared)
158 		return core->prepare_count;
159 
160 	return core->ops->is_prepared(core->hw);
161 }
162 
163 static bool clk_core_is_enabled(struct clk_core *core)
164 {
165 	/*
166 	 * .is_enabled is only mandatory for clocks that gate
167 	 * fall back to software usage counter if .is_enabled is missing
168 	 */
169 	if (!core->ops->is_enabled)
170 		return core->enable_count;
171 
172 	return core->ops->is_enabled(core->hw);
173 }
174 
175 static void clk_unprepare_unused_subtree(struct clk_core *core)
176 {
177 	struct clk_core *child;
178 
179 	lockdep_assert_held(&prepare_lock);
180 
181 	hlist_for_each_entry(child, &core->children, child_node)
182 		clk_unprepare_unused_subtree(child);
183 
184 	if (core->prepare_count)
185 		return;
186 
187 	if (core->flags & CLK_IGNORE_UNUSED)
188 		return;
189 
190 	if (clk_core_is_prepared(core)) {
191 		trace_clk_unprepare(core);
192 		if (core->ops->unprepare_unused)
193 			core->ops->unprepare_unused(core->hw);
194 		else if (core->ops->unprepare)
195 			core->ops->unprepare(core->hw);
196 		trace_clk_unprepare_complete(core);
197 	}
198 }
199 
200 static void clk_disable_unused_subtree(struct clk_core *core)
201 {
202 	struct clk_core *child;
203 	unsigned long flags;
204 
205 	lockdep_assert_held(&prepare_lock);
206 
207 	hlist_for_each_entry(child, &core->children, child_node)
208 		clk_disable_unused_subtree(child);
209 
210 	flags = clk_enable_lock();
211 
212 	if (core->enable_count)
213 		goto unlock_out;
214 
215 	if (core->flags & CLK_IGNORE_UNUSED)
216 		goto unlock_out;
217 
218 	/*
219 	 * some gate clocks have special needs during the disable-unused
220 	 * sequence.  call .disable_unused if available, otherwise fall
221 	 * back to .disable
222 	 */
223 	if (clk_core_is_enabled(core)) {
224 		trace_clk_disable(core);
225 		if (core->ops->disable_unused)
226 			core->ops->disable_unused(core->hw);
227 		else if (core->ops->disable)
228 			core->ops->disable(core->hw);
229 		trace_clk_disable_complete(core);
230 	}
231 
232 unlock_out:
233 	clk_enable_unlock(flags);
234 }
235 
236 static bool clk_ignore_unused;
237 static int __init clk_ignore_unused_setup(char *__unused)
238 {
239 	clk_ignore_unused = true;
240 	return 1;
241 }
242 __setup("clk_ignore_unused", clk_ignore_unused_setup);
243 
244 static int clk_disable_unused(void)
245 {
246 	struct clk_core *core;
247 
248 	if (clk_ignore_unused) {
249 		pr_warn("clk: Not disabling unused clocks\n");
250 		return 0;
251 	}
252 
253 	clk_prepare_lock();
254 
255 	hlist_for_each_entry(core, &clk_root_list, child_node)
256 		clk_disable_unused_subtree(core);
257 
258 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
259 		clk_disable_unused_subtree(core);
260 
261 	hlist_for_each_entry(core, &clk_root_list, child_node)
262 		clk_unprepare_unused_subtree(core);
263 
264 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
265 		clk_unprepare_unused_subtree(core);
266 
267 	clk_prepare_unlock();
268 
269 	return 0;
270 }
271 late_initcall_sync(clk_disable_unused);
272 
273 /***    helper functions   ***/
274 
275 const char *__clk_get_name(const struct clk *clk)
276 {
277 	return !clk ? NULL : clk->core->name;
278 }
279 EXPORT_SYMBOL_GPL(__clk_get_name);
280 
281 const char *clk_hw_get_name(const struct clk_hw *hw)
282 {
283 	return hw->core->name;
284 }
285 EXPORT_SYMBOL_GPL(clk_hw_get_name);
286 
287 struct clk_hw *__clk_get_hw(struct clk *clk)
288 {
289 	return !clk ? NULL : clk->core->hw;
290 }
291 EXPORT_SYMBOL_GPL(__clk_get_hw);
292 
293 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
294 {
295 	return hw->core->num_parents;
296 }
297 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
298 
299 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
300 {
301 	return hw->core->parent ? hw->core->parent->hw : NULL;
302 }
303 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
304 
305 static struct clk_core *__clk_lookup_subtree(const char *name,
306 					     struct clk_core *core)
307 {
308 	struct clk_core *child;
309 	struct clk_core *ret;
310 
311 	if (!strcmp(core->name, name))
312 		return core;
313 
314 	hlist_for_each_entry(child, &core->children, child_node) {
315 		ret = __clk_lookup_subtree(name, child);
316 		if (ret)
317 			return ret;
318 	}
319 
320 	return NULL;
321 }
322 
323 static struct clk_core *clk_core_lookup(const char *name)
324 {
325 	struct clk_core *root_clk;
326 	struct clk_core *ret;
327 
328 	if (!name)
329 		return NULL;
330 
331 	/* search the 'proper' clk tree first */
332 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
333 		ret = __clk_lookup_subtree(name, root_clk);
334 		if (ret)
335 			return ret;
336 	}
337 
338 	/* if not found, then search the orphan tree */
339 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
340 		ret = __clk_lookup_subtree(name, root_clk);
341 		if (ret)
342 			return ret;
343 	}
344 
345 	return NULL;
346 }
347 
348 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
349 							 u8 index)
350 {
351 	if (!core || index >= core->num_parents)
352 		return NULL;
353 
354 	if (!core->parents[index])
355 		core->parents[index] =
356 				clk_core_lookup(core->parent_names[index]);
357 
358 	return core->parents[index];
359 }
360 
361 struct clk_hw *
362 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
363 {
364 	struct clk_core *parent;
365 
366 	parent = clk_core_get_parent_by_index(hw->core, index);
367 
368 	return !parent ? NULL : parent->hw;
369 }
370 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
371 
372 unsigned int __clk_get_enable_count(struct clk *clk)
373 {
374 	return !clk ? 0 : clk->core->enable_count;
375 }
376 
377 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
378 {
379 	unsigned long ret;
380 
381 	if (!core) {
382 		ret = 0;
383 		goto out;
384 	}
385 
386 	ret = core->rate;
387 
388 	if (!core->num_parents)
389 		goto out;
390 
391 	if (!core->parent)
392 		ret = 0;
393 
394 out:
395 	return ret;
396 }
397 
398 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
399 {
400 	return clk_core_get_rate_nolock(hw->core);
401 }
402 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
403 
404 static unsigned long __clk_get_accuracy(struct clk_core *core)
405 {
406 	if (!core)
407 		return 0;
408 
409 	return core->accuracy;
410 }
411 
412 unsigned long __clk_get_flags(struct clk *clk)
413 {
414 	return !clk ? 0 : clk->core->flags;
415 }
416 EXPORT_SYMBOL_GPL(__clk_get_flags);
417 
418 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
419 {
420 	return hw->core->flags;
421 }
422 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
423 
424 bool clk_hw_is_prepared(const struct clk_hw *hw)
425 {
426 	return clk_core_is_prepared(hw->core);
427 }
428 
429 bool clk_hw_is_enabled(const struct clk_hw *hw)
430 {
431 	return clk_core_is_enabled(hw->core);
432 }
433 
434 bool __clk_is_enabled(struct clk *clk)
435 {
436 	if (!clk)
437 		return false;
438 
439 	return clk_core_is_enabled(clk->core);
440 }
441 EXPORT_SYMBOL_GPL(__clk_is_enabled);
442 
443 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
444 			   unsigned long best, unsigned long flags)
445 {
446 	if (flags & CLK_MUX_ROUND_CLOSEST)
447 		return abs(now - rate) < abs(best - rate);
448 
449 	return now <= rate && now > best;
450 }
451 
452 static int
453 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
454 			     unsigned long flags)
455 {
456 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
457 	int i, num_parents, ret;
458 	unsigned long best = 0;
459 	struct clk_rate_request parent_req = *req;
460 
461 	/* if NO_REPARENT flag set, pass through to current parent */
462 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
463 		parent = core->parent;
464 		if (core->flags & CLK_SET_RATE_PARENT) {
465 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
466 						   &parent_req);
467 			if (ret)
468 				return ret;
469 
470 			best = parent_req.rate;
471 		} else if (parent) {
472 			best = clk_core_get_rate_nolock(parent);
473 		} else {
474 			best = clk_core_get_rate_nolock(core);
475 		}
476 
477 		goto out;
478 	}
479 
480 	/* find the parent that can provide the fastest rate <= rate */
481 	num_parents = core->num_parents;
482 	for (i = 0; i < num_parents; i++) {
483 		parent = clk_core_get_parent_by_index(core, i);
484 		if (!parent)
485 			continue;
486 
487 		if (core->flags & CLK_SET_RATE_PARENT) {
488 			parent_req = *req;
489 			ret = __clk_determine_rate(parent->hw, &parent_req);
490 			if (ret)
491 				continue;
492 		} else {
493 			parent_req.rate = clk_core_get_rate_nolock(parent);
494 		}
495 
496 		if (mux_is_better_rate(req->rate, parent_req.rate,
497 				       best, flags)) {
498 			best_parent = parent;
499 			best = parent_req.rate;
500 		}
501 	}
502 
503 	if (!best_parent)
504 		return -EINVAL;
505 
506 out:
507 	if (best_parent)
508 		req->best_parent_hw = best_parent->hw;
509 	req->best_parent_rate = best;
510 	req->rate = best;
511 
512 	return 0;
513 }
514 
515 struct clk *__clk_lookup(const char *name)
516 {
517 	struct clk_core *core = clk_core_lookup(name);
518 
519 	return !core ? NULL : core->hw->clk;
520 }
521 
522 static void clk_core_get_boundaries(struct clk_core *core,
523 				    unsigned long *min_rate,
524 				    unsigned long *max_rate)
525 {
526 	struct clk *clk_user;
527 
528 	*min_rate = core->min_rate;
529 	*max_rate = core->max_rate;
530 
531 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
532 		*min_rate = max(*min_rate, clk_user->min_rate);
533 
534 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
535 		*max_rate = min(*max_rate, clk_user->max_rate);
536 }
537 
538 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
539 			   unsigned long max_rate)
540 {
541 	hw->core->min_rate = min_rate;
542 	hw->core->max_rate = max_rate;
543 }
544 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
545 
546 /*
547  * Helper for finding best parent to provide a given frequency. This can be used
548  * directly as a determine_rate callback (e.g. for a mux), or from a more
549  * complex clock that may combine a mux with other operations.
550  */
551 int __clk_mux_determine_rate(struct clk_hw *hw,
552 			     struct clk_rate_request *req)
553 {
554 	return clk_mux_determine_rate_flags(hw, req, 0);
555 }
556 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
557 
558 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
559 				     struct clk_rate_request *req)
560 {
561 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
562 }
563 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
564 
565 /***        clk api        ***/
566 
567 static void clk_core_unprepare(struct clk_core *core)
568 {
569 	lockdep_assert_held(&prepare_lock);
570 
571 	if (!core)
572 		return;
573 
574 	if (WARN_ON(core->prepare_count == 0))
575 		return;
576 
577 	if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL))
578 		return;
579 
580 	if (--core->prepare_count > 0)
581 		return;
582 
583 	WARN_ON(core->enable_count > 0);
584 
585 	trace_clk_unprepare(core);
586 
587 	if (core->ops->unprepare)
588 		core->ops->unprepare(core->hw);
589 
590 	trace_clk_unprepare_complete(core);
591 	clk_core_unprepare(core->parent);
592 }
593 
594 /**
595  * clk_unprepare - undo preparation of a clock source
596  * @clk: the clk being unprepared
597  *
598  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
599  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
600  * if the operation may sleep.  One example is a clk which is accessed over
601  * I2c.  In the complex case a clk gate operation may require a fast and a slow
602  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
603  * exclusive.  In fact clk_disable must be called before clk_unprepare.
604  */
605 void clk_unprepare(struct clk *clk)
606 {
607 	if (IS_ERR_OR_NULL(clk))
608 		return;
609 
610 	clk_prepare_lock();
611 	clk_core_unprepare(clk->core);
612 	clk_prepare_unlock();
613 }
614 EXPORT_SYMBOL_GPL(clk_unprepare);
615 
616 static int clk_core_prepare(struct clk_core *core)
617 {
618 	int ret = 0;
619 
620 	lockdep_assert_held(&prepare_lock);
621 
622 	if (!core)
623 		return 0;
624 
625 	if (core->prepare_count == 0) {
626 		ret = clk_core_prepare(core->parent);
627 		if (ret)
628 			return ret;
629 
630 		trace_clk_prepare(core);
631 
632 		if (core->ops->prepare)
633 			ret = core->ops->prepare(core->hw);
634 
635 		trace_clk_prepare_complete(core);
636 
637 		if (ret) {
638 			clk_core_unprepare(core->parent);
639 			return ret;
640 		}
641 	}
642 
643 	core->prepare_count++;
644 
645 	return 0;
646 }
647 
648 /**
649  * clk_prepare - prepare a clock source
650  * @clk: the clk being prepared
651  *
652  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
653  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
654  * operation may sleep.  One example is a clk which is accessed over I2c.  In
655  * the complex case a clk ungate operation may require a fast and a slow part.
656  * It is this reason that clk_prepare and clk_enable are not mutually
657  * exclusive.  In fact clk_prepare must be called before clk_enable.
658  * Returns 0 on success, -EERROR otherwise.
659  */
660 int clk_prepare(struct clk *clk)
661 {
662 	int ret;
663 
664 	if (!clk)
665 		return 0;
666 
667 	clk_prepare_lock();
668 	ret = clk_core_prepare(clk->core);
669 	clk_prepare_unlock();
670 
671 	return ret;
672 }
673 EXPORT_SYMBOL_GPL(clk_prepare);
674 
675 static void clk_core_disable(struct clk_core *core)
676 {
677 	lockdep_assert_held(&enable_lock);
678 
679 	if (!core)
680 		return;
681 
682 	if (WARN_ON(core->enable_count == 0))
683 		return;
684 
685 	if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL))
686 		return;
687 
688 	if (--core->enable_count > 0)
689 		return;
690 
691 	trace_clk_disable(core);
692 
693 	if (core->ops->disable)
694 		core->ops->disable(core->hw);
695 
696 	trace_clk_disable_complete(core);
697 
698 	clk_core_disable(core->parent);
699 }
700 
701 /**
702  * clk_disable - gate a clock
703  * @clk: the clk being gated
704  *
705  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
706  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
707  * clk if the operation is fast and will never sleep.  One example is a
708  * SoC-internal clk which is controlled via simple register writes.  In the
709  * complex case a clk gate operation may require a fast and a slow part.  It is
710  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
711  * In fact clk_disable must be called before clk_unprepare.
712  */
713 void clk_disable(struct clk *clk)
714 {
715 	unsigned long flags;
716 
717 	if (IS_ERR_OR_NULL(clk))
718 		return;
719 
720 	flags = clk_enable_lock();
721 	clk_core_disable(clk->core);
722 	clk_enable_unlock(flags);
723 }
724 EXPORT_SYMBOL_GPL(clk_disable);
725 
726 static int clk_core_enable(struct clk_core *core)
727 {
728 	int ret = 0;
729 
730 	lockdep_assert_held(&enable_lock);
731 
732 	if (!core)
733 		return 0;
734 
735 	if (WARN_ON(core->prepare_count == 0))
736 		return -ESHUTDOWN;
737 
738 	if (core->enable_count == 0) {
739 		ret = clk_core_enable(core->parent);
740 
741 		if (ret)
742 			return ret;
743 
744 		trace_clk_enable(core);
745 
746 		if (core->ops->enable)
747 			ret = core->ops->enable(core->hw);
748 
749 		trace_clk_enable_complete(core);
750 
751 		if (ret) {
752 			clk_core_disable(core->parent);
753 			return ret;
754 		}
755 	}
756 
757 	core->enable_count++;
758 	return 0;
759 }
760 
761 /**
762  * clk_enable - ungate a clock
763  * @clk: the clk being ungated
764  *
765  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
766  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
767  * if the operation will never sleep.  One example is a SoC-internal clk which
768  * is controlled via simple register writes.  In the complex case a clk ungate
769  * operation may require a fast and a slow part.  It is this reason that
770  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
771  * must be called before clk_enable.  Returns 0 on success, -EERROR
772  * otherwise.
773  */
774 int clk_enable(struct clk *clk)
775 {
776 	unsigned long flags;
777 	int ret;
778 
779 	if (!clk)
780 		return 0;
781 
782 	flags = clk_enable_lock();
783 	ret = clk_core_enable(clk->core);
784 	clk_enable_unlock(flags);
785 
786 	return ret;
787 }
788 EXPORT_SYMBOL_GPL(clk_enable);
789 
790 static int clk_core_round_rate_nolock(struct clk_core *core,
791 				      struct clk_rate_request *req)
792 {
793 	struct clk_core *parent;
794 	long rate;
795 
796 	lockdep_assert_held(&prepare_lock);
797 
798 	if (!core)
799 		return 0;
800 
801 	parent = core->parent;
802 	if (parent) {
803 		req->best_parent_hw = parent->hw;
804 		req->best_parent_rate = parent->rate;
805 	} else {
806 		req->best_parent_hw = NULL;
807 		req->best_parent_rate = 0;
808 	}
809 
810 	if (core->ops->determine_rate) {
811 		return core->ops->determine_rate(core->hw, req);
812 	} else if (core->ops->round_rate) {
813 		rate = core->ops->round_rate(core->hw, req->rate,
814 					     &req->best_parent_rate);
815 		if (rate < 0)
816 			return rate;
817 
818 		req->rate = rate;
819 	} else if (core->flags & CLK_SET_RATE_PARENT) {
820 		return clk_core_round_rate_nolock(parent, req);
821 	} else {
822 		req->rate = core->rate;
823 	}
824 
825 	return 0;
826 }
827 
828 /**
829  * __clk_determine_rate - get the closest rate actually supported by a clock
830  * @hw: determine the rate of this clock
831  * @rate: target rate
832  * @min_rate: returned rate must be greater than this rate
833  * @max_rate: returned rate must be less than this rate
834  *
835  * Useful for clk_ops such as .set_rate and .determine_rate.
836  */
837 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
838 {
839 	if (!hw) {
840 		req->rate = 0;
841 		return 0;
842 	}
843 
844 	return clk_core_round_rate_nolock(hw->core, req);
845 }
846 EXPORT_SYMBOL_GPL(__clk_determine_rate);
847 
848 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
849 {
850 	int ret;
851 	struct clk_rate_request req;
852 
853 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
854 	req.rate = rate;
855 
856 	ret = clk_core_round_rate_nolock(hw->core, &req);
857 	if (ret)
858 		return 0;
859 
860 	return req.rate;
861 }
862 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
863 
864 /**
865  * clk_round_rate - round the given rate for a clk
866  * @clk: the clk for which we are rounding a rate
867  * @rate: the rate which is to be rounded
868  *
869  * Takes in a rate as input and rounds it to a rate that the clk can actually
870  * use which is then returned.  If clk doesn't support round_rate operation
871  * then the parent rate is returned.
872  */
873 long clk_round_rate(struct clk *clk, unsigned long rate)
874 {
875 	struct clk_rate_request req;
876 	int ret;
877 
878 	if (!clk)
879 		return 0;
880 
881 	clk_prepare_lock();
882 
883 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
884 	req.rate = rate;
885 
886 	ret = clk_core_round_rate_nolock(clk->core, &req);
887 	clk_prepare_unlock();
888 
889 	if (ret)
890 		return ret;
891 
892 	return req.rate;
893 }
894 EXPORT_SYMBOL_GPL(clk_round_rate);
895 
896 /**
897  * __clk_notify - call clk notifier chain
898  * @core: clk that is changing rate
899  * @msg: clk notifier type (see include/linux/clk.h)
900  * @old_rate: old clk rate
901  * @new_rate: new clk rate
902  *
903  * Triggers a notifier call chain on the clk rate-change notification
904  * for 'clk'.  Passes a pointer to the struct clk and the previous
905  * and current rates to the notifier callback.  Intended to be called by
906  * internal clock code only.  Returns NOTIFY_DONE from the last driver
907  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
908  * a driver returns that.
909  */
910 static int __clk_notify(struct clk_core *core, unsigned long msg,
911 		unsigned long old_rate, unsigned long new_rate)
912 {
913 	struct clk_notifier *cn;
914 	struct clk_notifier_data cnd;
915 	int ret = NOTIFY_DONE;
916 
917 	cnd.old_rate = old_rate;
918 	cnd.new_rate = new_rate;
919 
920 	list_for_each_entry(cn, &clk_notifier_list, node) {
921 		if (cn->clk->core == core) {
922 			cnd.clk = cn->clk;
923 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
924 					&cnd);
925 		}
926 	}
927 
928 	return ret;
929 }
930 
931 /**
932  * __clk_recalc_accuracies
933  * @core: first clk in the subtree
934  *
935  * Walks the subtree of clks starting with clk and recalculates accuracies as
936  * it goes.  Note that if a clk does not implement the .recalc_accuracy
937  * callback then it is assumed that the clock will take on the accuracy of its
938  * parent.
939  */
940 static void __clk_recalc_accuracies(struct clk_core *core)
941 {
942 	unsigned long parent_accuracy = 0;
943 	struct clk_core *child;
944 
945 	lockdep_assert_held(&prepare_lock);
946 
947 	if (core->parent)
948 		parent_accuracy = core->parent->accuracy;
949 
950 	if (core->ops->recalc_accuracy)
951 		core->accuracy = core->ops->recalc_accuracy(core->hw,
952 							  parent_accuracy);
953 	else
954 		core->accuracy = parent_accuracy;
955 
956 	hlist_for_each_entry(child, &core->children, child_node)
957 		__clk_recalc_accuracies(child);
958 }
959 
960 static long clk_core_get_accuracy(struct clk_core *core)
961 {
962 	unsigned long accuracy;
963 
964 	clk_prepare_lock();
965 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
966 		__clk_recalc_accuracies(core);
967 
968 	accuracy = __clk_get_accuracy(core);
969 	clk_prepare_unlock();
970 
971 	return accuracy;
972 }
973 
974 /**
975  * clk_get_accuracy - return the accuracy of clk
976  * @clk: the clk whose accuracy is being returned
977  *
978  * Simply returns the cached accuracy of the clk, unless
979  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
980  * issued.
981  * If clk is NULL then returns 0.
982  */
983 long clk_get_accuracy(struct clk *clk)
984 {
985 	if (!clk)
986 		return 0;
987 
988 	return clk_core_get_accuracy(clk->core);
989 }
990 EXPORT_SYMBOL_GPL(clk_get_accuracy);
991 
992 static unsigned long clk_recalc(struct clk_core *core,
993 				unsigned long parent_rate)
994 {
995 	if (core->ops->recalc_rate)
996 		return core->ops->recalc_rate(core->hw, parent_rate);
997 	return parent_rate;
998 }
999 
1000 /**
1001  * __clk_recalc_rates
1002  * @core: first clk in the subtree
1003  * @msg: notification type (see include/linux/clk.h)
1004  *
1005  * Walks the subtree of clks starting with clk and recalculates rates as it
1006  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1007  * it is assumed that the clock will take on the rate of its parent.
1008  *
1009  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1010  * if necessary.
1011  */
1012 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1013 {
1014 	unsigned long old_rate;
1015 	unsigned long parent_rate = 0;
1016 	struct clk_core *child;
1017 
1018 	lockdep_assert_held(&prepare_lock);
1019 
1020 	old_rate = core->rate;
1021 
1022 	if (core->parent)
1023 		parent_rate = core->parent->rate;
1024 
1025 	core->rate = clk_recalc(core, parent_rate);
1026 
1027 	/*
1028 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1029 	 * & ABORT_RATE_CHANGE notifiers
1030 	 */
1031 	if (core->notifier_count && msg)
1032 		__clk_notify(core, msg, old_rate, core->rate);
1033 
1034 	hlist_for_each_entry(child, &core->children, child_node)
1035 		__clk_recalc_rates(child, msg);
1036 }
1037 
1038 static unsigned long clk_core_get_rate(struct clk_core *core)
1039 {
1040 	unsigned long rate;
1041 
1042 	clk_prepare_lock();
1043 
1044 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1045 		__clk_recalc_rates(core, 0);
1046 
1047 	rate = clk_core_get_rate_nolock(core);
1048 	clk_prepare_unlock();
1049 
1050 	return rate;
1051 }
1052 
1053 /**
1054  * clk_get_rate - return the rate of clk
1055  * @clk: the clk whose rate is being returned
1056  *
1057  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1058  * is set, which means a recalc_rate will be issued.
1059  * If clk is NULL then returns 0.
1060  */
1061 unsigned long clk_get_rate(struct clk *clk)
1062 {
1063 	if (!clk)
1064 		return 0;
1065 
1066 	return clk_core_get_rate(clk->core);
1067 }
1068 EXPORT_SYMBOL_GPL(clk_get_rate);
1069 
1070 static int clk_fetch_parent_index(struct clk_core *core,
1071 				  struct clk_core *parent)
1072 {
1073 	int i;
1074 
1075 	if (!parent)
1076 		return -EINVAL;
1077 
1078 	for (i = 0; i < core->num_parents; i++)
1079 		if (clk_core_get_parent_by_index(core, i) == parent)
1080 			return i;
1081 
1082 	return -EINVAL;
1083 }
1084 
1085 /*
1086  * Update the orphan status of @core and all its children.
1087  */
1088 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1089 {
1090 	struct clk_core *child;
1091 
1092 	core->orphan = is_orphan;
1093 
1094 	hlist_for_each_entry(child, &core->children, child_node)
1095 		clk_core_update_orphan_status(child, is_orphan);
1096 }
1097 
1098 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1099 {
1100 	bool was_orphan = core->orphan;
1101 
1102 	hlist_del(&core->child_node);
1103 
1104 	if (new_parent) {
1105 		bool becomes_orphan = new_parent->orphan;
1106 
1107 		/* avoid duplicate POST_RATE_CHANGE notifications */
1108 		if (new_parent->new_child == core)
1109 			new_parent->new_child = NULL;
1110 
1111 		hlist_add_head(&core->child_node, &new_parent->children);
1112 
1113 		if (was_orphan != becomes_orphan)
1114 			clk_core_update_orphan_status(core, becomes_orphan);
1115 	} else {
1116 		hlist_add_head(&core->child_node, &clk_orphan_list);
1117 		if (!was_orphan)
1118 			clk_core_update_orphan_status(core, true);
1119 	}
1120 
1121 	core->parent = new_parent;
1122 }
1123 
1124 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1125 					   struct clk_core *parent)
1126 {
1127 	unsigned long flags;
1128 	struct clk_core *old_parent = core->parent;
1129 
1130 	/*
1131 	 * Migrate prepare state between parents and prevent race with
1132 	 * clk_enable().
1133 	 *
1134 	 * If the clock is not prepared, then a race with
1135 	 * clk_enable/disable() is impossible since we already have the
1136 	 * prepare lock (future calls to clk_enable() need to be preceded by
1137 	 * a clk_prepare()).
1138 	 *
1139 	 * If the clock is prepared, migrate the prepared state to the new
1140 	 * parent and also protect against a race with clk_enable() by
1141 	 * forcing the clock and the new parent on.  This ensures that all
1142 	 * future calls to clk_enable() are practically NOPs with respect to
1143 	 * hardware and software states.
1144 	 *
1145 	 * See also: Comment for clk_set_parent() below.
1146 	 */
1147 	if (core->prepare_count) {
1148 		clk_core_prepare(parent);
1149 		flags = clk_enable_lock();
1150 		clk_core_enable(parent);
1151 		clk_core_enable(core);
1152 		clk_enable_unlock(flags);
1153 	}
1154 
1155 	/* update the clk tree topology */
1156 	flags = clk_enable_lock();
1157 	clk_reparent(core, parent);
1158 	clk_enable_unlock(flags);
1159 
1160 	return old_parent;
1161 }
1162 
1163 static void __clk_set_parent_after(struct clk_core *core,
1164 				   struct clk_core *parent,
1165 				   struct clk_core *old_parent)
1166 {
1167 	unsigned long flags;
1168 
1169 	/*
1170 	 * Finish the migration of prepare state and undo the changes done
1171 	 * for preventing a race with clk_enable().
1172 	 */
1173 	if (core->prepare_count) {
1174 		flags = clk_enable_lock();
1175 		clk_core_disable(core);
1176 		clk_core_disable(old_parent);
1177 		clk_enable_unlock(flags);
1178 		clk_core_unprepare(old_parent);
1179 	}
1180 }
1181 
1182 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1183 			    u8 p_index)
1184 {
1185 	unsigned long flags;
1186 	int ret = 0;
1187 	struct clk_core *old_parent;
1188 
1189 	old_parent = __clk_set_parent_before(core, parent);
1190 
1191 	trace_clk_set_parent(core, parent);
1192 
1193 	/* change clock input source */
1194 	if (parent && core->ops->set_parent)
1195 		ret = core->ops->set_parent(core->hw, p_index);
1196 
1197 	trace_clk_set_parent_complete(core, parent);
1198 
1199 	if (ret) {
1200 		flags = clk_enable_lock();
1201 		clk_reparent(core, old_parent);
1202 		clk_enable_unlock(flags);
1203 		__clk_set_parent_after(core, old_parent, parent);
1204 
1205 		return ret;
1206 	}
1207 
1208 	__clk_set_parent_after(core, parent, old_parent);
1209 
1210 	return 0;
1211 }
1212 
1213 /**
1214  * __clk_speculate_rates
1215  * @core: first clk in the subtree
1216  * @parent_rate: the "future" rate of clk's parent
1217  *
1218  * Walks the subtree of clks starting with clk, speculating rates as it
1219  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1220  *
1221  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1222  * pre-rate change notifications and returns early if no clks in the
1223  * subtree have subscribed to the notifications.  Note that if a clk does not
1224  * implement the .recalc_rate callback then it is assumed that the clock will
1225  * take on the rate of its parent.
1226  */
1227 static int __clk_speculate_rates(struct clk_core *core,
1228 				 unsigned long parent_rate)
1229 {
1230 	struct clk_core *child;
1231 	unsigned long new_rate;
1232 	int ret = NOTIFY_DONE;
1233 
1234 	lockdep_assert_held(&prepare_lock);
1235 
1236 	new_rate = clk_recalc(core, parent_rate);
1237 
1238 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1239 	if (core->notifier_count)
1240 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1241 
1242 	if (ret & NOTIFY_STOP_MASK) {
1243 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1244 				__func__, core->name, ret);
1245 		goto out;
1246 	}
1247 
1248 	hlist_for_each_entry(child, &core->children, child_node) {
1249 		ret = __clk_speculate_rates(child, new_rate);
1250 		if (ret & NOTIFY_STOP_MASK)
1251 			break;
1252 	}
1253 
1254 out:
1255 	return ret;
1256 }
1257 
1258 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1259 			     struct clk_core *new_parent, u8 p_index)
1260 {
1261 	struct clk_core *child;
1262 
1263 	core->new_rate = new_rate;
1264 	core->new_parent = new_parent;
1265 	core->new_parent_index = p_index;
1266 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1267 	core->new_child = NULL;
1268 	if (new_parent && new_parent != core->parent)
1269 		new_parent->new_child = core;
1270 
1271 	hlist_for_each_entry(child, &core->children, child_node) {
1272 		child->new_rate = clk_recalc(child, new_rate);
1273 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1274 	}
1275 }
1276 
1277 /*
1278  * calculate the new rates returning the topmost clock that has to be
1279  * changed.
1280  */
1281 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1282 					   unsigned long rate)
1283 {
1284 	struct clk_core *top = core;
1285 	struct clk_core *old_parent, *parent;
1286 	unsigned long best_parent_rate = 0;
1287 	unsigned long new_rate;
1288 	unsigned long min_rate;
1289 	unsigned long max_rate;
1290 	int p_index = 0;
1291 	long ret;
1292 
1293 	/* sanity */
1294 	if (IS_ERR_OR_NULL(core))
1295 		return NULL;
1296 
1297 	/* save parent rate, if it exists */
1298 	parent = old_parent = core->parent;
1299 	if (parent)
1300 		best_parent_rate = parent->rate;
1301 
1302 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1303 
1304 	/* find the closest rate and parent clk/rate */
1305 	if (core->ops->determine_rate) {
1306 		struct clk_rate_request req;
1307 
1308 		req.rate = rate;
1309 		req.min_rate = min_rate;
1310 		req.max_rate = max_rate;
1311 		if (parent) {
1312 			req.best_parent_hw = parent->hw;
1313 			req.best_parent_rate = parent->rate;
1314 		} else {
1315 			req.best_parent_hw = NULL;
1316 			req.best_parent_rate = 0;
1317 		}
1318 
1319 		ret = core->ops->determine_rate(core->hw, &req);
1320 		if (ret < 0)
1321 			return NULL;
1322 
1323 		best_parent_rate = req.best_parent_rate;
1324 		new_rate = req.rate;
1325 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1326 	} else if (core->ops->round_rate) {
1327 		ret = core->ops->round_rate(core->hw, rate,
1328 					    &best_parent_rate);
1329 		if (ret < 0)
1330 			return NULL;
1331 
1332 		new_rate = ret;
1333 		if (new_rate < min_rate || new_rate > max_rate)
1334 			return NULL;
1335 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1336 		/* pass-through clock without adjustable parent */
1337 		core->new_rate = core->rate;
1338 		return NULL;
1339 	} else {
1340 		/* pass-through clock with adjustable parent */
1341 		top = clk_calc_new_rates(parent, rate);
1342 		new_rate = parent->new_rate;
1343 		goto out;
1344 	}
1345 
1346 	/* some clocks must be gated to change parent */
1347 	if (parent != old_parent &&
1348 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1349 		pr_debug("%s: %s not gated but wants to reparent\n",
1350 			 __func__, core->name);
1351 		return NULL;
1352 	}
1353 
1354 	/* try finding the new parent index */
1355 	if (parent && core->num_parents > 1) {
1356 		p_index = clk_fetch_parent_index(core, parent);
1357 		if (p_index < 0) {
1358 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1359 				 __func__, parent->name, core->name);
1360 			return NULL;
1361 		}
1362 	}
1363 
1364 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1365 	    best_parent_rate != parent->rate)
1366 		top = clk_calc_new_rates(parent, best_parent_rate);
1367 
1368 out:
1369 	clk_calc_subtree(core, new_rate, parent, p_index);
1370 
1371 	return top;
1372 }
1373 
1374 /*
1375  * Notify about rate changes in a subtree. Always walk down the whole tree
1376  * so that in case of an error we can walk down the whole tree again and
1377  * abort the change.
1378  */
1379 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1380 						  unsigned long event)
1381 {
1382 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1383 	int ret = NOTIFY_DONE;
1384 
1385 	if (core->rate == core->new_rate)
1386 		return NULL;
1387 
1388 	if (core->notifier_count) {
1389 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1390 		if (ret & NOTIFY_STOP_MASK)
1391 			fail_clk = core;
1392 	}
1393 
1394 	hlist_for_each_entry(child, &core->children, child_node) {
1395 		/* Skip children who will be reparented to another clock */
1396 		if (child->new_parent && child->new_parent != core)
1397 			continue;
1398 		tmp_clk = clk_propagate_rate_change(child, event);
1399 		if (tmp_clk)
1400 			fail_clk = tmp_clk;
1401 	}
1402 
1403 	/* handle the new child who might not be in core->children yet */
1404 	if (core->new_child) {
1405 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1406 		if (tmp_clk)
1407 			fail_clk = tmp_clk;
1408 	}
1409 
1410 	return fail_clk;
1411 }
1412 
1413 /*
1414  * walk down a subtree and set the new rates notifying the rate
1415  * change on the way
1416  */
1417 static void clk_change_rate(struct clk_core *core)
1418 {
1419 	struct clk_core *child;
1420 	struct hlist_node *tmp;
1421 	unsigned long old_rate;
1422 	unsigned long best_parent_rate = 0;
1423 	bool skip_set_rate = false;
1424 	struct clk_core *old_parent;
1425 
1426 	old_rate = core->rate;
1427 
1428 	if (core->new_parent)
1429 		best_parent_rate = core->new_parent->rate;
1430 	else if (core->parent)
1431 		best_parent_rate = core->parent->rate;
1432 
1433 	if (core->flags & CLK_SET_RATE_UNGATE) {
1434 		unsigned long flags;
1435 
1436 		clk_core_prepare(core);
1437 		flags = clk_enable_lock();
1438 		clk_core_enable(core);
1439 		clk_enable_unlock(flags);
1440 	}
1441 
1442 	if (core->new_parent && core->new_parent != core->parent) {
1443 		old_parent = __clk_set_parent_before(core, core->new_parent);
1444 		trace_clk_set_parent(core, core->new_parent);
1445 
1446 		if (core->ops->set_rate_and_parent) {
1447 			skip_set_rate = true;
1448 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1449 					best_parent_rate,
1450 					core->new_parent_index);
1451 		} else if (core->ops->set_parent) {
1452 			core->ops->set_parent(core->hw, core->new_parent_index);
1453 		}
1454 
1455 		trace_clk_set_parent_complete(core, core->new_parent);
1456 		__clk_set_parent_after(core, core->new_parent, old_parent);
1457 	}
1458 
1459 	trace_clk_set_rate(core, core->new_rate);
1460 
1461 	if (!skip_set_rate && core->ops->set_rate)
1462 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1463 
1464 	trace_clk_set_rate_complete(core, core->new_rate);
1465 
1466 	core->rate = clk_recalc(core, best_parent_rate);
1467 
1468 	if (core->flags & CLK_SET_RATE_UNGATE) {
1469 		unsigned long flags;
1470 
1471 		flags = clk_enable_lock();
1472 		clk_core_disable(core);
1473 		clk_enable_unlock(flags);
1474 		clk_core_unprepare(core);
1475 	}
1476 
1477 	if (core->notifier_count && old_rate != core->rate)
1478 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1479 
1480 	if (core->flags & CLK_RECALC_NEW_RATES)
1481 		(void)clk_calc_new_rates(core, core->new_rate);
1482 
1483 	/*
1484 	 * Use safe iteration, as change_rate can actually swap parents
1485 	 * for certain clock types.
1486 	 */
1487 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1488 		/* Skip children who will be reparented to another clock */
1489 		if (child->new_parent && child->new_parent != core)
1490 			continue;
1491 		clk_change_rate(child);
1492 	}
1493 
1494 	/* handle the new child who might not be in core->children yet */
1495 	if (core->new_child)
1496 		clk_change_rate(core->new_child);
1497 }
1498 
1499 static int clk_core_set_rate_nolock(struct clk_core *core,
1500 				    unsigned long req_rate)
1501 {
1502 	struct clk_core *top, *fail_clk;
1503 	unsigned long rate = req_rate;
1504 	int ret = 0;
1505 
1506 	if (!core)
1507 		return 0;
1508 
1509 	/* bail early if nothing to do */
1510 	if (rate == clk_core_get_rate_nolock(core))
1511 		return 0;
1512 
1513 	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1514 		return -EBUSY;
1515 
1516 	/* calculate new rates and get the topmost changed clock */
1517 	top = clk_calc_new_rates(core, rate);
1518 	if (!top)
1519 		return -EINVAL;
1520 
1521 	/* notify that we are about to change rates */
1522 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1523 	if (fail_clk) {
1524 		pr_debug("%s: failed to set %s rate\n", __func__,
1525 				fail_clk->name);
1526 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1527 		return -EBUSY;
1528 	}
1529 
1530 	/* change the rates */
1531 	clk_change_rate(top);
1532 
1533 	core->req_rate = req_rate;
1534 
1535 	return ret;
1536 }
1537 
1538 /**
1539  * clk_set_rate - specify a new rate for clk
1540  * @clk: the clk whose rate is being changed
1541  * @rate: the new rate for clk
1542  *
1543  * In the simplest case clk_set_rate will only adjust the rate of clk.
1544  *
1545  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1546  * propagate up to clk's parent; whether or not this happens depends on the
1547  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1548  * after calling .round_rate then upstream parent propagation is ignored.  If
1549  * *parent_rate comes back with a new rate for clk's parent then we propagate
1550  * up to clk's parent and set its rate.  Upward propagation will continue
1551  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1552  * .round_rate stops requesting changes to clk's parent_rate.
1553  *
1554  * Rate changes are accomplished via tree traversal that also recalculates the
1555  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1556  *
1557  * Returns 0 on success, -EERROR otherwise.
1558  */
1559 int clk_set_rate(struct clk *clk, unsigned long rate)
1560 {
1561 	int ret;
1562 
1563 	if (!clk)
1564 		return 0;
1565 
1566 	/* prevent racing with updates to the clock topology */
1567 	clk_prepare_lock();
1568 
1569 	ret = clk_core_set_rate_nolock(clk->core, rate);
1570 
1571 	clk_prepare_unlock();
1572 
1573 	return ret;
1574 }
1575 EXPORT_SYMBOL_GPL(clk_set_rate);
1576 
1577 /**
1578  * clk_set_rate_range - set a rate range for a clock source
1579  * @clk: clock source
1580  * @min: desired minimum clock rate in Hz, inclusive
1581  * @max: desired maximum clock rate in Hz, inclusive
1582  *
1583  * Returns success (0) or negative errno.
1584  */
1585 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1586 {
1587 	int ret = 0;
1588 
1589 	if (!clk)
1590 		return 0;
1591 
1592 	if (min > max) {
1593 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1594 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1595 		       min, max);
1596 		return -EINVAL;
1597 	}
1598 
1599 	clk_prepare_lock();
1600 
1601 	if (min != clk->min_rate || max != clk->max_rate) {
1602 		clk->min_rate = min;
1603 		clk->max_rate = max;
1604 		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1605 	}
1606 
1607 	clk_prepare_unlock();
1608 
1609 	return ret;
1610 }
1611 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1612 
1613 /**
1614  * clk_set_min_rate - set a minimum clock rate for a clock source
1615  * @clk: clock source
1616  * @rate: desired minimum clock rate in Hz, inclusive
1617  *
1618  * Returns success (0) or negative errno.
1619  */
1620 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1621 {
1622 	if (!clk)
1623 		return 0;
1624 
1625 	return clk_set_rate_range(clk, rate, clk->max_rate);
1626 }
1627 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1628 
1629 /**
1630  * clk_set_max_rate - set a maximum clock rate for a clock source
1631  * @clk: clock source
1632  * @rate: desired maximum clock rate in Hz, inclusive
1633  *
1634  * Returns success (0) or negative errno.
1635  */
1636 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1637 {
1638 	if (!clk)
1639 		return 0;
1640 
1641 	return clk_set_rate_range(clk, clk->min_rate, rate);
1642 }
1643 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1644 
1645 /**
1646  * clk_get_parent - return the parent of a clk
1647  * @clk: the clk whose parent gets returned
1648  *
1649  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1650  */
1651 struct clk *clk_get_parent(struct clk *clk)
1652 {
1653 	struct clk *parent;
1654 
1655 	if (!clk)
1656 		return NULL;
1657 
1658 	clk_prepare_lock();
1659 	/* TODO: Create a per-user clk and change callers to call clk_put */
1660 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1661 	clk_prepare_unlock();
1662 
1663 	return parent;
1664 }
1665 EXPORT_SYMBOL_GPL(clk_get_parent);
1666 
1667 static struct clk_core *__clk_init_parent(struct clk_core *core)
1668 {
1669 	u8 index = 0;
1670 
1671 	if (core->num_parents > 1 && core->ops->get_parent)
1672 		index = core->ops->get_parent(core->hw);
1673 
1674 	return clk_core_get_parent_by_index(core, index);
1675 }
1676 
1677 static void clk_core_reparent(struct clk_core *core,
1678 				  struct clk_core *new_parent)
1679 {
1680 	clk_reparent(core, new_parent);
1681 	__clk_recalc_accuracies(core);
1682 	__clk_recalc_rates(core, POST_RATE_CHANGE);
1683 }
1684 
1685 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1686 {
1687 	if (!hw)
1688 		return;
1689 
1690 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1691 }
1692 
1693 /**
1694  * clk_has_parent - check if a clock is a possible parent for another
1695  * @clk: clock source
1696  * @parent: parent clock source
1697  *
1698  * This function can be used in drivers that need to check that a clock can be
1699  * the parent of another without actually changing the parent.
1700  *
1701  * Returns true if @parent is a possible parent for @clk, false otherwise.
1702  */
1703 bool clk_has_parent(struct clk *clk, struct clk *parent)
1704 {
1705 	struct clk_core *core, *parent_core;
1706 	unsigned int i;
1707 
1708 	/* NULL clocks should be nops, so return success if either is NULL. */
1709 	if (!clk || !parent)
1710 		return true;
1711 
1712 	core = clk->core;
1713 	parent_core = parent->core;
1714 
1715 	/* Optimize for the case where the parent is already the parent. */
1716 	if (core->parent == parent_core)
1717 		return true;
1718 
1719 	for (i = 0; i < core->num_parents; i++)
1720 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1721 			return true;
1722 
1723 	return false;
1724 }
1725 EXPORT_SYMBOL_GPL(clk_has_parent);
1726 
1727 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1728 {
1729 	int ret = 0;
1730 	int p_index = 0;
1731 	unsigned long p_rate = 0;
1732 
1733 	if (!core)
1734 		return 0;
1735 
1736 	/* prevent racing with updates to the clock topology */
1737 	clk_prepare_lock();
1738 
1739 	if (core->parent == parent)
1740 		goto out;
1741 
1742 	/* verify ops for for multi-parent clks */
1743 	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1744 		ret = -ENOSYS;
1745 		goto out;
1746 	}
1747 
1748 	/* check that we are allowed to re-parent if the clock is in use */
1749 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1750 		ret = -EBUSY;
1751 		goto out;
1752 	}
1753 
1754 	/* try finding the new parent index */
1755 	if (parent) {
1756 		p_index = clk_fetch_parent_index(core, parent);
1757 		if (p_index < 0) {
1758 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1759 					__func__, parent->name, core->name);
1760 			ret = p_index;
1761 			goto out;
1762 		}
1763 		p_rate = parent->rate;
1764 	}
1765 
1766 	/* propagate PRE_RATE_CHANGE notifications */
1767 	ret = __clk_speculate_rates(core, p_rate);
1768 
1769 	/* abort if a driver objects */
1770 	if (ret & NOTIFY_STOP_MASK)
1771 		goto out;
1772 
1773 	/* do the re-parent */
1774 	ret = __clk_set_parent(core, parent, p_index);
1775 
1776 	/* propagate rate an accuracy recalculation accordingly */
1777 	if (ret) {
1778 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
1779 	} else {
1780 		__clk_recalc_rates(core, POST_RATE_CHANGE);
1781 		__clk_recalc_accuracies(core);
1782 	}
1783 
1784 out:
1785 	clk_prepare_unlock();
1786 
1787 	return ret;
1788 }
1789 
1790 /**
1791  * clk_set_parent - switch the parent of a mux clk
1792  * @clk: the mux clk whose input we are switching
1793  * @parent: the new input to clk
1794  *
1795  * Re-parent clk to use parent as its new input source.  If clk is in
1796  * prepared state, the clk will get enabled for the duration of this call. If
1797  * that's not acceptable for a specific clk (Eg: the consumer can't handle
1798  * that, the reparenting is glitchy in hardware, etc), use the
1799  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1800  *
1801  * After successfully changing clk's parent clk_set_parent will update the
1802  * clk topology, sysfs topology and propagate rate recalculation via
1803  * __clk_recalc_rates.
1804  *
1805  * Returns 0 on success, -EERROR otherwise.
1806  */
1807 int clk_set_parent(struct clk *clk, struct clk *parent)
1808 {
1809 	if (!clk)
1810 		return 0;
1811 
1812 	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1813 }
1814 EXPORT_SYMBOL_GPL(clk_set_parent);
1815 
1816 /**
1817  * clk_set_phase - adjust the phase shift of a clock signal
1818  * @clk: clock signal source
1819  * @degrees: number of degrees the signal is shifted
1820  *
1821  * Shifts the phase of a clock signal by the specified
1822  * degrees. Returns 0 on success, -EERROR otherwise.
1823  *
1824  * This function makes no distinction about the input or reference
1825  * signal that we adjust the clock signal phase against. For example
1826  * phase locked-loop clock signal generators we may shift phase with
1827  * respect to feedback clock signal input, but for other cases the
1828  * clock phase may be shifted with respect to some other, unspecified
1829  * signal.
1830  *
1831  * Additionally the concept of phase shift does not propagate through
1832  * the clock tree hierarchy, which sets it apart from clock rates and
1833  * clock accuracy. A parent clock phase attribute does not have an
1834  * impact on the phase attribute of a child clock.
1835  */
1836 int clk_set_phase(struct clk *clk, int degrees)
1837 {
1838 	int ret = -EINVAL;
1839 
1840 	if (!clk)
1841 		return 0;
1842 
1843 	/* sanity check degrees */
1844 	degrees %= 360;
1845 	if (degrees < 0)
1846 		degrees += 360;
1847 
1848 	clk_prepare_lock();
1849 
1850 	/* bail early if nothing to do */
1851 	if (degrees == clk->core->phase)
1852 		goto out;
1853 
1854 	trace_clk_set_phase(clk->core, degrees);
1855 
1856 	if (clk->core->ops->set_phase)
1857 		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1858 
1859 	trace_clk_set_phase_complete(clk->core, degrees);
1860 
1861 	if (!ret)
1862 		clk->core->phase = degrees;
1863 
1864 out:
1865 	clk_prepare_unlock();
1866 
1867 	return ret;
1868 }
1869 EXPORT_SYMBOL_GPL(clk_set_phase);
1870 
1871 static int clk_core_get_phase(struct clk_core *core)
1872 {
1873 	int ret;
1874 
1875 	clk_prepare_lock();
1876 	ret = core->phase;
1877 	clk_prepare_unlock();
1878 
1879 	return ret;
1880 }
1881 
1882 /**
1883  * clk_get_phase - return the phase shift of a clock signal
1884  * @clk: clock signal source
1885  *
1886  * Returns the phase shift of a clock node in degrees, otherwise returns
1887  * -EERROR.
1888  */
1889 int clk_get_phase(struct clk *clk)
1890 {
1891 	if (!clk)
1892 		return 0;
1893 
1894 	return clk_core_get_phase(clk->core);
1895 }
1896 EXPORT_SYMBOL_GPL(clk_get_phase);
1897 
1898 /**
1899  * clk_is_match - check if two clk's point to the same hardware clock
1900  * @p: clk compared against q
1901  * @q: clk compared against p
1902  *
1903  * Returns true if the two struct clk pointers both point to the same hardware
1904  * clock node. Put differently, returns true if struct clk *p and struct clk *q
1905  * share the same struct clk_core object.
1906  *
1907  * Returns false otherwise. Note that two NULL clks are treated as matching.
1908  */
1909 bool clk_is_match(const struct clk *p, const struct clk *q)
1910 {
1911 	/* trivial case: identical struct clk's or both NULL */
1912 	if (p == q)
1913 		return true;
1914 
1915 	/* true if clk->core pointers match. Avoid dereferencing garbage */
1916 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1917 		if (p->core == q->core)
1918 			return true;
1919 
1920 	return false;
1921 }
1922 EXPORT_SYMBOL_GPL(clk_is_match);
1923 
1924 /***        debugfs support        ***/
1925 
1926 #ifdef CONFIG_DEBUG_FS
1927 #include <linux/debugfs.h>
1928 
1929 static struct dentry *rootdir;
1930 static int inited = 0;
1931 static DEFINE_MUTEX(clk_debug_lock);
1932 static HLIST_HEAD(clk_debug_list);
1933 
1934 static struct hlist_head *all_lists[] = {
1935 	&clk_root_list,
1936 	&clk_orphan_list,
1937 	NULL,
1938 };
1939 
1940 static struct hlist_head *orphan_list[] = {
1941 	&clk_orphan_list,
1942 	NULL,
1943 };
1944 
1945 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
1946 				 int level)
1947 {
1948 	if (!c)
1949 		return;
1950 
1951 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
1952 		   level * 3 + 1, "",
1953 		   30 - level * 3, c->name,
1954 		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
1955 		   clk_core_get_accuracy(c), clk_core_get_phase(c));
1956 }
1957 
1958 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
1959 				     int level)
1960 {
1961 	struct clk_core *child;
1962 
1963 	if (!c)
1964 		return;
1965 
1966 	clk_summary_show_one(s, c, level);
1967 
1968 	hlist_for_each_entry(child, &c->children, child_node)
1969 		clk_summary_show_subtree(s, child, level + 1);
1970 }
1971 
1972 static int clk_summary_show(struct seq_file *s, void *data)
1973 {
1974 	struct clk_core *c;
1975 	struct hlist_head **lists = (struct hlist_head **)s->private;
1976 
1977 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
1978 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
1979 
1980 	clk_prepare_lock();
1981 
1982 	for (; *lists; lists++)
1983 		hlist_for_each_entry(c, *lists, child_node)
1984 			clk_summary_show_subtree(s, c, 0);
1985 
1986 	clk_prepare_unlock();
1987 
1988 	return 0;
1989 }
1990 
1991 
1992 static int clk_summary_open(struct inode *inode, struct file *file)
1993 {
1994 	return single_open(file, clk_summary_show, inode->i_private);
1995 }
1996 
1997 static const struct file_operations clk_summary_fops = {
1998 	.open		= clk_summary_open,
1999 	.read		= seq_read,
2000 	.llseek		= seq_lseek,
2001 	.release	= single_release,
2002 };
2003 
2004 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2005 {
2006 	if (!c)
2007 		return;
2008 
2009 	/* This should be JSON format, i.e. elements separated with a comma */
2010 	seq_printf(s, "\"%s\": { ", c->name);
2011 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2012 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2013 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2014 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2015 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2016 }
2017 
2018 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2019 {
2020 	struct clk_core *child;
2021 
2022 	if (!c)
2023 		return;
2024 
2025 	clk_dump_one(s, c, level);
2026 
2027 	hlist_for_each_entry(child, &c->children, child_node) {
2028 		seq_printf(s, ",");
2029 		clk_dump_subtree(s, child, level + 1);
2030 	}
2031 
2032 	seq_printf(s, "}");
2033 }
2034 
2035 static int clk_dump(struct seq_file *s, void *data)
2036 {
2037 	struct clk_core *c;
2038 	bool first_node = true;
2039 	struct hlist_head **lists = (struct hlist_head **)s->private;
2040 
2041 	seq_printf(s, "{");
2042 
2043 	clk_prepare_lock();
2044 
2045 	for (; *lists; lists++) {
2046 		hlist_for_each_entry(c, *lists, child_node) {
2047 			if (!first_node)
2048 				seq_puts(s, ",");
2049 			first_node = false;
2050 			clk_dump_subtree(s, c, 0);
2051 		}
2052 	}
2053 
2054 	clk_prepare_unlock();
2055 
2056 	seq_puts(s, "}\n");
2057 	return 0;
2058 }
2059 
2060 
2061 static int clk_dump_open(struct inode *inode, struct file *file)
2062 {
2063 	return single_open(file, clk_dump, inode->i_private);
2064 }
2065 
2066 static const struct file_operations clk_dump_fops = {
2067 	.open		= clk_dump_open,
2068 	.read		= seq_read,
2069 	.llseek		= seq_lseek,
2070 	.release	= single_release,
2071 };
2072 
2073 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2074 {
2075 	struct dentry *d;
2076 	int ret = -ENOMEM;
2077 
2078 	if (!core || !pdentry) {
2079 		ret = -EINVAL;
2080 		goto out;
2081 	}
2082 
2083 	d = debugfs_create_dir(core->name, pdentry);
2084 	if (!d)
2085 		goto out;
2086 
2087 	core->dentry = d;
2088 
2089 	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2090 			(u32 *)&core->rate);
2091 	if (!d)
2092 		goto err_out;
2093 
2094 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2095 			(u32 *)&core->accuracy);
2096 	if (!d)
2097 		goto err_out;
2098 
2099 	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2100 			(u32 *)&core->phase);
2101 	if (!d)
2102 		goto err_out;
2103 
2104 	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2105 			(u32 *)&core->flags);
2106 	if (!d)
2107 		goto err_out;
2108 
2109 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2110 			(u32 *)&core->prepare_count);
2111 	if (!d)
2112 		goto err_out;
2113 
2114 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2115 			(u32 *)&core->enable_count);
2116 	if (!d)
2117 		goto err_out;
2118 
2119 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2120 			(u32 *)&core->notifier_count);
2121 	if (!d)
2122 		goto err_out;
2123 
2124 	if (core->ops->debug_init) {
2125 		ret = core->ops->debug_init(core->hw, core->dentry);
2126 		if (ret)
2127 			goto err_out;
2128 	}
2129 
2130 	ret = 0;
2131 	goto out;
2132 
2133 err_out:
2134 	debugfs_remove_recursive(core->dentry);
2135 	core->dentry = NULL;
2136 out:
2137 	return ret;
2138 }
2139 
2140 /**
2141  * clk_debug_register - add a clk node to the debugfs clk directory
2142  * @core: the clk being added to the debugfs clk directory
2143  *
2144  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2145  * initialized.  Otherwise it bails out early since the debugfs clk directory
2146  * will be created lazily by clk_debug_init as part of a late_initcall.
2147  */
2148 static int clk_debug_register(struct clk_core *core)
2149 {
2150 	int ret = 0;
2151 
2152 	mutex_lock(&clk_debug_lock);
2153 	hlist_add_head(&core->debug_node, &clk_debug_list);
2154 
2155 	if (!inited)
2156 		goto unlock;
2157 
2158 	ret = clk_debug_create_one(core, rootdir);
2159 unlock:
2160 	mutex_unlock(&clk_debug_lock);
2161 
2162 	return ret;
2163 }
2164 
2165  /**
2166  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2167  * @core: the clk being removed from the debugfs clk directory
2168  *
2169  * Dynamically removes a clk and all its child nodes from the
2170  * debugfs clk directory if clk->dentry points to debugfs created by
2171  * clk_debug_register in __clk_core_init.
2172  */
2173 static void clk_debug_unregister(struct clk_core *core)
2174 {
2175 	mutex_lock(&clk_debug_lock);
2176 	hlist_del_init(&core->debug_node);
2177 	debugfs_remove_recursive(core->dentry);
2178 	core->dentry = NULL;
2179 	mutex_unlock(&clk_debug_lock);
2180 }
2181 
2182 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2183 				void *data, const struct file_operations *fops)
2184 {
2185 	struct dentry *d = NULL;
2186 
2187 	if (hw->core->dentry)
2188 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2189 					fops);
2190 
2191 	return d;
2192 }
2193 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2194 
2195 /**
2196  * clk_debug_init - lazily populate the debugfs clk directory
2197  *
2198  * clks are often initialized very early during boot before memory can be
2199  * dynamically allocated and well before debugfs is setup. This function
2200  * populates the debugfs clk directory once at boot-time when we know that
2201  * debugfs is setup. It should only be called once at boot-time, all other clks
2202  * added dynamically will be done so with clk_debug_register.
2203  */
2204 static int __init clk_debug_init(void)
2205 {
2206 	struct clk_core *core;
2207 	struct dentry *d;
2208 
2209 	rootdir = debugfs_create_dir("clk", NULL);
2210 
2211 	if (!rootdir)
2212 		return -ENOMEM;
2213 
2214 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2215 				&clk_summary_fops);
2216 	if (!d)
2217 		return -ENOMEM;
2218 
2219 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2220 				&clk_dump_fops);
2221 	if (!d)
2222 		return -ENOMEM;
2223 
2224 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2225 				&orphan_list, &clk_summary_fops);
2226 	if (!d)
2227 		return -ENOMEM;
2228 
2229 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2230 				&orphan_list, &clk_dump_fops);
2231 	if (!d)
2232 		return -ENOMEM;
2233 
2234 	mutex_lock(&clk_debug_lock);
2235 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2236 		clk_debug_create_one(core, rootdir);
2237 
2238 	inited = 1;
2239 	mutex_unlock(&clk_debug_lock);
2240 
2241 	return 0;
2242 }
2243 late_initcall(clk_debug_init);
2244 #else
2245 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2246 static inline void clk_debug_reparent(struct clk_core *core,
2247 				      struct clk_core *new_parent)
2248 {
2249 }
2250 static inline void clk_debug_unregister(struct clk_core *core)
2251 {
2252 }
2253 #endif
2254 
2255 /**
2256  * __clk_core_init - initialize the data structures in a struct clk_core
2257  * @core:	clk_core being initialized
2258  *
2259  * Initializes the lists in struct clk_core, queries the hardware for the
2260  * parent and rate and sets them both.
2261  */
2262 static int __clk_core_init(struct clk_core *core)
2263 {
2264 	int i, ret = 0;
2265 	struct clk_core *orphan;
2266 	struct hlist_node *tmp2;
2267 	unsigned long rate;
2268 
2269 	if (!core)
2270 		return -EINVAL;
2271 
2272 	clk_prepare_lock();
2273 
2274 	/* check to see if a clock with this name is already registered */
2275 	if (clk_core_lookup(core->name)) {
2276 		pr_debug("%s: clk %s already initialized\n",
2277 				__func__, core->name);
2278 		ret = -EEXIST;
2279 		goto out;
2280 	}
2281 
2282 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2283 	if (core->ops->set_rate &&
2284 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2285 	      core->ops->recalc_rate)) {
2286 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2287 		       __func__, core->name);
2288 		ret = -EINVAL;
2289 		goto out;
2290 	}
2291 
2292 	if (core->ops->set_parent && !core->ops->get_parent) {
2293 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2294 		       __func__, core->name);
2295 		ret = -EINVAL;
2296 		goto out;
2297 	}
2298 
2299 	if (core->num_parents > 1 && !core->ops->get_parent) {
2300 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2301 		       __func__, core->name);
2302 		ret = -EINVAL;
2303 		goto out;
2304 	}
2305 
2306 	if (core->ops->set_rate_and_parent &&
2307 			!(core->ops->set_parent && core->ops->set_rate)) {
2308 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2309 				__func__, core->name);
2310 		ret = -EINVAL;
2311 		goto out;
2312 	}
2313 
2314 	/* throw a WARN if any entries in parent_names are NULL */
2315 	for (i = 0; i < core->num_parents; i++)
2316 		WARN(!core->parent_names[i],
2317 				"%s: invalid NULL in %s's .parent_names\n",
2318 				__func__, core->name);
2319 
2320 	core->parent = __clk_init_parent(core);
2321 
2322 	/*
2323 	 * Populate core->parent if parent has already been clk_core_init'd. If
2324 	 * parent has not yet been clk_core_init'd then place clk in the orphan
2325 	 * list.  If clk doesn't have any parents then place it in the root
2326 	 * clk list.
2327 	 *
2328 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2329 	 * clocks and re-parent any that are children of the clock currently
2330 	 * being clk_init'd.
2331 	 */
2332 	if (core->parent) {
2333 		hlist_add_head(&core->child_node,
2334 				&core->parent->children);
2335 		core->orphan = core->parent->orphan;
2336 	} else if (!core->num_parents) {
2337 		hlist_add_head(&core->child_node, &clk_root_list);
2338 		core->orphan = false;
2339 	} else {
2340 		hlist_add_head(&core->child_node, &clk_orphan_list);
2341 		core->orphan = true;
2342 	}
2343 
2344 	/*
2345 	 * Set clk's accuracy.  The preferred method is to use
2346 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2347 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2348 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2349 	 * clock).
2350 	 */
2351 	if (core->ops->recalc_accuracy)
2352 		core->accuracy = core->ops->recalc_accuracy(core->hw,
2353 					__clk_get_accuracy(core->parent));
2354 	else if (core->parent)
2355 		core->accuracy = core->parent->accuracy;
2356 	else
2357 		core->accuracy = 0;
2358 
2359 	/*
2360 	 * Set clk's phase.
2361 	 * Since a phase is by definition relative to its parent, just
2362 	 * query the current clock phase, or just assume it's in phase.
2363 	 */
2364 	if (core->ops->get_phase)
2365 		core->phase = core->ops->get_phase(core->hw);
2366 	else
2367 		core->phase = 0;
2368 
2369 	/*
2370 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2371 	 * simple clocks and lazy developers the default fallback is to use the
2372 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2373 	 * then rate is set to zero.
2374 	 */
2375 	if (core->ops->recalc_rate)
2376 		rate = core->ops->recalc_rate(core->hw,
2377 				clk_core_get_rate_nolock(core->parent));
2378 	else if (core->parent)
2379 		rate = core->parent->rate;
2380 	else
2381 		rate = 0;
2382 	core->rate = core->req_rate = rate;
2383 
2384 	/*
2385 	 * walk the list of orphan clocks and reparent any that newly finds a
2386 	 * parent.
2387 	 */
2388 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2389 		struct clk_core *parent = __clk_init_parent(orphan);
2390 
2391 		if (parent)
2392 			clk_core_reparent(orphan, parent);
2393 	}
2394 
2395 	/*
2396 	 * optional platform-specific magic
2397 	 *
2398 	 * The .init callback is not used by any of the basic clock types, but
2399 	 * exists for weird hardware that must perform initialization magic.
2400 	 * Please consider other ways of solving initialization problems before
2401 	 * using this callback, as its use is discouraged.
2402 	 */
2403 	if (core->ops->init)
2404 		core->ops->init(core->hw);
2405 
2406 	if (core->flags & CLK_IS_CRITICAL) {
2407 		unsigned long flags;
2408 
2409 		clk_core_prepare(core);
2410 
2411 		flags = clk_enable_lock();
2412 		clk_core_enable(core);
2413 		clk_enable_unlock(flags);
2414 	}
2415 
2416 	kref_init(&core->ref);
2417 out:
2418 	clk_prepare_unlock();
2419 
2420 	if (!ret)
2421 		clk_debug_register(core);
2422 
2423 	return ret;
2424 }
2425 
2426 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2427 			     const char *con_id)
2428 {
2429 	struct clk *clk;
2430 
2431 	/* This is to allow this function to be chained to others */
2432 	if (IS_ERR_OR_NULL(hw))
2433 		return (struct clk *) hw;
2434 
2435 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2436 	if (!clk)
2437 		return ERR_PTR(-ENOMEM);
2438 
2439 	clk->core = hw->core;
2440 	clk->dev_id = dev_id;
2441 	clk->con_id = con_id;
2442 	clk->max_rate = ULONG_MAX;
2443 
2444 	clk_prepare_lock();
2445 	hlist_add_head(&clk->clks_node, &hw->core->clks);
2446 	clk_prepare_unlock();
2447 
2448 	return clk;
2449 }
2450 
2451 void __clk_free_clk(struct clk *clk)
2452 {
2453 	clk_prepare_lock();
2454 	hlist_del(&clk->clks_node);
2455 	clk_prepare_unlock();
2456 
2457 	kfree(clk);
2458 }
2459 
2460 /**
2461  * clk_register - allocate a new clock, register it and return an opaque cookie
2462  * @dev: device that is registering this clock
2463  * @hw: link to hardware-specific clock data
2464  *
2465  * clk_register is the primary interface for populating the clock tree with new
2466  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2467  * cannot be dereferenced by driver code but may be used in conjunction with the
2468  * rest of the clock API.  In the event of an error clk_register will return an
2469  * error code; drivers must test for an error code after calling clk_register.
2470  */
2471 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2472 {
2473 	int i, ret;
2474 	struct clk_core *core;
2475 
2476 	core = kzalloc(sizeof(*core), GFP_KERNEL);
2477 	if (!core) {
2478 		ret = -ENOMEM;
2479 		goto fail_out;
2480 	}
2481 
2482 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2483 	if (!core->name) {
2484 		ret = -ENOMEM;
2485 		goto fail_name;
2486 	}
2487 	core->ops = hw->init->ops;
2488 	if (dev && dev->driver)
2489 		core->owner = dev->driver->owner;
2490 	core->hw = hw;
2491 	core->flags = hw->init->flags;
2492 	core->num_parents = hw->init->num_parents;
2493 	core->min_rate = 0;
2494 	core->max_rate = ULONG_MAX;
2495 	hw->core = core;
2496 
2497 	/* allocate local copy in case parent_names is __initdata */
2498 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2499 					GFP_KERNEL);
2500 
2501 	if (!core->parent_names) {
2502 		ret = -ENOMEM;
2503 		goto fail_parent_names;
2504 	}
2505 
2506 
2507 	/* copy each string name in case parent_names is __initdata */
2508 	for (i = 0; i < core->num_parents; i++) {
2509 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2510 						GFP_KERNEL);
2511 		if (!core->parent_names[i]) {
2512 			ret = -ENOMEM;
2513 			goto fail_parent_names_copy;
2514 		}
2515 	}
2516 
2517 	/* avoid unnecessary string look-ups of clk_core's possible parents. */
2518 	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
2519 				GFP_KERNEL);
2520 	if (!core->parents) {
2521 		ret = -ENOMEM;
2522 		goto fail_parents;
2523 	};
2524 
2525 	INIT_HLIST_HEAD(&core->clks);
2526 
2527 	hw->clk = __clk_create_clk(hw, NULL, NULL);
2528 	if (IS_ERR(hw->clk)) {
2529 		ret = PTR_ERR(hw->clk);
2530 		goto fail_parents;
2531 	}
2532 
2533 	ret = __clk_core_init(core);
2534 	if (!ret)
2535 		return hw->clk;
2536 
2537 	__clk_free_clk(hw->clk);
2538 	hw->clk = NULL;
2539 
2540 fail_parents:
2541 	kfree(core->parents);
2542 fail_parent_names_copy:
2543 	while (--i >= 0)
2544 		kfree_const(core->parent_names[i]);
2545 	kfree(core->parent_names);
2546 fail_parent_names:
2547 	kfree_const(core->name);
2548 fail_name:
2549 	kfree(core);
2550 fail_out:
2551 	return ERR_PTR(ret);
2552 }
2553 EXPORT_SYMBOL_GPL(clk_register);
2554 
2555 /**
2556  * clk_hw_register - register a clk_hw and return an error code
2557  * @dev: device that is registering this clock
2558  * @hw: link to hardware-specific clock data
2559  *
2560  * clk_hw_register is the primary interface for populating the clock tree with
2561  * new clock nodes. It returns an integer equal to zero indicating success or
2562  * less than zero indicating failure. Drivers must test for an error code after
2563  * calling clk_hw_register().
2564  */
2565 int clk_hw_register(struct device *dev, struct clk_hw *hw)
2566 {
2567 	return PTR_ERR_OR_ZERO(clk_register(dev, hw));
2568 }
2569 EXPORT_SYMBOL_GPL(clk_hw_register);
2570 
2571 /* Free memory allocated for a clock. */
2572 static void __clk_release(struct kref *ref)
2573 {
2574 	struct clk_core *core = container_of(ref, struct clk_core, ref);
2575 	int i = core->num_parents;
2576 
2577 	lockdep_assert_held(&prepare_lock);
2578 
2579 	kfree(core->parents);
2580 	while (--i >= 0)
2581 		kfree_const(core->parent_names[i]);
2582 
2583 	kfree(core->parent_names);
2584 	kfree_const(core->name);
2585 	kfree(core);
2586 }
2587 
2588 /*
2589  * Empty clk_ops for unregistered clocks. These are used temporarily
2590  * after clk_unregister() was called on a clock and until last clock
2591  * consumer calls clk_put() and the struct clk object is freed.
2592  */
2593 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2594 {
2595 	return -ENXIO;
2596 }
2597 
2598 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2599 {
2600 	WARN_ON_ONCE(1);
2601 }
2602 
2603 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2604 					unsigned long parent_rate)
2605 {
2606 	return -ENXIO;
2607 }
2608 
2609 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2610 {
2611 	return -ENXIO;
2612 }
2613 
2614 static const struct clk_ops clk_nodrv_ops = {
2615 	.enable		= clk_nodrv_prepare_enable,
2616 	.disable	= clk_nodrv_disable_unprepare,
2617 	.prepare	= clk_nodrv_prepare_enable,
2618 	.unprepare	= clk_nodrv_disable_unprepare,
2619 	.set_rate	= clk_nodrv_set_rate,
2620 	.set_parent	= clk_nodrv_set_parent,
2621 };
2622 
2623 /**
2624  * clk_unregister - unregister a currently registered clock
2625  * @clk: clock to unregister
2626  */
2627 void clk_unregister(struct clk *clk)
2628 {
2629 	unsigned long flags;
2630 
2631 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2632 		return;
2633 
2634 	clk_debug_unregister(clk->core);
2635 
2636 	clk_prepare_lock();
2637 
2638 	if (clk->core->ops == &clk_nodrv_ops) {
2639 		pr_err("%s: unregistered clock: %s\n", __func__,
2640 		       clk->core->name);
2641 		goto unlock;
2642 	}
2643 	/*
2644 	 * Assign empty clock ops for consumers that might still hold
2645 	 * a reference to this clock.
2646 	 */
2647 	flags = clk_enable_lock();
2648 	clk->core->ops = &clk_nodrv_ops;
2649 	clk_enable_unlock(flags);
2650 
2651 	if (!hlist_empty(&clk->core->children)) {
2652 		struct clk_core *child;
2653 		struct hlist_node *t;
2654 
2655 		/* Reparent all children to the orphan list. */
2656 		hlist_for_each_entry_safe(child, t, &clk->core->children,
2657 					  child_node)
2658 			clk_core_set_parent(child, NULL);
2659 	}
2660 
2661 	hlist_del_init(&clk->core->child_node);
2662 
2663 	if (clk->core->prepare_count)
2664 		pr_warn("%s: unregistering prepared clock: %s\n",
2665 					__func__, clk->core->name);
2666 	kref_put(&clk->core->ref, __clk_release);
2667 unlock:
2668 	clk_prepare_unlock();
2669 }
2670 EXPORT_SYMBOL_GPL(clk_unregister);
2671 
2672 /**
2673  * clk_hw_unregister - unregister a currently registered clk_hw
2674  * @hw: hardware-specific clock data to unregister
2675  */
2676 void clk_hw_unregister(struct clk_hw *hw)
2677 {
2678 	clk_unregister(hw->clk);
2679 }
2680 EXPORT_SYMBOL_GPL(clk_hw_unregister);
2681 
2682 static void devm_clk_release(struct device *dev, void *res)
2683 {
2684 	clk_unregister(*(struct clk **)res);
2685 }
2686 
2687 static void devm_clk_hw_release(struct device *dev, void *res)
2688 {
2689 	clk_hw_unregister(*(struct clk_hw **)res);
2690 }
2691 
2692 /**
2693  * devm_clk_register - resource managed clk_register()
2694  * @dev: device that is registering this clock
2695  * @hw: link to hardware-specific clock data
2696  *
2697  * Managed clk_register(). Clocks returned from this function are
2698  * automatically clk_unregister()ed on driver detach. See clk_register() for
2699  * more information.
2700  */
2701 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2702 {
2703 	struct clk *clk;
2704 	struct clk **clkp;
2705 
2706 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2707 	if (!clkp)
2708 		return ERR_PTR(-ENOMEM);
2709 
2710 	clk = clk_register(dev, hw);
2711 	if (!IS_ERR(clk)) {
2712 		*clkp = clk;
2713 		devres_add(dev, clkp);
2714 	} else {
2715 		devres_free(clkp);
2716 	}
2717 
2718 	return clk;
2719 }
2720 EXPORT_SYMBOL_GPL(devm_clk_register);
2721 
2722 /**
2723  * devm_clk_hw_register - resource managed clk_hw_register()
2724  * @dev: device that is registering this clock
2725  * @hw: link to hardware-specific clock data
2726  *
2727  * Managed clk_hw_register(). Clocks registered by this function are
2728  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
2729  * for more information.
2730  */
2731 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
2732 {
2733 	struct clk_hw **hwp;
2734 	int ret;
2735 
2736 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
2737 	if (!hwp)
2738 		return -ENOMEM;
2739 
2740 	ret = clk_hw_register(dev, hw);
2741 	if (!ret) {
2742 		*hwp = hw;
2743 		devres_add(dev, hwp);
2744 	} else {
2745 		devres_free(hwp);
2746 	}
2747 
2748 	return ret;
2749 }
2750 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
2751 
2752 static int devm_clk_match(struct device *dev, void *res, void *data)
2753 {
2754 	struct clk *c = res;
2755 	if (WARN_ON(!c))
2756 		return 0;
2757 	return c == data;
2758 }
2759 
2760 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
2761 {
2762 	struct clk_hw *hw = res;
2763 
2764 	if (WARN_ON(!hw))
2765 		return 0;
2766 	return hw == data;
2767 }
2768 
2769 /**
2770  * devm_clk_unregister - resource managed clk_unregister()
2771  * @clk: clock to unregister
2772  *
2773  * Deallocate a clock allocated with devm_clk_register(). Normally
2774  * this function will not need to be called and the resource management
2775  * code will ensure that the resource is freed.
2776  */
2777 void devm_clk_unregister(struct device *dev, struct clk *clk)
2778 {
2779 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2780 }
2781 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2782 
2783 /**
2784  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
2785  * @dev: device that is unregistering the hardware-specific clock data
2786  * @hw: link to hardware-specific clock data
2787  *
2788  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
2789  * this function will not need to be called and the resource management
2790  * code will ensure that the resource is freed.
2791  */
2792 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
2793 {
2794 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
2795 				hw));
2796 }
2797 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
2798 
2799 /*
2800  * clkdev helpers
2801  */
2802 int __clk_get(struct clk *clk)
2803 {
2804 	struct clk_core *core = !clk ? NULL : clk->core;
2805 
2806 	if (core) {
2807 		if (!try_module_get(core->owner))
2808 			return 0;
2809 
2810 		kref_get(&core->ref);
2811 	}
2812 	return 1;
2813 }
2814 
2815 void __clk_put(struct clk *clk)
2816 {
2817 	struct module *owner;
2818 
2819 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2820 		return;
2821 
2822 	clk_prepare_lock();
2823 
2824 	hlist_del(&clk->clks_node);
2825 	if (clk->min_rate > clk->core->req_rate ||
2826 	    clk->max_rate < clk->core->req_rate)
2827 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2828 
2829 	owner = clk->core->owner;
2830 	kref_put(&clk->core->ref, __clk_release);
2831 
2832 	clk_prepare_unlock();
2833 
2834 	module_put(owner);
2835 
2836 	kfree(clk);
2837 }
2838 
2839 /***        clk rate change notifiers        ***/
2840 
2841 /**
2842  * clk_notifier_register - add a clk rate change notifier
2843  * @clk: struct clk * to watch
2844  * @nb: struct notifier_block * with callback info
2845  *
2846  * Request notification when clk's rate changes.  This uses an SRCU
2847  * notifier because we want it to block and notifier unregistrations are
2848  * uncommon.  The callbacks associated with the notifier must not
2849  * re-enter into the clk framework by calling any top-level clk APIs;
2850  * this will cause a nested prepare_lock mutex.
2851  *
2852  * In all notification cases (pre, post and abort rate change) the original
2853  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
2854  * and the new frequency is passed via struct clk_notifier_data.new_rate.
2855  *
2856  * clk_notifier_register() must be called from non-atomic context.
2857  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2858  * allocation failure; otherwise, passes along the return value of
2859  * srcu_notifier_chain_register().
2860  */
2861 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2862 {
2863 	struct clk_notifier *cn;
2864 	int ret = -ENOMEM;
2865 
2866 	if (!clk || !nb)
2867 		return -EINVAL;
2868 
2869 	clk_prepare_lock();
2870 
2871 	/* search the list of notifiers for this clk */
2872 	list_for_each_entry(cn, &clk_notifier_list, node)
2873 		if (cn->clk == clk)
2874 			break;
2875 
2876 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2877 	if (cn->clk != clk) {
2878 		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2879 		if (!cn)
2880 			goto out;
2881 
2882 		cn->clk = clk;
2883 		srcu_init_notifier_head(&cn->notifier_head);
2884 
2885 		list_add(&cn->node, &clk_notifier_list);
2886 	}
2887 
2888 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2889 
2890 	clk->core->notifier_count++;
2891 
2892 out:
2893 	clk_prepare_unlock();
2894 
2895 	return ret;
2896 }
2897 EXPORT_SYMBOL_GPL(clk_notifier_register);
2898 
2899 /**
2900  * clk_notifier_unregister - remove a clk rate change notifier
2901  * @clk: struct clk *
2902  * @nb: struct notifier_block * with callback info
2903  *
2904  * Request no further notification for changes to 'clk' and frees memory
2905  * allocated in clk_notifier_register.
2906  *
2907  * Returns -EINVAL if called with null arguments; otherwise, passes
2908  * along the return value of srcu_notifier_chain_unregister().
2909  */
2910 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2911 {
2912 	struct clk_notifier *cn = NULL;
2913 	int ret = -EINVAL;
2914 
2915 	if (!clk || !nb)
2916 		return -EINVAL;
2917 
2918 	clk_prepare_lock();
2919 
2920 	list_for_each_entry(cn, &clk_notifier_list, node)
2921 		if (cn->clk == clk)
2922 			break;
2923 
2924 	if (cn->clk == clk) {
2925 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2926 
2927 		clk->core->notifier_count--;
2928 
2929 		/* XXX the notifier code should handle this better */
2930 		if (!cn->notifier_head.head) {
2931 			srcu_cleanup_notifier_head(&cn->notifier_head);
2932 			list_del(&cn->node);
2933 			kfree(cn);
2934 		}
2935 
2936 	} else {
2937 		ret = -ENOENT;
2938 	}
2939 
2940 	clk_prepare_unlock();
2941 
2942 	return ret;
2943 }
2944 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2945 
2946 #ifdef CONFIG_OF
2947 /**
2948  * struct of_clk_provider - Clock provider registration structure
2949  * @link: Entry in global list of clock providers
2950  * @node: Pointer to device tree node of clock provider
2951  * @get: Get clock callback.  Returns NULL or a struct clk for the
2952  *       given clock specifier
2953  * @data: context pointer to be passed into @get callback
2954  */
2955 struct of_clk_provider {
2956 	struct list_head link;
2957 
2958 	struct device_node *node;
2959 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2960 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
2961 	void *data;
2962 };
2963 
2964 static const struct of_device_id __clk_of_table_sentinel
2965 	__used __section(__clk_of_table_end);
2966 
2967 static LIST_HEAD(of_clk_providers);
2968 static DEFINE_MUTEX(of_clk_mutex);
2969 
2970 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2971 				     void *data)
2972 {
2973 	return data;
2974 }
2975 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2976 
2977 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
2978 {
2979 	return data;
2980 }
2981 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
2982 
2983 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2984 {
2985 	struct clk_onecell_data *clk_data = data;
2986 	unsigned int idx = clkspec->args[0];
2987 
2988 	if (idx >= clk_data->clk_num) {
2989 		pr_err("%s: invalid clock index %u\n", __func__, idx);
2990 		return ERR_PTR(-EINVAL);
2991 	}
2992 
2993 	return clk_data->clks[idx];
2994 }
2995 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2996 
2997 struct clk_hw *
2998 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
2999 {
3000 	struct clk_hw_onecell_data *hw_data = data;
3001 	unsigned int idx = clkspec->args[0];
3002 
3003 	if (idx >= hw_data->num) {
3004 		pr_err("%s: invalid index %u\n", __func__, idx);
3005 		return ERR_PTR(-EINVAL);
3006 	}
3007 
3008 	return hw_data->hws[idx];
3009 }
3010 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3011 
3012 /**
3013  * of_clk_add_provider() - Register a clock provider for a node
3014  * @np: Device node pointer associated with clock provider
3015  * @clk_src_get: callback for decoding clock
3016  * @data: context pointer for @clk_src_get callback.
3017  */
3018 int of_clk_add_provider(struct device_node *np,
3019 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3020 						   void *data),
3021 			void *data)
3022 {
3023 	struct of_clk_provider *cp;
3024 	int ret;
3025 
3026 	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
3027 	if (!cp)
3028 		return -ENOMEM;
3029 
3030 	cp->node = of_node_get(np);
3031 	cp->data = data;
3032 	cp->get = clk_src_get;
3033 
3034 	mutex_lock(&of_clk_mutex);
3035 	list_add(&cp->link, &of_clk_providers);
3036 	mutex_unlock(&of_clk_mutex);
3037 	pr_debug("Added clock from %s\n", np->full_name);
3038 
3039 	ret = of_clk_set_defaults(np, true);
3040 	if (ret < 0)
3041 		of_clk_del_provider(np);
3042 
3043 	return ret;
3044 }
3045 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3046 
3047 /**
3048  * of_clk_add_hw_provider() - Register a clock provider for a node
3049  * @np: Device node pointer associated with clock provider
3050  * @get: callback for decoding clk_hw
3051  * @data: context pointer for @get callback.
3052  */
3053 int of_clk_add_hw_provider(struct device_node *np,
3054 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3055 						 void *data),
3056 			   void *data)
3057 {
3058 	struct of_clk_provider *cp;
3059 	int ret;
3060 
3061 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3062 	if (!cp)
3063 		return -ENOMEM;
3064 
3065 	cp->node = of_node_get(np);
3066 	cp->data = data;
3067 	cp->get_hw = get;
3068 
3069 	mutex_lock(&of_clk_mutex);
3070 	list_add(&cp->link, &of_clk_providers);
3071 	mutex_unlock(&of_clk_mutex);
3072 	pr_debug("Added clk_hw provider from %s\n", np->full_name);
3073 
3074 	ret = of_clk_set_defaults(np, true);
3075 	if (ret < 0)
3076 		of_clk_del_provider(np);
3077 
3078 	return ret;
3079 }
3080 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3081 
3082 /**
3083  * of_clk_del_provider() - Remove a previously registered clock provider
3084  * @np: Device node pointer associated with clock provider
3085  */
3086 void of_clk_del_provider(struct device_node *np)
3087 {
3088 	struct of_clk_provider *cp;
3089 
3090 	mutex_lock(&of_clk_mutex);
3091 	list_for_each_entry(cp, &of_clk_providers, link) {
3092 		if (cp->node == np) {
3093 			list_del(&cp->link);
3094 			of_node_put(cp->node);
3095 			kfree(cp);
3096 			break;
3097 		}
3098 	}
3099 	mutex_unlock(&of_clk_mutex);
3100 }
3101 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3102 
3103 static struct clk_hw *
3104 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3105 			      struct of_phandle_args *clkspec)
3106 {
3107 	struct clk *clk;
3108 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
3109 
3110 	if (provider->get_hw) {
3111 		hw = provider->get_hw(clkspec, provider->data);
3112 	} else if (provider->get) {
3113 		clk = provider->get(clkspec, provider->data);
3114 		if (!IS_ERR(clk))
3115 			hw = __clk_get_hw(clk);
3116 		else
3117 			hw = ERR_CAST(clk);
3118 	}
3119 
3120 	return hw;
3121 }
3122 
3123 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3124 				       const char *dev_id, const char *con_id)
3125 {
3126 	struct of_clk_provider *provider;
3127 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3128 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
3129 
3130 	if (!clkspec)
3131 		return ERR_PTR(-EINVAL);
3132 
3133 	/* Check if we have such a provider in our array */
3134 	mutex_lock(&of_clk_mutex);
3135 	list_for_each_entry(provider, &of_clk_providers, link) {
3136 		if (provider->node == clkspec->np)
3137 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
3138 		if (!IS_ERR(hw)) {
3139 			clk = __clk_create_clk(hw, dev_id, con_id);
3140 
3141 			if (!IS_ERR(clk) && !__clk_get(clk)) {
3142 				__clk_free_clk(clk);
3143 				clk = ERR_PTR(-ENOENT);
3144 			}
3145 
3146 			break;
3147 		}
3148 	}
3149 	mutex_unlock(&of_clk_mutex);
3150 
3151 	return clk;
3152 }
3153 
3154 /**
3155  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3156  * @clkspec: pointer to a clock specifier data structure
3157  *
3158  * This function looks up a struct clk from the registered list of clock
3159  * providers, an input is a clock specifier data structure as returned
3160  * from the of_parse_phandle_with_args() function call.
3161  */
3162 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3163 {
3164 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3165 }
3166 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3167 
3168 /**
3169  * of_clk_get_parent_count() - Count the number of clocks a device node has
3170  * @np: device node to count
3171  *
3172  * Returns: The number of clocks that are possible parents of this node
3173  */
3174 unsigned int of_clk_get_parent_count(struct device_node *np)
3175 {
3176 	int count;
3177 
3178 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3179 	if (count < 0)
3180 		return 0;
3181 
3182 	return count;
3183 }
3184 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3185 
3186 const char *of_clk_get_parent_name(struct device_node *np, int index)
3187 {
3188 	struct of_phandle_args clkspec;
3189 	struct property *prop;
3190 	const char *clk_name;
3191 	const __be32 *vp;
3192 	u32 pv;
3193 	int rc;
3194 	int count;
3195 	struct clk *clk;
3196 
3197 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3198 					&clkspec);
3199 	if (rc)
3200 		return NULL;
3201 
3202 	index = clkspec.args_count ? clkspec.args[0] : 0;
3203 	count = 0;
3204 
3205 	/* if there is an indices property, use it to transfer the index
3206 	 * specified into an array offset for the clock-output-names property.
3207 	 */
3208 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3209 		if (index == pv) {
3210 			index = count;
3211 			break;
3212 		}
3213 		count++;
3214 	}
3215 	/* We went off the end of 'clock-indices' without finding it */
3216 	if (prop && !vp)
3217 		return NULL;
3218 
3219 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3220 					  index,
3221 					  &clk_name) < 0) {
3222 		/*
3223 		 * Best effort to get the name if the clock has been
3224 		 * registered with the framework. If the clock isn't
3225 		 * registered, we return the node name as the name of
3226 		 * the clock as long as #clock-cells = 0.
3227 		 */
3228 		clk = of_clk_get_from_provider(&clkspec);
3229 		if (IS_ERR(clk)) {
3230 			if (clkspec.args_count == 0)
3231 				clk_name = clkspec.np->name;
3232 			else
3233 				clk_name = NULL;
3234 		} else {
3235 			clk_name = __clk_get_name(clk);
3236 			clk_put(clk);
3237 		}
3238 	}
3239 
3240 
3241 	of_node_put(clkspec.np);
3242 	return clk_name;
3243 }
3244 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3245 
3246 /**
3247  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3248  * number of parents
3249  * @np: Device node pointer associated with clock provider
3250  * @parents: pointer to char array that hold the parents' names
3251  * @size: size of the @parents array
3252  *
3253  * Return: number of parents for the clock node.
3254  */
3255 int of_clk_parent_fill(struct device_node *np, const char **parents,
3256 		       unsigned int size)
3257 {
3258 	unsigned int i = 0;
3259 
3260 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3261 		i++;
3262 
3263 	return i;
3264 }
3265 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3266 
3267 struct clock_provider {
3268 	of_clk_init_cb_t clk_init_cb;
3269 	struct device_node *np;
3270 	struct list_head node;
3271 };
3272 
3273 /*
3274  * This function looks for a parent clock. If there is one, then it
3275  * checks that the provider for this parent clock was initialized, in
3276  * this case the parent clock will be ready.
3277  */
3278 static int parent_ready(struct device_node *np)
3279 {
3280 	int i = 0;
3281 
3282 	while (true) {
3283 		struct clk *clk = of_clk_get(np, i);
3284 
3285 		/* this parent is ready we can check the next one */
3286 		if (!IS_ERR(clk)) {
3287 			clk_put(clk);
3288 			i++;
3289 			continue;
3290 		}
3291 
3292 		/* at least one parent is not ready, we exit now */
3293 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3294 			return 0;
3295 
3296 		/*
3297 		 * Here we make assumption that the device tree is
3298 		 * written correctly. So an error means that there is
3299 		 * no more parent. As we didn't exit yet, then the
3300 		 * previous parent are ready. If there is no clock
3301 		 * parent, no need to wait for them, then we can
3302 		 * consider their absence as being ready
3303 		 */
3304 		return 1;
3305 	}
3306 }
3307 
3308 /**
3309  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3310  * @np: Device node pointer associated with clock provider
3311  * @index: clock index
3312  * @flags: pointer to clk_core->flags
3313  *
3314  * Detects if the clock-critical property exists and, if so, sets the
3315  * corresponding CLK_IS_CRITICAL flag.
3316  *
3317  * Do not use this function. It exists only for legacy Device Tree
3318  * bindings, such as the one-clock-per-node style that are outdated.
3319  * Those bindings typically put all clock data into .dts and the Linux
3320  * driver has no clock data, thus making it impossible to set this flag
3321  * correctly from the driver. Only those drivers may call
3322  * of_clk_detect_critical from their setup functions.
3323  *
3324  * Return: error code or zero on success
3325  */
3326 int of_clk_detect_critical(struct device_node *np,
3327 					  int index, unsigned long *flags)
3328 {
3329 	struct property *prop;
3330 	const __be32 *cur;
3331 	uint32_t idx;
3332 
3333 	if (!np || !flags)
3334 		return -EINVAL;
3335 
3336 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3337 		if (index == idx)
3338 			*flags |= CLK_IS_CRITICAL;
3339 
3340 	return 0;
3341 }
3342 
3343 /**
3344  * of_clk_init() - Scan and init clock providers from the DT
3345  * @matches: array of compatible values and init functions for providers.
3346  *
3347  * This function scans the device tree for matching clock providers
3348  * and calls their initialization functions. It also does it by trying
3349  * to follow the dependencies.
3350  */
3351 void __init of_clk_init(const struct of_device_id *matches)
3352 {
3353 	const struct of_device_id *match;
3354 	struct device_node *np;
3355 	struct clock_provider *clk_provider, *next;
3356 	bool is_init_done;
3357 	bool force = false;
3358 	LIST_HEAD(clk_provider_list);
3359 
3360 	if (!matches)
3361 		matches = &__clk_of_table;
3362 
3363 	/* First prepare the list of the clocks providers */
3364 	for_each_matching_node_and_match(np, matches, &match) {
3365 		struct clock_provider *parent;
3366 
3367 		if (!of_device_is_available(np))
3368 			continue;
3369 
3370 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3371 		if (!parent) {
3372 			list_for_each_entry_safe(clk_provider, next,
3373 						 &clk_provider_list, node) {
3374 				list_del(&clk_provider->node);
3375 				of_node_put(clk_provider->np);
3376 				kfree(clk_provider);
3377 			}
3378 			of_node_put(np);
3379 			return;
3380 		}
3381 
3382 		parent->clk_init_cb = match->data;
3383 		parent->np = of_node_get(np);
3384 		list_add_tail(&parent->node, &clk_provider_list);
3385 	}
3386 
3387 	while (!list_empty(&clk_provider_list)) {
3388 		is_init_done = false;
3389 		list_for_each_entry_safe(clk_provider, next,
3390 					&clk_provider_list, node) {
3391 			if (force || parent_ready(clk_provider->np)) {
3392 
3393 				clk_provider->clk_init_cb(clk_provider->np);
3394 				of_clk_set_defaults(clk_provider->np, true);
3395 
3396 				list_del(&clk_provider->node);
3397 				of_node_put(clk_provider->np);
3398 				kfree(clk_provider);
3399 				is_init_done = true;
3400 			}
3401 		}
3402 
3403 		/*
3404 		 * We didn't manage to initialize any of the
3405 		 * remaining providers during the last loop, so now we
3406 		 * initialize all the remaining ones unconditionally
3407 		 * in case the clock parent was not mandatory
3408 		 */
3409 		if (!is_init_done)
3410 			force = true;
3411 	}
3412 }
3413 #endif
3414