xref: /linux/drivers/clk/bcm/clk-kona.h (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Broadcom Corporation
4  * Copyright 2013 Linaro Limited
5  */
6 
7 #ifndef _CLK_KONA_H
8 #define _CLK_KONA_H
9 
10 #include <linux/kernel.h>
11 #include <linux/list.h>
12 #include <linux/spinlock.h>
13 #include <linux/slab.h>
14 #include <linux/device.h>
15 #include <linux/of.h>
16 #include <linux/clk-provider.h>
17 
18 #define	BILLION		1000000000
19 
20 /* The common clock framework uses u8 to represent a parent index */
21 #define PARENT_COUNT_MAX	((u32)U8_MAX)
22 
23 #define BAD_CLK_INDEX		U8_MAX	/* Can't ever be valid */
24 #define BAD_CLK_NAME		((const char *)-1)
25 
26 #define BAD_SCALED_DIV_VALUE	U64_MAX
27 
28 /*
29  * Utility macros for object flag management.  If possible, flags
30  * should be defined such that 0 is the desired default value.
31  */
32 #define FLAG(type, flag)		BCM_CLK_ ## type ## _FLAGS_ ## flag
33 #define FLAG_SET(obj, type, flag)	((obj)->flags |= FLAG(type, flag))
34 #define FLAG_CLEAR(obj, type, flag)	((obj)->flags &= ~(FLAG(type, flag)))
35 #define FLAG_FLIP(obj, type, flag)	((obj)->flags ^= FLAG(type, flag))
36 #define FLAG_TEST(obj, type, flag)	(!!((obj)->flags & FLAG(type, flag)))
37 
38 /* CCU field state tests */
39 
40 #define ccu_policy_exists(ccu_policy)	((ccu_policy)->enable.offset != 0)
41 
42 /* Clock field state tests */
43 
44 #define policy_exists(policy)		((policy)->offset != 0)
45 
46 #define gate_exists(gate)		FLAG_TEST(gate, GATE, EXISTS)
47 #define gate_is_enabled(gate)		FLAG_TEST(gate, GATE, ENABLED)
48 #define gate_is_hw_controllable(gate)	FLAG_TEST(gate, GATE, HW)
49 #define gate_is_sw_controllable(gate)	FLAG_TEST(gate, GATE, SW)
50 #define gate_is_sw_managed(gate)	FLAG_TEST(gate, GATE, SW_MANAGED)
51 #define gate_is_no_disable(gate)	FLAG_TEST(gate, GATE, NO_DISABLE)
52 
53 #define gate_flip_enabled(gate)		FLAG_FLIP(gate, GATE, ENABLED)
54 
55 #define hyst_exists(hyst)		((hyst)->offset != 0)
56 
57 #define divider_exists(div)		FLAG_TEST(div, DIV, EXISTS)
58 #define divider_is_fixed(div)		FLAG_TEST(div, DIV, FIXED)
59 #define divider_has_fraction(div)	(!divider_is_fixed(div) && \
60 						(div)->u.s.frac_width > 0)
61 
62 #define selector_exists(sel)		((sel)->width != 0)
63 #define trigger_exists(trig)		FLAG_TEST(trig, TRIG, EXISTS)
64 
65 #define policy_lvm_en_exists(enable)	((enable)->offset != 0)
66 #define policy_ctl_exists(control)	((control)->offset != 0)
67 
68 /* Clock type, used to tell common block what it's part of */
69 enum bcm_clk_type {
70 	bcm_clk_none,		/* undefined clock type */
71 	bcm_clk_bus,
72 	bcm_clk_core,
73 	bcm_clk_peri
74 };
75 
76 /*
77  * CCU policy control for clocks.  Clocks can be enabled or disabled
78  * based on the CCU policy in effect.  One bit in each policy mask
79  * register (one per CCU policy) represents whether the clock is
80  * enabled when that policy is effect or not.  The CCU policy engine
81  * must be stopped to update these bits, and must be restarted again
82  * afterward.
83  */
84 struct bcm_clk_policy {
85 	u32 offset;		/* first policy mask register offset */
86 	u32 bit;		/* bit used in all mask registers */
87 };
88 
89 /* Policy initialization macro */
90 
91 #define POLICY(_offset, _bit)						\
92 	{								\
93 		.offset = (_offset),					\
94 		.bit = (_bit),						\
95 	}
96 
97 /*
98  * Gating control and status is managed by a 32-bit gate register.
99  *
100  * There are several types of gating available:
101  * - (no gate)
102  *     A clock with no gate is assumed to be always enabled.
103  * - hardware-only gating (auto-gating)
104  *     Enabling or disabling clocks with this type of gate is
105  *     managed automatically by the hardware.  Such clocks can be
106  *     considered by the software to be enabled.  The current status
107  *     of auto-gated clocks can be read from the gate status bit.
108  * - software-only gating
109  *     Auto-gating is not available for this type of clock.
110  *     Instead, software manages whether it's enabled by setting or
111  *     clearing the enable bit.  The current gate status of a gate
112  *     under software control can be read from the gate status bit.
113  *     To ensure a change to the gating status is complete, the
114  *     status bit can be polled to verify that the gate has entered
115  *     the desired state.
116  * - selectable hardware or software gating
117  *     Gating for this type of clock can be configured to be either
118  *     under software or hardware control.  Which type is in use is
119  *     determined by the hw_sw_sel bit of the gate register.
120  */
121 struct bcm_clk_gate {
122 	u32 offset;		/* gate register offset */
123 	u32 status_bit;		/* 0: gate is disabled; 0: gatge is enabled */
124 	u32 en_bit;		/* 0: disable; 1: enable */
125 	u32 hw_sw_sel_bit;	/* 0: hardware gating; 1: software gating */
126 	u32 flags;		/* BCM_CLK_GATE_FLAGS_* below */
127 };
128 
129 /*
130  * Gate flags:
131  *   HW         means this gate can be auto-gated
132  *   SW         means the state of this gate can be software controlled
133  *   NO_DISABLE means this gate is (only) enabled if under software control
134  *   SW_MANAGED means the status of this gate is under software control
135  *   ENABLED    means this software-managed gate is *supposed* to be enabled
136  */
137 #define BCM_CLK_GATE_FLAGS_EXISTS	((u32)1 << 0)	/* Gate is valid */
138 #define BCM_CLK_GATE_FLAGS_HW		((u32)1 << 1)	/* Can auto-gate */
139 #define BCM_CLK_GATE_FLAGS_SW		((u32)1 << 2)	/* Software control */
140 #define BCM_CLK_GATE_FLAGS_NO_DISABLE	((u32)1 << 3)	/* HW or enabled */
141 #define BCM_CLK_GATE_FLAGS_SW_MANAGED	((u32)1 << 4)	/* SW now in control */
142 #define BCM_CLK_GATE_FLAGS_ENABLED	((u32)1 << 5)	/* If SW_MANAGED */
143 
144 /*
145  * Gate initialization macros.
146  *
147  * Any gate initially under software control will be enabled.
148  */
149 
150 /* A hardware/software gate initially under software control */
151 #define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
152 	{								\
153 		.offset = (_offset),					\
154 		.status_bit = (_status_bit),				\
155 		.en_bit = (_en_bit),					\
156 		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
157 		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
158 			FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)|	\
159 			FLAG(GATE, EXISTS),				\
160 	}
161 
162 /* A hardware/software gate initially under hardware control */
163 #define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
164 	{								\
165 		.offset = (_offset),					\
166 		.status_bit = (_status_bit),				\
167 		.en_bit = (_en_bit),					\
168 		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
169 		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
170 			FLAG(GATE, EXISTS),				\
171 	}
172 
173 /* A hardware-or-enabled gate (enabled if not under hardware control) */
174 #define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
175 	{								\
176 		.offset = (_offset),					\
177 		.status_bit = (_status_bit),				\
178 		.en_bit = (_en_bit),					\
179 		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
180 		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
181 			FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS),	\
182 	}
183 
184 /* A software-only gate */
185 #define SW_ONLY_GATE(_offset, _status_bit, _en_bit)			\
186 	{								\
187 		.offset = (_offset),					\
188 		.status_bit = (_status_bit),				\
189 		.en_bit = (_en_bit),					\
190 		.flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)|		\
191 			FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS),		\
192 	}
193 
194 /* A hardware-only gate */
195 #define HW_ONLY_GATE(_offset, _status_bit)				\
196 	{								\
197 		.offset = (_offset),					\
198 		.status_bit = (_status_bit),				\
199 		.flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS),		\
200 	}
201 
202 /* Gate hysteresis for clocks */
203 struct bcm_clk_hyst {
204 	u32 offset;		/* hyst register offset (normally CLKGATE) */
205 	u32 en_bit;		/* bit used to enable hysteresis */
206 	u32 val_bit;		/* if enabled: 0 = low delay; 1 = high delay */
207 };
208 
209 /* Hysteresis initialization macro */
210 
211 #define HYST(_offset, _en_bit, _val_bit)				\
212 	{								\
213 		.offset = (_offset),					\
214 		.en_bit = (_en_bit),					\
215 		.val_bit = (_val_bit),					\
216 	}
217 
218 /*
219  * Each clock can have zero, one, or two dividers which change the
220  * output rate of the clock.  Each divider can be either fixed or
221  * variable.  If there are two dividers, they are the "pre-divider"
222  * and the "regular" or "downstream" divider.  If there is only one,
223  * there is no pre-divider.
224  *
225  * A fixed divider is any non-zero (positive) value, and it
226  * indicates how the input rate is affected by the divider.
227  *
228  * The value of a variable divider is maintained in a sub-field of a
229  * 32-bit divider register.  The position of the field in the
230  * register is defined by its offset and width.  The value recorded
231  * in this field is always 1 less than the value it represents.
232  *
233  * In addition, a variable divider can indicate that some subset
234  * of its bits represent a "fractional" part of the divider.  Such
235  * bits comprise the low-order portion of the divider field, and can
236  * be viewed as representing the portion of the divider that lies to
237  * the right of the decimal point.  Most variable dividers have zero
238  * fractional bits.  Variable dividers with non-zero fraction width
239  * still record a value 1 less than the value they represent; the
240  * added 1 does *not* affect the low-order bit in this case, it
241  * affects the bits above the fractional part only.  (Often in this
242  * code a divider field value is distinguished from the value it
243  * represents by referring to the latter as a "divisor".)
244  *
245  * In order to avoid dealing with fractions, divider arithmetic is
246  * performed using "scaled" values.  A scaled value is one that's
247  * been left-shifted by the fractional width of a divider.  Dividing
248  * a scaled value by a scaled divisor produces the desired quotient
249  * without loss of precision and without any other special handling
250  * for fractions.
251  *
252  * The recorded value of a variable divider can be modified.  To
253  * modify either divider (or both), a clock must be enabled (i.e.,
254  * using its gate).  In addition, a trigger register (described
255  * below) must be used to commit the change, and polled to verify
256  * the change is complete.
257  */
258 struct bcm_clk_div {
259 	union {
260 		struct {	/* variable divider */
261 			u32 offset;	/* divider register offset */
262 			u32 shift;	/* field shift */
263 			u32 width;	/* field width */
264 			u32 frac_width;	/* field fraction width */
265 
266 			u64 scaled_div;	/* scaled divider value */
267 		} s;
268 		u32 fixed;	/* non-zero fixed divider value */
269 	} u;
270 	u32 flags;		/* BCM_CLK_DIV_FLAGS_* below */
271 };
272 
273 /*
274  * Divider flags:
275  *   EXISTS means this divider exists
276  *   FIXED means it is a fixed-rate divider
277  */
278 #define BCM_CLK_DIV_FLAGS_EXISTS	((u32)1 << 0)	/* Divider is valid */
279 #define BCM_CLK_DIV_FLAGS_FIXED		((u32)1 << 1)	/* Fixed-value */
280 
281 /* Divider initialization macros */
282 
283 /* A fixed (non-zero) divider */
284 #define FIXED_DIVIDER(_value)						\
285 	{								\
286 		.u.fixed = (_value),					\
287 		.flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED),		\
288 	}
289 
290 /* A divider with an integral divisor */
291 #define DIVIDER(_offset, _shift, _width)				\
292 	{								\
293 		.u.s.offset = (_offset),				\
294 		.u.s.shift = (_shift),					\
295 		.u.s.width = (_width),					\
296 		.u.s.scaled_div = BAD_SCALED_DIV_VALUE,			\
297 		.flags = FLAG(DIV, EXISTS),				\
298 	}
299 
300 /* A divider whose divisor has an integer and fractional part */
301 #define FRAC_DIVIDER(_offset, _shift, _width, _frac_width)		\
302 	{								\
303 		.u.s.offset = (_offset),				\
304 		.u.s.shift = (_shift),					\
305 		.u.s.width = (_width),					\
306 		.u.s.frac_width = (_frac_width),			\
307 		.u.s.scaled_div = BAD_SCALED_DIV_VALUE,			\
308 		.flags = FLAG(DIV, EXISTS),				\
309 	}
310 
311 /*
312  * Clocks may have multiple "parent" clocks.  If there is more than
313  * one, a selector must be specified to define which of the parent
314  * clocks is currently in use.  The selected clock is indicated in a
315  * sub-field of a 32-bit selector register.  The range of
316  * representable selector values typically exceeds the number of
317  * available parent clocks.  Occasionally the reset value of a
318  * selector field is explicitly set to a (specific) value that does
319  * not correspond to a defined input clock.
320  *
321  * We register all known parent clocks with the common clock code
322  * using a packed array (i.e., no empty slots) of (parent) clock
323  * names, and refer to them later using indexes into that array.
324  * We maintain an array of selector values indexed by common clock
325  * index values in order to map between these common clock indexes
326  * and the selector values used by the hardware.
327  *
328  * Like dividers, a selector can be modified, but to do so a clock
329  * must be enabled, and a trigger must be used to commit the change.
330  */
331 struct bcm_clk_sel {
332 	u32 offset;		/* selector register offset */
333 	u32 shift;		/* field shift */
334 	u32 width;		/* field width */
335 
336 	u32 parent_count;	/* number of entries in parent_sel[] */
337 	u32 *parent_sel;	/* array of parent selector values */
338 	u8 clk_index;		/* current selected index in parent_sel[] */
339 };
340 
341 /* Selector initialization macro */
342 #define SELECTOR(_offset, _shift, _width)				\
343 	{								\
344 		.offset = (_offset),					\
345 		.shift = (_shift),					\
346 		.width = (_width),					\
347 		.clk_index = BAD_CLK_INDEX,				\
348 	}
349 
350 /*
351  * Making changes to a variable divider or a selector for a clock
352  * requires the use of a trigger.  A trigger is defined by a single
353  * bit within a register.  To signal a change, a 1 is written into
354  * that bit.  To determine when the change has been completed, that
355  * trigger bit is polled; the read value will be 1 while the change
356  * is in progress, and 0 when it is complete.
357  *
358  * Occasionally a clock will have more than one trigger.  In this
359  * case, the "pre-trigger" will be used when changing a clock's
360  * selector and/or its pre-divider.
361  */
362 struct bcm_clk_trig {
363 	u32 offset;		/* trigger register offset */
364 	u32 bit;		/* trigger bit */
365 	u32 flags;		/* BCM_CLK_TRIG_FLAGS_* below */
366 };
367 
368 /*
369  * Trigger flags:
370  *   EXISTS means this trigger exists
371  */
372 #define BCM_CLK_TRIG_FLAGS_EXISTS	((u32)1 << 0)	/* Trigger is valid */
373 
374 /* Trigger initialization macro */
375 #define TRIGGER(_offset, _bit)						\
376 	{								\
377 		.offset = (_offset),					\
378 		.bit = (_bit),						\
379 		.flags = FLAG(TRIG, EXISTS),				\
380 	}
381 
382 struct peri_clk_data {
383 	struct bcm_clk_policy policy;
384 	struct bcm_clk_gate gate;
385 	struct bcm_clk_hyst hyst;
386 	struct bcm_clk_trig pre_trig;
387 	struct bcm_clk_div pre_div;
388 	struct bcm_clk_trig trig;
389 	struct bcm_clk_div div;
390 	struct bcm_clk_sel sel;
391 	const char *clocks[];	/* must be last; use CLOCKS() to declare */
392 };
393 #define CLOCKS(...)	{ __VA_ARGS__, NULL, }
394 #define NO_CLOCKS	{ NULL, }	/* Must use of no parent clocks */
395 
396 struct kona_clk {
397 	struct clk_hw hw;
398 	struct clk_init_data init_data;	/* includes name of this clock */
399 	struct ccu_data *ccu;	/* ccu this clock is associated with */
400 	enum bcm_clk_type type;
401 	union {
402 		void *data;
403 		struct peri_clk_data *peri;
404 	} u;
405 };
406 #define to_kona_clk(_hw) \
407 	container_of(_hw, struct kona_clk, hw)
408 
409 /* Initialization macro for an entry in a CCU's kona_clks[] array. */
410 #define KONA_CLK(_ccu_name, _clk_name, _type)				\
411 	{								\
412 		.init_data	= {					\
413 			.name = #_clk_name,				\
414 			.ops = &kona_ ## _type ## _clk_ops,		\
415 		},							\
416 		.ccu		= &_ccu_name ## _ccu_data,		\
417 		.type		= bcm_clk_ ## _type,			\
418 		.u.data		= &_clk_name ## _data,			\
419 	}
420 #define LAST_KONA_CLK	{ .type = bcm_clk_none }
421 
422 /*
423  * CCU policy control.  To enable software update of the policy
424  * tables the CCU policy engine must be stopped by setting the
425  * software update enable bit (LVM_EN).  After an update the engine
426  * is restarted using the GO bit and either the GO_ATL or GO_AC bit.
427  */
428 struct bcm_lvm_en {
429 	u32 offset;		/* LVM_EN register offset */
430 	u32 bit;		/* POLICY_CONFIG_EN bit in register */
431 };
432 
433 /* Policy enable initialization macro */
434 #define CCU_LVM_EN(_offset, _bit)					\
435 	{								\
436 		.offset = (_offset),					\
437 		.bit = (_bit),						\
438 	}
439 
440 struct bcm_policy_ctl {
441 	u32 offset;		/* POLICY_CTL register offset */
442 	u32 go_bit;
443 	u32 atl_bit;		/* GO, GO_ATL, and GO_AC bits */
444 	u32 ac_bit;
445 };
446 
447 /* Policy control initialization macro */
448 #define CCU_POLICY_CTL(_offset, _go_bit, _ac_bit, _atl_bit)		\
449 	{								\
450 		.offset = (_offset),					\
451 		.go_bit = (_go_bit),					\
452 		.ac_bit = (_ac_bit),					\
453 		.atl_bit = (_atl_bit),					\
454 	}
455 
456 struct ccu_policy {
457 	struct bcm_lvm_en enable;
458 	struct bcm_policy_ctl control;
459 };
460 
461 /*
462  * Each CCU defines a mapped area of memory containing registers
463  * used to manage clocks implemented by the CCU.  Access to memory
464  * within the CCU's space is serialized by a spinlock.  Before any
465  * (other) address can be written, a special access "password" value
466  * must be written to its WR_ACCESS register (located at the base
467  * address of the range).  We keep track of the name of each CCU as
468  * it is set up, and maintain them in a list.
469  */
470 struct ccu_data {
471 	void __iomem *base;	/* base of mapped address space */
472 	spinlock_t lock;	/* serialization lock */
473 	bool write_enabled;	/* write access is currently enabled */
474 	struct ccu_policy policy;
475 	struct device_node *node;
476 	size_t clk_num;
477 	const char *name;
478 	u32 range;		/* byte range of address space */
479 	struct kona_clk kona_clks[];	/* must be last */
480 };
481 
482 /* Initialization for common fields in a Kona ccu_data structure */
483 #define KONA_CCU_COMMON(_prefix, _name, _ccuname)			    \
484 	.name		= #_name "_ccu",				    \
485 	.lock		= __SPIN_LOCK_UNLOCKED(_name ## _ccu_data.lock),    \
486 	.clk_num	= _prefix ## _ ## _ccuname ## _CCU_CLOCK_COUNT
487 
488 /* Exported globals */
489 
490 extern struct clk_ops kona_peri_clk_ops;
491 
492 /* Externally visible functions */
493 
494 extern u64 scaled_div_max(struct bcm_clk_div *div);
495 extern u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value,
496 				u32 billionths);
497 
498 extern void __init kona_dt_ccu_setup(struct ccu_data *ccu,
499 				struct device_node *node);
500 extern bool __init kona_ccu_init(struct ccu_data *ccu);
501 
502 #endif /* _CLK_KONA_H */
503