xref: /linux/drivers/clk/clk-lmk04832.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * LMK04832 Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner
4  * Pin compatible with the LMK0482x family
5  *
6  * Datasheet: https://www.ti.com/lit/ds/symlink/lmk04832.pdf
7  *
8  * Copyright (c) 2020, Xiphos Systems Corp.
9  *
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/device.h>
16 #include <linux/gcd.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/module.h>
19 #include <linux/regmap.h>
20 #include <linux/spi/spi.h>
21 
22 /* 0x000 - 0x00d System Functions */
23 #define LMK04832_REG_RST3W		0x000
24 #define LMK04832_BIT_RESET			BIT(7)
25 #define LMK04832_BIT_SPI_3WIRE_DIS		BIT(4)
26 #define LMK04832_REG_POWERDOWN		0x002
27 #define LMK04832_REG_ID_DEV_TYPE	0x003
28 #define LMK04832_REG_ID_PROD_MSB	0x004
29 #define LMK04832_REG_ID_PROD_LSB	0x005
30 #define LMK04832_REG_ID_MASKREV		0x006
31 #define LMK04832_REG_ID_VNDR_MSB	0x00c
32 #define LMK04832_REG_ID_VNDR_LSB	0x00d
33 
34 /* 0x100 - 0x137 Device Clock and SYSREF Clock Output Control */
35 #define LMK04832_REG_CLKOUT_CTRL0(ch)	(0x100 + (ch >> 1) * 8)
36 #define LMK04832_BIT_DCLK_DIV_LSB		GENMASK(7, 0)
37 #define LMK04832_REG_CLKOUT_CTRL1(ch)	(0x101 + (ch >> 1) * 8)
38 #define LMK04832_BIT_DCLKX_Y_DDLY_LSB		GENMASK(7, 0)
39 #define LMK04832_REG_CLKOUT_CTRL2(ch)	(0x102 + (ch >> 1) * 8)
40 #define LMK04832_BIT_CLKOUTX_Y_PD		BIT(7)
41 #define LMK04832_BIT_DCLKX_Y_DDLY_PD		BIT(4)
42 #define LMK04832_BIT_DCLKX_Y_DDLY_MSB		GENMASK(3, 2)
43 #define LMK04832_BIT_DCLK_DIV_MSB		GENMASK(1, 0)
44 #define LMK04832_REG_CLKOUT_SRC_MUX(ch)	(0x103 + (ch % 2) + (ch >> 1) * 8)
45 #define LMK04832_BIT_CLKOUT_SRC_MUX		BIT(5)
46 #define LMK04832_REG_CLKOUT_CTRL3(ch)	(0x103 + (ch >> 1) * 8)
47 #define LMK04832_BIT_DCLKX_Y_PD			BIT(4)
48 #define LMK04832_BIT_DCLKX_Y_DCC		BIT(2)
49 #define LMK04832_BIT_DCLKX_Y_HS			BIT(0)
50 #define LMK04832_REG_CLKOUT_CTRL4(ch)	(0x104 + (ch >> 1) * 8)
51 #define LMK04832_BIT_SCLK_PD			BIT(4)
52 #define LMK04832_BIT_SCLKX_Y_DIS_MODE		GENMASK(3, 2)
53 #define LMK04832_REG_SCLKX_Y_ADLY(ch)	(0x105 + (ch >> 1) * 8)
54 #define LMK04832_REG_SCLKX_Y_DDLY(ch)	(0x106 + (ch >> 1) * 8)
55 #define LMK04832_BIT_SCLKX_Y_DDLY		GENMASK(3, 0)
56 #define LMK04832_REG_CLKOUT_FMT(ch)	(0x107 + (ch >> 1) * 8)
57 #define LMK04832_BIT_CLKOUT_FMT(ch)		(ch % 2 ? 0xf0 : 0x0f)
58 #define LMK04832_VAL_CLKOUT_FMT_POWERDOWN		0x00
59 #define LMK04832_VAL_CLKOUT_FMT_LVDS			0x01
60 #define LMK04832_VAL_CLKOUT_FMT_HSDS6			0x02
61 #define LMK04832_VAL_CLKOUT_FMT_HSDS8			0x03
62 #define LMK04832_VAL_CLKOUT_FMT_LVPECL1600		0x04
63 #define LMK04832_VAL_CLKOUT_FMT_LVPECL2000		0x05
64 #define LMK04832_VAL_CLKOUT_FMT_LCPECL			0x06
65 #define LMK04832_VAL_CLKOUT_FMT_CML16			0x07
66 #define LMK04832_VAL_CLKOUT_FMT_CML24			0x08
67 #define LMK04832_VAL_CLKOUT_FMT_CML32			0x09
68 #define LMK04832_VAL_CLKOUT_FMT_CMOS_OFF_INV		0x0a
69 #define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_OFF		0x0b
70 #define LMK04832_VAL_CLKOUT_FMT_CMOS_INV_INV		0x0c
71 #define LMK04832_VAL_CLKOUT_FMT_CMOS_INV_NOR		0x0d
72 #define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_INV		0x0e
73 #define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_NOR		0x0f
74 
75 /* 0x138 - 0x145 SYSREF, SYNC, and Device Config */
76 #define LMK04832_REG_VCO_OSCOUT		0x138
77 #define LMK04832_BIT_VCO_MUX			GENMASK(6, 5)
78 #define LMK04832_VAL_VCO_MUX_VCO0			0x00
79 #define LMK04832_VAL_VCO_MUX_VCO1			0x01
80 #define LMK04832_VAL_VCO_MUX_EXT			0x02
81 #define LMK04832_REG_SYSREF_OUT		0x139
82 #define LMK04832_BIT_SYSREF_REQ_EN		BIT(6)
83 #define LMK04832_BIT_SYSREF_MUX			GENMASK(1, 0)
84 #define LMK04832_VAL_SYSREF_MUX_NORMAL_SYNC		0x00
85 #define LMK04832_VAL_SYSREF_MUX_RECLK			0x01
86 #define LMK04832_VAL_SYSREF_MUX_PULSER			0x02
87 #define LMK04832_VAL_SYSREF_MUX_CONTINUOUS		0x03
88 #define LMK04832_REG_SYSREF_DIV_MSB	0x13a
89 #define LMK04832_BIT_SYSREF_DIV_MSB		GENMASK(4, 0)
90 #define LMK04832_REG_SYSREF_DIV_LSB	0x13b
91 #define LMK04832_REG_SYSREF_DDLY_MSB	0x13c
92 #define LMK04832_BIT_SYSREF_DDLY_MSB		GENMASK(4, 0)
93 #define LMK04832_REG_SYSREF_DDLY_LSB	0x13d
94 #define LMK04832_REG_SYSREF_PULSE_CNT	0x13e
95 #define LMK04832_REG_FB_CTRL		0x13f
96 #define LMK04832_BIT_PLL2_RCLK_MUX		BIT(7)
97 #define LMK04832_VAL_PLL2_RCLK_MUX_OSCIN		0x00
98 #define LMK04832_VAL_PLL2_RCLK_MUX_CLKIN		0x01
99 #define LMK04832_BIT_PLL2_NCLK_MUX		BIT(5)
100 #define LMK04832_VAL_PLL2_NCLK_MUX_PLL2_P		0x00
101 #define LMK04832_VAL_PLL2_NCLK_MUX_FB_MUX		0x01
102 #define LMK04832_BIT_FB_MUX_EN			BIT(0)
103 #define LMK04832_REG_MAIN_PD		0x140
104 #define LMK04832_BIT_PLL1_PD			BIT(7)
105 #define LMK04832_BIT_VCO_LDO_PD			BIT(6)
106 #define LMK04832_BIT_VCO_PD			BIT(5)
107 #define LMK04832_BIT_OSCIN_PD			BIT(4)
108 #define LMK04832_BIT_SYSREF_GBL_PD		BIT(3)
109 #define LMK04832_BIT_SYSREF_PD			BIT(2)
110 #define LMK04832_BIT_SYSREF_DDLY_PD		BIT(1)
111 #define LMK04832_BIT_SYSREF_PLSR_PD		BIT(0)
112 #define LMK04832_REG_SYNC		0x143
113 #define LMK04832_BIT_SYNC_CLR			BIT(7)
114 #define LMK04832_BIT_SYNC_1SHOT_EN		BIT(6)
115 #define LMK04832_BIT_SYNC_POL			BIT(5)
116 #define LMK04832_BIT_SYNC_EN			BIT(4)
117 #define LMK04832_BIT_SYNC_MODE			GENMASK(1, 0)
118 #define LMK04832_VAL_SYNC_MODE_OFF			0x00
119 #define LMK04832_VAL_SYNC_MODE_ON			0x01
120 #define LMK04832_VAL_SYNC_MODE_PULSER_PIN		0x02
121 #define LMK04832_VAL_SYNC_MODE_PULSER_SPI		0x03
122 #define LMK04832_REG_SYNC_DIS		0x144
123 
124 /* 0x146 - 0x14a CLKin Control */
125 #define LMK04832_REG_CLKIN_SEL0		0x148
126 #define LMK04832_REG_CLKIN_SEL1		0x149
127 #define LMK04832_REG_CLKIN_RST		0x14a
128 #define LMK04832_BIT_SDIO_RDBK_TYPE		BIT(6)
129 #define LMK04832_BIT_CLKIN_SEL_MUX		GENMASK(5, 3)
130 #define LMK04832_VAL_CLKIN_SEL_MUX_SPI_RDBK		0x06
131 #define LMK04832_BIT_CLKIN_SEL_TYPE		GENMASK(2, 0)
132 #define LMK04832_VAL_CLKIN_SEL_TYPE_OUT			0x03
133 
134 /* 0x14b - 0x152 Holdover */
135 
136 /* 0x153 - 0x15f PLL1 Configuration */
137 #define LMK04832_REG_PLL1_LD		0x15f
138 #define LMK04832_BIT_PLL1_LD_MUX		GENMASK(7, 3)
139 #define LMK04832_VAL_PLL1_LD_MUX_SPI_RDBK		0x07
140 #define LMK04832_BIT_PLL1_LD_TYPE		GENMASK(2, 0)
141 #define LMK04832_VAL_PLL1_LD_TYPE_OUT_PP		0x03
142 
143 /* 0x160 - 0x16e PLL2 Configuration */
144 #define LMK04832_REG_PLL2_R_MSB		0x160
145 #define LMK04832_BIT_PLL2_R_MSB			GENMASK(3, 0)
146 #define LMK04832_REG_PLL2_R_LSB		0x161
147 #define LMK04832_REG_PLL2_MISC		0x162
148 #define LMK04832_BIT_PLL2_MISC_P		GENMASK(7, 5)
149 #define LMK04832_BIT_PLL2_MISC_REF_2X_EN	BIT(0)
150 #define LMK04832_REG_PLL2_N_CAL_0	0x163
151 #define LMK04832_BIT_PLL2_N_CAL_0		GENMASK(1, 0)
152 #define LMK04832_REG_PLL2_N_CAL_1	0x164
153 #define LMK04832_REG_PLL2_N_CAL_2	0x165
154 #define LMK04832_REG_PLL2_N_0		0x166
155 #define LMK04832_BIT_PLL2_N_0			GENMASK(1, 0)
156 #define LMK04832_REG_PLL2_N_1		0x167
157 #define LMK04832_REG_PLL2_N_2		0x168
158 #define LMK04832_REG_PLL2_DLD_CNT_MSB	0x16a
159 #define LMK04832_REG_PLL2_DLD_CNT_LSB	0x16b
160 #define LMK04832_REG_PLL2_LD		0x16e
161 #define LMK04832_BIT_PLL2_LD_MUX		GENMASK(7, 3)
162 #define LMK04832_VAL_PLL2_LD_MUX_PLL2_DLD		0x02
163 #define LMK04832_BIT_PLL2_LD_TYPE		GENMASK(2, 0)
164 #define LMK04832_VAL_PLL2_LD_TYPE_OUT_PP		0x03
165 
166 /* 0x16F - 0x555 Misc Registers */
167 #define LMK04832_REG_PLL2_PD		0x173
168 #define LMK04832_BIT_PLL2_PRE_PD		BIT(6)
169 #define LMK04832_BIT_PLL2_PD			BIT(5)
170 #define LMK04832_REG_PLL1R_RST		0x177
171 #define LMK04832_REG_CLR_PLL_LOST	0x182
172 #define LMK04832_REG_RB_PLL_LD		0x183
173 #define LMK04832_REG_RB_CLK_DAC_VAL_MSB	0x184
174 #define LMK04832_REG_RB_DAC_VAL_LSB	0x185
175 #define LMK04832_REG_RB_HOLDOVER	0x188
176 #define LMK04832_REG_SPI_LOCK		0x555
177 
178 enum lmk04832_device_types {
179 	LMK04832,
180 };
181 
182 /**
183  * struct lmk04832_device_info - Holds static device information that is
184  *                               specific to the chip revision
185  *
186  * @pid:          Product Identifier
187  * @maskrev:      IC version identifier
188  * @num_channels: Number of available output channels (clkout count)
189  * @vco0_range:   {min, max} of the VCO0 operating range (in MHz)
190  * @vco1_range:   {min, max} of the VCO1 operating range (in MHz)
191  */
192 struct lmk04832_device_info {
193 	u16 pid;
194 	u8 maskrev;
195 	size_t num_channels;
196 	unsigned int vco0_range[2];
197 	unsigned int vco1_range[2];
198 };
199 
200 static const struct lmk04832_device_info lmk04832_device_info[] = {
201 	[LMK04832] = {
202 		.pid = 0x63d1, /* WARNING PROD_ID is inverted in the datasheet */
203 		.maskrev = 0x70,
204 		.num_channels = 14,
205 		.vco0_range = { 2440, 2580 },
206 		.vco1_range = { 2945, 3255 },
207 	},
208 };
209 
210 enum lmk04832_rdbk_type {
211 	RDBK_CLKIN_SEL0,
212 	RDBK_CLKIN_SEL1,
213 	RDBK_RESET,
214 	RDBK_PLL1_LD,
215 };
216 
217 struct lmk_dclk {
218 	struct lmk04832 *lmk;
219 	struct clk_hw hw;
220 	u8 id;
221 };
222 
223 struct lmk_clkout {
224 	struct lmk04832 *lmk;
225 	struct clk_hw hw;
226 	bool sysref;
227 	u32 format;
228 	u8 id;
229 };
230 
231 /**
232  * struct lmk04832 - The LMK04832 device structure
233  *
234  * @dev: reference to a struct device, linked to the spi_device
235  * @regmap: struct regmap instance use to access the chip
236  * @sync_mode: operational mode for SYNC signal
237  * @sysref_mux: select SYSREF source
238  * @sysref_pulse_cnt: number of SYSREF pulses generated while not in continuous
239  *                    mode.
240  * @sysref_ddly: SYSREF digital delay value
241  * @oscin: PLL2 input clock
242  * @vco: reference to the internal VCO clock
243  * @sclk: reference to the internal sysref clock (SCLK)
244  * @vco_rate: user provided VCO rate
245  * @reset_gpio: reference to the reset GPIO
246  * @dclk: list of internal device clock references.
247  *        Each pair of clkout clocks share a single device clock (DCLKX_Y)
248  * @clkout: list of output clock references
249  * @clk_data: holds clkout related data like clk_hw* and number of clocks
250  */
251 struct lmk04832 {
252 	struct device *dev;
253 	struct regmap *regmap;
254 
255 	unsigned int sync_mode;
256 	unsigned int sysref_mux;
257 	unsigned int sysref_pulse_cnt;
258 	unsigned int sysref_ddly;
259 
260 	struct clk *oscin;
261 	struct clk_hw vco;
262 	struct clk_hw sclk;
263 	unsigned int vco_rate;
264 
265 	struct gpio_desc *reset_gpio;
266 
267 	struct lmk_dclk *dclk;
268 	struct lmk_clkout *clkout;
269 	struct clk_hw_onecell_data *clk_data;
270 };
271 
272 static bool lmk04832_regmap_rd_regs(struct device *dev, unsigned int reg)
273 {
274 	switch (reg) {
275 	case LMK04832_REG_RST3W ... LMK04832_REG_ID_MASKREV:
276 	case LMK04832_REG_ID_VNDR_MSB:
277 	case LMK04832_REG_ID_VNDR_LSB:
278 	case LMK04832_REG_CLKOUT_CTRL0(0) ... LMK04832_REG_PLL2_DLD_CNT_LSB:
279 	case LMK04832_REG_PLL2_LD:
280 	case LMK04832_REG_PLL2_PD:
281 	case LMK04832_REG_PLL1R_RST:
282 	case LMK04832_REG_CLR_PLL_LOST ... LMK04832_REG_RB_DAC_VAL_LSB:
283 	case LMK04832_REG_RB_HOLDOVER:
284 	case LMK04832_REG_SPI_LOCK:
285 		return true;
286 	default:
287 		return false;
288 	};
289 }
290 
291 static bool lmk04832_regmap_wr_regs(struct device *dev, unsigned int reg)
292 {
293 	switch (reg) {
294 	case LMK04832_REG_RST3W:
295 	case LMK04832_REG_POWERDOWN:
296 		return true;
297 	case LMK04832_REG_ID_DEV_TYPE ... LMK04832_REG_ID_MASKREV:
298 	case LMK04832_REG_ID_VNDR_MSB:
299 	case LMK04832_REG_ID_VNDR_LSB:
300 		return false;
301 	case LMK04832_REG_CLKOUT_CTRL0(0) ... LMK04832_REG_PLL2_DLD_CNT_LSB:
302 	case LMK04832_REG_PLL2_LD:
303 	case LMK04832_REG_PLL2_PD:
304 	case LMK04832_REG_PLL1R_RST:
305 	case LMK04832_REG_CLR_PLL_LOST ... LMK04832_REG_RB_DAC_VAL_LSB:
306 	case LMK04832_REG_RB_HOLDOVER:
307 	case LMK04832_REG_SPI_LOCK:
308 		return true;
309 	default:
310 		return false;
311 	};
312 }
313 
314 static const struct regmap_config regmap_config = {
315 	.name = "lmk04832",
316 	.reg_bits = 16,
317 	.val_bits = 8,
318 	.use_single_read = 1,
319 	.use_single_write = 1,
320 	.read_flag_mask = 0x80,
321 	.write_flag_mask = 0x00,
322 	.readable_reg = lmk04832_regmap_rd_regs,
323 	.writeable_reg = lmk04832_regmap_wr_regs,
324 	.cache_type = REGCACHE_NONE,
325 	.max_register = LMK04832_REG_SPI_LOCK,
326 };
327 
328 static int lmk04832_vco_is_enabled(struct clk_hw *hw)
329 {
330 	struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
331 	unsigned int tmp;
332 	int ret;
333 
334 	ret = regmap_read(lmk->regmap, LMK04832_REG_MAIN_PD, &tmp);
335 	if (ret)
336 		return ret;
337 
338 	return !(FIELD_GET(LMK04832_BIT_OSCIN_PD, tmp) |
339 		 FIELD_GET(LMK04832_BIT_VCO_PD, tmp) |
340 		 FIELD_GET(LMK04832_BIT_VCO_LDO_PD, tmp));
341 }
342 
343 static int lmk04832_vco_prepare(struct clk_hw *hw)
344 {
345 	struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
346 	int ret;
347 
348 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_PD,
349 				 LMK04832_BIT_PLL2_PRE_PD |
350 				 LMK04832_BIT_PLL2_PD,
351 				 0x00);
352 	if (ret)
353 		return ret;
354 
355 	return regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
356 				  LMK04832_BIT_VCO_LDO_PD |
357 				  LMK04832_BIT_VCO_PD |
358 				  LMK04832_BIT_OSCIN_PD, 0x00);
359 }
360 
361 static void lmk04832_vco_unprepare(struct clk_hw *hw)
362 {
363 	struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
364 
365 	regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_PD,
366 			   LMK04832_BIT_PLL2_PRE_PD | LMK04832_BIT_PLL2_PD,
367 			   0xff);
368 
369 	/* Don't set LMK04832_BIT_OSCIN_PD since other clocks depend on it */
370 	regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
371 			   LMK04832_BIT_VCO_LDO_PD | LMK04832_BIT_VCO_PD, 0xff);
372 }
373 
374 static unsigned long lmk04832_vco_recalc_rate(struct clk_hw *hw,
375 					      unsigned long prate)
376 {
377 	struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
378 	const unsigned int pll2_p[] = {8, 2, 2, 3, 4, 5, 6, 7};
379 	unsigned int pll2_n, p, pll2_r;
380 	unsigned int pll2_misc;
381 	unsigned long vco_rate;
382 	u8 tmp[3];
383 	int ret;
384 
385 	ret = regmap_read(lmk->regmap, LMK04832_REG_PLL2_MISC, &pll2_misc);
386 	if (ret)
387 		return ret;
388 
389 	p = FIELD_GET(LMK04832_BIT_PLL2_MISC_P, pll2_misc);
390 
391 	ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_PLL2_N_0, &tmp, 3);
392 	if (ret)
393 		return ret;
394 
395 	pll2_n = FIELD_PREP(0x030000, tmp[0]) |
396 		 FIELD_PREP(0x00ff00, tmp[1]) |
397 		 FIELD_PREP(0x0000ff, tmp[2]);
398 
399 	ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_PLL2_R_MSB, &tmp, 2);
400 	if (ret)
401 		return ret;
402 
403 	pll2_r = FIELD_PREP(0x0f00, tmp[0]) |
404 		 FIELD_PREP(0x00ff, tmp[1]);
405 
406 	vco_rate = (prate << FIELD_GET(LMK04832_BIT_PLL2_MISC_REF_2X_EN,
407 				       pll2_misc)) * pll2_n * pll2_p[p] / pll2_r;
408 
409 	return vco_rate;
410 }
411 
412 /**
413  * lmk04832_check_vco_ranges - Check requested VCO frequency against VCO ranges
414  *
415  * @lmk:   Reference to the lmk device
416  * @rate:  Desired output rate for the VCO
417  *
418  * The LMK04832 has 2 internal VCO, each with independent operating ranges.
419  * Use the device_info structure to determine which VCO to use based on rate.
420  *
421  * Returns: VCO_MUX value or negative errno.
422  */
423 static int lmk04832_check_vco_ranges(struct lmk04832 *lmk, unsigned long rate)
424 {
425 	struct spi_device *spi = to_spi_device(lmk->dev);
426 	const struct lmk04832_device_info *info;
427 	unsigned long mhz = rate / 1000000;
428 
429 	info = &lmk04832_device_info[spi_get_device_id(spi)->driver_data];
430 
431 	if (mhz >= info->vco0_range[0] && mhz <= info->vco0_range[1])
432 		return LMK04832_VAL_VCO_MUX_VCO0;
433 
434 	if (mhz >= info->vco1_range[0] && mhz <= info->vco1_range[1])
435 		return LMK04832_VAL_VCO_MUX_VCO1;
436 
437 	dev_err(lmk->dev, "%lu Hz is out of VCO ranges\n", rate);
438 	return -ERANGE;
439 }
440 
441 /**
442  * lmk04832_calc_pll2_params - Get PLL2 parameters used to set the VCO frequency
443  *
444  * @prate: parent rate to the PLL2, usually OSCin
445  * @rate:  Desired output rate for the VCO
446  * @n:     reference to PLL2_N
447  * @p:     reference to PLL2_P
448  * @r:     reference to PLL2_R
449  *
450  * This functions assumes LMK04832_BIT_PLL2_MISC_REF_2X_EN is set since it is
451  * recommended in the datasheet because a higher phase detector frequencies
452  * makes the design of wider loop bandwidth filters possible.
453  *
454  * the VCO rate can be calculated using the following expression:
455  *
456  *	VCO = OSCin * 2 * PLL2_N * PLL2_P / PLL2_R
457  *
458  * Returns: vco rate or negative errno.
459  */
460 static long lmk04832_calc_pll2_params(unsigned long prate, unsigned long rate,
461 				      unsigned int *n, unsigned int *p,
462 				      unsigned int *r)
463 {
464 	unsigned int pll2_n, pll2_p, pll2_r;
465 	unsigned long num, div;
466 
467 	/* Set PLL2_P to a fixed value to simplify optimizations */
468 	pll2_p = 2;
469 
470 	div = gcd(rate, prate);
471 
472 	num = DIV_ROUND_CLOSEST(rate, div);
473 	pll2_r = DIV_ROUND_CLOSEST(prate, div);
474 
475 	if (num > 4) {
476 		pll2_n = num >> 2;
477 	} else {
478 		pll2_r = pll2_r << 2;
479 		pll2_n = num;
480 	}
481 
482 	if (pll2_n < 1 || pll2_n > 0x03ffff)
483 		return -EINVAL;
484 	if (pll2_r < 1 || pll2_r > 0xfff)
485 		return -EINVAL;
486 
487 	*n = pll2_n;
488 	*p = pll2_p;
489 	*r = pll2_r;
490 
491 	return DIV_ROUND_CLOSEST(prate * 2 * pll2_p * pll2_n, pll2_r);
492 }
493 
494 static long lmk04832_vco_round_rate(struct clk_hw *hw, unsigned long rate,
495 				    unsigned long *prate)
496 {
497 	struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
498 	unsigned int n, p, r;
499 	long vco_rate;
500 	int ret;
501 
502 	ret = lmk04832_check_vco_ranges(lmk, rate);
503 	if (ret < 0)
504 		return ret;
505 
506 	vco_rate = lmk04832_calc_pll2_params(*prate, rate, &n, &p, &r);
507 	if (vco_rate < 0) {
508 		dev_err(lmk->dev, "PLL2 parameters out of range\n");
509 		return vco_rate;
510 	}
511 
512 	if (rate != vco_rate)
513 		return -EINVAL;
514 
515 	return vco_rate;
516 }
517 
518 static int lmk04832_vco_set_rate(struct clk_hw *hw, unsigned long rate,
519 				 unsigned long prate)
520 {
521 	struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
522 	unsigned int n, p, r;
523 	long vco_rate;
524 	int vco_mux;
525 	int ret;
526 
527 	vco_mux = lmk04832_check_vco_ranges(lmk, rate);
528 	if (vco_mux < 0)
529 		return vco_mux;
530 
531 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_VCO_OSCOUT,
532 				 LMK04832_BIT_VCO_MUX,
533 				 FIELD_PREP(LMK04832_BIT_VCO_MUX, vco_mux));
534 	if (ret)
535 		return ret;
536 
537 	vco_rate = lmk04832_calc_pll2_params(prate, rate, &n, &p, &r);
538 	if (vco_rate < 0) {
539 		dev_err(lmk->dev, "failed to determine PLL2 parameters\n");
540 		return vco_rate;
541 	}
542 
543 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_R_MSB,
544 				 LMK04832_BIT_PLL2_R_MSB,
545 				 FIELD_GET(0x000700, r));
546 	if (ret)
547 		return ret;
548 
549 	ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_R_LSB,
550 			   FIELD_GET(0x0000ff, r));
551 	if (ret)
552 		return ret;
553 
554 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_MISC,
555 				 LMK04832_BIT_PLL2_MISC_P,
556 				 FIELD_PREP(LMK04832_BIT_PLL2_MISC_P, p));
557 	if (ret)
558 		return ret;
559 
560 	/*
561 	 * PLL2_N registers must be programmed after other PLL2 dividers are
562 	 * programmed to ensure proper VCO frequency calibration
563 	 */
564 	ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_0,
565 			   FIELD_GET(0x030000, n));
566 	if (ret)
567 		return ret;
568 	ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_1,
569 			   FIELD_GET(0x00ff00, n));
570 	if (ret)
571 		return ret;
572 
573 	return regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_2,
574 			    FIELD_GET(0x0000ff, n));
575 }
576 
577 static const struct clk_ops lmk04832_vco_ops = {
578 	.is_enabled = lmk04832_vco_is_enabled,
579 	.prepare = lmk04832_vco_prepare,
580 	.unprepare = lmk04832_vco_unprepare,
581 	.recalc_rate = lmk04832_vco_recalc_rate,
582 	.round_rate = lmk04832_vco_round_rate,
583 	.set_rate = lmk04832_vco_set_rate,
584 };
585 
586 /*
587  * lmk04832_register_vco - Initialize the internal VCO and clock distribution
588  *                         path in PLL2 single loop mode.
589  */
590 static int lmk04832_register_vco(struct lmk04832 *lmk)
591 {
592 	const char *parent_names[1];
593 	struct clk_init_data init;
594 	int ret;
595 
596 	init.name = "lmk-vco";
597 	parent_names[0] = __clk_get_name(lmk->oscin);
598 	init.parent_names = parent_names;
599 
600 	init.ops = &lmk04832_vco_ops;
601 	init.num_parents = 1;
602 
603 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_VCO_OSCOUT,
604 				 LMK04832_BIT_VCO_MUX,
605 				 FIELD_PREP(LMK04832_BIT_VCO_MUX,
606 					    LMK04832_VAL_VCO_MUX_VCO1));
607 	if (ret)
608 		return ret;
609 
610 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_FB_CTRL,
611 				 LMK04832_BIT_PLL2_RCLK_MUX |
612 				 LMK04832_BIT_PLL2_NCLK_MUX,
613 				 FIELD_PREP(LMK04832_BIT_PLL2_RCLK_MUX,
614 					    LMK04832_VAL_PLL2_RCLK_MUX_OSCIN)|
615 				 FIELD_PREP(LMK04832_BIT_PLL2_NCLK_MUX,
616 					    LMK04832_VAL_PLL2_NCLK_MUX_PLL2_P));
617 	if (ret)
618 		return ret;
619 
620 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_MISC,
621 				 LMK04832_BIT_PLL2_MISC_REF_2X_EN,
622 				 LMK04832_BIT_PLL2_MISC_REF_2X_EN);
623 	if (ret)
624 		return ret;
625 
626 	ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_LD,
627 			   FIELD_PREP(LMK04832_BIT_PLL2_LD_MUX,
628 				      LMK04832_VAL_PLL2_LD_MUX_PLL2_DLD) |
629 			   FIELD_PREP(LMK04832_BIT_PLL2_LD_TYPE,
630 				      LMK04832_VAL_PLL2_LD_TYPE_OUT_PP));
631 	if (ret)
632 		return ret;
633 
634 	lmk->vco.init = &init;
635 	return devm_clk_hw_register(lmk->dev, &lmk->vco);
636 }
637 
638 static int lmk04832_clkout_set_ddly(struct lmk04832 *lmk, int id)
639 {
640 	const int dclk_div_adj[] = {0, 0, -2, -2, 0, 3, -1, 0};
641 	unsigned int sclkx_y_ddly = 10;
642 	unsigned int dclkx_y_ddly;
643 	unsigned int dclkx_y_div;
644 	unsigned int sysref_ddly;
645 	unsigned int dclkx_y_hs;
646 	unsigned int lsb, msb;
647 	int ret;
648 
649 	ret = regmap_update_bits(lmk->regmap,
650 				 LMK04832_REG_CLKOUT_CTRL2(id),
651 				 LMK04832_BIT_DCLKX_Y_DDLY_PD,
652 				 FIELD_PREP(LMK04832_BIT_DCLKX_Y_DDLY_PD, 0));
653 	if (ret)
654 		return ret;
655 
656 	ret = regmap_read(lmk->regmap, LMK04832_REG_SYSREF_DDLY_LSB, &lsb);
657 	if (ret)
658 		return ret;
659 
660 	ret = regmap_read(lmk->regmap, LMK04832_REG_SYSREF_DDLY_MSB, &msb);
661 	if (ret)
662 		return ret;
663 
664 	sysref_ddly = FIELD_GET(LMK04832_BIT_SYSREF_DDLY_MSB, msb) << 8 | lsb;
665 
666 	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(id), &lsb);
667 	if (ret)
668 		return ret;
669 
670 	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(id), &msb);
671 	if (ret)
672 		return ret;
673 
674 	dclkx_y_div = FIELD_GET(LMK04832_BIT_DCLK_DIV_MSB, msb) << 8 | lsb;
675 
676 	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(id), &lsb);
677 	if (ret)
678 		return ret;
679 
680 	dclkx_y_hs = FIELD_GET(LMK04832_BIT_DCLKX_Y_HS, lsb);
681 
682 	dclkx_y_ddly = sysref_ddly + 1 -
683 		dclk_div_adj[dclkx_y_div < 6 ?  dclkx_y_div : 7] -
684 		dclkx_y_hs + sclkx_y_ddly;
685 
686 	if (dclkx_y_ddly < 7 || dclkx_y_ddly > 0x3fff) {
687 		dev_err(lmk->dev, "DCLKX_Y_DDLY out of range (%d)\n",
688 			dclkx_y_ddly);
689 		return -EINVAL;
690 	}
691 
692 	ret = regmap_write(lmk->regmap,
693 			   LMK04832_REG_SCLKX_Y_DDLY(id),
694 			   FIELD_GET(LMK04832_BIT_SCLKX_Y_DDLY, sclkx_y_ddly));
695 	if (ret)
696 		return ret;
697 
698 	ret = regmap_write(lmk->regmap, LMK04832_REG_CLKOUT_CTRL1(id),
699 				FIELD_GET(0x00ff, dclkx_y_ddly));
700 	if (ret)
701 		return ret;
702 
703 	dev_dbg(lmk->dev, "clkout%02u: sysref_ddly=%u, dclkx_y_ddly=%u, "
704 		"dclk_div_adj=%+d, dclkx_y_hs=%u, sclkx_y_ddly=%u\n",
705 		id, sysref_ddly, dclkx_y_ddly,
706 		dclk_div_adj[dclkx_y_div < 6 ? dclkx_y_div : 7],
707 		dclkx_y_hs, sclkx_y_ddly);
708 
709 	return regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(id),
710 				  LMK04832_BIT_DCLKX_Y_DDLY_MSB,
711 				  FIELD_GET(0x0300, dclkx_y_ddly));
712 }
713 
714 /** lmk04832_sclk_sync - Establish deterministic phase relationship between sclk
715  *                       and dclk
716  *
717  * @lmk: Reference to the lmk device
718  *
719  * The synchronization sequence:
720  * - in the datasheet https://www.ti.com/lit/ds/symlink/lmk04832.pdf, p.31
721  *   (8.3.3.1 How to enable SYSREF)
722  * - Ti forum: https://e2e.ti.com/support/clock-and-timing/f/48/t/970972
723  *
724  * Returns 0 or negative errno.
725  */
726 static int lmk04832_sclk_sync_sequence(struct lmk04832 *lmk)
727 {
728 	int ret;
729 	int i;
730 
731 	/* 1. (optional) mute all sysref_outputs during synchronization */
732 	/* 2. Enable and write device clock digital delay to applicable clocks */
733 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
734 				 LMK04832_BIT_SYSREF_DDLY_PD,
735 				 FIELD_PREP(LMK04832_BIT_SYSREF_DDLY_PD, 0));
736 	if (ret)
737 		return ret;
738 
739 	for (i = 0; i < lmk->clk_data->num; i += 2) {
740 		ret = lmk04832_clkout_set_ddly(lmk, i);
741 		if (ret)
742 			return ret;
743 	}
744 
745 	/*
746 	 * 3. Configure SYNC_MODE to SYNC_PIN and SYSREF_MUX to Normal SYNC,
747 	 *    and clear SYSREF_REQ_EN (see 6.)
748 	 */
749 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT,
750 				 LMK04832_BIT_SYSREF_REQ_EN |
751 				 LMK04832_BIT_SYSREF_MUX,
752 				 FIELD_PREP(LMK04832_BIT_SYSREF_REQ_EN, 0) |
753 				 FIELD_PREP(LMK04832_BIT_SYSREF_MUX,
754 					    LMK04832_VAL_SYSREF_MUX_NORMAL_SYNC));
755 	if (ret)
756 		return ret;
757 
758 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
759 				 LMK04832_BIT_SYNC_MODE,
760 				 FIELD_PREP(LMK04832_BIT_SYNC_MODE,
761 					    LMK04832_VAL_SYNC_MODE_ON));
762 	if (ret)
763 		return ret;
764 
765 	/* 4. Clear SYNXC_DISx or applicable clocks and clear SYNC_DISSYSREF */
766 	ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0x00);
767 	if (ret)
768 		return ret;
769 
770 	/*
771 	 * 5. If SCLKX_Y_DDLY != 0, Set SYSREF_CLR=1 for at least 15 clock
772 	 *    distribution path cycles (VCO cycles), then back to 0. In
773 	 *    PLL2-only use case, this will be complete in less than one SPI
774 	 *    transaction. If SYSREF local digital delay is not used, this step
775 	 *    can be skipped.
776 	 */
777 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
778 				 LMK04832_BIT_SYNC_CLR,
779 				 FIELD_PREP(LMK04832_BIT_SYNC_CLR, 0x01));
780 	if (ret)
781 		return ret;
782 
783 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
784 				 LMK04832_BIT_SYNC_CLR,
785 				 FIELD_PREP(LMK04832_BIT_SYNC_CLR, 0x00));
786 	if (ret)
787 		return ret;
788 
789 	/*
790 	 * 6. Toggle SYNC_POL state between inverted and not inverted.
791 	 *    If you use an external signal on the SYNC pin instead of toggling
792 	 *    SYNC_POL, make sure that SYSREF_REQ_EN=0 so that the SYSREF_MUX
793 	 *    does not shift into continuous SYSREF mode.
794 	 */
795 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
796 			   LMK04832_BIT_SYNC_POL,
797 			   FIELD_PREP(LMK04832_BIT_SYNC_POL, 0x01));
798 	if (ret)
799 		return ret;
800 
801 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
802 			   LMK04832_BIT_SYNC_POL,
803 			   FIELD_PREP(LMK04832_BIT_SYNC_POL, 0x00));
804 	if (ret)
805 		return ret;
806 
807 	/* 7. Set all SYNC_DISx=1, including SYNC_DISSYSREF */
808 	ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0xff);
809 	if (ret)
810 		return ret;
811 
812 	/* 8. Restore state of SYNC_MODE and SYSREF_MUX to desired values */
813 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT,
814 				 LMK04832_BIT_SYSREF_MUX,
815 				 FIELD_PREP(LMK04832_BIT_SYSREF_MUX,
816 					    lmk->sysref_mux));
817 	if (ret)
818 		return ret;
819 
820 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
821 				 LMK04832_BIT_SYNC_MODE,
822 				 FIELD_PREP(LMK04832_BIT_SYNC_MODE,
823 					    lmk->sync_mode));
824 	if (ret)
825 		return ret;
826 
827 	/*
828 	 * 9. (optional) if SCLKx_y_DIS_MODE was used to mute SYSREF outputs
829 	 *    during the SYNC event, restore SCLKx_y_DIS_MODE=0 for active state,
830 	 *    or set SYSREF_GBL_PD=0 if SCLKx_y_DIS_MODE is set to a conditional
831 	 *    option.
832 	 */
833 
834 	/*
835 	 * 10. (optional) To reduce power consumption, after the synchronization
836 	 *     event is complete, DCLKx_y_DDLY_PD=1 and SYSREF_DDLY_PD=1 disable the
837 	 *     digital delay counters (which are only used immediately after the
838 	 *     SYNC pulse to delay the output by some number of VCO counts).
839 	 */
840 
841 	return ret;
842 }
843 
844 static int lmk04832_sclk_is_enabled(struct clk_hw *hw)
845 {
846 	struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
847 	unsigned int tmp;
848 	int ret;
849 
850 	ret = regmap_read(lmk->regmap, LMK04832_REG_MAIN_PD, &tmp);
851 	if (ret)
852 		return ret;
853 
854 	return FIELD_GET(LMK04832_BIT_SYSREF_PD, tmp);
855 }
856 
857 static int lmk04832_sclk_prepare(struct clk_hw *hw)
858 {
859 	struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
860 
861 	return regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
862 				  LMK04832_BIT_SYSREF_PD, 0x00);
863 }
864 
865 static void lmk04832_sclk_unprepare(struct clk_hw *hw)
866 {
867 	struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
868 
869 	regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
870 			   LMK04832_BIT_SYSREF_PD, LMK04832_BIT_SYSREF_PD);
871 }
872 
873 static unsigned long lmk04832_sclk_recalc_rate(struct clk_hw *hw,
874 					       unsigned long prate)
875 {
876 	struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
877 	unsigned int sysref_div;
878 	u8 tmp[2];
879 	int ret;
880 
881 	ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_SYSREF_DIV_MSB, &tmp, 2);
882 	if (ret)
883 		return ret;
884 
885 	sysref_div = FIELD_GET(LMK04832_BIT_SYSREF_DIV_MSB, tmp[0]) << 8 |
886 		tmp[1];
887 
888 	return DIV_ROUND_CLOSEST(prate, sysref_div);
889 }
890 
891 static long lmk04832_sclk_round_rate(struct clk_hw *hw, unsigned long rate,
892 				     unsigned long *prate)
893 {
894 	struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
895 	unsigned long sclk_rate;
896 	unsigned int sysref_div;
897 
898 	sysref_div = DIV_ROUND_CLOSEST(*prate, rate);
899 	sclk_rate = DIV_ROUND_CLOSEST(*prate, sysref_div);
900 
901 	if (sysref_div < 0x07 || sysref_div > 0x1fff) {
902 		dev_err(lmk->dev, "SYSREF divider out of range\n");
903 		return -EINVAL;
904 	}
905 
906 	if (rate != sclk_rate)
907 		return -EINVAL;
908 
909 	return sclk_rate;
910 }
911 
912 static int lmk04832_sclk_set_rate(struct clk_hw *hw, unsigned long rate,
913 				  unsigned long prate)
914 {
915 	struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
916 	unsigned int sysref_div;
917 	int ret;
918 
919 	sysref_div = DIV_ROUND_CLOSEST(prate, rate);
920 
921 	if (sysref_div < 0x07 || sysref_div > 0x1fff) {
922 		dev_err(lmk->dev, "SYSREF divider out of range\n");
923 		return -EINVAL;
924 	}
925 
926 	ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DIV_MSB,
927 			   FIELD_GET(0x1f00, sysref_div));
928 	if (ret)
929 		return ret;
930 
931 	ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DIV_LSB,
932 			    FIELD_GET(0x00ff, sysref_div));
933 	if (ret)
934 		return ret;
935 
936 	ret = lmk04832_sclk_sync_sequence(lmk);
937 	if (ret)
938 		dev_err(lmk->dev, "SYNC sequence failed\n");
939 
940 	return ret;
941 }
942 
943 static const struct clk_ops lmk04832_sclk_ops = {
944 	.is_enabled = lmk04832_sclk_is_enabled,
945 	.prepare = lmk04832_sclk_prepare,
946 	.unprepare = lmk04832_sclk_unprepare,
947 	.recalc_rate = lmk04832_sclk_recalc_rate,
948 	.round_rate = lmk04832_sclk_round_rate,
949 	.set_rate = lmk04832_sclk_set_rate,
950 };
951 
952 static int lmk04832_register_sclk(struct lmk04832 *lmk)
953 {
954 	const char *parent_names[1];
955 	struct clk_init_data init;
956 	int ret;
957 
958 	init.name = "lmk-sclk";
959 	parent_names[0] = clk_hw_get_name(&lmk->vco);
960 	init.parent_names = parent_names;
961 
962 	init.ops = &lmk04832_sclk_ops;
963 	init.flags = CLK_SET_RATE_PARENT;
964 	init.num_parents = 1;
965 
966 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT,
967 				 LMK04832_BIT_SYSREF_MUX,
968 				 FIELD_PREP(LMK04832_BIT_SYSREF_MUX,
969 					    lmk->sysref_mux));
970 	if (ret)
971 		return ret;
972 
973 	ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DDLY_LSB,
974 			   FIELD_GET(0x00ff, lmk->sysref_ddly));
975 	if (ret)
976 		return ret;
977 
978 	ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DDLY_MSB,
979 			   FIELD_GET(0x1f00, lmk->sysref_ddly));
980 	if (ret)
981 		return ret;
982 
983 	ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_PULSE_CNT,
984 			   ilog2(lmk->sysref_pulse_cnt));
985 	if (ret)
986 		return ret;
987 
988 	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
989 				 LMK04832_BIT_SYSREF_DDLY_PD |
990 				 LMK04832_BIT_SYSREF_PLSR_PD,
991 				 FIELD_PREP(LMK04832_BIT_SYSREF_DDLY_PD, 0) |
992 				 FIELD_PREP(LMK04832_BIT_SYSREF_PLSR_PD, 0));
993 	if (ret)
994 		return ret;
995 
996 	ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC,
997 			   FIELD_PREP(LMK04832_BIT_SYNC_POL, 0) |
998 			   FIELD_PREP(LMK04832_BIT_SYNC_EN, 1) |
999 			   FIELD_PREP(LMK04832_BIT_SYNC_MODE, lmk->sync_mode));
1000 	if (ret)
1001 		return ret;
1002 
1003 	ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0xff);
1004 	if (ret)
1005 		return ret;
1006 
1007 	lmk->sclk.init = &init;
1008 	return devm_clk_hw_register(lmk->dev, &lmk->sclk);
1009 }
1010 
1011 static int lmk04832_dclk_is_enabled(struct clk_hw *hw)
1012 {
1013 	struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
1014 	struct lmk04832 *lmk = dclk->lmk;
1015 	unsigned int tmp;
1016 	int ret;
1017 
1018 	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(dclk->id),
1019 			  &tmp);
1020 	if (ret)
1021 		return ret;
1022 
1023 	return !FIELD_GET(LMK04832_BIT_DCLKX_Y_PD, tmp);
1024 }
1025 
1026 static int lmk04832_dclk_prepare(struct clk_hw *hw)
1027 {
1028 	struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
1029 	struct lmk04832 *lmk = dclk->lmk;
1030 
1031 	return regmap_update_bits(lmk->regmap,
1032 				  LMK04832_REG_CLKOUT_CTRL3(dclk->id),
1033 				  LMK04832_BIT_DCLKX_Y_PD, 0x00);
1034 }
1035 
1036 static void lmk04832_dclk_unprepare(struct clk_hw *hw)
1037 {
1038 	struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
1039 	struct lmk04832 *lmk = dclk->lmk;
1040 
1041 	regmap_update_bits(lmk->regmap,
1042 			   LMK04832_REG_CLKOUT_CTRL3(dclk->id),
1043 			   LMK04832_BIT_DCLKX_Y_PD, 0xff);
1044 }
1045 
1046 static unsigned long lmk04832_dclk_recalc_rate(struct clk_hw *hw,
1047 					       unsigned long prate)
1048 {
1049 	struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
1050 	struct lmk04832 *lmk = dclk->lmk;
1051 	unsigned int dclk_div;
1052 	unsigned int lsb, msb;
1053 	unsigned long rate;
1054 	int ret;
1055 
1056 	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(dclk->id),
1057 			  &lsb);
1058 	if (ret)
1059 		return ret;
1060 
1061 	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(dclk->id),
1062 			  &msb);
1063 	if (ret)
1064 		return ret;
1065 
1066 	dclk_div = FIELD_GET(LMK04832_BIT_DCLK_DIV_MSB, msb) << 8 | lsb;
1067 	rate = DIV_ROUND_CLOSEST(prate, dclk_div);
1068 
1069 	return rate;
1070 }
1071 
1072 static long lmk04832_dclk_round_rate(struct clk_hw *hw, unsigned long rate,
1073 				     unsigned long *prate)
1074 {
1075 	struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
1076 	struct lmk04832 *lmk = dclk->lmk;
1077 	unsigned long dclk_rate;
1078 	unsigned int dclk_div;
1079 
1080 	dclk_div = DIV_ROUND_CLOSEST(*prate, rate);
1081 	dclk_rate = DIV_ROUND_CLOSEST(*prate, dclk_div);
1082 
1083 	if (dclk_div < 1 || dclk_div > 0x3ff) {
1084 		dev_err(lmk->dev, "%s_div out of range\n", clk_hw_get_name(hw));
1085 		return -EINVAL;
1086 	}
1087 
1088 	if (rate != dclk_rate)
1089 		return -EINVAL;
1090 
1091 	return dclk_rate;
1092 }
1093 
1094 static int lmk04832_dclk_set_rate(struct clk_hw *hw, unsigned long rate,
1095 				  unsigned long prate)
1096 {
1097 	struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
1098 	struct lmk04832 *lmk = dclk->lmk;
1099 	unsigned int dclk_div;
1100 	int ret;
1101 
1102 	dclk_div = DIV_ROUND_CLOSEST(prate, rate);
1103 
1104 	if (dclk_div > 0x3ff) {
1105 		dev_err(lmk->dev, "%s_div out of range\n", clk_hw_get_name(hw));
1106 		return -EINVAL;
1107 	}
1108 
1109 	/* Enable Duty Cycle Correction */
1110 	if (dclk_div == 1) {
1111 		ret = regmap_update_bits(lmk->regmap,
1112 					 LMK04832_REG_CLKOUT_CTRL3(dclk->id),
1113 					 LMK04832_BIT_DCLKX_Y_DCC,
1114 					 FIELD_PREP(LMK04832_BIT_DCLKX_Y_DCC, 1));
1115 		if (ret)
1116 			return ret;
1117 	}
1118 
1119 	/*
1120 	 * While using Divide-by-2 or Divide-by-3 for DCLK_X_Y_DIV, SYNC
1121 	 * procedure requires to first program Divide-by-4 and then back to
1122 	 * Divide-by-2 or Divide-by-3 before doing SYNC.
1123 	 */
1124 	if (dclk_div == 2 || dclk_div == 3) {
1125 		ret = regmap_update_bits(lmk->regmap,
1126 					 LMK04832_REG_CLKOUT_CTRL2(dclk->id),
1127 					 LMK04832_BIT_DCLK_DIV_MSB, 0x00);
1128 		if (ret)
1129 			return ret;
1130 
1131 		ret = regmap_write(lmk->regmap,
1132 				   LMK04832_REG_CLKOUT_CTRL0(dclk->id), 0x04);
1133 		if (ret)
1134 			return ret;
1135 	}
1136 
1137 	ret = regmap_write(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(dclk->id),
1138 			   FIELD_GET(0x0ff, dclk_div));
1139 	if (ret)
1140 		return ret;
1141 
1142 	ret = regmap_update_bits(lmk->regmap,
1143 				  LMK04832_REG_CLKOUT_CTRL2(dclk->id),
1144 				  LMK04832_BIT_DCLK_DIV_MSB,
1145 				  FIELD_GET(0x300, dclk_div));
1146 	if (ret)
1147 		return ret;
1148 
1149 	ret = lmk04832_sclk_sync_sequence(lmk);
1150 	if (ret)
1151 		dev_err(lmk->dev, "SYNC sequence failed\n");
1152 
1153 	return ret;
1154 }
1155 
1156 static const struct clk_ops lmk04832_dclk_ops = {
1157 	.is_enabled = lmk04832_dclk_is_enabled,
1158 	.prepare = lmk04832_dclk_prepare,
1159 	.unprepare = lmk04832_dclk_unprepare,
1160 	.recalc_rate = lmk04832_dclk_recalc_rate,
1161 	.round_rate = lmk04832_dclk_round_rate,
1162 	.set_rate = lmk04832_dclk_set_rate,
1163 };
1164 
1165 static int lmk04832_clkout_is_enabled(struct clk_hw *hw)
1166 {
1167 	struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
1168 	struct lmk04832 *lmk = clkout->lmk;
1169 	unsigned int clkoutx_y_pd;
1170 	unsigned int sclkx_y_pd;
1171 	unsigned int tmp;
1172 	u32 enabled;
1173 	int ret;
1174 	u8 fmt;
1175 
1176 	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(clkout->id),
1177 			  &clkoutx_y_pd);
1178 	if (ret)
1179 		return ret;
1180 
1181 	enabled = !FIELD_GET(LMK04832_BIT_CLKOUTX_Y_PD, clkoutx_y_pd);
1182 
1183 	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
1184 			  &tmp);
1185 	if (ret)
1186 		return ret;
1187 
1188 	if (FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp)) {
1189 		ret = regmap_read(lmk->regmap,
1190 				  LMK04832_REG_CLKOUT_CTRL4(clkout->id),
1191 				  &sclkx_y_pd);
1192 		if (ret)
1193 			return ret;
1194 
1195 		enabled = enabled && !FIELD_GET(LMK04832_BIT_SCLK_PD, sclkx_y_pd);
1196 	}
1197 
1198 	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_FMT(clkout->id),
1199 			  &tmp);
1200 	if (ret)
1201 		return ret;
1202 
1203 	if (clkout->id % 2)
1204 		fmt = FIELD_GET(0xf0, tmp);
1205 	else
1206 		fmt = FIELD_GET(0x0f, tmp);
1207 
1208 	return enabled && !fmt;
1209 }
1210 
1211 static int lmk04832_clkout_prepare(struct clk_hw *hw)
1212 {
1213 	struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
1214 	struct lmk04832 *lmk = clkout->lmk;
1215 	unsigned int tmp;
1216 	int ret;
1217 
1218 	if (clkout->format == LMK04832_VAL_CLKOUT_FMT_POWERDOWN)
1219 		dev_err(lmk->dev, "prepared %s but format is powerdown\n",
1220 			clk_hw_get_name(hw));
1221 
1222 	ret = regmap_update_bits(lmk->regmap,
1223 				 LMK04832_REG_CLKOUT_CTRL2(clkout->id),
1224 				 LMK04832_BIT_CLKOUTX_Y_PD, 0x00);
1225 	if (ret)
1226 		return ret;
1227 
1228 	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
1229 			  &tmp);
1230 	if (ret)
1231 		return ret;
1232 
1233 	if (FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp)) {
1234 		ret = regmap_update_bits(lmk->regmap,
1235 					 LMK04832_REG_CLKOUT_CTRL4(clkout->id),
1236 					 LMK04832_BIT_SCLK_PD, 0x00);
1237 		if (ret)
1238 			return ret;
1239 	}
1240 
1241 	return regmap_update_bits(lmk->regmap,
1242 				  LMK04832_REG_CLKOUT_FMT(clkout->id),
1243 				  LMK04832_BIT_CLKOUT_FMT(clkout->id),
1244 				  clkout->format << 4 * (clkout->id % 2));
1245 }
1246 
1247 static void lmk04832_clkout_unprepare(struct clk_hw *hw)
1248 {
1249 	struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
1250 	struct lmk04832 *lmk = clkout->lmk;
1251 
1252 	regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_FMT(clkout->id),
1253 			   LMK04832_BIT_CLKOUT_FMT(clkout->id),
1254 			   0x00);
1255 }
1256 
1257 static int lmk04832_clkout_set_parent(struct clk_hw *hw, uint8_t index)
1258 {
1259 	struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
1260 	struct lmk04832 *lmk = clkout->lmk;
1261 
1262 	return regmap_update_bits(lmk->regmap,
1263 				  LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
1264 				  LMK04832_BIT_CLKOUT_SRC_MUX,
1265 				  FIELD_PREP(LMK04832_BIT_CLKOUT_SRC_MUX,
1266 					     index));
1267 }
1268 
1269 static uint8_t lmk04832_clkout_get_parent(struct clk_hw *hw)
1270 {
1271 	struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
1272 	struct lmk04832 *lmk = clkout->lmk;
1273 	unsigned int tmp;
1274 	int ret;
1275 
1276 	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
1277 			  &tmp);
1278 	if (ret)
1279 		return ret;
1280 
1281 	return FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp);
1282 }
1283 
1284 static const struct clk_ops lmk04832_clkout_ops = {
1285 	.is_enabled = lmk04832_clkout_is_enabled,
1286 	.prepare = lmk04832_clkout_prepare,
1287 	.unprepare = lmk04832_clkout_unprepare,
1288 	.determine_rate = __clk_mux_determine_rate,
1289 	.set_parent = lmk04832_clkout_set_parent,
1290 	.get_parent = lmk04832_clkout_get_parent,
1291 };
1292 
1293 static int lmk04832_register_clkout(struct lmk04832 *lmk, const int num)
1294 {
1295 	char name[] = "lmk-clkoutXX";
1296 	char dclk_name[] = "lmk-dclkXX_YY";
1297 	const char *parent_names[2];
1298 	struct clk_init_data init;
1299 	int dclk_num = num / 2;
1300 	int ret;
1301 
1302 	if (num % 2 == 0) {
1303 		sprintf(dclk_name, "lmk-dclk%02d_%02d", num, num + 1);
1304 		init.name = dclk_name;
1305 		parent_names[0] = clk_hw_get_name(&lmk->vco);
1306 		init.parent_names = parent_names;
1307 		init.ops = &lmk04832_dclk_ops;
1308 		init.flags = CLK_SET_RATE_PARENT;
1309 		init.num_parents = 1;
1310 
1311 		lmk->dclk[dclk_num].id = num;
1312 		lmk->dclk[dclk_num].lmk = lmk;
1313 		lmk->dclk[dclk_num].hw.init = &init;
1314 
1315 		ret = devm_clk_hw_register(lmk->dev, &lmk->dclk[dclk_num].hw);
1316 		if (ret)
1317 			return ret;
1318 	} else {
1319 		sprintf(dclk_name, "lmk-dclk%02d_%02d", num - 1, num);
1320 	}
1321 
1322 	if (of_property_read_string_index(lmk->dev->of_node,
1323 					  "clock-output-names",
1324 					  num, &init.name)) {
1325 		sprintf(name, "lmk-clkout%02d", num);
1326 		init.name = name;
1327 	}
1328 
1329 	parent_names[0] = dclk_name;
1330 	parent_names[1] = clk_hw_get_name(&lmk->sclk);
1331 	init.parent_names = parent_names;
1332 	init.ops = &lmk04832_clkout_ops;
1333 	init.flags = CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT;
1334 	init.num_parents = ARRAY_SIZE(parent_names);
1335 
1336 	lmk->clkout[num].id = num;
1337 	lmk->clkout[num].lmk = lmk;
1338 	lmk->clkout[num].hw.init = &init;
1339 	lmk->clk_data->hws[num] = &lmk->clkout[num].hw;
1340 
1341 	/* Set initial parent */
1342 	regmap_update_bits(lmk->regmap,
1343 			   LMK04832_REG_CLKOUT_SRC_MUX(num),
1344 			   LMK04832_BIT_CLKOUT_SRC_MUX,
1345 			   FIELD_PREP(LMK04832_BIT_CLKOUT_SRC_MUX,
1346 				      lmk->clkout[num].sysref));
1347 
1348 	return devm_clk_hw_register(lmk->dev, &lmk->clkout[num].hw);
1349 }
1350 
1351 static int lmk04832_set_spi_rdbk(const struct lmk04832 *lmk, const int rdbk_pin)
1352 {
1353 	int reg;
1354 	int ret;
1355 	int val = FIELD_PREP(LMK04832_BIT_CLKIN_SEL_MUX,
1356 			     LMK04832_VAL_CLKIN_SEL_MUX_SPI_RDBK) |
1357 		  FIELD_PREP(LMK04832_BIT_CLKIN_SEL_TYPE,
1358 			     LMK04832_VAL_CLKIN_SEL_TYPE_OUT);
1359 
1360 	dev_info(lmk->dev, "setting up 4-wire mode\n");
1361 	ret = regmap_write(lmk->regmap, LMK04832_REG_RST3W,
1362 			   LMK04832_BIT_SPI_3WIRE_DIS);
1363 	if (ret)
1364 		return ret;
1365 
1366 	switch (rdbk_pin) {
1367 	case RDBK_CLKIN_SEL0:
1368 		reg = LMK04832_REG_CLKIN_SEL0;
1369 		break;
1370 	case RDBK_CLKIN_SEL1:
1371 		reg = LMK04832_REG_CLKIN_SEL1;
1372 		break;
1373 	case RDBK_RESET:
1374 		reg = LMK04832_REG_CLKIN_RST;
1375 		break;
1376 	case RDBK_PLL1_LD:
1377 		reg = LMK04832_REG_PLL1_LD;
1378 		val = FIELD_PREP(LMK04832_BIT_PLL1_LD_MUX,
1379 				 LMK04832_VAL_PLL1_LD_MUX_SPI_RDBK) |
1380 		      FIELD_PREP(LMK04832_BIT_PLL1_LD_TYPE,
1381 				 LMK04832_VAL_PLL1_LD_TYPE_OUT_PP);
1382 		break;
1383 	default:
1384 		return -EINVAL;
1385 	}
1386 
1387 	return regmap_write(lmk->regmap, reg, val);
1388 }
1389 
1390 static int lmk04832_probe(struct spi_device *spi)
1391 {
1392 	const struct lmk04832_device_info *info;
1393 	int rdbk_pin = RDBK_CLKIN_SEL1;
1394 	struct device_node *child;
1395 	struct lmk04832 *lmk;
1396 	u8 tmp[3];
1397 	int ret;
1398 	int i;
1399 
1400 	info = &lmk04832_device_info[spi_get_device_id(spi)->driver_data];
1401 
1402 	lmk = devm_kzalloc(&spi->dev, sizeof(struct lmk04832), GFP_KERNEL);
1403 	if (!lmk)
1404 		return -ENOMEM;
1405 
1406 	lmk->dev = &spi->dev;
1407 
1408 	lmk->oscin = devm_clk_get_enabled(lmk->dev, "oscin");
1409 	if (IS_ERR(lmk->oscin)) {
1410 		dev_err(lmk->dev, "failed to get oscin clock\n");
1411 		return PTR_ERR(lmk->oscin);
1412 	}
1413 
1414 	lmk->reset_gpio = devm_gpiod_get_optional(&spi->dev, "reset",
1415 						  GPIOD_OUT_LOW);
1416 
1417 	lmk->dclk = devm_kcalloc(lmk->dev, info->num_channels >> 1,
1418 				 sizeof(struct lmk_dclk), GFP_KERNEL);
1419 	if (!lmk->dclk) {
1420 		ret = -ENOMEM;
1421 		return ret;
1422 	}
1423 
1424 	lmk->clkout = devm_kcalloc(lmk->dev, info->num_channels,
1425 				   sizeof(*lmk->clkout), GFP_KERNEL);
1426 	if (!lmk->clkout) {
1427 		ret = -ENOMEM;
1428 		return ret;
1429 	}
1430 
1431 	lmk->clk_data = devm_kzalloc(lmk->dev, struct_size(lmk->clk_data, hws,
1432 							   info->num_channels),
1433 				     GFP_KERNEL);
1434 	if (!lmk->clk_data) {
1435 		ret = -ENOMEM;
1436 		return ret;
1437 	}
1438 
1439 	device_property_read_u32(lmk->dev, "ti,vco-hz", &lmk->vco_rate);
1440 
1441 	lmk->sysref_ddly = 8;
1442 	device_property_read_u32(lmk->dev, "ti,sysref-ddly", &lmk->sysref_ddly);
1443 
1444 	lmk->sysref_mux = LMK04832_VAL_SYSREF_MUX_CONTINUOUS;
1445 	device_property_read_u32(lmk->dev, "ti,sysref-mux",
1446 				 &lmk->sysref_mux);
1447 
1448 	lmk->sync_mode = LMK04832_VAL_SYNC_MODE_OFF;
1449 	device_property_read_u32(lmk->dev, "ti,sync-mode",
1450 				 &lmk->sync_mode);
1451 
1452 	lmk->sysref_pulse_cnt = 4;
1453 	device_property_read_u32(lmk->dev, "ti,sysref-pulse-count",
1454 				 &lmk->sysref_pulse_cnt);
1455 
1456 	for_each_child_of_node(lmk->dev->of_node, child) {
1457 		int reg;
1458 
1459 		ret = of_property_read_u32(child, "reg", &reg);
1460 		if (ret) {
1461 			dev_err(lmk->dev, "missing reg property in child: %s\n",
1462 				child->full_name);
1463 			of_node_put(child);
1464 			return ret;
1465 		}
1466 
1467 		of_property_read_u32(child, "ti,clkout-fmt",
1468 				     &lmk->clkout[reg].format);
1469 
1470 		if (lmk->clkout[reg].format >= 0x0a && reg % 2 == 0
1471 		    && reg != 8 && reg != 10)
1472 			dev_err(lmk->dev, "invalid format for clkout%02d\n",
1473 				reg);
1474 
1475 		lmk->clkout[reg].sysref =
1476 			of_property_read_bool(child, "ti,clkout-sysref");
1477 	}
1478 
1479 	lmk->regmap = devm_regmap_init_spi(spi, &regmap_config);
1480 	if (IS_ERR(lmk->regmap)) {
1481 		dev_err(lmk->dev, "%s: regmap allocation failed: %ld\n",
1482 
1483 			__func__, PTR_ERR(lmk->regmap));
1484 		ret = PTR_ERR(lmk->regmap);
1485 		return ret;
1486 	}
1487 
1488 	regmap_write(lmk->regmap, LMK04832_REG_RST3W, LMK04832_BIT_RESET);
1489 
1490 	if (!(spi->mode & SPI_3WIRE)) {
1491 		device_property_read_u32(lmk->dev, "ti,spi-4wire-rdbk",
1492 					 &rdbk_pin);
1493 		ret = lmk04832_set_spi_rdbk(lmk, rdbk_pin);
1494 		if (ret)
1495 			return ret;
1496 	}
1497 
1498 	regmap_bulk_read(lmk->regmap, LMK04832_REG_ID_PROD_MSB, &tmp, 3);
1499 	if ((tmp[0] << 8 | tmp[1]) != info->pid || tmp[2] != info->maskrev) {
1500 		dev_err(lmk->dev, "unsupported device type: pid 0x%04x, maskrev 0x%02x\n",
1501 			tmp[0] << 8 | tmp[1], tmp[2]);
1502 		ret = -EINVAL;
1503 		return ret;
1504 	}
1505 
1506 	ret = lmk04832_register_vco(lmk);
1507 	if (ret) {
1508 		dev_err(lmk->dev, "failed to init device clock path\n");
1509 		return ret;
1510 	}
1511 
1512 	if (lmk->vco_rate) {
1513 		dev_info(lmk->dev, "setting VCO rate to %u Hz\n", lmk->vco_rate);
1514 		ret = clk_set_rate(lmk->vco.clk, lmk->vco_rate);
1515 		if (ret) {
1516 			dev_err(lmk->dev, "failed to set VCO rate\n");
1517 			return ret;
1518 		}
1519 	}
1520 
1521 	ret = lmk04832_register_sclk(lmk);
1522 	if (ret) {
1523 		dev_err(lmk->dev, "failed to init SYNC/SYSREF clock path\n");
1524 		return ret;
1525 	}
1526 
1527 	for (i = 0; i < info->num_channels; i++) {
1528 		ret = lmk04832_register_clkout(lmk, i);
1529 		if (ret) {
1530 			dev_err(lmk->dev, "failed to register clk %d\n", i);
1531 			return ret;
1532 		}
1533 	}
1534 
1535 	lmk->clk_data->num = info->num_channels;
1536 	ret = devm_of_clk_add_hw_provider(lmk->dev, of_clk_hw_onecell_get,
1537 					  lmk->clk_data);
1538 	if (ret) {
1539 		dev_err(lmk->dev, "failed to add provider (%d)\n", ret);
1540 		return ret;
1541 	}
1542 
1543 	spi_set_drvdata(spi, lmk);
1544 
1545 	return 0;
1546 }
1547 
1548 static const struct spi_device_id lmk04832_id[] = {
1549 	{ "lmk04832", LMK04832 },
1550 	{}
1551 };
1552 MODULE_DEVICE_TABLE(spi, lmk04832_id);
1553 
1554 static const struct of_device_id lmk04832_of_id[] = {
1555 	{ .compatible = "ti,lmk04832" },
1556 	{}
1557 };
1558 MODULE_DEVICE_TABLE(of, lmk04832_of_id);
1559 
1560 static struct spi_driver lmk04832_driver = {
1561 	.driver = {
1562 		.name	= "lmk04832",
1563 		.of_match_table = lmk04832_of_id,
1564 	},
1565 	.probe		= lmk04832_probe,
1566 	.id_table	= lmk04832_id,
1567 };
1568 module_spi_driver(lmk04832_driver);
1569 
1570 MODULE_AUTHOR("Liam Beguin <lvb@xiphos.com>");
1571 MODULE_DESCRIPTION("Texas Instruments LMK04832");
1572 MODULE_LICENSE("GPL v2");
1573