1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Driver for Silicon Labs Si5340, Si5341, Si5342, Si5344 and Si5345 4 * Copyright (C) 2019 Topic Embedded Products 5 * Author: Mike Looijmans <mike.looijmans@topic.nl> 6 * 7 * The Si5341 has 10 outputs and 5 synthesizers. 8 * The Si5340 is a smaller version of the Si5341 with only 4 outputs. 9 * The Si5345 is similar to the Si5341, with the addition of fractional input 10 * dividers and automatic input selection. 11 * The Si5342 and Si5344 are smaller versions of the Si5345. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/clk-provider.h> 16 #include <linux/delay.h> 17 #include <linux/gcd.h> 18 #include <linux/math64.h> 19 #include <linux/i2c.h> 20 #include <linux/module.h> 21 #include <linux/regmap.h> 22 #include <linux/regulator/consumer.h> 23 #include <linux/slab.h> 24 #include <asm/unaligned.h> 25 26 #define SI5341_NUM_INPUTS 4 27 28 #define SI5340_MAX_NUM_OUTPUTS 4 29 #define SI5341_MAX_NUM_OUTPUTS 10 30 #define SI5342_MAX_NUM_OUTPUTS 2 31 #define SI5344_MAX_NUM_OUTPUTS 4 32 #define SI5345_MAX_NUM_OUTPUTS 10 33 34 #define SI5340_NUM_SYNTH 4 35 #define SI5341_NUM_SYNTH 5 36 #define SI5342_NUM_SYNTH 2 37 #define SI5344_NUM_SYNTH 4 38 #define SI5345_NUM_SYNTH 5 39 40 /* Range of the synthesizer fractional divider */ 41 #define SI5341_SYNTH_N_MIN 10 42 #define SI5341_SYNTH_N_MAX 4095 43 44 /* The chip can get its input clock from 3 input pins or an XTAL */ 45 46 /* There is one PLL running at 13500–14256 MHz */ 47 #define SI5341_PLL_VCO_MIN 13500000000ull 48 #define SI5341_PLL_VCO_MAX 14256000000ull 49 50 /* The 5 frequency synthesizers obtain their input from the PLL */ 51 struct clk_si5341_synth { 52 struct clk_hw hw; 53 struct clk_si5341 *data; 54 u8 index; 55 }; 56 #define to_clk_si5341_synth(_hw) \ 57 container_of(_hw, struct clk_si5341_synth, hw) 58 59 /* The output stages can be connected to any synth (full mux) */ 60 struct clk_si5341_output { 61 struct clk_hw hw; 62 struct clk_si5341 *data; 63 struct regulator *vddo_reg; 64 u8 index; 65 }; 66 #define to_clk_si5341_output(_hw) \ 67 container_of(_hw, struct clk_si5341_output, hw) 68 69 struct clk_si5341 { 70 struct clk_hw hw; 71 struct regmap *regmap; 72 struct i2c_client *i2c_client; 73 struct clk_si5341_synth synth[SI5341_NUM_SYNTH]; 74 struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS]; 75 struct clk *input_clk[SI5341_NUM_INPUTS]; 76 const char *input_clk_name[SI5341_NUM_INPUTS]; 77 const u16 *reg_output_offset; 78 const u16 *reg_rdiv_offset; 79 u64 freq_vco; /* 13500–14256 MHz */ 80 u8 num_outputs; 81 u8 num_synth; 82 u16 chip_id; 83 bool xaxb_ext_clk; 84 bool iovdd_33; 85 }; 86 #define to_clk_si5341(_hw) container_of(_hw, struct clk_si5341, hw) 87 88 struct clk_si5341_output_config { 89 u8 out_format_drv_bits; 90 u8 out_cm_ampl_bits; 91 u8 vdd_sel_bits; 92 bool synth_master; 93 bool always_on; 94 }; 95 96 #define SI5341_PAGE 0x0001 97 #define SI5341_PN_BASE 0x0002 98 #define SI5341_DEVICE_REV 0x0005 99 #define SI5341_STATUS 0x000C 100 #define SI5341_LOS 0x000D 101 #define SI5341_STATUS_STICKY 0x0011 102 #define SI5341_LOS_STICKY 0x0012 103 #define SI5341_SOFT_RST 0x001C 104 #define SI5341_IN_SEL 0x0021 105 #define SI5341_DEVICE_READY 0x00FE 106 #define SI5341_XAXB_CFG 0x090E 107 #define SI5341_IO_VDD_SEL 0x0943 108 #define SI5341_IN_EN 0x0949 109 #define SI5341_INX_TO_PFD_EN 0x094A 110 111 /* Status bits */ 112 #define SI5341_STATUS_SYSINCAL BIT(0) 113 #define SI5341_STATUS_LOSXAXB BIT(1) 114 #define SI5341_STATUS_LOSREF BIT(2) 115 #define SI5341_STATUS_LOL BIT(3) 116 117 /* Input selection */ 118 #define SI5341_IN_SEL_MASK 0x06 119 #define SI5341_IN_SEL_SHIFT 1 120 #define SI5341_IN_SEL_REGCTRL 0x01 121 #define SI5341_INX_TO_PFD_SHIFT 4 122 123 /* XTAL config bits */ 124 #define SI5341_XAXB_CFG_EXTCLK_EN BIT(0) 125 #define SI5341_XAXB_CFG_PDNB BIT(1) 126 127 /* Input dividers (48-bit) */ 128 #define SI5341_IN_PDIV(x) (0x0208 + ((x) * 10)) 129 #define SI5341_IN_PSET(x) (0x020E + ((x) * 10)) 130 #define SI5341_PX_UPD 0x0230 131 132 /* PLL configuration */ 133 #define SI5341_PLL_M_NUM 0x0235 134 #define SI5341_PLL_M_DEN 0x023B 135 136 /* Output configuration */ 137 #define SI5341_OUT_CONFIG(output) \ 138 ((output)->data->reg_output_offset[(output)->index]) 139 #define SI5341_OUT_FORMAT(output) (SI5341_OUT_CONFIG(output) + 1) 140 #define SI5341_OUT_CM(output) (SI5341_OUT_CONFIG(output) + 2) 141 #define SI5341_OUT_MUX_SEL(output) (SI5341_OUT_CONFIG(output) + 3) 142 #define SI5341_OUT_R_REG(output) \ 143 ((output)->data->reg_rdiv_offset[(output)->index]) 144 145 #define SI5341_OUT_MUX_VDD_SEL_MASK 0x38 146 147 /* Synthesize N divider */ 148 #define SI5341_SYNTH_N_NUM(x) (0x0302 + ((x) * 11)) 149 #define SI5341_SYNTH_N_DEN(x) (0x0308 + ((x) * 11)) 150 #define SI5341_SYNTH_N_UPD(x) (0x030C + ((x) * 11)) 151 152 /* Synthesizer output enable, phase bypass, power mode */ 153 #define SI5341_SYNTH_N_CLK_TO_OUTX_EN 0x0A03 154 #define SI5341_SYNTH_N_PIBYP 0x0A04 155 #define SI5341_SYNTH_N_PDNB 0x0A05 156 #define SI5341_SYNTH_N_CLK_DIS 0x0B4A 157 158 #define SI5341_REGISTER_MAX 0xBFF 159 160 /* SI5341_OUT_CONFIG bits */ 161 #define SI5341_OUT_CFG_PDN BIT(0) 162 #define SI5341_OUT_CFG_OE BIT(1) 163 #define SI5341_OUT_CFG_RDIV_FORCE2 BIT(2) 164 165 /* Static configuration (to be moved to firmware) */ 166 struct si5341_reg_default { 167 u16 address; 168 u8 value; 169 }; 170 171 static const char * const si5341_input_clock_names[] = { 172 "in0", "in1", "in2", "xtal" 173 }; 174 175 /* Output configuration registers 0..9 are not quite logically organized */ 176 /* Also for si5345 */ 177 static const u16 si5341_reg_output_offset[] = { 178 0x0108, 179 0x010D, 180 0x0112, 181 0x0117, 182 0x011C, 183 0x0121, 184 0x0126, 185 0x012B, 186 0x0130, 187 0x013A, 188 }; 189 190 /* for si5340, si5342 and si5344 */ 191 static const u16 si5340_reg_output_offset[] = { 192 0x0112, 193 0x0117, 194 0x0126, 195 0x012B, 196 }; 197 198 /* The location of the R divider registers */ 199 static const u16 si5341_reg_rdiv_offset[] = { 200 0x024A, 201 0x024D, 202 0x0250, 203 0x0253, 204 0x0256, 205 0x0259, 206 0x025C, 207 0x025F, 208 0x0262, 209 0x0268, 210 }; 211 static const u16 si5340_reg_rdiv_offset[] = { 212 0x0250, 213 0x0253, 214 0x025C, 215 0x025F, 216 }; 217 218 /* 219 * Programming sequence from ClockBuilder, settings to initialize the system 220 * using only the XTAL input, without pre-divider. 221 * This also contains settings that aren't mentioned anywhere in the datasheet. 222 * The "known" settings like synth and output configuration are done later. 223 */ 224 static const struct si5341_reg_default si5341_reg_defaults[] = { 225 { 0x0017, 0x3A }, /* INT mask (disable interrupts) */ 226 { 0x0018, 0xFF }, /* INT mask */ 227 { 0x0021, 0x0F }, /* Select XTAL as input */ 228 { 0x0022, 0x00 }, /* Not in datasheet */ 229 { 0x002B, 0x02 }, /* SPI config */ 230 { 0x002C, 0x20 }, /* LOS enable for XTAL */ 231 { 0x002D, 0x00 }, /* LOS timing */ 232 { 0x002E, 0x00 }, 233 { 0x002F, 0x00 }, 234 { 0x0030, 0x00 }, 235 { 0x0031, 0x00 }, 236 { 0x0032, 0x00 }, 237 { 0x0033, 0x00 }, 238 { 0x0034, 0x00 }, 239 { 0x0035, 0x00 }, 240 { 0x0036, 0x00 }, 241 { 0x0037, 0x00 }, 242 { 0x0038, 0x00 }, /* LOS setting (thresholds) */ 243 { 0x0039, 0x00 }, 244 { 0x003A, 0x00 }, 245 { 0x003B, 0x00 }, 246 { 0x003C, 0x00 }, 247 { 0x003D, 0x00 }, /* LOS setting (thresholds) end */ 248 { 0x0041, 0x00 }, /* LOS0_DIV_SEL */ 249 { 0x0042, 0x00 }, /* LOS1_DIV_SEL */ 250 { 0x0043, 0x00 }, /* LOS2_DIV_SEL */ 251 { 0x0044, 0x00 }, /* LOS3_DIV_SEL */ 252 { 0x009E, 0x00 }, /* Not in datasheet */ 253 { 0x0102, 0x01 }, /* Enable outputs */ 254 { 0x013F, 0x00 }, /* Not in datasheet */ 255 { 0x0140, 0x00 }, /* Not in datasheet */ 256 { 0x0141, 0x40 }, /* OUT LOS */ 257 { 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/ 258 { 0x0203, 0x00 }, 259 { 0x0204, 0x00 }, 260 { 0x0205, 0x00 }, 261 { 0x0206, 0x00 }, /* PXAXB (2^x) */ 262 { 0x0208, 0x00 }, /* Px divider setting (usually 0) */ 263 { 0x0209, 0x00 }, 264 { 0x020A, 0x00 }, 265 { 0x020B, 0x00 }, 266 { 0x020C, 0x00 }, 267 { 0x020D, 0x00 }, 268 { 0x020E, 0x00 }, 269 { 0x020F, 0x00 }, 270 { 0x0210, 0x00 }, 271 { 0x0211, 0x00 }, 272 { 0x0212, 0x00 }, 273 { 0x0213, 0x00 }, 274 { 0x0214, 0x00 }, 275 { 0x0215, 0x00 }, 276 { 0x0216, 0x00 }, 277 { 0x0217, 0x00 }, 278 { 0x0218, 0x00 }, 279 { 0x0219, 0x00 }, 280 { 0x021A, 0x00 }, 281 { 0x021B, 0x00 }, 282 { 0x021C, 0x00 }, 283 { 0x021D, 0x00 }, 284 { 0x021E, 0x00 }, 285 { 0x021F, 0x00 }, 286 { 0x0220, 0x00 }, 287 { 0x0221, 0x00 }, 288 { 0x0222, 0x00 }, 289 { 0x0223, 0x00 }, 290 { 0x0224, 0x00 }, 291 { 0x0225, 0x00 }, 292 { 0x0226, 0x00 }, 293 { 0x0227, 0x00 }, 294 { 0x0228, 0x00 }, 295 { 0x0229, 0x00 }, 296 { 0x022A, 0x00 }, 297 { 0x022B, 0x00 }, 298 { 0x022C, 0x00 }, 299 { 0x022D, 0x00 }, 300 { 0x022E, 0x00 }, 301 { 0x022F, 0x00 }, /* Px divider setting (usually 0) end */ 302 { 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */ 303 { 0x026C, 0x00 }, 304 { 0x026D, 0x00 }, 305 { 0x026E, 0x00 }, 306 { 0x026F, 0x00 }, 307 { 0x0270, 0x00 }, 308 { 0x0271, 0x00 }, 309 { 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */ 310 { 0x0339, 0x1F }, /* N_FSTEP_MSK */ 311 { 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */ 312 { 0x033C, 0x00 }, 313 { 0x033D, 0x00 }, 314 { 0x033E, 0x00 }, 315 { 0x033F, 0x00 }, 316 { 0x0340, 0x00 }, 317 { 0x0341, 0x00 }, 318 { 0x0342, 0x00 }, 319 { 0x0343, 0x00 }, 320 { 0x0344, 0x00 }, 321 { 0x0345, 0x00 }, 322 { 0x0346, 0x00 }, 323 { 0x0347, 0x00 }, 324 { 0x0348, 0x00 }, 325 { 0x0349, 0x00 }, 326 { 0x034A, 0x00 }, 327 { 0x034B, 0x00 }, 328 { 0x034C, 0x00 }, 329 { 0x034D, 0x00 }, 330 { 0x034E, 0x00 }, 331 { 0x034F, 0x00 }, 332 { 0x0350, 0x00 }, 333 { 0x0351, 0x00 }, 334 { 0x0352, 0x00 }, 335 { 0x0353, 0x00 }, 336 { 0x0354, 0x00 }, 337 { 0x0355, 0x00 }, 338 { 0x0356, 0x00 }, 339 { 0x0357, 0x00 }, 340 { 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */ 341 { 0x0359, 0x00 }, /* Nx_DELAY */ 342 { 0x035A, 0x00 }, 343 { 0x035B, 0x00 }, 344 { 0x035C, 0x00 }, 345 { 0x035D, 0x00 }, 346 { 0x035E, 0x00 }, 347 { 0x035F, 0x00 }, 348 { 0x0360, 0x00 }, 349 { 0x0361, 0x00 }, 350 { 0x0362, 0x00 }, /* Nx_DELAY end */ 351 { 0x0802, 0x00 }, /* Not in datasheet */ 352 { 0x0803, 0x00 }, /* Not in datasheet */ 353 { 0x0804, 0x00 }, /* Not in datasheet */ 354 { 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */ 355 { 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */ 356 { 0x0949, 0x00 }, /* IN_EN (disable input clocks) */ 357 { 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */ 358 { 0x0A02, 0x00 }, /* Not in datasheet */ 359 { 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */ 360 { 0x0B57, 0x10 }, /* VCO_RESET_CALCODE (not described in datasheet) */ 361 { 0x0B58, 0x05 }, /* VCO_RESET_CALCODE (not described in datasheet) */ 362 }; 363 364 /* Read and interpret a 44-bit followed by a 32-bit value in the regmap */ 365 static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg, 366 u64 *val1, u32 *val2) 367 { 368 int err; 369 u8 r[10]; 370 371 err = regmap_bulk_read(regmap, reg, r, 10); 372 if (err < 0) 373 return err; 374 375 *val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) | 376 (get_unaligned_le32(r)); 377 *val2 = get_unaligned_le32(&r[6]); 378 379 return 0; 380 } 381 382 static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg, 383 u64 n_num, u32 n_den) 384 { 385 u8 r[10]; 386 387 /* Shift left as far as possible without overflowing */ 388 while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) { 389 n_num <<= 1; 390 n_den <<= 1; 391 } 392 393 /* 44 bits (6 bytes) numerator */ 394 put_unaligned_le32(n_num, r); 395 r[4] = (n_num >> 32) & 0xff; 396 r[5] = (n_num >> 40) & 0x0f; 397 /* 32 bits denominator */ 398 put_unaligned_le32(n_den, &r[6]); 399 400 /* Program the fraction */ 401 return regmap_bulk_write(regmap, reg, r, sizeof(r)); 402 } 403 404 /* VCO, we assume it runs at a constant frequency */ 405 static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw, 406 unsigned long parent_rate) 407 { 408 struct clk_si5341 *data = to_clk_si5341(hw); 409 int err; 410 u64 res; 411 u64 m_num; 412 u32 m_den; 413 unsigned int shift; 414 415 /* Assume that PDIV is not being used, just read the PLL setting */ 416 err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM, 417 &m_num, &m_den); 418 if (err < 0) 419 return 0; 420 421 if (!m_num || !m_den) 422 return 0; 423 424 /* 425 * Though m_num is 64-bit, only the upper bits are actually used. While 426 * calculating m_num and m_den, they are shifted as far as possible to 427 * the left. To avoid 96-bit division here, we just shift them back so 428 * we can do with just 64 bits. 429 */ 430 shift = 0; 431 res = m_num; 432 while (res & 0xffff00000000ULL) { 433 ++shift; 434 res >>= 1; 435 } 436 res *= parent_rate; 437 do_div(res, (m_den >> shift)); 438 439 /* We cannot return the actual frequency in 32 bit, store it locally */ 440 data->freq_vco = res; 441 442 /* Report kHz since the value is out of range */ 443 do_div(res, 1000); 444 445 return (unsigned long)res; 446 } 447 448 static int si5341_clk_get_selected_input(struct clk_si5341 *data) 449 { 450 int err; 451 u32 val; 452 453 err = regmap_read(data->regmap, SI5341_IN_SEL, &val); 454 if (err < 0) 455 return err; 456 457 return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT; 458 } 459 460 static u8 si5341_clk_get_parent(struct clk_hw *hw) 461 { 462 struct clk_si5341 *data = to_clk_si5341(hw); 463 int res = si5341_clk_get_selected_input(data); 464 465 if (res < 0) 466 return 0; /* Apparently we cannot report errors */ 467 468 return res; 469 } 470 471 static int si5341_clk_reparent(struct clk_si5341 *data, u8 index) 472 { 473 int err; 474 u8 val; 475 476 val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK; 477 /* Enable register-based input selection */ 478 val |= SI5341_IN_SEL_REGCTRL; 479 480 err = regmap_update_bits(data->regmap, 481 SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val); 482 if (err < 0) 483 return err; 484 485 if (index < 3) { 486 /* Enable input buffer for selected input */ 487 err = regmap_update_bits(data->regmap, 488 SI5341_IN_EN, 0x07, BIT(index)); 489 if (err < 0) 490 return err; 491 492 /* Enables the input to phase detector */ 493 err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN, 494 0x7 << SI5341_INX_TO_PFD_SHIFT, 495 BIT(index + SI5341_INX_TO_PFD_SHIFT)); 496 if (err < 0) 497 return err; 498 499 /* Power down XTAL oscillator and buffer */ 500 err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG, 501 SI5341_XAXB_CFG_PDNB, 0); 502 if (err < 0) 503 return err; 504 505 /* 506 * Set the P divider to "1". There's no explanation in the 507 * datasheet of these registers, but the clockbuilder software 508 * programs a "1" when the input is being used. 509 */ 510 err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1); 511 if (err < 0) 512 return err; 513 514 err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1); 515 if (err < 0) 516 return err; 517 518 /* Set update PDIV bit */ 519 err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index)); 520 if (err < 0) 521 return err; 522 } else { 523 /* Disable all input buffers */ 524 err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0); 525 if (err < 0) 526 return err; 527 528 /* Disable input to phase detector */ 529 err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN, 530 0x7 << SI5341_INX_TO_PFD_SHIFT, 0); 531 if (err < 0) 532 return err; 533 534 /* Power up XTAL oscillator and buffer, select clock mode */ 535 err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG, 536 SI5341_XAXB_CFG_PDNB | SI5341_XAXB_CFG_EXTCLK_EN, 537 SI5341_XAXB_CFG_PDNB | (data->xaxb_ext_clk ? 538 SI5341_XAXB_CFG_EXTCLK_EN : 0)); 539 if (err < 0) 540 return err; 541 } 542 543 return 0; 544 } 545 546 static int si5341_clk_set_parent(struct clk_hw *hw, u8 index) 547 { 548 struct clk_si5341 *data = to_clk_si5341(hw); 549 550 return si5341_clk_reparent(data, index); 551 } 552 553 static const struct clk_ops si5341_clk_ops = { 554 .set_parent = si5341_clk_set_parent, 555 .get_parent = si5341_clk_get_parent, 556 .recalc_rate = si5341_clk_recalc_rate, 557 }; 558 559 /* Synthesizers, there are 5 synthesizers that connect to any of the outputs */ 560 561 /* The synthesizer is on if all power and enable bits are set */ 562 static int si5341_synth_clk_is_on(struct clk_hw *hw) 563 { 564 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); 565 int err; 566 u32 val; 567 u8 index = synth->index; 568 569 err = regmap_read(synth->data->regmap, 570 SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val); 571 if (err < 0) 572 return 0; 573 574 if (!(val & BIT(index))) 575 return 0; 576 577 err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val); 578 if (err < 0) 579 return 0; 580 581 if (!(val & BIT(index))) 582 return 0; 583 584 /* This bit must be 0 for the synthesizer to receive clock input */ 585 err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val); 586 if (err < 0) 587 return 0; 588 589 return !(val & BIT(index)); 590 } 591 592 static void si5341_synth_clk_unprepare(struct clk_hw *hw) 593 { 594 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); 595 u8 index = synth->index; /* In range 0..5 */ 596 u8 mask = BIT(index); 597 598 /* Disable output */ 599 regmap_update_bits(synth->data->regmap, 600 SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0); 601 /* Power down */ 602 regmap_update_bits(synth->data->regmap, 603 SI5341_SYNTH_N_PDNB, mask, 0); 604 /* Disable clock input to synth (set to 1 to disable) */ 605 regmap_update_bits(synth->data->regmap, 606 SI5341_SYNTH_N_CLK_DIS, mask, mask); 607 } 608 609 static int si5341_synth_clk_prepare(struct clk_hw *hw) 610 { 611 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); 612 int err; 613 u8 index = synth->index; 614 u8 mask = BIT(index); 615 616 /* Power up */ 617 err = regmap_update_bits(synth->data->regmap, 618 SI5341_SYNTH_N_PDNB, mask, mask); 619 if (err < 0) 620 return err; 621 622 /* Enable clock input to synth (set bit to 0 to enable) */ 623 err = regmap_update_bits(synth->data->regmap, 624 SI5341_SYNTH_N_CLK_DIS, mask, 0); 625 if (err < 0) 626 return err; 627 628 /* Enable output */ 629 return regmap_update_bits(synth->data->regmap, 630 SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask); 631 } 632 633 /* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */ 634 static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw, 635 unsigned long parent_rate) 636 { 637 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); 638 u64 f; 639 u64 n_num; 640 u32 n_den; 641 int err; 642 643 err = si5341_decode_44_32(synth->data->regmap, 644 SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den); 645 if (err < 0) 646 return err; 647 /* Check for bogus/uninitialized settings */ 648 if (!n_num || !n_den) 649 return 0; 650 651 /* 652 * n_num and n_den are shifted left as much as possible, so to prevent 653 * overflow in 64-bit math, we shift n_den 4 bits to the right 654 */ 655 f = synth->data->freq_vco; 656 f *= n_den >> 4; 657 658 /* Now we need to do 64-bit division: f/n_num */ 659 /* And compensate for the 4 bits we dropped */ 660 f = div64_u64(f, (n_num >> 4)); 661 662 return f; 663 } 664 665 static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate, 666 unsigned long *parent_rate) 667 { 668 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); 669 u64 f; 670 671 /* The synthesizer accuracy is such that anything in range will work */ 672 f = synth->data->freq_vco; 673 do_div(f, SI5341_SYNTH_N_MAX); 674 if (rate < f) 675 return f; 676 677 f = synth->data->freq_vco; 678 do_div(f, SI5341_SYNTH_N_MIN); 679 if (rate > f) 680 return f; 681 682 return rate; 683 } 684 685 static int si5341_synth_program(struct clk_si5341_synth *synth, 686 u64 n_num, u32 n_den, bool is_integer) 687 { 688 int err; 689 u8 index = synth->index; 690 691 err = si5341_encode_44_32(synth->data->regmap, 692 SI5341_SYNTH_N_NUM(index), n_num, n_den); 693 694 err = regmap_update_bits(synth->data->regmap, 695 SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0); 696 if (err < 0) 697 return err; 698 699 return regmap_write(synth->data->regmap, 700 SI5341_SYNTH_N_UPD(index), 0x01); 701 } 702 703 704 static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate, 705 unsigned long parent_rate) 706 { 707 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); 708 u64 n_num; 709 u32 n_den; 710 u32 r; 711 u32 g; 712 bool is_integer; 713 714 n_num = synth->data->freq_vco; 715 716 /* see if there's an integer solution */ 717 r = do_div(n_num, rate); 718 is_integer = (r == 0); 719 if (is_integer) { 720 /* Integer divider equal to n_num */ 721 n_den = 1; 722 } else { 723 /* Calculate a fractional solution */ 724 g = gcd(r, rate); 725 n_den = rate / g; 726 n_num *= n_den; 727 n_num += r / g; 728 } 729 730 dev_dbg(&synth->data->i2c_client->dev, 731 "%s(%u): n=0x%llx d=0x%x %s\n", __func__, 732 synth->index, n_num, n_den, 733 is_integer ? "int" : "frac"); 734 735 return si5341_synth_program(synth, n_num, n_den, is_integer); 736 } 737 738 static const struct clk_ops si5341_synth_clk_ops = { 739 .is_prepared = si5341_synth_clk_is_on, 740 .prepare = si5341_synth_clk_prepare, 741 .unprepare = si5341_synth_clk_unprepare, 742 .recalc_rate = si5341_synth_clk_recalc_rate, 743 .round_rate = si5341_synth_clk_round_rate, 744 .set_rate = si5341_synth_clk_set_rate, 745 }; 746 747 static int si5341_output_clk_is_on(struct clk_hw *hw) 748 { 749 struct clk_si5341_output *output = to_clk_si5341_output(hw); 750 int err; 751 u32 val; 752 753 err = regmap_read(output->data->regmap, 754 SI5341_OUT_CONFIG(output), &val); 755 if (err < 0) 756 return err; 757 758 /* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */ 759 return (val & 0x03) == SI5341_OUT_CFG_OE; 760 } 761 762 /* Disables and then powers down the output */ 763 static void si5341_output_clk_unprepare(struct clk_hw *hw) 764 { 765 struct clk_si5341_output *output = to_clk_si5341_output(hw); 766 767 regmap_update_bits(output->data->regmap, 768 SI5341_OUT_CONFIG(output), 769 SI5341_OUT_CFG_OE, 0); 770 regmap_update_bits(output->data->regmap, 771 SI5341_OUT_CONFIG(output), 772 SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN); 773 } 774 775 /* Powers up and then enables the output */ 776 static int si5341_output_clk_prepare(struct clk_hw *hw) 777 { 778 struct clk_si5341_output *output = to_clk_si5341_output(hw); 779 int err; 780 781 err = regmap_update_bits(output->data->regmap, 782 SI5341_OUT_CONFIG(output), 783 SI5341_OUT_CFG_PDN, 0); 784 if (err < 0) 785 return err; 786 787 return regmap_update_bits(output->data->regmap, 788 SI5341_OUT_CONFIG(output), 789 SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE); 790 } 791 792 static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw, 793 unsigned long parent_rate) 794 { 795 struct clk_si5341_output *output = to_clk_si5341_output(hw); 796 int err; 797 u32 val; 798 u32 r_divider; 799 u8 r[3]; 800 801 err = regmap_read(output->data->regmap, 802 SI5341_OUT_CONFIG(output), &val); 803 if (err < 0) 804 return err; 805 806 /* If SI5341_OUT_CFG_RDIV_FORCE2 is set, r_divider is 2 */ 807 if (val & SI5341_OUT_CFG_RDIV_FORCE2) 808 return parent_rate / 2; 809 810 err = regmap_bulk_read(output->data->regmap, 811 SI5341_OUT_R_REG(output), r, 3); 812 if (err < 0) 813 return err; 814 815 /* Calculate value as 24-bit integer*/ 816 r_divider = r[2] << 16 | r[1] << 8 | r[0]; 817 818 /* If Rx_REG is zero, the divider is disabled, so return a "0" rate */ 819 if (!r_divider) 820 return 0; 821 822 /* Divider is 2*(Rx_REG+1) */ 823 r_divider += 1; 824 r_divider <<= 1; 825 826 827 return parent_rate / r_divider; 828 } 829 830 static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate, 831 unsigned long *parent_rate) 832 { 833 unsigned long r; 834 835 if (!rate) 836 return 0; 837 838 r = *parent_rate >> 1; 839 840 /* If rate is an even divisor, no changes to parent required */ 841 if (r && !(r % rate)) 842 return (long)rate; 843 844 if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) { 845 if (rate > 200000000) { 846 /* minimum r-divider is 2 */ 847 r = 2; 848 } else { 849 /* Take a parent frequency near 400 MHz */ 850 r = (400000000u / rate) & ~1; 851 } 852 *parent_rate = r * rate; 853 } else { 854 /* We cannot change our parent's rate, report what we can do */ 855 r /= rate; 856 rate = *parent_rate / (r << 1); 857 } 858 859 return rate; 860 } 861 862 static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate, 863 unsigned long parent_rate) 864 { 865 struct clk_si5341_output *output = to_clk_si5341_output(hw); 866 u32 r_div; 867 int err; 868 u8 r[3]; 869 870 if (!rate) 871 return -EINVAL; 872 873 /* Frequency divider is (r_div + 1) * 2 */ 874 r_div = (parent_rate / rate) >> 1; 875 876 if (r_div <= 1) 877 r_div = 0; 878 else if (r_div >= BIT(24)) 879 r_div = BIT(24) - 1; 880 else 881 --r_div; 882 883 /* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */ 884 err = regmap_update_bits(output->data->regmap, 885 SI5341_OUT_CONFIG(output), 886 SI5341_OUT_CFG_RDIV_FORCE2, 887 (r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0); 888 if (err < 0) 889 return err; 890 891 /* Always write Rx_REG, because a zero value disables the divider */ 892 r[0] = r_div ? (r_div & 0xff) : 1; 893 r[1] = (r_div >> 8) & 0xff; 894 r[2] = (r_div >> 16) & 0xff; 895 err = regmap_bulk_write(output->data->regmap, 896 SI5341_OUT_R_REG(output), r, 3); 897 898 return 0; 899 } 900 901 static int si5341_output_reparent(struct clk_si5341_output *output, u8 index) 902 { 903 return regmap_update_bits(output->data->regmap, 904 SI5341_OUT_MUX_SEL(output), 0x07, index); 905 } 906 907 static int si5341_output_set_parent(struct clk_hw *hw, u8 index) 908 { 909 struct clk_si5341_output *output = to_clk_si5341_output(hw); 910 911 if (index >= output->data->num_synth) 912 return -EINVAL; 913 914 return si5341_output_reparent(output, index); 915 } 916 917 static u8 si5341_output_get_parent(struct clk_hw *hw) 918 { 919 struct clk_si5341_output *output = to_clk_si5341_output(hw); 920 u32 val; 921 922 regmap_read(output->data->regmap, SI5341_OUT_MUX_SEL(output), &val); 923 924 return val & 0x7; 925 } 926 927 static const struct clk_ops si5341_output_clk_ops = { 928 .is_prepared = si5341_output_clk_is_on, 929 .prepare = si5341_output_clk_prepare, 930 .unprepare = si5341_output_clk_unprepare, 931 .recalc_rate = si5341_output_clk_recalc_rate, 932 .round_rate = si5341_output_clk_round_rate, 933 .set_rate = si5341_output_clk_set_rate, 934 .set_parent = si5341_output_set_parent, 935 .get_parent = si5341_output_get_parent, 936 }; 937 938 /* 939 * The chip can be bought in a pre-programmed version, or one can program the 940 * NVM in the chip to boot up in a preset mode. This routine tries to determine 941 * if that's the case, or if we need to reset and program everything from 942 * scratch. Returns negative error, or true/false. 943 */ 944 static int si5341_is_programmed_already(struct clk_si5341 *data) 945 { 946 int err; 947 u8 r[4]; 948 949 /* Read the PLL divider value, it must have a non-zero value */ 950 err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN, 951 r, ARRAY_SIZE(r)); 952 if (err < 0) 953 return err; 954 955 return !!get_unaligned_le32(r); 956 } 957 958 static struct clk_hw * 959 of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data) 960 { 961 struct clk_si5341 *data = _data; 962 unsigned int idx = clkspec->args[1]; 963 unsigned int group = clkspec->args[0]; 964 965 switch (group) { 966 case 0: 967 if (idx >= data->num_outputs) { 968 dev_err(&data->i2c_client->dev, 969 "invalid output index %u\n", idx); 970 return ERR_PTR(-EINVAL); 971 } 972 return &data->clk[idx].hw; 973 case 1: 974 if (idx >= data->num_synth) { 975 dev_err(&data->i2c_client->dev, 976 "invalid synthesizer index %u\n", idx); 977 return ERR_PTR(-EINVAL); 978 } 979 return &data->synth[idx].hw; 980 case 2: 981 if (idx > 0) { 982 dev_err(&data->i2c_client->dev, 983 "invalid PLL index %u\n", idx); 984 return ERR_PTR(-EINVAL); 985 } 986 return &data->hw; 987 default: 988 dev_err(&data->i2c_client->dev, "invalid group %u\n", group); 989 return ERR_PTR(-EINVAL); 990 } 991 } 992 993 static int si5341_probe_chip_id(struct clk_si5341 *data) 994 { 995 int err; 996 u8 reg[4]; 997 u16 model; 998 999 err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg, 1000 ARRAY_SIZE(reg)); 1001 if (err < 0) { 1002 dev_err(&data->i2c_client->dev, "Failed to read chip ID\n"); 1003 return err; 1004 } 1005 1006 model = get_unaligned_le16(reg); 1007 1008 dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n", 1009 model, reg[2], reg[3]); 1010 1011 switch (model) { 1012 case 0x5340: 1013 data->num_outputs = SI5340_MAX_NUM_OUTPUTS; 1014 data->num_synth = SI5340_NUM_SYNTH; 1015 data->reg_output_offset = si5340_reg_output_offset; 1016 data->reg_rdiv_offset = si5340_reg_rdiv_offset; 1017 break; 1018 case 0x5341: 1019 data->num_outputs = SI5341_MAX_NUM_OUTPUTS; 1020 data->num_synth = SI5341_NUM_SYNTH; 1021 data->reg_output_offset = si5341_reg_output_offset; 1022 data->reg_rdiv_offset = si5341_reg_rdiv_offset; 1023 break; 1024 case 0x5342: 1025 data->num_outputs = SI5342_MAX_NUM_OUTPUTS; 1026 data->num_synth = SI5342_NUM_SYNTH; 1027 data->reg_output_offset = si5340_reg_output_offset; 1028 data->reg_rdiv_offset = si5340_reg_rdiv_offset; 1029 break; 1030 case 0x5344: 1031 data->num_outputs = SI5344_MAX_NUM_OUTPUTS; 1032 data->num_synth = SI5344_NUM_SYNTH; 1033 data->reg_output_offset = si5340_reg_output_offset; 1034 data->reg_rdiv_offset = si5340_reg_rdiv_offset; 1035 break; 1036 case 0x5345: 1037 data->num_outputs = SI5345_MAX_NUM_OUTPUTS; 1038 data->num_synth = SI5345_NUM_SYNTH; 1039 data->reg_output_offset = si5341_reg_output_offset; 1040 data->reg_rdiv_offset = si5341_reg_rdiv_offset; 1041 break; 1042 default: 1043 dev_err(&data->i2c_client->dev, "Model '%x' not supported\n", 1044 model); 1045 return -EINVAL; 1046 } 1047 1048 data->chip_id = model; 1049 1050 return 0; 1051 } 1052 1053 /* Read active settings into the regmap cache for later reference */ 1054 static int si5341_read_settings(struct clk_si5341 *data) 1055 { 1056 int err; 1057 u8 i; 1058 u8 r[10]; 1059 1060 err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10); 1061 if (err < 0) 1062 return err; 1063 1064 err = regmap_bulk_read(data->regmap, 1065 SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3); 1066 if (err < 0) 1067 return err; 1068 1069 err = regmap_bulk_read(data->regmap, 1070 SI5341_SYNTH_N_CLK_DIS, r, 1); 1071 if (err < 0) 1072 return err; 1073 1074 for (i = 0; i < data->num_synth; ++i) { 1075 err = regmap_bulk_read(data->regmap, 1076 SI5341_SYNTH_N_NUM(i), r, 10); 1077 if (err < 0) 1078 return err; 1079 } 1080 1081 for (i = 0; i < data->num_outputs; ++i) { 1082 err = regmap_bulk_read(data->regmap, 1083 data->reg_output_offset[i], r, 4); 1084 if (err < 0) 1085 return err; 1086 1087 err = regmap_bulk_read(data->regmap, 1088 data->reg_rdiv_offset[i], r, 3); 1089 if (err < 0) 1090 return err; 1091 } 1092 1093 return 0; 1094 } 1095 1096 static int si5341_write_multiple(struct clk_si5341 *data, 1097 const struct si5341_reg_default *values, unsigned int num_values) 1098 { 1099 unsigned int i; 1100 int res; 1101 1102 for (i = 0; i < num_values; ++i) { 1103 res = regmap_write(data->regmap, 1104 values[i].address, values[i].value); 1105 if (res < 0) { 1106 dev_err(&data->i2c_client->dev, 1107 "Failed to write %#x:%#x\n", 1108 values[i].address, values[i].value); 1109 return res; 1110 } 1111 } 1112 1113 return 0; 1114 } 1115 1116 static const struct si5341_reg_default si5341_preamble[] = { 1117 { 0x0B25, 0x00 }, 1118 { 0x0502, 0x01 }, 1119 { 0x0505, 0x03 }, 1120 { 0x0957, 0x17 }, 1121 { 0x0B4E, 0x1A }, 1122 }; 1123 1124 static const struct si5341_reg_default si5345_preamble[] = { 1125 { 0x0B25, 0x00 }, 1126 { 0x0540, 0x01 }, 1127 }; 1128 1129 static int si5341_send_preamble(struct clk_si5341 *data) 1130 { 1131 int res; 1132 u32 revision; 1133 1134 /* For revision 2 and up, the values are slightly different */ 1135 res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision); 1136 if (res < 0) 1137 return res; 1138 1139 /* Write "preamble" as specified by datasheet */ 1140 res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0); 1141 if (res < 0) 1142 return res; 1143 1144 /* The si5342..si5345 require a different preamble */ 1145 if (data->chip_id > 0x5341) 1146 res = si5341_write_multiple(data, 1147 si5345_preamble, ARRAY_SIZE(si5345_preamble)); 1148 else 1149 res = si5341_write_multiple(data, 1150 si5341_preamble, ARRAY_SIZE(si5341_preamble)); 1151 if (res < 0) 1152 return res; 1153 1154 /* Datasheet specifies a 300ms wait after sending the preamble */ 1155 msleep(300); 1156 1157 return 0; 1158 } 1159 1160 /* Perform a soft reset and write post-amble */ 1161 static int si5341_finalize_defaults(struct clk_si5341 *data) 1162 { 1163 int res; 1164 u32 revision; 1165 1166 res = regmap_write(data->regmap, SI5341_IO_VDD_SEL, 1167 data->iovdd_33 ? 1 : 0); 1168 if (res < 0) 1169 return res; 1170 1171 res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision); 1172 if (res < 0) 1173 return res; 1174 1175 dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision); 1176 1177 res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01); 1178 if (res < 0) 1179 return res; 1180 1181 /* The si5342..si5345 have an additional post-amble */ 1182 if (data->chip_id > 0x5341) { 1183 res = regmap_write(data->regmap, 0x540, 0x0); 1184 if (res < 0) 1185 return res; 1186 } 1187 1188 /* Datasheet does not explain these nameless registers */ 1189 res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3); 1190 if (res < 0) 1191 return res; 1192 res = regmap_write(data->regmap, 0x0B25, 0x02); 1193 if (res < 0) 1194 return res; 1195 1196 return 0; 1197 } 1198 1199 1200 static const struct regmap_range si5341_regmap_volatile_range[] = { 1201 regmap_reg_range(0x000C, 0x0012), /* Status */ 1202 regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */ 1203 regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */ 1204 /* Update bits for P divider and synth config */ 1205 regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD), 1206 regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)), 1207 regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)), 1208 regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)), 1209 regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)), 1210 regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)), 1211 }; 1212 1213 static const struct regmap_access_table si5341_regmap_volatile = { 1214 .yes_ranges = si5341_regmap_volatile_range, 1215 .n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range), 1216 }; 1217 1218 /* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */ 1219 static const struct regmap_range_cfg si5341_regmap_ranges[] = { 1220 { 1221 .range_min = 0, 1222 .range_max = SI5341_REGISTER_MAX, 1223 .selector_reg = SI5341_PAGE, 1224 .selector_mask = 0xff, 1225 .selector_shift = 0, 1226 .window_start = 0, 1227 .window_len = 256, 1228 }, 1229 }; 1230 1231 static int si5341_wait_device_ready(struct i2c_client *client) 1232 { 1233 int count; 1234 1235 /* Datasheet warns: Any attempt to read or write any register other 1236 * than DEVICE_READY before DEVICE_READY reads as 0x0F may corrupt the 1237 * NVM programming and may corrupt the register contents, as they are 1238 * read from NVM. Note that this includes accesses to the PAGE register. 1239 * Also: DEVICE_READY is available on every register page, so no page 1240 * change is needed to read it. 1241 * Do this outside regmap to avoid automatic PAGE register access. 1242 * May take up to 300ms to complete. 1243 */ 1244 for (count = 0; count < 15; ++count) { 1245 s32 result = i2c_smbus_read_byte_data(client, 1246 SI5341_DEVICE_READY); 1247 if (result < 0) 1248 return result; 1249 if (result == 0x0F) 1250 return 0; 1251 msleep(20); 1252 } 1253 dev_err(&client->dev, "timeout waiting for DEVICE_READY\n"); 1254 return -EIO; 1255 } 1256 1257 static const struct regmap_config si5341_regmap_config = { 1258 .reg_bits = 8, 1259 .val_bits = 8, 1260 .cache_type = REGCACHE_RBTREE, 1261 .ranges = si5341_regmap_ranges, 1262 .num_ranges = ARRAY_SIZE(si5341_regmap_ranges), 1263 .max_register = SI5341_REGISTER_MAX, 1264 .volatile_table = &si5341_regmap_volatile, 1265 }; 1266 1267 static int si5341_dt_parse_dt(struct clk_si5341 *data, 1268 struct clk_si5341_output_config *config) 1269 { 1270 struct device_node *child; 1271 struct device_node *np = data->i2c_client->dev.of_node; 1272 u32 num; 1273 u32 val; 1274 1275 memset(config, 0, sizeof(struct clk_si5341_output_config) * 1276 SI5341_MAX_NUM_OUTPUTS); 1277 1278 for_each_child_of_node(np, child) { 1279 if (of_property_read_u32(child, "reg", &num)) { 1280 dev_err(&data->i2c_client->dev, "missing reg property of %s\n", 1281 child->name); 1282 goto put_child; 1283 } 1284 1285 if (num >= SI5341_MAX_NUM_OUTPUTS) { 1286 dev_err(&data->i2c_client->dev, "invalid clkout %d\n", num); 1287 goto put_child; 1288 } 1289 1290 if (!of_property_read_u32(child, "silabs,format", &val)) { 1291 /* Set cm and ampl conservatively to 3v3 settings */ 1292 switch (val) { 1293 case 1: /* normal differential */ 1294 config[num].out_cm_ampl_bits = 0x33; 1295 break; 1296 case 2: /* low-power differential */ 1297 config[num].out_cm_ampl_bits = 0x13; 1298 break; 1299 case 4: /* LVCMOS */ 1300 config[num].out_cm_ampl_bits = 0x33; 1301 /* Set SI recommended impedance for LVCMOS */ 1302 config[num].out_format_drv_bits |= 0xc0; 1303 break; 1304 default: 1305 dev_err(&data->i2c_client->dev, 1306 "invalid silabs,format %u for %u\n", 1307 val, num); 1308 goto put_child; 1309 } 1310 config[num].out_format_drv_bits &= ~0x07; 1311 config[num].out_format_drv_bits |= val & 0x07; 1312 /* Always enable the SYNC feature */ 1313 config[num].out_format_drv_bits |= 0x08; 1314 } 1315 1316 if (!of_property_read_u32(child, "silabs,common-mode", &val)) { 1317 if (val > 0xf) { 1318 dev_err(&data->i2c_client->dev, 1319 "invalid silabs,common-mode %u\n", 1320 val); 1321 goto put_child; 1322 } 1323 config[num].out_cm_ampl_bits &= 0xf0; 1324 config[num].out_cm_ampl_bits |= val & 0x0f; 1325 } 1326 1327 if (!of_property_read_u32(child, "silabs,amplitude", &val)) { 1328 if (val > 0xf) { 1329 dev_err(&data->i2c_client->dev, 1330 "invalid silabs,amplitude %u\n", 1331 val); 1332 goto put_child; 1333 } 1334 config[num].out_cm_ampl_bits &= 0x0f; 1335 config[num].out_cm_ampl_bits |= (val << 4) & 0xf0; 1336 } 1337 1338 if (of_property_read_bool(child, "silabs,disable-high")) 1339 config[num].out_format_drv_bits |= 0x10; 1340 1341 config[num].synth_master = 1342 of_property_read_bool(child, "silabs,synth-master"); 1343 1344 config[num].always_on = 1345 of_property_read_bool(child, "always-on"); 1346 1347 config[num].vdd_sel_bits = 0x08; 1348 if (data->clk[num].vddo_reg) { 1349 int vdd = regulator_get_voltage(data->clk[num].vddo_reg); 1350 1351 switch (vdd) { 1352 case 3300000: 1353 config[num].vdd_sel_bits |= 0 << 4; 1354 break; 1355 case 1800000: 1356 config[num].vdd_sel_bits |= 1 << 4; 1357 break; 1358 case 2500000: 1359 config[num].vdd_sel_bits |= 2 << 4; 1360 break; 1361 default: 1362 dev_err(&data->i2c_client->dev, 1363 "unsupported vddo voltage %d for %s\n", 1364 vdd, child->name); 1365 goto put_child; 1366 } 1367 } else { 1368 /* chip seems to default to 2.5V when not set */ 1369 dev_warn(&data->i2c_client->dev, 1370 "no regulator set, defaulting vdd_sel to 2.5V for %s\n", 1371 child->name); 1372 config[num].vdd_sel_bits |= 2 << 4; 1373 } 1374 } 1375 1376 return 0; 1377 1378 put_child: 1379 of_node_put(child); 1380 return -EINVAL; 1381 } 1382 1383 /* 1384 * If not pre-configured, calculate and set the PLL configuration manually. 1385 * For low-jitter performance, the PLL should be set such that the synthesizers 1386 * only need integer division. 1387 * Without any user guidance, we'll set the PLL to 14GHz, which still allows 1388 * the chip to generate any frequency on its outputs, but jitter performance 1389 * may be sub-optimal. 1390 */ 1391 static int si5341_initialize_pll(struct clk_si5341 *data) 1392 { 1393 struct device_node *np = data->i2c_client->dev.of_node; 1394 u32 m_num = 0; 1395 u32 m_den = 0; 1396 int sel; 1397 1398 if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) { 1399 dev_err(&data->i2c_client->dev, 1400 "PLL configuration requires silabs,pll-m-num\n"); 1401 } 1402 if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) { 1403 dev_err(&data->i2c_client->dev, 1404 "PLL configuration requires silabs,pll-m-den\n"); 1405 } 1406 1407 if (!m_num || !m_den) { 1408 dev_err(&data->i2c_client->dev, 1409 "PLL configuration invalid, assume 14GHz\n"); 1410 sel = si5341_clk_get_selected_input(data); 1411 if (sel < 0) 1412 return sel; 1413 1414 m_den = clk_get_rate(data->input_clk[sel]) / 10; 1415 m_num = 1400000000; 1416 } 1417 1418 return si5341_encode_44_32(data->regmap, 1419 SI5341_PLL_M_NUM, m_num, m_den); 1420 } 1421 1422 static int si5341_clk_select_active_input(struct clk_si5341 *data) 1423 { 1424 int res; 1425 int err; 1426 int i; 1427 1428 res = si5341_clk_get_selected_input(data); 1429 if (res < 0) 1430 return res; 1431 1432 /* If the current register setting is invalid, pick the first input */ 1433 if (!data->input_clk[res]) { 1434 dev_dbg(&data->i2c_client->dev, 1435 "Input %d not connected, rerouting\n", res); 1436 res = -ENODEV; 1437 for (i = 0; i < SI5341_NUM_INPUTS; ++i) { 1438 if (data->input_clk[i]) { 1439 res = i; 1440 break; 1441 } 1442 } 1443 if (res < 0) { 1444 dev_err(&data->i2c_client->dev, 1445 "No clock input available\n"); 1446 return res; 1447 } 1448 } 1449 1450 /* Make sure the selected clock is also enabled and routed */ 1451 err = si5341_clk_reparent(data, res); 1452 if (err < 0) 1453 return err; 1454 1455 err = clk_prepare_enable(data->input_clk[res]); 1456 if (err < 0) 1457 return err; 1458 1459 return res; 1460 } 1461 1462 static ssize_t input_present_show(struct device *dev, 1463 struct device_attribute *attr, 1464 char *buf) 1465 { 1466 struct clk_si5341 *data = dev_get_drvdata(dev); 1467 u32 status; 1468 int res = regmap_read(data->regmap, SI5341_STATUS, &status); 1469 1470 if (res < 0) 1471 return res; 1472 res = !(status & SI5341_STATUS_LOSREF); 1473 return sysfs_emit(buf, "%d\n", res); 1474 } 1475 static DEVICE_ATTR_RO(input_present); 1476 1477 static ssize_t input_present_sticky_show(struct device *dev, 1478 struct device_attribute *attr, 1479 char *buf) 1480 { 1481 struct clk_si5341 *data = dev_get_drvdata(dev); 1482 u32 status; 1483 int res = regmap_read(data->regmap, SI5341_STATUS_STICKY, &status); 1484 1485 if (res < 0) 1486 return res; 1487 res = !(status & SI5341_STATUS_LOSREF); 1488 return sysfs_emit(buf, "%d\n", res); 1489 } 1490 static DEVICE_ATTR_RO(input_present_sticky); 1491 1492 static ssize_t pll_locked_show(struct device *dev, 1493 struct device_attribute *attr, 1494 char *buf) 1495 { 1496 struct clk_si5341 *data = dev_get_drvdata(dev); 1497 u32 status; 1498 int res = regmap_read(data->regmap, SI5341_STATUS, &status); 1499 1500 if (res < 0) 1501 return res; 1502 res = !(status & SI5341_STATUS_LOL); 1503 return sysfs_emit(buf, "%d\n", res); 1504 } 1505 static DEVICE_ATTR_RO(pll_locked); 1506 1507 static ssize_t pll_locked_sticky_show(struct device *dev, 1508 struct device_attribute *attr, 1509 char *buf) 1510 { 1511 struct clk_si5341 *data = dev_get_drvdata(dev); 1512 u32 status; 1513 int res = regmap_read(data->regmap, SI5341_STATUS_STICKY, &status); 1514 1515 if (res < 0) 1516 return res; 1517 res = !(status & SI5341_STATUS_LOL); 1518 return sysfs_emit(buf, "%d\n", res); 1519 } 1520 static DEVICE_ATTR_RO(pll_locked_sticky); 1521 1522 static ssize_t clear_sticky_store(struct device *dev, 1523 struct device_attribute *attr, 1524 const char *buf, size_t count) 1525 { 1526 struct clk_si5341 *data = dev_get_drvdata(dev); 1527 long val; 1528 1529 if (kstrtol(buf, 10, &val)) 1530 return -EINVAL; 1531 if (val) { 1532 int res = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0); 1533 1534 if (res < 0) 1535 return res; 1536 } 1537 return count; 1538 } 1539 static DEVICE_ATTR_WO(clear_sticky); 1540 1541 static const struct attribute *si5341_attributes[] = { 1542 &dev_attr_input_present.attr, 1543 &dev_attr_input_present_sticky.attr, 1544 &dev_attr_pll_locked.attr, 1545 &dev_attr_pll_locked_sticky.attr, 1546 &dev_attr_clear_sticky.attr, 1547 NULL 1548 }; 1549 1550 static int si5341_probe(struct i2c_client *client) 1551 { 1552 struct clk_si5341 *data; 1553 struct clk_init_data init; 1554 struct clk *input; 1555 const char *root_clock_name; 1556 const char *synth_clock_names[SI5341_NUM_SYNTH]; 1557 int err; 1558 unsigned int i; 1559 struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS]; 1560 bool initialization_required; 1561 u32 status; 1562 1563 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); 1564 if (!data) 1565 return -ENOMEM; 1566 1567 data->i2c_client = client; 1568 1569 /* Must be done before otherwise touching hardware */ 1570 err = si5341_wait_device_ready(client); 1571 if (err) 1572 return err; 1573 1574 for (i = 0; i < SI5341_NUM_INPUTS; ++i) { 1575 input = devm_clk_get(&client->dev, si5341_input_clock_names[i]); 1576 if (IS_ERR(input)) { 1577 if (PTR_ERR(input) == -EPROBE_DEFER) 1578 return -EPROBE_DEFER; 1579 data->input_clk_name[i] = si5341_input_clock_names[i]; 1580 } else { 1581 data->input_clk[i] = input; 1582 data->input_clk_name[i] = __clk_get_name(input); 1583 } 1584 } 1585 1586 for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) { 1587 char reg_name[10]; 1588 1589 snprintf(reg_name, sizeof(reg_name), "vddo%d", i); 1590 data->clk[i].vddo_reg = devm_regulator_get_optional( 1591 &client->dev, reg_name); 1592 if (IS_ERR(data->clk[i].vddo_reg)) { 1593 err = PTR_ERR(data->clk[i].vddo_reg); 1594 data->clk[i].vddo_reg = NULL; 1595 if (err == -ENODEV) 1596 continue; 1597 goto cleanup; 1598 } else { 1599 err = regulator_enable(data->clk[i].vddo_reg); 1600 if (err) { 1601 dev_err(&client->dev, 1602 "failed to enable %s regulator: %d\n", 1603 reg_name, err); 1604 data->clk[i].vddo_reg = NULL; 1605 goto cleanup; 1606 } 1607 } 1608 } 1609 1610 err = si5341_dt_parse_dt(data, config); 1611 if (err) 1612 goto cleanup; 1613 1614 if (of_property_read_string(client->dev.of_node, "clock-output-names", 1615 &init.name)) 1616 init.name = client->dev.of_node->name; 1617 root_clock_name = init.name; 1618 1619 data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config); 1620 if (IS_ERR(data->regmap)) { 1621 err = PTR_ERR(data->regmap); 1622 goto cleanup; 1623 } 1624 1625 i2c_set_clientdata(client, data); 1626 1627 err = si5341_probe_chip_id(data); 1628 if (err < 0) 1629 goto cleanup; 1630 1631 if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) { 1632 initialization_required = true; 1633 } else { 1634 err = si5341_is_programmed_already(data); 1635 if (err < 0) 1636 goto cleanup; 1637 1638 initialization_required = !err; 1639 } 1640 data->xaxb_ext_clk = of_property_read_bool(client->dev.of_node, 1641 "silabs,xaxb-ext-clk"); 1642 data->iovdd_33 = of_property_read_bool(client->dev.of_node, 1643 "silabs,iovdd-33"); 1644 1645 if (initialization_required) { 1646 /* Populate the regmap cache in preparation for "cache only" */ 1647 err = si5341_read_settings(data); 1648 if (err < 0) 1649 goto cleanup; 1650 1651 err = si5341_send_preamble(data); 1652 if (err < 0) 1653 goto cleanup; 1654 1655 /* 1656 * We intend to send all 'final' register values in a single 1657 * transaction. So cache all register writes until we're done 1658 * configuring. 1659 */ 1660 regcache_cache_only(data->regmap, true); 1661 1662 /* Write the configuration pairs from the firmware blob */ 1663 err = si5341_write_multiple(data, si5341_reg_defaults, 1664 ARRAY_SIZE(si5341_reg_defaults)); 1665 if (err < 0) 1666 goto cleanup; 1667 } 1668 1669 /* Input must be up and running at this point */ 1670 err = si5341_clk_select_active_input(data); 1671 if (err < 0) 1672 goto cleanup; 1673 1674 if (initialization_required) { 1675 /* PLL configuration is required */ 1676 err = si5341_initialize_pll(data); 1677 if (err < 0) 1678 goto cleanup; 1679 } 1680 1681 /* Register the PLL */ 1682 init.parent_names = data->input_clk_name; 1683 init.num_parents = SI5341_NUM_INPUTS; 1684 init.ops = &si5341_clk_ops; 1685 init.flags = 0; 1686 data->hw.init = &init; 1687 1688 err = devm_clk_hw_register(&client->dev, &data->hw); 1689 if (err) { 1690 dev_err(&client->dev, "clock registration failed\n"); 1691 goto cleanup; 1692 } 1693 1694 init.num_parents = 1; 1695 init.parent_names = &root_clock_name; 1696 init.ops = &si5341_synth_clk_ops; 1697 for (i = 0; i < data->num_synth; ++i) { 1698 synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL, 1699 "%s.N%u", client->dev.of_node->name, i); 1700 init.name = synth_clock_names[i]; 1701 data->synth[i].index = i; 1702 data->synth[i].data = data; 1703 data->synth[i].hw.init = &init; 1704 err = devm_clk_hw_register(&client->dev, &data->synth[i].hw); 1705 if (err) { 1706 dev_err(&client->dev, 1707 "synth N%u registration failed\n", i); 1708 } 1709 } 1710 1711 init.num_parents = data->num_synth; 1712 init.parent_names = synth_clock_names; 1713 init.ops = &si5341_output_clk_ops; 1714 for (i = 0; i < data->num_outputs; ++i) { 1715 init.name = kasprintf(GFP_KERNEL, "%s.%d", 1716 client->dev.of_node->name, i); 1717 init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0; 1718 data->clk[i].index = i; 1719 data->clk[i].data = data; 1720 data->clk[i].hw.init = &init; 1721 if (config[i].out_format_drv_bits & 0x07) { 1722 regmap_write(data->regmap, 1723 SI5341_OUT_FORMAT(&data->clk[i]), 1724 config[i].out_format_drv_bits); 1725 regmap_write(data->regmap, 1726 SI5341_OUT_CM(&data->clk[i]), 1727 config[i].out_cm_ampl_bits); 1728 regmap_update_bits(data->regmap, 1729 SI5341_OUT_MUX_SEL(&data->clk[i]), 1730 SI5341_OUT_MUX_VDD_SEL_MASK, 1731 config[i].vdd_sel_bits); 1732 } 1733 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw); 1734 kfree(init.name); /* clock framework made a copy of the name */ 1735 if (err) { 1736 dev_err(&client->dev, 1737 "output %u registration failed\n", i); 1738 goto cleanup; 1739 } 1740 if (config[i].always_on) 1741 clk_prepare(data->clk[i].hw.clk); 1742 } 1743 1744 err = devm_of_clk_add_hw_provider(&client->dev, of_clk_si5341_get, 1745 data); 1746 if (err) { 1747 dev_err(&client->dev, "unable to add clk provider\n"); 1748 goto cleanup; 1749 } 1750 1751 if (initialization_required) { 1752 /* Synchronize */ 1753 regcache_cache_only(data->regmap, false); 1754 err = regcache_sync(data->regmap); 1755 if (err < 0) 1756 goto cleanup; 1757 1758 err = si5341_finalize_defaults(data); 1759 if (err < 0) 1760 goto cleanup; 1761 } 1762 1763 /* wait for device to report input clock present and PLL lock */ 1764 err = regmap_read_poll_timeout(data->regmap, SI5341_STATUS, status, 1765 !(status & (SI5341_STATUS_LOSREF | SI5341_STATUS_LOL)), 1766 10000, 250000); 1767 if (err) { 1768 dev_err(&client->dev, "Error waiting for input clock or PLL lock\n"); 1769 goto cleanup; 1770 } 1771 1772 /* clear sticky alarm bits from initialization */ 1773 err = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0); 1774 if (err) { 1775 dev_err(&client->dev, "unable to clear sticky status\n"); 1776 goto cleanup; 1777 } 1778 1779 err = sysfs_create_files(&client->dev.kobj, si5341_attributes); 1780 if (err) { 1781 dev_err(&client->dev, "unable to create sysfs files\n"); 1782 goto cleanup; 1783 } 1784 1785 /* Free the names, clk framework makes copies */ 1786 for (i = 0; i < data->num_synth; ++i) 1787 devm_kfree(&client->dev, (void *)synth_clock_names[i]); 1788 1789 return 0; 1790 1791 cleanup: 1792 for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) { 1793 if (data->clk[i].vddo_reg) 1794 regulator_disable(data->clk[i].vddo_reg); 1795 } 1796 return err; 1797 } 1798 1799 static void si5341_remove(struct i2c_client *client) 1800 { 1801 struct clk_si5341 *data = i2c_get_clientdata(client); 1802 int i; 1803 1804 sysfs_remove_files(&client->dev.kobj, si5341_attributes); 1805 1806 for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) { 1807 if (data->clk[i].vddo_reg) 1808 regulator_disable(data->clk[i].vddo_reg); 1809 } 1810 } 1811 1812 static const struct i2c_device_id si5341_id[] = { 1813 { "si5340", 0 }, 1814 { "si5341", 1 }, 1815 { "si5342", 2 }, 1816 { "si5344", 4 }, 1817 { "si5345", 5 }, 1818 { } 1819 }; 1820 MODULE_DEVICE_TABLE(i2c, si5341_id); 1821 1822 static const struct of_device_id clk_si5341_of_match[] = { 1823 { .compatible = "silabs,si5340" }, 1824 { .compatible = "silabs,si5341" }, 1825 { .compatible = "silabs,si5342" }, 1826 { .compatible = "silabs,si5344" }, 1827 { .compatible = "silabs,si5345" }, 1828 { } 1829 }; 1830 MODULE_DEVICE_TABLE(of, clk_si5341_of_match); 1831 1832 static struct i2c_driver si5341_driver = { 1833 .driver = { 1834 .name = "si5341", 1835 .of_match_table = clk_si5341_of_match, 1836 }, 1837 .probe_new = si5341_probe, 1838 .remove = si5341_remove, 1839 .id_table = si5341_id, 1840 }; 1841 module_i2c_driver(si5341_driver); 1842 1843 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>"); 1844 MODULE_DESCRIPTION("Si5341 driver"); 1845 MODULE_LICENSE("GPL"); 1846