xref: /linux/drivers/clk/bcm/clk-kona.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Broadcom Corporation
4  * Copyright 2013 Linaro Limited
5  */
6 
7 #include "clk-kona.h"
8 
9 #include <linux/delay.h>
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/clk-provider.h>
13 #include <linux/string_choices.h>
14 
15 /*
16  * "Policies" affect the frequencies of bus clocks provided by a
17  * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
18  * "Normal", and "Turbo".)  A lower policy number has lower power
19  * consumption, and policy 2 is the default.
20  */
21 #define CCU_POLICY_COUNT	4
22 
23 #define CCU_ACCESS_PASSWORD      0xA5A500
24 #define CLK_GATE_DELAY_LOOP      2000
25 
26 /* Bitfield operations */
27 
28 /* Produces a mask of set bits covering a range of a 32-bit value */
29 static inline u32 bitfield_mask(u32 shift, u32 width)
30 {
31 	return ((1 << width) - 1) << shift;
32 }
33 
34 /* Extract the value of a bitfield found within a given register value */
35 static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
36 {
37 	return (reg_val & bitfield_mask(shift, width)) >> shift;
38 }
39 
40 /* Replace the value of a bitfield found within a given register value */
41 static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
42 {
43 	u32 mask = bitfield_mask(shift, width);
44 
45 	return (reg_val & ~mask) | (val << shift);
46 }
47 
48 /* Divider and scaling helpers */
49 
50 /* Convert a divider into the scaled divisor value it represents. */
51 static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
52 {
53 	return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
54 }
55 
56 /*
57  * Build a scaled divider value as close as possible to the
58  * given whole part (div_value) and fractional part (expressed
59  * in billionths).
60  */
61 u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
62 {
63 	u64 combined;
64 
65 	BUG_ON(!div_value);
66 	BUG_ON(billionths >= BILLION);
67 
68 	combined = (u64)div_value * BILLION + billionths;
69 	combined <<= div->u.s.frac_width;
70 
71 	return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
72 }
73 
74 /* The scaled minimum divisor representable by a divider */
75 static inline u64
76 scaled_div_min(struct bcm_clk_div *div)
77 {
78 	if (divider_is_fixed(div))
79 		return (u64)div->u.fixed;
80 
81 	return scaled_div_value(div, 0);
82 }
83 
84 /* The scaled maximum divisor representable by a divider */
85 u64 scaled_div_max(struct bcm_clk_div *div)
86 {
87 	u32 reg_div;
88 
89 	if (divider_is_fixed(div))
90 		return (u64)div->u.fixed;
91 
92 	reg_div = ((u32)1 << div->u.s.width) - 1;
93 
94 	return scaled_div_value(div, reg_div);
95 }
96 
97 /*
98  * Convert a scaled divisor into its divider representation as
99  * stored in a divider register field.
100  */
101 static inline u32
102 divider(struct bcm_clk_div *div, u64 scaled_div)
103 {
104 	BUG_ON(scaled_div < scaled_div_min(div));
105 	BUG_ON(scaled_div > scaled_div_max(div));
106 
107 	return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
108 }
109 
110 /* Return a rate scaled for use when dividing by a scaled divisor. */
111 static inline u64
112 scale_rate(struct bcm_clk_div *div, u32 rate)
113 {
114 	if (divider_is_fixed(div))
115 		return (u64)rate;
116 
117 	return (u64)rate << div->u.s.frac_width;
118 }
119 
120 /* CCU access */
121 
122 /* Read a 32-bit register value from a CCU's address space. */
123 static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
124 {
125 	return readl(ccu->base + reg_offset);
126 }
127 
128 /* Write a 32-bit register value into a CCU's address space. */
129 static inline void
130 __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
131 {
132 	writel(reg_val, ccu->base + reg_offset);
133 }
134 
135 static inline unsigned long ccu_lock(struct ccu_data *ccu)
136 {
137 	unsigned long flags;
138 
139 	spin_lock_irqsave(&ccu->lock, flags);
140 
141 	return flags;
142 }
143 static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
144 {
145 	spin_unlock_irqrestore(&ccu->lock, flags);
146 }
147 
148 /*
149  * Enable/disable write access to CCU protected registers.  The
150  * WR_ACCESS register for all CCUs is at offset 0.
151  */
152 static inline void __ccu_write_enable(struct ccu_data *ccu)
153 {
154 	if (ccu->write_enabled) {
155 		pr_err("%s: access already enabled for %s\n", __func__,
156 			ccu->name);
157 		return;
158 	}
159 	ccu->write_enabled = true;
160 	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
161 }
162 
163 static inline void __ccu_write_disable(struct ccu_data *ccu)
164 {
165 	if (!ccu->write_enabled) {
166 		pr_err("%s: access wasn't enabled for %s\n", __func__,
167 			ccu->name);
168 		return;
169 	}
170 
171 	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
172 	ccu->write_enabled = false;
173 }
174 
175 /*
176  * Poll a register in a CCU's address space, returning when the
177  * specified bit in that register's value is set (or clear).  Delay
178  * a microsecond after each read of the register.  Returns true if
179  * successful, or false if we gave up trying.
180  *
181  * Caller must ensure the CCU lock is held.
182  */
183 static inline bool
184 __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
185 {
186 	unsigned int tries;
187 	u32 bit_mask = 1 << bit;
188 
189 	for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
190 		u32 val;
191 		bool bit_val;
192 
193 		val = __ccu_read(ccu, reg_offset);
194 		bit_val = (val & bit_mask) != 0;
195 		if (bit_val == want)
196 			return true;
197 		udelay(1);
198 	}
199 	pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
200 		ccu->name, reg_offset, bit, want ? "set" : "clear");
201 
202 	return false;
203 }
204 
205 /* Policy operations */
206 
207 static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
208 {
209 	struct bcm_policy_ctl *control = &ccu->policy.control;
210 	u32 offset;
211 	u32 go_bit;
212 	u32 mask;
213 	bool ret;
214 
215 	/* If we don't need to control policy for this CCU, we're done. */
216 	if (!policy_ctl_exists(control))
217 		return true;
218 
219 	offset = control->offset;
220 	go_bit = control->go_bit;
221 
222 	/* Ensure we're not busy before we start */
223 	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
224 	if (!ret) {
225 		pr_err("%s: ccu %s policy engine wouldn't go idle\n",
226 			__func__, ccu->name);
227 		return false;
228 	}
229 
230 	/*
231 	 * If it's a synchronous request, we'll wait for the voltage
232 	 * and frequency of the active load to stabilize before
233 	 * returning.  To do this we select the active load by
234 	 * setting the ATL bit.
235 	 *
236 	 * An asynchronous request instead ramps the voltage in the
237 	 * background, and when that process stabilizes, the target
238 	 * load is copied to the active load and the CCU frequency
239 	 * is switched.  We do this by selecting the target load
240 	 * (ATL bit clear) and setting the request auto-copy (AC bit
241 	 * set).
242 	 *
243 	 * Note, we do NOT read-modify-write this register.
244 	 */
245 	mask = (u32)1 << go_bit;
246 	if (sync)
247 		mask |= 1 << control->atl_bit;
248 	else
249 		mask |= 1 << control->ac_bit;
250 	__ccu_write(ccu, offset, mask);
251 
252 	/* Wait for indication that operation is complete. */
253 	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
254 	if (!ret)
255 		pr_err("%s: ccu %s policy engine never started\n",
256 			__func__, ccu->name);
257 
258 	return ret;
259 }
260 
261 static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
262 {
263 	struct bcm_lvm_en *enable = &ccu->policy.enable;
264 	u32 offset;
265 	u32 enable_bit;
266 	bool ret;
267 
268 	/* If we don't need to control policy for this CCU, we're done. */
269 	if (!policy_lvm_en_exists(enable))
270 		return true;
271 
272 	/* Ensure we're not busy before we start */
273 	offset = enable->offset;
274 	enable_bit = enable->bit;
275 	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
276 	if (!ret) {
277 		pr_err("%s: ccu %s policy engine already stopped\n",
278 			__func__, ccu->name);
279 		return false;
280 	}
281 
282 	/* Now set the bit to stop the engine (NO read-modify-write) */
283 	__ccu_write(ccu, offset, (u32)1 << enable_bit);
284 
285 	/* Wait for indication that it has stopped. */
286 	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
287 	if (!ret)
288 		pr_err("%s: ccu %s policy engine never stopped\n",
289 			__func__, ccu->name);
290 
291 	return ret;
292 }
293 
294 /*
295  * A CCU has four operating conditions ("policies"), and some clocks
296  * can be disabled or enabled based on which policy is currently in
297  * effect.  Such clocks have a bit in a "policy mask" register for
298  * each policy indicating whether the clock is enabled for that
299  * policy or not.  The bit position for a clock is the same for all
300  * four registers, and the 32-bit registers are at consecutive
301  * addresses.
302  */
303 static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
304 {
305 	u32 offset;
306 	u32 mask;
307 	int i;
308 	bool ret;
309 
310 	if (!policy_exists(policy))
311 		return true;
312 
313 	/*
314 	 * We need to stop the CCU policy engine to allow update
315 	 * of our policy bits.
316 	 */
317 	if (!__ccu_policy_engine_stop(ccu)) {
318 		pr_err("%s: unable to stop CCU %s policy engine\n",
319 			__func__, ccu->name);
320 		return false;
321 	}
322 
323 	/*
324 	 * For now, if a clock defines its policy bit we just mark
325 	 * it "enabled" for all four policies.
326 	 */
327 	offset = policy->offset;
328 	mask = (u32)1 << policy->bit;
329 	for (i = 0; i < CCU_POLICY_COUNT; i++) {
330 		u32 reg_val;
331 
332 		reg_val = __ccu_read(ccu, offset);
333 		reg_val |= mask;
334 		__ccu_write(ccu, offset, reg_val);
335 		offset += sizeof(u32);
336 	}
337 
338 	/* We're done updating; fire up the policy engine again. */
339 	ret = __ccu_policy_engine_start(ccu, true);
340 	if (!ret)
341 		pr_err("%s: unable to restart CCU %s policy engine\n",
342 			__func__, ccu->name);
343 
344 	return ret;
345 }
346 
347 /* Gate operations */
348 
349 /* Determine whether a clock is gated.  CCU lock must be held.  */
350 static bool
351 __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
352 {
353 	u32 bit_mask;
354 	u32 reg_val;
355 
356 	/* If there is no gate we can assume it's enabled. */
357 	if (!gate_exists(gate))
358 		return true;
359 
360 	bit_mask = 1 << gate->status_bit;
361 	reg_val = __ccu_read(ccu, gate->offset);
362 
363 	return (reg_val & bit_mask) != 0;
364 }
365 
366 /* Determine whether a clock is gated. */
367 static bool
368 is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
369 {
370 	long flags;
371 	bool ret;
372 
373 	/* Avoid taking the lock if we can */
374 	if (!gate_exists(gate))
375 		return true;
376 
377 	flags = ccu_lock(ccu);
378 	ret = __is_clk_gate_enabled(ccu, gate);
379 	ccu_unlock(ccu, flags);
380 
381 	return ret;
382 }
383 
384 /*
385  * Commit our desired gate state to the hardware.
386  * Returns true if successful, false otherwise.
387  */
388 static bool
389 __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
390 {
391 	u32 reg_val;
392 	u32 mask;
393 	bool enabled = false;
394 
395 	BUG_ON(!gate_exists(gate));
396 	if (!gate_is_sw_controllable(gate))
397 		return true;		/* Nothing we can change */
398 
399 	reg_val = __ccu_read(ccu, gate->offset);
400 
401 	/* For a hardware/software gate, set which is in control */
402 	if (gate_is_hw_controllable(gate)) {
403 		mask = (u32)1 << gate->hw_sw_sel_bit;
404 		if (gate_is_sw_managed(gate))
405 			reg_val |= mask;
406 		else
407 			reg_val &= ~mask;
408 	}
409 
410 	/*
411 	 * If software is in control, enable or disable the gate.
412 	 * If hardware is, clear the enabled bit for good measure.
413 	 * If a software controlled gate can't be disabled, we're
414 	 * required to write a 0 into the enable bit (but the gate
415 	 * will be enabled).
416 	 */
417 	mask = (u32)1 << gate->en_bit;
418 	if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
419 			!gate_is_no_disable(gate))
420 		reg_val |= mask;
421 	else
422 		reg_val &= ~mask;
423 
424 	__ccu_write(ccu, gate->offset, reg_val);
425 
426 	/* For a hardware controlled gate, we're done */
427 	if (!gate_is_sw_managed(gate))
428 		return true;
429 
430 	/* Otherwise wait for the gate to be in desired state */
431 	return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
432 }
433 
434 /*
435  * Initialize a gate.  Our desired state (hardware/software select,
436  * and if software, its enable state) is committed to hardware
437  * without the usual checks to see if it's already set up that way.
438  * Returns true if successful, false otherwise.
439  */
440 static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
441 {
442 	if (!gate_exists(gate))
443 		return true;
444 	return __gate_commit(ccu, gate);
445 }
446 
447 /*
448  * Set a gate to enabled or disabled state.  Does nothing if the
449  * gate is not currently under software control, or if it is already
450  * in the requested state.  Returns true if successful, false
451  * otherwise.  CCU lock must be held.
452  */
453 static bool
454 __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
455 {
456 	bool ret;
457 
458 	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
459 		return true;	/* Nothing to do */
460 
461 	if (!enable && gate_is_no_disable(gate)) {
462 		pr_warn("%s: invalid gate disable request (ignoring)\n",
463 			__func__);
464 		return true;
465 	}
466 
467 	if (enable == gate_is_enabled(gate))
468 		return true;	/* No change */
469 
470 	gate_flip_enabled(gate);
471 	ret = __gate_commit(ccu, gate);
472 	if (!ret)
473 		gate_flip_enabled(gate);	/* Revert the change */
474 
475 	return ret;
476 }
477 
478 /* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
479 static int clk_gate(struct ccu_data *ccu, const char *name,
480 			struct bcm_clk_gate *gate, bool enable)
481 {
482 	unsigned long flags;
483 	bool success;
484 
485 	/*
486 	 * Avoid taking the lock if we can.  We quietly ignore
487 	 * requests to change state that don't make sense.
488 	 */
489 	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
490 		return 0;
491 	if (!enable && gate_is_no_disable(gate))
492 		return 0;
493 
494 	flags = ccu_lock(ccu);
495 	__ccu_write_enable(ccu);
496 
497 	success = __clk_gate(ccu, gate, enable);
498 
499 	__ccu_write_disable(ccu);
500 	ccu_unlock(ccu, flags);
501 
502 	if (success)
503 		return 0;
504 
505 	pr_err("%s: failed to %s gate for %s\n", __func__,
506 		str_enable_disable(enable), name);
507 
508 	return -EIO;
509 }
510 
511 /* Hysteresis operations */
512 
513 /*
514  * If a clock gate requires a turn-off delay it will have
515  * "hysteresis" register bits defined.  The first, if set, enables
516  * the delay; and if enabled, the second bit determines whether the
517  * delay is "low" or "high" (1 means high).  For now, if it's
518  * defined for a clock, we set it.
519  */
520 static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
521 {
522 	u32 offset;
523 	u32 reg_val;
524 	u32 mask;
525 
526 	if (!hyst_exists(hyst))
527 		return true;
528 
529 	offset = hyst->offset;
530 	mask = (u32)1 << hyst->en_bit;
531 	mask |= (u32)1 << hyst->val_bit;
532 
533 	reg_val = __ccu_read(ccu, offset);
534 	reg_val |= mask;
535 	__ccu_write(ccu, offset, reg_val);
536 
537 	return true;
538 }
539 
540 /* Trigger operations */
541 
542 /*
543  * Caller must ensure CCU lock is held and access is enabled.
544  * Returns true if successful, false otherwise.
545  */
546 static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
547 {
548 	/* Trigger the clock and wait for it to finish */
549 	__ccu_write(ccu, trig->offset, 1 << trig->bit);
550 
551 	return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
552 }
553 
554 /* Divider operations */
555 
556 /* Read a divider value and return the scaled divisor it represents. */
557 static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
558 {
559 	unsigned long flags;
560 	u32 reg_val;
561 	u32 reg_div;
562 
563 	if (divider_is_fixed(div))
564 		return (u64)div->u.fixed;
565 
566 	flags = ccu_lock(ccu);
567 	reg_val = __ccu_read(ccu, div->u.s.offset);
568 	ccu_unlock(ccu, flags);
569 
570 	/* Extract the full divider field from the register value */
571 	reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
572 
573 	/* Return the scaled divisor value it represents */
574 	return scaled_div_value(div, reg_div);
575 }
576 
577 /*
578  * Convert a divider's scaled divisor value into its recorded form
579  * and commit it into the hardware divider register.
580  *
581  * Returns 0 on success.  Returns -EINVAL for invalid arguments.
582  * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
583  */
584 static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
585 			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
586 {
587 	bool enabled;
588 	u32 reg_div;
589 	u32 reg_val;
590 	int ret = 0;
591 
592 	BUG_ON(divider_is_fixed(div));
593 
594 	/*
595 	 * If we're just initializing the divider, and no initial
596 	 * state was defined in the device tree, we just find out
597 	 * what its current value is rather than updating it.
598 	 */
599 	if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
600 		reg_val = __ccu_read(ccu, div->u.s.offset);
601 		reg_div = bitfield_extract(reg_val, div->u.s.shift,
602 						div->u.s.width);
603 		div->u.s.scaled_div = scaled_div_value(div, reg_div);
604 
605 		return 0;
606 	}
607 
608 	/* Convert the scaled divisor to the value we need to record */
609 	reg_div = divider(div, div->u.s.scaled_div);
610 
611 	/* Clock needs to be enabled before changing the rate */
612 	enabled = __is_clk_gate_enabled(ccu, gate);
613 	if (!enabled && !__clk_gate(ccu, gate, true)) {
614 		ret = -ENXIO;
615 		goto out;
616 	}
617 
618 	/* Replace the divider value and record the result */
619 	reg_val = __ccu_read(ccu, div->u.s.offset);
620 	reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
621 					reg_div);
622 	__ccu_write(ccu, div->u.s.offset, reg_val);
623 
624 	/* If the trigger fails we still want to disable the gate */
625 	if (!__clk_trigger(ccu, trig))
626 		ret = -EIO;
627 
628 	/* Disable the clock again if it was disabled to begin with */
629 	if (!enabled && !__clk_gate(ccu, gate, false))
630 		ret = ret ? ret : -ENXIO;	/* return first error */
631 out:
632 	return ret;
633 }
634 
635 /*
636  * Initialize a divider by committing our desired state to hardware
637  * without the usual checks to see if it's already set up that way.
638  * Returns true if successful, false otherwise.
639  */
640 static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
641 			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
642 {
643 	if (!divider_exists(div) || divider_is_fixed(div))
644 		return true;
645 	return !__div_commit(ccu, gate, div, trig);
646 }
647 
648 static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
649 			struct bcm_clk_div *div, struct bcm_clk_trig *trig,
650 			u64 scaled_div)
651 {
652 	unsigned long flags;
653 	u64 previous;
654 	int ret;
655 
656 	BUG_ON(divider_is_fixed(div));
657 
658 	previous = div->u.s.scaled_div;
659 	if (previous == scaled_div)
660 		return 0;	/* No change */
661 
662 	div->u.s.scaled_div = scaled_div;
663 
664 	flags = ccu_lock(ccu);
665 	__ccu_write_enable(ccu);
666 
667 	ret = __div_commit(ccu, gate, div, trig);
668 
669 	__ccu_write_disable(ccu);
670 	ccu_unlock(ccu, flags);
671 
672 	if (ret)
673 		div->u.s.scaled_div = previous;		/* Revert the change */
674 
675 	return ret;
676 
677 }
678 
679 /* Common clock rate helpers */
680 
681 /*
682  * Implement the common clock framework recalc_rate method, taking
683  * into account a divider and an optional pre-divider.  The
684  * pre-divider register pointer may be NULL.
685  */
686 static unsigned long clk_recalc_rate(struct ccu_data *ccu,
687 			struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
688 			unsigned long parent_rate)
689 {
690 	u64 scaled_parent_rate;
691 	u64 scaled_div;
692 	u64 result;
693 
694 	if (!divider_exists(div))
695 		return parent_rate;
696 
697 	if (parent_rate > (unsigned long)LONG_MAX)
698 		return 0;	/* actually this would be a caller bug */
699 
700 	/*
701 	 * If there is a pre-divider, divide the scaled parent rate
702 	 * by the pre-divider value first.  In this case--to improve
703 	 * accuracy--scale the parent rate by *both* the pre-divider
704 	 * value and the divider before actually computing the
705 	 * result of the pre-divider.
706 	 *
707 	 * If there's only one divider, just scale the parent rate.
708 	 */
709 	if (pre_div && divider_exists(pre_div)) {
710 		u64 scaled_rate;
711 
712 		scaled_rate = scale_rate(pre_div, parent_rate);
713 		scaled_rate = scale_rate(div, scaled_rate);
714 		scaled_div = divider_read_scaled(ccu, pre_div);
715 		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
716 							scaled_div);
717 	} else  {
718 		scaled_parent_rate = scale_rate(div, parent_rate);
719 	}
720 
721 	/*
722 	 * Get the scaled divisor value, and divide the scaled
723 	 * parent rate by that to determine this clock's resulting
724 	 * rate.
725 	 */
726 	scaled_div = divider_read_scaled(ccu, div);
727 	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
728 
729 	return (unsigned long)result;
730 }
731 
732 /*
733  * Compute the output rate produced when a given parent rate is fed
734  * into two dividers.  The pre-divider can be NULL, and even if it's
735  * non-null it may be nonexistent.  It's also OK for the divider to
736  * be nonexistent, and in that case the pre-divider is also ignored.
737  *
738  * If scaled_div is non-null, it is used to return the scaled divisor
739  * value used by the (downstream) divider to produce that rate.
740  */
741 static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
742 				struct bcm_clk_div *pre_div,
743 				unsigned long rate, unsigned long parent_rate,
744 				u64 *scaled_div)
745 {
746 	u64 scaled_parent_rate;
747 	u64 min_scaled_div;
748 	u64 max_scaled_div;
749 	u64 best_scaled_div;
750 	u64 result;
751 
752 	BUG_ON(!divider_exists(div));
753 	BUG_ON(!rate);
754 	BUG_ON(parent_rate > (u64)LONG_MAX);
755 
756 	/*
757 	 * If there is a pre-divider, divide the scaled parent rate
758 	 * by the pre-divider value first.  In this case--to improve
759 	 * accuracy--scale the parent rate by *both* the pre-divider
760 	 * value and the divider before actually computing the
761 	 * result of the pre-divider.
762 	 *
763 	 * If there's only one divider, just scale the parent rate.
764 	 *
765 	 * For simplicity we treat the pre-divider as fixed (for now).
766 	 */
767 	if (divider_exists(pre_div)) {
768 		u64 scaled_rate;
769 		u64 scaled_pre_div;
770 
771 		scaled_rate = scale_rate(pre_div, parent_rate);
772 		scaled_rate = scale_rate(div, scaled_rate);
773 		scaled_pre_div = divider_read_scaled(ccu, pre_div);
774 		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
775 							scaled_pre_div);
776 	} else {
777 		scaled_parent_rate = scale_rate(div, parent_rate);
778 	}
779 
780 	/*
781 	 * Compute the best possible divider and ensure it is in
782 	 * range.  A fixed divider can't be changed, so just report
783 	 * the best we can do.
784 	 */
785 	if (!divider_is_fixed(div)) {
786 		best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
787 							rate);
788 		min_scaled_div = scaled_div_min(div);
789 		max_scaled_div = scaled_div_max(div);
790 		if (best_scaled_div > max_scaled_div)
791 			best_scaled_div = max_scaled_div;
792 		else if (best_scaled_div < min_scaled_div)
793 			best_scaled_div = min_scaled_div;
794 	} else {
795 		best_scaled_div = divider_read_scaled(ccu, div);
796 	}
797 
798 	/* OK, figure out the resulting rate */
799 	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
800 
801 	if (scaled_div)
802 		*scaled_div = best_scaled_div;
803 
804 	return (long)result;
805 }
806 
807 /* Common clock parent helpers */
808 
809 /*
810  * For a given parent selector (register field) value, find the
811  * index into a selector's parent_sel array that contains it.
812  * Returns the index, or BAD_CLK_INDEX if it's not found.
813  */
814 static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
815 {
816 	u8 i;
817 
818 	BUG_ON(sel->parent_count > (u32)U8_MAX);
819 	for (i = 0; i < sel->parent_count; i++)
820 		if (sel->parent_sel[i] == parent_sel)
821 			return i;
822 	return BAD_CLK_INDEX;
823 }
824 
825 /*
826  * Fetch the current value of the selector, and translate that into
827  * its corresponding index in the parent array we registered with
828  * the clock framework.
829  *
830  * Returns parent array index that corresponds with the value found,
831  * or BAD_CLK_INDEX if the found value is out of range.
832  */
833 static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
834 {
835 	unsigned long flags;
836 	u32 reg_val;
837 	u32 parent_sel;
838 	u8 index;
839 
840 	/* If there's no selector, there's only one parent */
841 	if (!selector_exists(sel))
842 		return 0;
843 
844 	/* Get the value in the selector register */
845 	flags = ccu_lock(ccu);
846 	reg_val = __ccu_read(ccu, sel->offset);
847 	ccu_unlock(ccu, flags);
848 
849 	parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
850 
851 	/* Look up that selector's parent array index and return it */
852 	index = parent_index(sel, parent_sel);
853 	if (index == BAD_CLK_INDEX)
854 		pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
855 			__func__, parent_sel, ccu->name, sel->offset);
856 
857 	return index;
858 }
859 
860 /*
861  * Commit our desired selector value to the hardware.
862  *
863  * Returns 0 on success.  Returns -EINVAL for invalid arguments.
864  * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
865  */
866 static int
867 __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
868 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
869 {
870 	u32 parent_sel;
871 	u32 reg_val;
872 	bool enabled;
873 	int ret = 0;
874 
875 	BUG_ON(!selector_exists(sel));
876 
877 	/*
878 	 * If we're just initializing the selector, and no initial
879 	 * state was defined in the device tree, we just find out
880 	 * what its current value is rather than updating it.
881 	 */
882 	if (sel->clk_index == BAD_CLK_INDEX) {
883 		u8 index;
884 
885 		reg_val = __ccu_read(ccu, sel->offset);
886 		parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
887 		index = parent_index(sel, parent_sel);
888 		if (index == BAD_CLK_INDEX)
889 			return -EINVAL;
890 		sel->clk_index = index;
891 
892 		return 0;
893 	}
894 
895 	BUG_ON((u32)sel->clk_index >= sel->parent_count);
896 	parent_sel = sel->parent_sel[sel->clk_index];
897 
898 	/* Clock needs to be enabled before changing the parent */
899 	enabled = __is_clk_gate_enabled(ccu, gate);
900 	if (!enabled && !__clk_gate(ccu, gate, true))
901 		return -ENXIO;
902 
903 	/* Replace the selector value and record the result */
904 	reg_val = __ccu_read(ccu, sel->offset);
905 	reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
906 	__ccu_write(ccu, sel->offset, reg_val);
907 
908 	/* If the trigger fails we still want to disable the gate */
909 	if (!__clk_trigger(ccu, trig))
910 		ret = -EIO;
911 
912 	/* Disable the clock again if it was disabled to begin with */
913 	if (!enabled && !__clk_gate(ccu, gate, false))
914 		ret = ret ? ret : -ENXIO;	/* return first error */
915 
916 	return ret;
917 }
918 
919 /*
920  * Initialize a selector by committing our desired state to hardware
921  * without the usual checks to see if it's already set up that way.
922  * Returns true if successful, false otherwise.
923  */
924 static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
925 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
926 {
927 	if (!selector_exists(sel))
928 		return true;
929 	return !__sel_commit(ccu, gate, sel, trig);
930 }
931 
932 /*
933  * Write a new value into a selector register to switch to a
934  * different parent clock.  Returns 0 on success, or an error code
935  * (from __sel_commit()) otherwise.
936  */
937 static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
938 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
939 			u8 index)
940 {
941 	unsigned long flags;
942 	u8 previous;
943 	int ret;
944 
945 	previous = sel->clk_index;
946 	if (previous == index)
947 		return 0;	/* No change */
948 
949 	sel->clk_index = index;
950 
951 	flags = ccu_lock(ccu);
952 	__ccu_write_enable(ccu);
953 
954 	ret = __sel_commit(ccu, gate, sel, trig);
955 
956 	__ccu_write_disable(ccu);
957 	ccu_unlock(ccu, flags);
958 
959 	if (ret)
960 		sel->clk_index = previous;	/* Revert the change */
961 
962 	return ret;
963 }
964 
965 /* Clock operations */
966 
967 static int kona_peri_clk_enable(struct clk_hw *hw)
968 {
969 	struct kona_clk *bcm_clk = to_kona_clk(hw);
970 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
971 
972 	return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
973 }
974 
975 static void kona_peri_clk_disable(struct clk_hw *hw)
976 {
977 	struct kona_clk *bcm_clk = to_kona_clk(hw);
978 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
979 
980 	(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
981 }
982 
983 static int kona_peri_clk_is_enabled(struct clk_hw *hw)
984 {
985 	struct kona_clk *bcm_clk = to_kona_clk(hw);
986 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
987 
988 	return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
989 }
990 
991 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
992 			unsigned long parent_rate)
993 {
994 	struct kona_clk *bcm_clk = to_kona_clk(hw);
995 	struct peri_clk_data *data = bcm_clk->u.peri;
996 
997 	return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
998 				parent_rate);
999 }
1000 
1001 static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1002 			unsigned long *parent_rate)
1003 {
1004 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1005 	struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1006 
1007 	if (!divider_exists(div))
1008 		return clk_hw_get_rate(hw);
1009 
1010 	/* Quietly avoid a zero rate */
1011 	return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1012 				rate ? rate : 1, *parent_rate, NULL);
1013 }
1014 
1015 static int kona_peri_clk_determine_rate(struct clk_hw *hw,
1016 					struct clk_rate_request *req)
1017 {
1018 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1019 	struct clk_hw *current_parent;
1020 	unsigned long parent_rate;
1021 	unsigned long best_delta;
1022 	unsigned long best_rate;
1023 	u32 parent_count;
1024 	long rate;
1025 	u32 which;
1026 
1027 	/*
1028 	 * If there is no other parent to choose, use the current one.
1029 	 * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1030 	 */
1031 	WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1032 	parent_count = (u32)bcm_clk->init_data.num_parents;
1033 	if (parent_count < 2) {
1034 		rate = kona_peri_clk_round_rate(hw, req->rate,
1035 						&req->best_parent_rate);
1036 		if (rate < 0)
1037 			return rate;
1038 
1039 		req->rate = rate;
1040 		return 0;
1041 	}
1042 
1043 	/* Unless we can do better, stick with current parent */
1044 	current_parent = clk_hw_get_parent(hw);
1045 	parent_rate = clk_hw_get_rate(current_parent);
1046 	best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
1047 	best_delta = abs(best_rate - req->rate);
1048 
1049 	/* Check whether any other parent clock can produce a better result */
1050 	for (which = 0; which < parent_count; which++) {
1051 		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
1052 		unsigned long delta;
1053 		unsigned long other_rate;
1054 
1055 		BUG_ON(!parent);
1056 		if (parent == current_parent)
1057 			continue;
1058 
1059 		/* We don't support CLK_SET_RATE_PARENT */
1060 		parent_rate = clk_hw_get_rate(parent);
1061 		other_rate = kona_peri_clk_round_rate(hw, req->rate,
1062 						      &parent_rate);
1063 		delta = abs(other_rate - req->rate);
1064 		if (delta < best_delta) {
1065 			best_delta = delta;
1066 			best_rate = other_rate;
1067 			req->best_parent_hw = parent;
1068 			req->best_parent_rate = parent_rate;
1069 		}
1070 	}
1071 
1072 	req->rate = best_rate;
1073 	return 0;
1074 }
1075 
1076 static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1077 {
1078 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1079 	struct peri_clk_data *data = bcm_clk->u.peri;
1080 	struct bcm_clk_sel *sel = &data->sel;
1081 	struct bcm_clk_trig *trig;
1082 	int ret;
1083 
1084 	BUG_ON(index >= sel->parent_count);
1085 
1086 	/* If there's only one parent we don't require a selector */
1087 	if (!selector_exists(sel))
1088 		return 0;
1089 
1090 	/*
1091 	 * The regular trigger is used by default, but if there's a
1092 	 * pre-trigger we want to use that instead.
1093 	 */
1094 	trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1095 					       : &data->trig;
1096 
1097 	ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1098 	if (ret == -ENXIO) {
1099 		pr_err("%s: gating failure for %s\n", __func__,
1100 			bcm_clk->init_data.name);
1101 		ret = -EIO;	/* Don't proliferate weird errors */
1102 	} else if (ret == -EIO) {
1103 		pr_err("%s: %strigger failed for %s\n", __func__,
1104 			trig == &data->pre_trig ? "pre-" : "",
1105 			bcm_clk->init_data.name);
1106 	}
1107 
1108 	return ret;
1109 }
1110 
1111 static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1112 {
1113 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1114 	struct peri_clk_data *data = bcm_clk->u.peri;
1115 	u8 index;
1116 
1117 	index = selector_read_index(bcm_clk->ccu, &data->sel);
1118 
1119 	/* Not all callers would handle an out-of-range value gracefully */
1120 	return index == BAD_CLK_INDEX ? 0 : index;
1121 }
1122 
1123 static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1124 			unsigned long parent_rate)
1125 {
1126 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1127 	struct peri_clk_data *data = bcm_clk->u.peri;
1128 	struct bcm_clk_div *div = &data->div;
1129 	u64 scaled_div = 0;
1130 	int ret;
1131 
1132 	if (parent_rate > (unsigned long)LONG_MAX)
1133 		return -EINVAL;
1134 
1135 	if (rate == clk_hw_get_rate(hw))
1136 		return 0;
1137 
1138 	if (!divider_exists(div))
1139 		return rate == parent_rate ? 0 : -EINVAL;
1140 
1141 	/*
1142 	 * A fixed divider can't be changed.  (Nor can a fixed
1143 	 * pre-divider be, but for now we never actually try to
1144 	 * change that.)  Tolerate a request for a no-op change.
1145 	 */
1146 	if (divider_is_fixed(&data->div))
1147 		return rate == parent_rate ? 0 : -EINVAL;
1148 
1149 	/*
1150 	 * Get the scaled divisor value needed to achieve a clock
1151 	 * rate as close as possible to what was requested, given
1152 	 * the parent clock rate supplied.
1153 	 */
1154 	(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1155 				rate ? rate : 1, parent_rate, &scaled_div);
1156 
1157 	/*
1158 	 * We aren't updating any pre-divider at this point, so
1159 	 * we'll use the regular trigger.
1160 	 */
1161 	ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1162 				&data->trig, scaled_div);
1163 	if (ret == -ENXIO) {
1164 		pr_err("%s: gating failure for %s\n", __func__,
1165 			bcm_clk->init_data.name);
1166 		ret = -EIO;	/* Don't proliferate weird errors */
1167 	} else if (ret == -EIO) {
1168 		pr_err("%s: trigger failed for %s\n", __func__,
1169 			bcm_clk->init_data.name);
1170 	}
1171 
1172 	return ret;
1173 }
1174 
1175 struct clk_ops kona_peri_clk_ops = {
1176 	.enable = kona_peri_clk_enable,
1177 	.disable = kona_peri_clk_disable,
1178 	.is_enabled = kona_peri_clk_is_enabled,
1179 	.recalc_rate = kona_peri_clk_recalc_rate,
1180 	.determine_rate = kona_peri_clk_determine_rate,
1181 	.set_parent = kona_peri_clk_set_parent,
1182 	.get_parent = kona_peri_clk_get_parent,
1183 	.set_rate = kona_peri_clk_set_rate,
1184 };
1185 
1186 /* Put a peripheral clock into its initial state */
1187 static bool __peri_clk_init(struct kona_clk *bcm_clk)
1188 {
1189 	struct ccu_data *ccu = bcm_clk->ccu;
1190 	struct peri_clk_data *peri = bcm_clk->u.peri;
1191 	const char *name = bcm_clk->init_data.name;
1192 	struct bcm_clk_trig *trig;
1193 
1194 	BUG_ON(bcm_clk->type != bcm_clk_peri);
1195 
1196 	if (!policy_init(ccu, &peri->policy)) {
1197 		pr_err("%s: error initializing policy for %s\n",
1198 			__func__, name);
1199 		return false;
1200 	}
1201 	if (!gate_init(ccu, &peri->gate)) {
1202 		pr_err("%s: error initializing gate for %s\n", __func__, name);
1203 		return false;
1204 	}
1205 	if (!hyst_init(ccu, &peri->hyst)) {
1206 		pr_err("%s: error initializing hyst for %s\n", __func__, name);
1207 		return false;
1208 	}
1209 	if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1210 		pr_err("%s: error initializing divider for %s\n", __func__,
1211 			name);
1212 		return false;
1213 	}
1214 
1215 	/*
1216 	 * For the pre-divider and selector, the pre-trigger is used
1217 	 * if it's present, otherwise we just use the regular trigger.
1218 	 */
1219 	trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1220 					       : &peri->trig;
1221 
1222 	if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1223 		pr_err("%s: error initializing pre-divider for %s\n", __func__,
1224 			name);
1225 		return false;
1226 	}
1227 
1228 	if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1229 		pr_err("%s: error initializing selector for %s\n", __func__,
1230 			name);
1231 		return false;
1232 	}
1233 
1234 	return true;
1235 }
1236 
1237 static bool __kona_clk_init(struct kona_clk *bcm_clk)
1238 {
1239 	switch (bcm_clk->type) {
1240 	case bcm_clk_peri:
1241 		return __peri_clk_init(bcm_clk);
1242 	default:
1243 		BUG();
1244 	}
1245 	return false;
1246 }
1247 
1248 /* Set a CCU and all its clocks into their desired initial state */
1249 bool __init kona_ccu_init(struct ccu_data *ccu)
1250 {
1251 	unsigned long flags;
1252 	unsigned int which;
1253 	struct kona_clk *kona_clks = ccu->kona_clks;
1254 	bool success = true;
1255 
1256 	flags = ccu_lock(ccu);
1257 	__ccu_write_enable(ccu);
1258 
1259 	for (which = 0; which < ccu->clk_num; which++) {
1260 		struct kona_clk *bcm_clk = &kona_clks[which];
1261 
1262 		if (!bcm_clk->ccu)
1263 			continue;
1264 
1265 		success &= __kona_clk_init(bcm_clk);
1266 	}
1267 
1268 	__ccu_write_disable(ccu);
1269 	ccu_unlock(ccu, flags);
1270 	return success;
1271 }
1272