xref: /linux/drivers/clk/clk-fractional-divider.c (revision 6e7fd890f1d6ac83805409e9c346240de2705584)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014 Intel Corporation
4  *
5  * Adjustable fractional divider clock implementation.
6  * Uses rational best approximation algorithm.
7  *
8  * Output is calculated as
9  *
10  *	rate = (m / n) * parent_rate				(1)
11  *
12  * This is useful when we have a prescaler block which asks for
13  * m (numerator) and n (denominator) values to be provided to satisfy
14  * the (1) as much as possible.
15  *
16  * Since m and n have the limitation by a range, e.g.
17  *
18  *	n >= 1, n < N_width, where N_width = 2^nwidth		(2)
19  *
20  * for some cases the output may be saturated. Hence, from (1) and (2),
21  * assuming the worst case when m = 1, the inequality
22  *
23  *	floor(log2(parent_rate / rate)) <= nwidth		(3)
24  *
25  * may be derived. Thus, in cases when
26  *
27  *	(parent_rate / rate) >> N_width				(4)
28  *
29  * we might scale up the rate by 2^scale (see the description of
30  * CLK_FRAC_DIVIDER_POWER_OF_TWO_PS for additional information), where
31  *
32  *	scale = floor(log2(parent_rate / rate)) - nwidth	(5)
33  *
34  * and assume that the IP, that needs m and n, has also its own
35  * prescaler, which is capable to divide by 2^scale. In this way
36  * we get the denominator to satisfy the desired range (2) and
37  * at the same time a much better result of m and n than simple
38  * saturated values.
39  */
40 
41 #include <linux/debugfs.h>
42 #include <linux/device.h>
43 #include <linux/io.h>
44 #include <linux/math.h>
45 #include <linux/module.h>
46 #include <linux/rational.h>
47 #include <linux/slab.h>
48 
49 #include <linux/clk-provider.h>
50 
51 #include "clk-fractional-divider.h"
52 
53 static inline u32 clk_fd_readl(struct clk_fractional_divider *fd)
54 {
55 	if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
56 		return ioread32be(fd->reg);
57 
58 	return readl(fd->reg);
59 }
60 
61 static inline void clk_fd_writel(struct clk_fractional_divider *fd, u32 val)
62 {
63 	if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
64 		iowrite32be(val, fd->reg);
65 	else
66 		writel(val, fd->reg);
67 }
68 
69 static void clk_fd_get_div(struct clk_hw *hw, struct u32_fract *fract)
70 {
71 	struct clk_fractional_divider *fd = to_clk_fd(hw);
72 	unsigned long flags = 0;
73 	unsigned long m, n;
74 	u32 mmask, nmask;
75 	u32 val;
76 
77 	if (fd->lock)
78 		spin_lock_irqsave(fd->lock, flags);
79 	else
80 		__acquire(fd->lock);
81 
82 	val = clk_fd_readl(fd);
83 
84 	if (fd->lock)
85 		spin_unlock_irqrestore(fd->lock, flags);
86 	else
87 		__release(fd->lock);
88 
89 	mmask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
90 	nmask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
91 
92 	m = (val & mmask) >> fd->mshift;
93 	n = (val & nmask) >> fd->nshift;
94 
95 	if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
96 		m++;
97 		n++;
98 	}
99 
100 	fract->numerator = m;
101 	fract->denominator = n;
102 }
103 
104 static unsigned long clk_fd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
105 {
106 	struct u32_fract fract;
107 	u64 ret;
108 
109 	clk_fd_get_div(hw, &fract);
110 
111 	if (!fract.numerator || !fract.denominator)
112 		return parent_rate;
113 
114 	ret = (u64)parent_rate * fract.numerator;
115 	do_div(ret, fract.denominator);
116 
117 	return ret;
118 }
119 
120 void clk_fractional_divider_general_approximation(struct clk_hw *hw,
121 						  unsigned long rate,
122 						  unsigned long *parent_rate,
123 						  unsigned long *m, unsigned long *n)
124 {
125 	struct clk_fractional_divider *fd = to_clk_fd(hw);
126 	unsigned long max_m, max_n;
127 
128 	/*
129 	 * Get rate closer to *parent_rate to guarantee there is no overflow
130 	 * for m and n. In the result it will be the nearest rate left shifted
131 	 * by (scale - fd->nwidth) bits.
132 	 *
133 	 * For the detailed explanation see the top comment in this file.
134 	 */
135 	if (fd->flags & CLK_FRAC_DIVIDER_POWER_OF_TWO_PS) {
136 		unsigned long scale = fls_long(*parent_rate / rate - 1);
137 
138 		if (scale > fd->nwidth)
139 			rate <<= scale - fd->nwidth;
140 	}
141 
142 	if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
143 		max_m = BIT(fd->mwidth);
144 		max_n = BIT(fd->nwidth);
145 	} else {
146 		max_m = GENMASK(fd->mwidth - 1, 0);
147 		max_n = GENMASK(fd->nwidth - 1, 0);
148 	}
149 
150 	rational_best_approximation(rate, *parent_rate, max_m, max_n, m, n);
151 }
152 EXPORT_SYMBOL_GPL(clk_fractional_divider_general_approximation);
153 
154 static long clk_fd_round_rate(struct clk_hw *hw, unsigned long rate,
155 			      unsigned long *parent_rate)
156 {
157 	struct clk_fractional_divider *fd = to_clk_fd(hw);
158 	unsigned long m, n;
159 	u64 ret;
160 
161 	if (!rate || (!clk_hw_can_set_rate_parent(hw) && rate >= *parent_rate))
162 		return *parent_rate;
163 
164 	if (fd->approximation)
165 		fd->approximation(hw, rate, parent_rate, &m, &n);
166 	else
167 		clk_fractional_divider_general_approximation(hw, rate, parent_rate, &m, &n);
168 
169 	ret = (u64)*parent_rate * m;
170 	do_div(ret, n);
171 
172 	return ret;
173 }
174 
175 static int clk_fd_set_rate(struct clk_hw *hw, unsigned long rate,
176 			   unsigned long parent_rate)
177 {
178 	struct clk_fractional_divider *fd = to_clk_fd(hw);
179 	unsigned long flags = 0;
180 	unsigned long m, n, max_m, max_n;
181 	u32 mmask, nmask;
182 	u32 val;
183 
184 	if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
185 		max_m = BIT(fd->mwidth);
186 		max_n = BIT(fd->nwidth);
187 	} else {
188 		max_m = GENMASK(fd->mwidth - 1, 0);
189 		max_n = GENMASK(fd->nwidth - 1, 0);
190 	}
191 	rational_best_approximation(rate, parent_rate, max_m, max_n, &m, &n);
192 
193 	if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
194 		m--;
195 		n--;
196 	}
197 
198 	mmask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
199 	nmask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
200 
201 	if (fd->lock)
202 		spin_lock_irqsave(fd->lock, flags);
203 	else
204 		__acquire(fd->lock);
205 
206 	val = clk_fd_readl(fd);
207 	val &= ~(mmask | nmask);
208 	val |= (m << fd->mshift) | (n << fd->nshift);
209 	clk_fd_writel(fd, val);
210 
211 	if (fd->lock)
212 		spin_unlock_irqrestore(fd->lock, flags);
213 	else
214 		__release(fd->lock);
215 
216 	return 0;
217 }
218 
219 #ifdef CONFIG_DEBUG_FS
220 static int clk_fd_numerator_get(void *hw, u64 *val)
221 {
222 	struct u32_fract fract;
223 
224 	clk_fd_get_div(hw, &fract);
225 
226 	*val = fract.numerator;
227 
228 	return 0;
229 }
230 DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_numerator_fops, clk_fd_numerator_get, NULL, "%llu\n");
231 
232 static int clk_fd_denominator_get(void *hw, u64 *val)
233 {
234 	struct u32_fract fract;
235 
236 	clk_fd_get_div(hw, &fract);
237 
238 	*val = fract.denominator;
239 
240 	return 0;
241 }
242 DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_denominator_fops, clk_fd_denominator_get, NULL, "%llu\n");
243 
244 static void clk_fd_debug_init(struct clk_hw *hw, struct dentry *dentry)
245 {
246 	debugfs_create_file("numerator", 0444, dentry, hw, &clk_fd_numerator_fops);
247 	debugfs_create_file("denominator", 0444, dentry, hw, &clk_fd_denominator_fops);
248 }
249 #endif
250 
251 const struct clk_ops clk_fractional_divider_ops = {
252 	.recalc_rate = clk_fd_recalc_rate,
253 	.round_rate = clk_fd_round_rate,
254 	.set_rate = clk_fd_set_rate,
255 #ifdef CONFIG_DEBUG_FS
256 	.debug_init = clk_fd_debug_init,
257 #endif
258 };
259 EXPORT_SYMBOL_GPL(clk_fractional_divider_ops);
260 
261 struct clk_hw *clk_hw_register_fractional_divider(struct device *dev,
262 		const char *name, const char *parent_name, unsigned long flags,
263 		void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
264 		u8 clk_divider_flags, spinlock_t *lock)
265 {
266 	struct clk_fractional_divider *fd;
267 	struct clk_init_data init;
268 	struct clk_hw *hw;
269 	int ret;
270 
271 	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
272 	if (!fd)
273 		return ERR_PTR(-ENOMEM);
274 
275 	init.name = name;
276 	init.ops = &clk_fractional_divider_ops;
277 	init.flags = flags;
278 	init.parent_names = parent_name ? &parent_name : NULL;
279 	init.num_parents = parent_name ? 1 : 0;
280 
281 	fd->reg = reg;
282 	fd->mshift = mshift;
283 	fd->mwidth = mwidth;
284 	fd->nshift = nshift;
285 	fd->nwidth = nwidth;
286 	fd->flags = clk_divider_flags;
287 	fd->lock = lock;
288 	fd->hw.init = &init;
289 
290 	hw = &fd->hw;
291 	ret = clk_hw_register(dev, hw);
292 	if (ret) {
293 		kfree(fd);
294 		hw = ERR_PTR(ret);
295 	}
296 
297 	return hw;
298 }
299 EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider);
300 
301 struct clk *clk_register_fractional_divider(struct device *dev,
302 		const char *name, const char *parent_name, unsigned long flags,
303 		void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
304 		u8 clk_divider_flags, spinlock_t *lock)
305 {
306 	struct clk_hw *hw;
307 
308 	hw = clk_hw_register_fractional_divider(dev, name, parent_name, flags,
309 			reg, mshift, mwidth, nshift, nwidth, clk_divider_flags,
310 			lock);
311 	if (IS_ERR(hw))
312 		return ERR_CAST(hw);
313 	return hw->clk;
314 }
315 EXPORT_SYMBOL_GPL(clk_register_fractional_divider);
316 
317 void clk_hw_unregister_fractional_divider(struct clk_hw *hw)
318 {
319 	struct clk_fractional_divider *fd;
320 
321 	fd = to_clk_fd(hw);
322 
323 	clk_hw_unregister(hw);
324 	kfree(fd);
325 }
326