xref: /linux/drivers/clk/clk-cdce925.c (revision 93df8a1ed6231727c5db94a80b1a6bd5ee67cec3)
1 /*
2  * Driver for TI Dual PLL CDCE925 clock synthesizer
3  *
4  * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1
5  * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve
6  * basis. Clients can directly request any frequency that the chip can
7  * deliver using the standard clk framework. In addition, the device can
8  * be configured and activated via the devicetree.
9  *
10  * Copyright (C) 2014, Topic Embedded Products
11  * Licenced under GPL
12  */
13 #include <linux/clk-provider.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/regmap.h>
18 #include <linux/slab.h>
19 #include <linux/gcd.h>
20 
21 /* The chip has 2 PLLs which can be routed through dividers to 5 outputs.
22  * Model this as 2 PLL clocks which are parents to the outputs.
23  */
24 #define NUMBER_OF_PLLS	2
25 #define NUMBER_OF_OUTPUTS	5
26 
27 #define CDCE925_REG_GLOBAL1	0x01
28 #define CDCE925_REG_Y1SPIPDIVH	0x02
29 #define CDCE925_REG_PDIVL	0x03
30 #define CDCE925_REG_XCSEL	0x05
31 /* PLL parameters start at 0x10, steps of 0x10 */
32 #define CDCE925_OFFSET_PLL	0x10
33 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
34 #define CDCE925_PLL_MUX_OUTPUTS	0x14
35 #define CDCE925_PLL_MULDIV	0x18
36 
37 #define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
38 #define CDCE925_PLL_FREQUENCY_MAX	230000000ul
39 struct clk_cdce925_chip;
40 
41 struct clk_cdce925_output {
42 	struct clk_hw hw;
43 	struct clk_cdce925_chip *chip;
44 	u8 index;
45 	u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */
46 };
47 #define to_clk_cdce925_output(_hw) \
48 	container_of(_hw, struct clk_cdce925_output, hw)
49 
50 struct clk_cdce925_pll {
51 	struct clk_hw hw;
52 	struct clk_cdce925_chip *chip;
53 	u8 index;
54 	u16 m;   /* 1..511 */
55 	u16 n;   /* 1..4095 */
56 };
57 #define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)
58 
59 struct clk_cdce925_chip {
60 	struct regmap *regmap;
61 	struct i2c_client *i2c_client;
62 	struct clk_cdce925_pll pll[NUMBER_OF_PLLS];
63 	struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS];
64 	struct clk *dt_clk[NUMBER_OF_OUTPUTS];
65 	struct clk_onecell_data onecell;
66 };
67 
68 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
69 
70 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
71 	u16 n, u16 m)
72 {
73 	if ((!m || !n) || (m == n))
74 		return parent_rate; /* In bypass mode runs at same frequency */
75 	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
76 }
77 
78 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
79 		unsigned long parent_rate)
80 {
81 	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
82 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
83 
84 	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
85 }
86 
87 static void cdce925_pll_find_rate(unsigned long rate,
88 		unsigned long parent_rate, u16 *n, u16 *m)
89 {
90 	unsigned long un;
91 	unsigned long um;
92 	unsigned long g;
93 
94 	if (rate <= parent_rate) {
95 		/* Can always deliver parent_rate in bypass mode */
96 		rate = parent_rate;
97 		*n = 0;
98 		*m = 0;
99 	} else {
100 		/* In PLL mode, need to apply min/max range */
101 		if (rate < CDCE925_PLL_FREQUENCY_MIN)
102 			rate = CDCE925_PLL_FREQUENCY_MIN;
103 		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
104 			rate = CDCE925_PLL_FREQUENCY_MAX;
105 
106 		g = gcd(rate, parent_rate);
107 		um = parent_rate / g;
108 		un = rate / g;
109 		/* When outside hw range, reduce to fit (rounding errors) */
110 		while ((un > 4095) || (um > 511)) {
111 			un >>= 1;
112 			um >>= 1;
113 		}
114 		if (un == 0)
115 			un = 1;
116 		if (um == 0)
117 			um = 1;
118 
119 		*n = un;
120 		*m = um;
121 	}
122 }
123 
124 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
125 		unsigned long *parent_rate)
126 {
127 	u16 n, m;
128 
129 	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
130 	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
131 }
132 
133 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
134 		unsigned long parent_rate)
135 {
136 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
137 
138 	if (!rate || (rate == parent_rate)) {
139 		data->m = 0; /* Bypass mode */
140 		data->n = 0;
141 		return 0;
142 	}
143 
144 	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
145 		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
146 		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
147 		return -EINVAL;
148 	}
149 
150 	if (rate < parent_rate) {
151 		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
152 			rate, parent_rate);
153 		return -EINVAL;
154 	}
155 
156 	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
157 	return 0;
158 }
159 
160 
161 /* calculate p = max(0, 4 - int(log2 (n/m))) */
162 static u8 cdce925_pll_calc_p(u16 n, u16 m)
163 {
164 	u8 p;
165 	u16 r = n / m;
166 
167 	if (r >= 16)
168 		return 0;
169 	p = 4;
170 	while (r > 1) {
171 		r >>= 1;
172 		--p;
173 	}
174 	return p;
175 }
176 
177 /* Returns VCO range bits for VCO1_0_RANGE */
178 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
179 {
180 	struct clk *parent = clk_get_parent(hw->clk);
181 	unsigned long rate = clk_get_rate(parent);
182 
183 	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
184 	if (rate >= 175000000)
185 		return 0x3;
186 	if (rate >= 150000000)
187 		return 0x02;
188 	if (rate >= 125000000)
189 		return 0x01;
190 	return 0x00;
191 }
192 
193 /* I2C clock, hence everything must happen in (un)prepare because this
194  * may sleep */
195 static int cdce925_pll_prepare(struct clk_hw *hw)
196 {
197 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
198 	u16 n = data->n;
199 	u16 m = data->m;
200 	u16 r;
201 	u8 q;
202 	u8 p;
203 	u16 nn;
204 	u8 pll[4]; /* Bits are spread out over 4 byte registers */
205 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
206 	unsigned i;
207 
208 	if ((!m || !n) || (m == n)) {
209 		/* Set PLL mux to bypass mode, leave the rest as is */
210 		regmap_update_bits(data->chip->regmap,
211 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
212 	} else {
213 		/* According to data sheet: */
214 		/* p = max(0, 4 - int(log2 (n/m))) */
215 		p = cdce925_pll_calc_p(n, m);
216 		/* nn = n * 2^p */
217 		nn = n * BIT(p);
218 		/* q = int(nn/m) */
219 		q = nn / m;
220 		if ((q < 16) || (1 > 64)) {
221 			pr_debug("%s invalid q=%d\n", __func__, q);
222 			return -EINVAL;
223 		}
224 		r = nn - (m*q);
225 		if (r > 511) {
226 			pr_debug("%s invalid r=%d\n", __func__, r);
227 			return -EINVAL;
228 		}
229 		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
230 			n, m, p, q, r);
231 		/* encode into register bits */
232 		pll[0] = n >> 4;
233 		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
234 		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
235 		pll[3] = ((q & 0x07) << 5) | (p << 2) |
236 				cdce925_pll_calc_range_bits(hw, n, m);
237 		/* Write to registers */
238 		for (i = 0; i < ARRAY_SIZE(pll); ++i)
239 			regmap_write(data->chip->regmap,
240 				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
241 		/* Enable PLL */
242 		regmap_update_bits(data->chip->regmap,
243 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
244 	}
245 
246 	return 0;
247 }
248 
249 static void cdce925_pll_unprepare(struct clk_hw *hw)
250 {
251 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
252 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
253 
254 	regmap_update_bits(data->chip->regmap,
255 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
256 }
257 
258 static const struct clk_ops cdce925_pll_ops = {
259 	.prepare = cdce925_pll_prepare,
260 	.unprepare = cdce925_pll_unprepare,
261 	.recalc_rate = cdce925_pll_recalc_rate,
262 	.round_rate = cdce925_pll_round_rate,
263 	.set_rate = cdce925_pll_set_rate,
264 };
265 
266 
267 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
268 {
269 	switch (data->index) {
270 	case 0:
271 		regmap_update_bits(data->chip->regmap,
272 			CDCE925_REG_Y1SPIPDIVH,
273 			0x03, (pdiv >> 8) & 0x03);
274 		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
275 		break;
276 	case 1:
277 		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
278 		break;
279 	case 2:
280 		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
281 		break;
282 	case 3:
283 		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
284 		break;
285 	case 4:
286 		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
287 		break;
288 	}
289 }
290 
291 static void cdce925_clk_activate(struct clk_cdce925_output *data)
292 {
293 	switch (data->index) {
294 	case 0:
295 		regmap_update_bits(data->chip->regmap,
296 			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
297 		break;
298 	case 1:
299 	case 2:
300 		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
301 		break;
302 	case 3:
303 	case 4:
304 		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
305 		break;
306 	}
307 }
308 
309 static int cdce925_clk_prepare(struct clk_hw *hw)
310 {
311 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
312 
313 	cdce925_clk_set_pdiv(data, data->pdiv);
314 	cdce925_clk_activate(data);
315 	return 0;
316 }
317 
318 static void cdce925_clk_unprepare(struct clk_hw *hw)
319 {
320 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
321 
322 	/* Disable clock by setting divider to "0" */
323 	cdce925_clk_set_pdiv(data, 0);
324 }
325 
326 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
327 		unsigned long parent_rate)
328 {
329 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
330 
331 	if (data->pdiv)
332 		return parent_rate / data->pdiv;
333 	return 0;
334 }
335 
336 static u16 cdce925_calc_divider(unsigned long rate,
337 		unsigned long parent_rate)
338 {
339 	unsigned long divider;
340 
341 	if (!rate)
342 		return 0;
343 	if (rate >= parent_rate)
344 		return 1;
345 
346 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
347 	if (divider > 0x7F)
348 		divider = 0x7F;
349 
350 	return (u16)divider;
351 }
352 
353 static unsigned long cdce925_clk_best_parent_rate(
354 	struct clk_hw *hw, unsigned long rate)
355 {
356 	struct clk *pll = clk_get_parent(hw->clk);
357 	struct clk *root = clk_get_parent(pll);
358 	unsigned long root_rate = clk_get_rate(root);
359 	unsigned long best_rate_error = rate;
360 	u16 pdiv_min;
361 	u16 pdiv_max;
362 	u16 pdiv_best;
363 	u16 pdiv_now;
364 
365 	if (root_rate % rate == 0)
366 		return root_rate; /* Don't need the PLL, use bypass */
367 
368 	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
369 	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
370 
371 	if (pdiv_min > pdiv_max)
372 		return 0; /* No can do? */
373 
374 	pdiv_best = pdiv_min;
375 	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
376 		unsigned long target_rate = rate * pdiv_now;
377 		long pll_rate = clk_round_rate(pll, target_rate);
378 		unsigned long actual_rate;
379 		unsigned long rate_error;
380 
381 		if (pll_rate <= 0)
382 			continue;
383 		actual_rate = pll_rate / pdiv_now;
384 		rate_error = abs((long)actual_rate - (long)rate);
385 		if (rate_error < best_rate_error) {
386 			pdiv_best = pdiv_now;
387 			best_rate_error = rate_error;
388 		}
389 		/* TODO: Consider PLL frequency based on smaller n/m values
390 		 * and pick the better one if the error is equal */
391 	}
392 
393 	return rate * pdiv_best;
394 }
395 
396 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
397 		unsigned long *parent_rate)
398 {
399 	unsigned long l_parent_rate = *parent_rate;
400 	u16 divider = cdce925_calc_divider(rate, l_parent_rate);
401 
402 	if (l_parent_rate / divider != rate) {
403 		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
404 		divider = cdce925_calc_divider(rate, l_parent_rate);
405 		*parent_rate = l_parent_rate;
406 	}
407 
408 	if (divider)
409 		return (long)(l_parent_rate / divider);
410 	return 0;
411 }
412 
413 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
414 		unsigned long parent_rate)
415 {
416 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
417 
418 	data->pdiv = cdce925_calc_divider(rate, parent_rate);
419 
420 	return 0;
421 }
422 
423 static const struct clk_ops cdce925_clk_ops = {
424 	.prepare = cdce925_clk_prepare,
425 	.unprepare = cdce925_clk_unprepare,
426 	.recalc_rate = cdce925_clk_recalc_rate,
427 	.round_rate = cdce925_clk_round_rate,
428 	.set_rate = cdce925_clk_set_rate,
429 };
430 
431 
432 static u16 cdce925_y1_calc_divider(unsigned long rate,
433 		unsigned long parent_rate)
434 {
435 	unsigned long divider;
436 
437 	if (!rate)
438 		return 0;
439 	if (rate >= parent_rate)
440 		return 1;
441 
442 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
443 	if (divider > 0x3FF) /* Y1 has 10-bit divider */
444 		divider = 0x3FF;
445 
446 	return (u16)divider;
447 }
448 
449 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
450 		unsigned long *parent_rate)
451 {
452 	unsigned long l_parent_rate = *parent_rate;
453 	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
454 
455 	if (divider)
456 		return (long)(l_parent_rate / divider);
457 	return 0;
458 }
459 
460 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
461 		unsigned long parent_rate)
462 {
463 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
464 
465 	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
466 
467 	return 0;
468 }
469 
470 static const struct clk_ops cdce925_clk_y1_ops = {
471 	.prepare = cdce925_clk_prepare,
472 	.unprepare = cdce925_clk_unprepare,
473 	.recalc_rate = cdce925_clk_recalc_rate,
474 	.round_rate = cdce925_clk_y1_round_rate,
475 	.set_rate = cdce925_clk_y1_set_rate,
476 };
477 
478 
479 static struct regmap_config cdce925_regmap_config = {
480 	.name = "configuration0",
481 	.reg_bits = 8,
482 	.val_bits = 8,
483 	.cache_type = REGCACHE_RBTREE,
484 	.max_register = 0x2F,
485 };
486 
487 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
488 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80
489 
490 static int cdce925_regmap_i2c_write(
491 	void *context, const void *data, size_t count)
492 {
493 	struct device *dev = context;
494 	struct i2c_client *i2c = to_i2c_client(dev);
495 	int ret;
496 	u8 reg_data[2];
497 
498 	if (count != 2)
499 		return -ENOTSUPP;
500 
501 	/* First byte is command code */
502 	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
503 	reg_data[1] = ((u8 *)data)[1];
504 
505 	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
506 			reg_data[0], reg_data[1]);
507 
508 	ret = i2c_master_send(i2c, reg_data, count);
509 	if (likely(ret == count))
510 		return 0;
511 	else if (ret < 0)
512 		return ret;
513 	else
514 		return -EIO;
515 }
516 
517 static int cdce925_regmap_i2c_read(void *context,
518 	   const void *reg, size_t reg_size, void *val, size_t val_size)
519 {
520 	struct device *dev = context;
521 	struct i2c_client *i2c = to_i2c_client(dev);
522 	struct i2c_msg xfer[2];
523 	int ret;
524 	u8 reg_data[2];
525 
526 	if (reg_size != 1)
527 		return -ENOTSUPP;
528 
529 	xfer[0].addr = i2c->addr;
530 	xfer[0].flags = 0;
531 	xfer[0].buf = reg_data;
532 	if (val_size == 1) {
533 		reg_data[0] =
534 			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
535 		xfer[0].len = 1;
536 	} else {
537 		reg_data[0] =
538 			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
539 		reg_data[1] = val_size;
540 		xfer[0].len = 2;
541 	}
542 
543 	xfer[1].addr = i2c->addr;
544 	xfer[1].flags = I2C_M_RD;
545 	xfer[1].len = val_size;
546 	xfer[1].buf = val;
547 
548 	ret = i2c_transfer(i2c->adapter, xfer, 2);
549 	if (likely(ret == 2)) {
550 		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
551 				reg_size, val_size, reg_data[0], *((u8 *)val));
552 		return 0;
553 	} else if (ret < 0)
554 		return ret;
555 	else
556 		return -EIO;
557 }
558 
559 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
560  * just weird, so just use the single byte mode exclusively. */
561 static struct regmap_bus regmap_cdce925_bus = {
562 	.write = cdce925_regmap_i2c_write,
563 	.read = cdce925_regmap_i2c_read,
564 };
565 
566 static int cdce925_probe(struct i2c_client *client,
567 		const struct i2c_device_id *id)
568 {
569 	struct clk_cdce925_chip *data;
570 	struct device_node *node = client->dev.of_node;
571 	const char *parent_name;
572 	const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,};
573 	struct clk_init_data init;
574 	struct clk *clk;
575 	u32 value;
576 	int i;
577 	int err;
578 	struct device_node *np_output;
579 	char child_name[6];
580 
581 	dev_dbg(&client->dev, "%s\n", __func__);
582 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
583 	if (!data)
584 		return -ENOMEM;
585 
586 	data->i2c_client = client;
587 	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
588 			&client->dev, &cdce925_regmap_config);
589 	if (IS_ERR(data->regmap)) {
590 		dev_err(&client->dev, "failed to allocate register map\n");
591 		return PTR_ERR(data->regmap);
592 	}
593 	i2c_set_clientdata(client, data);
594 
595 	parent_name = of_clk_get_parent_name(node, 0);
596 	if (!parent_name) {
597 		dev_err(&client->dev, "missing parent clock\n");
598 		return -ENODEV;
599 	}
600 	dev_dbg(&client->dev, "parent is: %s\n", parent_name);
601 
602 	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
603 		regmap_write(data->regmap,
604 			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
605 	/* PWDN bit */
606 	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
607 
608 	/* Set input source for Y1 to be the XTAL */
609 	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
610 
611 	init.ops = &cdce925_pll_ops;
612 	init.flags = 0;
613 	init.parent_names = &parent_name;
614 	init.num_parents = parent_name ? 1 : 0;
615 
616 	/* Register PLL clocks */
617 	for (i = 0; i < NUMBER_OF_PLLS; ++i) {
618 		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
619 			client->dev.of_node->name, i);
620 		init.name = pll_clk_name[i];
621 		data->pll[i].chip = data;
622 		data->pll[i].hw.init = &init;
623 		data->pll[i].index = i;
624 		clk = devm_clk_register(&client->dev, &data->pll[i].hw);
625 		if (IS_ERR(clk)) {
626 			dev_err(&client->dev, "Failed register PLL %d\n", i);
627 			err = PTR_ERR(clk);
628 			goto error;
629 		}
630 		sprintf(child_name, "PLL%d", i+1);
631 		np_output = of_get_child_by_name(node, child_name);
632 		if (!np_output)
633 			continue;
634 		if (!of_property_read_u32(np_output,
635 			"clock-frequency", &value)) {
636 			err = clk_set_rate(clk, value);
637 			if (err)
638 				dev_err(&client->dev,
639 					"unable to set PLL frequency %ud\n",
640 					value);
641 		}
642 		if (!of_property_read_u32(np_output,
643 			"spread-spectrum", &value)) {
644 			u8 flag = of_property_read_bool(np_output,
645 				"spread-spectrum-center") ? 0x80 : 0x00;
646 			regmap_update_bits(data->regmap,
647 				0x16 + (i*CDCE925_OFFSET_PLL),
648 				0x80, flag);
649 			regmap_update_bits(data->regmap,
650 				0x12 + (i*CDCE925_OFFSET_PLL),
651 				0x07, value & 0x07);
652 		}
653 	}
654 
655 	/* Register output clock Y1 */
656 	init.ops = &cdce925_clk_y1_ops;
657 	init.flags = 0;
658 	init.num_parents = 1;
659 	init.parent_names = &parent_name; /* Mux Y1 to input */
660 	init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
661 	data->clk[0].chip = data;
662 	data->clk[0].hw.init = &init;
663 	data->clk[0].index = 0;
664 	data->clk[0].pdiv = 1;
665 	clk = devm_clk_register(&client->dev, &data->clk[0].hw);
666 	kfree(init.name); /* clock framework made a copy of the name */
667 	if (IS_ERR(clk)) {
668 		dev_err(&client->dev, "clock registration Y1 failed\n");
669 		err = PTR_ERR(clk);
670 		goto error;
671 	}
672 	data->dt_clk[0] = clk;
673 
674 	/* Register output clocks Y2 .. Y5*/
675 	init.ops = &cdce925_clk_ops;
676 	init.flags = CLK_SET_RATE_PARENT;
677 	init.num_parents = 1;
678 	for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) {
679 		init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
680 			client->dev.of_node->name, i+1);
681 		data->clk[i].chip = data;
682 		data->clk[i].hw.init = &init;
683 		data->clk[i].index = i;
684 		data->clk[i].pdiv = 1;
685 		switch (i) {
686 		case 1:
687 		case 2:
688 			/* Mux Y2/3 to PLL1 */
689 			init.parent_names = &pll_clk_name[0];
690 			break;
691 		case 3:
692 		case 4:
693 			/* Mux Y4/5 to PLL2 */
694 			init.parent_names = &pll_clk_name[1];
695 			break;
696 		}
697 		clk = devm_clk_register(&client->dev, &data->clk[i].hw);
698 		kfree(init.name); /* clock framework made a copy of the name */
699 		if (IS_ERR(clk)) {
700 			dev_err(&client->dev, "clock registration failed\n");
701 			err = PTR_ERR(clk);
702 			goto error;
703 		}
704 		data->dt_clk[i] = clk;
705 	}
706 
707 	/* Register the output clocks */
708 	data->onecell.clk_num = NUMBER_OF_OUTPUTS;
709 	data->onecell.clks = data->dt_clk;
710 	err = of_clk_add_provider(client->dev.of_node, of_clk_src_onecell_get,
711 		&data->onecell);
712 	if (err)
713 		dev_err(&client->dev, "unable to add OF clock provider\n");
714 
715 	err = 0;
716 
717 error:
718 	for (i = 0; i < NUMBER_OF_PLLS; ++i)
719 		/* clock framework made a copy of the name */
720 		kfree(pll_clk_name[i]);
721 
722 	return err;
723 }
724 
725 static const struct i2c_device_id cdce925_id[] = {
726 	{ "cdce925", 0 },
727 	{ }
728 };
729 MODULE_DEVICE_TABLE(i2c, cdce925_id);
730 
731 static const struct of_device_id clk_cdce925_of_match[] = {
732 	{ .compatible = "ti,cdce925" },
733 	{ },
734 };
735 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
736 
737 static struct i2c_driver cdce925_driver = {
738 	.driver = {
739 		.name = "cdce925",
740 		.of_match_table = of_match_ptr(clk_cdce925_of_match),
741 	},
742 	.probe		= cdce925_probe,
743 	.id_table	= cdce925_id,
744 };
745 module_i2c_driver(cdce925_driver);
746 
747 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
748 MODULE_DESCRIPTION("cdce925 driver");
749 MODULE_LICENSE("GPL");
750