xref: /linux/drivers/clk/clk-versaclock5.c (revision 5e0266f0e5f57617472d5aac4013f58a3ef264ac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for IDT Versaclock 5
4  *
5  * Copyright (C) 2017 Marek Vasut <marek.vasut@gmail.com>
6  */
7 
8 /*
9  * Possible optimizations:
10  * - Use spread spectrum
11  * - Use integer divider in FOD if applicable
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/delay.h>
17 #include <linux/i2c.h>
18 #include <linux/interrupt.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_platform.h>
23 #include <linux/regmap.h>
24 #include <linux/slab.h>
25 
26 #include <dt-bindings/clock/versaclock.h>
27 
28 /* VersaClock5 registers */
29 #define VC5_OTP_CONTROL				0x00
30 
31 /* Factory-reserved register block */
32 #define VC5_RSVD_DEVICE_ID			0x01
33 #define VC5_RSVD_ADC_GAIN_7_0			0x02
34 #define VC5_RSVD_ADC_GAIN_15_8			0x03
35 #define VC5_RSVD_ADC_OFFSET_7_0			0x04
36 #define VC5_RSVD_ADC_OFFSET_15_8		0x05
37 #define VC5_RSVD_TEMPY				0x06
38 #define VC5_RSVD_OFFSET_TBIN			0x07
39 #define VC5_RSVD_GAIN				0x08
40 #define VC5_RSVD_TEST_NP			0x09
41 #define VC5_RSVD_UNUSED				0x0a
42 #define VC5_RSVD_BANDGAP_TRIM_UP		0x0b
43 #define VC5_RSVD_BANDGAP_TRIM_DN		0x0c
44 #define VC5_RSVD_CLK_R_12_CLK_AMP_4		0x0d
45 #define VC5_RSVD_CLK_R_34_CLK_AMP_4		0x0e
46 #define VC5_RSVD_CLK_AMP_123			0x0f
47 
48 /* Configuration register block */
49 #define VC5_PRIM_SRC_SHDN			0x10
50 #define VC5_PRIM_SRC_SHDN_EN_XTAL		BIT(7)
51 #define VC5_PRIM_SRC_SHDN_EN_CLKIN		BIT(6)
52 #define VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ	BIT(3)
53 #define VC5_PRIM_SRC_SHDN_SP			BIT(1)
54 #define VC5_PRIM_SRC_SHDN_EN_GBL_SHDN		BIT(0)
55 
56 #define VC5_VCO_BAND				0x11
57 #define VC5_XTAL_X1_LOAD_CAP			0x12
58 #define VC5_XTAL_X2_LOAD_CAP			0x13
59 #define VC5_REF_DIVIDER				0x15
60 #define VC5_REF_DIVIDER_SEL_PREDIV2		BIT(7)
61 #define VC5_REF_DIVIDER_REF_DIV(n)		((n) & 0x3f)
62 
63 #define VC5_VCO_CTRL_AND_PREDIV			0x16
64 #define VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV	BIT(7)
65 
66 #define VC5_FEEDBACK_INT_DIV			0x17
67 #define VC5_FEEDBACK_INT_DIV_BITS		0x18
68 #define VC5_FEEDBACK_FRAC_DIV(n)		(0x19 + (n))
69 #define VC5_RC_CONTROL0				0x1e
70 #define VC5_RC_CONTROL1				0x1f
71 
72 /* These registers are named "Unused Factory Reserved Registers" */
73 #define VC5_RESERVED_X0(idx)		(0x20 + ((idx) * 0x10))
74 #define VC5_RESERVED_X0_BYPASS_SYNC	BIT(7) /* bypass_sync<idx> bit */
75 
76 /* Output divider control for divider 1,2,3,4 */
77 #define VC5_OUT_DIV_CONTROL(idx)	(0x21 + ((idx) * 0x10))
78 #define VC5_OUT_DIV_CONTROL_RESET	BIT(7)
79 #define VC5_OUT_DIV_CONTROL_SELB_NORM	BIT(3)
80 #define VC5_OUT_DIV_CONTROL_SEL_EXT	BIT(2)
81 #define VC5_OUT_DIV_CONTROL_INT_MODE	BIT(1)
82 #define VC5_OUT_DIV_CONTROL_EN_FOD	BIT(0)
83 
84 #define VC5_OUT_DIV_FRAC(idx, n)	(0x22 + ((idx) * 0x10) + (n))
85 #define VC5_OUT_DIV_FRAC4_OD_SCEE	BIT(1)
86 
87 #define VC5_OUT_DIV_STEP_SPREAD(idx, n)	(0x26 + ((idx) * 0x10) + (n))
88 #define VC5_OUT_DIV_SPREAD_MOD(idx, n)	(0x29 + ((idx) * 0x10) + (n))
89 #define VC5_OUT_DIV_SKEW_INT(idx, n)	(0x2b + ((idx) * 0x10) + (n))
90 #define VC5_OUT_DIV_INT(idx, n)		(0x2d + ((idx) * 0x10) + (n))
91 #define VC5_OUT_DIV_SKEW_FRAC(idx)	(0x2f + ((idx) * 0x10))
92 
93 /* Clock control register for clock 1,2 */
94 #define VC5_CLK_OUTPUT_CFG(idx, n)	(0x60 + ((idx) * 0x2) + (n))
95 #define VC5_CLK_OUTPUT_CFG0_CFG_SHIFT	5
96 #define VC5_CLK_OUTPUT_CFG0_CFG_MASK GENMASK(7, VC5_CLK_OUTPUT_CFG0_CFG_SHIFT)
97 
98 #define VC5_CLK_OUTPUT_CFG0_CFG_LVPECL	(VC5_LVPECL)
99 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOS		(VC5_CMOS)
100 #define VC5_CLK_OUTPUT_CFG0_CFG_HCSL33	(VC5_HCSL33)
101 #define VC5_CLK_OUTPUT_CFG0_CFG_LVDS		(VC5_LVDS)
102 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOS2		(VC5_CMOS2)
103 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOSD		(VC5_CMOSD)
104 #define VC5_CLK_OUTPUT_CFG0_CFG_HCSL25	(VC5_HCSL25)
105 
106 #define VC5_CLK_OUTPUT_CFG0_PWR_SHIFT	3
107 #define VC5_CLK_OUTPUT_CFG0_PWR_MASK GENMASK(4, VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
108 #define VC5_CLK_OUTPUT_CFG0_PWR_18	(0<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
109 #define VC5_CLK_OUTPUT_CFG0_PWR_25	(2<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
110 #define VC5_CLK_OUTPUT_CFG0_PWR_33	(3<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
111 #define VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT	0
112 #define VC5_CLK_OUTPUT_CFG0_SLEW_MASK GENMASK(1, VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
113 #define VC5_CLK_OUTPUT_CFG0_SLEW_80	(0<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
114 #define VC5_CLK_OUTPUT_CFG0_SLEW_85	(1<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
115 #define VC5_CLK_OUTPUT_CFG0_SLEW_90	(2<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
116 #define VC5_CLK_OUTPUT_CFG0_SLEW_100	(3<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
117 #define VC5_CLK_OUTPUT_CFG1_EN_CLKBUF	BIT(0)
118 
119 #define VC5_CLK_OE_SHDN				0x68
120 #define VC5_CLK_OS_SHDN				0x69
121 
122 #define VC5_GLOBAL_REGISTER			0x76
123 #define VC5_GLOBAL_REGISTER_GLOBAL_RESET	BIT(5)
124 
125 /* The minimum VCO frequency is 2.5 GHz. The maximum is variant specific. */
126 #define VC5_PLL_VCO_MIN				2500000000UL
127 
128 /* VC5 Input mux settings */
129 #define VC5_MUX_IN_XIN		BIT(0)
130 #define VC5_MUX_IN_CLKIN	BIT(1)
131 
132 /* Maximum number of clk_out supported by this driver */
133 #define VC5_MAX_CLK_OUT_NUM	5
134 
135 /* Maximum number of FODs supported by this driver */
136 #define VC5_MAX_FOD_NUM	4
137 
138 /* flags to describe chip features */
139 /* chip has built-in oscilator */
140 #define VC5_HAS_INTERNAL_XTAL	BIT(0)
141 /* chip has PFD requency doubler */
142 #define VC5_HAS_PFD_FREQ_DBL	BIT(1)
143 /* chip has bits to disable FOD sync */
144 #define VC5_HAS_BYPASS_SYNC_BIT	BIT(2)
145 
146 /* Supported IDT VC5 models. */
147 enum vc5_model {
148 	IDT_VC5_5P49V5923,
149 	IDT_VC5_5P49V5925,
150 	IDT_VC5_5P49V5933,
151 	IDT_VC5_5P49V5935,
152 	IDT_VC6_5P49V60,
153 	IDT_VC6_5P49V6901,
154 	IDT_VC6_5P49V6965,
155 	IDT_VC6_5P49V6975,
156 };
157 
158 /* Structure to describe features of a particular VC5 model */
159 struct vc5_chip_info {
160 	const enum vc5_model	model;
161 	const unsigned int	clk_fod_cnt;
162 	const unsigned int	clk_out_cnt;
163 	const u32		flags;
164 	const unsigned long	vco_max;
165 };
166 
167 struct vc5_driver_data;
168 
169 struct vc5_hw_data {
170 	struct clk_hw		hw;
171 	struct vc5_driver_data	*vc5;
172 	u32			div_int;
173 	u32			div_frc;
174 	unsigned int		num;
175 };
176 
177 struct vc5_out_data {
178 	struct clk_hw		hw;
179 	struct vc5_driver_data	*vc5;
180 	unsigned int		num;
181 	unsigned int		clk_output_cfg0;
182 	unsigned int		clk_output_cfg0_mask;
183 };
184 
185 struct vc5_driver_data {
186 	struct i2c_client	*client;
187 	struct regmap		*regmap;
188 	const struct vc5_chip_info	*chip_info;
189 
190 	struct clk		*pin_xin;
191 	struct clk		*pin_clkin;
192 	unsigned char		clk_mux_ins;
193 	struct clk_hw		clk_mux;
194 	struct clk_hw		clk_mul;
195 	struct clk_hw		clk_pfd;
196 	struct vc5_hw_data	clk_pll;
197 	struct vc5_hw_data	clk_fod[VC5_MAX_FOD_NUM];
198 	struct vc5_out_data	clk_out[VC5_MAX_CLK_OUT_NUM];
199 };
200 
201 /*
202  * VersaClock5 i2c regmap
203  */
204 static bool vc5_regmap_is_writeable(struct device *dev, unsigned int reg)
205 {
206 	/* Factory reserved regs, make them read-only */
207 	if (reg <= 0xf)
208 		return false;
209 
210 	/* Factory reserved regs, make them read-only */
211 	if (reg == 0x14 || reg == 0x1c || reg == 0x1d)
212 		return false;
213 
214 	return true;
215 }
216 
217 static const struct regmap_config vc5_regmap_config = {
218 	.reg_bits = 8,
219 	.val_bits = 8,
220 	.cache_type = REGCACHE_RBTREE,
221 	.max_register = 0x76,
222 	.writeable_reg = vc5_regmap_is_writeable,
223 };
224 
225 /*
226  * VersaClock5 input multiplexer between XTAL and CLKIN divider
227  */
228 static unsigned char vc5_mux_get_parent(struct clk_hw *hw)
229 {
230 	struct vc5_driver_data *vc5 =
231 		container_of(hw, struct vc5_driver_data, clk_mux);
232 	const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
233 	unsigned int src;
234 	int ret;
235 
236 	ret = regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &src);
237 	if (ret)
238 		return 0;
239 
240 	src &= mask;
241 
242 	if (src == VC5_PRIM_SRC_SHDN_EN_XTAL)
243 		return 0;
244 
245 	if (src == VC5_PRIM_SRC_SHDN_EN_CLKIN)
246 		return 1;
247 
248 	dev_warn(&vc5->client->dev,
249 		 "Invalid clock input configuration (%02x)\n", src);
250 	return 0;
251 }
252 
253 static int vc5_mux_set_parent(struct clk_hw *hw, u8 index)
254 {
255 	struct vc5_driver_data *vc5 =
256 		container_of(hw, struct vc5_driver_data, clk_mux);
257 	const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
258 	u8 src;
259 
260 	if ((index > 1) || !vc5->clk_mux_ins)
261 		return -EINVAL;
262 
263 	if (vc5->clk_mux_ins == (VC5_MUX_IN_CLKIN | VC5_MUX_IN_XIN)) {
264 		if (index == 0)
265 			src = VC5_PRIM_SRC_SHDN_EN_XTAL;
266 		if (index == 1)
267 			src = VC5_PRIM_SRC_SHDN_EN_CLKIN;
268 	} else {
269 		if (index != 0)
270 			return -EINVAL;
271 
272 		if (vc5->clk_mux_ins == VC5_MUX_IN_XIN)
273 			src = VC5_PRIM_SRC_SHDN_EN_XTAL;
274 		else if (vc5->clk_mux_ins == VC5_MUX_IN_CLKIN)
275 			src = VC5_PRIM_SRC_SHDN_EN_CLKIN;
276 		else /* Invalid; should have been caught by vc5_probe() */
277 			return -EINVAL;
278 	}
279 
280 	return regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, mask, src);
281 }
282 
283 static const struct clk_ops vc5_mux_ops = {
284 	.set_parent	= vc5_mux_set_parent,
285 	.get_parent	= vc5_mux_get_parent,
286 };
287 
288 static unsigned long vc5_dbl_recalc_rate(struct clk_hw *hw,
289 					 unsigned long parent_rate)
290 {
291 	struct vc5_driver_data *vc5 =
292 		container_of(hw, struct vc5_driver_data, clk_mul);
293 	unsigned int premul;
294 	int ret;
295 
296 	ret = regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &premul);
297 	if (ret)
298 		return 0;
299 
300 	if (premul & VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ)
301 		parent_rate *= 2;
302 
303 	return parent_rate;
304 }
305 
306 static long vc5_dbl_round_rate(struct clk_hw *hw, unsigned long rate,
307 			       unsigned long *parent_rate)
308 {
309 	if ((*parent_rate == rate) || ((*parent_rate * 2) == rate))
310 		return rate;
311 	else
312 		return -EINVAL;
313 }
314 
315 static int vc5_dbl_set_rate(struct clk_hw *hw, unsigned long rate,
316 			    unsigned long parent_rate)
317 {
318 	struct vc5_driver_data *vc5 =
319 		container_of(hw, struct vc5_driver_data, clk_mul);
320 	u32 mask;
321 
322 	if ((parent_rate * 2) == rate)
323 		mask = VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ;
324 	else
325 		mask = 0;
326 
327 	return regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN,
328 				  VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ,
329 				  mask);
330 }
331 
332 static const struct clk_ops vc5_dbl_ops = {
333 	.recalc_rate	= vc5_dbl_recalc_rate,
334 	.round_rate	= vc5_dbl_round_rate,
335 	.set_rate	= vc5_dbl_set_rate,
336 };
337 
338 static unsigned long vc5_pfd_recalc_rate(struct clk_hw *hw,
339 					 unsigned long parent_rate)
340 {
341 	struct vc5_driver_data *vc5 =
342 		container_of(hw, struct vc5_driver_data, clk_pfd);
343 	unsigned int prediv, div;
344 	int ret;
345 
346 	ret = regmap_read(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV, &prediv);
347 	if (ret)
348 		return 0;
349 
350 	/* The bypass_prediv is set, PLL fed from Ref_in directly. */
351 	if (prediv & VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV)
352 		return parent_rate;
353 
354 	ret = regmap_read(vc5->regmap, VC5_REF_DIVIDER, &div);
355 	if (ret)
356 		return 0;
357 
358 	/* The Sel_prediv2 is set, PLL fed from prediv2 (Ref_in / 2) */
359 	if (div & VC5_REF_DIVIDER_SEL_PREDIV2)
360 		return parent_rate / 2;
361 	else
362 		return parent_rate / VC5_REF_DIVIDER_REF_DIV(div);
363 }
364 
365 static long vc5_pfd_round_rate(struct clk_hw *hw, unsigned long rate,
366 			       unsigned long *parent_rate)
367 {
368 	unsigned long idiv;
369 
370 	/* PLL cannot operate with input clock above 50 MHz. */
371 	if (rate > 50000000)
372 		return -EINVAL;
373 
374 	/* CLKIN within range of PLL input, feed directly to PLL. */
375 	if (*parent_rate <= 50000000)
376 		return *parent_rate;
377 
378 	idiv = DIV_ROUND_UP(*parent_rate, rate);
379 	if (idiv > 127)
380 		return -EINVAL;
381 
382 	return *parent_rate / idiv;
383 }
384 
385 static int vc5_pfd_set_rate(struct clk_hw *hw, unsigned long rate,
386 			    unsigned long parent_rate)
387 {
388 	struct vc5_driver_data *vc5 =
389 		container_of(hw, struct vc5_driver_data, clk_pfd);
390 	unsigned long idiv;
391 	int ret;
392 	u8 div;
393 
394 	/* CLKIN within range of PLL input, feed directly to PLL. */
395 	if (parent_rate <= 50000000) {
396 		ret = regmap_set_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
397 				      VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV);
398 		if (ret)
399 			return ret;
400 
401 		return regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, 0x00);
402 	}
403 
404 	idiv = DIV_ROUND_UP(parent_rate, rate);
405 
406 	/* We have dedicated div-2 predivider. */
407 	if (idiv == 2)
408 		div = VC5_REF_DIVIDER_SEL_PREDIV2;
409 	else
410 		div = VC5_REF_DIVIDER_REF_DIV(idiv);
411 
412 	ret = regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, div);
413 	if (ret)
414 		return ret;
415 
416 	return regmap_clear_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
417 				 VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV);
418 }
419 
420 static const struct clk_ops vc5_pfd_ops = {
421 	.recalc_rate	= vc5_pfd_recalc_rate,
422 	.round_rate	= vc5_pfd_round_rate,
423 	.set_rate	= vc5_pfd_set_rate,
424 };
425 
426 /*
427  * VersaClock5 PLL/VCO
428  */
429 static unsigned long vc5_pll_recalc_rate(struct clk_hw *hw,
430 					 unsigned long parent_rate)
431 {
432 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
433 	struct vc5_driver_data *vc5 = hwdata->vc5;
434 	u32 div_int, div_frc;
435 	u8 fb[5];
436 
437 	regmap_bulk_read(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5);
438 
439 	div_int = (fb[0] << 4) | (fb[1] >> 4);
440 	div_frc = (fb[2] << 16) | (fb[3] << 8) | fb[4];
441 
442 	/* The PLL divider has 12 integer bits and 24 fractional bits */
443 	return (parent_rate * div_int) + ((parent_rate * div_frc) >> 24);
444 }
445 
446 static long vc5_pll_round_rate(struct clk_hw *hw, unsigned long rate,
447 			       unsigned long *parent_rate)
448 {
449 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
450 	struct vc5_driver_data *vc5 = hwdata->vc5;
451 	u32 div_int;
452 	u64 div_frc;
453 
454 	rate = clamp(rate, VC5_PLL_VCO_MIN, vc5->chip_info->vco_max);
455 
456 	/* Determine integer part, which is 12 bit wide */
457 	div_int = rate / *parent_rate;
458 	if (div_int > 0xfff)
459 		rate = *parent_rate * 0xfff;
460 
461 	/* Determine best fractional part, which is 24 bit wide */
462 	div_frc = rate % *parent_rate;
463 	div_frc *= BIT(24) - 1;
464 	do_div(div_frc, *parent_rate);
465 
466 	hwdata->div_int = div_int;
467 	hwdata->div_frc = (u32)div_frc;
468 
469 	return (*parent_rate * div_int) + ((*parent_rate * div_frc) >> 24);
470 }
471 
472 static int vc5_pll_set_rate(struct clk_hw *hw, unsigned long rate,
473 			    unsigned long parent_rate)
474 {
475 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
476 	struct vc5_driver_data *vc5 = hwdata->vc5;
477 	u8 fb[5];
478 
479 	fb[0] = hwdata->div_int >> 4;
480 	fb[1] = hwdata->div_int << 4;
481 	fb[2] = hwdata->div_frc >> 16;
482 	fb[3] = hwdata->div_frc >> 8;
483 	fb[4] = hwdata->div_frc;
484 
485 	return regmap_bulk_write(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5);
486 }
487 
488 static const struct clk_ops vc5_pll_ops = {
489 	.recalc_rate	= vc5_pll_recalc_rate,
490 	.round_rate	= vc5_pll_round_rate,
491 	.set_rate	= vc5_pll_set_rate,
492 };
493 
494 static unsigned long vc5_fod_recalc_rate(struct clk_hw *hw,
495 					 unsigned long parent_rate)
496 {
497 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
498 	struct vc5_driver_data *vc5 = hwdata->vc5;
499 	/* VCO frequency is divided by two before entering FOD */
500 	u32 f_in = parent_rate / 2;
501 	u32 div_int, div_frc;
502 	u8 od_int[2];
503 	u8 od_frc[4];
504 
505 	regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_INT(hwdata->num, 0),
506 			 od_int, 2);
507 	regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
508 			 od_frc, 4);
509 
510 	div_int = (od_int[0] << 4) | (od_int[1] >> 4);
511 	div_frc = (od_frc[0] << 22) | (od_frc[1] << 14) |
512 		  (od_frc[2] << 6) | (od_frc[3] >> 2);
513 
514 	/* Avoid division by zero if the output is not configured. */
515 	if (div_int == 0 && div_frc == 0)
516 		return 0;
517 
518 	/* The PLL divider has 12 integer bits and 30 fractional bits */
519 	return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc);
520 }
521 
522 static long vc5_fod_round_rate(struct clk_hw *hw, unsigned long rate,
523 			       unsigned long *parent_rate)
524 {
525 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
526 	/* VCO frequency is divided by two before entering FOD */
527 	u32 f_in = *parent_rate / 2;
528 	u32 div_int;
529 	u64 div_frc;
530 
531 	/* Determine integer part, which is 12 bit wide */
532 	div_int = f_in / rate;
533 	/*
534 	 * WARNING: The clock chip does not output signal if the integer part
535 	 *          of the divider is 0xfff and fractional part is non-zero.
536 	 *          Clamp the divider at 0xffe to keep the code simple.
537 	 */
538 	if (div_int > 0xffe) {
539 		div_int = 0xffe;
540 		rate = f_in / div_int;
541 	}
542 
543 	/* Determine best fractional part, which is 30 bit wide */
544 	div_frc = f_in % rate;
545 	div_frc <<= 24;
546 	do_div(div_frc, rate);
547 
548 	hwdata->div_int = div_int;
549 	hwdata->div_frc = (u32)div_frc;
550 
551 	return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc);
552 }
553 
554 static int vc5_fod_set_rate(struct clk_hw *hw, unsigned long rate,
555 			    unsigned long parent_rate)
556 {
557 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
558 	struct vc5_driver_data *vc5 = hwdata->vc5;
559 	u8 data[14] = {
560 		hwdata->div_frc >> 22, hwdata->div_frc >> 14,
561 		hwdata->div_frc >> 6, hwdata->div_frc << 2,
562 		0, 0, 0, 0, 0,
563 		0, 0,
564 		hwdata->div_int >> 4, hwdata->div_int << 4,
565 		0
566 	};
567 	int ret;
568 
569 	ret = regmap_bulk_write(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
570 				data, 14);
571 	if (ret)
572 		return ret;
573 
574 	/*
575 	 * Toggle magic bit in undocumented register for unknown reason.
576 	 * This is what the IDT timing commander tool does and the chip
577 	 * datasheet somewhat implies this is needed, but the register
578 	 * and the bit is not documented.
579 	 */
580 	ret = regmap_clear_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
581 				VC5_GLOBAL_REGISTER_GLOBAL_RESET);
582 	if (ret)
583 		return ret;
584 
585 	return regmap_set_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
586 			       VC5_GLOBAL_REGISTER_GLOBAL_RESET);
587 }
588 
589 static const struct clk_ops vc5_fod_ops = {
590 	.recalc_rate	= vc5_fod_recalc_rate,
591 	.round_rate	= vc5_fod_round_rate,
592 	.set_rate	= vc5_fod_set_rate,
593 };
594 
595 static int vc5_clk_out_prepare(struct clk_hw *hw)
596 {
597 	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
598 	struct vc5_driver_data *vc5 = hwdata->vc5;
599 	const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM |
600 			VC5_OUT_DIV_CONTROL_SEL_EXT |
601 			VC5_OUT_DIV_CONTROL_EN_FOD;
602 	unsigned int src;
603 	int ret;
604 
605 	/*
606 	 * When enabling a FOD, all currently enabled FODs are briefly
607 	 * stopped in order to synchronize all of them. This causes a clock
608 	 * disruption to any unrelated chips that might be already using
609 	 * other clock outputs. Bypass the sync feature to avoid the issue,
610 	 * which is possible on the VersaClock 6E family via reserved
611 	 * registers.
612 	 */
613 	if (vc5->chip_info->flags & VC5_HAS_BYPASS_SYNC_BIT) {
614 		ret = regmap_set_bits(vc5->regmap,
615 				      VC5_RESERVED_X0(hwdata->num),
616 				      VC5_RESERVED_X0_BYPASS_SYNC);
617 		if (ret)
618 			return ret;
619 	}
620 
621 	/*
622 	 * If the input mux is disabled, enable it first and
623 	 * select source from matching FOD.
624 	 */
625 	ret = regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
626 	if (ret)
627 		return ret;
628 
629 	if ((src & mask) == 0) {
630 		src = VC5_OUT_DIV_CONTROL_RESET | VC5_OUT_DIV_CONTROL_EN_FOD;
631 		ret = regmap_update_bits(vc5->regmap,
632 					 VC5_OUT_DIV_CONTROL(hwdata->num),
633 					 mask | VC5_OUT_DIV_CONTROL_RESET, src);
634 		if (ret)
635 			return ret;
636 	}
637 
638 	/* Enable the clock buffer */
639 	ret = regmap_set_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
640 			      VC5_CLK_OUTPUT_CFG1_EN_CLKBUF);
641 	if (ret)
642 		return ret;
643 
644 	if (hwdata->clk_output_cfg0_mask) {
645 		dev_dbg(&vc5->client->dev, "Update output %d mask 0x%0X val 0x%0X\n",
646 			hwdata->num, hwdata->clk_output_cfg0_mask,
647 			hwdata->clk_output_cfg0);
648 
649 		ret = regmap_update_bits(vc5->regmap,
650 					 VC5_CLK_OUTPUT_CFG(hwdata->num, 0),
651 					 hwdata->clk_output_cfg0_mask,
652 					 hwdata->clk_output_cfg0);
653 		if (ret)
654 			return ret;
655 	}
656 
657 	return 0;
658 }
659 
660 static void vc5_clk_out_unprepare(struct clk_hw *hw)
661 {
662 	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
663 	struct vc5_driver_data *vc5 = hwdata->vc5;
664 
665 	/* Disable the clock buffer */
666 	regmap_clear_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
667 			  VC5_CLK_OUTPUT_CFG1_EN_CLKBUF);
668 }
669 
670 static unsigned char vc5_clk_out_get_parent(struct clk_hw *hw)
671 {
672 	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
673 	struct vc5_driver_data *vc5 = hwdata->vc5;
674 	const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM |
675 			VC5_OUT_DIV_CONTROL_SEL_EXT |
676 			VC5_OUT_DIV_CONTROL_EN_FOD;
677 	const u8 fodclkmask = VC5_OUT_DIV_CONTROL_SELB_NORM |
678 			      VC5_OUT_DIV_CONTROL_EN_FOD;
679 	const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
680 			  VC5_OUT_DIV_CONTROL_SEL_EXT;
681 	unsigned int src;
682 	int ret;
683 
684 	ret = regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
685 	if (ret)
686 		return 0;
687 
688 	src &= mask;
689 
690 	if (src == 0)	/* Input mux set to DISABLED */
691 		return 0;
692 
693 	if ((src & fodclkmask) == VC5_OUT_DIV_CONTROL_EN_FOD)
694 		return 0;
695 
696 	if (src == extclk)
697 		return 1;
698 
699 	dev_warn(&vc5->client->dev,
700 		 "Invalid clock output configuration (%02x)\n", src);
701 	return 0;
702 }
703 
704 static int vc5_clk_out_set_parent(struct clk_hw *hw, u8 index)
705 {
706 	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
707 	struct vc5_driver_data *vc5 = hwdata->vc5;
708 	const u8 mask = VC5_OUT_DIV_CONTROL_RESET |
709 			VC5_OUT_DIV_CONTROL_SELB_NORM |
710 			VC5_OUT_DIV_CONTROL_SEL_EXT |
711 			VC5_OUT_DIV_CONTROL_EN_FOD;
712 	const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
713 			  VC5_OUT_DIV_CONTROL_SEL_EXT;
714 	u8 src = VC5_OUT_DIV_CONTROL_RESET;
715 
716 	if (index == 0)
717 		src |= VC5_OUT_DIV_CONTROL_EN_FOD;
718 	else
719 		src |= extclk;
720 
721 	return regmap_update_bits(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num),
722 				  mask, src);
723 }
724 
725 static const struct clk_ops vc5_clk_out_ops = {
726 	.prepare	= vc5_clk_out_prepare,
727 	.unprepare	= vc5_clk_out_unprepare,
728 	.set_parent	= vc5_clk_out_set_parent,
729 	.get_parent	= vc5_clk_out_get_parent,
730 };
731 
732 static struct clk_hw *vc5_of_clk_get(struct of_phandle_args *clkspec,
733 				     void *data)
734 {
735 	struct vc5_driver_data *vc5 = data;
736 	unsigned int idx = clkspec->args[0];
737 
738 	if (idx >= vc5->chip_info->clk_out_cnt)
739 		return ERR_PTR(-EINVAL);
740 
741 	return &vc5->clk_out[idx].hw;
742 }
743 
744 static int vc5_map_index_to_output(const enum vc5_model model,
745 				   const unsigned int n)
746 {
747 	switch (model) {
748 	case IDT_VC5_5P49V5933:
749 		return (n == 0) ? 0 : 3;
750 	case IDT_VC5_5P49V5923:
751 	case IDT_VC5_5P49V5925:
752 	case IDT_VC5_5P49V5935:
753 	case IDT_VC6_5P49V6901:
754 	case IDT_VC6_5P49V6965:
755 	case IDT_VC6_5P49V6975:
756 	default:
757 		return n;
758 	}
759 }
760 
761 static int vc5_update_mode(struct device_node *np_output,
762 			   struct vc5_out_data *clk_out)
763 {
764 	u32 value;
765 
766 	if (!of_property_read_u32(np_output, "idt,mode", &value)) {
767 		clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_CFG_MASK;
768 		switch (value) {
769 		case VC5_CLK_OUTPUT_CFG0_CFG_LVPECL:
770 		case VC5_CLK_OUTPUT_CFG0_CFG_CMOS:
771 		case VC5_CLK_OUTPUT_CFG0_CFG_HCSL33:
772 		case VC5_CLK_OUTPUT_CFG0_CFG_LVDS:
773 		case VC5_CLK_OUTPUT_CFG0_CFG_CMOS2:
774 		case VC5_CLK_OUTPUT_CFG0_CFG_CMOSD:
775 		case VC5_CLK_OUTPUT_CFG0_CFG_HCSL25:
776 			clk_out->clk_output_cfg0 |=
777 			    value << VC5_CLK_OUTPUT_CFG0_CFG_SHIFT;
778 			break;
779 		default:
780 			return -EINVAL;
781 		}
782 	}
783 	return 0;
784 }
785 
786 static int vc5_update_power(struct device_node *np_output,
787 			    struct vc5_out_data *clk_out)
788 {
789 	u32 value;
790 
791 	if (!of_property_read_u32(np_output, "idt,voltage-microvolt",
792 				  &value)) {
793 		clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_PWR_MASK;
794 		switch (value) {
795 		case 1800000:
796 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_18;
797 			break;
798 		case 2500000:
799 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_25;
800 			break;
801 		case 3300000:
802 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_33;
803 			break;
804 		default:
805 			return -EINVAL;
806 		}
807 	}
808 	return 0;
809 }
810 
811 static int vc5_map_cap_value(u32 femtofarads)
812 {
813 	int mapped_value;
814 
815 	/*
816 	 * The datasheet explicitly states 9000 - 25000 with 0.5pF
817 	 * steps, but the Programmer's guide shows the steps are 0.430pF.
818 	 * After getting feedback from Renesas, the .5pF steps were the
819 	 * goal, but 430nF was the actual values.
820 	 * Because of this, the actual range goes to 22760 instead of 25000
821 	 */
822 	if (femtofarads < 9000 || femtofarads > 22760)
823 		return -EINVAL;
824 
825 	/*
826 	 * The Programmer's guide shows XTAL[5:0] but in reality,
827 	 * XTAL[0] and XTAL[1] are both LSB which makes the math
828 	 * strange.  With clarfication from Renesas, setting the
829 	 * values should be simpler by ignoring XTAL[0]
830 	 */
831 	mapped_value = DIV_ROUND_CLOSEST(femtofarads - 9000, 430);
832 
833 	/*
834 	 * Since the calculation ignores XTAL[0], there is one
835 	 * special case where mapped_value = 32.  In reality, this means
836 	 * the real mapped value should be 111111b.  In other cases,
837 	 * the mapped_value needs to be shifted 1 to the left.
838 	 */
839 	if (mapped_value > 31)
840 		mapped_value = 0x3f;
841 	else
842 		mapped_value <<= 1;
843 
844 	return mapped_value;
845 }
846 static int vc5_update_cap_load(struct device_node *node, struct vc5_driver_data *vc5)
847 {
848 	u32 value;
849 	int mapped_value;
850 	int ret;
851 
852 	if (of_property_read_u32(node, "idt,xtal-load-femtofarads", &value))
853 		return 0;
854 
855 	mapped_value = vc5_map_cap_value(value);
856 	if (mapped_value < 0)
857 		return mapped_value;
858 
859 	/*
860 	 * The mapped_value is really the high 6 bits of
861 	 * VC5_XTAL_X1_LOAD_CAP and VC5_XTAL_X2_LOAD_CAP, so
862 	 * shift the value 2 places.
863 	 */
864 	ret = regmap_update_bits(vc5->regmap, VC5_XTAL_X1_LOAD_CAP, ~0x03,
865 				 mapped_value << 2);
866 	if (ret)
867 		return ret;
868 
869 	return regmap_update_bits(vc5->regmap, VC5_XTAL_X2_LOAD_CAP, ~0x03,
870 				  mapped_value << 2);
871 }
872 
873 static int vc5_update_slew(struct device_node *np_output,
874 			   struct vc5_out_data *clk_out)
875 {
876 	u32 value;
877 
878 	if (!of_property_read_u32(np_output, "idt,slew-percent", &value)) {
879 		clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_SLEW_MASK;
880 		switch (value) {
881 		case 80:
882 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_80;
883 			break;
884 		case 85:
885 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_85;
886 			break;
887 		case 90:
888 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_90;
889 			break;
890 		case 100:
891 			clk_out->clk_output_cfg0 |=
892 			    VC5_CLK_OUTPUT_CFG0_SLEW_100;
893 			break;
894 		default:
895 			return -EINVAL;
896 		}
897 	}
898 	return 0;
899 }
900 
901 static int vc5_get_output_config(struct i2c_client *client,
902 				 struct vc5_out_data *clk_out)
903 {
904 	struct device_node *np_output;
905 	char *child_name;
906 	int ret = 0;
907 
908 	child_name = kasprintf(GFP_KERNEL, "OUT%d", clk_out->num + 1);
909 	if (!child_name)
910 		return -ENOMEM;
911 
912 	np_output = of_get_child_by_name(client->dev.of_node, child_name);
913 	kfree(child_name);
914 	if (!np_output)
915 		return 0;
916 
917 	ret = vc5_update_mode(np_output, clk_out);
918 	if (ret)
919 		goto output_error;
920 
921 	ret = vc5_update_power(np_output, clk_out);
922 	if (ret)
923 		goto output_error;
924 
925 	ret = vc5_update_slew(np_output, clk_out);
926 
927 output_error:
928 	if (ret) {
929 		dev_err(&client->dev,
930 			"Invalid clock output configuration OUT%d\n",
931 			clk_out->num + 1);
932 	}
933 
934 	of_node_put(np_output);
935 
936 	return ret;
937 }
938 
939 static const struct of_device_id clk_vc5_of_match[];
940 
941 static int vc5_probe(struct i2c_client *client)
942 {
943 	unsigned int oe, sd, src_mask = 0, src_val = 0;
944 	struct vc5_driver_data *vc5;
945 	struct clk_init_data init;
946 	const char *parent_names[2];
947 	unsigned int n, idx = 0;
948 	int ret;
949 
950 	vc5 = devm_kzalloc(&client->dev, sizeof(*vc5), GFP_KERNEL);
951 	if (!vc5)
952 		return -ENOMEM;
953 
954 	i2c_set_clientdata(client, vc5);
955 	vc5->client = client;
956 	vc5->chip_info = of_device_get_match_data(&client->dev);
957 
958 	vc5->pin_xin = devm_clk_get(&client->dev, "xin");
959 	if (PTR_ERR(vc5->pin_xin) == -EPROBE_DEFER)
960 		return -EPROBE_DEFER;
961 
962 	vc5->pin_clkin = devm_clk_get(&client->dev, "clkin");
963 	if (PTR_ERR(vc5->pin_clkin) == -EPROBE_DEFER)
964 		return -EPROBE_DEFER;
965 
966 	vc5->regmap = devm_regmap_init_i2c(client, &vc5_regmap_config);
967 	if (IS_ERR(vc5->regmap))
968 		return dev_err_probe(&client->dev, PTR_ERR(vc5->regmap),
969 				     "failed to allocate register map\n");
970 
971 	ret = of_property_read_u32(client->dev.of_node, "idt,shutdown", &sd);
972 	if (!ret) {
973 		src_mask |= VC5_PRIM_SRC_SHDN_EN_GBL_SHDN;
974 		if (sd)
975 			src_val |= VC5_PRIM_SRC_SHDN_EN_GBL_SHDN;
976 	} else if (ret != -EINVAL) {
977 		return dev_err_probe(&client->dev, ret,
978 				     "could not read idt,shutdown\n");
979 	}
980 
981 	ret = of_property_read_u32(client->dev.of_node,
982 				   "idt,output-enable-active", &oe);
983 	if (!ret) {
984 		src_mask |= VC5_PRIM_SRC_SHDN_SP;
985 		if (oe)
986 			src_val |= VC5_PRIM_SRC_SHDN_SP;
987 	} else if (ret != -EINVAL) {
988 		return dev_err_probe(&client->dev, ret,
989 				     "could not read idt,output-enable-active\n");
990 	}
991 
992 	ret = regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, src_mask,
993 				 src_val);
994 	if (ret)
995 		return ret;
996 
997 	/* Register clock input mux */
998 	memset(&init, 0, sizeof(init));
999 
1000 	if (!IS_ERR(vc5->pin_xin)) {
1001 		vc5->clk_mux_ins |= VC5_MUX_IN_XIN;
1002 		parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin);
1003 	} else if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL) {
1004 		vc5->pin_xin = clk_register_fixed_rate(&client->dev,
1005 						       "internal-xtal", NULL,
1006 						       0, 25000000);
1007 		if (IS_ERR(vc5->pin_xin))
1008 			return PTR_ERR(vc5->pin_xin);
1009 		vc5->clk_mux_ins |= VC5_MUX_IN_XIN;
1010 		parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin);
1011 	}
1012 
1013 	if (!IS_ERR(vc5->pin_clkin)) {
1014 		vc5->clk_mux_ins |= VC5_MUX_IN_CLKIN;
1015 		parent_names[init.num_parents++] =
1016 		    __clk_get_name(vc5->pin_clkin);
1017 	}
1018 
1019 	if (!init.num_parents)
1020 		return dev_err_probe(&client->dev, -EINVAL,
1021 				     "no input clock specified!\n");
1022 
1023 	/* Configure Optional Loading Capacitance for external XTAL */
1024 	if (!(vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)) {
1025 		ret = vc5_update_cap_load(client->dev.of_node, vc5);
1026 		if (ret)
1027 			goto err_clk_register;
1028 	}
1029 
1030 	init.name = kasprintf(GFP_KERNEL, "%pOFn.mux", client->dev.of_node);
1031 	init.ops = &vc5_mux_ops;
1032 	init.flags = 0;
1033 	init.parent_names = parent_names;
1034 	vc5->clk_mux.init = &init;
1035 	ret = devm_clk_hw_register(&client->dev, &vc5->clk_mux);
1036 	if (ret)
1037 		goto err_clk_register;
1038 	kfree(init.name);	/* clock framework made a copy of the name */
1039 
1040 	if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL) {
1041 		/* Register frequency doubler */
1042 		memset(&init, 0, sizeof(init));
1043 		init.name = kasprintf(GFP_KERNEL, "%pOFn.dbl",
1044 				      client->dev.of_node);
1045 		init.ops = &vc5_dbl_ops;
1046 		init.flags = CLK_SET_RATE_PARENT;
1047 		init.parent_names = parent_names;
1048 		parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1049 		init.num_parents = 1;
1050 		vc5->clk_mul.init = &init;
1051 		ret = devm_clk_hw_register(&client->dev, &vc5->clk_mul);
1052 		if (ret)
1053 			goto err_clk_register;
1054 		kfree(init.name); /* clock framework made a copy of the name */
1055 	}
1056 
1057 	/* Register PFD */
1058 	memset(&init, 0, sizeof(init));
1059 	init.name = kasprintf(GFP_KERNEL, "%pOFn.pfd", client->dev.of_node);
1060 	init.ops = &vc5_pfd_ops;
1061 	init.flags = CLK_SET_RATE_PARENT;
1062 	init.parent_names = parent_names;
1063 	if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL)
1064 		parent_names[0] = clk_hw_get_name(&vc5->clk_mul);
1065 	else
1066 		parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1067 	init.num_parents = 1;
1068 	vc5->clk_pfd.init = &init;
1069 	ret = devm_clk_hw_register(&client->dev, &vc5->clk_pfd);
1070 	if (ret)
1071 		goto err_clk_register;
1072 	kfree(init.name);	/* clock framework made a copy of the name */
1073 
1074 	/* Register PLL */
1075 	memset(&init, 0, sizeof(init));
1076 	init.name = kasprintf(GFP_KERNEL, "%pOFn.pll", client->dev.of_node);
1077 	init.ops = &vc5_pll_ops;
1078 	init.flags = CLK_SET_RATE_PARENT;
1079 	init.parent_names = parent_names;
1080 	parent_names[0] = clk_hw_get_name(&vc5->clk_pfd);
1081 	init.num_parents = 1;
1082 	vc5->clk_pll.num = 0;
1083 	vc5->clk_pll.vc5 = vc5;
1084 	vc5->clk_pll.hw.init = &init;
1085 	ret = devm_clk_hw_register(&client->dev, &vc5->clk_pll.hw);
1086 	if (ret)
1087 		goto err_clk_register;
1088 	kfree(init.name); /* clock framework made a copy of the name */
1089 
1090 	/* Register FODs */
1091 	for (n = 0; n < vc5->chip_info->clk_fod_cnt; n++) {
1092 		idx = vc5_map_index_to_output(vc5->chip_info->model, n);
1093 		memset(&init, 0, sizeof(init));
1094 		init.name = kasprintf(GFP_KERNEL, "%pOFn.fod%d",
1095 				      client->dev.of_node, idx);
1096 		init.ops = &vc5_fod_ops;
1097 		init.flags = CLK_SET_RATE_PARENT;
1098 		init.parent_names = parent_names;
1099 		parent_names[0] = clk_hw_get_name(&vc5->clk_pll.hw);
1100 		init.num_parents = 1;
1101 		vc5->clk_fod[n].num = idx;
1102 		vc5->clk_fod[n].vc5 = vc5;
1103 		vc5->clk_fod[n].hw.init = &init;
1104 		ret = devm_clk_hw_register(&client->dev, &vc5->clk_fod[n].hw);
1105 		if (ret)
1106 			goto err_clk_register;
1107 		kfree(init.name); /* clock framework made a copy of the name */
1108 	}
1109 
1110 	/* Register MUX-connected OUT0_I2C_SELB output */
1111 	memset(&init, 0, sizeof(init));
1112 	init.name = kasprintf(GFP_KERNEL, "%pOFn.out0_sel_i2cb",
1113 			      client->dev.of_node);
1114 	init.ops = &vc5_clk_out_ops;
1115 	init.flags = CLK_SET_RATE_PARENT;
1116 	init.parent_names = parent_names;
1117 	parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1118 	init.num_parents = 1;
1119 	vc5->clk_out[0].num = idx;
1120 	vc5->clk_out[0].vc5 = vc5;
1121 	vc5->clk_out[0].hw.init = &init;
1122 	ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[0].hw);
1123 	if (ret)
1124 		goto err_clk_register;
1125 	kfree(init.name); /* clock framework made a copy of the name */
1126 
1127 	/* Register FOD-connected OUTx outputs */
1128 	for (n = 1; n < vc5->chip_info->clk_out_cnt; n++) {
1129 		idx = vc5_map_index_to_output(vc5->chip_info->model, n - 1);
1130 		parent_names[0] = clk_hw_get_name(&vc5->clk_fod[idx].hw);
1131 		if (n == 1)
1132 			parent_names[1] = clk_hw_get_name(&vc5->clk_mux);
1133 		else
1134 			parent_names[1] =
1135 			    clk_hw_get_name(&vc5->clk_out[n - 1].hw);
1136 
1137 		memset(&init, 0, sizeof(init));
1138 		init.name = kasprintf(GFP_KERNEL, "%pOFn.out%d",
1139 				      client->dev.of_node, idx + 1);
1140 		init.ops = &vc5_clk_out_ops;
1141 		init.flags = CLK_SET_RATE_PARENT;
1142 		init.parent_names = parent_names;
1143 		init.num_parents = 2;
1144 		vc5->clk_out[n].num = idx;
1145 		vc5->clk_out[n].vc5 = vc5;
1146 		vc5->clk_out[n].hw.init = &init;
1147 		ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[n].hw);
1148 		if (ret)
1149 			goto err_clk_register;
1150 		kfree(init.name); /* clock framework made a copy of the name */
1151 
1152 		/* Fetch Clock Output configuration from DT (if specified) */
1153 		ret = vc5_get_output_config(client, &vc5->clk_out[n]);
1154 		if (ret)
1155 			goto err_clk;
1156 	}
1157 
1158 	ret = of_clk_add_hw_provider(client->dev.of_node, vc5_of_clk_get, vc5);
1159 	if (ret) {
1160 		dev_err_probe(&client->dev, ret,
1161 			      "unable to add clk provider\n");
1162 		goto err_clk;
1163 	}
1164 
1165 	return 0;
1166 
1167 err_clk_register:
1168 	dev_err_probe(&client->dev, ret,
1169 		      "unable to register %s\n", init.name);
1170 	kfree(init.name); /* clock framework made a copy of the name */
1171 err_clk:
1172 	if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)
1173 		clk_unregister_fixed_rate(vc5->pin_xin);
1174 	return ret;
1175 }
1176 
1177 static void vc5_remove(struct i2c_client *client)
1178 {
1179 	struct vc5_driver_data *vc5 = i2c_get_clientdata(client);
1180 
1181 	of_clk_del_provider(client->dev.of_node);
1182 
1183 	if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)
1184 		clk_unregister_fixed_rate(vc5->pin_xin);
1185 }
1186 
1187 static int __maybe_unused vc5_suspend(struct device *dev)
1188 {
1189 	struct vc5_driver_data *vc5 = dev_get_drvdata(dev);
1190 
1191 	regcache_cache_only(vc5->regmap, true);
1192 	regcache_mark_dirty(vc5->regmap);
1193 
1194 	return 0;
1195 }
1196 
1197 static int __maybe_unused vc5_resume(struct device *dev)
1198 {
1199 	struct vc5_driver_data *vc5 = dev_get_drvdata(dev);
1200 	int ret;
1201 
1202 	regcache_cache_only(vc5->regmap, false);
1203 	ret = regcache_sync(vc5->regmap);
1204 	if (ret)
1205 		dev_err(dev, "Failed to restore register map: %d\n", ret);
1206 	return ret;
1207 }
1208 
1209 static const struct vc5_chip_info idt_5p49v5923_info = {
1210 	.model = IDT_VC5_5P49V5923,
1211 	.clk_fod_cnt = 2,
1212 	.clk_out_cnt = 3,
1213 	.flags = 0,
1214 	.vco_max = 3000000000UL,
1215 };
1216 
1217 static const struct vc5_chip_info idt_5p49v5925_info = {
1218 	.model = IDT_VC5_5P49V5925,
1219 	.clk_fod_cnt = 4,
1220 	.clk_out_cnt = 5,
1221 	.flags = 0,
1222 	.vco_max = 3000000000UL,
1223 };
1224 
1225 static const struct vc5_chip_info idt_5p49v5933_info = {
1226 	.model = IDT_VC5_5P49V5933,
1227 	.clk_fod_cnt = 2,
1228 	.clk_out_cnt = 3,
1229 	.flags = VC5_HAS_INTERNAL_XTAL,
1230 	.vco_max = 3000000000UL,
1231 };
1232 
1233 static const struct vc5_chip_info idt_5p49v5935_info = {
1234 	.model = IDT_VC5_5P49V5935,
1235 	.clk_fod_cnt = 4,
1236 	.clk_out_cnt = 5,
1237 	.flags = VC5_HAS_INTERNAL_XTAL,
1238 	.vco_max = 3000000000UL,
1239 };
1240 
1241 static const struct vc5_chip_info idt_5p49v60_info = {
1242 	.model = IDT_VC6_5P49V60,
1243 	.clk_fod_cnt = 4,
1244 	.clk_out_cnt = 5,
1245 	.flags = VC5_HAS_PFD_FREQ_DBL | VC5_HAS_BYPASS_SYNC_BIT,
1246 	.vco_max = 2700000000UL,
1247 };
1248 
1249 static const struct vc5_chip_info idt_5p49v6901_info = {
1250 	.model = IDT_VC6_5P49V6901,
1251 	.clk_fod_cnt = 4,
1252 	.clk_out_cnt = 5,
1253 	.flags = VC5_HAS_PFD_FREQ_DBL | VC5_HAS_BYPASS_SYNC_BIT,
1254 	.vco_max = 3000000000UL,
1255 };
1256 
1257 static const struct vc5_chip_info idt_5p49v6965_info = {
1258 	.model = IDT_VC6_5P49V6965,
1259 	.clk_fod_cnt = 4,
1260 	.clk_out_cnt = 5,
1261 	.flags = VC5_HAS_BYPASS_SYNC_BIT,
1262 	.vco_max = 3000000000UL,
1263 };
1264 
1265 static const struct vc5_chip_info idt_5p49v6975_info = {
1266 	.model = IDT_VC6_5P49V6975,
1267 	.clk_fod_cnt = 4,
1268 	.clk_out_cnt = 5,
1269 	.flags = VC5_HAS_BYPASS_SYNC_BIT | VC5_HAS_INTERNAL_XTAL,
1270 	.vco_max = 3000000000UL,
1271 };
1272 
1273 static const struct i2c_device_id vc5_id[] = {
1274 	{ "5p49v5923", .driver_data = IDT_VC5_5P49V5923 },
1275 	{ "5p49v5925", .driver_data = IDT_VC5_5P49V5925 },
1276 	{ "5p49v5933", .driver_data = IDT_VC5_5P49V5933 },
1277 	{ "5p49v5935", .driver_data = IDT_VC5_5P49V5935 },
1278 	{ "5p49v60", .driver_data = IDT_VC6_5P49V60 },
1279 	{ "5p49v6901", .driver_data = IDT_VC6_5P49V6901 },
1280 	{ "5p49v6965", .driver_data = IDT_VC6_5P49V6965 },
1281 	{ "5p49v6975", .driver_data = IDT_VC6_5P49V6975 },
1282 	{ }
1283 };
1284 MODULE_DEVICE_TABLE(i2c, vc5_id);
1285 
1286 static const struct of_device_id clk_vc5_of_match[] = {
1287 	{ .compatible = "idt,5p49v5923", .data = &idt_5p49v5923_info },
1288 	{ .compatible = "idt,5p49v5925", .data = &idt_5p49v5925_info },
1289 	{ .compatible = "idt,5p49v5933", .data = &idt_5p49v5933_info },
1290 	{ .compatible = "idt,5p49v5935", .data = &idt_5p49v5935_info },
1291 	{ .compatible = "idt,5p49v60", .data = &idt_5p49v60_info },
1292 	{ .compatible = "idt,5p49v6901", .data = &idt_5p49v6901_info },
1293 	{ .compatible = "idt,5p49v6965", .data = &idt_5p49v6965_info },
1294 	{ .compatible = "idt,5p49v6975", .data = &idt_5p49v6975_info },
1295 	{ },
1296 };
1297 MODULE_DEVICE_TABLE(of, clk_vc5_of_match);
1298 
1299 static SIMPLE_DEV_PM_OPS(vc5_pm_ops, vc5_suspend, vc5_resume);
1300 
1301 static struct i2c_driver vc5_driver = {
1302 	.driver = {
1303 		.name = "vc5",
1304 		.pm	= &vc5_pm_ops,
1305 		.of_match_table = clk_vc5_of_match,
1306 	},
1307 	.probe_new	= vc5_probe,
1308 	.remove		= vc5_remove,
1309 	.id_table	= vc5_id,
1310 };
1311 module_i2c_driver(vc5_driver);
1312 
1313 MODULE_AUTHOR("Marek Vasut <marek.vasut@gmail.com>");
1314 MODULE_DESCRIPTION("IDT VersaClock 5 driver");
1315 MODULE_LICENSE("GPL");
1316