1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common clock framework driver for the Versaclock7 family of timing devices. 4 * 5 * Copyright (c) 2022 Renesas Electronics Corporation 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/bitfield.h> 11 #include <linux/clk.h> 12 #include <linux/clk-provider.h> 13 #include <linux/i2c.h> 14 #include <linux/math64.h> 15 #include <linux/module.h> 16 #include <linux/of.h> 17 #include <linux/property.h> 18 #include <linux/regmap.h> 19 #include <linux/swab.h> 20 21 /* 22 * 16-bit register address: the lower 8 bits of the register address come 23 * from the offset addr byte and the upper 8 bits come from the page register. 24 */ 25 #define VC7_PAGE_ADDR 0xFD 26 #define VC7_PAGE_WINDOW 256 27 #define VC7_MAX_REG 0x364 28 29 /* Maximum number of banks supported by VC7 */ 30 #define VC7_NUM_BANKS 7 31 32 /* Maximum number of FODs supported by VC7 */ 33 #define VC7_NUM_FOD 3 34 35 /* Maximum number of IODs supported by VC7 */ 36 #define VC7_NUM_IOD 4 37 38 /* Maximum number of outputs supported by VC7 */ 39 #define VC7_NUM_OUT 12 40 41 /* VCO valid range is 9.5 GHz to 10.7 GHz */ 42 #define VC7_APLL_VCO_MIN 9500000000UL 43 #define VC7_APLL_VCO_MAX 10700000000UL 44 45 /* APLL denominator is fixed at 2^27 */ 46 #define VC7_APLL_DENOMINATOR_BITS 27 47 48 /* FOD 1st stage denominator is fixed 2^34 */ 49 #define VC7_FOD_DENOMINATOR_BITS 34 50 51 /* IOD can operate between 1kHz and 650MHz */ 52 #define VC7_IOD_RATE_MIN 1000UL 53 #define VC7_IOD_RATE_MAX 650000000UL 54 #define VC7_IOD_MIN_DIVISOR 14 55 #define VC7_IOD_MAX_DIVISOR 0x1ffffff /* 25-bit */ 56 57 #define VC7_FOD_RATE_MIN 1000UL 58 #define VC7_FOD_RATE_MAX 650000000UL 59 #define VC7_FOD_1ST_STAGE_RATE_MIN 33000000UL /* 33 MHz */ 60 #define VC7_FOD_1ST_STAGE_RATE_MAX 650000000UL /* 650 MHz */ 61 #define VC7_FOD_1ST_INT_MAX 324 62 #define VC7_FOD_2ND_INT_MIN 2 63 #define VC7_FOD_2ND_INT_MAX 0x1ffff /* 17-bit */ 64 65 /* VC7 Registers */ 66 67 #define VC7_REG_XO_CNFG 0x2C 68 #define VC7_REG_XO_CNFG_COUNT 4 69 #define VC7_REG_XO_IB_H_DIV_SHIFT 24 70 #define VC7_REG_XO_IB_H_DIV_MASK GENMASK(28, VC7_REG_XO_IB_H_DIV_SHIFT) 71 72 #define VC7_REG_APLL_FB_DIV_FRAC 0x120 73 #define VC7_REG_APLL_FB_DIV_FRAC_COUNT 4 74 #define VC7_REG_APLL_FB_DIV_FRAC_MASK GENMASK(26, 0) 75 76 #define VC7_REG_APLL_FB_DIV_INT 0x124 77 #define VC7_REG_APLL_FB_DIV_INT_COUNT 2 78 #define VC7_REG_APLL_FB_DIV_INT_MASK GENMASK(9, 0) 79 80 #define VC7_REG_APLL_CNFG 0x127 81 #define VC7_REG_APLL_EN_DOUBLER BIT(0) 82 83 #define VC7_REG_OUT_BANK_CNFG(idx) (0x280 + (0x4 * (idx))) 84 #define VC7_REG_OUTPUT_BANK_SRC_MASK GENMASK(2, 0) 85 86 #define VC7_REG_FOD_INT_CNFG(idx) (0x1E0 + (0x10 * (idx))) 87 #define VC7_REG_FOD_INT_CNFG_COUNT 8 88 #define VC7_REG_FOD_1ST_INT_MASK GENMASK(8, 0) 89 #define VC7_REG_FOD_2ND_INT_SHIFT 9 90 #define VC7_REG_FOD_2ND_INT_MASK GENMASK(25, VC7_REG_FOD_2ND_INT_SHIFT) 91 #define VC7_REG_FOD_FRAC_SHIFT 26 92 #define VC7_REG_FOD_FRAC_MASK GENMASK_ULL(59, VC7_REG_FOD_FRAC_SHIFT) 93 94 #define VC7_REG_IOD_INT_CNFG(idx) (0x1C0 + (0x8 * (idx))) 95 #define VC7_REG_IOD_INT_CNFG_COUNT 4 96 #define VC7_REG_IOD_INT_MASK GENMASK(24, 0) 97 98 #define VC7_REG_ODRV_EN(idx) (0x240 + (0x4 * (idx))) 99 #define VC7_REG_OUT_DIS BIT(0) 100 101 struct vc7_driver_data; 102 static const struct regmap_config vc7_regmap_config; 103 104 /* Supported Renesas VC7 models */ 105 enum vc7_model { 106 VC7_RC21008A, 107 }; 108 109 struct vc7_chip_info { 110 const enum vc7_model model; 111 const unsigned int banks[VC7_NUM_BANKS]; 112 const unsigned int num_banks; 113 const unsigned int outputs[VC7_NUM_OUT]; 114 const unsigned int num_outputs; 115 }; 116 117 /* 118 * Changing the APLL frequency is currently not supported. 119 * The APLL will consist of an opaque block between the XO and FOD/IODs and 120 * its frequency will be computed based on the current state of the device. 121 */ 122 struct vc7_apll_data { 123 struct clk *clk; 124 struct vc7_driver_data *vc7; 125 u8 xo_ib_h_div; 126 u8 en_doubler; 127 u16 apll_fb_div_int; 128 u32 apll_fb_div_frac; 129 }; 130 131 struct vc7_fod_data { 132 struct clk_hw hw; 133 struct vc7_driver_data *vc7; 134 unsigned int num; 135 u32 fod_1st_int; 136 u32 fod_2nd_int; 137 u64 fod_frac; 138 }; 139 140 struct vc7_iod_data { 141 struct clk_hw hw; 142 struct vc7_driver_data *vc7; 143 unsigned int num; 144 u32 iod_int; 145 }; 146 147 struct vc7_out_data { 148 struct clk_hw hw; 149 struct vc7_driver_data *vc7; 150 unsigned int num; 151 unsigned int out_dis; 152 }; 153 154 struct vc7_driver_data { 155 struct i2c_client *client; 156 struct regmap *regmap; 157 const struct vc7_chip_info *chip_info; 158 159 struct clk *pin_xin; 160 struct vc7_apll_data clk_apll; 161 struct vc7_fod_data clk_fod[VC7_NUM_FOD]; 162 struct vc7_iod_data clk_iod[VC7_NUM_IOD]; 163 struct vc7_out_data clk_out[VC7_NUM_OUT]; 164 }; 165 166 struct vc7_bank_src_map { 167 enum vc7_bank_src_type { 168 VC7_FOD, 169 VC7_IOD, 170 } type; 171 union _divider { 172 struct vc7_iod_data *iod; 173 struct vc7_fod_data *fod; 174 } src; 175 }; 176 177 static struct clk_hw *vc7_of_clk_get(struct of_phandle_args *clkspec, 178 void *data) 179 { 180 struct vc7_driver_data *vc7 = data; 181 unsigned int idx = clkspec->args[0]; 182 183 if (idx >= vc7->chip_info->num_outputs) 184 return ERR_PTR(-EINVAL); 185 186 return &vc7->clk_out[idx].hw; 187 } 188 189 static const unsigned int RC21008A_index_to_output_mapping[] = { 190 1, 2, 3, 6, 7, 8, 10, 11 191 }; 192 193 static int vc7_map_index_to_output(const enum vc7_model model, const unsigned int i) 194 { 195 switch (model) { 196 case VC7_RC21008A: 197 return RC21008A_index_to_output_mapping[i]; 198 default: 199 return i; 200 } 201 } 202 203 /* bank to output mapping, same across all variants */ 204 static const unsigned int output_bank_mapping[] = { 205 0, /* Output 0 */ 206 1, /* Output 1 */ 207 2, /* Output 2 */ 208 2, /* Output 3 */ 209 3, /* Output 4 */ 210 3, /* Output 5 */ 211 3, /* Output 6 */ 212 3, /* Output 7 */ 213 4, /* Output 8 */ 214 4, /* Output 9 */ 215 5, /* Output 10 */ 216 6 /* Output 11 */ 217 }; 218 219 /** 220 * vc7_64_mul_64_to_128() - Multiply two u64 and return an unsigned 128-bit integer 221 * as an upper and lower part. 222 * 223 * @left: The left argument. 224 * @right: The right argument. 225 * @hi: The upper 64-bits of the 128-bit product. 226 * @lo: The lower 64-bits of the 128-bit product. 227 * 228 * From mul_64_64 in crypto/ecc.c:350 in the linux kernel, accessed in v5.17.2. 229 */ 230 static void vc7_64_mul_64_to_128(u64 left, u64 right, u64 *hi, u64 *lo) 231 { 232 u64 a0 = left & 0xffffffffull; 233 u64 a1 = left >> 32; 234 u64 b0 = right & 0xffffffffull; 235 u64 b1 = right >> 32; 236 u64 m0 = a0 * b0; 237 u64 m1 = a0 * b1; 238 u64 m2 = a1 * b0; 239 u64 m3 = a1 * b1; 240 241 m2 += (m0 >> 32); 242 m2 += m1; 243 244 /* Overflow */ 245 if (m2 < m1) 246 m3 += 0x100000000ull; 247 248 *lo = (m0 & 0xffffffffull) | (m2 << 32); 249 *hi = m3 + (m2 >> 32); 250 } 251 252 /** 253 * vc7_128_div_64_to_64() - Divides a 128-bit uint by a 64-bit divisor, return a 64-bit quotient. 254 * 255 * @numhi: The uppper 64-bits of the dividend. 256 * @numlo: The lower 64-bits of the dividend. 257 * @den: The denominator (divisor). 258 * @r: The remainder, pass NULL if the remainder is not needed. 259 * 260 * Originally from libdivide, modified to use kernel u64/u32 types. 261 * 262 * See https://github.com/ridiculousfish/libdivide/blob/master/libdivide.h#L471. 263 * 264 * Return: The 64-bit quotient of the division. 265 * 266 * In case of overflow of division by zero, max(u64) is returned. 267 */ 268 static u64 vc7_128_div_64_to_64(u64 numhi, u64 numlo, u64 den, u64 *r) 269 { 270 /* 271 * We work in base 2**32. 272 * A uint32 holds a single digit. A uint64 holds two digits. 273 * Our numerator is conceptually [num3, num2, num1, num0]. 274 * Our denominator is [den1, den0]. 275 */ 276 const u64 b = ((u64)1 << 32); 277 278 /* The high and low digits of our computed quotient. */ 279 u32 q1, q0; 280 281 /* The normalization shift factor */ 282 int shift; 283 284 /* 285 * The high and low digits of our denominator (after normalizing). 286 * Also the low 2 digits of our numerator (after normalizing). 287 */ 288 u32 den1, den0, num1, num0; 289 290 /* A partial remainder; */ 291 u64 rem; 292 293 /* 294 * The estimated quotient, and its corresponding remainder (unrelated 295 * to true remainder). 296 */ 297 u64 qhat, rhat; 298 299 /* Variables used to correct the estimated quotient. */ 300 u64 c1, c2; 301 302 /* Check for overflow and divide by 0. */ 303 if (numhi >= den) { 304 if (r) 305 *r = ~0ull; 306 return ~0ull; 307 } 308 309 /* 310 * Determine the normalization factor. We multiply den by this, so that 311 * its leading digit is at least half b. In binary this means just 312 * shifting left by the number of leading zeros, so that there's a 1 in 313 * the MSB. 314 * 315 * We also shift numer by the same amount. This cannot overflow because 316 * numhi < den. The expression (-shift & 63) is the same as (64 - 317 * shift), except it avoids the UB of shifting by 64. The funny bitwise 318 * 'and' ensures that numlo does not get shifted into numhi if shift is 319 * 0. clang 11 has an x86 codegen bug here: see LLVM bug 50118. The 320 * sequence below avoids it. 321 */ 322 shift = __builtin_clzll(den); 323 den <<= shift; 324 numhi <<= shift; 325 numhi |= (numlo >> (-shift & 63)) & (-(s64)shift >> 63); 326 numlo <<= shift; 327 328 /* 329 * Extract the low digits of the numerator and both digits of the 330 * denominator. 331 */ 332 num1 = (u32)(numlo >> 32); 333 num0 = (u32)(numlo & 0xFFFFFFFFu); 334 den1 = (u32)(den >> 32); 335 den0 = (u32)(den & 0xFFFFFFFFu); 336 337 /* 338 * We wish to compute q1 = [n3 n2 n1] / [d1 d0]. 339 * Estimate q1 as [n3 n2] / [d1], and then correct it. 340 * Note while qhat may be 2 digits, q1 is always 1 digit. 341 */ 342 qhat = div64_u64_rem(numhi, den1, &rhat); 343 c1 = qhat * den0; 344 c2 = rhat * b + num1; 345 if (c1 > c2) 346 qhat -= (c1 - c2 > den) ? 2 : 1; 347 q1 = (u32)qhat; 348 349 /* Compute the true (partial) remainder. */ 350 rem = numhi * b + num1 - q1 * den; 351 352 /* 353 * We wish to compute q0 = [rem1 rem0 n0] / [d1 d0]. 354 * Estimate q0 as [rem1 rem0] / [d1] and correct it. 355 */ 356 qhat = div64_u64_rem(rem, den1, &rhat); 357 c1 = qhat * den0; 358 c2 = rhat * b + num0; 359 if (c1 > c2) 360 qhat -= (c1 - c2 > den) ? 2 : 1; 361 q0 = (u32)qhat; 362 363 /* Return remainder if requested. */ 364 if (r) 365 *r = (rem * b + num0 - q0 * den) >> shift; 366 return ((u64)q1 << 32) | q0; 367 } 368 369 static int vc7_get_bank_clk(struct vc7_driver_data *vc7, 370 unsigned int bank_idx, 371 unsigned int output_bank_src, 372 struct vc7_bank_src_map *map) 373 { 374 /* Mapping from Table 38 in datasheet */ 375 if (bank_idx == 0 || bank_idx == 1) { 376 switch (output_bank_src) { 377 case 0: 378 map->type = VC7_IOD, 379 map->src.iod = &vc7->clk_iod[0]; 380 return 0; 381 case 1: 382 map->type = VC7_IOD, 383 map->src.iod = &vc7->clk_iod[1]; 384 return 0; 385 case 4: 386 map->type = VC7_FOD, 387 map->src.fod = &vc7->clk_fod[0]; 388 return 0; 389 case 5: 390 map->type = VC7_FOD, 391 map->src.fod = &vc7->clk_fod[1]; 392 return 0; 393 default: 394 break; 395 } 396 } else if (bank_idx == 2) { 397 switch (output_bank_src) { 398 case 1: 399 map->type = VC7_IOD, 400 map->src.iod = &vc7->clk_iod[1]; 401 return 0; 402 case 4: 403 map->type = VC7_FOD, 404 map->src.fod = &vc7->clk_fod[0]; 405 return 0; 406 case 5: 407 map->type = VC7_FOD, 408 map->src.fod = &vc7->clk_fod[1]; 409 return 0; 410 default: 411 break; 412 } 413 } else if (bank_idx == 3) { 414 switch (output_bank_src) { 415 case 4: 416 map->type = VC7_FOD, 417 map->src.fod = &vc7->clk_fod[0]; 418 return 0; 419 case 5: 420 map->type = VC7_FOD, 421 map->src.fod = &vc7->clk_fod[1]; 422 return 0; 423 case 6: 424 map->type = VC7_FOD, 425 map->src.fod = &vc7->clk_fod[2]; 426 return 0; 427 default: 428 break; 429 } 430 } else if (bank_idx == 4) { 431 switch (output_bank_src) { 432 case 0: 433 /* CLKIN1 not supported in this driver */ 434 break; 435 case 2: 436 map->type = VC7_IOD, 437 map->src.iod = &vc7->clk_iod[2]; 438 return 0; 439 case 5: 440 map->type = VC7_FOD, 441 map->src.fod = &vc7->clk_fod[1]; 442 return 0; 443 case 6: 444 map->type = VC7_FOD, 445 map->src.fod = &vc7->clk_fod[2]; 446 return 0; 447 case 7: 448 /* CLKIN0 not supported in this driver */ 449 break; 450 default: 451 break; 452 } 453 } else if (bank_idx == 5) { 454 switch (output_bank_src) { 455 case 0: 456 /* CLKIN1 not supported in this driver */ 457 break; 458 case 1: 459 /* XIN_REFIN not supported in this driver */ 460 break; 461 case 2: 462 map->type = VC7_IOD, 463 map->src.iod = &vc7->clk_iod[2]; 464 return 0; 465 case 3: 466 map->type = VC7_IOD, 467 map->src.iod = &vc7->clk_iod[3]; 468 return 0; 469 case 5: 470 map->type = VC7_FOD, 471 map->src.fod = &vc7->clk_fod[1]; 472 return 0; 473 case 6: 474 map->type = VC7_FOD, 475 map->src.fod = &vc7->clk_fod[2]; 476 return 0; 477 case 7: 478 /* CLKIN0 not supported in this driver */ 479 break; 480 default: 481 break; 482 } 483 } else if (bank_idx == 6) { 484 switch (output_bank_src) { 485 case 0: 486 /* CLKIN1 not supported in this driver */ 487 break; 488 case 2: 489 map->type = VC7_IOD, 490 map->src.iod = &vc7->clk_iod[2]; 491 return 0; 492 case 3: 493 map->type = VC7_IOD, 494 map->src.iod = &vc7->clk_iod[3]; 495 return 0; 496 case 5: 497 map->type = VC7_FOD, 498 map->src.fod = &vc7->clk_fod[1]; 499 return 0; 500 case 6: 501 map->type = VC7_FOD, 502 map->src.fod = &vc7->clk_fod[2]; 503 return 0; 504 case 7: 505 /* CLKIN0 not supported in this driver */ 506 break; 507 default: 508 break; 509 } 510 } 511 512 pr_warn("bank_src%d = %d is not supported\n", bank_idx, output_bank_src); 513 return -1; 514 } 515 516 static int vc7_read_apll(struct vc7_driver_data *vc7) 517 { 518 int err; 519 u32 val32; 520 u16 val16; 521 522 err = regmap_bulk_read(vc7->regmap, 523 VC7_REG_XO_CNFG, 524 (u32 *)&val32, 525 VC7_REG_XO_CNFG_COUNT); 526 if (err) { 527 dev_err(&vc7->client->dev, "failed to read XO_CNFG\n"); 528 return err; 529 } 530 531 vc7->clk_apll.xo_ib_h_div = (val32 & VC7_REG_XO_IB_H_DIV_MASK) 532 >> VC7_REG_XO_IB_H_DIV_SHIFT; 533 534 err = regmap_read(vc7->regmap, 535 VC7_REG_APLL_CNFG, 536 &val32); 537 if (err) { 538 dev_err(&vc7->client->dev, "failed to read APLL_CNFG\n"); 539 return err; 540 } 541 542 vc7->clk_apll.en_doubler = val32 & VC7_REG_APLL_EN_DOUBLER; 543 544 err = regmap_bulk_read(vc7->regmap, 545 VC7_REG_APLL_FB_DIV_FRAC, 546 (u32 *)&val32, 547 VC7_REG_APLL_FB_DIV_FRAC_COUNT); 548 if (err) { 549 dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_FRAC\n"); 550 return err; 551 } 552 553 vc7->clk_apll.apll_fb_div_frac = val32 & VC7_REG_APLL_FB_DIV_FRAC_MASK; 554 555 err = regmap_bulk_read(vc7->regmap, 556 VC7_REG_APLL_FB_DIV_INT, 557 (u16 *)&val16, 558 VC7_REG_APLL_FB_DIV_INT_COUNT); 559 if (err) { 560 dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_INT\n"); 561 return err; 562 } 563 564 vc7->clk_apll.apll_fb_div_int = val16 & VC7_REG_APLL_FB_DIV_INT_MASK; 565 566 return 0; 567 } 568 569 static int vc7_read_fod(struct vc7_driver_data *vc7, unsigned int idx) 570 { 571 int err; 572 u64 val; 573 574 err = regmap_bulk_read(vc7->regmap, 575 VC7_REG_FOD_INT_CNFG(idx), 576 (u64 *)&val, 577 VC7_REG_FOD_INT_CNFG_COUNT); 578 if (err) { 579 dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx); 580 return err; 581 } 582 583 vc7->clk_fod[idx].fod_1st_int = (val & VC7_REG_FOD_1ST_INT_MASK); 584 vc7->clk_fod[idx].fod_2nd_int = 585 (val & VC7_REG_FOD_2ND_INT_MASK) >> VC7_REG_FOD_2ND_INT_SHIFT; 586 vc7->clk_fod[idx].fod_frac = (val & VC7_REG_FOD_FRAC_MASK) 587 >> VC7_REG_FOD_FRAC_SHIFT; 588 589 return 0; 590 } 591 592 static int vc7_write_fod(struct vc7_driver_data *vc7, unsigned int idx) 593 { 594 int err; 595 u64 val; 596 597 /* 598 * FOD dividers are part of an atomic group where fod_1st_int, 599 * fod_2nd_int, and fod_frac must be written together. The new divider 600 * is applied when the MSB of fod_frac is written. 601 */ 602 603 err = regmap_bulk_read(vc7->regmap, 604 VC7_REG_FOD_INT_CNFG(idx), 605 (u64 *)&val, 606 VC7_REG_FOD_INT_CNFG_COUNT); 607 if (err) { 608 dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx); 609 return err; 610 } 611 612 val = u64_replace_bits(val, 613 vc7->clk_fod[idx].fod_1st_int, 614 VC7_REG_FOD_1ST_INT_MASK); 615 val = u64_replace_bits(val, 616 vc7->clk_fod[idx].fod_2nd_int, 617 VC7_REG_FOD_2ND_INT_MASK); 618 val = u64_replace_bits(val, 619 vc7->clk_fod[idx].fod_frac, 620 VC7_REG_FOD_FRAC_MASK); 621 622 err = regmap_bulk_write(vc7->regmap, 623 VC7_REG_FOD_INT_CNFG(idx), 624 (u64 *)&val, 625 sizeof(u64)); 626 if (err) { 627 dev_err(&vc7->client->dev, "failed to write FOD%d\n", idx); 628 return err; 629 } 630 631 return 0; 632 } 633 634 static int vc7_read_iod(struct vc7_driver_data *vc7, unsigned int idx) 635 { 636 int err; 637 u32 val; 638 639 err = regmap_bulk_read(vc7->regmap, 640 VC7_REG_IOD_INT_CNFG(idx), 641 (u32 *)&val, 642 VC7_REG_IOD_INT_CNFG_COUNT); 643 if (err) { 644 dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx); 645 return err; 646 } 647 648 vc7->clk_iod[idx].iod_int = (val & VC7_REG_IOD_INT_MASK); 649 650 return 0; 651 } 652 653 static int vc7_write_iod(struct vc7_driver_data *vc7, unsigned int idx) 654 { 655 int err; 656 u32 val; 657 658 /* 659 * IOD divider field is atomic and all bits must be written. 660 * The new divider is applied when the MSB of iod_int is written. 661 */ 662 663 err = regmap_bulk_read(vc7->regmap, 664 VC7_REG_IOD_INT_CNFG(idx), 665 (u32 *)&val, 666 VC7_REG_IOD_INT_CNFG_COUNT); 667 if (err) { 668 dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx); 669 return err; 670 } 671 672 val = u32_replace_bits(val, 673 vc7->clk_iod[idx].iod_int, 674 VC7_REG_IOD_INT_MASK); 675 676 err = regmap_bulk_write(vc7->regmap, 677 VC7_REG_IOD_INT_CNFG(idx), 678 (u32 *)&val, 679 sizeof(u32)); 680 if (err) { 681 dev_err(&vc7->client->dev, "failed to write IOD%d\n", idx); 682 return err; 683 } 684 685 return 0; 686 } 687 688 static int vc7_read_output(struct vc7_driver_data *vc7, unsigned int idx) 689 { 690 int err; 691 unsigned int val, out_num; 692 693 out_num = vc7_map_index_to_output(vc7->chip_info->model, idx); 694 err = regmap_read(vc7->regmap, 695 VC7_REG_ODRV_EN(out_num), 696 &val); 697 if (err) { 698 dev_err(&vc7->client->dev, "failed to read ODRV_EN[%d]\n", idx); 699 return err; 700 } 701 702 vc7->clk_out[idx].out_dis = val & VC7_REG_OUT_DIS; 703 704 return 0; 705 } 706 707 static int vc7_write_output(struct vc7_driver_data *vc7, unsigned int idx) 708 { 709 int err; 710 unsigned int out_num; 711 712 out_num = vc7_map_index_to_output(vc7->chip_info->model, idx); 713 err = regmap_write_bits(vc7->regmap, 714 VC7_REG_ODRV_EN(out_num), 715 VC7_REG_OUT_DIS, 716 vc7->clk_out[idx].out_dis); 717 718 if (err) { 719 dev_err(&vc7->client->dev, "failed to write ODRV_EN[%d]\n", idx); 720 return err; 721 } 722 723 return 0; 724 } 725 726 static unsigned long vc7_get_apll_rate(struct vc7_driver_data *vc7) 727 { 728 int err; 729 unsigned long xtal_rate; 730 u64 refin_div, apll_rate; 731 732 xtal_rate = clk_get_rate(vc7->pin_xin); 733 err = vc7_read_apll(vc7); 734 if (err) { 735 dev_err(&vc7->client->dev, "unable to read apll\n"); 736 return err; 737 } 738 739 /* 0 is bypassed, 1 is reserved */ 740 if (vc7->clk_apll.xo_ib_h_div < 2) 741 refin_div = xtal_rate; 742 else 743 refin_div = div64_u64(xtal_rate, vc7->clk_apll.xo_ib_h_div); 744 745 if (vc7->clk_apll.en_doubler) 746 refin_div *= 2; 747 748 /* divider = int + (frac / 2^27) */ 749 apll_rate = (refin_div * vc7->clk_apll.apll_fb_div_int) + 750 ((refin_div * vc7->clk_apll.apll_fb_div_frac) >> VC7_APLL_DENOMINATOR_BITS); 751 752 pr_debug("%s - xo_ib_h_div: %u, apll_fb_div_int: %u, apll_fb_div_frac: %u\n", 753 __func__, vc7->clk_apll.xo_ib_h_div, vc7->clk_apll.apll_fb_div_int, 754 vc7->clk_apll.apll_fb_div_frac); 755 pr_debug("%s - refin_div: %llu, apll rate: %llu\n", 756 __func__, refin_div, apll_rate); 757 758 return apll_rate; 759 } 760 761 static void vc7_calc_iod_divider(unsigned long rate, unsigned long parent_rate, 762 u32 *divider) 763 { 764 *divider = DIV_ROUND_UP(parent_rate, rate); 765 if (*divider < VC7_IOD_MIN_DIVISOR) 766 *divider = VC7_IOD_MIN_DIVISOR; 767 if (*divider > VC7_IOD_MAX_DIVISOR) 768 *divider = VC7_IOD_MAX_DIVISOR; 769 } 770 771 static void vc7_calc_fod_1st_stage(unsigned long rate, unsigned long parent_rate, 772 u32 *div_int, u64 *div_frac) 773 { 774 u64 rem; 775 776 *div_int = (u32)div64_u64_rem(parent_rate, rate, &rem); 777 *div_frac = div64_u64(rem << VC7_FOD_DENOMINATOR_BITS, rate); 778 } 779 780 static unsigned long vc7_calc_fod_1st_stage_rate(unsigned long parent_rate, 781 u32 fod_1st_int, u64 fod_frac) 782 { 783 u64 numer, denom, hi, lo, divisor; 784 785 numer = fod_frac; 786 denom = BIT_ULL(VC7_FOD_DENOMINATOR_BITS); 787 788 if (fod_frac) { 789 vc7_64_mul_64_to_128(parent_rate, denom, &hi, &lo); 790 divisor = ((u64)fod_1st_int * denom) + numer; 791 return vc7_128_div_64_to_64(hi, lo, divisor, NULL); 792 } 793 794 return div64_u64(parent_rate, fod_1st_int); 795 } 796 797 static unsigned long vc7_calc_fod_2nd_stage_rate(unsigned long parent_rate, 798 u32 fod_1st_int, u32 fod_2nd_int, u64 fod_frac) 799 { 800 unsigned long fod_1st_stage_rate; 801 802 fod_1st_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, fod_1st_int, fod_frac); 803 804 if (fod_2nd_int < 2) 805 return fod_1st_stage_rate; 806 807 /* 808 * There is a div-by-2 preceding the 2nd stage integer divider 809 * (not shown on block diagram) so the actual 2nd stage integer 810 * divisor is 2 * N. 811 */ 812 return div64_u64(fod_1st_stage_rate >> 1, fod_2nd_int); 813 } 814 815 static void vc7_calc_fod_divider(unsigned long rate, unsigned long parent_rate, 816 u32 *fod_1st_int, u32 *fod_2nd_int, u64 *fod_frac) 817 { 818 unsigned int allow_frac, i, best_frac_i; 819 unsigned long first_stage_rate; 820 821 vc7_calc_fod_1st_stage(rate, parent_rate, fod_1st_int, fod_frac); 822 first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, *fod_1st_int, *fod_frac); 823 824 *fod_2nd_int = 0; 825 826 /* Do we need the second stage integer divider? */ 827 if (first_stage_rate < VC7_FOD_1ST_STAGE_RATE_MIN) { 828 allow_frac = 0; 829 best_frac_i = VC7_FOD_2ND_INT_MIN; 830 831 for (i = VC7_FOD_2ND_INT_MIN; i <= VC7_FOD_2ND_INT_MAX; i++) { 832 /* 833 * 1) There is a div-by-2 preceding the 2nd stage integer divider 834 * (not shown on block diagram) so the actual 2nd stage integer 835 * divisor is 2 * N. 836 * 2) Attempt to find an integer solution first. This means stepping 837 * through each 2nd stage integer and recalculating the 1st stage 838 * until the 1st stage frequency is out of bounds. If no integer 839 * solution is found, use the best fractional solution. 840 */ 841 vc7_calc_fod_1st_stage(parent_rate, rate * 2 * i, fod_1st_int, fod_frac); 842 first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, 843 *fod_1st_int, 844 *fod_frac); 845 846 /* Remember the first viable fractional solution */ 847 if (best_frac_i == VC7_FOD_2ND_INT_MIN && 848 first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MIN) { 849 best_frac_i = i; 850 } 851 852 /* Is the divider viable? Prefer integer solutions over fractional. */ 853 if (*fod_1st_int < VC7_FOD_1ST_INT_MAX && 854 first_stage_rate >= VC7_FOD_1ST_STAGE_RATE_MIN && 855 (allow_frac || *fod_frac == 0)) { 856 *fod_2nd_int = i; 857 break; 858 } 859 860 /* Ran out of divisors or the 1st stage frequency is out of range */ 861 if (i >= VC7_FOD_2ND_INT_MAX || 862 first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MAX) { 863 allow_frac = 1; 864 i = best_frac_i; 865 866 /* Restore the best frac and rerun the loop for the last time */ 867 if (best_frac_i != VC7_FOD_2ND_INT_MIN) 868 i--; 869 870 continue; 871 } 872 } 873 } 874 } 875 876 static unsigned long vc7_fod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) 877 { 878 struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw); 879 struct vc7_driver_data *vc7 = fod->vc7; 880 int err; 881 unsigned long fod_rate; 882 883 err = vc7_read_fod(vc7, fod->num); 884 if (err) { 885 dev_err(&vc7->client->dev, "error reading registers for %s\n", 886 clk_hw_get_name(hw)); 887 return err; 888 } 889 890 pr_debug("%s - %s: parent_rate: %lu\n", __func__, clk_hw_get_name(hw), parent_rate); 891 892 fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int, 893 fod->fod_2nd_int, fod->fod_frac); 894 895 pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n", 896 __func__, clk_hw_get_name(hw), 897 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac); 898 pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate); 899 900 return fod_rate; 901 } 902 903 static long vc7_fod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) 904 { 905 struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw); 906 unsigned long fod_rate; 907 908 pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n", 909 __func__, clk_hw_get_name(hw), rate, *parent_rate); 910 911 vc7_calc_fod_divider(rate, *parent_rate, 912 &fod->fod_1st_int, &fod->fod_2nd_int, &fod->fod_frac); 913 fod_rate = vc7_calc_fod_2nd_stage_rate(*parent_rate, fod->fod_1st_int, 914 fod->fod_2nd_int, fod->fod_frac); 915 916 pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n", 917 __func__, clk_hw_get_name(hw), 918 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac); 919 pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate); 920 921 return fod_rate; 922 } 923 924 static int vc7_fod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) 925 { 926 struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw); 927 struct vc7_driver_data *vc7 = fod->vc7; 928 unsigned long fod_rate; 929 930 pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n", 931 __func__, clk_hw_get_name(hw), rate, parent_rate); 932 933 if (rate < VC7_FOD_RATE_MIN || rate > VC7_FOD_RATE_MAX) { 934 dev_err(&vc7->client->dev, 935 "requested frequency %lu Hz for %s is out of range\n", 936 rate, clk_hw_get_name(hw)); 937 return -EINVAL; 938 } 939 940 vc7_write_fod(vc7, fod->num); 941 942 fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int, 943 fod->fod_2nd_int, fod->fod_frac); 944 945 pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n", 946 __func__, clk_hw_get_name(hw), 947 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac); 948 pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate); 949 950 return 0; 951 } 952 953 static const struct clk_ops vc7_fod_ops = { 954 .recalc_rate = vc7_fod_recalc_rate, 955 .round_rate = vc7_fod_round_rate, 956 .set_rate = vc7_fod_set_rate, 957 }; 958 959 static unsigned long vc7_iod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) 960 { 961 struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw); 962 struct vc7_driver_data *vc7 = iod->vc7; 963 int err; 964 unsigned long iod_rate; 965 966 err = vc7_read_iod(vc7, iod->num); 967 if (err) { 968 dev_err(&vc7->client->dev, "error reading registers for %s\n", 969 clk_hw_get_name(hw)); 970 return err; 971 } 972 973 iod_rate = div64_u64(parent_rate, iod->iod_int); 974 975 pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int); 976 pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), iod_rate); 977 978 return iod_rate; 979 } 980 981 static long vc7_iod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) 982 { 983 struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw); 984 unsigned long iod_rate; 985 986 pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n", 987 __func__, clk_hw_get_name(hw), rate, *parent_rate); 988 989 vc7_calc_iod_divider(rate, *parent_rate, &iod->iod_int); 990 iod_rate = div64_u64(*parent_rate, iod->iod_int); 991 992 pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int); 993 pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate); 994 995 return iod_rate; 996 } 997 998 static int vc7_iod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) 999 { 1000 struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw); 1001 struct vc7_driver_data *vc7 = iod->vc7; 1002 unsigned long iod_rate; 1003 1004 pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n", 1005 __func__, clk_hw_get_name(hw), rate, parent_rate); 1006 1007 if (rate < VC7_IOD_RATE_MIN || rate > VC7_IOD_RATE_MAX) { 1008 dev_err(&vc7->client->dev, 1009 "requested frequency %lu Hz for %s is out of range\n", 1010 rate, clk_hw_get_name(hw)); 1011 return -EINVAL; 1012 } 1013 1014 vc7_write_iod(vc7, iod->num); 1015 1016 iod_rate = div64_u64(parent_rate, iod->iod_int); 1017 1018 pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int); 1019 pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate); 1020 1021 return 0; 1022 } 1023 1024 static const struct clk_ops vc7_iod_ops = { 1025 .recalc_rate = vc7_iod_recalc_rate, 1026 .round_rate = vc7_iod_round_rate, 1027 .set_rate = vc7_iod_set_rate, 1028 }; 1029 1030 static int vc7_clk_out_prepare(struct clk_hw *hw) 1031 { 1032 struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw); 1033 struct vc7_driver_data *vc7 = out->vc7; 1034 int err; 1035 1036 out->out_dis = 0; 1037 1038 err = vc7_write_output(vc7, out->num); 1039 if (err) { 1040 dev_err(&vc7->client->dev, "error writing registers for %s\n", 1041 clk_hw_get_name(hw)); 1042 return err; 1043 } 1044 1045 pr_debug("%s - %s: clk prepared\n", __func__, clk_hw_get_name(hw)); 1046 1047 return 0; 1048 } 1049 1050 static void vc7_clk_out_unprepare(struct clk_hw *hw) 1051 { 1052 struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw); 1053 struct vc7_driver_data *vc7 = out->vc7; 1054 int err; 1055 1056 out->out_dis = 1; 1057 1058 err = vc7_write_output(vc7, out->num); 1059 if (err) { 1060 dev_err(&vc7->client->dev, "error writing registers for %s\n", 1061 clk_hw_get_name(hw)); 1062 return; 1063 } 1064 1065 pr_debug("%s - %s: clk unprepared\n", __func__, clk_hw_get_name(hw)); 1066 } 1067 1068 static int vc7_clk_out_is_enabled(struct clk_hw *hw) 1069 { 1070 struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw); 1071 struct vc7_driver_data *vc7 = out->vc7; 1072 int err, is_enabled; 1073 1074 err = vc7_read_output(vc7, out->num); 1075 if (err) { 1076 dev_err(&vc7->client->dev, "error reading registers for %s\n", 1077 clk_hw_get_name(hw)); 1078 return err; 1079 } 1080 1081 is_enabled = !out->out_dis; 1082 1083 pr_debug("%s - %s: is_enabled=%d\n", __func__, clk_hw_get_name(hw), is_enabled); 1084 1085 return is_enabled; 1086 } 1087 1088 static const struct clk_ops vc7_clk_out_ops = { 1089 .prepare = vc7_clk_out_prepare, 1090 .unprepare = vc7_clk_out_unprepare, 1091 .is_enabled = vc7_clk_out_is_enabled, 1092 }; 1093 1094 static int vc7_probe(struct i2c_client *client) 1095 { 1096 struct vc7_driver_data *vc7; 1097 struct clk_init_data clk_init; 1098 struct vc7_bank_src_map bank_src_map; 1099 const char *node_name, *apll_name; 1100 const char *parent_names[1]; 1101 unsigned int i, val, bank_idx, out_num; 1102 unsigned long apll_rate; 1103 int ret; 1104 1105 vc7 = devm_kzalloc(&client->dev, sizeof(*vc7), GFP_KERNEL); 1106 if (!vc7) 1107 return -ENOMEM; 1108 1109 i2c_set_clientdata(client, vc7); 1110 vc7->client = client; 1111 vc7->chip_info = i2c_get_match_data(client); 1112 1113 vc7->pin_xin = devm_clk_get(&client->dev, "xin"); 1114 if (PTR_ERR(vc7->pin_xin) == -EPROBE_DEFER) { 1115 return dev_err_probe(&client->dev, -EPROBE_DEFER, 1116 "xin not specified\n"); 1117 } 1118 1119 vc7->regmap = devm_regmap_init_i2c(client, &vc7_regmap_config); 1120 if (IS_ERR(vc7->regmap)) { 1121 return dev_err_probe(&client->dev, PTR_ERR(vc7->regmap), 1122 "failed to allocate register map\n"); 1123 } 1124 1125 if (of_property_read_string(client->dev.of_node, "clock-output-names", 1126 &node_name)) 1127 node_name = client->dev.of_node->name; 1128 1129 /* Register APLL */ 1130 apll_rate = vc7_get_apll_rate(vc7); 1131 apll_name = kasprintf(GFP_KERNEL, "%s_apll", node_name); 1132 vc7->clk_apll.clk = clk_register_fixed_rate(&client->dev, apll_name, 1133 __clk_get_name(vc7->pin_xin), 1134 0, apll_rate); 1135 kfree(apll_name); /* ccf made a copy of the name */ 1136 if (IS_ERR(vc7->clk_apll.clk)) { 1137 return dev_err_probe(&client->dev, PTR_ERR(vc7->clk_apll.clk), 1138 "failed to register apll\n"); 1139 } 1140 1141 /* Register FODs */ 1142 for (i = 0; i < VC7_NUM_FOD; i++) { 1143 memset(&clk_init, 0, sizeof(clk_init)); 1144 clk_init.name = kasprintf(GFP_KERNEL, "%s_fod%d", node_name, i); 1145 clk_init.ops = &vc7_fod_ops; 1146 clk_init.parent_names = parent_names; 1147 parent_names[0] = __clk_get_name(vc7->clk_apll.clk); 1148 clk_init.num_parents = 1; 1149 vc7->clk_fod[i].num = i; 1150 vc7->clk_fod[i].vc7 = vc7; 1151 vc7->clk_fod[i].hw.init = &clk_init; 1152 ret = devm_clk_hw_register(&client->dev, &vc7->clk_fod[i].hw); 1153 if (ret) 1154 goto err_clk_register; 1155 kfree(clk_init.name); /* ccf made a copy of the name */ 1156 } 1157 1158 /* Register IODs */ 1159 for (i = 0; i < VC7_NUM_IOD; i++) { 1160 memset(&clk_init, 0, sizeof(clk_init)); 1161 clk_init.name = kasprintf(GFP_KERNEL, "%s_iod%d", node_name, i); 1162 clk_init.ops = &vc7_iod_ops; 1163 clk_init.parent_names = parent_names; 1164 parent_names[0] = __clk_get_name(vc7->clk_apll.clk); 1165 clk_init.num_parents = 1; 1166 vc7->clk_iod[i].num = i; 1167 vc7->clk_iod[i].vc7 = vc7; 1168 vc7->clk_iod[i].hw.init = &clk_init; 1169 ret = devm_clk_hw_register(&client->dev, &vc7->clk_iod[i].hw); 1170 if (ret) 1171 goto err_clk_register; 1172 kfree(clk_init.name); /* ccf made a copy of the name */ 1173 } 1174 1175 /* Register outputs */ 1176 for (i = 0; i < vc7->chip_info->num_outputs; i++) { 1177 out_num = vc7_map_index_to_output(vc7->chip_info->model, i); 1178 1179 /* 1180 * This driver does not support remapping FOD/IOD to banks. 1181 * The device state is read and the driver is setup to match 1182 * the device's existing mapping. 1183 */ 1184 bank_idx = output_bank_mapping[out_num]; 1185 1186 regmap_read(vc7->regmap, VC7_REG_OUT_BANK_CNFG(bank_idx), &val); 1187 val &= VC7_REG_OUTPUT_BANK_SRC_MASK; 1188 1189 memset(&bank_src_map, 0, sizeof(bank_src_map)); 1190 ret = vc7_get_bank_clk(vc7, bank_idx, val, &bank_src_map); 1191 if (ret) { 1192 dev_err_probe(&client->dev, ret, 1193 "unable to register output %d\n", i); 1194 return ret; 1195 } 1196 1197 switch (bank_src_map.type) { 1198 case VC7_FOD: 1199 parent_names[0] = clk_hw_get_name(&bank_src_map.src.fod->hw); 1200 break; 1201 case VC7_IOD: 1202 parent_names[0] = clk_hw_get_name(&bank_src_map.src.iod->hw); 1203 break; 1204 } 1205 1206 memset(&clk_init, 0, sizeof(clk_init)); 1207 clk_init.name = kasprintf(GFP_KERNEL, "%s_out%d", node_name, i); 1208 clk_init.ops = &vc7_clk_out_ops; 1209 clk_init.flags = CLK_SET_RATE_PARENT; 1210 clk_init.parent_names = parent_names; 1211 clk_init.num_parents = 1; 1212 vc7->clk_out[i].num = i; 1213 vc7->clk_out[i].vc7 = vc7; 1214 vc7->clk_out[i].hw.init = &clk_init; 1215 ret = devm_clk_hw_register(&client->dev, &vc7->clk_out[i].hw); 1216 if (ret) 1217 goto err_clk_register; 1218 kfree(clk_init.name); /* ccf made a copy of the name */ 1219 } 1220 1221 ret = of_clk_add_hw_provider(client->dev.of_node, vc7_of_clk_get, vc7); 1222 if (ret) { 1223 dev_err_probe(&client->dev, ret, "unable to add clk provider\n"); 1224 goto err_clk; 1225 } 1226 1227 return ret; 1228 1229 err_clk_register: 1230 dev_err_probe(&client->dev, ret, 1231 "unable to register %s\n", clk_init.name); 1232 kfree(clk_init.name); /* ccf made a copy of the name */ 1233 err_clk: 1234 clk_unregister_fixed_rate(vc7->clk_apll.clk); 1235 return ret; 1236 } 1237 1238 static void vc7_remove(struct i2c_client *client) 1239 { 1240 struct vc7_driver_data *vc7 = i2c_get_clientdata(client); 1241 1242 of_clk_del_provider(client->dev.of_node); 1243 clk_unregister_fixed_rate(vc7->clk_apll.clk); 1244 } 1245 1246 static bool vc7_volatile_reg(struct device *dev, unsigned int reg) 1247 { 1248 if (reg == VC7_PAGE_ADDR) 1249 return false; 1250 1251 return true; 1252 } 1253 1254 static const struct vc7_chip_info vc7_rc21008a_info = { 1255 .model = VC7_RC21008A, 1256 .num_banks = 6, 1257 .num_outputs = 8, 1258 }; 1259 1260 static struct regmap_range_cfg vc7_range_cfg[] = { 1261 { 1262 .range_min = 0, 1263 .range_max = VC7_MAX_REG, 1264 .selector_reg = VC7_PAGE_ADDR, 1265 .selector_mask = 0xFF, 1266 .selector_shift = 0, 1267 .window_start = 0, 1268 .window_len = VC7_PAGE_WINDOW, 1269 }}; 1270 1271 static const struct regmap_config vc7_regmap_config = { 1272 .reg_bits = 8, 1273 .val_bits = 8, 1274 .max_register = VC7_MAX_REG, 1275 .ranges = vc7_range_cfg, 1276 .num_ranges = ARRAY_SIZE(vc7_range_cfg), 1277 .volatile_reg = vc7_volatile_reg, 1278 .cache_type = REGCACHE_MAPLE, 1279 .can_multi_write = true, 1280 .reg_format_endian = REGMAP_ENDIAN_LITTLE, 1281 .val_format_endian = REGMAP_ENDIAN_LITTLE, 1282 }; 1283 1284 static const struct i2c_device_id vc7_i2c_id[] = { 1285 { "rc21008a", .driver_data = (kernel_ulong_t)&vc7_rc21008a_info }, 1286 {} 1287 }; 1288 MODULE_DEVICE_TABLE(i2c, vc7_i2c_id); 1289 1290 static const struct of_device_id vc7_of_match[] = { 1291 { .compatible = "renesas,rc21008a", .data = &vc7_rc21008a_info }, 1292 {} 1293 }; 1294 MODULE_DEVICE_TABLE(of, vc7_of_match); 1295 1296 static struct i2c_driver vc7_i2c_driver = { 1297 .driver = { 1298 .name = "vc7", 1299 .of_match_table = vc7_of_match, 1300 }, 1301 .probe = vc7_probe, 1302 .remove = vc7_remove, 1303 .id_table = vc7_i2c_id, 1304 }; 1305 module_i2c_driver(vc7_i2c_driver); 1306 1307 MODULE_LICENSE("GPL"); 1308 MODULE_AUTHOR("Alex Helms <alexander.helms.jy@renesas.com"); 1309 MODULE_DESCRIPTION("Renesas Versaclock7 common clock framework driver"); 1310