1 /* 2 * clk-xgene.c - AppliedMicro X-Gene Clock Interface 3 * 4 * Copyright (c) 2013, Applied Micro Circuits Corporation 5 * Author: Loc Ho <lho@apm.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2 of 10 * the License, or (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, 20 * MA 02111-1307 USA 21 * 22 */ 23 #include <linux/module.h> 24 #include <linux/spinlock.h> 25 #include <linux/io.h> 26 #include <linux/of.h> 27 #include <linux/clkdev.h> 28 #include <linux/clk-provider.h> 29 #include <linux/of_address.h> 30 31 /* Register SCU_PCPPLL bit fields */ 32 #define N_DIV_RD(src) (((src) & 0x000001ff)) 33 34 /* Register SCU_SOCPLL bit fields */ 35 #define CLKR_RD(src) (((src) & 0x07000000)>>24) 36 #define CLKOD_RD(src) (((src) & 0x00300000)>>20) 37 #define REGSPEC_RESET_F1_MASK 0x00010000 38 #define CLKF_RD(src) (((src) & 0x000001ff)) 39 40 #define XGENE_CLK_DRIVER_VER "0.1" 41 42 static DEFINE_SPINLOCK(clk_lock); 43 44 static inline u32 xgene_clk_read(void __iomem *csr) 45 { 46 return readl_relaxed(csr); 47 } 48 49 static inline void xgene_clk_write(u32 data, void __iomem *csr) 50 { 51 return writel_relaxed(data, csr); 52 } 53 54 /* PLL Clock */ 55 enum xgene_pll_type { 56 PLL_TYPE_PCP = 0, 57 PLL_TYPE_SOC = 1, 58 }; 59 60 struct xgene_clk_pll { 61 struct clk_hw hw; 62 void __iomem *reg; 63 spinlock_t *lock; 64 u32 pll_offset; 65 enum xgene_pll_type type; 66 }; 67 68 #define to_xgene_clk_pll(_hw) container_of(_hw, struct xgene_clk_pll, hw) 69 70 static int xgene_clk_pll_is_enabled(struct clk_hw *hw) 71 { 72 struct xgene_clk_pll *pllclk = to_xgene_clk_pll(hw); 73 u32 data; 74 75 data = xgene_clk_read(pllclk->reg + pllclk->pll_offset); 76 pr_debug("%s pll %s\n", clk_hw_get_name(hw), 77 data & REGSPEC_RESET_F1_MASK ? "disabled" : "enabled"); 78 79 return data & REGSPEC_RESET_F1_MASK ? 0 : 1; 80 } 81 82 static unsigned long xgene_clk_pll_recalc_rate(struct clk_hw *hw, 83 unsigned long parent_rate) 84 { 85 struct xgene_clk_pll *pllclk = to_xgene_clk_pll(hw); 86 unsigned long fref; 87 unsigned long fvco; 88 u32 pll; 89 u32 nref; 90 u32 nout; 91 u32 nfb; 92 93 pll = xgene_clk_read(pllclk->reg + pllclk->pll_offset); 94 95 if (pllclk->type == PLL_TYPE_PCP) { 96 /* 97 * PLL VCO = Reference clock * NF 98 * PCP PLL = PLL_VCO / 2 99 */ 100 nout = 2; 101 fvco = parent_rate * (N_DIV_RD(pll) + 4); 102 } else { 103 /* 104 * Fref = Reference Clock / NREF; 105 * Fvco = Fref * NFB; 106 * Fout = Fvco / NOUT; 107 */ 108 nref = CLKR_RD(pll) + 1; 109 nout = CLKOD_RD(pll) + 1; 110 nfb = CLKF_RD(pll); 111 fref = parent_rate / nref; 112 fvco = fref * nfb; 113 } 114 pr_debug("%s pll recalc rate %ld parent %ld\n", clk_hw_get_name(hw), 115 fvco / nout, parent_rate); 116 117 return fvco / nout; 118 } 119 120 static const struct clk_ops xgene_clk_pll_ops = { 121 .is_enabled = xgene_clk_pll_is_enabled, 122 .recalc_rate = xgene_clk_pll_recalc_rate, 123 }; 124 125 static struct clk *xgene_register_clk_pll(struct device *dev, 126 const char *name, const char *parent_name, 127 unsigned long flags, void __iomem *reg, u32 pll_offset, 128 u32 type, spinlock_t *lock) 129 { 130 struct xgene_clk_pll *apmclk; 131 struct clk *clk; 132 struct clk_init_data init; 133 134 /* allocate the APM clock structure */ 135 apmclk = kzalloc(sizeof(*apmclk), GFP_KERNEL); 136 if (!apmclk) { 137 pr_err("%s: could not allocate APM clk\n", __func__); 138 return ERR_PTR(-ENOMEM); 139 } 140 141 init.name = name; 142 init.ops = &xgene_clk_pll_ops; 143 init.flags = flags; 144 init.parent_names = parent_name ? &parent_name : NULL; 145 init.num_parents = parent_name ? 1 : 0; 146 147 apmclk->reg = reg; 148 apmclk->lock = lock; 149 apmclk->pll_offset = pll_offset; 150 apmclk->type = type; 151 apmclk->hw.init = &init; 152 153 /* Register the clock */ 154 clk = clk_register(dev, &apmclk->hw); 155 if (IS_ERR(clk)) { 156 pr_err("%s: could not register clk %s\n", __func__, name); 157 kfree(apmclk); 158 return NULL; 159 } 160 return clk; 161 } 162 163 static void xgene_pllclk_init(struct device_node *np, enum xgene_pll_type pll_type) 164 { 165 const char *clk_name = np->full_name; 166 struct clk *clk; 167 void __iomem *reg; 168 169 reg = of_iomap(np, 0); 170 if (reg == NULL) { 171 pr_err("Unable to map CSR register for %s\n", np->full_name); 172 return; 173 } 174 of_property_read_string(np, "clock-output-names", &clk_name); 175 clk = xgene_register_clk_pll(NULL, 176 clk_name, of_clk_get_parent_name(np, 0), 177 CLK_IS_ROOT, reg, 0, pll_type, &clk_lock); 178 if (!IS_ERR(clk)) { 179 of_clk_add_provider(np, of_clk_src_simple_get, clk); 180 clk_register_clkdev(clk, clk_name, NULL); 181 pr_debug("Add %s clock PLL\n", clk_name); 182 } 183 } 184 185 static void xgene_socpllclk_init(struct device_node *np) 186 { 187 xgene_pllclk_init(np, PLL_TYPE_SOC); 188 } 189 190 static void xgene_pcppllclk_init(struct device_node *np) 191 { 192 xgene_pllclk_init(np, PLL_TYPE_PCP); 193 } 194 195 /* IP Clock */ 196 struct xgene_dev_parameters { 197 void __iomem *csr_reg; /* CSR for IP clock */ 198 u32 reg_clk_offset; /* Offset to clock enable CSR */ 199 u32 reg_clk_mask; /* Mask bit for clock enable */ 200 u32 reg_csr_offset; /* Offset to CSR reset */ 201 u32 reg_csr_mask; /* Mask bit for disable CSR reset */ 202 void __iomem *divider_reg; /* CSR for divider */ 203 u32 reg_divider_offset; /* Offset to divider register */ 204 u32 reg_divider_shift; /* Bit shift to divider field */ 205 u32 reg_divider_width; /* Width of the bit to divider field */ 206 }; 207 208 struct xgene_clk { 209 struct clk_hw hw; 210 spinlock_t *lock; 211 struct xgene_dev_parameters param; 212 }; 213 214 #define to_xgene_clk(_hw) container_of(_hw, struct xgene_clk, hw) 215 216 static int xgene_clk_enable(struct clk_hw *hw) 217 { 218 struct xgene_clk *pclk = to_xgene_clk(hw); 219 unsigned long flags = 0; 220 u32 data; 221 phys_addr_t reg; 222 223 if (pclk->lock) 224 spin_lock_irqsave(pclk->lock, flags); 225 226 if (pclk->param.csr_reg != NULL) { 227 pr_debug("%s clock enabled\n", clk_hw_get_name(hw)); 228 reg = __pa(pclk->param.csr_reg); 229 /* First enable the clock */ 230 data = xgene_clk_read(pclk->param.csr_reg + 231 pclk->param.reg_clk_offset); 232 data |= pclk->param.reg_clk_mask; 233 xgene_clk_write(data, pclk->param.csr_reg + 234 pclk->param.reg_clk_offset); 235 pr_debug("%s clock PADDR base %pa clk offset 0x%08X mask 0x%08X value 0x%08X\n", 236 clk_hw_get_name(hw), ®, 237 pclk->param.reg_clk_offset, pclk->param.reg_clk_mask, 238 data); 239 240 /* Second enable the CSR */ 241 data = xgene_clk_read(pclk->param.csr_reg + 242 pclk->param.reg_csr_offset); 243 data &= ~pclk->param.reg_csr_mask; 244 xgene_clk_write(data, pclk->param.csr_reg + 245 pclk->param.reg_csr_offset); 246 pr_debug("%s CSR RESET PADDR base %pa csr offset 0x%08X mask 0x%08X value 0x%08X\n", 247 clk_hw_get_name(hw), ®, 248 pclk->param.reg_csr_offset, pclk->param.reg_csr_mask, 249 data); 250 } 251 252 if (pclk->lock) 253 spin_unlock_irqrestore(pclk->lock, flags); 254 255 return 0; 256 } 257 258 static void xgene_clk_disable(struct clk_hw *hw) 259 { 260 struct xgene_clk *pclk = to_xgene_clk(hw); 261 unsigned long flags = 0; 262 u32 data; 263 264 if (pclk->lock) 265 spin_lock_irqsave(pclk->lock, flags); 266 267 if (pclk->param.csr_reg != NULL) { 268 pr_debug("%s clock disabled\n", clk_hw_get_name(hw)); 269 /* First put the CSR in reset */ 270 data = xgene_clk_read(pclk->param.csr_reg + 271 pclk->param.reg_csr_offset); 272 data |= pclk->param.reg_csr_mask; 273 xgene_clk_write(data, pclk->param.csr_reg + 274 pclk->param.reg_csr_offset); 275 276 /* Second disable the clock */ 277 data = xgene_clk_read(pclk->param.csr_reg + 278 pclk->param.reg_clk_offset); 279 data &= ~pclk->param.reg_clk_mask; 280 xgene_clk_write(data, pclk->param.csr_reg + 281 pclk->param.reg_clk_offset); 282 } 283 284 if (pclk->lock) 285 spin_unlock_irqrestore(pclk->lock, flags); 286 } 287 288 static int xgene_clk_is_enabled(struct clk_hw *hw) 289 { 290 struct xgene_clk *pclk = to_xgene_clk(hw); 291 u32 data = 0; 292 293 if (pclk->param.csr_reg != NULL) { 294 pr_debug("%s clock checking\n", clk_hw_get_name(hw)); 295 data = xgene_clk_read(pclk->param.csr_reg + 296 pclk->param.reg_clk_offset); 297 pr_debug("%s clock is %s\n", clk_hw_get_name(hw), 298 data & pclk->param.reg_clk_mask ? "enabled" : 299 "disabled"); 300 } 301 302 if (pclk->param.csr_reg == NULL) 303 return 1; 304 return data & pclk->param.reg_clk_mask ? 1 : 0; 305 } 306 307 static unsigned long xgene_clk_recalc_rate(struct clk_hw *hw, 308 unsigned long parent_rate) 309 { 310 struct xgene_clk *pclk = to_xgene_clk(hw); 311 u32 data; 312 313 if (pclk->param.divider_reg) { 314 data = xgene_clk_read(pclk->param.divider_reg + 315 pclk->param.reg_divider_offset); 316 data >>= pclk->param.reg_divider_shift; 317 data &= (1 << pclk->param.reg_divider_width) - 1; 318 319 pr_debug("%s clock recalc rate %ld parent %ld\n", 320 clk_hw_get_name(hw), 321 parent_rate / data, parent_rate); 322 323 return parent_rate / data; 324 } else { 325 pr_debug("%s clock recalc rate %ld parent %ld\n", 326 clk_hw_get_name(hw), parent_rate, parent_rate); 327 return parent_rate; 328 } 329 } 330 331 static int xgene_clk_set_rate(struct clk_hw *hw, unsigned long rate, 332 unsigned long parent_rate) 333 { 334 struct xgene_clk *pclk = to_xgene_clk(hw); 335 unsigned long flags = 0; 336 u32 data; 337 u32 divider; 338 u32 divider_save; 339 340 if (pclk->lock) 341 spin_lock_irqsave(pclk->lock, flags); 342 343 if (pclk->param.divider_reg) { 344 /* Let's compute the divider */ 345 if (rate > parent_rate) 346 rate = parent_rate; 347 divider_save = divider = parent_rate / rate; /* Rounded down */ 348 divider &= (1 << pclk->param.reg_divider_width) - 1; 349 divider <<= pclk->param.reg_divider_shift; 350 351 /* Set new divider */ 352 data = xgene_clk_read(pclk->param.divider_reg + 353 pclk->param.reg_divider_offset); 354 data &= ~((1 << pclk->param.reg_divider_width) - 1) 355 << pclk->param.reg_divider_shift; 356 data |= divider; 357 xgene_clk_write(data, pclk->param.divider_reg + 358 pclk->param.reg_divider_offset); 359 pr_debug("%s clock set rate %ld\n", clk_hw_get_name(hw), 360 parent_rate / divider_save); 361 } else { 362 divider_save = 1; 363 } 364 365 if (pclk->lock) 366 spin_unlock_irqrestore(pclk->lock, flags); 367 368 return parent_rate / divider_save; 369 } 370 371 static long xgene_clk_round_rate(struct clk_hw *hw, unsigned long rate, 372 unsigned long *prate) 373 { 374 struct xgene_clk *pclk = to_xgene_clk(hw); 375 unsigned long parent_rate = *prate; 376 u32 divider; 377 378 if (pclk->param.divider_reg) { 379 /* Let's compute the divider */ 380 if (rate > parent_rate) 381 rate = parent_rate; 382 divider = parent_rate / rate; /* Rounded down */ 383 } else { 384 divider = 1; 385 } 386 387 return parent_rate / divider; 388 } 389 390 static const struct clk_ops xgene_clk_ops = { 391 .enable = xgene_clk_enable, 392 .disable = xgene_clk_disable, 393 .is_enabled = xgene_clk_is_enabled, 394 .recalc_rate = xgene_clk_recalc_rate, 395 .set_rate = xgene_clk_set_rate, 396 .round_rate = xgene_clk_round_rate, 397 }; 398 399 static struct clk *xgene_register_clk(struct device *dev, 400 const char *name, const char *parent_name, 401 struct xgene_dev_parameters *parameters, spinlock_t *lock) 402 { 403 struct xgene_clk *apmclk; 404 struct clk *clk; 405 struct clk_init_data init; 406 int rc; 407 408 /* allocate the APM clock structure */ 409 apmclk = kzalloc(sizeof(*apmclk), GFP_KERNEL); 410 if (!apmclk) { 411 pr_err("%s: could not allocate APM clk\n", __func__); 412 return ERR_PTR(-ENOMEM); 413 } 414 415 init.name = name; 416 init.ops = &xgene_clk_ops; 417 init.flags = 0; 418 init.parent_names = parent_name ? &parent_name : NULL; 419 init.num_parents = parent_name ? 1 : 0; 420 421 apmclk->lock = lock; 422 apmclk->hw.init = &init; 423 apmclk->param = *parameters; 424 425 /* Register the clock */ 426 clk = clk_register(dev, &apmclk->hw); 427 if (IS_ERR(clk)) { 428 pr_err("%s: could not register clk %s\n", __func__, name); 429 kfree(apmclk); 430 return clk; 431 } 432 433 /* Register the clock for lookup */ 434 rc = clk_register_clkdev(clk, name, NULL); 435 if (rc != 0) { 436 pr_err("%s: could not register lookup clk %s\n", 437 __func__, name); 438 } 439 return clk; 440 } 441 442 static void __init xgene_devclk_init(struct device_node *np) 443 { 444 const char *clk_name = np->full_name; 445 struct clk *clk; 446 struct resource res; 447 int rc; 448 struct xgene_dev_parameters parameters; 449 int i; 450 451 /* Check if the entry is disabled */ 452 if (!of_device_is_available(np)) 453 return; 454 455 /* Parse the DTS register for resource */ 456 parameters.csr_reg = NULL; 457 parameters.divider_reg = NULL; 458 for (i = 0; i < 2; i++) { 459 void __iomem *map_res; 460 rc = of_address_to_resource(np, i, &res); 461 if (rc != 0) { 462 if (i == 0) { 463 pr_err("no DTS register for %s\n", 464 np->full_name); 465 return; 466 } 467 break; 468 } 469 map_res = of_iomap(np, i); 470 if (map_res == NULL) { 471 pr_err("Unable to map resource %d for %s\n", 472 i, np->full_name); 473 goto err; 474 } 475 if (strcmp(res.name, "div-reg") == 0) 476 parameters.divider_reg = map_res; 477 else /* if (strcmp(res->name, "csr-reg") == 0) */ 478 parameters.csr_reg = map_res; 479 } 480 if (of_property_read_u32(np, "csr-offset", ¶meters.reg_csr_offset)) 481 parameters.reg_csr_offset = 0; 482 if (of_property_read_u32(np, "csr-mask", ¶meters.reg_csr_mask)) 483 parameters.reg_csr_mask = 0xF; 484 if (of_property_read_u32(np, "enable-offset", 485 ¶meters.reg_clk_offset)) 486 parameters.reg_clk_offset = 0x8; 487 if (of_property_read_u32(np, "enable-mask", ¶meters.reg_clk_mask)) 488 parameters.reg_clk_mask = 0xF; 489 if (of_property_read_u32(np, "divider-offset", 490 ¶meters.reg_divider_offset)) 491 parameters.reg_divider_offset = 0; 492 if (of_property_read_u32(np, "divider-width", 493 ¶meters.reg_divider_width)) 494 parameters.reg_divider_width = 0; 495 if (of_property_read_u32(np, "divider-shift", 496 ¶meters.reg_divider_shift)) 497 parameters.reg_divider_shift = 0; 498 of_property_read_string(np, "clock-output-names", &clk_name); 499 500 clk = xgene_register_clk(NULL, clk_name, 501 of_clk_get_parent_name(np, 0), ¶meters, &clk_lock); 502 if (IS_ERR(clk)) 503 goto err; 504 pr_debug("Add %s clock\n", clk_name); 505 rc = of_clk_add_provider(np, of_clk_src_simple_get, clk); 506 if (rc != 0) 507 pr_err("%s: could register provider clk %s\n", __func__, 508 np->full_name); 509 510 return; 511 512 err: 513 if (parameters.csr_reg) 514 iounmap(parameters.csr_reg); 515 if (parameters.divider_reg) 516 iounmap(parameters.divider_reg); 517 } 518 519 CLK_OF_DECLARE(xgene_socpll_clock, "apm,xgene-socpll-clock", xgene_socpllclk_init); 520 CLK_OF_DECLARE(xgene_pcppll_clock, "apm,xgene-pcppll-clock", xgene_pcppllclk_init); 521 CLK_OF_DECLARE(xgene_dev_clock, "apm,xgene-device-clock", xgene_devclk_init); 522