1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/clk.txt 10 */ 11 12 #include <linux/clk-provider.h> 13 #include <linux/clk/clk-conf.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/spinlock.h> 17 #include <linux/err.h> 18 #include <linux/list.h> 19 #include <linux/slab.h> 20 #include <linux/of.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/sched.h> 24 #include <linux/clkdev.h> 25 26 #include "clk.h" 27 28 static DEFINE_SPINLOCK(enable_lock); 29 static DEFINE_MUTEX(prepare_lock); 30 31 static struct task_struct *prepare_owner; 32 static struct task_struct *enable_owner; 33 34 static int prepare_refcnt; 35 static int enable_refcnt; 36 37 static HLIST_HEAD(clk_root_list); 38 static HLIST_HEAD(clk_orphan_list); 39 static LIST_HEAD(clk_notifier_list); 40 41 /*** private data structures ***/ 42 43 struct clk_core { 44 const char *name; 45 const struct clk_ops *ops; 46 struct clk_hw *hw; 47 struct module *owner; 48 struct clk_core *parent; 49 const char **parent_names; 50 struct clk_core **parents; 51 u8 num_parents; 52 u8 new_parent_index; 53 unsigned long rate; 54 unsigned long req_rate; 55 unsigned long new_rate; 56 struct clk_core *new_parent; 57 struct clk_core *new_child; 58 unsigned long flags; 59 unsigned int enable_count; 60 unsigned int prepare_count; 61 unsigned long accuracy; 62 int phase; 63 struct hlist_head children; 64 struct hlist_node child_node; 65 struct hlist_head clks; 66 unsigned int notifier_count; 67 #ifdef CONFIG_DEBUG_FS 68 struct dentry *dentry; 69 struct hlist_node debug_node; 70 #endif 71 struct kref ref; 72 }; 73 74 #define CREATE_TRACE_POINTS 75 #include <trace/events/clk.h> 76 77 struct clk { 78 struct clk_core *core; 79 const char *dev_id; 80 const char *con_id; 81 unsigned long min_rate; 82 unsigned long max_rate; 83 struct hlist_node clks_node; 84 }; 85 86 /*** locking ***/ 87 static void clk_prepare_lock(void) 88 { 89 if (!mutex_trylock(&prepare_lock)) { 90 if (prepare_owner == current) { 91 prepare_refcnt++; 92 return; 93 } 94 mutex_lock(&prepare_lock); 95 } 96 WARN_ON_ONCE(prepare_owner != NULL); 97 WARN_ON_ONCE(prepare_refcnt != 0); 98 prepare_owner = current; 99 prepare_refcnt = 1; 100 } 101 102 static void clk_prepare_unlock(void) 103 { 104 WARN_ON_ONCE(prepare_owner != current); 105 WARN_ON_ONCE(prepare_refcnt == 0); 106 107 if (--prepare_refcnt) 108 return; 109 prepare_owner = NULL; 110 mutex_unlock(&prepare_lock); 111 } 112 113 static unsigned long clk_enable_lock(void) 114 { 115 unsigned long flags; 116 117 if (!spin_trylock_irqsave(&enable_lock, flags)) { 118 if (enable_owner == current) { 119 enable_refcnt++; 120 return flags; 121 } 122 spin_lock_irqsave(&enable_lock, flags); 123 } 124 WARN_ON_ONCE(enable_owner != NULL); 125 WARN_ON_ONCE(enable_refcnt != 0); 126 enable_owner = current; 127 enable_refcnt = 1; 128 return flags; 129 } 130 131 static void clk_enable_unlock(unsigned long flags) 132 { 133 WARN_ON_ONCE(enable_owner != current); 134 WARN_ON_ONCE(enable_refcnt == 0); 135 136 if (--enable_refcnt) 137 return; 138 enable_owner = NULL; 139 spin_unlock_irqrestore(&enable_lock, flags); 140 } 141 142 static bool clk_core_is_prepared(struct clk_core *core) 143 { 144 /* 145 * .is_prepared is optional for clocks that can prepare 146 * fall back to software usage counter if it is missing 147 */ 148 if (!core->ops->is_prepared) 149 return core->prepare_count; 150 151 return core->ops->is_prepared(core->hw); 152 } 153 154 static bool clk_core_is_enabled(struct clk_core *core) 155 { 156 /* 157 * .is_enabled is only mandatory for clocks that gate 158 * fall back to software usage counter if .is_enabled is missing 159 */ 160 if (!core->ops->is_enabled) 161 return core->enable_count; 162 163 return core->ops->is_enabled(core->hw); 164 } 165 166 static void clk_unprepare_unused_subtree(struct clk_core *core) 167 { 168 struct clk_core *child; 169 170 lockdep_assert_held(&prepare_lock); 171 172 hlist_for_each_entry(child, &core->children, child_node) 173 clk_unprepare_unused_subtree(child); 174 175 if (core->prepare_count) 176 return; 177 178 if (core->flags & CLK_IGNORE_UNUSED) 179 return; 180 181 if (clk_core_is_prepared(core)) { 182 trace_clk_unprepare(core); 183 if (core->ops->unprepare_unused) 184 core->ops->unprepare_unused(core->hw); 185 else if (core->ops->unprepare) 186 core->ops->unprepare(core->hw); 187 trace_clk_unprepare_complete(core); 188 } 189 } 190 191 static void clk_disable_unused_subtree(struct clk_core *core) 192 { 193 struct clk_core *child; 194 unsigned long flags; 195 196 lockdep_assert_held(&prepare_lock); 197 198 hlist_for_each_entry(child, &core->children, child_node) 199 clk_disable_unused_subtree(child); 200 201 flags = clk_enable_lock(); 202 203 if (core->enable_count) 204 goto unlock_out; 205 206 if (core->flags & CLK_IGNORE_UNUSED) 207 goto unlock_out; 208 209 /* 210 * some gate clocks have special needs during the disable-unused 211 * sequence. call .disable_unused if available, otherwise fall 212 * back to .disable 213 */ 214 if (clk_core_is_enabled(core)) { 215 trace_clk_disable(core); 216 if (core->ops->disable_unused) 217 core->ops->disable_unused(core->hw); 218 else if (core->ops->disable) 219 core->ops->disable(core->hw); 220 trace_clk_disable_complete(core); 221 } 222 223 unlock_out: 224 clk_enable_unlock(flags); 225 } 226 227 static bool clk_ignore_unused; 228 static int __init clk_ignore_unused_setup(char *__unused) 229 { 230 clk_ignore_unused = true; 231 return 1; 232 } 233 __setup("clk_ignore_unused", clk_ignore_unused_setup); 234 235 static int clk_disable_unused(void) 236 { 237 struct clk_core *core; 238 239 if (clk_ignore_unused) { 240 pr_warn("clk: Not disabling unused clocks\n"); 241 return 0; 242 } 243 244 clk_prepare_lock(); 245 246 hlist_for_each_entry(core, &clk_root_list, child_node) 247 clk_disable_unused_subtree(core); 248 249 hlist_for_each_entry(core, &clk_orphan_list, child_node) 250 clk_disable_unused_subtree(core); 251 252 hlist_for_each_entry(core, &clk_root_list, child_node) 253 clk_unprepare_unused_subtree(core); 254 255 hlist_for_each_entry(core, &clk_orphan_list, child_node) 256 clk_unprepare_unused_subtree(core); 257 258 clk_prepare_unlock(); 259 260 return 0; 261 } 262 late_initcall_sync(clk_disable_unused); 263 264 /*** helper functions ***/ 265 266 const char *__clk_get_name(struct clk *clk) 267 { 268 return !clk ? NULL : clk->core->name; 269 } 270 EXPORT_SYMBOL_GPL(__clk_get_name); 271 272 struct clk_hw *__clk_get_hw(struct clk *clk) 273 { 274 return !clk ? NULL : clk->core->hw; 275 } 276 EXPORT_SYMBOL_GPL(__clk_get_hw); 277 278 u8 __clk_get_num_parents(struct clk *clk) 279 { 280 return !clk ? 0 : clk->core->num_parents; 281 } 282 EXPORT_SYMBOL_GPL(__clk_get_num_parents); 283 284 struct clk *__clk_get_parent(struct clk *clk) 285 { 286 if (!clk) 287 return NULL; 288 289 /* TODO: Create a per-user clk and change callers to call clk_put */ 290 return !clk->core->parent ? NULL : clk->core->parent->hw->clk; 291 } 292 EXPORT_SYMBOL_GPL(__clk_get_parent); 293 294 static struct clk_core *__clk_lookup_subtree(const char *name, 295 struct clk_core *core) 296 { 297 struct clk_core *child; 298 struct clk_core *ret; 299 300 if (!strcmp(core->name, name)) 301 return core; 302 303 hlist_for_each_entry(child, &core->children, child_node) { 304 ret = __clk_lookup_subtree(name, child); 305 if (ret) 306 return ret; 307 } 308 309 return NULL; 310 } 311 312 static struct clk_core *clk_core_lookup(const char *name) 313 { 314 struct clk_core *root_clk; 315 struct clk_core *ret; 316 317 if (!name) 318 return NULL; 319 320 /* search the 'proper' clk tree first */ 321 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 322 ret = __clk_lookup_subtree(name, root_clk); 323 if (ret) 324 return ret; 325 } 326 327 /* if not found, then search the orphan tree */ 328 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 329 ret = __clk_lookup_subtree(name, root_clk); 330 if (ret) 331 return ret; 332 } 333 334 return NULL; 335 } 336 337 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 338 u8 index) 339 { 340 if (!core || index >= core->num_parents) 341 return NULL; 342 else if (!core->parents) 343 return clk_core_lookup(core->parent_names[index]); 344 else if (!core->parents[index]) 345 return core->parents[index] = 346 clk_core_lookup(core->parent_names[index]); 347 else 348 return core->parents[index]; 349 } 350 351 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index) 352 { 353 struct clk_core *parent; 354 355 if (!clk) 356 return NULL; 357 358 parent = clk_core_get_parent_by_index(clk->core, index); 359 360 return !parent ? NULL : parent->hw->clk; 361 } 362 EXPORT_SYMBOL_GPL(clk_get_parent_by_index); 363 364 unsigned int __clk_get_enable_count(struct clk *clk) 365 { 366 return !clk ? 0 : clk->core->enable_count; 367 } 368 369 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 370 { 371 unsigned long ret; 372 373 if (!core) { 374 ret = 0; 375 goto out; 376 } 377 378 ret = core->rate; 379 380 if (core->flags & CLK_IS_ROOT) 381 goto out; 382 383 if (!core->parent) 384 ret = 0; 385 386 out: 387 return ret; 388 } 389 390 unsigned long __clk_get_rate(struct clk *clk) 391 { 392 if (!clk) 393 return 0; 394 395 return clk_core_get_rate_nolock(clk->core); 396 } 397 EXPORT_SYMBOL_GPL(__clk_get_rate); 398 399 static unsigned long __clk_get_accuracy(struct clk_core *core) 400 { 401 if (!core) 402 return 0; 403 404 return core->accuracy; 405 } 406 407 unsigned long __clk_get_flags(struct clk *clk) 408 { 409 return !clk ? 0 : clk->core->flags; 410 } 411 EXPORT_SYMBOL_GPL(__clk_get_flags); 412 413 bool __clk_is_prepared(struct clk *clk) 414 { 415 if (!clk) 416 return false; 417 418 return clk_core_is_prepared(clk->core); 419 } 420 421 bool __clk_is_enabled(struct clk *clk) 422 { 423 if (!clk) 424 return false; 425 426 return clk_core_is_enabled(clk->core); 427 } 428 EXPORT_SYMBOL_GPL(__clk_is_enabled); 429 430 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 431 unsigned long best, unsigned long flags) 432 { 433 if (flags & CLK_MUX_ROUND_CLOSEST) 434 return abs(now - rate) < abs(best - rate); 435 436 return now <= rate && now > best; 437 } 438 439 static long 440 clk_mux_determine_rate_flags(struct clk_hw *hw, unsigned long rate, 441 unsigned long min_rate, 442 unsigned long max_rate, 443 unsigned long *best_parent_rate, 444 struct clk_hw **best_parent_p, 445 unsigned long flags) 446 { 447 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 448 int i, num_parents; 449 unsigned long parent_rate, best = 0; 450 451 /* if NO_REPARENT flag set, pass through to current parent */ 452 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 453 parent = core->parent; 454 if (core->flags & CLK_SET_RATE_PARENT) 455 best = __clk_determine_rate(parent ? parent->hw : NULL, 456 rate, min_rate, max_rate); 457 else if (parent) 458 best = clk_core_get_rate_nolock(parent); 459 else 460 best = clk_core_get_rate_nolock(core); 461 goto out; 462 } 463 464 /* find the parent that can provide the fastest rate <= rate */ 465 num_parents = core->num_parents; 466 for (i = 0; i < num_parents; i++) { 467 parent = clk_core_get_parent_by_index(core, i); 468 if (!parent) 469 continue; 470 if (core->flags & CLK_SET_RATE_PARENT) 471 parent_rate = __clk_determine_rate(parent->hw, rate, 472 min_rate, 473 max_rate); 474 else 475 parent_rate = clk_core_get_rate_nolock(parent); 476 if (mux_is_better_rate(rate, parent_rate, best, flags)) { 477 best_parent = parent; 478 best = parent_rate; 479 } 480 } 481 482 out: 483 if (best_parent) 484 *best_parent_p = best_parent->hw; 485 *best_parent_rate = best; 486 487 return best; 488 } 489 490 struct clk *__clk_lookup(const char *name) 491 { 492 struct clk_core *core = clk_core_lookup(name); 493 494 return !core ? NULL : core->hw->clk; 495 } 496 497 static void clk_core_get_boundaries(struct clk_core *core, 498 unsigned long *min_rate, 499 unsigned long *max_rate) 500 { 501 struct clk *clk_user; 502 503 *min_rate = 0; 504 *max_rate = ULONG_MAX; 505 506 hlist_for_each_entry(clk_user, &core->clks, clks_node) 507 *min_rate = max(*min_rate, clk_user->min_rate); 508 509 hlist_for_each_entry(clk_user, &core->clks, clks_node) 510 *max_rate = min(*max_rate, clk_user->max_rate); 511 } 512 513 /* 514 * Helper for finding best parent to provide a given frequency. This can be used 515 * directly as a determine_rate callback (e.g. for a mux), or from a more 516 * complex clock that may combine a mux with other operations. 517 */ 518 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate, 519 unsigned long min_rate, 520 unsigned long max_rate, 521 unsigned long *best_parent_rate, 522 struct clk_hw **best_parent_p) 523 { 524 return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate, 525 best_parent_rate, 526 best_parent_p, 0); 527 } 528 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 529 530 long __clk_mux_determine_rate_closest(struct clk_hw *hw, unsigned long rate, 531 unsigned long min_rate, 532 unsigned long max_rate, 533 unsigned long *best_parent_rate, 534 struct clk_hw **best_parent_p) 535 { 536 return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate, 537 best_parent_rate, 538 best_parent_p, 539 CLK_MUX_ROUND_CLOSEST); 540 } 541 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 542 543 /*** clk api ***/ 544 545 static void clk_core_unprepare(struct clk_core *core) 546 { 547 lockdep_assert_held(&prepare_lock); 548 549 if (!core) 550 return; 551 552 if (WARN_ON(core->prepare_count == 0)) 553 return; 554 555 if (--core->prepare_count > 0) 556 return; 557 558 WARN_ON(core->enable_count > 0); 559 560 trace_clk_unprepare(core); 561 562 if (core->ops->unprepare) 563 core->ops->unprepare(core->hw); 564 565 trace_clk_unprepare_complete(core); 566 clk_core_unprepare(core->parent); 567 } 568 569 /** 570 * clk_unprepare - undo preparation of a clock source 571 * @clk: the clk being unprepared 572 * 573 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 574 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 575 * if the operation may sleep. One example is a clk which is accessed over 576 * I2c. In the complex case a clk gate operation may require a fast and a slow 577 * part. It is this reason that clk_unprepare and clk_disable are not mutually 578 * exclusive. In fact clk_disable must be called before clk_unprepare. 579 */ 580 void clk_unprepare(struct clk *clk) 581 { 582 if (IS_ERR_OR_NULL(clk)) 583 return; 584 585 clk_prepare_lock(); 586 clk_core_unprepare(clk->core); 587 clk_prepare_unlock(); 588 } 589 EXPORT_SYMBOL_GPL(clk_unprepare); 590 591 static int clk_core_prepare(struct clk_core *core) 592 { 593 int ret = 0; 594 595 lockdep_assert_held(&prepare_lock); 596 597 if (!core) 598 return 0; 599 600 if (core->prepare_count == 0) { 601 ret = clk_core_prepare(core->parent); 602 if (ret) 603 return ret; 604 605 trace_clk_prepare(core); 606 607 if (core->ops->prepare) 608 ret = core->ops->prepare(core->hw); 609 610 trace_clk_prepare_complete(core); 611 612 if (ret) { 613 clk_core_unprepare(core->parent); 614 return ret; 615 } 616 } 617 618 core->prepare_count++; 619 620 return 0; 621 } 622 623 /** 624 * clk_prepare - prepare a clock source 625 * @clk: the clk being prepared 626 * 627 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 628 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 629 * operation may sleep. One example is a clk which is accessed over I2c. In 630 * the complex case a clk ungate operation may require a fast and a slow part. 631 * It is this reason that clk_prepare and clk_enable are not mutually 632 * exclusive. In fact clk_prepare must be called before clk_enable. 633 * Returns 0 on success, -EERROR otherwise. 634 */ 635 int clk_prepare(struct clk *clk) 636 { 637 int ret; 638 639 if (!clk) 640 return 0; 641 642 clk_prepare_lock(); 643 ret = clk_core_prepare(clk->core); 644 clk_prepare_unlock(); 645 646 return ret; 647 } 648 EXPORT_SYMBOL_GPL(clk_prepare); 649 650 static void clk_core_disable(struct clk_core *core) 651 { 652 lockdep_assert_held(&enable_lock); 653 654 if (!core) 655 return; 656 657 if (WARN_ON(core->enable_count == 0)) 658 return; 659 660 if (--core->enable_count > 0) 661 return; 662 663 trace_clk_disable(core); 664 665 if (core->ops->disable) 666 core->ops->disable(core->hw); 667 668 trace_clk_disable_complete(core); 669 670 clk_core_disable(core->parent); 671 } 672 673 /** 674 * clk_disable - gate a clock 675 * @clk: the clk being gated 676 * 677 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 678 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 679 * clk if the operation is fast and will never sleep. One example is a 680 * SoC-internal clk which is controlled via simple register writes. In the 681 * complex case a clk gate operation may require a fast and a slow part. It is 682 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 683 * In fact clk_disable must be called before clk_unprepare. 684 */ 685 void clk_disable(struct clk *clk) 686 { 687 unsigned long flags; 688 689 if (IS_ERR_OR_NULL(clk)) 690 return; 691 692 flags = clk_enable_lock(); 693 clk_core_disable(clk->core); 694 clk_enable_unlock(flags); 695 } 696 EXPORT_SYMBOL_GPL(clk_disable); 697 698 static int clk_core_enable(struct clk_core *core) 699 { 700 int ret = 0; 701 702 lockdep_assert_held(&enable_lock); 703 704 if (!core) 705 return 0; 706 707 if (WARN_ON(core->prepare_count == 0)) 708 return -ESHUTDOWN; 709 710 if (core->enable_count == 0) { 711 ret = clk_core_enable(core->parent); 712 713 if (ret) 714 return ret; 715 716 trace_clk_enable(core); 717 718 if (core->ops->enable) 719 ret = core->ops->enable(core->hw); 720 721 trace_clk_enable_complete(core); 722 723 if (ret) { 724 clk_core_disable(core->parent); 725 return ret; 726 } 727 } 728 729 core->enable_count++; 730 return 0; 731 } 732 733 /** 734 * clk_enable - ungate a clock 735 * @clk: the clk being ungated 736 * 737 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 738 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 739 * if the operation will never sleep. One example is a SoC-internal clk which 740 * is controlled via simple register writes. In the complex case a clk ungate 741 * operation may require a fast and a slow part. It is this reason that 742 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 743 * must be called before clk_enable. Returns 0 on success, -EERROR 744 * otherwise. 745 */ 746 int clk_enable(struct clk *clk) 747 { 748 unsigned long flags; 749 int ret; 750 751 if (!clk) 752 return 0; 753 754 flags = clk_enable_lock(); 755 ret = clk_core_enable(clk->core); 756 clk_enable_unlock(flags); 757 758 return ret; 759 } 760 EXPORT_SYMBOL_GPL(clk_enable); 761 762 static unsigned long clk_core_round_rate_nolock(struct clk_core *core, 763 unsigned long rate, 764 unsigned long min_rate, 765 unsigned long max_rate) 766 { 767 unsigned long parent_rate = 0; 768 struct clk_core *parent; 769 struct clk_hw *parent_hw; 770 771 lockdep_assert_held(&prepare_lock); 772 773 if (!core) 774 return 0; 775 776 parent = core->parent; 777 if (parent) 778 parent_rate = parent->rate; 779 780 if (core->ops->determine_rate) { 781 parent_hw = parent ? parent->hw : NULL; 782 return core->ops->determine_rate(core->hw, rate, 783 min_rate, max_rate, 784 &parent_rate, &parent_hw); 785 } else if (core->ops->round_rate) 786 return core->ops->round_rate(core->hw, rate, &parent_rate); 787 else if (core->flags & CLK_SET_RATE_PARENT) 788 return clk_core_round_rate_nolock(core->parent, rate, min_rate, 789 max_rate); 790 else 791 return core->rate; 792 } 793 794 /** 795 * __clk_determine_rate - get the closest rate actually supported by a clock 796 * @hw: determine the rate of this clock 797 * @rate: target rate 798 * @min_rate: returned rate must be greater than this rate 799 * @max_rate: returned rate must be less than this rate 800 * 801 * Useful for clk_ops such as .set_rate and .determine_rate. 802 */ 803 unsigned long __clk_determine_rate(struct clk_hw *hw, 804 unsigned long rate, 805 unsigned long min_rate, 806 unsigned long max_rate) 807 { 808 if (!hw) 809 return 0; 810 811 return clk_core_round_rate_nolock(hw->core, rate, min_rate, max_rate); 812 } 813 EXPORT_SYMBOL_GPL(__clk_determine_rate); 814 815 /** 816 * __clk_round_rate - round the given rate for a clk 817 * @clk: round the rate of this clock 818 * @rate: the rate which is to be rounded 819 * 820 * Useful for clk_ops such as .set_rate 821 */ 822 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate) 823 { 824 unsigned long min_rate; 825 unsigned long max_rate; 826 827 if (!clk) 828 return 0; 829 830 clk_core_get_boundaries(clk->core, &min_rate, &max_rate); 831 832 return clk_core_round_rate_nolock(clk->core, rate, min_rate, max_rate); 833 } 834 EXPORT_SYMBOL_GPL(__clk_round_rate); 835 836 /** 837 * clk_round_rate - round the given rate for a clk 838 * @clk: the clk for which we are rounding a rate 839 * @rate: the rate which is to be rounded 840 * 841 * Takes in a rate as input and rounds it to a rate that the clk can actually 842 * use which is then returned. If clk doesn't support round_rate operation 843 * then the parent rate is returned. 844 */ 845 long clk_round_rate(struct clk *clk, unsigned long rate) 846 { 847 unsigned long ret; 848 849 if (!clk) 850 return 0; 851 852 clk_prepare_lock(); 853 ret = __clk_round_rate(clk, rate); 854 clk_prepare_unlock(); 855 856 return ret; 857 } 858 EXPORT_SYMBOL_GPL(clk_round_rate); 859 860 /** 861 * __clk_notify - call clk notifier chain 862 * @core: clk that is changing rate 863 * @msg: clk notifier type (see include/linux/clk.h) 864 * @old_rate: old clk rate 865 * @new_rate: new clk rate 866 * 867 * Triggers a notifier call chain on the clk rate-change notification 868 * for 'clk'. Passes a pointer to the struct clk and the previous 869 * and current rates to the notifier callback. Intended to be called by 870 * internal clock code only. Returns NOTIFY_DONE from the last driver 871 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 872 * a driver returns that. 873 */ 874 static int __clk_notify(struct clk_core *core, unsigned long msg, 875 unsigned long old_rate, unsigned long new_rate) 876 { 877 struct clk_notifier *cn; 878 struct clk_notifier_data cnd; 879 int ret = NOTIFY_DONE; 880 881 cnd.old_rate = old_rate; 882 cnd.new_rate = new_rate; 883 884 list_for_each_entry(cn, &clk_notifier_list, node) { 885 if (cn->clk->core == core) { 886 cnd.clk = cn->clk; 887 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 888 &cnd); 889 } 890 } 891 892 return ret; 893 } 894 895 /** 896 * __clk_recalc_accuracies 897 * @core: first clk in the subtree 898 * 899 * Walks the subtree of clks starting with clk and recalculates accuracies as 900 * it goes. Note that if a clk does not implement the .recalc_accuracy 901 * callback then it is assumed that the clock will take on the accuracy of its 902 * parent. 903 */ 904 static void __clk_recalc_accuracies(struct clk_core *core) 905 { 906 unsigned long parent_accuracy = 0; 907 struct clk_core *child; 908 909 lockdep_assert_held(&prepare_lock); 910 911 if (core->parent) 912 parent_accuracy = core->parent->accuracy; 913 914 if (core->ops->recalc_accuracy) 915 core->accuracy = core->ops->recalc_accuracy(core->hw, 916 parent_accuracy); 917 else 918 core->accuracy = parent_accuracy; 919 920 hlist_for_each_entry(child, &core->children, child_node) 921 __clk_recalc_accuracies(child); 922 } 923 924 static long clk_core_get_accuracy(struct clk_core *core) 925 { 926 unsigned long accuracy; 927 928 clk_prepare_lock(); 929 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 930 __clk_recalc_accuracies(core); 931 932 accuracy = __clk_get_accuracy(core); 933 clk_prepare_unlock(); 934 935 return accuracy; 936 } 937 938 /** 939 * clk_get_accuracy - return the accuracy of clk 940 * @clk: the clk whose accuracy is being returned 941 * 942 * Simply returns the cached accuracy of the clk, unless 943 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 944 * issued. 945 * If clk is NULL then returns 0. 946 */ 947 long clk_get_accuracy(struct clk *clk) 948 { 949 if (!clk) 950 return 0; 951 952 return clk_core_get_accuracy(clk->core); 953 } 954 EXPORT_SYMBOL_GPL(clk_get_accuracy); 955 956 static unsigned long clk_recalc(struct clk_core *core, 957 unsigned long parent_rate) 958 { 959 if (core->ops->recalc_rate) 960 return core->ops->recalc_rate(core->hw, parent_rate); 961 return parent_rate; 962 } 963 964 /** 965 * __clk_recalc_rates 966 * @core: first clk in the subtree 967 * @msg: notification type (see include/linux/clk.h) 968 * 969 * Walks the subtree of clks starting with clk and recalculates rates as it 970 * goes. Note that if a clk does not implement the .recalc_rate callback then 971 * it is assumed that the clock will take on the rate of its parent. 972 * 973 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 974 * if necessary. 975 */ 976 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 977 { 978 unsigned long old_rate; 979 unsigned long parent_rate = 0; 980 struct clk_core *child; 981 982 lockdep_assert_held(&prepare_lock); 983 984 old_rate = core->rate; 985 986 if (core->parent) 987 parent_rate = core->parent->rate; 988 989 core->rate = clk_recalc(core, parent_rate); 990 991 /* 992 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 993 * & ABORT_RATE_CHANGE notifiers 994 */ 995 if (core->notifier_count && msg) 996 __clk_notify(core, msg, old_rate, core->rate); 997 998 hlist_for_each_entry(child, &core->children, child_node) 999 __clk_recalc_rates(child, msg); 1000 } 1001 1002 static unsigned long clk_core_get_rate(struct clk_core *core) 1003 { 1004 unsigned long rate; 1005 1006 clk_prepare_lock(); 1007 1008 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1009 __clk_recalc_rates(core, 0); 1010 1011 rate = clk_core_get_rate_nolock(core); 1012 clk_prepare_unlock(); 1013 1014 return rate; 1015 } 1016 1017 /** 1018 * clk_get_rate - return the rate of clk 1019 * @clk: the clk whose rate is being returned 1020 * 1021 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1022 * is set, which means a recalc_rate will be issued. 1023 * If clk is NULL then returns 0. 1024 */ 1025 unsigned long clk_get_rate(struct clk *clk) 1026 { 1027 if (!clk) 1028 return 0; 1029 1030 return clk_core_get_rate(clk->core); 1031 } 1032 EXPORT_SYMBOL_GPL(clk_get_rate); 1033 1034 static int clk_fetch_parent_index(struct clk_core *core, 1035 struct clk_core *parent) 1036 { 1037 int i; 1038 1039 if (!core->parents) { 1040 core->parents = kcalloc(core->num_parents, 1041 sizeof(struct clk *), GFP_KERNEL); 1042 if (!core->parents) 1043 return -ENOMEM; 1044 } 1045 1046 /* 1047 * find index of new parent clock using cached parent ptrs, 1048 * or if not yet cached, use string name comparison and cache 1049 * them now to avoid future calls to clk_core_lookup. 1050 */ 1051 for (i = 0; i < core->num_parents; i++) { 1052 if (core->parents[i] == parent) 1053 return i; 1054 1055 if (core->parents[i]) 1056 continue; 1057 1058 if (!strcmp(core->parent_names[i], parent->name)) { 1059 core->parents[i] = clk_core_lookup(parent->name); 1060 return i; 1061 } 1062 } 1063 1064 return -EINVAL; 1065 } 1066 1067 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1068 { 1069 hlist_del(&core->child_node); 1070 1071 if (new_parent) { 1072 /* avoid duplicate POST_RATE_CHANGE notifications */ 1073 if (new_parent->new_child == core) 1074 new_parent->new_child = NULL; 1075 1076 hlist_add_head(&core->child_node, &new_parent->children); 1077 } else { 1078 hlist_add_head(&core->child_node, &clk_orphan_list); 1079 } 1080 1081 core->parent = new_parent; 1082 } 1083 1084 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1085 struct clk_core *parent) 1086 { 1087 unsigned long flags; 1088 struct clk_core *old_parent = core->parent; 1089 1090 /* 1091 * Migrate prepare state between parents and prevent race with 1092 * clk_enable(). 1093 * 1094 * If the clock is not prepared, then a race with 1095 * clk_enable/disable() is impossible since we already have the 1096 * prepare lock (future calls to clk_enable() need to be preceded by 1097 * a clk_prepare()). 1098 * 1099 * If the clock is prepared, migrate the prepared state to the new 1100 * parent and also protect against a race with clk_enable() by 1101 * forcing the clock and the new parent on. This ensures that all 1102 * future calls to clk_enable() are practically NOPs with respect to 1103 * hardware and software states. 1104 * 1105 * See also: Comment for clk_set_parent() below. 1106 */ 1107 if (core->prepare_count) { 1108 clk_core_prepare(parent); 1109 flags = clk_enable_lock(); 1110 clk_core_enable(parent); 1111 clk_core_enable(core); 1112 clk_enable_unlock(flags); 1113 } 1114 1115 /* update the clk tree topology */ 1116 flags = clk_enable_lock(); 1117 clk_reparent(core, parent); 1118 clk_enable_unlock(flags); 1119 1120 return old_parent; 1121 } 1122 1123 static void __clk_set_parent_after(struct clk_core *core, 1124 struct clk_core *parent, 1125 struct clk_core *old_parent) 1126 { 1127 unsigned long flags; 1128 1129 /* 1130 * Finish the migration of prepare state and undo the changes done 1131 * for preventing a race with clk_enable(). 1132 */ 1133 if (core->prepare_count) { 1134 flags = clk_enable_lock(); 1135 clk_core_disable(core); 1136 clk_core_disable(old_parent); 1137 clk_enable_unlock(flags); 1138 clk_core_unprepare(old_parent); 1139 } 1140 } 1141 1142 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1143 u8 p_index) 1144 { 1145 unsigned long flags; 1146 int ret = 0; 1147 struct clk_core *old_parent; 1148 1149 old_parent = __clk_set_parent_before(core, parent); 1150 1151 trace_clk_set_parent(core, parent); 1152 1153 /* change clock input source */ 1154 if (parent && core->ops->set_parent) 1155 ret = core->ops->set_parent(core->hw, p_index); 1156 1157 trace_clk_set_parent_complete(core, parent); 1158 1159 if (ret) { 1160 flags = clk_enable_lock(); 1161 clk_reparent(core, old_parent); 1162 clk_enable_unlock(flags); 1163 1164 if (core->prepare_count) { 1165 flags = clk_enable_lock(); 1166 clk_core_disable(core); 1167 clk_core_disable(parent); 1168 clk_enable_unlock(flags); 1169 clk_core_unprepare(parent); 1170 } 1171 return ret; 1172 } 1173 1174 __clk_set_parent_after(core, parent, old_parent); 1175 1176 return 0; 1177 } 1178 1179 /** 1180 * __clk_speculate_rates 1181 * @core: first clk in the subtree 1182 * @parent_rate: the "future" rate of clk's parent 1183 * 1184 * Walks the subtree of clks starting with clk, speculating rates as it 1185 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1186 * 1187 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1188 * pre-rate change notifications and returns early if no clks in the 1189 * subtree have subscribed to the notifications. Note that if a clk does not 1190 * implement the .recalc_rate callback then it is assumed that the clock will 1191 * take on the rate of its parent. 1192 */ 1193 static int __clk_speculate_rates(struct clk_core *core, 1194 unsigned long parent_rate) 1195 { 1196 struct clk_core *child; 1197 unsigned long new_rate; 1198 int ret = NOTIFY_DONE; 1199 1200 lockdep_assert_held(&prepare_lock); 1201 1202 new_rate = clk_recalc(core, parent_rate); 1203 1204 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1205 if (core->notifier_count) 1206 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1207 1208 if (ret & NOTIFY_STOP_MASK) { 1209 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1210 __func__, core->name, ret); 1211 goto out; 1212 } 1213 1214 hlist_for_each_entry(child, &core->children, child_node) { 1215 ret = __clk_speculate_rates(child, new_rate); 1216 if (ret & NOTIFY_STOP_MASK) 1217 break; 1218 } 1219 1220 out: 1221 return ret; 1222 } 1223 1224 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1225 struct clk_core *new_parent, u8 p_index) 1226 { 1227 struct clk_core *child; 1228 1229 core->new_rate = new_rate; 1230 core->new_parent = new_parent; 1231 core->new_parent_index = p_index; 1232 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1233 core->new_child = NULL; 1234 if (new_parent && new_parent != core->parent) 1235 new_parent->new_child = core; 1236 1237 hlist_for_each_entry(child, &core->children, child_node) { 1238 child->new_rate = clk_recalc(child, new_rate); 1239 clk_calc_subtree(child, child->new_rate, NULL, 0); 1240 } 1241 } 1242 1243 /* 1244 * calculate the new rates returning the topmost clock that has to be 1245 * changed. 1246 */ 1247 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1248 unsigned long rate) 1249 { 1250 struct clk_core *top = core; 1251 struct clk_core *old_parent, *parent; 1252 struct clk_hw *parent_hw; 1253 unsigned long best_parent_rate = 0; 1254 unsigned long new_rate; 1255 unsigned long min_rate; 1256 unsigned long max_rate; 1257 int p_index = 0; 1258 long ret; 1259 1260 /* sanity */ 1261 if (IS_ERR_OR_NULL(core)) 1262 return NULL; 1263 1264 /* save parent rate, if it exists */ 1265 parent = old_parent = core->parent; 1266 if (parent) 1267 best_parent_rate = parent->rate; 1268 1269 clk_core_get_boundaries(core, &min_rate, &max_rate); 1270 1271 /* find the closest rate and parent clk/rate */ 1272 if (core->ops->determine_rate) { 1273 parent_hw = parent ? parent->hw : NULL; 1274 ret = core->ops->determine_rate(core->hw, rate, 1275 min_rate, 1276 max_rate, 1277 &best_parent_rate, 1278 &parent_hw); 1279 if (ret < 0) 1280 return NULL; 1281 1282 new_rate = ret; 1283 parent = parent_hw ? parent_hw->core : NULL; 1284 } else if (core->ops->round_rate) { 1285 ret = core->ops->round_rate(core->hw, rate, 1286 &best_parent_rate); 1287 if (ret < 0) 1288 return NULL; 1289 1290 new_rate = ret; 1291 if (new_rate < min_rate || new_rate > max_rate) 1292 return NULL; 1293 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1294 /* pass-through clock without adjustable parent */ 1295 core->new_rate = core->rate; 1296 return NULL; 1297 } else { 1298 /* pass-through clock with adjustable parent */ 1299 top = clk_calc_new_rates(parent, rate); 1300 new_rate = parent->new_rate; 1301 goto out; 1302 } 1303 1304 /* some clocks must be gated to change parent */ 1305 if (parent != old_parent && 1306 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1307 pr_debug("%s: %s not gated but wants to reparent\n", 1308 __func__, core->name); 1309 return NULL; 1310 } 1311 1312 /* try finding the new parent index */ 1313 if (parent && core->num_parents > 1) { 1314 p_index = clk_fetch_parent_index(core, parent); 1315 if (p_index < 0) { 1316 pr_debug("%s: clk %s can not be parent of clk %s\n", 1317 __func__, parent->name, core->name); 1318 return NULL; 1319 } 1320 } 1321 1322 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1323 best_parent_rate != parent->rate) 1324 top = clk_calc_new_rates(parent, best_parent_rate); 1325 1326 out: 1327 clk_calc_subtree(core, new_rate, parent, p_index); 1328 1329 return top; 1330 } 1331 1332 /* 1333 * Notify about rate changes in a subtree. Always walk down the whole tree 1334 * so that in case of an error we can walk down the whole tree again and 1335 * abort the change. 1336 */ 1337 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1338 unsigned long event) 1339 { 1340 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1341 int ret = NOTIFY_DONE; 1342 1343 if (core->rate == core->new_rate) 1344 return NULL; 1345 1346 if (core->notifier_count) { 1347 ret = __clk_notify(core, event, core->rate, core->new_rate); 1348 if (ret & NOTIFY_STOP_MASK) 1349 fail_clk = core; 1350 } 1351 1352 hlist_for_each_entry(child, &core->children, child_node) { 1353 /* Skip children who will be reparented to another clock */ 1354 if (child->new_parent && child->new_parent != core) 1355 continue; 1356 tmp_clk = clk_propagate_rate_change(child, event); 1357 if (tmp_clk) 1358 fail_clk = tmp_clk; 1359 } 1360 1361 /* handle the new child who might not be in core->children yet */ 1362 if (core->new_child) { 1363 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1364 if (tmp_clk) 1365 fail_clk = tmp_clk; 1366 } 1367 1368 return fail_clk; 1369 } 1370 1371 /* 1372 * walk down a subtree and set the new rates notifying the rate 1373 * change on the way 1374 */ 1375 static void clk_change_rate(struct clk_core *core) 1376 { 1377 struct clk_core *child; 1378 struct hlist_node *tmp; 1379 unsigned long old_rate; 1380 unsigned long best_parent_rate = 0; 1381 bool skip_set_rate = false; 1382 struct clk_core *old_parent; 1383 1384 old_rate = core->rate; 1385 1386 if (core->new_parent) 1387 best_parent_rate = core->new_parent->rate; 1388 else if (core->parent) 1389 best_parent_rate = core->parent->rate; 1390 1391 if (core->new_parent && core->new_parent != core->parent) { 1392 old_parent = __clk_set_parent_before(core, core->new_parent); 1393 trace_clk_set_parent(core, core->new_parent); 1394 1395 if (core->ops->set_rate_and_parent) { 1396 skip_set_rate = true; 1397 core->ops->set_rate_and_parent(core->hw, core->new_rate, 1398 best_parent_rate, 1399 core->new_parent_index); 1400 } else if (core->ops->set_parent) { 1401 core->ops->set_parent(core->hw, core->new_parent_index); 1402 } 1403 1404 trace_clk_set_parent_complete(core, core->new_parent); 1405 __clk_set_parent_after(core, core->new_parent, old_parent); 1406 } 1407 1408 trace_clk_set_rate(core, core->new_rate); 1409 1410 if (!skip_set_rate && core->ops->set_rate) 1411 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 1412 1413 trace_clk_set_rate_complete(core, core->new_rate); 1414 1415 core->rate = clk_recalc(core, best_parent_rate); 1416 1417 if (core->notifier_count && old_rate != core->rate) 1418 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 1419 1420 if (core->flags & CLK_RECALC_NEW_RATES) 1421 (void)clk_calc_new_rates(core, core->new_rate); 1422 1423 /* 1424 * Use safe iteration, as change_rate can actually swap parents 1425 * for certain clock types. 1426 */ 1427 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 1428 /* Skip children who will be reparented to another clock */ 1429 if (child->new_parent && child->new_parent != core) 1430 continue; 1431 clk_change_rate(child); 1432 } 1433 1434 /* handle the new child who might not be in core->children yet */ 1435 if (core->new_child) 1436 clk_change_rate(core->new_child); 1437 } 1438 1439 static int clk_core_set_rate_nolock(struct clk_core *core, 1440 unsigned long req_rate) 1441 { 1442 struct clk_core *top, *fail_clk; 1443 unsigned long rate = req_rate; 1444 int ret = 0; 1445 1446 if (!core) 1447 return 0; 1448 1449 /* bail early if nothing to do */ 1450 if (rate == clk_core_get_rate_nolock(core)) 1451 return 0; 1452 1453 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count) 1454 return -EBUSY; 1455 1456 /* calculate new rates and get the topmost changed clock */ 1457 top = clk_calc_new_rates(core, rate); 1458 if (!top) 1459 return -EINVAL; 1460 1461 /* notify that we are about to change rates */ 1462 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1463 if (fail_clk) { 1464 pr_debug("%s: failed to set %s rate\n", __func__, 1465 fail_clk->name); 1466 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1467 return -EBUSY; 1468 } 1469 1470 /* change the rates */ 1471 clk_change_rate(top); 1472 1473 core->req_rate = req_rate; 1474 1475 return ret; 1476 } 1477 1478 /** 1479 * clk_set_rate - specify a new rate for clk 1480 * @clk: the clk whose rate is being changed 1481 * @rate: the new rate for clk 1482 * 1483 * In the simplest case clk_set_rate will only adjust the rate of clk. 1484 * 1485 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1486 * propagate up to clk's parent; whether or not this happens depends on the 1487 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1488 * after calling .round_rate then upstream parent propagation is ignored. If 1489 * *parent_rate comes back with a new rate for clk's parent then we propagate 1490 * up to clk's parent and set its rate. Upward propagation will continue 1491 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1492 * .round_rate stops requesting changes to clk's parent_rate. 1493 * 1494 * Rate changes are accomplished via tree traversal that also recalculates the 1495 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1496 * 1497 * Returns 0 on success, -EERROR otherwise. 1498 */ 1499 int clk_set_rate(struct clk *clk, unsigned long rate) 1500 { 1501 int ret; 1502 1503 if (!clk) 1504 return 0; 1505 1506 /* prevent racing with updates to the clock topology */ 1507 clk_prepare_lock(); 1508 1509 ret = clk_core_set_rate_nolock(clk->core, rate); 1510 1511 clk_prepare_unlock(); 1512 1513 return ret; 1514 } 1515 EXPORT_SYMBOL_GPL(clk_set_rate); 1516 1517 /** 1518 * clk_set_rate_range - set a rate range for a clock source 1519 * @clk: clock source 1520 * @min: desired minimum clock rate in Hz, inclusive 1521 * @max: desired maximum clock rate in Hz, inclusive 1522 * 1523 * Returns success (0) or negative errno. 1524 */ 1525 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 1526 { 1527 int ret = 0; 1528 1529 if (!clk) 1530 return 0; 1531 1532 if (min > max) { 1533 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 1534 __func__, clk->core->name, clk->dev_id, clk->con_id, 1535 min, max); 1536 return -EINVAL; 1537 } 1538 1539 clk_prepare_lock(); 1540 1541 if (min != clk->min_rate || max != clk->max_rate) { 1542 clk->min_rate = min; 1543 clk->max_rate = max; 1544 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 1545 } 1546 1547 clk_prepare_unlock(); 1548 1549 return ret; 1550 } 1551 EXPORT_SYMBOL_GPL(clk_set_rate_range); 1552 1553 /** 1554 * clk_set_min_rate - set a minimum clock rate for a clock source 1555 * @clk: clock source 1556 * @rate: desired minimum clock rate in Hz, inclusive 1557 * 1558 * Returns success (0) or negative errno. 1559 */ 1560 int clk_set_min_rate(struct clk *clk, unsigned long rate) 1561 { 1562 if (!clk) 1563 return 0; 1564 1565 return clk_set_rate_range(clk, rate, clk->max_rate); 1566 } 1567 EXPORT_SYMBOL_GPL(clk_set_min_rate); 1568 1569 /** 1570 * clk_set_max_rate - set a maximum clock rate for a clock source 1571 * @clk: clock source 1572 * @rate: desired maximum clock rate in Hz, inclusive 1573 * 1574 * Returns success (0) or negative errno. 1575 */ 1576 int clk_set_max_rate(struct clk *clk, unsigned long rate) 1577 { 1578 if (!clk) 1579 return 0; 1580 1581 return clk_set_rate_range(clk, clk->min_rate, rate); 1582 } 1583 EXPORT_SYMBOL_GPL(clk_set_max_rate); 1584 1585 /** 1586 * clk_get_parent - return the parent of a clk 1587 * @clk: the clk whose parent gets returned 1588 * 1589 * Simply returns clk->parent. Returns NULL if clk is NULL. 1590 */ 1591 struct clk *clk_get_parent(struct clk *clk) 1592 { 1593 struct clk *parent; 1594 1595 clk_prepare_lock(); 1596 parent = __clk_get_parent(clk); 1597 clk_prepare_unlock(); 1598 1599 return parent; 1600 } 1601 EXPORT_SYMBOL_GPL(clk_get_parent); 1602 1603 /* 1604 * .get_parent is mandatory for clocks with multiple possible parents. It is 1605 * optional for single-parent clocks. Always call .get_parent if it is 1606 * available and WARN if it is missing for multi-parent clocks. 1607 * 1608 * For single-parent clocks without .get_parent, first check to see if the 1609 * .parents array exists, and if so use it to avoid an expensive tree 1610 * traversal. If .parents does not exist then walk the tree. 1611 */ 1612 static struct clk_core *__clk_init_parent(struct clk_core *core) 1613 { 1614 struct clk_core *ret = NULL; 1615 u8 index; 1616 1617 /* handle the trivial cases */ 1618 1619 if (!core->num_parents) 1620 goto out; 1621 1622 if (core->num_parents == 1) { 1623 if (IS_ERR_OR_NULL(core->parent)) 1624 core->parent = clk_core_lookup(core->parent_names[0]); 1625 ret = core->parent; 1626 goto out; 1627 } 1628 1629 if (!core->ops->get_parent) { 1630 WARN(!core->ops->get_parent, 1631 "%s: multi-parent clocks must implement .get_parent\n", 1632 __func__); 1633 goto out; 1634 }; 1635 1636 /* 1637 * Do our best to cache parent clocks in core->parents. This prevents 1638 * unnecessary and expensive lookups. We don't set core->parent here; 1639 * that is done by the calling function. 1640 */ 1641 1642 index = core->ops->get_parent(core->hw); 1643 1644 if (!core->parents) 1645 core->parents = 1646 kcalloc(core->num_parents, sizeof(struct clk *), 1647 GFP_KERNEL); 1648 1649 ret = clk_core_get_parent_by_index(core, index); 1650 1651 out: 1652 return ret; 1653 } 1654 1655 static void clk_core_reparent(struct clk_core *core, 1656 struct clk_core *new_parent) 1657 { 1658 clk_reparent(core, new_parent); 1659 __clk_recalc_accuracies(core); 1660 __clk_recalc_rates(core, POST_RATE_CHANGE); 1661 } 1662 1663 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 1664 { 1665 if (!hw) 1666 return; 1667 1668 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 1669 } 1670 1671 /** 1672 * clk_has_parent - check if a clock is a possible parent for another 1673 * @clk: clock source 1674 * @parent: parent clock source 1675 * 1676 * This function can be used in drivers that need to check that a clock can be 1677 * the parent of another without actually changing the parent. 1678 * 1679 * Returns true if @parent is a possible parent for @clk, false otherwise. 1680 */ 1681 bool clk_has_parent(struct clk *clk, struct clk *parent) 1682 { 1683 struct clk_core *core, *parent_core; 1684 unsigned int i; 1685 1686 /* NULL clocks should be nops, so return success if either is NULL. */ 1687 if (!clk || !parent) 1688 return true; 1689 1690 core = clk->core; 1691 parent_core = parent->core; 1692 1693 /* Optimize for the case where the parent is already the parent. */ 1694 if (core->parent == parent_core) 1695 return true; 1696 1697 for (i = 0; i < core->num_parents; i++) 1698 if (strcmp(core->parent_names[i], parent_core->name) == 0) 1699 return true; 1700 1701 return false; 1702 } 1703 EXPORT_SYMBOL_GPL(clk_has_parent); 1704 1705 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent) 1706 { 1707 int ret = 0; 1708 int p_index = 0; 1709 unsigned long p_rate = 0; 1710 1711 if (!core) 1712 return 0; 1713 1714 /* prevent racing with updates to the clock topology */ 1715 clk_prepare_lock(); 1716 1717 if (core->parent == parent) 1718 goto out; 1719 1720 /* verify ops for for multi-parent clks */ 1721 if ((core->num_parents > 1) && (!core->ops->set_parent)) { 1722 ret = -ENOSYS; 1723 goto out; 1724 } 1725 1726 /* check that we are allowed to re-parent if the clock is in use */ 1727 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1728 ret = -EBUSY; 1729 goto out; 1730 } 1731 1732 /* try finding the new parent index */ 1733 if (parent) { 1734 p_index = clk_fetch_parent_index(core, parent); 1735 p_rate = parent->rate; 1736 if (p_index < 0) { 1737 pr_debug("%s: clk %s can not be parent of clk %s\n", 1738 __func__, parent->name, core->name); 1739 ret = p_index; 1740 goto out; 1741 } 1742 } 1743 1744 /* propagate PRE_RATE_CHANGE notifications */ 1745 ret = __clk_speculate_rates(core, p_rate); 1746 1747 /* abort if a driver objects */ 1748 if (ret & NOTIFY_STOP_MASK) 1749 goto out; 1750 1751 /* do the re-parent */ 1752 ret = __clk_set_parent(core, parent, p_index); 1753 1754 /* propagate rate an accuracy recalculation accordingly */ 1755 if (ret) { 1756 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 1757 } else { 1758 __clk_recalc_rates(core, POST_RATE_CHANGE); 1759 __clk_recalc_accuracies(core); 1760 } 1761 1762 out: 1763 clk_prepare_unlock(); 1764 1765 return ret; 1766 } 1767 1768 /** 1769 * clk_set_parent - switch the parent of a mux clk 1770 * @clk: the mux clk whose input we are switching 1771 * @parent: the new input to clk 1772 * 1773 * Re-parent clk to use parent as its new input source. If clk is in 1774 * prepared state, the clk will get enabled for the duration of this call. If 1775 * that's not acceptable for a specific clk (Eg: the consumer can't handle 1776 * that, the reparenting is glitchy in hardware, etc), use the 1777 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 1778 * 1779 * After successfully changing clk's parent clk_set_parent will update the 1780 * clk topology, sysfs topology and propagate rate recalculation via 1781 * __clk_recalc_rates. 1782 * 1783 * Returns 0 on success, -EERROR otherwise. 1784 */ 1785 int clk_set_parent(struct clk *clk, struct clk *parent) 1786 { 1787 if (!clk) 1788 return 0; 1789 1790 return clk_core_set_parent(clk->core, parent ? parent->core : NULL); 1791 } 1792 EXPORT_SYMBOL_GPL(clk_set_parent); 1793 1794 /** 1795 * clk_set_phase - adjust the phase shift of a clock signal 1796 * @clk: clock signal source 1797 * @degrees: number of degrees the signal is shifted 1798 * 1799 * Shifts the phase of a clock signal by the specified 1800 * degrees. Returns 0 on success, -EERROR otherwise. 1801 * 1802 * This function makes no distinction about the input or reference 1803 * signal that we adjust the clock signal phase against. For example 1804 * phase locked-loop clock signal generators we may shift phase with 1805 * respect to feedback clock signal input, but for other cases the 1806 * clock phase may be shifted with respect to some other, unspecified 1807 * signal. 1808 * 1809 * Additionally the concept of phase shift does not propagate through 1810 * the clock tree hierarchy, which sets it apart from clock rates and 1811 * clock accuracy. A parent clock phase attribute does not have an 1812 * impact on the phase attribute of a child clock. 1813 */ 1814 int clk_set_phase(struct clk *clk, int degrees) 1815 { 1816 int ret = -EINVAL; 1817 1818 if (!clk) 1819 return 0; 1820 1821 /* sanity check degrees */ 1822 degrees %= 360; 1823 if (degrees < 0) 1824 degrees += 360; 1825 1826 clk_prepare_lock(); 1827 1828 trace_clk_set_phase(clk->core, degrees); 1829 1830 if (clk->core->ops->set_phase) 1831 ret = clk->core->ops->set_phase(clk->core->hw, degrees); 1832 1833 trace_clk_set_phase_complete(clk->core, degrees); 1834 1835 if (!ret) 1836 clk->core->phase = degrees; 1837 1838 clk_prepare_unlock(); 1839 1840 return ret; 1841 } 1842 EXPORT_SYMBOL_GPL(clk_set_phase); 1843 1844 static int clk_core_get_phase(struct clk_core *core) 1845 { 1846 int ret; 1847 1848 clk_prepare_lock(); 1849 ret = core->phase; 1850 clk_prepare_unlock(); 1851 1852 return ret; 1853 } 1854 1855 /** 1856 * clk_get_phase - return the phase shift of a clock signal 1857 * @clk: clock signal source 1858 * 1859 * Returns the phase shift of a clock node in degrees, otherwise returns 1860 * -EERROR. 1861 */ 1862 int clk_get_phase(struct clk *clk) 1863 { 1864 if (!clk) 1865 return 0; 1866 1867 return clk_core_get_phase(clk->core); 1868 } 1869 EXPORT_SYMBOL_GPL(clk_get_phase); 1870 1871 /** 1872 * clk_is_match - check if two clk's point to the same hardware clock 1873 * @p: clk compared against q 1874 * @q: clk compared against p 1875 * 1876 * Returns true if the two struct clk pointers both point to the same hardware 1877 * clock node. Put differently, returns true if struct clk *p and struct clk *q 1878 * share the same struct clk_core object. 1879 * 1880 * Returns false otherwise. Note that two NULL clks are treated as matching. 1881 */ 1882 bool clk_is_match(const struct clk *p, const struct clk *q) 1883 { 1884 /* trivial case: identical struct clk's or both NULL */ 1885 if (p == q) 1886 return true; 1887 1888 /* true if clk->core pointers match. Avoid derefing garbage */ 1889 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 1890 if (p->core == q->core) 1891 return true; 1892 1893 return false; 1894 } 1895 EXPORT_SYMBOL_GPL(clk_is_match); 1896 1897 /*** debugfs support ***/ 1898 1899 #ifdef CONFIG_DEBUG_FS 1900 #include <linux/debugfs.h> 1901 1902 static struct dentry *rootdir; 1903 static int inited = 0; 1904 static DEFINE_MUTEX(clk_debug_lock); 1905 static HLIST_HEAD(clk_debug_list); 1906 1907 static struct hlist_head *all_lists[] = { 1908 &clk_root_list, 1909 &clk_orphan_list, 1910 NULL, 1911 }; 1912 1913 static struct hlist_head *orphan_list[] = { 1914 &clk_orphan_list, 1915 NULL, 1916 }; 1917 1918 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 1919 int level) 1920 { 1921 if (!c) 1922 return; 1923 1924 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n", 1925 level * 3 + 1, "", 1926 30 - level * 3, c->name, 1927 c->enable_count, c->prepare_count, clk_core_get_rate(c), 1928 clk_core_get_accuracy(c), clk_core_get_phase(c)); 1929 } 1930 1931 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 1932 int level) 1933 { 1934 struct clk_core *child; 1935 1936 if (!c) 1937 return; 1938 1939 clk_summary_show_one(s, c, level); 1940 1941 hlist_for_each_entry(child, &c->children, child_node) 1942 clk_summary_show_subtree(s, child, level + 1); 1943 } 1944 1945 static int clk_summary_show(struct seq_file *s, void *data) 1946 { 1947 struct clk_core *c; 1948 struct hlist_head **lists = (struct hlist_head **)s->private; 1949 1950 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n"); 1951 seq_puts(s, "----------------------------------------------------------------------------------------\n"); 1952 1953 clk_prepare_lock(); 1954 1955 for (; *lists; lists++) 1956 hlist_for_each_entry(c, *lists, child_node) 1957 clk_summary_show_subtree(s, c, 0); 1958 1959 clk_prepare_unlock(); 1960 1961 return 0; 1962 } 1963 1964 1965 static int clk_summary_open(struct inode *inode, struct file *file) 1966 { 1967 return single_open(file, clk_summary_show, inode->i_private); 1968 } 1969 1970 static const struct file_operations clk_summary_fops = { 1971 .open = clk_summary_open, 1972 .read = seq_read, 1973 .llseek = seq_lseek, 1974 .release = single_release, 1975 }; 1976 1977 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 1978 { 1979 if (!c) 1980 return; 1981 1982 /* This should be JSON format, i.e. elements separated with a comma */ 1983 seq_printf(s, "\"%s\": { ", c->name); 1984 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 1985 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 1986 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 1987 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 1988 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c)); 1989 } 1990 1991 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 1992 { 1993 struct clk_core *child; 1994 1995 if (!c) 1996 return; 1997 1998 clk_dump_one(s, c, level); 1999 2000 hlist_for_each_entry(child, &c->children, child_node) { 2001 seq_printf(s, ","); 2002 clk_dump_subtree(s, child, level + 1); 2003 } 2004 2005 seq_printf(s, "}"); 2006 } 2007 2008 static int clk_dump(struct seq_file *s, void *data) 2009 { 2010 struct clk_core *c; 2011 bool first_node = true; 2012 struct hlist_head **lists = (struct hlist_head **)s->private; 2013 2014 seq_printf(s, "{"); 2015 2016 clk_prepare_lock(); 2017 2018 for (; *lists; lists++) { 2019 hlist_for_each_entry(c, *lists, child_node) { 2020 if (!first_node) 2021 seq_puts(s, ","); 2022 first_node = false; 2023 clk_dump_subtree(s, c, 0); 2024 } 2025 } 2026 2027 clk_prepare_unlock(); 2028 2029 seq_puts(s, "}\n"); 2030 return 0; 2031 } 2032 2033 2034 static int clk_dump_open(struct inode *inode, struct file *file) 2035 { 2036 return single_open(file, clk_dump, inode->i_private); 2037 } 2038 2039 static const struct file_operations clk_dump_fops = { 2040 .open = clk_dump_open, 2041 .read = seq_read, 2042 .llseek = seq_lseek, 2043 .release = single_release, 2044 }; 2045 2046 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 2047 { 2048 struct dentry *d; 2049 int ret = -ENOMEM; 2050 2051 if (!core || !pdentry) { 2052 ret = -EINVAL; 2053 goto out; 2054 } 2055 2056 d = debugfs_create_dir(core->name, pdentry); 2057 if (!d) 2058 goto out; 2059 2060 core->dentry = d; 2061 2062 d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry, 2063 (u32 *)&core->rate); 2064 if (!d) 2065 goto err_out; 2066 2067 d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry, 2068 (u32 *)&core->accuracy); 2069 if (!d) 2070 goto err_out; 2071 2072 d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry, 2073 (u32 *)&core->phase); 2074 if (!d) 2075 goto err_out; 2076 2077 d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry, 2078 (u32 *)&core->flags); 2079 if (!d) 2080 goto err_out; 2081 2082 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry, 2083 (u32 *)&core->prepare_count); 2084 if (!d) 2085 goto err_out; 2086 2087 d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry, 2088 (u32 *)&core->enable_count); 2089 if (!d) 2090 goto err_out; 2091 2092 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry, 2093 (u32 *)&core->notifier_count); 2094 if (!d) 2095 goto err_out; 2096 2097 if (core->ops->debug_init) { 2098 ret = core->ops->debug_init(core->hw, core->dentry); 2099 if (ret) 2100 goto err_out; 2101 } 2102 2103 ret = 0; 2104 goto out; 2105 2106 err_out: 2107 debugfs_remove_recursive(core->dentry); 2108 core->dentry = NULL; 2109 out: 2110 return ret; 2111 } 2112 2113 /** 2114 * clk_debug_register - add a clk node to the debugfs clk directory 2115 * @core: the clk being added to the debugfs clk directory 2116 * 2117 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 2118 * initialized. Otherwise it bails out early since the debugfs clk directory 2119 * will be created lazily by clk_debug_init as part of a late_initcall. 2120 */ 2121 static int clk_debug_register(struct clk_core *core) 2122 { 2123 int ret = 0; 2124 2125 mutex_lock(&clk_debug_lock); 2126 hlist_add_head(&core->debug_node, &clk_debug_list); 2127 2128 if (!inited) 2129 goto unlock; 2130 2131 ret = clk_debug_create_one(core, rootdir); 2132 unlock: 2133 mutex_unlock(&clk_debug_lock); 2134 2135 return ret; 2136 } 2137 2138 /** 2139 * clk_debug_unregister - remove a clk node from the debugfs clk directory 2140 * @core: the clk being removed from the debugfs clk directory 2141 * 2142 * Dynamically removes a clk and all its child nodes from the 2143 * debugfs clk directory if clk->dentry points to debugfs created by 2144 * clk_debug_register in __clk_init. 2145 */ 2146 static void clk_debug_unregister(struct clk_core *core) 2147 { 2148 mutex_lock(&clk_debug_lock); 2149 hlist_del_init(&core->debug_node); 2150 debugfs_remove_recursive(core->dentry); 2151 core->dentry = NULL; 2152 mutex_unlock(&clk_debug_lock); 2153 } 2154 2155 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode, 2156 void *data, const struct file_operations *fops) 2157 { 2158 struct dentry *d = NULL; 2159 2160 if (hw->core->dentry) 2161 d = debugfs_create_file(name, mode, hw->core->dentry, data, 2162 fops); 2163 2164 return d; 2165 } 2166 EXPORT_SYMBOL_GPL(clk_debugfs_add_file); 2167 2168 /** 2169 * clk_debug_init - lazily populate the debugfs clk directory 2170 * 2171 * clks are often initialized very early during boot before memory can be 2172 * dynamically allocated and well before debugfs is setup. This function 2173 * populates the debugfs clk directory once at boot-time when we know that 2174 * debugfs is setup. It should only be called once at boot-time, all other clks 2175 * added dynamically will be done so with clk_debug_register. 2176 */ 2177 static int __init clk_debug_init(void) 2178 { 2179 struct clk_core *core; 2180 struct dentry *d; 2181 2182 rootdir = debugfs_create_dir("clk", NULL); 2183 2184 if (!rootdir) 2185 return -ENOMEM; 2186 2187 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists, 2188 &clk_summary_fops); 2189 if (!d) 2190 return -ENOMEM; 2191 2192 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists, 2193 &clk_dump_fops); 2194 if (!d) 2195 return -ENOMEM; 2196 2197 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir, 2198 &orphan_list, &clk_summary_fops); 2199 if (!d) 2200 return -ENOMEM; 2201 2202 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir, 2203 &orphan_list, &clk_dump_fops); 2204 if (!d) 2205 return -ENOMEM; 2206 2207 mutex_lock(&clk_debug_lock); 2208 hlist_for_each_entry(core, &clk_debug_list, debug_node) 2209 clk_debug_create_one(core, rootdir); 2210 2211 inited = 1; 2212 mutex_unlock(&clk_debug_lock); 2213 2214 return 0; 2215 } 2216 late_initcall(clk_debug_init); 2217 #else 2218 static inline int clk_debug_register(struct clk_core *core) { return 0; } 2219 static inline void clk_debug_reparent(struct clk_core *core, 2220 struct clk_core *new_parent) 2221 { 2222 } 2223 static inline void clk_debug_unregister(struct clk_core *core) 2224 { 2225 } 2226 #endif 2227 2228 /** 2229 * __clk_init - initialize the data structures in a struct clk 2230 * @dev: device initializing this clk, placeholder for now 2231 * @clk: clk being initialized 2232 * 2233 * Initializes the lists in struct clk_core, queries the hardware for the 2234 * parent and rate and sets them both. 2235 */ 2236 static int __clk_init(struct device *dev, struct clk *clk_user) 2237 { 2238 int i, ret = 0; 2239 struct clk_core *orphan; 2240 struct hlist_node *tmp2; 2241 struct clk_core *core; 2242 unsigned long rate; 2243 2244 if (!clk_user) 2245 return -EINVAL; 2246 2247 core = clk_user->core; 2248 2249 clk_prepare_lock(); 2250 2251 /* check to see if a clock with this name is already registered */ 2252 if (clk_core_lookup(core->name)) { 2253 pr_debug("%s: clk %s already initialized\n", 2254 __func__, core->name); 2255 ret = -EEXIST; 2256 goto out; 2257 } 2258 2259 /* check that clk_ops are sane. See Documentation/clk.txt */ 2260 if (core->ops->set_rate && 2261 !((core->ops->round_rate || core->ops->determine_rate) && 2262 core->ops->recalc_rate)) { 2263 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 2264 __func__, core->name); 2265 ret = -EINVAL; 2266 goto out; 2267 } 2268 2269 if (core->ops->set_parent && !core->ops->get_parent) { 2270 pr_warning("%s: %s must implement .get_parent & .set_parent\n", 2271 __func__, core->name); 2272 ret = -EINVAL; 2273 goto out; 2274 } 2275 2276 if (core->ops->set_rate_and_parent && 2277 !(core->ops->set_parent && core->ops->set_rate)) { 2278 pr_warn("%s: %s must implement .set_parent & .set_rate\n", 2279 __func__, core->name); 2280 ret = -EINVAL; 2281 goto out; 2282 } 2283 2284 /* throw a WARN if any entries in parent_names are NULL */ 2285 for (i = 0; i < core->num_parents; i++) 2286 WARN(!core->parent_names[i], 2287 "%s: invalid NULL in %s's .parent_names\n", 2288 __func__, core->name); 2289 2290 /* 2291 * Allocate an array of struct clk *'s to avoid unnecessary string 2292 * look-ups of clk's possible parents. This can fail for clocks passed 2293 * in to clk_init during early boot; thus any access to core->parents[] 2294 * must always check for a NULL pointer and try to populate it if 2295 * necessary. 2296 * 2297 * If core->parents is not NULL we skip this entire block. This allows 2298 * for clock drivers to statically initialize core->parents. 2299 */ 2300 if (core->num_parents > 1 && !core->parents) { 2301 core->parents = kcalloc(core->num_parents, sizeof(struct clk *), 2302 GFP_KERNEL); 2303 /* 2304 * clk_core_lookup returns NULL for parents that have not been 2305 * clk_init'd; thus any access to clk->parents[] must check 2306 * for a NULL pointer. We can always perform lazy lookups for 2307 * missing parents later on. 2308 */ 2309 if (core->parents) 2310 for (i = 0; i < core->num_parents; i++) 2311 core->parents[i] = 2312 clk_core_lookup(core->parent_names[i]); 2313 } 2314 2315 core->parent = __clk_init_parent(core); 2316 2317 /* 2318 * Populate core->parent if parent has already been __clk_init'd. If 2319 * parent has not yet been __clk_init'd then place clk in the orphan 2320 * list. If clk has set the CLK_IS_ROOT flag then place it in the root 2321 * clk list. 2322 * 2323 * Every time a new clk is clk_init'd then we walk the list of orphan 2324 * clocks and re-parent any that are children of the clock currently 2325 * being clk_init'd. 2326 */ 2327 if (core->parent) 2328 hlist_add_head(&core->child_node, 2329 &core->parent->children); 2330 else if (core->flags & CLK_IS_ROOT) 2331 hlist_add_head(&core->child_node, &clk_root_list); 2332 else 2333 hlist_add_head(&core->child_node, &clk_orphan_list); 2334 2335 /* 2336 * Set clk's accuracy. The preferred method is to use 2337 * .recalc_accuracy. For simple clocks and lazy developers the default 2338 * fallback is to use the parent's accuracy. If a clock doesn't have a 2339 * parent (or is orphaned) then accuracy is set to zero (perfect 2340 * clock). 2341 */ 2342 if (core->ops->recalc_accuracy) 2343 core->accuracy = core->ops->recalc_accuracy(core->hw, 2344 __clk_get_accuracy(core->parent)); 2345 else if (core->parent) 2346 core->accuracy = core->parent->accuracy; 2347 else 2348 core->accuracy = 0; 2349 2350 /* 2351 * Set clk's phase. 2352 * Since a phase is by definition relative to its parent, just 2353 * query the current clock phase, or just assume it's in phase. 2354 */ 2355 if (core->ops->get_phase) 2356 core->phase = core->ops->get_phase(core->hw); 2357 else 2358 core->phase = 0; 2359 2360 /* 2361 * Set clk's rate. The preferred method is to use .recalc_rate. For 2362 * simple clocks and lazy developers the default fallback is to use the 2363 * parent's rate. If a clock doesn't have a parent (or is orphaned) 2364 * then rate is set to zero. 2365 */ 2366 if (core->ops->recalc_rate) 2367 rate = core->ops->recalc_rate(core->hw, 2368 clk_core_get_rate_nolock(core->parent)); 2369 else if (core->parent) 2370 rate = core->parent->rate; 2371 else 2372 rate = 0; 2373 core->rate = core->req_rate = rate; 2374 2375 /* 2376 * walk the list of orphan clocks and reparent any that are children of 2377 * this clock 2378 */ 2379 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 2380 if (orphan->num_parents && orphan->ops->get_parent) { 2381 i = orphan->ops->get_parent(orphan->hw); 2382 if (!strcmp(core->name, orphan->parent_names[i])) 2383 clk_core_reparent(orphan, core); 2384 continue; 2385 } 2386 2387 for (i = 0; i < orphan->num_parents; i++) 2388 if (!strcmp(core->name, orphan->parent_names[i])) { 2389 clk_core_reparent(orphan, core); 2390 break; 2391 } 2392 } 2393 2394 /* 2395 * optional platform-specific magic 2396 * 2397 * The .init callback is not used by any of the basic clock types, but 2398 * exists for weird hardware that must perform initialization magic. 2399 * Please consider other ways of solving initialization problems before 2400 * using this callback, as its use is discouraged. 2401 */ 2402 if (core->ops->init) 2403 core->ops->init(core->hw); 2404 2405 kref_init(&core->ref); 2406 out: 2407 clk_prepare_unlock(); 2408 2409 if (!ret) 2410 clk_debug_register(core); 2411 2412 return ret; 2413 } 2414 2415 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id, 2416 const char *con_id) 2417 { 2418 struct clk *clk; 2419 2420 /* This is to allow this function to be chained to others */ 2421 if (!hw || IS_ERR(hw)) 2422 return (struct clk *) hw; 2423 2424 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 2425 if (!clk) 2426 return ERR_PTR(-ENOMEM); 2427 2428 clk->core = hw->core; 2429 clk->dev_id = dev_id; 2430 clk->con_id = con_id; 2431 clk->max_rate = ULONG_MAX; 2432 2433 clk_prepare_lock(); 2434 hlist_add_head(&clk->clks_node, &hw->core->clks); 2435 clk_prepare_unlock(); 2436 2437 return clk; 2438 } 2439 2440 void __clk_free_clk(struct clk *clk) 2441 { 2442 clk_prepare_lock(); 2443 hlist_del(&clk->clks_node); 2444 clk_prepare_unlock(); 2445 2446 kfree(clk); 2447 } 2448 2449 /** 2450 * clk_register - allocate a new clock, register it and return an opaque cookie 2451 * @dev: device that is registering this clock 2452 * @hw: link to hardware-specific clock data 2453 * 2454 * clk_register is the primary interface for populating the clock tree with new 2455 * clock nodes. It returns a pointer to the newly allocated struct clk which 2456 * cannot be dereferenced by driver code but may be used in conjunction with the 2457 * rest of the clock API. In the event of an error clk_register will return an 2458 * error code; drivers must test for an error code after calling clk_register. 2459 */ 2460 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 2461 { 2462 int i, ret; 2463 struct clk_core *core; 2464 2465 core = kzalloc(sizeof(*core), GFP_KERNEL); 2466 if (!core) { 2467 ret = -ENOMEM; 2468 goto fail_out; 2469 } 2470 2471 core->name = kstrdup_const(hw->init->name, GFP_KERNEL); 2472 if (!core->name) { 2473 ret = -ENOMEM; 2474 goto fail_name; 2475 } 2476 core->ops = hw->init->ops; 2477 if (dev && dev->driver) 2478 core->owner = dev->driver->owner; 2479 core->hw = hw; 2480 core->flags = hw->init->flags; 2481 core->num_parents = hw->init->num_parents; 2482 hw->core = core; 2483 2484 /* allocate local copy in case parent_names is __initdata */ 2485 core->parent_names = kcalloc(core->num_parents, sizeof(char *), 2486 GFP_KERNEL); 2487 2488 if (!core->parent_names) { 2489 ret = -ENOMEM; 2490 goto fail_parent_names; 2491 } 2492 2493 2494 /* copy each string name in case parent_names is __initdata */ 2495 for (i = 0; i < core->num_parents; i++) { 2496 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i], 2497 GFP_KERNEL); 2498 if (!core->parent_names[i]) { 2499 ret = -ENOMEM; 2500 goto fail_parent_names_copy; 2501 } 2502 } 2503 2504 INIT_HLIST_HEAD(&core->clks); 2505 2506 hw->clk = __clk_create_clk(hw, NULL, NULL); 2507 if (IS_ERR(hw->clk)) { 2508 ret = PTR_ERR(hw->clk); 2509 goto fail_parent_names_copy; 2510 } 2511 2512 ret = __clk_init(dev, hw->clk); 2513 if (!ret) 2514 return hw->clk; 2515 2516 __clk_free_clk(hw->clk); 2517 hw->clk = NULL; 2518 2519 fail_parent_names_copy: 2520 while (--i >= 0) 2521 kfree_const(core->parent_names[i]); 2522 kfree(core->parent_names); 2523 fail_parent_names: 2524 kfree_const(core->name); 2525 fail_name: 2526 kfree(core); 2527 fail_out: 2528 return ERR_PTR(ret); 2529 } 2530 EXPORT_SYMBOL_GPL(clk_register); 2531 2532 /* Free memory allocated for a clock. */ 2533 static void __clk_release(struct kref *ref) 2534 { 2535 struct clk_core *core = container_of(ref, struct clk_core, ref); 2536 int i = core->num_parents; 2537 2538 lockdep_assert_held(&prepare_lock); 2539 2540 kfree(core->parents); 2541 while (--i >= 0) 2542 kfree_const(core->parent_names[i]); 2543 2544 kfree(core->parent_names); 2545 kfree_const(core->name); 2546 kfree(core); 2547 } 2548 2549 /* 2550 * Empty clk_ops for unregistered clocks. These are used temporarily 2551 * after clk_unregister() was called on a clock and until last clock 2552 * consumer calls clk_put() and the struct clk object is freed. 2553 */ 2554 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 2555 { 2556 return -ENXIO; 2557 } 2558 2559 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 2560 { 2561 WARN_ON_ONCE(1); 2562 } 2563 2564 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 2565 unsigned long parent_rate) 2566 { 2567 return -ENXIO; 2568 } 2569 2570 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 2571 { 2572 return -ENXIO; 2573 } 2574 2575 static const struct clk_ops clk_nodrv_ops = { 2576 .enable = clk_nodrv_prepare_enable, 2577 .disable = clk_nodrv_disable_unprepare, 2578 .prepare = clk_nodrv_prepare_enable, 2579 .unprepare = clk_nodrv_disable_unprepare, 2580 .set_rate = clk_nodrv_set_rate, 2581 .set_parent = clk_nodrv_set_parent, 2582 }; 2583 2584 /** 2585 * clk_unregister - unregister a currently registered clock 2586 * @clk: clock to unregister 2587 */ 2588 void clk_unregister(struct clk *clk) 2589 { 2590 unsigned long flags; 2591 2592 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2593 return; 2594 2595 clk_debug_unregister(clk->core); 2596 2597 clk_prepare_lock(); 2598 2599 if (clk->core->ops == &clk_nodrv_ops) { 2600 pr_err("%s: unregistered clock: %s\n", __func__, 2601 clk->core->name); 2602 return; 2603 } 2604 /* 2605 * Assign empty clock ops for consumers that might still hold 2606 * a reference to this clock. 2607 */ 2608 flags = clk_enable_lock(); 2609 clk->core->ops = &clk_nodrv_ops; 2610 clk_enable_unlock(flags); 2611 2612 if (!hlist_empty(&clk->core->children)) { 2613 struct clk_core *child; 2614 struct hlist_node *t; 2615 2616 /* Reparent all children to the orphan list. */ 2617 hlist_for_each_entry_safe(child, t, &clk->core->children, 2618 child_node) 2619 clk_core_set_parent(child, NULL); 2620 } 2621 2622 hlist_del_init(&clk->core->child_node); 2623 2624 if (clk->core->prepare_count) 2625 pr_warn("%s: unregistering prepared clock: %s\n", 2626 __func__, clk->core->name); 2627 kref_put(&clk->core->ref, __clk_release); 2628 2629 clk_prepare_unlock(); 2630 } 2631 EXPORT_SYMBOL_GPL(clk_unregister); 2632 2633 static void devm_clk_release(struct device *dev, void *res) 2634 { 2635 clk_unregister(*(struct clk **)res); 2636 } 2637 2638 /** 2639 * devm_clk_register - resource managed clk_register() 2640 * @dev: device that is registering this clock 2641 * @hw: link to hardware-specific clock data 2642 * 2643 * Managed clk_register(). Clocks returned from this function are 2644 * automatically clk_unregister()ed on driver detach. See clk_register() for 2645 * more information. 2646 */ 2647 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 2648 { 2649 struct clk *clk; 2650 struct clk **clkp; 2651 2652 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 2653 if (!clkp) 2654 return ERR_PTR(-ENOMEM); 2655 2656 clk = clk_register(dev, hw); 2657 if (!IS_ERR(clk)) { 2658 *clkp = clk; 2659 devres_add(dev, clkp); 2660 } else { 2661 devres_free(clkp); 2662 } 2663 2664 return clk; 2665 } 2666 EXPORT_SYMBOL_GPL(devm_clk_register); 2667 2668 static int devm_clk_match(struct device *dev, void *res, void *data) 2669 { 2670 struct clk *c = res; 2671 if (WARN_ON(!c)) 2672 return 0; 2673 return c == data; 2674 } 2675 2676 /** 2677 * devm_clk_unregister - resource managed clk_unregister() 2678 * @clk: clock to unregister 2679 * 2680 * Deallocate a clock allocated with devm_clk_register(). Normally 2681 * this function will not need to be called and the resource management 2682 * code will ensure that the resource is freed. 2683 */ 2684 void devm_clk_unregister(struct device *dev, struct clk *clk) 2685 { 2686 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 2687 } 2688 EXPORT_SYMBOL_GPL(devm_clk_unregister); 2689 2690 /* 2691 * clkdev helpers 2692 */ 2693 int __clk_get(struct clk *clk) 2694 { 2695 struct clk_core *core = !clk ? NULL : clk->core; 2696 2697 if (core) { 2698 if (!try_module_get(core->owner)) 2699 return 0; 2700 2701 kref_get(&core->ref); 2702 } 2703 return 1; 2704 } 2705 2706 void __clk_put(struct clk *clk) 2707 { 2708 struct module *owner; 2709 2710 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2711 return; 2712 2713 clk_prepare_lock(); 2714 2715 hlist_del(&clk->clks_node); 2716 if (clk->min_rate > clk->core->req_rate || 2717 clk->max_rate < clk->core->req_rate) 2718 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 2719 2720 owner = clk->core->owner; 2721 kref_put(&clk->core->ref, __clk_release); 2722 2723 clk_prepare_unlock(); 2724 2725 module_put(owner); 2726 2727 kfree(clk); 2728 } 2729 2730 /*** clk rate change notifiers ***/ 2731 2732 /** 2733 * clk_notifier_register - add a clk rate change notifier 2734 * @clk: struct clk * to watch 2735 * @nb: struct notifier_block * with callback info 2736 * 2737 * Request notification when clk's rate changes. This uses an SRCU 2738 * notifier because we want it to block and notifier unregistrations are 2739 * uncommon. The callbacks associated with the notifier must not 2740 * re-enter into the clk framework by calling any top-level clk APIs; 2741 * this will cause a nested prepare_lock mutex. 2742 * 2743 * In all notification cases cases (pre, post and abort rate change) the 2744 * original clock rate is passed to the callback via struct 2745 * clk_notifier_data.old_rate and the new frequency is passed via struct 2746 * clk_notifier_data.new_rate. 2747 * 2748 * clk_notifier_register() must be called from non-atomic context. 2749 * Returns -EINVAL if called with null arguments, -ENOMEM upon 2750 * allocation failure; otherwise, passes along the return value of 2751 * srcu_notifier_chain_register(). 2752 */ 2753 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 2754 { 2755 struct clk_notifier *cn; 2756 int ret = -ENOMEM; 2757 2758 if (!clk || !nb) 2759 return -EINVAL; 2760 2761 clk_prepare_lock(); 2762 2763 /* search the list of notifiers for this clk */ 2764 list_for_each_entry(cn, &clk_notifier_list, node) 2765 if (cn->clk == clk) 2766 break; 2767 2768 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 2769 if (cn->clk != clk) { 2770 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL); 2771 if (!cn) 2772 goto out; 2773 2774 cn->clk = clk; 2775 srcu_init_notifier_head(&cn->notifier_head); 2776 2777 list_add(&cn->node, &clk_notifier_list); 2778 } 2779 2780 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 2781 2782 clk->core->notifier_count++; 2783 2784 out: 2785 clk_prepare_unlock(); 2786 2787 return ret; 2788 } 2789 EXPORT_SYMBOL_GPL(clk_notifier_register); 2790 2791 /** 2792 * clk_notifier_unregister - remove a clk rate change notifier 2793 * @clk: struct clk * 2794 * @nb: struct notifier_block * with callback info 2795 * 2796 * Request no further notification for changes to 'clk' and frees memory 2797 * allocated in clk_notifier_register. 2798 * 2799 * Returns -EINVAL if called with null arguments; otherwise, passes 2800 * along the return value of srcu_notifier_chain_unregister(). 2801 */ 2802 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 2803 { 2804 struct clk_notifier *cn = NULL; 2805 int ret = -EINVAL; 2806 2807 if (!clk || !nb) 2808 return -EINVAL; 2809 2810 clk_prepare_lock(); 2811 2812 list_for_each_entry(cn, &clk_notifier_list, node) 2813 if (cn->clk == clk) 2814 break; 2815 2816 if (cn->clk == clk) { 2817 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 2818 2819 clk->core->notifier_count--; 2820 2821 /* XXX the notifier code should handle this better */ 2822 if (!cn->notifier_head.head) { 2823 srcu_cleanup_notifier_head(&cn->notifier_head); 2824 list_del(&cn->node); 2825 kfree(cn); 2826 } 2827 2828 } else { 2829 ret = -ENOENT; 2830 } 2831 2832 clk_prepare_unlock(); 2833 2834 return ret; 2835 } 2836 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 2837 2838 #ifdef CONFIG_OF 2839 /** 2840 * struct of_clk_provider - Clock provider registration structure 2841 * @link: Entry in global list of clock providers 2842 * @node: Pointer to device tree node of clock provider 2843 * @get: Get clock callback. Returns NULL or a struct clk for the 2844 * given clock specifier 2845 * @data: context pointer to be passed into @get callback 2846 */ 2847 struct of_clk_provider { 2848 struct list_head link; 2849 2850 struct device_node *node; 2851 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 2852 void *data; 2853 }; 2854 2855 static const struct of_device_id __clk_of_table_sentinel 2856 __used __section(__clk_of_table_end); 2857 2858 static LIST_HEAD(of_clk_providers); 2859 static DEFINE_MUTEX(of_clk_mutex); 2860 2861 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 2862 void *data) 2863 { 2864 return data; 2865 } 2866 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 2867 2868 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 2869 { 2870 struct clk_onecell_data *clk_data = data; 2871 unsigned int idx = clkspec->args[0]; 2872 2873 if (idx >= clk_data->clk_num) { 2874 pr_err("%s: invalid clock index %d\n", __func__, idx); 2875 return ERR_PTR(-EINVAL); 2876 } 2877 2878 return clk_data->clks[idx]; 2879 } 2880 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 2881 2882 /** 2883 * of_clk_add_provider() - Register a clock provider for a node 2884 * @np: Device node pointer associated with clock provider 2885 * @clk_src_get: callback for decoding clock 2886 * @data: context pointer for @clk_src_get callback. 2887 */ 2888 int of_clk_add_provider(struct device_node *np, 2889 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 2890 void *data), 2891 void *data) 2892 { 2893 struct of_clk_provider *cp; 2894 int ret; 2895 2896 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL); 2897 if (!cp) 2898 return -ENOMEM; 2899 2900 cp->node = of_node_get(np); 2901 cp->data = data; 2902 cp->get = clk_src_get; 2903 2904 mutex_lock(&of_clk_mutex); 2905 list_add(&cp->link, &of_clk_providers); 2906 mutex_unlock(&of_clk_mutex); 2907 pr_debug("Added clock from %s\n", np->full_name); 2908 2909 ret = of_clk_set_defaults(np, true); 2910 if (ret < 0) 2911 of_clk_del_provider(np); 2912 2913 return ret; 2914 } 2915 EXPORT_SYMBOL_GPL(of_clk_add_provider); 2916 2917 /** 2918 * of_clk_del_provider() - Remove a previously registered clock provider 2919 * @np: Device node pointer associated with clock provider 2920 */ 2921 void of_clk_del_provider(struct device_node *np) 2922 { 2923 struct of_clk_provider *cp; 2924 2925 mutex_lock(&of_clk_mutex); 2926 list_for_each_entry(cp, &of_clk_providers, link) { 2927 if (cp->node == np) { 2928 list_del(&cp->link); 2929 of_node_put(cp->node); 2930 kfree(cp); 2931 break; 2932 } 2933 } 2934 mutex_unlock(&of_clk_mutex); 2935 } 2936 EXPORT_SYMBOL_GPL(of_clk_del_provider); 2937 2938 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec, 2939 const char *dev_id, const char *con_id) 2940 { 2941 struct of_clk_provider *provider; 2942 struct clk *clk = ERR_PTR(-EPROBE_DEFER); 2943 2944 if (!clkspec) 2945 return ERR_PTR(-EINVAL); 2946 2947 /* Check if we have such a provider in our array */ 2948 mutex_lock(&of_clk_mutex); 2949 list_for_each_entry(provider, &of_clk_providers, link) { 2950 if (provider->node == clkspec->np) 2951 clk = provider->get(clkspec, provider->data); 2952 if (!IS_ERR(clk)) { 2953 clk = __clk_create_clk(__clk_get_hw(clk), dev_id, 2954 con_id); 2955 2956 if (!IS_ERR(clk) && !__clk_get(clk)) { 2957 __clk_free_clk(clk); 2958 clk = ERR_PTR(-ENOENT); 2959 } 2960 2961 break; 2962 } 2963 } 2964 mutex_unlock(&of_clk_mutex); 2965 2966 return clk; 2967 } 2968 2969 /** 2970 * of_clk_get_from_provider() - Lookup a clock from a clock provider 2971 * @clkspec: pointer to a clock specifier data structure 2972 * 2973 * This function looks up a struct clk from the registered list of clock 2974 * providers, an input is a clock specifier data structure as returned 2975 * from the of_parse_phandle_with_args() function call. 2976 */ 2977 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 2978 { 2979 return __of_clk_get_from_provider(clkspec, NULL, __func__); 2980 } 2981 2982 int of_clk_get_parent_count(struct device_node *np) 2983 { 2984 return of_count_phandle_with_args(np, "clocks", "#clock-cells"); 2985 } 2986 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 2987 2988 const char *of_clk_get_parent_name(struct device_node *np, int index) 2989 { 2990 struct of_phandle_args clkspec; 2991 struct property *prop; 2992 const char *clk_name; 2993 const __be32 *vp; 2994 u32 pv; 2995 int rc; 2996 int count; 2997 2998 if (index < 0) 2999 return NULL; 3000 3001 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 3002 &clkspec); 3003 if (rc) 3004 return NULL; 3005 3006 index = clkspec.args_count ? clkspec.args[0] : 0; 3007 count = 0; 3008 3009 /* if there is an indices property, use it to transfer the index 3010 * specified into an array offset for the clock-output-names property. 3011 */ 3012 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 3013 if (index == pv) { 3014 index = count; 3015 break; 3016 } 3017 count++; 3018 } 3019 3020 if (of_property_read_string_index(clkspec.np, "clock-output-names", 3021 index, 3022 &clk_name) < 0) 3023 clk_name = clkspec.np->name; 3024 3025 of_node_put(clkspec.np); 3026 return clk_name; 3027 } 3028 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 3029 3030 /** 3031 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 3032 * number of parents 3033 * @np: Device node pointer associated with clock provider 3034 * @parents: pointer to char array that hold the parents' names 3035 * @size: size of the @parents array 3036 * 3037 * Return: number of parents for the clock node. 3038 */ 3039 int of_clk_parent_fill(struct device_node *np, const char **parents, 3040 unsigned int size) 3041 { 3042 unsigned int i = 0; 3043 3044 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 3045 i++; 3046 3047 return i; 3048 } 3049 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 3050 3051 struct clock_provider { 3052 of_clk_init_cb_t clk_init_cb; 3053 struct device_node *np; 3054 struct list_head node; 3055 }; 3056 3057 static LIST_HEAD(clk_provider_list); 3058 3059 /* 3060 * This function looks for a parent clock. If there is one, then it 3061 * checks that the provider for this parent clock was initialized, in 3062 * this case the parent clock will be ready. 3063 */ 3064 static int parent_ready(struct device_node *np) 3065 { 3066 int i = 0; 3067 3068 while (true) { 3069 struct clk *clk = of_clk_get(np, i); 3070 3071 /* this parent is ready we can check the next one */ 3072 if (!IS_ERR(clk)) { 3073 clk_put(clk); 3074 i++; 3075 continue; 3076 } 3077 3078 /* at least one parent is not ready, we exit now */ 3079 if (PTR_ERR(clk) == -EPROBE_DEFER) 3080 return 0; 3081 3082 /* 3083 * Here we make assumption that the device tree is 3084 * written correctly. So an error means that there is 3085 * no more parent. As we didn't exit yet, then the 3086 * previous parent are ready. If there is no clock 3087 * parent, no need to wait for them, then we can 3088 * consider their absence as being ready 3089 */ 3090 return 1; 3091 } 3092 } 3093 3094 /** 3095 * of_clk_init() - Scan and init clock providers from the DT 3096 * @matches: array of compatible values and init functions for providers. 3097 * 3098 * This function scans the device tree for matching clock providers 3099 * and calls their initialization functions. It also does it by trying 3100 * to follow the dependencies. 3101 */ 3102 void __init of_clk_init(const struct of_device_id *matches) 3103 { 3104 const struct of_device_id *match; 3105 struct device_node *np; 3106 struct clock_provider *clk_provider, *next; 3107 bool is_init_done; 3108 bool force = false; 3109 3110 if (!matches) 3111 matches = &__clk_of_table; 3112 3113 /* First prepare the list of the clocks providers */ 3114 for_each_matching_node_and_match(np, matches, &match) { 3115 struct clock_provider *parent = 3116 kzalloc(sizeof(struct clock_provider), GFP_KERNEL); 3117 3118 parent->clk_init_cb = match->data; 3119 parent->np = np; 3120 list_add_tail(&parent->node, &clk_provider_list); 3121 } 3122 3123 while (!list_empty(&clk_provider_list)) { 3124 is_init_done = false; 3125 list_for_each_entry_safe(clk_provider, next, 3126 &clk_provider_list, node) { 3127 if (force || parent_ready(clk_provider->np)) { 3128 3129 clk_provider->clk_init_cb(clk_provider->np); 3130 of_clk_set_defaults(clk_provider->np, true); 3131 3132 list_del(&clk_provider->node); 3133 kfree(clk_provider); 3134 is_init_done = true; 3135 } 3136 } 3137 3138 /* 3139 * We didn't manage to initialize any of the 3140 * remaining providers during the last loop, so now we 3141 * initialize all the remaining ones unconditionally 3142 * in case the clock parent was not mandatory 3143 */ 3144 if (!is_init_done) 3145 force = true; 3146 } 3147 } 3148 #endif 3149