1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Broadcom Corporation 4 * Copyright 2013 Linaro Limited 5 */ 6 7 #include "clk-kona.h" 8 9 #include <linux/delay.h> 10 #include <linux/io.h> 11 #include <linux/kernel.h> 12 #include <linux/clk-provider.h> 13 14 /* 15 * "Policies" affect the frequencies of bus clocks provided by a 16 * CCU. (I believe these polices are named "Deep Sleep", "Economy", 17 * "Normal", and "Turbo".) A lower policy number has lower power 18 * consumption, and policy 2 is the default. 19 */ 20 #define CCU_POLICY_COUNT 4 21 22 #define CCU_ACCESS_PASSWORD 0xA5A500 23 #define CLK_GATE_DELAY_LOOP 2000 24 25 /* Bitfield operations */ 26 27 /* Produces a mask of set bits covering a range of a 32-bit value */ 28 static inline u32 bitfield_mask(u32 shift, u32 width) 29 { 30 return ((1 << width) - 1) << shift; 31 } 32 33 /* Extract the value of a bitfield found within a given register value */ 34 static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width) 35 { 36 return (reg_val & bitfield_mask(shift, width)) >> shift; 37 } 38 39 /* Replace the value of a bitfield found within a given register value */ 40 static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val) 41 { 42 u32 mask = bitfield_mask(shift, width); 43 44 return (reg_val & ~mask) | (val << shift); 45 } 46 47 /* Divider and scaling helpers */ 48 49 /* Convert a divider into the scaled divisor value it represents. */ 50 static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div) 51 { 52 return (u64)reg_div + ((u64)1 << div->u.s.frac_width); 53 } 54 55 /* 56 * Build a scaled divider value as close as possible to the 57 * given whole part (div_value) and fractional part (expressed 58 * in billionths). 59 */ 60 u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths) 61 { 62 u64 combined; 63 64 BUG_ON(!div_value); 65 BUG_ON(billionths >= BILLION); 66 67 combined = (u64)div_value * BILLION + billionths; 68 combined <<= div->u.s.frac_width; 69 70 return DIV_ROUND_CLOSEST_ULL(combined, BILLION); 71 } 72 73 /* The scaled minimum divisor representable by a divider */ 74 static inline u64 75 scaled_div_min(struct bcm_clk_div *div) 76 { 77 if (divider_is_fixed(div)) 78 return (u64)div->u.fixed; 79 80 return scaled_div_value(div, 0); 81 } 82 83 /* The scaled maximum divisor representable by a divider */ 84 u64 scaled_div_max(struct bcm_clk_div *div) 85 { 86 u32 reg_div; 87 88 if (divider_is_fixed(div)) 89 return (u64)div->u.fixed; 90 91 reg_div = ((u32)1 << div->u.s.width) - 1; 92 93 return scaled_div_value(div, reg_div); 94 } 95 96 /* 97 * Convert a scaled divisor into its divider representation as 98 * stored in a divider register field. 99 */ 100 static inline u32 101 divider(struct bcm_clk_div *div, u64 scaled_div) 102 { 103 BUG_ON(scaled_div < scaled_div_min(div)); 104 BUG_ON(scaled_div > scaled_div_max(div)); 105 106 return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width)); 107 } 108 109 /* Return a rate scaled for use when dividing by a scaled divisor. */ 110 static inline u64 111 scale_rate(struct bcm_clk_div *div, u32 rate) 112 { 113 if (divider_is_fixed(div)) 114 return (u64)rate; 115 116 return (u64)rate << div->u.s.frac_width; 117 } 118 119 /* CCU access */ 120 121 /* Read a 32-bit register value from a CCU's address space. */ 122 static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset) 123 { 124 return readl(ccu->base + reg_offset); 125 } 126 127 /* Write a 32-bit register value into a CCU's address space. */ 128 static inline void 129 __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val) 130 { 131 writel(reg_val, ccu->base + reg_offset); 132 } 133 134 static inline unsigned long ccu_lock(struct ccu_data *ccu) 135 { 136 unsigned long flags; 137 138 spin_lock_irqsave(&ccu->lock, flags); 139 140 return flags; 141 } 142 static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags) 143 { 144 spin_unlock_irqrestore(&ccu->lock, flags); 145 } 146 147 /* 148 * Enable/disable write access to CCU protected registers. The 149 * WR_ACCESS register for all CCUs is at offset 0. 150 */ 151 static inline void __ccu_write_enable(struct ccu_data *ccu) 152 { 153 if (ccu->write_enabled) { 154 pr_err("%s: access already enabled for %s\n", __func__, 155 ccu->name); 156 return; 157 } 158 ccu->write_enabled = true; 159 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1); 160 } 161 162 static inline void __ccu_write_disable(struct ccu_data *ccu) 163 { 164 if (!ccu->write_enabled) { 165 pr_err("%s: access wasn't enabled for %s\n", __func__, 166 ccu->name); 167 return; 168 } 169 170 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD); 171 ccu->write_enabled = false; 172 } 173 174 /* 175 * Poll a register in a CCU's address space, returning when the 176 * specified bit in that register's value is set (or clear). Delay 177 * a microsecond after each read of the register. Returns true if 178 * successful, or false if we gave up trying. 179 * 180 * Caller must ensure the CCU lock is held. 181 */ 182 static inline bool 183 __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want) 184 { 185 unsigned int tries; 186 u32 bit_mask = 1 << bit; 187 188 for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) { 189 u32 val; 190 bool bit_val; 191 192 val = __ccu_read(ccu, reg_offset); 193 bit_val = (val & bit_mask) != 0; 194 if (bit_val == want) 195 return true; 196 udelay(1); 197 } 198 pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__, 199 ccu->name, reg_offset, bit, want ? "set" : "clear"); 200 201 return false; 202 } 203 204 /* Policy operations */ 205 206 static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync) 207 { 208 struct bcm_policy_ctl *control = &ccu->policy.control; 209 u32 offset; 210 u32 go_bit; 211 u32 mask; 212 bool ret; 213 214 /* If we don't need to control policy for this CCU, we're done. */ 215 if (!policy_ctl_exists(control)) 216 return true; 217 218 offset = control->offset; 219 go_bit = control->go_bit; 220 221 /* Ensure we're not busy before we start */ 222 ret = __ccu_wait_bit(ccu, offset, go_bit, false); 223 if (!ret) { 224 pr_err("%s: ccu %s policy engine wouldn't go idle\n", 225 __func__, ccu->name); 226 return false; 227 } 228 229 /* 230 * If it's a synchronous request, we'll wait for the voltage 231 * and frequency of the active load to stabilize before 232 * returning. To do this we select the active load by 233 * setting the ATL bit. 234 * 235 * An asynchronous request instead ramps the voltage in the 236 * background, and when that process stabilizes, the target 237 * load is copied to the active load and the CCU frequency 238 * is switched. We do this by selecting the target load 239 * (ATL bit clear) and setting the request auto-copy (AC bit 240 * set). 241 * 242 * Note, we do NOT read-modify-write this register. 243 */ 244 mask = (u32)1 << go_bit; 245 if (sync) 246 mask |= 1 << control->atl_bit; 247 else 248 mask |= 1 << control->ac_bit; 249 __ccu_write(ccu, offset, mask); 250 251 /* Wait for indication that operation is complete. */ 252 ret = __ccu_wait_bit(ccu, offset, go_bit, false); 253 if (!ret) 254 pr_err("%s: ccu %s policy engine never started\n", 255 __func__, ccu->name); 256 257 return ret; 258 } 259 260 static bool __ccu_policy_engine_stop(struct ccu_data *ccu) 261 { 262 struct bcm_lvm_en *enable = &ccu->policy.enable; 263 u32 offset; 264 u32 enable_bit; 265 bool ret; 266 267 /* If we don't need to control policy for this CCU, we're done. */ 268 if (!policy_lvm_en_exists(enable)) 269 return true; 270 271 /* Ensure we're not busy before we start */ 272 offset = enable->offset; 273 enable_bit = enable->bit; 274 ret = __ccu_wait_bit(ccu, offset, enable_bit, false); 275 if (!ret) { 276 pr_err("%s: ccu %s policy engine already stopped\n", 277 __func__, ccu->name); 278 return false; 279 } 280 281 /* Now set the bit to stop the engine (NO read-modify-write) */ 282 __ccu_write(ccu, offset, (u32)1 << enable_bit); 283 284 /* Wait for indication that it has stopped. */ 285 ret = __ccu_wait_bit(ccu, offset, enable_bit, false); 286 if (!ret) 287 pr_err("%s: ccu %s policy engine never stopped\n", 288 __func__, ccu->name); 289 290 return ret; 291 } 292 293 /* 294 * A CCU has four operating conditions ("policies"), and some clocks 295 * can be disabled or enabled based on which policy is currently in 296 * effect. Such clocks have a bit in a "policy mask" register for 297 * each policy indicating whether the clock is enabled for that 298 * policy or not. The bit position for a clock is the same for all 299 * four registers, and the 32-bit registers are at consecutive 300 * addresses. 301 */ 302 static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy) 303 { 304 u32 offset; 305 u32 mask; 306 int i; 307 bool ret; 308 309 if (!policy_exists(policy)) 310 return true; 311 312 /* 313 * We need to stop the CCU policy engine to allow update 314 * of our policy bits. 315 */ 316 if (!__ccu_policy_engine_stop(ccu)) { 317 pr_err("%s: unable to stop CCU %s policy engine\n", 318 __func__, ccu->name); 319 return false; 320 } 321 322 /* 323 * For now, if a clock defines its policy bit we just mark 324 * it "enabled" for all four policies. 325 */ 326 offset = policy->offset; 327 mask = (u32)1 << policy->bit; 328 for (i = 0; i < CCU_POLICY_COUNT; i++) { 329 u32 reg_val; 330 331 reg_val = __ccu_read(ccu, offset); 332 reg_val |= mask; 333 __ccu_write(ccu, offset, reg_val); 334 offset += sizeof(u32); 335 } 336 337 /* We're done updating; fire up the policy engine again. */ 338 ret = __ccu_policy_engine_start(ccu, true); 339 if (!ret) 340 pr_err("%s: unable to restart CCU %s policy engine\n", 341 __func__, ccu->name); 342 343 return ret; 344 } 345 346 /* Gate operations */ 347 348 /* Determine whether a clock is gated. CCU lock must be held. */ 349 static bool 350 __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate) 351 { 352 u32 bit_mask; 353 u32 reg_val; 354 355 /* If there is no gate we can assume it's enabled. */ 356 if (!gate_exists(gate)) 357 return true; 358 359 bit_mask = 1 << gate->status_bit; 360 reg_val = __ccu_read(ccu, gate->offset); 361 362 return (reg_val & bit_mask) != 0; 363 } 364 365 /* Determine whether a clock is gated. */ 366 static bool 367 is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate) 368 { 369 long flags; 370 bool ret; 371 372 /* Avoid taking the lock if we can */ 373 if (!gate_exists(gate)) 374 return true; 375 376 flags = ccu_lock(ccu); 377 ret = __is_clk_gate_enabled(ccu, gate); 378 ccu_unlock(ccu, flags); 379 380 return ret; 381 } 382 383 /* 384 * Commit our desired gate state to the hardware. 385 * Returns true if successful, false otherwise. 386 */ 387 static bool 388 __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate) 389 { 390 u32 reg_val; 391 u32 mask; 392 bool enabled = false; 393 394 BUG_ON(!gate_exists(gate)); 395 if (!gate_is_sw_controllable(gate)) 396 return true; /* Nothing we can change */ 397 398 reg_val = __ccu_read(ccu, gate->offset); 399 400 /* For a hardware/software gate, set which is in control */ 401 if (gate_is_hw_controllable(gate)) { 402 mask = (u32)1 << gate->hw_sw_sel_bit; 403 if (gate_is_sw_managed(gate)) 404 reg_val |= mask; 405 else 406 reg_val &= ~mask; 407 } 408 409 /* 410 * If software is in control, enable or disable the gate. 411 * If hardware is, clear the enabled bit for good measure. 412 * If a software controlled gate can't be disabled, we're 413 * required to write a 0 into the enable bit (but the gate 414 * will be enabled). 415 */ 416 mask = (u32)1 << gate->en_bit; 417 if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) && 418 !gate_is_no_disable(gate)) 419 reg_val |= mask; 420 else 421 reg_val &= ~mask; 422 423 __ccu_write(ccu, gate->offset, reg_val); 424 425 /* For a hardware controlled gate, we're done */ 426 if (!gate_is_sw_managed(gate)) 427 return true; 428 429 /* Otherwise wait for the gate to be in desired state */ 430 return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled); 431 } 432 433 /* 434 * Initialize a gate. Our desired state (hardware/software select, 435 * and if software, its enable state) is committed to hardware 436 * without the usual checks to see if it's already set up that way. 437 * Returns true if successful, false otherwise. 438 */ 439 static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate) 440 { 441 if (!gate_exists(gate)) 442 return true; 443 return __gate_commit(ccu, gate); 444 } 445 446 /* 447 * Set a gate to enabled or disabled state. Does nothing if the 448 * gate is not currently under software control, or if it is already 449 * in the requested state. Returns true if successful, false 450 * otherwise. CCU lock must be held. 451 */ 452 static bool 453 __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable) 454 { 455 bool ret; 456 457 if (!gate_exists(gate) || !gate_is_sw_managed(gate)) 458 return true; /* Nothing to do */ 459 460 if (!enable && gate_is_no_disable(gate)) { 461 pr_warn("%s: invalid gate disable request (ignoring)\n", 462 __func__); 463 return true; 464 } 465 466 if (enable == gate_is_enabled(gate)) 467 return true; /* No change */ 468 469 gate_flip_enabled(gate); 470 ret = __gate_commit(ccu, gate); 471 if (!ret) 472 gate_flip_enabled(gate); /* Revert the change */ 473 474 return ret; 475 } 476 477 /* Enable or disable a gate. Returns 0 if successful, -EIO otherwise */ 478 static int clk_gate(struct ccu_data *ccu, const char *name, 479 struct bcm_clk_gate *gate, bool enable) 480 { 481 unsigned long flags; 482 bool success; 483 484 /* 485 * Avoid taking the lock if we can. We quietly ignore 486 * requests to change state that don't make sense. 487 */ 488 if (!gate_exists(gate) || !gate_is_sw_managed(gate)) 489 return 0; 490 if (!enable && gate_is_no_disable(gate)) 491 return 0; 492 493 flags = ccu_lock(ccu); 494 __ccu_write_enable(ccu); 495 496 success = __clk_gate(ccu, gate, enable); 497 498 __ccu_write_disable(ccu); 499 ccu_unlock(ccu, flags); 500 501 if (success) 502 return 0; 503 504 pr_err("%s: failed to %s gate for %s\n", __func__, 505 enable ? "enable" : "disable", name); 506 507 return -EIO; 508 } 509 510 /* Hysteresis operations */ 511 512 /* 513 * If a clock gate requires a turn-off delay it will have 514 * "hysteresis" register bits defined. The first, if set, enables 515 * the delay; and if enabled, the second bit determines whether the 516 * delay is "low" or "high" (1 means high). For now, if it's 517 * defined for a clock, we set it. 518 */ 519 static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst) 520 { 521 u32 offset; 522 u32 reg_val; 523 u32 mask; 524 525 if (!hyst_exists(hyst)) 526 return true; 527 528 offset = hyst->offset; 529 mask = (u32)1 << hyst->en_bit; 530 mask |= (u32)1 << hyst->val_bit; 531 532 reg_val = __ccu_read(ccu, offset); 533 reg_val |= mask; 534 __ccu_write(ccu, offset, reg_val); 535 536 return true; 537 } 538 539 /* Trigger operations */ 540 541 /* 542 * Caller must ensure CCU lock is held and access is enabled. 543 * Returns true if successful, false otherwise. 544 */ 545 static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig) 546 { 547 /* Trigger the clock and wait for it to finish */ 548 __ccu_write(ccu, trig->offset, 1 << trig->bit); 549 550 return __ccu_wait_bit(ccu, trig->offset, trig->bit, false); 551 } 552 553 /* Divider operations */ 554 555 /* Read a divider value and return the scaled divisor it represents. */ 556 static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div) 557 { 558 unsigned long flags; 559 u32 reg_val; 560 u32 reg_div; 561 562 if (divider_is_fixed(div)) 563 return (u64)div->u.fixed; 564 565 flags = ccu_lock(ccu); 566 reg_val = __ccu_read(ccu, div->u.s.offset); 567 ccu_unlock(ccu, flags); 568 569 /* Extract the full divider field from the register value */ 570 reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width); 571 572 /* Return the scaled divisor value it represents */ 573 return scaled_div_value(div, reg_div); 574 } 575 576 /* 577 * Convert a divider's scaled divisor value into its recorded form 578 * and commit it into the hardware divider register. 579 * 580 * Returns 0 on success. Returns -EINVAL for invalid arguments. 581 * Returns -ENXIO if gating failed, and -EIO if a trigger failed. 582 */ 583 static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate, 584 struct bcm_clk_div *div, struct bcm_clk_trig *trig) 585 { 586 bool enabled; 587 u32 reg_div; 588 u32 reg_val; 589 int ret = 0; 590 591 BUG_ON(divider_is_fixed(div)); 592 593 /* 594 * If we're just initializing the divider, and no initial 595 * state was defined in the device tree, we just find out 596 * what its current value is rather than updating it. 597 */ 598 if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) { 599 reg_val = __ccu_read(ccu, div->u.s.offset); 600 reg_div = bitfield_extract(reg_val, div->u.s.shift, 601 div->u.s.width); 602 div->u.s.scaled_div = scaled_div_value(div, reg_div); 603 604 return 0; 605 } 606 607 /* Convert the scaled divisor to the value we need to record */ 608 reg_div = divider(div, div->u.s.scaled_div); 609 610 /* Clock needs to be enabled before changing the rate */ 611 enabled = __is_clk_gate_enabled(ccu, gate); 612 if (!enabled && !__clk_gate(ccu, gate, true)) { 613 ret = -ENXIO; 614 goto out; 615 } 616 617 /* Replace the divider value and record the result */ 618 reg_val = __ccu_read(ccu, div->u.s.offset); 619 reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width, 620 reg_div); 621 __ccu_write(ccu, div->u.s.offset, reg_val); 622 623 /* If the trigger fails we still want to disable the gate */ 624 if (!__clk_trigger(ccu, trig)) 625 ret = -EIO; 626 627 /* Disable the clock again if it was disabled to begin with */ 628 if (!enabled && !__clk_gate(ccu, gate, false)) 629 ret = ret ? ret : -ENXIO; /* return first error */ 630 out: 631 return ret; 632 } 633 634 /* 635 * Initialize a divider by committing our desired state to hardware 636 * without the usual checks to see if it's already set up that way. 637 * Returns true if successful, false otherwise. 638 */ 639 static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate, 640 struct bcm_clk_div *div, struct bcm_clk_trig *trig) 641 { 642 if (!divider_exists(div) || divider_is_fixed(div)) 643 return true; 644 return !__div_commit(ccu, gate, div, trig); 645 } 646 647 static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate, 648 struct bcm_clk_div *div, struct bcm_clk_trig *trig, 649 u64 scaled_div) 650 { 651 unsigned long flags; 652 u64 previous; 653 int ret; 654 655 BUG_ON(divider_is_fixed(div)); 656 657 previous = div->u.s.scaled_div; 658 if (previous == scaled_div) 659 return 0; /* No change */ 660 661 div->u.s.scaled_div = scaled_div; 662 663 flags = ccu_lock(ccu); 664 __ccu_write_enable(ccu); 665 666 ret = __div_commit(ccu, gate, div, trig); 667 668 __ccu_write_disable(ccu); 669 ccu_unlock(ccu, flags); 670 671 if (ret) 672 div->u.s.scaled_div = previous; /* Revert the change */ 673 674 return ret; 675 676 } 677 678 /* Common clock rate helpers */ 679 680 /* 681 * Implement the common clock framework recalc_rate method, taking 682 * into account a divider and an optional pre-divider. The 683 * pre-divider register pointer may be NULL. 684 */ 685 static unsigned long clk_recalc_rate(struct ccu_data *ccu, 686 struct bcm_clk_div *div, struct bcm_clk_div *pre_div, 687 unsigned long parent_rate) 688 { 689 u64 scaled_parent_rate; 690 u64 scaled_div; 691 u64 result; 692 693 if (!divider_exists(div)) 694 return parent_rate; 695 696 if (parent_rate > (unsigned long)LONG_MAX) 697 return 0; /* actually this would be a caller bug */ 698 699 /* 700 * If there is a pre-divider, divide the scaled parent rate 701 * by the pre-divider value first. In this case--to improve 702 * accuracy--scale the parent rate by *both* the pre-divider 703 * value and the divider before actually computing the 704 * result of the pre-divider. 705 * 706 * If there's only one divider, just scale the parent rate. 707 */ 708 if (pre_div && divider_exists(pre_div)) { 709 u64 scaled_rate; 710 711 scaled_rate = scale_rate(pre_div, parent_rate); 712 scaled_rate = scale_rate(div, scaled_rate); 713 scaled_div = divider_read_scaled(ccu, pre_div); 714 scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate, 715 scaled_div); 716 } else { 717 scaled_parent_rate = scale_rate(div, parent_rate); 718 } 719 720 /* 721 * Get the scaled divisor value, and divide the scaled 722 * parent rate by that to determine this clock's resulting 723 * rate. 724 */ 725 scaled_div = divider_read_scaled(ccu, div); 726 result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div); 727 728 return (unsigned long)result; 729 } 730 731 /* 732 * Compute the output rate produced when a given parent rate is fed 733 * into two dividers. The pre-divider can be NULL, and even if it's 734 * non-null it may be nonexistent. It's also OK for the divider to 735 * be nonexistent, and in that case the pre-divider is also ignored. 736 * 737 * If scaled_div is non-null, it is used to return the scaled divisor 738 * value used by the (downstream) divider to produce that rate. 739 */ 740 static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div, 741 struct bcm_clk_div *pre_div, 742 unsigned long rate, unsigned long parent_rate, 743 u64 *scaled_div) 744 { 745 u64 scaled_parent_rate; 746 u64 min_scaled_div; 747 u64 max_scaled_div; 748 u64 best_scaled_div; 749 u64 result; 750 751 BUG_ON(!divider_exists(div)); 752 BUG_ON(!rate); 753 BUG_ON(parent_rate > (u64)LONG_MAX); 754 755 /* 756 * If there is a pre-divider, divide the scaled parent rate 757 * by the pre-divider value first. In this case--to improve 758 * accuracy--scale the parent rate by *both* the pre-divider 759 * value and the divider before actually computing the 760 * result of the pre-divider. 761 * 762 * If there's only one divider, just scale the parent rate. 763 * 764 * For simplicity we treat the pre-divider as fixed (for now). 765 */ 766 if (divider_exists(pre_div)) { 767 u64 scaled_rate; 768 u64 scaled_pre_div; 769 770 scaled_rate = scale_rate(pre_div, parent_rate); 771 scaled_rate = scale_rate(div, scaled_rate); 772 scaled_pre_div = divider_read_scaled(ccu, pre_div); 773 scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate, 774 scaled_pre_div); 775 } else { 776 scaled_parent_rate = scale_rate(div, parent_rate); 777 } 778 779 /* 780 * Compute the best possible divider and ensure it is in 781 * range. A fixed divider can't be changed, so just report 782 * the best we can do. 783 */ 784 if (!divider_is_fixed(div)) { 785 best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, 786 rate); 787 min_scaled_div = scaled_div_min(div); 788 max_scaled_div = scaled_div_max(div); 789 if (best_scaled_div > max_scaled_div) 790 best_scaled_div = max_scaled_div; 791 else if (best_scaled_div < min_scaled_div) 792 best_scaled_div = min_scaled_div; 793 } else { 794 best_scaled_div = divider_read_scaled(ccu, div); 795 } 796 797 /* OK, figure out the resulting rate */ 798 result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div); 799 800 if (scaled_div) 801 *scaled_div = best_scaled_div; 802 803 return (long)result; 804 } 805 806 /* Common clock parent helpers */ 807 808 /* 809 * For a given parent selector (register field) value, find the 810 * index into a selector's parent_sel array that contains it. 811 * Returns the index, or BAD_CLK_INDEX if it's not found. 812 */ 813 static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel) 814 { 815 u8 i; 816 817 BUG_ON(sel->parent_count > (u32)U8_MAX); 818 for (i = 0; i < sel->parent_count; i++) 819 if (sel->parent_sel[i] == parent_sel) 820 return i; 821 return BAD_CLK_INDEX; 822 } 823 824 /* 825 * Fetch the current value of the selector, and translate that into 826 * its corresponding index in the parent array we registered with 827 * the clock framework. 828 * 829 * Returns parent array index that corresponds with the value found, 830 * or BAD_CLK_INDEX if the found value is out of range. 831 */ 832 static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel) 833 { 834 unsigned long flags; 835 u32 reg_val; 836 u32 parent_sel; 837 u8 index; 838 839 /* If there's no selector, there's only one parent */ 840 if (!selector_exists(sel)) 841 return 0; 842 843 /* Get the value in the selector register */ 844 flags = ccu_lock(ccu); 845 reg_val = __ccu_read(ccu, sel->offset); 846 ccu_unlock(ccu, flags); 847 848 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width); 849 850 /* Look up that selector's parent array index and return it */ 851 index = parent_index(sel, parent_sel); 852 if (index == BAD_CLK_INDEX) 853 pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n", 854 __func__, parent_sel, ccu->name, sel->offset); 855 856 return index; 857 } 858 859 /* 860 * Commit our desired selector value to the hardware. 861 * 862 * Returns 0 on success. Returns -EINVAL for invalid arguments. 863 * Returns -ENXIO if gating failed, and -EIO if a trigger failed. 864 */ 865 static int 866 __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate, 867 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig) 868 { 869 u32 parent_sel; 870 u32 reg_val; 871 bool enabled; 872 int ret = 0; 873 874 BUG_ON(!selector_exists(sel)); 875 876 /* 877 * If we're just initializing the selector, and no initial 878 * state was defined in the device tree, we just find out 879 * what its current value is rather than updating it. 880 */ 881 if (sel->clk_index == BAD_CLK_INDEX) { 882 u8 index; 883 884 reg_val = __ccu_read(ccu, sel->offset); 885 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width); 886 index = parent_index(sel, parent_sel); 887 if (index == BAD_CLK_INDEX) 888 return -EINVAL; 889 sel->clk_index = index; 890 891 return 0; 892 } 893 894 BUG_ON((u32)sel->clk_index >= sel->parent_count); 895 parent_sel = sel->parent_sel[sel->clk_index]; 896 897 /* Clock needs to be enabled before changing the parent */ 898 enabled = __is_clk_gate_enabled(ccu, gate); 899 if (!enabled && !__clk_gate(ccu, gate, true)) 900 return -ENXIO; 901 902 /* Replace the selector value and record the result */ 903 reg_val = __ccu_read(ccu, sel->offset); 904 reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel); 905 __ccu_write(ccu, sel->offset, reg_val); 906 907 /* If the trigger fails we still want to disable the gate */ 908 if (!__clk_trigger(ccu, trig)) 909 ret = -EIO; 910 911 /* Disable the clock again if it was disabled to begin with */ 912 if (!enabled && !__clk_gate(ccu, gate, false)) 913 ret = ret ? ret : -ENXIO; /* return first error */ 914 915 return ret; 916 } 917 918 /* 919 * Initialize a selector by committing our desired state to hardware 920 * without the usual checks to see if it's already set up that way. 921 * Returns true if successful, false otherwise. 922 */ 923 static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate, 924 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig) 925 { 926 if (!selector_exists(sel)) 927 return true; 928 return !__sel_commit(ccu, gate, sel, trig); 929 } 930 931 /* 932 * Write a new value into a selector register to switch to a 933 * different parent clock. Returns 0 on success, or an error code 934 * (from __sel_commit()) otherwise. 935 */ 936 static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate, 937 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig, 938 u8 index) 939 { 940 unsigned long flags; 941 u8 previous; 942 int ret; 943 944 previous = sel->clk_index; 945 if (previous == index) 946 return 0; /* No change */ 947 948 sel->clk_index = index; 949 950 flags = ccu_lock(ccu); 951 __ccu_write_enable(ccu); 952 953 ret = __sel_commit(ccu, gate, sel, trig); 954 955 __ccu_write_disable(ccu); 956 ccu_unlock(ccu, flags); 957 958 if (ret) 959 sel->clk_index = previous; /* Revert the change */ 960 961 return ret; 962 } 963 964 /* Clock operations */ 965 966 static int kona_peri_clk_enable(struct clk_hw *hw) 967 { 968 struct kona_clk *bcm_clk = to_kona_clk(hw); 969 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; 970 971 return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true); 972 } 973 974 static void kona_peri_clk_disable(struct clk_hw *hw) 975 { 976 struct kona_clk *bcm_clk = to_kona_clk(hw); 977 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; 978 979 (void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false); 980 } 981 982 static int kona_peri_clk_is_enabled(struct clk_hw *hw) 983 { 984 struct kona_clk *bcm_clk = to_kona_clk(hw); 985 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; 986 987 return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0; 988 } 989 990 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw, 991 unsigned long parent_rate) 992 { 993 struct kona_clk *bcm_clk = to_kona_clk(hw); 994 struct peri_clk_data *data = bcm_clk->u.peri; 995 996 return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div, 997 parent_rate); 998 } 999 1000 static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate, 1001 unsigned long *parent_rate) 1002 { 1003 struct kona_clk *bcm_clk = to_kona_clk(hw); 1004 struct bcm_clk_div *div = &bcm_clk->u.peri->div; 1005 1006 if (!divider_exists(div)) 1007 return clk_hw_get_rate(hw); 1008 1009 /* Quietly avoid a zero rate */ 1010 return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div, 1011 rate ? rate : 1, *parent_rate, NULL); 1012 } 1013 1014 static int kona_peri_clk_determine_rate(struct clk_hw *hw, 1015 struct clk_rate_request *req) 1016 { 1017 struct kona_clk *bcm_clk = to_kona_clk(hw); 1018 struct clk_hw *current_parent; 1019 unsigned long parent_rate; 1020 unsigned long best_delta; 1021 unsigned long best_rate; 1022 u32 parent_count; 1023 long rate; 1024 u32 which; 1025 1026 /* 1027 * If there is no other parent to choose, use the current one. 1028 * Note: We don't honor (or use) CLK_SET_RATE_NO_REPARENT. 1029 */ 1030 WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT); 1031 parent_count = (u32)bcm_clk->init_data.num_parents; 1032 if (parent_count < 2) { 1033 rate = kona_peri_clk_round_rate(hw, req->rate, 1034 &req->best_parent_rate); 1035 if (rate < 0) 1036 return rate; 1037 1038 req->rate = rate; 1039 return 0; 1040 } 1041 1042 /* Unless we can do better, stick with current parent */ 1043 current_parent = clk_hw_get_parent(hw); 1044 parent_rate = clk_hw_get_rate(current_parent); 1045 best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate); 1046 best_delta = abs(best_rate - req->rate); 1047 1048 /* Check whether any other parent clock can produce a better result */ 1049 for (which = 0; which < parent_count; which++) { 1050 struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which); 1051 unsigned long delta; 1052 unsigned long other_rate; 1053 1054 BUG_ON(!parent); 1055 if (parent == current_parent) 1056 continue; 1057 1058 /* We don't support CLK_SET_RATE_PARENT */ 1059 parent_rate = clk_hw_get_rate(parent); 1060 other_rate = kona_peri_clk_round_rate(hw, req->rate, 1061 &parent_rate); 1062 delta = abs(other_rate - req->rate); 1063 if (delta < best_delta) { 1064 best_delta = delta; 1065 best_rate = other_rate; 1066 req->best_parent_hw = parent; 1067 req->best_parent_rate = parent_rate; 1068 } 1069 } 1070 1071 req->rate = best_rate; 1072 return 0; 1073 } 1074 1075 static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index) 1076 { 1077 struct kona_clk *bcm_clk = to_kona_clk(hw); 1078 struct peri_clk_data *data = bcm_clk->u.peri; 1079 struct bcm_clk_sel *sel = &data->sel; 1080 struct bcm_clk_trig *trig; 1081 int ret; 1082 1083 BUG_ON(index >= sel->parent_count); 1084 1085 /* If there's only one parent we don't require a selector */ 1086 if (!selector_exists(sel)) 1087 return 0; 1088 1089 /* 1090 * The regular trigger is used by default, but if there's a 1091 * pre-trigger we want to use that instead. 1092 */ 1093 trig = trigger_exists(&data->pre_trig) ? &data->pre_trig 1094 : &data->trig; 1095 1096 ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index); 1097 if (ret == -ENXIO) { 1098 pr_err("%s: gating failure for %s\n", __func__, 1099 bcm_clk->init_data.name); 1100 ret = -EIO; /* Don't proliferate weird errors */ 1101 } else if (ret == -EIO) { 1102 pr_err("%s: %strigger failed for %s\n", __func__, 1103 trig == &data->pre_trig ? "pre-" : "", 1104 bcm_clk->init_data.name); 1105 } 1106 1107 return ret; 1108 } 1109 1110 static u8 kona_peri_clk_get_parent(struct clk_hw *hw) 1111 { 1112 struct kona_clk *bcm_clk = to_kona_clk(hw); 1113 struct peri_clk_data *data = bcm_clk->u.peri; 1114 u8 index; 1115 1116 index = selector_read_index(bcm_clk->ccu, &data->sel); 1117 1118 /* Not all callers would handle an out-of-range value gracefully */ 1119 return index == BAD_CLK_INDEX ? 0 : index; 1120 } 1121 1122 static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate, 1123 unsigned long parent_rate) 1124 { 1125 struct kona_clk *bcm_clk = to_kona_clk(hw); 1126 struct peri_clk_data *data = bcm_clk->u.peri; 1127 struct bcm_clk_div *div = &data->div; 1128 u64 scaled_div = 0; 1129 int ret; 1130 1131 if (parent_rate > (unsigned long)LONG_MAX) 1132 return -EINVAL; 1133 1134 if (rate == clk_hw_get_rate(hw)) 1135 return 0; 1136 1137 if (!divider_exists(div)) 1138 return rate == parent_rate ? 0 : -EINVAL; 1139 1140 /* 1141 * A fixed divider can't be changed. (Nor can a fixed 1142 * pre-divider be, but for now we never actually try to 1143 * change that.) Tolerate a request for a no-op change. 1144 */ 1145 if (divider_is_fixed(&data->div)) 1146 return rate == parent_rate ? 0 : -EINVAL; 1147 1148 /* 1149 * Get the scaled divisor value needed to achieve a clock 1150 * rate as close as possible to what was requested, given 1151 * the parent clock rate supplied. 1152 */ 1153 (void)round_rate(bcm_clk->ccu, div, &data->pre_div, 1154 rate ? rate : 1, parent_rate, &scaled_div); 1155 1156 /* 1157 * We aren't updating any pre-divider at this point, so 1158 * we'll use the regular trigger. 1159 */ 1160 ret = divider_write(bcm_clk->ccu, &data->gate, &data->div, 1161 &data->trig, scaled_div); 1162 if (ret == -ENXIO) { 1163 pr_err("%s: gating failure for %s\n", __func__, 1164 bcm_clk->init_data.name); 1165 ret = -EIO; /* Don't proliferate weird errors */ 1166 } else if (ret == -EIO) { 1167 pr_err("%s: trigger failed for %s\n", __func__, 1168 bcm_clk->init_data.name); 1169 } 1170 1171 return ret; 1172 } 1173 1174 struct clk_ops kona_peri_clk_ops = { 1175 .enable = kona_peri_clk_enable, 1176 .disable = kona_peri_clk_disable, 1177 .is_enabled = kona_peri_clk_is_enabled, 1178 .recalc_rate = kona_peri_clk_recalc_rate, 1179 .determine_rate = kona_peri_clk_determine_rate, 1180 .set_parent = kona_peri_clk_set_parent, 1181 .get_parent = kona_peri_clk_get_parent, 1182 .set_rate = kona_peri_clk_set_rate, 1183 }; 1184 1185 /* Put a peripheral clock into its initial state */ 1186 static bool __peri_clk_init(struct kona_clk *bcm_clk) 1187 { 1188 struct ccu_data *ccu = bcm_clk->ccu; 1189 struct peri_clk_data *peri = bcm_clk->u.peri; 1190 const char *name = bcm_clk->init_data.name; 1191 struct bcm_clk_trig *trig; 1192 1193 BUG_ON(bcm_clk->type != bcm_clk_peri); 1194 1195 if (!policy_init(ccu, &peri->policy)) { 1196 pr_err("%s: error initializing policy for %s\n", 1197 __func__, name); 1198 return false; 1199 } 1200 if (!gate_init(ccu, &peri->gate)) { 1201 pr_err("%s: error initializing gate for %s\n", __func__, name); 1202 return false; 1203 } 1204 if (!hyst_init(ccu, &peri->hyst)) { 1205 pr_err("%s: error initializing hyst for %s\n", __func__, name); 1206 return false; 1207 } 1208 if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) { 1209 pr_err("%s: error initializing divider for %s\n", __func__, 1210 name); 1211 return false; 1212 } 1213 1214 /* 1215 * For the pre-divider and selector, the pre-trigger is used 1216 * if it's present, otherwise we just use the regular trigger. 1217 */ 1218 trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig 1219 : &peri->trig; 1220 1221 if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) { 1222 pr_err("%s: error initializing pre-divider for %s\n", __func__, 1223 name); 1224 return false; 1225 } 1226 1227 if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) { 1228 pr_err("%s: error initializing selector for %s\n", __func__, 1229 name); 1230 return false; 1231 } 1232 1233 return true; 1234 } 1235 1236 static bool __kona_clk_init(struct kona_clk *bcm_clk) 1237 { 1238 switch (bcm_clk->type) { 1239 case bcm_clk_peri: 1240 return __peri_clk_init(bcm_clk); 1241 default: 1242 BUG(); 1243 } 1244 return false; 1245 } 1246 1247 /* Set a CCU and all its clocks into their desired initial state */ 1248 bool __init kona_ccu_init(struct ccu_data *ccu) 1249 { 1250 unsigned long flags; 1251 unsigned int which; 1252 struct kona_clk *kona_clks = ccu->kona_clks; 1253 bool success = true; 1254 1255 flags = ccu_lock(ccu); 1256 __ccu_write_enable(ccu); 1257 1258 for (which = 0; which < ccu->clk_num; which++) { 1259 struct kona_clk *bcm_clk = &kona_clks[which]; 1260 1261 if (!bcm_clk->ccu) 1262 continue; 1263 1264 success &= __kona_clk_init(bcm_clk); 1265 } 1266 1267 __ccu_write_disable(ccu); 1268 ccu_unlock(ccu, flags); 1269 return success; 1270 } 1271