xref: /linux/drivers/clk/clk-cdce925.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
3  *
4  * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
5  * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
6  * basis. Clients can directly request any frequency that the chip can
7  * deliver using the standard clk framework. In addition, the device can
8  * be configured and activated via the devicetree.
9  *
10  * Copyright (C) 2014, Topic Embedded Products
11  * Licenced under GPL
12  */
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/i2c.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/gcd.h>
22 
23 /* Each chip has different number of PLLs and outputs, for example:
24  * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
25  * Model this as 2 PLL clocks which are parents to the outputs.
26  */
27 
28 struct clk_cdce925_chip_info {
29 	int num_plls;
30 	int num_outputs;
31 };
32 
33 #define MAX_NUMBER_OF_PLLS	4
34 #define MAX_NUMBER_OF_OUTPUTS	9
35 
36 #define CDCE925_REG_GLOBAL1	0x01
37 #define CDCE925_REG_Y1SPIPDIVH	0x02
38 #define CDCE925_REG_PDIVL	0x03
39 #define CDCE925_REG_XCSEL	0x05
40 /* PLL parameters start at 0x10, steps of 0x10 */
41 #define CDCE925_OFFSET_PLL	0x10
42 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
43 #define CDCE925_PLL_MUX_OUTPUTS	0x14
44 #define CDCE925_PLL_MULDIV	0x18
45 
46 #define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
47 #define CDCE925_PLL_FREQUENCY_MAX	230000000ul
48 struct clk_cdce925_chip;
49 
50 struct clk_cdce925_output {
51 	struct clk_hw hw;
52 	struct clk_cdce925_chip *chip;
53 	u8 index;
54 	u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
55 };
56 #define to_clk_cdce925_output(_hw) \
57 	container_of(_hw, struct clk_cdce925_output, hw)
58 
59 struct clk_cdce925_pll {
60 	struct clk_hw hw;
61 	struct clk_cdce925_chip *chip;
62 	u8 index;
63 	u16 m;   /* 1..511 */
64 	u16 n;   /* 1..4095 */
65 };
66 #define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)
67 
68 struct clk_cdce925_chip {
69 	struct regmap *regmap;
70 	struct i2c_client *i2c_client;
71 	const struct clk_cdce925_chip_info *chip_info;
72 	struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
73 	struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
74 };
75 
76 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
77 
78 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
79 	u16 n, u16 m)
80 {
81 	if ((!m || !n) || (m == n))
82 		return parent_rate; /* In bypass mode runs at same frequency */
83 	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
84 }
85 
86 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
87 		unsigned long parent_rate)
88 {
89 	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
90 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
91 
92 	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
93 }
94 
95 static void cdce925_pll_find_rate(unsigned long rate,
96 		unsigned long parent_rate, u16 *n, u16 *m)
97 {
98 	unsigned long un;
99 	unsigned long um;
100 	unsigned long g;
101 
102 	if (rate <= parent_rate) {
103 		/* Can always deliver parent_rate in bypass mode */
104 		*n = 0;
105 		*m = 0;
106 	} else {
107 		/* In PLL mode, need to apply min/max range */
108 		if (rate < CDCE925_PLL_FREQUENCY_MIN)
109 			rate = CDCE925_PLL_FREQUENCY_MIN;
110 		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
111 			rate = CDCE925_PLL_FREQUENCY_MAX;
112 
113 		g = gcd(rate, parent_rate);
114 		um = parent_rate / g;
115 		un = rate / g;
116 		/* When outside hw range, reduce to fit (rounding errors) */
117 		while ((un > 4095) || (um > 511)) {
118 			un >>= 1;
119 			um >>= 1;
120 		}
121 		if (un == 0)
122 			un = 1;
123 		if (um == 0)
124 			um = 1;
125 
126 		*n = un;
127 		*m = um;
128 	}
129 }
130 
131 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
132 		unsigned long *parent_rate)
133 {
134 	u16 n, m;
135 
136 	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
137 	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
138 }
139 
140 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
141 		unsigned long parent_rate)
142 {
143 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
144 
145 	if (!rate || (rate == parent_rate)) {
146 		data->m = 0; /* Bypass mode */
147 		data->n = 0;
148 		return 0;
149 	}
150 
151 	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
152 		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
153 		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
154 		return -EINVAL;
155 	}
156 
157 	if (rate < parent_rate) {
158 		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
159 			rate, parent_rate);
160 		return -EINVAL;
161 	}
162 
163 	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
164 	return 0;
165 }
166 
167 
168 /* calculate p = max(0, 4 - int(log2 (n/m))) */
169 static u8 cdce925_pll_calc_p(u16 n, u16 m)
170 {
171 	u8 p;
172 	u16 r = n / m;
173 
174 	if (r >= 16)
175 		return 0;
176 	p = 4;
177 	while (r > 1) {
178 		r >>= 1;
179 		--p;
180 	}
181 	return p;
182 }
183 
184 /* Returns VCO range bits for VCO1_0_RANGE */
185 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
186 {
187 	struct clk *parent = clk_get_parent(hw->clk);
188 	unsigned long rate = clk_get_rate(parent);
189 
190 	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
191 	if (rate >= 175000000)
192 		return 0x3;
193 	if (rate >= 150000000)
194 		return 0x02;
195 	if (rate >= 125000000)
196 		return 0x01;
197 	return 0x00;
198 }
199 
200 /* I2C clock, hence everything must happen in (un)prepare because this
201  * may sleep */
202 static int cdce925_pll_prepare(struct clk_hw *hw)
203 {
204 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
205 	u16 n = data->n;
206 	u16 m = data->m;
207 	u16 r;
208 	u8 q;
209 	u8 p;
210 	u16 nn;
211 	u8 pll[4]; /* Bits are spread out over 4 byte registers */
212 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
213 	unsigned i;
214 
215 	if ((!m || !n) || (m == n)) {
216 		/* Set PLL mux to bypass mode, leave the rest as is */
217 		regmap_update_bits(data->chip->regmap,
218 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
219 	} else {
220 		/* According to data sheet: */
221 		/* p = max(0, 4 - int(log2 (n/m))) */
222 		p = cdce925_pll_calc_p(n, m);
223 		/* nn = n * 2^p */
224 		nn = n * BIT(p);
225 		/* q = int(nn/m) */
226 		q = nn / m;
227 		if ((q < 16) || (q > 63)) {
228 			pr_debug("%s invalid q=%d\n", __func__, q);
229 			return -EINVAL;
230 		}
231 		r = nn - (m*q);
232 		if (r > 511) {
233 			pr_debug("%s invalid r=%d\n", __func__, r);
234 			return -EINVAL;
235 		}
236 		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
237 			n, m, p, q, r);
238 		/* encode into register bits */
239 		pll[0] = n >> 4;
240 		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
241 		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
242 		pll[3] = ((q & 0x07) << 5) | (p << 2) |
243 				cdce925_pll_calc_range_bits(hw, n, m);
244 		/* Write to registers */
245 		for (i = 0; i < ARRAY_SIZE(pll); ++i)
246 			regmap_write(data->chip->regmap,
247 				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
248 		/* Enable PLL */
249 		regmap_update_bits(data->chip->regmap,
250 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
251 	}
252 
253 	return 0;
254 }
255 
256 static void cdce925_pll_unprepare(struct clk_hw *hw)
257 {
258 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
259 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
260 
261 	regmap_update_bits(data->chip->regmap,
262 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
263 }
264 
265 static const struct clk_ops cdce925_pll_ops = {
266 	.prepare = cdce925_pll_prepare,
267 	.unprepare = cdce925_pll_unprepare,
268 	.recalc_rate = cdce925_pll_recalc_rate,
269 	.round_rate = cdce925_pll_round_rate,
270 	.set_rate = cdce925_pll_set_rate,
271 };
272 
273 
274 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
275 {
276 	switch (data->index) {
277 	case 0:
278 		regmap_update_bits(data->chip->regmap,
279 			CDCE925_REG_Y1SPIPDIVH,
280 			0x03, (pdiv >> 8) & 0x03);
281 		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
282 		break;
283 	case 1:
284 		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
285 		break;
286 	case 2:
287 		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
288 		break;
289 	case 3:
290 		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
291 		break;
292 	case 4:
293 		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
294 		break;
295 	case 5:
296 		regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
297 		break;
298 	case 6:
299 		regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
300 		break;
301 	case 7:
302 		regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
303 		break;
304 	case 8:
305 		regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
306 		break;
307 	}
308 }
309 
310 static void cdce925_clk_activate(struct clk_cdce925_output *data)
311 {
312 	switch (data->index) {
313 	case 0:
314 		regmap_update_bits(data->chip->regmap,
315 			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
316 		break;
317 	case 1:
318 	case 2:
319 		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
320 		break;
321 	case 3:
322 	case 4:
323 		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
324 		break;
325 	case 5:
326 	case 6:
327 		regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
328 		break;
329 	case 7:
330 	case 8:
331 		regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
332 		break;
333 	}
334 }
335 
336 static int cdce925_clk_prepare(struct clk_hw *hw)
337 {
338 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
339 
340 	cdce925_clk_set_pdiv(data, data->pdiv);
341 	cdce925_clk_activate(data);
342 	return 0;
343 }
344 
345 static void cdce925_clk_unprepare(struct clk_hw *hw)
346 {
347 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
348 
349 	/* Disable clock by setting divider to "0" */
350 	cdce925_clk_set_pdiv(data, 0);
351 }
352 
353 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
354 		unsigned long parent_rate)
355 {
356 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
357 
358 	if (data->pdiv)
359 		return parent_rate / data->pdiv;
360 	return 0;
361 }
362 
363 static u16 cdce925_calc_divider(unsigned long rate,
364 		unsigned long parent_rate)
365 {
366 	unsigned long divider;
367 
368 	if (!rate)
369 		return 0;
370 	if (rate >= parent_rate)
371 		return 1;
372 
373 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
374 	if (divider > 0x7F)
375 		divider = 0x7F;
376 
377 	return (u16)divider;
378 }
379 
380 static unsigned long cdce925_clk_best_parent_rate(
381 	struct clk_hw *hw, unsigned long rate)
382 {
383 	struct clk *pll = clk_get_parent(hw->clk);
384 	struct clk *root = clk_get_parent(pll);
385 	unsigned long root_rate = clk_get_rate(root);
386 	unsigned long best_rate_error = rate;
387 	u16 pdiv_min;
388 	u16 pdiv_max;
389 	u16 pdiv_best;
390 	u16 pdiv_now;
391 
392 	if (root_rate % rate == 0)
393 		return root_rate; /* Don't need the PLL, use bypass */
394 
395 	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
396 	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
397 
398 	if (pdiv_min > pdiv_max)
399 		return 0; /* No can do? */
400 
401 	pdiv_best = pdiv_min;
402 	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
403 		unsigned long target_rate = rate * pdiv_now;
404 		long pll_rate = clk_round_rate(pll, target_rate);
405 		unsigned long actual_rate;
406 		unsigned long rate_error;
407 
408 		if (pll_rate <= 0)
409 			continue;
410 		actual_rate = pll_rate / pdiv_now;
411 		rate_error = abs((long)actual_rate - (long)rate);
412 		if (rate_error < best_rate_error) {
413 			pdiv_best = pdiv_now;
414 			best_rate_error = rate_error;
415 		}
416 		/* TODO: Consider PLL frequency based on smaller n/m values
417 		 * and pick the better one if the error is equal */
418 	}
419 
420 	return rate * pdiv_best;
421 }
422 
423 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
424 		unsigned long *parent_rate)
425 {
426 	unsigned long l_parent_rate = *parent_rate;
427 	u16 divider = cdce925_calc_divider(rate, l_parent_rate);
428 
429 	if (l_parent_rate / divider != rate) {
430 		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
431 		divider = cdce925_calc_divider(rate, l_parent_rate);
432 		*parent_rate = l_parent_rate;
433 	}
434 
435 	if (divider)
436 		return (long)(l_parent_rate / divider);
437 	return 0;
438 }
439 
440 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
441 		unsigned long parent_rate)
442 {
443 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
444 
445 	data->pdiv = cdce925_calc_divider(rate, parent_rate);
446 
447 	return 0;
448 }
449 
450 static const struct clk_ops cdce925_clk_ops = {
451 	.prepare = cdce925_clk_prepare,
452 	.unprepare = cdce925_clk_unprepare,
453 	.recalc_rate = cdce925_clk_recalc_rate,
454 	.round_rate = cdce925_clk_round_rate,
455 	.set_rate = cdce925_clk_set_rate,
456 };
457 
458 
459 static u16 cdce925_y1_calc_divider(unsigned long rate,
460 		unsigned long parent_rate)
461 {
462 	unsigned long divider;
463 
464 	if (!rate)
465 		return 0;
466 	if (rate >= parent_rate)
467 		return 1;
468 
469 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
470 	if (divider > 0x3FF) /* Y1 has 10-bit divider */
471 		divider = 0x3FF;
472 
473 	return (u16)divider;
474 }
475 
476 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
477 		unsigned long *parent_rate)
478 {
479 	unsigned long l_parent_rate = *parent_rate;
480 	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
481 
482 	if (divider)
483 		return (long)(l_parent_rate / divider);
484 	return 0;
485 }
486 
487 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
488 		unsigned long parent_rate)
489 {
490 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
491 
492 	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
493 
494 	return 0;
495 }
496 
497 static const struct clk_ops cdce925_clk_y1_ops = {
498 	.prepare = cdce925_clk_prepare,
499 	.unprepare = cdce925_clk_unprepare,
500 	.recalc_rate = cdce925_clk_recalc_rate,
501 	.round_rate = cdce925_clk_y1_round_rate,
502 	.set_rate = cdce925_clk_y1_set_rate,
503 };
504 
505 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
506 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80
507 
508 static int cdce925_regmap_i2c_write(
509 	void *context, const void *data, size_t count)
510 {
511 	struct device *dev = context;
512 	struct i2c_client *i2c = to_i2c_client(dev);
513 	int ret;
514 	u8 reg_data[2];
515 
516 	if (count != 2)
517 		return -ENOTSUPP;
518 
519 	/* First byte is command code */
520 	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
521 	reg_data[1] = ((u8 *)data)[1];
522 
523 	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
524 			reg_data[0], reg_data[1]);
525 
526 	ret = i2c_master_send(i2c, reg_data, count);
527 	if (likely(ret == count))
528 		return 0;
529 	else if (ret < 0)
530 		return ret;
531 	else
532 		return -EIO;
533 }
534 
535 static int cdce925_regmap_i2c_read(void *context,
536 	   const void *reg, size_t reg_size, void *val, size_t val_size)
537 {
538 	struct device *dev = context;
539 	struct i2c_client *i2c = to_i2c_client(dev);
540 	struct i2c_msg xfer[2];
541 	int ret;
542 	u8 reg_data[2];
543 
544 	if (reg_size != 1)
545 		return -ENOTSUPP;
546 
547 	xfer[0].addr = i2c->addr;
548 	xfer[0].flags = 0;
549 	xfer[0].buf = reg_data;
550 	if (val_size == 1) {
551 		reg_data[0] =
552 			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
553 		xfer[0].len = 1;
554 	} else {
555 		reg_data[0] =
556 			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
557 		reg_data[1] = val_size;
558 		xfer[0].len = 2;
559 	}
560 
561 	xfer[1].addr = i2c->addr;
562 	xfer[1].flags = I2C_M_RD;
563 	xfer[1].len = val_size;
564 	xfer[1].buf = val;
565 
566 	ret = i2c_transfer(i2c->adapter, xfer, 2);
567 	if (likely(ret == 2)) {
568 		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
569 				reg_size, val_size, reg_data[0], *((u8 *)val));
570 		return 0;
571 	} else if (ret < 0)
572 		return ret;
573 	else
574 		return -EIO;
575 }
576 
577 static struct clk_hw *
578 of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
579 {
580 	struct clk_cdce925_chip *data = _data;
581 	unsigned int idx = clkspec->args[0];
582 
583 	if (idx >= ARRAY_SIZE(data->clk)) {
584 		pr_err("%s: invalid index %u\n", __func__, idx);
585 		return ERR_PTR(-EINVAL);
586 	}
587 
588 	return &data->clk[idx].hw;
589 }
590 
591 static int cdce925_regulator_enable(struct device *dev, const char *name)
592 {
593 	int err;
594 
595 	err = devm_regulator_get_enable(dev, name);
596 	if (err)
597 		dev_err_probe(dev, err, "Failed to enable %s:\n", name);
598 
599 	return err;
600 }
601 
602 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
603  * just weird, so just use the single byte mode exclusively. */
604 static struct regmap_bus regmap_cdce925_bus = {
605 	.write = cdce925_regmap_i2c_write,
606 	.read = cdce925_regmap_i2c_read,
607 };
608 
609 static int cdce925_probe(struct i2c_client *client)
610 {
611 	struct clk_cdce925_chip *data;
612 	struct device_node *node = client->dev.of_node;
613 	const char *parent_name;
614 	const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
615 	struct clk_init_data init;
616 	u32 value;
617 	int i;
618 	int err;
619 	struct device_node *np_output;
620 	char child_name[6];
621 	struct regmap_config config = {
622 		.name = "configuration0",
623 		.reg_bits = 8,
624 		.val_bits = 8,
625 		.cache_type = REGCACHE_MAPLE,
626 	};
627 
628 	dev_dbg(&client->dev, "%s\n", __func__);
629 
630 	err = cdce925_regulator_enable(&client->dev, "vdd");
631 	if (err)
632 		return err;
633 
634 	err = cdce925_regulator_enable(&client->dev, "vddout");
635 	if (err)
636 		return err;
637 
638 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
639 	if (!data)
640 		return -ENOMEM;
641 
642 	data->i2c_client = client;
643 	data->chip_info = i2c_get_match_data(client);
644 	config.max_register = CDCE925_OFFSET_PLL +
645 		data->chip_info->num_plls * 0x10 - 1;
646 	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
647 			&client->dev, &config);
648 	if (IS_ERR(data->regmap)) {
649 		dev_err(&client->dev, "failed to allocate register map\n");
650 		return PTR_ERR(data->regmap);
651 	}
652 	i2c_set_clientdata(client, data);
653 
654 	parent_name = of_clk_get_parent_name(node, 0);
655 	if (!parent_name) {
656 		dev_err(&client->dev, "missing parent clock\n");
657 		return -ENODEV;
658 	}
659 	dev_dbg(&client->dev, "parent is: %s\n", parent_name);
660 
661 	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
662 		regmap_write(data->regmap,
663 			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
664 	/* PWDN bit */
665 	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
666 
667 	/* Set input source for Y1 to be the XTAL */
668 	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
669 
670 	init.ops = &cdce925_pll_ops;
671 	init.flags = 0;
672 	init.parent_names = &parent_name;
673 	init.num_parents = 1;
674 
675 	/* Register PLL clocks */
676 	for (i = 0; i < data->chip_info->num_plls; ++i) {
677 		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
678 			client->dev.of_node, i);
679 		if (!pll_clk_name[i]) {
680 			err = -ENOMEM;
681 			goto error;
682 		}
683 		init.name = pll_clk_name[i];
684 		data->pll[i].chip = data;
685 		data->pll[i].hw.init = &init;
686 		data->pll[i].index = i;
687 		err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
688 		if (err) {
689 			dev_err(&client->dev, "Failed register PLL %d\n", i);
690 			goto error;
691 		}
692 		sprintf(child_name, "PLL%d", i+1);
693 		np_output = of_get_child_by_name(node, child_name);
694 		if (!np_output)
695 			continue;
696 		if (!of_property_read_u32(np_output,
697 			"clock-frequency", &value)) {
698 			err = clk_set_rate(data->pll[i].hw.clk, value);
699 			if (err)
700 				dev_err(&client->dev,
701 					"unable to set PLL frequency %ud\n",
702 					value);
703 		}
704 		if (!of_property_read_u32(np_output,
705 			"spread-spectrum", &value)) {
706 			u8 flag = of_property_read_bool(np_output,
707 				"spread-spectrum-center") ? 0x80 : 0x00;
708 			regmap_update_bits(data->regmap,
709 				0x16 + (i*CDCE925_OFFSET_PLL),
710 				0x80, flag);
711 			regmap_update_bits(data->regmap,
712 				0x12 + (i*CDCE925_OFFSET_PLL),
713 				0x07, value & 0x07);
714 		}
715 		of_node_put(np_output);
716 	}
717 
718 	/* Register output clock Y1 */
719 	init.ops = &cdce925_clk_y1_ops;
720 	init.flags = 0;
721 	init.num_parents = 1;
722 	init.parent_names = &parent_name; /* Mux Y1 to input */
723 	init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
724 	if (!init.name) {
725 		err = -ENOMEM;
726 		goto error;
727 	}
728 	data->clk[0].chip = data;
729 	data->clk[0].hw.init = &init;
730 	data->clk[0].index = 0;
731 	data->clk[0].pdiv = 1;
732 	err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
733 	kfree(init.name); /* clock framework made a copy of the name */
734 	if (err) {
735 		dev_err(&client->dev, "clock registration Y1 failed\n");
736 		goto error;
737 	}
738 
739 	/* Register output clocks Y2 .. Y5*/
740 	init.ops = &cdce925_clk_ops;
741 	init.flags = CLK_SET_RATE_PARENT;
742 	init.num_parents = 1;
743 	for (i = 1; i < data->chip_info->num_outputs; ++i) {
744 		init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
745 			client->dev.of_node, i+1);
746 		if (!init.name) {
747 			err = -ENOMEM;
748 			goto error;
749 		}
750 		data->clk[i].chip = data;
751 		data->clk[i].hw.init = &init;
752 		data->clk[i].index = i;
753 		data->clk[i].pdiv = 1;
754 		switch (i) {
755 		case 1:
756 		case 2:
757 			/* Mux Y2/3 to PLL1 */
758 			init.parent_names = &pll_clk_name[0];
759 			break;
760 		case 3:
761 		case 4:
762 			/* Mux Y4/5 to PLL2 */
763 			init.parent_names = &pll_clk_name[1];
764 			break;
765 		case 5:
766 		case 6:
767 			/* Mux Y6/7 to PLL3 */
768 			init.parent_names = &pll_clk_name[2];
769 			break;
770 		case 7:
771 		case 8:
772 			/* Mux Y8/9 to PLL4 */
773 			init.parent_names = &pll_clk_name[3];
774 			break;
775 		}
776 		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
777 		kfree(init.name); /* clock framework made a copy of the name */
778 		if (err) {
779 			dev_err(&client->dev, "clock registration failed\n");
780 			goto error;
781 		}
782 	}
783 
784 	/* Register the output clocks */
785 	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
786 				  data);
787 	if (err)
788 		dev_err(&client->dev, "unable to add OF clock provider\n");
789 
790 	err = 0;
791 
792 error:
793 	for (i = 0; i < data->chip_info->num_plls; ++i)
794 		/* clock framework made a copy of the name */
795 		kfree(pll_clk_name[i]);
796 
797 	return err;
798 }
799 
800 static const struct clk_cdce925_chip_info clk_cdce913_info = {
801 	.num_plls = 1,
802 	.num_outputs = 3,
803 };
804 
805 static const struct clk_cdce925_chip_info clk_cdce925_info = {
806 	.num_plls = 2,
807 	.num_outputs = 5,
808 };
809 
810 static const struct clk_cdce925_chip_info clk_cdce937_info = {
811 	.num_plls = 3,
812 	.num_outputs = 7,
813 };
814 
815 static const struct clk_cdce925_chip_info clk_cdce949_info = {
816 	.num_plls = 4,
817 	.num_outputs = 9,
818 };
819 
820 static const struct i2c_device_id cdce925_id[] = {
821 	{ "cdce913", (kernel_ulong_t)&clk_cdce913_info },
822 	{ "cdce925", (kernel_ulong_t)&clk_cdce925_info },
823 	{ "cdce937", (kernel_ulong_t)&clk_cdce937_info },
824 	{ "cdce949", (kernel_ulong_t)&clk_cdce949_info },
825 	{ }
826 };
827 MODULE_DEVICE_TABLE(i2c, cdce925_id);
828 
829 static const struct of_device_id clk_cdce925_of_match[] = {
830 	{ .compatible = "ti,cdce913", .data = &clk_cdce913_info },
831 	{ .compatible = "ti,cdce925", .data = &clk_cdce925_info },
832 	{ .compatible = "ti,cdce937", .data = &clk_cdce937_info },
833 	{ .compatible = "ti,cdce949", .data = &clk_cdce949_info },
834 	{ }
835 };
836 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
837 
838 static struct i2c_driver cdce925_driver = {
839 	.driver = {
840 		.name = "cdce925",
841 		.of_match_table = clk_cdce925_of_match,
842 	},
843 	.probe		= cdce925_probe,
844 	.id_table	= cdce925_id,
845 };
846 module_i2c_driver(cdce925_driver);
847 
848 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
849 MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
850 MODULE_LICENSE("GPL");
851