1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Broadcom Corporation 4 * Copyright 2013 Linaro Limited 5 */ 6 7 #include "clk-kona.h" 8 9 #include <linux/delay.h> 10 #include <linux/io.h> 11 #include <linux/kernel.h> 12 #include <linux/clk-provider.h> 13 #include <linux/string_choices.h> 14 15 /* 16 * "Policies" affect the frequencies of bus clocks provided by a 17 * CCU. (I believe these polices are named "Deep Sleep", "Economy", 18 * "Normal", and "Turbo".) A lower policy number has lower power 19 * consumption, and policy 2 is the default. 20 */ 21 #define CCU_POLICY_COUNT 4 22 23 #define CCU_ACCESS_PASSWORD 0xA5A500 24 #define CLK_GATE_DELAY_LOOP 2000 25 26 /* Bitfield operations */ 27 28 /* Produces a mask of set bits covering a range of a 32-bit value */ 29 static inline u32 bitfield_mask(u32 shift, u32 width) 30 { 31 return ((1 << width) - 1) << shift; 32 } 33 34 /* Extract the value of a bitfield found within a given register value */ 35 static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width) 36 { 37 return (reg_val & bitfield_mask(shift, width)) >> shift; 38 } 39 40 /* Replace the value of a bitfield found within a given register value */ 41 static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val) 42 { 43 u32 mask = bitfield_mask(shift, width); 44 45 return (reg_val & ~mask) | (val << shift); 46 } 47 48 /* Divider and scaling helpers */ 49 50 /* Convert a divider into the scaled divisor value it represents. */ 51 static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div) 52 { 53 return (u64)reg_div + ((u64)1 << div->u.s.frac_width); 54 } 55 56 /* 57 * Build a scaled divider value as close as possible to the 58 * given whole part (div_value) and fractional part (expressed 59 * in billionths). 60 */ 61 u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths) 62 { 63 u64 combined; 64 65 BUG_ON(!div_value); 66 BUG_ON(billionths >= BILLION); 67 68 combined = (u64)div_value * BILLION + billionths; 69 combined <<= div->u.s.frac_width; 70 71 return DIV_ROUND_CLOSEST_ULL(combined, BILLION); 72 } 73 74 /* The scaled minimum divisor representable by a divider */ 75 static inline u64 76 scaled_div_min(struct bcm_clk_div *div) 77 { 78 if (divider_is_fixed(div)) 79 return (u64)div->u.fixed; 80 81 return scaled_div_value(div, 0); 82 } 83 84 /* The scaled maximum divisor representable by a divider */ 85 u64 scaled_div_max(struct bcm_clk_div *div) 86 { 87 u32 reg_div; 88 89 if (divider_is_fixed(div)) 90 return (u64)div->u.fixed; 91 92 reg_div = ((u32)1 << div->u.s.width) - 1; 93 94 return scaled_div_value(div, reg_div); 95 } 96 97 /* 98 * Convert a scaled divisor into its divider representation as 99 * stored in a divider register field. 100 */ 101 static inline u32 102 divider(struct bcm_clk_div *div, u64 scaled_div) 103 { 104 BUG_ON(scaled_div < scaled_div_min(div)); 105 BUG_ON(scaled_div > scaled_div_max(div)); 106 107 return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width)); 108 } 109 110 /* Return a rate scaled for use when dividing by a scaled divisor. */ 111 static inline u64 112 scale_rate(struct bcm_clk_div *div, u32 rate) 113 { 114 if (divider_is_fixed(div)) 115 return (u64)rate; 116 117 return (u64)rate << div->u.s.frac_width; 118 } 119 120 /* CCU access */ 121 122 /* Read a 32-bit register value from a CCU's address space. */ 123 static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset) 124 { 125 return readl(ccu->base + reg_offset); 126 } 127 128 /* Write a 32-bit register value into a CCU's address space. */ 129 static inline void 130 __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val) 131 { 132 writel(reg_val, ccu->base + reg_offset); 133 } 134 135 static inline unsigned long ccu_lock(struct ccu_data *ccu) 136 { 137 unsigned long flags; 138 139 spin_lock_irqsave(&ccu->lock, flags); 140 141 return flags; 142 } 143 static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags) 144 { 145 spin_unlock_irqrestore(&ccu->lock, flags); 146 } 147 148 /* 149 * Enable/disable write access to CCU protected registers. The 150 * WR_ACCESS register for all CCUs is at offset 0. 151 */ 152 static inline void __ccu_write_enable(struct ccu_data *ccu) 153 { 154 if (ccu->write_enabled) { 155 pr_err("%s: access already enabled for %s\n", __func__, 156 ccu->name); 157 return; 158 } 159 ccu->write_enabled = true; 160 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1); 161 } 162 163 static inline void __ccu_write_disable(struct ccu_data *ccu) 164 { 165 if (!ccu->write_enabled) { 166 pr_err("%s: access wasn't enabled for %s\n", __func__, 167 ccu->name); 168 return; 169 } 170 171 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD); 172 ccu->write_enabled = false; 173 } 174 175 /* 176 * Poll a register in a CCU's address space, returning when the 177 * specified bit in that register's value is set (or clear). Delay 178 * a microsecond after each read of the register. Returns true if 179 * successful, or false if we gave up trying. 180 * 181 * Caller must ensure the CCU lock is held. 182 */ 183 static inline bool 184 __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want) 185 { 186 unsigned int tries; 187 u32 bit_mask = 1 << bit; 188 189 for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) { 190 u32 val; 191 bool bit_val; 192 193 val = __ccu_read(ccu, reg_offset); 194 bit_val = (val & bit_mask) != 0; 195 if (bit_val == want) 196 return true; 197 udelay(1); 198 } 199 pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__, 200 ccu->name, reg_offset, bit, want ? "set" : "clear"); 201 202 return false; 203 } 204 205 /* Policy operations */ 206 207 static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync) 208 { 209 struct bcm_policy_ctl *control = &ccu->policy.control; 210 u32 offset; 211 u32 go_bit; 212 u32 mask; 213 bool ret; 214 215 /* If we don't need to control policy for this CCU, we're done. */ 216 if (!policy_ctl_exists(control)) 217 return true; 218 219 offset = control->offset; 220 go_bit = control->go_bit; 221 222 /* Ensure we're not busy before we start */ 223 ret = __ccu_wait_bit(ccu, offset, go_bit, false); 224 if (!ret) { 225 pr_err("%s: ccu %s policy engine wouldn't go idle\n", 226 __func__, ccu->name); 227 return false; 228 } 229 230 /* 231 * If it's a synchronous request, we'll wait for the voltage 232 * and frequency of the active load to stabilize before 233 * returning. To do this we select the active load by 234 * setting the ATL bit. 235 * 236 * An asynchronous request instead ramps the voltage in the 237 * background, and when that process stabilizes, the target 238 * load is copied to the active load and the CCU frequency 239 * is switched. We do this by selecting the target load 240 * (ATL bit clear) and setting the request auto-copy (AC bit 241 * set). 242 * 243 * Note, we do NOT read-modify-write this register. 244 */ 245 mask = (u32)1 << go_bit; 246 if (sync) 247 mask |= 1 << control->atl_bit; 248 else 249 mask |= 1 << control->ac_bit; 250 __ccu_write(ccu, offset, mask); 251 252 /* Wait for indication that operation is complete. */ 253 ret = __ccu_wait_bit(ccu, offset, go_bit, false); 254 if (!ret) 255 pr_err("%s: ccu %s policy engine never started\n", 256 __func__, ccu->name); 257 258 return ret; 259 } 260 261 static bool __ccu_policy_engine_stop(struct ccu_data *ccu) 262 { 263 struct bcm_lvm_en *enable = &ccu->policy.enable; 264 u32 offset; 265 u32 enable_bit; 266 bool ret; 267 268 /* If we don't need to control policy for this CCU, we're done. */ 269 if (!policy_lvm_en_exists(enable)) 270 return true; 271 272 /* Ensure we're not busy before we start */ 273 offset = enable->offset; 274 enable_bit = enable->bit; 275 ret = __ccu_wait_bit(ccu, offset, enable_bit, false); 276 if (!ret) { 277 pr_err("%s: ccu %s policy engine already stopped\n", 278 __func__, ccu->name); 279 return false; 280 } 281 282 /* Now set the bit to stop the engine (NO read-modify-write) */ 283 __ccu_write(ccu, offset, (u32)1 << enable_bit); 284 285 /* Wait for indication that it has stopped. */ 286 ret = __ccu_wait_bit(ccu, offset, enable_bit, false); 287 if (!ret) 288 pr_err("%s: ccu %s policy engine never stopped\n", 289 __func__, ccu->name); 290 291 return ret; 292 } 293 294 /* 295 * A CCU has four operating conditions ("policies"), and some clocks 296 * can be disabled or enabled based on which policy is currently in 297 * effect. Such clocks have a bit in a "policy mask" register for 298 * each policy indicating whether the clock is enabled for that 299 * policy or not. The bit position for a clock is the same for all 300 * four registers, and the 32-bit registers are at consecutive 301 * addresses. 302 */ 303 static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy) 304 { 305 u32 offset; 306 u32 mask; 307 int i; 308 bool ret; 309 310 if (!policy_exists(policy)) 311 return true; 312 313 /* 314 * We need to stop the CCU policy engine to allow update 315 * of our policy bits. 316 */ 317 if (!__ccu_policy_engine_stop(ccu)) { 318 pr_err("%s: unable to stop CCU %s policy engine\n", 319 __func__, ccu->name); 320 return false; 321 } 322 323 /* 324 * For now, if a clock defines its policy bit we just mark 325 * it "enabled" for all four policies. 326 */ 327 offset = policy->offset; 328 mask = (u32)1 << policy->bit; 329 for (i = 0; i < CCU_POLICY_COUNT; i++) { 330 u32 reg_val; 331 332 reg_val = __ccu_read(ccu, offset); 333 reg_val |= mask; 334 __ccu_write(ccu, offset, reg_val); 335 offset += sizeof(u32); 336 } 337 338 /* We're done updating; fire up the policy engine again. */ 339 ret = __ccu_policy_engine_start(ccu, true); 340 if (!ret) 341 pr_err("%s: unable to restart CCU %s policy engine\n", 342 __func__, ccu->name); 343 344 return ret; 345 } 346 347 /* Gate operations */ 348 349 /* Determine whether a clock is gated. CCU lock must be held. */ 350 static bool 351 __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate) 352 { 353 u32 bit_mask; 354 u32 reg_val; 355 356 /* If there is no gate we can assume it's enabled. */ 357 if (!gate_exists(gate)) 358 return true; 359 360 bit_mask = 1 << gate->status_bit; 361 reg_val = __ccu_read(ccu, gate->offset); 362 363 return (reg_val & bit_mask) != 0; 364 } 365 366 /* Determine whether a clock is gated. */ 367 static bool 368 is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate) 369 { 370 long flags; 371 bool ret; 372 373 /* Avoid taking the lock if we can */ 374 if (!gate_exists(gate)) 375 return true; 376 377 flags = ccu_lock(ccu); 378 ret = __is_clk_gate_enabled(ccu, gate); 379 ccu_unlock(ccu, flags); 380 381 return ret; 382 } 383 384 /* 385 * Commit our desired gate state to the hardware. 386 * Returns true if successful, false otherwise. 387 */ 388 static bool 389 __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate) 390 { 391 u32 reg_val; 392 u32 mask; 393 bool enabled = false; 394 395 BUG_ON(!gate_exists(gate)); 396 if (!gate_is_sw_controllable(gate)) 397 return true; /* Nothing we can change */ 398 399 reg_val = __ccu_read(ccu, gate->offset); 400 401 /* For a hardware/software gate, set which is in control */ 402 if (gate_is_hw_controllable(gate)) { 403 mask = (u32)1 << gate->hw_sw_sel_bit; 404 if (gate_is_sw_managed(gate)) 405 reg_val |= mask; 406 else 407 reg_val &= ~mask; 408 } 409 410 /* 411 * If software is in control, enable or disable the gate. 412 * If hardware is, clear the enabled bit for good measure. 413 * If a software controlled gate can't be disabled, we're 414 * required to write a 0 into the enable bit (but the gate 415 * will be enabled). 416 */ 417 mask = (u32)1 << gate->en_bit; 418 if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) && 419 !gate_is_no_disable(gate)) 420 reg_val |= mask; 421 else 422 reg_val &= ~mask; 423 424 __ccu_write(ccu, gate->offset, reg_val); 425 426 /* For a hardware controlled gate, we're done */ 427 if (!gate_is_sw_managed(gate)) 428 return true; 429 430 /* Otherwise wait for the gate to be in desired state */ 431 return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled); 432 } 433 434 /* 435 * Initialize a gate. Our desired state (hardware/software select, 436 * and if software, its enable state) is committed to hardware 437 * without the usual checks to see if it's already set up that way. 438 * Returns true if successful, false otherwise. 439 */ 440 static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate) 441 { 442 if (!gate_exists(gate)) 443 return true; 444 return __gate_commit(ccu, gate); 445 } 446 447 /* 448 * Set a gate to enabled or disabled state. Does nothing if the 449 * gate is not currently under software control, or if it is already 450 * in the requested state. Returns true if successful, false 451 * otherwise. CCU lock must be held. 452 */ 453 static bool 454 __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable) 455 { 456 bool ret; 457 458 if (!gate_exists(gate) || !gate_is_sw_managed(gate)) 459 return true; /* Nothing to do */ 460 461 if (!enable && gate_is_no_disable(gate)) { 462 pr_warn("%s: invalid gate disable request (ignoring)\n", 463 __func__); 464 return true; 465 } 466 467 if (enable == gate_is_enabled(gate)) 468 return true; /* No change */ 469 470 gate_flip_enabled(gate); 471 ret = __gate_commit(ccu, gate); 472 if (!ret) 473 gate_flip_enabled(gate); /* Revert the change */ 474 475 return ret; 476 } 477 478 /* Enable or disable a gate. Returns 0 if successful, -EIO otherwise */ 479 static int clk_gate(struct ccu_data *ccu, const char *name, 480 struct bcm_clk_gate *gate, bool enable) 481 { 482 unsigned long flags; 483 bool success; 484 485 /* 486 * Avoid taking the lock if we can. We quietly ignore 487 * requests to change state that don't make sense. 488 */ 489 if (!gate_exists(gate) || !gate_is_sw_managed(gate)) 490 return 0; 491 if (!enable && gate_is_no_disable(gate)) 492 return 0; 493 494 flags = ccu_lock(ccu); 495 __ccu_write_enable(ccu); 496 497 success = __clk_gate(ccu, gate, enable); 498 499 __ccu_write_disable(ccu); 500 ccu_unlock(ccu, flags); 501 502 if (success) 503 return 0; 504 505 pr_err("%s: failed to %s gate for %s\n", __func__, 506 str_enable_disable(enable), name); 507 508 return -EIO; 509 } 510 511 /* Hysteresis operations */ 512 513 /* 514 * If a clock gate requires a turn-off delay it will have 515 * "hysteresis" register bits defined. The first, if set, enables 516 * the delay; and if enabled, the second bit determines whether the 517 * delay is "low" or "high" (1 means high). For now, if it's 518 * defined for a clock, we set it. 519 */ 520 static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst) 521 { 522 u32 offset; 523 u32 reg_val; 524 u32 mask; 525 526 if (!hyst_exists(hyst)) 527 return true; 528 529 offset = hyst->offset; 530 mask = (u32)1 << hyst->en_bit; 531 mask |= (u32)1 << hyst->val_bit; 532 533 reg_val = __ccu_read(ccu, offset); 534 reg_val |= mask; 535 __ccu_write(ccu, offset, reg_val); 536 537 return true; 538 } 539 540 /* Trigger operations */ 541 542 /* 543 * Caller must ensure CCU lock is held and access is enabled. 544 * Returns true if successful, false otherwise. 545 */ 546 static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig) 547 { 548 /* Trigger the clock and wait for it to finish */ 549 __ccu_write(ccu, trig->offset, 1 << trig->bit); 550 551 return __ccu_wait_bit(ccu, trig->offset, trig->bit, false); 552 } 553 554 /* Divider operations */ 555 556 /* Read a divider value and return the scaled divisor it represents. */ 557 static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div) 558 { 559 unsigned long flags; 560 u32 reg_val; 561 u32 reg_div; 562 563 if (divider_is_fixed(div)) 564 return (u64)div->u.fixed; 565 566 flags = ccu_lock(ccu); 567 reg_val = __ccu_read(ccu, div->u.s.offset); 568 ccu_unlock(ccu, flags); 569 570 /* Extract the full divider field from the register value */ 571 reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width); 572 573 /* Return the scaled divisor value it represents */ 574 return scaled_div_value(div, reg_div); 575 } 576 577 /* 578 * Convert a divider's scaled divisor value into its recorded form 579 * and commit it into the hardware divider register. 580 * 581 * Returns 0 on success. Returns -EINVAL for invalid arguments. 582 * Returns -ENXIO if gating failed, and -EIO if a trigger failed. 583 */ 584 static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate, 585 struct bcm_clk_div *div, struct bcm_clk_trig *trig) 586 { 587 bool enabled; 588 u32 reg_div; 589 u32 reg_val; 590 int ret = 0; 591 592 BUG_ON(divider_is_fixed(div)); 593 594 /* 595 * If we're just initializing the divider, and no initial 596 * state was defined in the device tree, we just find out 597 * what its current value is rather than updating it. 598 */ 599 if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) { 600 reg_val = __ccu_read(ccu, div->u.s.offset); 601 reg_div = bitfield_extract(reg_val, div->u.s.shift, 602 div->u.s.width); 603 div->u.s.scaled_div = scaled_div_value(div, reg_div); 604 605 return 0; 606 } 607 608 /* Convert the scaled divisor to the value we need to record */ 609 reg_div = divider(div, div->u.s.scaled_div); 610 611 /* Clock needs to be enabled before changing the rate */ 612 enabled = __is_clk_gate_enabled(ccu, gate); 613 if (!enabled && !__clk_gate(ccu, gate, true)) { 614 ret = -ENXIO; 615 goto out; 616 } 617 618 /* Replace the divider value and record the result */ 619 reg_val = __ccu_read(ccu, div->u.s.offset); 620 reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width, 621 reg_div); 622 __ccu_write(ccu, div->u.s.offset, reg_val); 623 624 /* If the trigger fails we still want to disable the gate */ 625 if (!__clk_trigger(ccu, trig)) 626 ret = -EIO; 627 628 /* Disable the clock again if it was disabled to begin with */ 629 if (!enabled && !__clk_gate(ccu, gate, false)) 630 ret = ret ? ret : -ENXIO; /* return first error */ 631 out: 632 return ret; 633 } 634 635 /* 636 * Initialize a divider by committing our desired state to hardware 637 * without the usual checks to see if it's already set up that way. 638 * Returns true if successful, false otherwise. 639 */ 640 static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate, 641 struct bcm_clk_div *div, struct bcm_clk_trig *trig) 642 { 643 if (!divider_exists(div) || divider_is_fixed(div)) 644 return true; 645 return !__div_commit(ccu, gate, div, trig); 646 } 647 648 static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate, 649 struct bcm_clk_div *div, struct bcm_clk_trig *trig, 650 u64 scaled_div) 651 { 652 unsigned long flags; 653 u64 previous; 654 int ret; 655 656 BUG_ON(divider_is_fixed(div)); 657 658 previous = div->u.s.scaled_div; 659 if (previous == scaled_div) 660 return 0; /* No change */ 661 662 div->u.s.scaled_div = scaled_div; 663 664 flags = ccu_lock(ccu); 665 __ccu_write_enable(ccu); 666 667 ret = __div_commit(ccu, gate, div, trig); 668 669 __ccu_write_disable(ccu); 670 ccu_unlock(ccu, flags); 671 672 if (ret) 673 div->u.s.scaled_div = previous; /* Revert the change */ 674 675 return ret; 676 677 } 678 679 /* Common clock rate helpers */ 680 681 /* 682 * Implement the common clock framework recalc_rate method, taking 683 * into account a divider and an optional pre-divider. The 684 * pre-divider register pointer may be NULL. 685 */ 686 static unsigned long clk_recalc_rate(struct ccu_data *ccu, 687 struct bcm_clk_div *div, struct bcm_clk_div *pre_div, 688 unsigned long parent_rate) 689 { 690 u64 scaled_parent_rate; 691 u64 scaled_div; 692 u64 result; 693 694 if (!divider_exists(div)) 695 return parent_rate; 696 697 if (parent_rate > (unsigned long)LONG_MAX) 698 return 0; /* actually this would be a caller bug */ 699 700 /* 701 * If there is a pre-divider, divide the scaled parent rate 702 * by the pre-divider value first. In this case--to improve 703 * accuracy--scale the parent rate by *both* the pre-divider 704 * value and the divider before actually computing the 705 * result of the pre-divider. 706 * 707 * If there's only one divider, just scale the parent rate. 708 */ 709 if (pre_div && divider_exists(pre_div)) { 710 u64 scaled_rate; 711 712 scaled_rate = scale_rate(pre_div, parent_rate); 713 scaled_rate = scale_rate(div, scaled_rate); 714 scaled_div = divider_read_scaled(ccu, pre_div); 715 scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate, 716 scaled_div); 717 } else { 718 scaled_parent_rate = scale_rate(div, parent_rate); 719 } 720 721 /* 722 * Get the scaled divisor value, and divide the scaled 723 * parent rate by that to determine this clock's resulting 724 * rate. 725 */ 726 scaled_div = divider_read_scaled(ccu, div); 727 result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div); 728 729 return (unsigned long)result; 730 } 731 732 /* 733 * Compute the output rate produced when a given parent rate is fed 734 * into two dividers. The pre-divider can be NULL, and even if it's 735 * non-null it may be nonexistent. It's also OK for the divider to 736 * be nonexistent, and in that case the pre-divider is also ignored. 737 * 738 * If scaled_div is non-null, it is used to return the scaled divisor 739 * value used by the (downstream) divider to produce that rate. 740 */ 741 static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div, 742 struct bcm_clk_div *pre_div, 743 unsigned long rate, unsigned long parent_rate, 744 u64 *scaled_div) 745 { 746 u64 scaled_parent_rate; 747 u64 min_scaled_div; 748 u64 max_scaled_div; 749 u64 best_scaled_div; 750 u64 result; 751 752 BUG_ON(!divider_exists(div)); 753 BUG_ON(!rate); 754 BUG_ON(parent_rate > (u64)LONG_MAX); 755 756 /* 757 * If there is a pre-divider, divide the scaled parent rate 758 * by the pre-divider value first. In this case--to improve 759 * accuracy--scale the parent rate by *both* the pre-divider 760 * value and the divider before actually computing the 761 * result of the pre-divider. 762 * 763 * If there's only one divider, just scale the parent rate. 764 * 765 * For simplicity we treat the pre-divider as fixed (for now). 766 */ 767 if (divider_exists(pre_div)) { 768 u64 scaled_rate; 769 u64 scaled_pre_div; 770 771 scaled_rate = scale_rate(pre_div, parent_rate); 772 scaled_rate = scale_rate(div, scaled_rate); 773 scaled_pre_div = divider_read_scaled(ccu, pre_div); 774 scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate, 775 scaled_pre_div); 776 } else { 777 scaled_parent_rate = scale_rate(div, parent_rate); 778 } 779 780 /* 781 * Compute the best possible divider and ensure it is in 782 * range. A fixed divider can't be changed, so just report 783 * the best we can do. 784 */ 785 if (!divider_is_fixed(div)) { 786 best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, 787 rate); 788 min_scaled_div = scaled_div_min(div); 789 max_scaled_div = scaled_div_max(div); 790 if (best_scaled_div > max_scaled_div) 791 best_scaled_div = max_scaled_div; 792 else if (best_scaled_div < min_scaled_div) 793 best_scaled_div = min_scaled_div; 794 } else { 795 best_scaled_div = divider_read_scaled(ccu, div); 796 } 797 798 /* OK, figure out the resulting rate */ 799 result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div); 800 801 if (scaled_div) 802 *scaled_div = best_scaled_div; 803 804 return (long)result; 805 } 806 807 /* Common clock parent helpers */ 808 809 /* 810 * For a given parent selector (register field) value, find the 811 * index into a selector's parent_sel array that contains it. 812 * Returns the index, or BAD_CLK_INDEX if it's not found. 813 */ 814 static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel) 815 { 816 u8 i; 817 818 BUG_ON(sel->parent_count > (u32)U8_MAX); 819 for (i = 0; i < sel->parent_count; i++) 820 if (sel->parent_sel[i] == parent_sel) 821 return i; 822 return BAD_CLK_INDEX; 823 } 824 825 /* 826 * Fetch the current value of the selector, and translate that into 827 * its corresponding index in the parent array we registered with 828 * the clock framework. 829 * 830 * Returns parent array index that corresponds with the value found, 831 * or BAD_CLK_INDEX if the found value is out of range. 832 */ 833 static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel) 834 { 835 unsigned long flags; 836 u32 reg_val; 837 u32 parent_sel; 838 u8 index; 839 840 /* If there's no selector, there's only one parent */ 841 if (!selector_exists(sel)) 842 return 0; 843 844 /* Get the value in the selector register */ 845 flags = ccu_lock(ccu); 846 reg_val = __ccu_read(ccu, sel->offset); 847 ccu_unlock(ccu, flags); 848 849 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width); 850 851 /* Look up that selector's parent array index and return it */ 852 index = parent_index(sel, parent_sel); 853 if (index == BAD_CLK_INDEX) 854 pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n", 855 __func__, parent_sel, ccu->name, sel->offset); 856 857 return index; 858 } 859 860 /* 861 * Commit our desired selector value to the hardware. 862 * 863 * Returns 0 on success. Returns -EINVAL for invalid arguments. 864 * Returns -ENXIO if gating failed, and -EIO if a trigger failed. 865 */ 866 static int 867 __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate, 868 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig) 869 { 870 u32 parent_sel; 871 u32 reg_val; 872 bool enabled; 873 int ret = 0; 874 875 BUG_ON(!selector_exists(sel)); 876 877 /* 878 * If we're just initializing the selector, and no initial 879 * state was defined in the device tree, we just find out 880 * what its current value is rather than updating it. 881 */ 882 if (sel->clk_index == BAD_CLK_INDEX) { 883 u8 index; 884 885 reg_val = __ccu_read(ccu, sel->offset); 886 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width); 887 index = parent_index(sel, parent_sel); 888 if (index == BAD_CLK_INDEX) 889 return -EINVAL; 890 sel->clk_index = index; 891 892 return 0; 893 } 894 895 BUG_ON((u32)sel->clk_index >= sel->parent_count); 896 parent_sel = sel->parent_sel[sel->clk_index]; 897 898 /* Clock needs to be enabled before changing the parent */ 899 enabled = __is_clk_gate_enabled(ccu, gate); 900 if (!enabled && !__clk_gate(ccu, gate, true)) 901 return -ENXIO; 902 903 /* Replace the selector value and record the result */ 904 reg_val = __ccu_read(ccu, sel->offset); 905 reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel); 906 __ccu_write(ccu, sel->offset, reg_val); 907 908 /* If the trigger fails we still want to disable the gate */ 909 if (!__clk_trigger(ccu, trig)) 910 ret = -EIO; 911 912 /* Disable the clock again if it was disabled to begin with */ 913 if (!enabled && !__clk_gate(ccu, gate, false)) 914 ret = ret ? ret : -ENXIO; /* return first error */ 915 916 return ret; 917 } 918 919 /* 920 * Initialize a selector by committing our desired state to hardware 921 * without the usual checks to see if it's already set up that way. 922 * Returns true if successful, false otherwise. 923 */ 924 static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate, 925 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig) 926 { 927 if (!selector_exists(sel)) 928 return true; 929 return !__sel_commit(ccu, gate, sel, trig); 930 } 931 932 /* 933 * Write a new value into a selector register to switch to a 934 * different parent clock. Returns 0 on success, or an error code 935 * (from __sel_commit()) otherwise. 936 */ 937 static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate, 938 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig, 939 u8 index) 940 { 941 unsigned long flags; 942 u8 previous; 943 int ret; 944 945 previous = sel->clk_index; 946 if (previous == index) 947 return 0; /* No change */ 948 949 sel->clk_index = index; 950 951 flags = ccu_lock(ccu); 952 __ccu_write_enable(ccu); 953 954 ret = __sel_commit(ccu, gate, sel, trig); 955 956 __ccu_write_disable(ccu); 957 ccu_unlock(ccu, flags); 958 959 if (ret) 960 sel->clk_index = previous; /* Revert the change */ 961 962 return ret; 963 } 964 965 /* Clock operations */ 966 967 static int kona_peri_clk_enable(struct clk_hw *hw) 968 { 969 struct kona_clk *bcm_clk = to_kona_clk(hw); 970 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; 971 972 return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true); 973 } 974 975 static void kona_peri_clk_disable(struct clk_hw *hw) 976 { 977 struct kona_clk *bcm_clk = to_kona_clk(hw); 978 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; 979 980 (void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false); 981 } 982 983 static int kona_peri_clk_is_enabled(struct clk_hw *hw) 984 { 985 struct kona_clk *bcm_clk = to_kona_clk(hw); 986 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; 987 988 return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0; 989 } 990 991 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw, 992 unsigned long parent_rate) 993 { 994 struct kona_clk *bcm_clk = to_kona_clk(hw); 995 struct peri_clk_data *data = bcm_clk->u.peri; 996 997 return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div, 998 parent_rate); 999 } 1000 1001 static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate, 1002 unsigned long *parent_rate) 1003 { 1004 struct kona_clk *bcm_clk = to_kona_clk(hw); 1005 struct bcm_clk_div *div = &bcm_clk->u.peri->div; 1006 1007 if (!divider_exists(div)) 1008 return clk_hw_get_rate(hw); 1009 1010 /* Quietly avoid a zero rate */ 1011 return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div, 1012 rate ? rate : 1, *parent_rate, NULL); 1013 } 1014 1015 static int kona_peri_clk_determine_rate(struct clk_hw *hw, 1016 struct clk_rate_request *req) 1017 { 1018 struct kona_clk *bcm_clk = to_kona_clk(hw); 1019 struct clk_hw *current_parent; 1020 unsigned long parent_rate; 1021 unsigned long best_delta; 1022 unsigned long best_rate; 1023 u32 parent_count; 1024 long rate; 1025 u32 which; 1026 1027 /* 1028 * If there is no other parent to choose, use the current one. 1029 * Note: We don't honor (or use) CLK_SET_RATE_NO_REPARENT. 1030 */ 1031 WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT); 1032 parent_count = (u32)bcm_clk->init_data.num_parents; 1033 if (parent_count < 2) { 1034 rate = kona_peri_clk_round_rate(hw, req->rate, 1035 &req->best_parent_rate); 1036 if (rate < 0) 1037 return rate; 1038 1039 req->rate = rate; 1040 return 0; 1041 } 1042 1043 /* Unless we can do better, stick with current parent */ 1044 current_parent = clk_hw_get_parent(hw); 1045 parent_rate = clk_hw_get_rate(current_parent); 1046 best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate); 1047 best_delta = abs(best_rate - req->rate); 1048 1049 /* Check whether any other parent clock can produce a better result */ 1050 for (which = 0; which < parent_count; which++) { 1051 struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which); 1052 unsigned long delta; 1053 unsigned long other_rate; 1054 1055 BUG_ON(!parent); 1056 if (parent == current_parent) 1057 continue; 1058 1059 /* We don't support CLK_SET_RATE_PARENT */ 1060 parent_rate = clk_hw_get_rate(parent); 1061 other_rate = kona_peri_clk_round_rate(hw, req->rate, 1062 &parent_rate); 1063 delta = abs(other_rate - req->rate); 1064 if (delta < best_delta) { 1065 best_delta = delta; 1066 best_rate = other_rate; 1067 req->best_parent_hw = parent; 1068 req->best_parent_rate = parent_rate; 1069 } 1070 } 1071 1072 req->rate = best_rate; 1073 return 0; 1074 } 1075 1076 static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index) 1077 { 1078 struct kona_clk *bcm_clk = to_kona_clk(hw); 1079 struct peri_clk_data *data = bcm_clk->u.peri; 1080 struct bcm_clk_sel *sel = &data->sel; 1081 struct bcm_clk_trig *trig; 1082 int ret; 1083 1084 BUG_ON(index >= sel->parent_count); 1085 1086 /* If there's only one parent we don't require a selector */ 1087 if (!selector_exists(sel)) 1088 return 0; 1089 1090 /* 1091 * The regular trigger is used by default, but if there's a 1092 * pre-trigger we want to use that instead. 1093 */ 1094 trig = trigger_exists(&data->pre_trig) ? &data->pre_trig 1095 : &data->trig; 1096 1097 ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index); 1098 if (ret == -ENXIO) { 1099 pr_err("%s: gating failure for %s\n", __func__, 1100 bcm_clk->init_data.name); 1101 ret = -EIO; /* Don't proliferate weird errors */ 1102 } else if (ret == -EIO) { 1103 pr_err("%s: %strigger failed for %s\n", __func__, 1104 trig == &data->pre_trig ? "pre-" : "", 1105 bcm_clk->init_data.name); 1106 } 1107 1108 return ret; 1109 } 1110 1111 static u8 kona_peri_clk_get_parent(struct clk_hw *hw) 1112 { 1113 struct kona_clk *bcm_clk = to_kona_clk(hw); 1114 struct peri_clk_data *data = bcm_clk->u.peri; 1115 u8 index; 1116 1117 index = selector_read_index(bcm_clk->ccu, &data->sel); 1118 1119 /* Not all callers would handle an out-of-range value gracefully */ 1120 return index == BAD_CLK_INDEX ? 0 : index; 1121 } 1122 1123 static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate, 1124 unsigned long parent_rate) 1125 { 1126 struct kona_clk *bcm_clk = to_kona_clk(hw); 1127 struct peri_clk_data *data = bcm_clk->u.peri; 1128 struct bcm_clk_div *div = &data->div; 1129 u64 scaled_div = 0; 1130 int ret; 1131 1132 if (parent_rate > (unsigned long)LONG_MAX) 1133 return -EINVAL; 1134 1135 if (rate == clk_hw_get_rate(hw)) 1136 return 0; 1137 1138 if (!divider_exists(div)) 1139 return rate == parent_rate ? 0 : -EINVAL; 1140 1141 /* 1142 * A fixed divider can't be changed. (Nor can a fixed 1143 * pre-divider be, but for now we never actually try to 1144 * change that.) Tolerate a request for a no-op change. 1145 */ 1146 if (divider_is_fixed(&data->div)) 1147 return rate == parent_rate ? 0 : -EINVAL; 1148 1149 /* 1150 * Get the scaled divisor value needed to achieve a clock 1151 * rate as close as possible to what was requested, given 1152 * the parent clock rate supplied. 1153 */ 1154 (void)round_rate(bcm_clk->ccu, div, &data->pre_div, 1155 rate ? rate : 1, parent_rate, &scaled_div); 1156 1157 /* 1158 * We aren't updating any pre-divider at this point, so 1159 * we'll use the regular trigger. 1160 */ 1161 ret = divider_write(bcm_clk->ccu, &data->gate, &data->div, 1162 &data->trig, scaled_div); 1163 if (ret == -ENXIO) { 1164 pr_err("%s: gating failure for %s\n", __func__, 1165 bcm_clk->init_data.name); 1166 ret = -EIO; /* Don't proliferate weird errors */ 1167 } else if (ret == -EIO) { 1168 pr_err("%s: trigger failed for %s\n", __func__, 1169 bcm_clk->init_data.name); 1170 } 1171 1172 return ret; 1173 } 1174 1175 struct clk_ops kona_peri_clk_ops = { 1176 .enable = kona_peri_clk_enable, 1177 .disable = kona_peri_clk_disable, 1178 .is_enabled = kona_peri_clk_is_enabled, 1179 .recalc_rate = kona_peri_clk_recalc_rate, 1180 .determine_rate = kona_peri_clk_determine_rate, 1181 .set_parent = kona_peri_clk_set_parent, 1182 .get_parent = kona_peri_clk_get_parent, 1183 .set_rate = kona_peri_clk_set_rate, 1184 }; 1185 1186 /* Put a peripheral clock into its initial state */ 1187 static bool __peri_clk_init(struct kona_clk *bcm_clk) 1188 { 1189 struct ccu_data *ccu = bcm_clk->ccu; 1190 struct peri_clk_data *peri = bcm_clk->u.peri; 1191 const char *name = bcm_clk->init_data.name; 1192 struct bcm_clk_trig *trig; 1193 1194 BUG_ON(bcm_clk->type != bcm_clk_peri); 1195 1196 if (!policy_init(ccu, &peri->policy)) { 1197 pr_err("%s: error initializing policy for %s\n", 1198 __func__, name); 1199 return false; 1200 } 1201 if (!gate_init(ccu, &peri->gate)) { 1202 pr_err("%s: error initializing gate for %s\n", __func__, name); 1203 return false; 1204 } 1205 if (!hyst_init(ccu, &peri->hyst)) { 1206 pr_err("%s: error initializing hyst for %s\n", __func__, name); 1207 return false; 1208 } 1209 if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) { 1210 pr_err("%s: error initializing divider for %s\n", __func__, 1211 name); 1212 return false; 1213 } 1214 1215 /* 1216 * For the pre-divider and selector, the pre-trigger is used 1217 * if it's present, otherwise we just use the regular trigger. 1218 */ 1219 trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig 1220 : &peri->trig; 1221 1222 if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) { 1223 pr_err("%s: error initializing pre-divider for %s\n", __func__, 1224 name); 1225 return false; 1226 } 1227 1228 if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) { 1229 pr_err("%s: error initializing selector for %s\n", __func__, 1230 name); 1231 return false; 1232 } 1233 1234 return true; 1235 } 1236 1237 static bool __kona_clk_init(struct kona_clk *bcm_clk) 1238 { 1239 switch (bcm_clk->type) { 1240 case bcm_clk_peri: 1241 return __peri_clk_init(bcm_clk); 1242 default: 1243 BUG(); 1244 } 1245 return false; 1246 } 1247 1248 /* Set a CCU and all its clocks into their desired initial state */ 1249 bool __init kona_ccu_init(struct ccu_data *ccu) 1250 { 1251 unsigned long flags; 1252 unsigned int which; 1253 struct kona_clk *kona_clks = ccu->kona_clks; 1254 bool success = true; 1255 1256 flags = ccu_lock(ccu); 1257 __ccu_write_enable(ccu); 1258 1259 for (which = 0; which < ccu->clk_num; which++) { 1260 struct kona_clk *bcm_clk = &kona_clks[which]; 1261 1262 if (!bcm_clk->ccu) 1263 continue; 1264 1265 success &= __kona_clk_init(bcm_clk); 1266 } 1267 1268 __ccu_write_disable(ccu); 1269 ccu_unlock(ccu, flags); 1270 return success; 1271 } 1272