xref: /linux/drivers/clk/clk-aspeed.c (revision 18f90d372cf35b387663f1567de701e5393f6eb5)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 #define pr_fmt(fmt) "clk-aspeed: " fmt
4 
5 #include <linux/clk-provider.h>
6 #include <linux/mfd/syscon.h>
7 #include <linux/of_address.h>
8 #include <linux/of_device.h>
9 #include <linux/platform_device.h>
10 #include <linux/regmap.h>
11 #include <linux/reset-controller.h>
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 
15 #include <dt-bindings/clock/aspeed-clock.h>
16 
17 #define ASPEED_NUM_CLKS		36
18 
19 #define ASPEED_RESET2_OFFSET	32
20 
21 #define ASPEED_RESET_CTRL	0x04
22 #define ASPEED_CLK_SELECTION	0x08
23 #define ASPEED_CLK_STOP_CTRL	0x0c
24 #define ASPEED_MPLL_PARAM	0x20
25 #define ASPEED_HPLL_PARAM	0x24
26 #define  AST2500_HPLL_BYPASS_EN	BIT(20)
27 #define  AST2400_HPLL_PROGRAMMED BIT(18)
28 #define  AST2400_HPLL_BYPASS_EN	BIT(17)
29 #define ASPEED_MISC_CTRL	0x2c
30 #define  UART_DIV13_EN		BIT(12)
31 #define ASPEED_STRAP		0x70
32 #define  CLKIN_25MHZ_EN		BIT(23)
33 #define  AST2400_CLK_SOURCE_SEL	BIT(18)
34 #define ASPEED_CLK_SELECTION_2	0xd8
35 #define ASPEED_RESET_CTRL2	0xd4
36 
37 /* Globally visible clocks */
38 static DEFINE_SPINLOCK(aspeed_clk_lock);
39 
40 /* Keeps track of all clocks */
41 static struct clk_hw_onecell_data *aspeed_clk_data;
42 
43 static void __iomem *scu_base;
44 
45 /**
46  * struct aspeed_gate_data - Aspeed gated clocks
47  * @clock_idx: bit used to gate this clock in the clock register
48  * @reset_idx: bit used to reset this IP in the reset register. -1 if no
49  *             reset is required when enabling the clock
50  * @name: the clock name
51  * @parent_name: the name of the parent clock
52  * @flags: standard clock framework flags
53  */
54 struct aspeed_gate_data {
55 	u8		clock_idx;
56 	s8		reset_idx;
57 	const char	*name;
58 	const char	*parent_name;
59 	unsigned long	flags;
60 };
61 
62 /**
63  * struct aspeed_clk_gate - Aspeed specific clk_gate structure
64  * @hw:		handle between common and hardware-specific interfaces
65  * @reg:	register controlling gate
66  * @clock_idx:	bit used to gate this clock in the clock register
67  * @reset_idx:	bit used to reset this IP in the reset register. -1 if no
68  *		reset is required when enabling the clock
69  * @flags:	hardware-specific flags
70  * @lock:	register lock
71  *
72  * Some of the clocks in the Aspeed SoC must be put in reset before enabling.
73  * This modified version of clk_gate allows an optional reset bit to be
74  * specified.
75  */
76 struct aspeed_clk_gate {
77 	struct clk_hw	hw;
78 	struct regmap	*map;
79 	u8		clock_idx;
80 	s8		reset_idx;
81 	u8		flags;
82 	spinlock_t	*lock;
83 };
84 
85 #define to_aspeed_clk_gate(_hw) container_of(_hw, struct aspeed_clk_gate, hw)
86 
87 /* TODO: ask Aspeed about the actual parent data */
88 static const struct aspeed_gate_data aspeed_gates[] = {
89 	/*				 clk rst   name			parent	flags */
90 	[ASPEED_CLK_GATE_ECLK] =	{  0, -1, "eclk-gate",		"eclk",	0 }, /* Video Engine */
91 	[ASPEED_CLK_GATE_GCLK] =	{  1,  7, "gclk-gate",		NULL,	0 }, /* 2D engine */
92 	[ASPEED_CLK_GATE_MCLK] =	{  2, -1, "mclk-gate",		"mpll",	CLK_IS_CRITICAL }, /* SDRAM */
93 	[ASPEED_CLK_GATE_VCLK] =	{  3,  6, "vclk-gate",		NULL,	0 }, /* Video Capture */
94 	[ASPEED_CLK_GATE_BCLK] =	{  4,  8, "bclk-gate",		"bclk",	CLK_IS_CRITICAL }, /* PCIe/PCI */
95 	[ASPEED_CLK_GATE_DCLK] =	{  5, -1, "dclk-gate",		NULL,	CLK_IS_CRITICAL }, /* DAC */
96 	[ASPEED_CLK_GATE_REFCLK] =	{  6, -1, "refclk-gate",	"clkin", CLK_IS_CRITICAL },
97 	[ASPEED_CLK_GATE_USBPORT2CLK] =	{  7,  3, "usb-port2-gate",	NULL,	0 }, /* USB2.0 Host port 2 */
98 	[ASPEED_CLK_GATE_LCLK] =	{  8,  5, "lclk-gate",		NULL,	0 }, /* LPC */
99 	[ASPEED_CLK_GATE_USBUHCICLK] =	{  9, 15, "usb-uhci-gate",	NULL,	0 }, /* USB1.1 (requires port 2 enabled) */
100 	[ASPEED_CLK_GATE_D1CLK] =	{ 10, 13, "d1clk-gate",		NULL,	0 }, /* GFX CRT */
101 	[ASPEED_CLK_GATE_YCLK] =	{ 13,  4, "yclk-gate",		NULL,	0 }, /* HAC */
102 	[ASPEED_CLK_GATE_USBPORT1CLK] = { 14, 14, "usb-port1-gate",	NULL,	0 }, /* USB2 hub/USB2 host port 1/USB1.1 dev */
103 	[ASPEED_CLK_GATE_UART1CLK] =	{ 15, -1, "uart1clk-gate",	"uart",	0 }, /* UART1 */
104 	[ASPEED_CLK_GATE_UART2CLK] =	{ 16, -1, "uart2clk-gate",	"uart",	0 }, /* UART2 */
105 	[ASPEED_CLK_GATE_UART5CLK] =	{ 17, -1, "uart5clk-gate",	"uart",	0 }, /* UART5 */
106 	[ASPEED_CLK_GATE_ESPICLK] =	{ 19, -1, "espiclk-gate",	NULL,	0 }, /* eSPI */
107 	[ASPEED_CLK_GATE_MAC1CLK] =	{ 20, 11, "mac1clk-gate",	"mac",	0 }, /* MAC1 */
108 	[ASPEED_CLK_GATE_MAC2CLK] =	{ 21, 12, "mac2clk-gate",	"mac",	0 }, /* MAC2 */
109 	[ASPEED_CLK_GATE_RSACLK] =	{ 24, -1, "rsaclk-gate",	NULL,	0 }, /* RSA */
110 	[ASPEED_CLK_GATE_UART3CLK] =	{ 25, -1, "uart3clk-gate",	"uart",	0 }, /* UART3 */
111 	[ASPEED_CLK_GATE_UART4CLK] =	{ 26, -1, "uart4clk-gate",	"uart",	0 }, /* UART4 */
112 	[ASPEED_CLK_GATE_SDCLK] =	{ 27, 16, "sdclk-gate",		NULL,	0 }, /* SDIO/SD */
113 	[ASPEED_CLK_GATE_LHCCLK] =	{ 28, -1, "lhclk-gate",		"lhclk", 0 }, /* LPC master/LPC+ */
114 };
115 
116 static const struct clk_div_table ast2500_mac_div_table[] = {
117 	{ 0x0, 4 }, /* Yep, really. Aspeed confirmed this is correct */
118 	{ 0x1, 4 },
119 	{ 0x2, 6 },
120 	{ 0x3, 8 },
121 	{ 0x4, 10 },
122 	{ 0x5, 12 },
123 	{ 0x6, 14 },
124 	{ 0x7, 16 },
125 	{ 0 }
126 };
127 
128 static const struct clk_div_table ast2400_div_table[] = {
129 	{ 0x0, 2 },
130 	{ 0x1, 4 },
131 	{ 0x2, 6 },
132 	{ 0x3, 8 },
133 	{ 0x4, 10 },
134 	{ 0x5, 12 },
135 	{ 0x6, 14 },
136 	{ 0x7, 16 },
137 	{ 0 }
138 };
139 
140 static const struct clk_div_table ast2500_div_table[] = {
141 	{ 0x0, 4 },
142 	{ 0x1, 8 },
143 	{ 0x2, 12 },
144 	{ 0x3, 16 },
145 	{ 0x4, 20 },
146 	{ 0x5, 24 },
147 	{ 0x6, 28 },
148 	{ 0x7, 32 },
149 	{ 0 }
150 };
151 
152 static struct clk_hw *aspeed_ast2400_calc_pll(const char *name, u32 val)
153 {
154 	unsigned int mult, div;
155 
156 	if (val & AST2400_HPLL_BYPASS_EN) {
157 		/* Pass through mode */
158 		mult = div = 1;
159 	} else {
160 		/* F = 24Mhz * (2-OD) * [(N + 2) / (D + 1)] */
161 		u32 n = (val >> 5) & 0x3f;
162 		u32 od = (val >> 4) & 0x1;
163 		u32 d = val & 0xf;
164 
165 		mult = (2 - od) * (n + 2);
166 		div = d + 1;
167 	}
168 	return clk_hw_register_fixed_factor(NULL, name, "clkin", 0,
169 			mult, div);
170 };
171 
172 static struct clk_hw *aspeed_ast2500_calc_pll(const char *name, u32 val)
173 {
174 	unsigned int mult, div;
175 
176 	if (val & AST2500_HPLL_BYPASS_EN) {
177 		/* Pass through mode */
178 		mult = div = 1;
179 	} else {
180 		/* F = clkin * [(M+1) / (N+1)] / (P + 1) */
181 		u32 p = (val >> 13) & 0x3f;
182 		u32 m = (val >> 5) & 0xff;
183 		u32 n = val & 0x1f;
184 
185 		mult = (m + 1) / (n + 1);
186 		div = p + 1;
187 	}
188 
189 	return clk_hw_register_fixed_factor(NULL, name, "clkin", 0,
190 			mult, div);
191 }
192 
193 struct aspeed_clk_soc_data {
194 	const struct clk_div_table *div_table;
195 	const struct clk_div_table *mac_div_table;
196 	struct clk_hw *(*calc_pll)(const char *name, u32 val);
197 };
198 
199 static const struct aspeed_clk_soc_data ast2500_data = {
200 	.div_table = ast2500_div_table,
201 	.mac_div_table = ast2500_mac_div_table,
202 	.calc_pll = aspeed_ast2500_calc_pll,
203 };
204 
205 static const struct aspeed_clk_soc_data ast2400_data = {
206 	.div_table = ast2400_div_table,
207 	.mac_div_table = ast2400_div_table,
208 	.calc_pll = aspeed_ast2400_calc_pll,
209 };
210 
211 static int aspeed_clk_is_enabled(struct clk_hw *hw)
212 {
213 	struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw);
214 	u32 clk = BIT(gate->clock_idx);
215 	u32 rst = BIT(gate->reset_idx);
216 	u32 enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? 0 : clk;
217 	u32 reg;
218 
219 	/*
220 	 * If the IP is in reset, treat the clock as not enabled,
221 	 * this happens with some clocks such as the USB one when
222 	 * coming from cold reset. Without this, aspeed_clk_enable()
223 	 * will fail to lift the reset.
224 	 */
225 	if (gate->reset_idx >= 0) {
226 		regmap_read(gate->map, ASPEED_RESET_CTRL, &reg);
227 		if (reg & rst)
228 			return 0;
229 	}
230 
231 	regmap_read(gate->map, ASPEED_CLK_STOP_CTRL, &reg);
232 
233 	return ((reg & clk) == enval) ? 1 : 0;
234 }
235 
236 static int aspeed_clk_enable(struct clk_hw *hw)
237 {
238 	struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw);
239 	unsigned long flags;
240 	u32 clk = BIT(gate->clock_idx);
241 	u32 rst = BIT(gate->reset_idx);
242 	u32 enval;
243 
244 	spin_lock_irqsave(gate->lock, flags);
245 
246 	if (aspeed_clk_is_enabled(hw)) {
247 		spin_unlock_irqrestore(gate->lock, flags);
248 		return 0;
249 	}
250 
251 	if (gate->reset_idx >= 0) {
252 		/* Put IP in reset */
253 		regmap_update_bits(gate->map, ASPEED_RESET_CTRL, rst, rst);
254 
255 		/* Delay 100us */
256 		udelay(100);
257 	}
258 
259 	/* Enable clock */
260 	enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? 0 : clk;
261 	regmap_update_bits(gate->map, ASPEED_CLK_STOP_CTRL, clk, enval);
262 
263 	if (gate->reset_idx >= 0) {
264 		/* A delay of 10ms is specified by the ASPEED docs */
265 		mdelay(10);
266 
267 		/* Take IP out of reset */
268 		regmap_update_bits(gate->map, ASPEED_RESET_CTRL, rst, 0);
269 	}
270 
271 	spin_unlock_irqrestore(gate->lock, flags);
272 
273 	return 0;
274 }
275 
276 static void aspeed_clk_disable(struct clk_hw *hw)
277 {
278 	struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw);
279 	unsigned long flags;
280 	u32 clk = BIT(gate->clock_idx);
281 	u32 enval;
282 
283 	spin_lock_irqsave(gate->lock, flags);
284 
285 	enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? clk : 0;
286 	regmap_update_bits(gate->map, ASPEED_CLK_STOP_CTRL, clk, enval);
287 
288 	spin_unlock_irqrestore(gate->lock, flags);
289 }
290 
291 static const struct clk_ops aspeed_clk_gate_ops = {
292 	.enable = aspeed_clk_enable,
293 	.disable = aspeed_clk_disable,
294 	.is_enabled = aspeed_clk_is_enabled,
295 };
296 
297 /**
298  * struct aspeed_reset - Aspeed reset controller
299  * @map: regmap to access the containing system controller
300  * @rcdev: reset controller device
301  */
302 struct aspeed_reset {
303 	struct regmap			*map;
304 	struct reset_controller_dev	rcdev;
305 };
306 
307 #define to_aspeed_reset(p) container_of((p), struct aspeed_reset, rcdev)
308 
309 static const u8 aspeed_resets[] = {
310 	/* SCU04 resets */
311 	[ASPEED_RESET_XDMA]	= 25,
312 	[ASPEED_RESET_MCTP]	= 24,
313 	[ASPEED_RESET_ADC]	= 23,
314 	[ASPEED_RESET_JTAG_MASTER] = 22,
315 	[ASPEED_RESET_MIC]	= 18,
316 	[ASPEED_RESET_PWM]	=  9,
317 	[ASPEED_RESET_PECI]	= 10,
318 	[ASPEED_RESET_I2C]	=  2,
319 	[ASPEED_RESET_AHB]	=  1,
320 
321 	/*
322 	 * SCUD4 resets start at an offset to separate them from
323 	 * the SCU04 resets.
324 	 */
325 	[ASPEED_RESET_CRT1]	= ASPEED_RESET2_OFFSET + 5,
326 };
327 
328 static int aspeed_reset_deassert(struct reset_controller_dev *rcdev,
329 				 unsigned long id)
330 {
331 	struct aspeed_reset *ar = to_aspeed_reset(rcdev);
332 	u32 reg = ASPEED_RESET_CTRL;
333 	u32 bit = aspeed_resets[id];
334 
335 	if (bit >= ASPEED_RESET2_OFFSET) {
336 		bit -= ASPEED_RESET2_OFFSET;
337 		reg = ASPEED_RESET_CTRL2;
338 	}
339 
340 	return regmap_update_bits(ar->map, reg, BIT(bit), 0);
341 }
342 
343 static int aspeed_reset_assert(struct reset_controller_dev *rcdev,
344 			       unsigned long id)
345 {
346 	struct aspeed_reset *ar = to_aspeed_reset(rcdev);
347 	u32 reg = ASPEED_RESET_CTRL;
348 	u32 bit = aspeed_resets[id];
349 
350 	if (bit >= ASPEED_RESET2_OFFSET) {
351 		bit -= ASPEED_RESET2_OFFSET;
352 		reg = ASPEED_RESET_CTRL2;
353 	}
354 
355 	return regmap_update_bits(ar->map, reg, BIT(bit), BIT(bit));
356 }
357 
358 static int aspeed_reset_status(struct reset_controller_dev *rcdev,
359 			       unsigned long id)
360 {
361 	struct aspeed_reset *ar = to_aspeed_reset(rcdev);
362 	u32 reg = ASPEED_RESET_CTRL;
363 	u32 bit = aspeed_resets[id];
364 	int ret, val;
365 
366 	if (bit >= ASPEED_RESET2_OFFSET) {
367 		bit -= ASPEED_RESET2_OFFSET;
368 		reg = ASPEED_RESET_CTRL2;
369 	}
370 
371 	ret = regmap_read(ar->map, reg, &val);
372 	if (ret)
373 		return ret;
374 
375 	return !!(val & BIT(bit));
376 }
377 
378 static const struct reset_control_ops aspeed_reset_ops = {
379 	.assert = aspeed_reset_assert,
380 	.deassert = aspeed_reset_deassert,
381 	.status = aspeed_reset_status,
382 };
383 
384 static struct clk_hw *aspeed_clk_hw_register_gate(struct device *dev,
385 		const char *name, const char *parent_name, unsigned long flags,
386 		struct regmap *map, u8 clock_idx, u8 reset_idx,
387 		u8 clk_gate_flags, spinlock_t *lock)
388 {
389 	struct aspeed_clk_gate *gate;
390 	struct clk_init_data init;
391 	struct clk_hw *hw;
392 	int ret;
393 
394 	gate = kzalloc(sizeof(*gate), GFP_KERNEL);
395 	if (!gate)
396 		return ERR_PTR(-ENOMEM);
397 
398 	init.name = name;
399 	init.ops = &aspeed_clk_gate_ops;
400 	init.flags = flags;
401 	init.parent_names = parent_name ? &parent_name : NULL;
402 	init.num_parents = parent_name ? 1 : 0;
403 
404 	gate->map = map;
405 	gate->clock_idx = clock_idx;
406 	gate->reset_idx = reset_idx;
407 	gate->flags = clk_gate_flags;
408 	gate->lock = lock;
409 	gate->hw.init = &init;
410 
411 	hw = &gate->hw;
412 	ret = clk_hw_register(dev, hw);
413 	if (ret) {
414 		kfree(gate);
415 		hw = ERR_PTR(ret);
416 	}
417 
418 	return hw;
419 }
420 
421 static int aspeed_clk_probe(struct platform_device *pdev)
422 {
423 	const struct aspeed_clk_soc_data *soc_data;
424 	struct device *dev = &pdev->dev;
425 	struct aspeed_reset *ar;
426 	struct regmap *map;
427 	struct clk_hw *hw;
428 	u32 val, rate;
429 	int i, ret;
430 
431 	map = syscon_node_to_regmap(dev->of_node);
432 	if (IS_ERR(map)) {
433 		dev_err(dev, "no syscon regmap\n");
434 		return PTR_ERR(map);
435 	}
436 
437 	ar = devm_kzalloc(dev, sizeof(*ar), GFP_KERNEL);
438 	if (!ar)
439 		return -ENOMEM;
440 
441 	ar->map = map;
442 	ar->rcdev.owner = THIS_MODULE;
443 	ar->rcdev.nr_resets = ARRAY_SIZE(aspeed_resets);
444 	ar->rcdev.ops = &aspeed_reset_ops;
445 	ar->rcdev.of_node = dev->of_node;
446 
447 	ret = devm_reset_controller_register(dev, &ar->rcdev);
448 	if (ret) {
449 		dev_err(dev, "could not register reset controller\n");
450 		return ret;
451 	}
452 
453 	/* SoC generations share common layouts but have different divisors */
454 	soc_data = of_device_get_match_data(dev);
455 	if (!soc_data) {
456 		dev_err(dev, "no match data for platform\n");
457 		return -EINVAL;
458 	}
459 
460 	/* UART clock div13 setting */
461 	regmap_read(map, ASPEED_MISC_CTRL, &val);
462 	if (val & UART_DIV13_EN)
463 		rate = 24000000 / 13;
464 	else
465 		rate = 24000000;
466 	/* TODO: Find the parent data for the uart clock */
467 	hw = clk_hw_register_fixed_rate(dev, "uart", NULL, 0, rate);
468 	if (IS_ERR(hw))
469 		return PTR_ERR(hw);
470 	aspeed_clk_data->hws[ASPEED_CLK_UART] = hw;
471 
472 	/*
473 	 * Memory controller (M-PLL) PLL. This clock is configured by the
474 	 * bootloader, and is exposed to Linux as a read-only clock rate.
475 	 */
476 	regmap_read(map, ASPEED_MPLL_PARAM, &val);
477 	hw = soc_data->calc_pll("mpll", val);
478 	if (IS_ERR(hw))
479 		return PTR_ERR(hw);
480 	aspeed_clk_data->hws[ASPEED_CLK_MPLL] =	hw;
481 
482 	/* SD/SDIO clock divider (TODO: There's a gate too) */
483 	hw = clk_hw_register_divider_table(dev, "sdio", "hpll", 0,
484 			scu_base + ASPEED_CLK_SELECTION, 12, 3, 0,
485 			soc_data->div_table,
486 			&aspeed_clk_lock);
487 	if (IS_ERR(hw))
488 		return PTR_ERR(hw);
489 	aspeed_clk_data->hws[ASPEED_CLK_SDIO] = hw;
490 
491 	/* MAC AHB bus clock divider */
492 	hw = clk_hw_register_divider_table(dev, "mac", "hpll", 0,
493 			scu_base + ASPEED_CLK_SELECTION, 16, 3, 0,
494 			soc_data->mac_div_table,
495 			&aspeed_clk_lock);
496 	if (IS_ERR(hw))
497 		return PTR_ERR(hw);
498 	aspeed_clk_data->hws[ASPEED_CLK_MAC] = hw;
499 
500 	/* LPC Host (LHCLK) clock divider */
501 	hw = clk_hw_register_divider_table(dev, "lhclk", "hpll", 0,
502 			scu_base + ASPEED_CLK_SELECTION, 20, 3, 0,
503 			soc_data->div_table,
504 			&aspeed_clk_lock);
505 	if (IS_ERR(hw))
506 		return PTR_ERR(hw);
507 	aspeed_clk_data->hws[ASPEED_CLK_LHCLK] = hw;
508 
509 	/* P-Bus (BCLK) clock divider */
510 	hw = clk_hw_register_divider_table(dev, "bclk", "hpll", 0,
511 			scu_base + ASPEED_CLK_SELECTION_2, 0, 2, 0,
512 			soc_data->div_table,
513 			&aspeed_clk_lock);
514 	if (IS_ERR(hw))
515 		return PTR_ERR(hw);
516 	aspeed_clk_data->hws[ASPEED_CLK_BCLK] = hw;
517 
518 	/* Fixed 24MHz clock */
519 	hw = clk_hw_register_fixed_rate(NULL, "fixed-24m", "clkin",
520 					0, 24000000);
521 	if (IS_ERR(hw))
522 		return PTR_ERR(hw);
523 	aspeed_clk_data->hws[ASPEED_CLK_24M] = hw;
524 
525 	/*
526 	 * TODO: There are a number of clocks that not included in this driver
527 	 * as more information is required:
528 	 *   D2-PLL
529 	 *   D-PLL
530 	 *   YCLK
531 	 *   RGMII
532 	 *   RMII
533 	 *   UART[1..5] clock source mux
534 	 *   Video Engine (ECLK) mux and clock divider
535 	 */
536 
537 	for (i = 0; i < ARRAY_SIZE(aspeed_gates); i++) {
538 		const struct aspeed_gate_data *gd = &aspeed_gates[i];
539 		u32 gate_flags;
540 
541 		/* Special case: the USB port 1 clock (bit 14) is always
542 		 * working the opposite way from the other ones.
543 		 */
544 		gate_flags = (gd->clock_idx == 14) ? 0 : CLK_GATE_SET_TO_DISABLE;
545 		hw = aspeed_clk_hw_register_gate(dev,
546 				gd->name,
547 				gd->parent_name,
548 				gd->flags,
549 				map,
550 				gd->clock_idx,
551 				gd->reset_idx,
552 				gate_flags,
553 				&aspeed_clk_lock);
554 		if (IS_ERR(hw))
555 			return PTR_ERR(hw);
556 		aspeed_clk_data->hws[i] = hw;
557 	}
558 
559 	return 0;
560 };
561 
562 static const struct of_device_id aspeed_clk_dt_ids[] = {
563 	{ .compatible = "aspeed,ast2400-scu", .data = &ast2400_data },
564 	{ .compatible = "aspeed,ast2500-scu", .data = &ast2500_data },
565 	{ }
566 };
567 
568 static struct platform_driver aspeed_clk_driver = {
569 	.probe  = aspeed_clk_probe,
570 	.driver = {
571 		.name = "aspeed-clk",
572 		.of_match_table = aspeed_clk_dt_ids,
573 		.suppress_bind_attrs = true,
574 	},
575 };
576 builtin_platform_driver(aspeed_clk_driver);
577 
578 static void __init aspeed_ast2400_cc(struct regmap *map)
579 {
580 	struct clk_hw *hw;
581 	u32 val, div, clkin, hpll;
582 	const u16 hpll_rates[][4] = {
583 		{384, 360, 336, 408},
584 		{400, 375, 350, 425},
585 	};
586 	int rate;
587 
588 	/*
589 	 * CLKIN is the crystal oscillator, 24, 48 or 25MHz selected by
590 	 * strapping
591 	 */
592 	regmap_read(map, ASPEED_STRAP, &val);
593 	rate = (val >> 8) & 3;
594 	if (val & CLKIN_25MHZ_EN) {
595 		clkin = 25000000;
596 		hpll = hpll_rates[1][rate];
597 	} else if (val & AST2400_CLK_SOURCE_SEL) {
598 		clkin = 48000000;
599 		hpll = hpll_rates[0][rate];
600 	} else {
601 		clkin = 24000000;
602 		hpll = hpll_rates[0][rate];
603 	}
604 	hw = clk_hw_register_fixed_rate(NULL, "clkin", NULL, 0, clkin);
605 	pr_debug("clkin @%u MHz\n", clkin / 1000000);
606 
607 	/*
608 	 * High-speed PLL clock derived from the crystal. This the CPU clock,
609 	 * and we assume that it is enabled. It can be configured through the
610 	 * HPLL_PARAM register, or set to a specified frequency by strapping.
611 	 */
612 	regmap_read(map, ASPEED_HPLL_PARAM, &val);
613 	if (val & AST2400_HPLL_PROGRAMMED)
614 		hw = aspeed_ast2400_calc_pll("hpll", val);
615 	else
616 		hw = clk_hw_register_fixed_rate(NULL, "hpll", "clkin", 0,
617 				hpll * 1000000);
618 
619 	aspeed_clk_data->hws[ASPEED_CLK_HPLL] = hw;
620 
621 	/*
622 	 * Strap bits 11:10 define the CPU/AHB clock frequency ratio (aka HCLK)
623 	 *   00: Select CPU:AHB = 1:1
624 	 *   01: Select CPU:AHB = 2:1
625 	 *   10: Select CPU:AHB = 4:1
626 	 *   11: Select CPU:AHB = 3:1
627 	 */
628 	regmap_read(map, ASPEED_STRAP, &val);
629 	val = (val >> 10) & 0x3;
630 	div = val + 1;
631 	if (div == 3)
632 		div = 4;
633 	else if (div == 4)
634 		div = 3;
635 	hw = clk_hw_register_fixed_factor(NULL, "ahb", "hpll", 0, 1, div);
636 	aspeed_clk_data->hws[ASPEED_CLK_AHB] = hw;
637 
638 	/* APB clock clock selection register SCU08 (aka PCLK) */
639 	hw = clk_hw_register_divider_table(NULL, "apb", "hpll", 0,
640 			scu_base + ASPEED_CLK_SELECTION, 23, 3, 0,
641 			ast2400_div_table,
642 			&aspeed_clk_lock);
643 	aspeed_clk_data->hws[ASPEED_CLK_APB] = hw;
644 }
645 
646 static void __init aspeed_ast2500_cc(struct regmap *map)
647 {
648 	struct clk_hw *hw;
649 	u32 val, freq, div;
650 
651 	/* CLKIN is the crystal oscillator, 24 or 25MHz selected by strapping */
652 	regmap_read(map, ASPEED_STRAP, &val);
653 	if (val & CLKIN_25MHZ_EN)
654 		freq = 25000000;
655 	else
656 		freq = 24000000;
657 	hw = clk_hw_register_fixed_rate(NULL, "clkin", NULL, 0, freq);
658 	pr_debug("clkin @%u MHz\n", freq / 1000000);
659 
660 	/*
661 	 * High-speed PLL clock derived from the crystal. This the CPU clock,
662 	 * and we assume that it is enabled
663 	 */
664 	regmap_read(map, ASPEED_HPLL_PARAM, &val);
665 	aspeed_clk_data->hws[ASPEED_CLK_HPLL] = aspeed_ast2500_calc_pll("hpll", val);
666 
667 	/* Strap bits 11:9 define the AXI/AHB clock frequency ratio (aka HCLK)*/
668 	regmap_read(map, ASPEED_STRAP, &val);
669 	val = (val >> 9) & 0x7;
670 	WARN(val == 0, "strapping is zero: cannot determine ahb clock");
671 	div = 2 * (val + 1);
672 	hw = clk_hw_register_fixed_factor(NULL, "ahb", "hpll", 0, 1, div);
673 	aspeed_clk_data->hws[ASPEED_CLK_AHB] = hw;
674 
675 	/* APB clock clock selection register SCU08 (aka PCLK) */
676 	regmap_read(map, ASPEED_CLK_SELECTION, &val);
677 	val = (val >> 23) & 0x7;
678 	div = 4 * (val + 1);
679 	hw = clk_hw_register_fixed_factor(NULL, "apb", "hpll", 0, 1, div);
680 	aspeed_clk_data->hws[ASPEED_CLK_APB] = hw;
681 };
682 
683 static void __init aspeed_cc_init(struct device_node *np)
684 {
685 	struct regmap *map;
686 	u32 val;
687 	int ret;
688 	int i;
689 
690 	scu_base = of_iomap(np, 0);
691 	if (!scu_base)
692 		return;
693 
694 	aspeed_clk_data = kzalloc(struct_size(aspeed_clk_data, hws,
695 					      ASPEED_NUM_CLKS),
696 				  GFP_KERNEL);
697 	if (!aspeed_clk_data)
698 		return;
699 
700 	/*
701 	 * This way all clocks fetched before the platform device probes,
702 	 * except those we assign here for early use, will be deferred.
703 	 */
704 	for (i = 0; i < ASPEED_NUM_CLKS; i++)
705 		aspeed_clk_data->hws[i] = ERR_PTR(-EPROBE_DEFER);
706 
707 	map = syscon_node_to_regmap(np);
708 	if (IS_ERR(map)) {
709 		pr_err("no syscon regmap\n");
710 		return;
711 	}
712 	/*
713 	 * We check that the regmap works on this very first access,
714 	 * but as this is an MMIO-backed regmap, subsequent regmap
715 	 * access is not going to fail and we skip error checks from
716 	 * this point.
717 	 */
718 	ret = regmap_read(map, ASPEED_STRAP, &val);
719 	if (ret) {
720 		pr_err("failed to read strapping register\n");
721 		return;
722 	}
723 
724 	if (of_device_is_compatible(np, "aspeed,ast2400-scu"))
725 		aspeed_ast2400_cc(map);
726 	else if (of_device_is_compatible(np, "aspeed,ast2500-scu"))
727 		aspeed_ast2500_cc(map);
728 	else
729 		pr_err("unknown platform, failed to add clocks\n");
730 
731 	aspeed_clk_data->num = ASPEED_NUM_CLKS;
732 	ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, aspeed_clk_data);
733 	if (ret)
734 		pr_err("failed to add DT provider: %d\n", ret);
735 };
736 CLK_OF_DECLARE_DRIVER(aspeed_cc_g5, "aspeed,ast2500-scu", aspeed_cc_init);
737 CLK_OF_DECLARE_DRIVER(aspeed_cc_g4, "aspeed,ast2400-scu", aspeed_cc_init);
738