xref: /linux/drivers/clk/clk-cdce925.c (revision 576d7fed09c7edbae7600f29a8a3ed6c1ead904f)
1 /*
2  * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
3  *
4  * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
5  * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
6  * basis. Clients can directly request any frequency that the chip can
7  * deliver using the standard clk framework. In addition, the device can
8  * be configured and activated via the devicetree.
9  *
10  * Copyright (C) 2014, Topic Embedded Products
11  * Licenced under GPL
12  */
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/i2c.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/gcd.h>
22 
23 /* Each chip has different number of PLLs and outputs, for example:
24  * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
25  * Model this as 2 PLL clocks which are parents to the outputs.
26  */
27 
28 struct clk_cdce925_chip_info {
29 	int num_plls;
30 	int num_outputs;
31 };
32 
33 #define MAX_NUMBER_OF_PLLS	4
34 #define MAX_NUMBER_OF_OUTPUTS	9
35 
36 #define CDCE925_REG_GLOBAL1	0x01
37 #define CDCE925_REG_Y1SPIPDIVH	0x02
38 #define CDCE925_REG_PDIVL	0x03
39 #define CDCE925_REG_XCSEL	0x05
40 /* PLL parameters start at 0x10, steps of 0x10 */
41 #define CDCE925_OFFSET_PLL	0x10
42 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
43 #define CDCE925_PLL_MUX_OUTPUTS	0x14
44 #define CDCE925_PLL_MULDIV	0x18
45 
46 #define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
47 #define CDCE925_PLL_FREQUENCY_MAX	230000000ul
48 struct clk_cdce925_chip;
49 
50 struct clk_cdce925_output {
51 	struct clk_hw hw;
52 	struct clk_cdce925_chip *chip;
53 	u8 index;
54 	u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
55 };
56 #define to_clk_cdce925_output(_hw) \
57 	container_of(_hw, struct clk_cdce925_output, hw)
58 
59 struct clk_cdce925_pll {
60 	struct clk_hw hw;
61 	struct clk_cdce925_chip *chip;
62 	u8 index;
63 	u16 m;   /* 1..511 */
64 	u16 n;   /* 1..4095 */
65 };
66 #define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)
67 
68 struct clk_cdce925_chip {
69 	struct regmap *regmap;
70 	struct i2c_client *i2c_client;
71 	const struct clk_cdce925_chip_info *chip_info;
72 	struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
73 	struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
74 };
75 
76 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
77 
78 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
79 	u16 n, u16 m)
80 {
81 	if ((!m || !n) || (m == n))
82 		return parent_rate; /* In bypass mode runs at same frequency */
83 	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
84 }
85 
86 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
87 		unsigned long parent_rate)
88 {
89 	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
90 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
91 
92 	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
93 }
94 
95 static void cdce925_pll_find_rate(unsigned long rate,
96 		unsigned long parent_rate, u16 *n, u16 *m)
97 {
98 	unsigned long un;
99 	unsigned long um;
100 	unsigned long g;
101 
102 	if (rate <= parent_rate) {
103 		/* Can always deliver parent_rate in bypass mode */
104 		rate = parent_rate;
105 		*n = 0;
106 		*m = 0;
107 	} else {
108 		/* In PLL mode, need to apply min/max range */
109 		if (rate < CDCE925_PLL_FREQUENCY_MIN)
110 			rate = CDCE925_PLL_FREQUENCY_MIN;
111 		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
112 			rate = CDCE925_PLL_FREQUENCY_MAX;
113 
114 		g = gcd(rate, parent_rate);
115 		um = parent_rate / g;
116 		un = rate / g;
117 		/* When outside hw range, reduce to fit (rounding errors) */
118 		while ((un > 4095) || (um > 511)) {
119 			un >>= 1;
120 			um >>= 1;
121 		}
122 		if (un == 0)
123 			un = 1;
124 		if (um == 0)
125 			um = 1;
126 
127 		*n = un;
128 		*m = um;
129 	}
130 }
131 
132 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
133 		unsigned long *parent_rate)
134 {
135 	u16 n, m;
136 
137 	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
138 	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
139 }
140 
141 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
142 		unsigned long parent_rate)
143 {
144 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
145 
146 	if (!rate || (rate == parent_rate)) {
147 		data->m = 0; /* Bypass mode */
148 		data->n = 0;
149 		return 0;
150 	}
151 
152 	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
153 		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
154 		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
155 		return -EINVAL;
156 	}
157 
158 	if (rate < parent_rate) {
159 		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
160 			rate, parent_rate);
161 		return -EINVAL;
162 	}
163 
164 	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
165 	return 0;
166 }
167 
168 
169 /* calculate p = max(0, 4 - int(log2 (n/m))) */
170 static u8 cdce925_pll_calc_p(u16 n, u16 m)
171 {
172 	u8 p;
173 	u16 r = n / m;
174 
175 	if (r >= 16)
176 		return 0;
177 	p = 4;
178 	while (r > 1) {
179 		r >>= 1;
180 		--p;
181 	}
182 	return p;
183 }
184 
185 /* Returns VCO range bits for VCO1_0_RANGE */
186 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
187 {
188 	struct clk *parent = clk_get_parent(hw->clk);
189 	unsigned long rate = clk_get_rate(parent);
190 
191 	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
192 	if (rate >= 175000000)
193 		return 0x3;
194 	if (rate >= 150000000)
195 		return 0x02;
196 	if (rate >= 125000000)
197 		return 0x01;
198 	return 0x00;
199 }
200 
201 /* I2C clock, hence everything must happen in (un)prepare because this
202  * may sleep */
203 static int cdce925_pll_prepare(struct clk_hw *hw)
204 {
205 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
206 	u16 n = data->n;
207 	u16 m = data->m;
208 	u16 r;
209 	u8 q;
210 	u8 p;
211 	u16 nn;
212 	u8 pll[4]; /* Bits are spread out over 4 byte registers */
213 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
214 	unsigned i;
215 
216 	if ((!m || !n) || (m == n)) {
217 		/* Set PLL mux to bypass mode, leave the rest as is */
218 		regmap_update_bits(data->chip->regmap,
219 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
220 	} else {
221 		/* According to data sheet: */
222 		/* p = max(0, 4 - int(log2 (n/m))) */
223 		p = cdce925_pll_calc_p(n, m);
224 		/* nn = n * 2^p */
225 		nn = n * BIT(p);
226 		/* q = int(nn/m) */
227 		q = nn / m;
228 		if ((q < 16) || (q > 63)) {
229 			pr_debug("%s invalid q=%d\n", __func__, q);
230 			return -EINVAL;
231 		}
232 		r = nn - (m*q);
233 		if (r > 511) {
234 			pr_debug("%s invalid r=%d\n", __func__, r);
235 			return -EINVAL;
236 		}
237 		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
238 			n, m, p, q, r);
239 		/* encode into register bits */
240 		pll[0] = n >> 4;
241 		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
242 		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
243 		pll[3] = ((q & 0x07) << 5) | (p << 2) |
244 				cdce925_pll_calc_range_bits(hw, n, m);
245 		/* Write to registers */
246 		for (i = 0; i < ARRAY_SIZE(pll); ++i)
247 			regmap_write(data->chip->regmap,
248 				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
249 		/* Enable PLL */
250 		regmap_update_bits(data->chip->regmap,
251 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
252 	}
253 
254 	return 0;
255 }
256 
257 static void cdce925_pll_unprepare(struct clk_hw *hw)
258 {
259 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
260 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
261 
262 	regmap_update_bits(data->chip->regmap,
263 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
264 }
265 
266 static const struct clk_ops cdce925_pll_ops = {
267 	.prepare = cdce925_pll_prepare,
268 	.unprepare = cdce925_pll_unprepare,
269 	.recalc_rate = cdce925_pll_recalc_rate,
270 	.round_rate = cdce925_pll_round_rate,
271 	.set_rate = cdce925_pll_set_rate,
272 };
273 
274 
275 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
276 {
277 	switch (data->index) {
278 	case 0:
279 		regmap_update_bits(data->chip->regmap,
280 			CDCE925_REG_Y1SPIPDIVH,
281 			0x03, (pdiv >> 8) & 0x03);
282 		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
283 		break;
284 	case 1:
285 		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
286 		break;
287 	case 2:
288 		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
289 		break;
290 	case 3:
291 		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
292 		break;
293 	case 4:
294 		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
295 		break;
296 	case 5:
297 		regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
298 		break;
299 	case 6:
300 		regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
301 		break;
302 	case 7:
303 		regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
304 		break;
305 	case 8:
306 		regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
307 		break;
308 	}
309 }
310 
311 static void cdce925_clk_activate(struct clk_cdce925_output *data)
312 {
313 	switch (data->index) {
314 	case 0:
315 		regmap_update_bits(data->chip->regmap,
316 			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
317 		break;
318 	case 1:
319 	case 2:
320 		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
321 		break;
322 	case 3:
323 	case 4:
324 		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
325 		break;
326 	case 5:
327 	case 6:
328 		regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
329 		break;
330 	case 7:
331 	case 8:
332 		regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
333 		break;
334 	}
335 }
336 
337 static int cdce925_clk_prepare(struct clk_hw *hw)
338 {
339 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
340 
341 	cdce925_clk_set_pdiv(data, data->pdiv);
342 	cdce925_clk_activate(data);
343 	return 0;
344 }
345 
346 static void cdce925_clk_unprepare(struct clk_hw *hw)
347 {
348 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
349 
350 	/* Disable clock by setting divider to "0" */
351 	cdce925_clk_set_pdiv(data, 0);
352 }
353 
354 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
355 		unsigned long parent_rate)
356 {
357 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
358 
359 	if (data->pdiv)
360 		return parent_rate / data->pdiv;
361 	return 0;
362 }
363 
364 static u16 cdce925_calc_divider(unsigned long rate,
365 		unsigned long parent_rate)
366 {
367 	unsigned long divider;
368 
369 	if (!rate)
370 		return 0;
371 	if (rate >= parent_rate)
372 		return 1;
373 
374 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
375 	if (divider > 0x7F)
376 		divider = 0x7F;
377 
378 	return (u16)divider;
379 }
380 
381 static unsigned long cdce925_clk_best_parent_rate(
382 	struct clk_hw *hw, unsigned long rate)
383 {
384 	struct clk *pll = clk_get_parent(hw->clk);
385 	struct clk *root = clk_get_parent(pll);
386 	unsigned long root_rate = clk_get_rate(root);
387 	unsigned long best_rate_error = rate;
388 	u16 pdiv_min;
389 	u16 pdiv_max;
390 	u16 pdiv_best;
391 	u16 pdiv_now;
392 
393 	if (root_rate % rate == 0)
394 		return root_rate; /* Don't need the PLL, use bypass */
395 
396 	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
397 	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
398 
399 	if (pdiv_min > pdiv_max)
400 		return 0; /* No can do? */
401 
402 	pdiv_best = pdiv_min;
403 	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
404 		unsigned long target_rate = rate * pdiv_now;
405 		long pll_rate = clk_round_rate(pll, target_rate);
406 		unsigned long actual_rate;
407 		unsigned long rate_error;
408 
409 		if (pll_rate <= 0)
410 			continue;
411 		actual_rate = pll_rate / pdiv_now;
412 		rate_error = abs((long)actual_rate - (long)rate);
413 		if (rate_error < best_rate_error) {
414 			pdiv_best = pdiv_now;
415 			best_rate_error = rate_error;
416 		}
417 		/* TODO: Consider PLL frequency based on smaller n/m values
418 		 * and pick the better one if the error is equal */
419 	}
420 
421 	return rate * pdiv_best;
422 }
423 
424 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
425 		unsigned long *parent_rate)
426 {
427 	unsigned long l_parent_rate = *parent_rate;
428 	u16 divider = cdce925_calc_divider(rate, l_parent_rate);
429 
430 	if (l_parent_rate / divider != rate) {
431 		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
432 		divider = cdce925_calc_divider(rate, l_parent_rate);
433 		*parent_rate = l_parent_rate;
434 	}
435 
436 	if (divider)
437 		return (long)(l_parent_rate / divider);
438 	return 0;
439 }
440 
441 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
442 		unsigned long parent_rate)
443 {
444 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
445 
446 	data->pdiv = cdce925_calc_divider(rate, parent_rate);
447 
448 	return 0;
449 }
450 
451 static const struct clk_ops cdce925_clk_ops = {
452 	.prepare = cdce925_clk_prepare,
453 	.unprepare = cdce925_clk_unprepare,
454 	.recalc_rate = cdce925_clk_recalc_rate,
455 	.round_rate = cdce925_clk_round_rate,
456 	.set_rate = cdce925_clk_set_rate,
457 };
458 
459 
460 static u16 cdce925_y1_calc_divider(unsigned long rate,
461 		unsigned long parent_rate)
462 {
463 	unsigned long divider;
464 
465 	if (!rate)
466 		return 0;
467 	if (rate >= parent_rate)
468 		return 1;
469 
470 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
471 	if (divider > 0x3FF) /* Y1 has 10-bit divider */
472 		divider = 0x3FF;
473 
474 	return (u16)divider;
475 }
476 
477 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
478 		unsigned long *parent_rate)
479 {
480 	unsigned long l_parent_rate = *parent_rate;
481 	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
482 
483 	if (divider)
484 		return (long)(l_parent_rate / divider);
485 	return 0;
486 }
487 
488 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
489 		unsigned long parent_rate)
490 {
491 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
492 
493 	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
494 
495 	return 0;
496 }
497 
498 static const struct clk_ops cdce925_clk_y1_ops = {
499 	.prepare = cdce925_clk_prepare,
500 	.unprepare = cdce925_clk_unprepare,
501 	.recalc_rate = cdce925_clk_recalc_rate,
502 	.round_rate = cdce925_clk_y1_round_rate,
503 	.set_rate = cdce925_clk_y1_set_rate,
504 };
505 
506 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
507 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80
508 
509 static int cdce925_regmap_i2c_write(
510 	void *context, const void *data, size_t count)
511 {
512 	struct device *dev = context;
513 	struct i2c_client *i2c = to_i2c_client(dev);
514 	int ret;
515 	u8 reg_data[2];
516 
517 	if (count != 2)
518 		return -ENOTSUPP;
519 
520 	/* First byte is command code */
521 	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
522 	reg_data[1] = ((u8 *)data)[1];
523 
524 	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
525 			reg_data[0], reg_data[1]);
526 
527 	ret = i2c_master_send(i2c, reg_data, count);
528 	if (likely(ret == count))
529 		return 0;
530 	else if (ret < 0)
531 		return ret;
532 	else
533 		return -EIO;
534 }
535 
536 static int cdce925_regmap_i2c_read(void *context,
537 	   const void *reg, size_t reg_size, void *val, size_t val_size)
538 {
539 	struct device *dev = context;
540 	struct i2c_client *i2c = to_i2c_client(dev);
541 	struct i2c_msg xfer[2];
542 	int ret;
543 	u8 reg_data[2];
544 
545 	if (reg_size != 1)
546 		return -ENOTSUPP;
547 
548 	xfer[0].addr = i2c->addr;
549 	xfer[0].flags = 0;
550 	xfer[0].buf = reg_data;
551 	if (val_size == 1) {
552 		reg_data[0] =
553 			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
554 		xfer[0].len = 1;
555 	} else {
556 		reg_data[0] =
557 			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
558 		reg_data[1] = val_size;
559 		xfer[0].len = 2;
560 	}
561 
562 	xfer[1].addr = i2c->addr;
563 	xfer[1].flags = I2C_M_RD;
564 	xfer[1].len = val_size;
565 	xfer[1].buf = val;
566 
567 	ret = i2c_transfer(i2c->adapter, xfer, 2);
568 	if (likely(ret == 2)) {
569 		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
570 				reg_size, val_size, reg_data[0], *((u8 *)val));
571 		return 0;
572 	} else if (ret < 0)
573 		return ret;
574 	else
575 		return -EIO;
576 }
577 
578 static struct clk_hw *
579 of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
580 {
581 	struct clk_cdce925_chip *data = _data;
582 	unsigned int idx = clkspec->args[0];
583 
584 	if (idx >= ARRAY_SIZE(data->clk)) {
585 		pr_err("%s: invalid index %u\n", __func__, idx);
586 		return ERR_PTR(-EINVAL);
587 	}
588 
589 	return &data->clk[idx].hw;
590 }
591 
592 static int cdce925_regulator_enable(struct device *dev, const char *name)
593 {
594 	int err;
595 
596 	err = devm_regulator_get_enable(dev, name);
597 	if (err)
598 		dev_err_probe(dev, err, "Failed to enable %s:\n", name);
599 
600 	return err;
601 }
602 
603 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
604  * just weird, so just use the single byte mode exclusively. */
605 static struct regmap_bus regmap_cdce925_bus = {
606 	.write = cdce925_regmap_i2c_write,
607 	.read = cdce925_regmap_i2c_read,
608 };
609 
610 static int cdce925_probe(struct i2c_client *client)
611 {
612 	struct clk_cdce925_chip *data;
613 	struct device_node *node = client->dev.of_node;
614 	const char *parent_name;
615 	const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
616 	struct clk_init_data init;
617 	u32 value;
618 	int i;
619 	int err;
620 	struct device_node *np_output;
621 	char child_name[6];
622 	struct regmap_config config = {
623 		.name = "configuration0",
624 		.reg_bits = 8,
625 		.val_bits = 8,
626 		.cache_type = REGCACHE_MAPLE,
627 	};
628 
629 	dev_dbg(&client->dev, "%s\n", __func__);
630 
631 	err = cdce925_regulator_enable(&client->dev, "vdd");
632 	if (err)
633 		return err;
634 
635 	err = cdce925_regulator_enable(&client->dev, "vddout");
636 	if (err)
637 		return err;
638 
639 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
640 	if (!data)
641 		return -ENOMEM;
642 
643 	data->i2c_client = client;
644 	data->chip_info = i2c_get_match_data(client);
645 	config.max_register = CDCE925_OFFSET_PLL +
646 		data->chip_info->num_plls * 0x10 - 1;
647 	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
648 			&client->dev, &config);
649 	if (IS_ERR(data->regmap)) {
650 		dev_err(&client->dev, "failed to allocate register map\n");
651 		return PTR_ERR(data->regmap);
652 	}
653 	i2c_set_clientdata(client, data);
654 
655 	parent_name = of_clk_get_parent_name(node, 0);
656 	if (!parent_name) {
657 		dev_err(&client->dev, "missing parent clock\n");
658 		return -ENODEV;
659 	}
660 	dev_dbg(&client->dev, "parent is: %s\n", parent_name);
661 
662 	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
663 		regmap_write(data->regmap,
664 			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
665 	/* PWDN bit */
666 	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
667 
668 	/* Set input source for Y1 to be the XTAL */
669 	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
670 
671 	init.ops = &cdce925_pll_ops;
672 	init.flags = 0;
673 	init.parent_names = &parent_name;
674 	init.num_parents = 1;
675 
676 	/* Register PLL clocks */
677 	for (i = 0; i < data->chip_info->num_plls; ++i) {
678 		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
679 			client->dev.of_node, i);
680 		if (!pll_clk_name[i]) {
681 			err = -ENOMEM;
682 			goto error;
683 		}
684 		init.name = pll_clk_name[i];
685 		data->pll[i].chip = data;
686 		data->pll[i].hw.init = &init;
687 		data->pll[i].index = i;
688 		err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
689 		if (err) {
690 			dev_err(&client->dev, "Failed register PLL %d\n", i);
691 			goto error;
692 		}
693 		sprintf(child_name, "PLL%d", i+1);
694 		np_output = of_get_child_by_name(node, child_name);
695 		if (!np_output)
696 			continue;
697 		if (!of_property_read_u32(np_output,
698 			"clock-frequency", &value)) {
699 			err = clk_set_rate(data->pll[i].hw.clk, value);
700 			if (err)
701 				dev_err(&client->dev,
702 					"unable to set PLL frequency %ud\n",
703 					value);
704 		}
705 		if (!of_property_read_u32(np_output,
706 			"spread-spectrum", &value)) {
707 			u8 flag = of_property_read_bool(np_output,
708 				"spread-spectrum-center") ? 0x80 : 0x00;
709 			regmap_update_bits(data->regmap,
710 				0x16 + (i*CDCE925_OFFSET_PLL),
711 				0x80, flag);
712 			regmap_update_bits(data->regmap,
713 				0x12 + (i*CDCE925_OFFSET_PLL),
714 				0x07, value & 0x07);
715 		}
716 		of_node_put(np_output);
717 	}
718 
719 	/* Register output clock Y1 */
720 	init.ops = &cdce925_clk_y1_ops;
721 	init.flags = 0;
722 	init.num_parents = 1;
723 	init.parent_names = &parent_name; /* Mux Y1 to input */
724 	init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
725 	if (!init.name) {
726 		err = -ENOMEM;
727 		goto error;
728 	}
729 	data->clk[0].chip = data;
730 	data->clk[0].hw.init = &init;
731 	data->clk[0].index = 0;
732 	data->clk[0].pdiv = 1;
733 	err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
734 	kfree(init.name); /* clock framework made a copy of the name */
735 	if (err) {
736 		dev_err(&client->dev, "clock registration Y1 failed\n");
737 		goto error;
738 	}
739 
740 	/* Register output clocks Y2 .. Y5*/
741 	init.ops = &cdce925_clk_ops;
742 	init.flags = CLK_SET_RATE_PARENT;
743 	init.num_parents = 1;
744 	for (i = 1; i < data->chip_info->num_outputs; ++i) {
745 		init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
746 			client->dev.of_node, i+1);
747 		if (!init.name) {
748 			err = -ENOMEM;
749 			goto error;
750 		}
751 		data->clk[i].chip = data;
752 		data->clk[i].hw.init = &init;
753 		data->clk[i].index = i;
754 		data->clk[i].pdiv = 1;
755 		switch (i) {
756 		case 1:
757 		case 2:
758 			/* Mux Y2/3 to PLL1 */
759 			init.parent_names = &pll_clk_name[0];
760 			break;
761 		case 3:
762 		case 4:
763 			/* Mux Y4/5 to PLL2 */
764 			init.parent_names = &pll_clk_name[1];
765 			break;
766 		case 5:
767 		case 6:
768 			/* Mux Y6/7 to PLL3 */
769 			init.parent_names = &pll_clk_name[2];
770 			break;
771 		case 7:
772 		case 8:
773 			/* Mux Y8/9 to PLL4 */
774 			init.parent_names = &pll_clk_name[3];
775 			break;
776 		}
777 		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
778 		kfree(init.name); /* clock framework made a copy of the name */
779 		if (err) {
780 			dev_err(&client->dev, "clock registration failed\n");
781 			goto error;
782 		}
783 	}
784 
785 	/* Register the output clocks */
786 	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
787 				  data);
788 	if (err)
789 		dev_err(&client->dev, "unable to add OF clock provider\n");
790 
791 	err = 0;
792 
793 error:
794 	for (i = 0; i < data->chip_info->num_plls; ++i)
795 		/* clock framework made a copy of the name */
796 		kfree(pll_clk_name[i]);
797 
798 	return err;
799 }
800 
801 static const struct clk_cdce925_chip_info clk_cdce913_info = {
802 	.num_plls = 1,
803 	.num_outputs = 3,
804 };
805 
806 static const struct clk_cdce925_chip_info clk_cdce925_info = {
807 	.num_plls = 2,
808 	.num_outputs = 5,
809 };
810 
811 static const struct clk_cdce925_chip_info clk_cdce937_info = {
812 	.num_plls = 3,
813 	.num_outputs = 7,
814 };
815 
816 static const struct clk_cdce925_chip_info clk_cdce949_info = {
817 	.num_plls = 4,
818 	.num_outputs = 9,
819 };
820 
821 static const struct i2c_device_id cdce925_id[] = {
822 	{ "cdce913", (kernel_ulong_t)&clk_cdce913_info },
823 	{ "cdce925", (kernel_ulong_t)&clk_cdce925_info },
824 	{ "cdce937", (kernel_ulong_t)&clk_cdce937_info },
825 	{ "cdce949", (kernel_ulong_t)&clk_cdce949_info },
826 	{ }
827 };
828 MODULE_DEVICE_TABLE(i2c, cdce925_id);
829 
830 static const struct of_device_id clk_cdce925_of_match[] = {
831 	{ .compatible = "ti,cdce913", .data = &clk_cdce913_info },
832 	{ .compatible = "ti,cdce925", .data = &clk_cdce925_info },
833 	{ .compatible = "ti,cdce937", .data = &clk_cdce937_info },
834 	{ .compatible = "ti,cdce949", .data = &clk_cdce949_info },
835 	{ }
836 };
837 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
838 
839 static struct i2c_driver cdce925_driver = {
840 	.driver = {
841 		.name = "cdce925",
842 		.of_match_table = clk_cdce925_of_match,
843 	},
844 	.probe		= cdce925_probe,
845 	.id_table	= cdce925_id,
846 };
847 module_i2c_driver(cdce925_driver);
848 
849 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
850 MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
851 MODULE_LICENSE("GPL");
852