1 /* 2 * Copyright (C) 2013 Broadcom Corporation 3 * Copyright 2013 Linaro Limited 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation version 2. 8 * 9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 10 * kind, whether express or implied; without even the implied warranty 11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #include <linux/io.h> 16 #include <linux/of_address.h> 17 18 #include "clk-kona.h" 19 20 /* These are used when a selector or trigger is found to be unneeded */ 21 #define selector_clear_exists(sel) ((sel)->width = 0) 22 #define trigger_clear_exists(trig) FLAG_CLEAR(trig, TRIG, EXISTS) 23 24 /* Validity checking */ 25 26 static bool ccu_data_offsets_valid(struct ccu_data *ccu) 27 { 28 struct ccu_policy *ccu_policy = &ccu->policy; 29 u32 limit; 30 31 limit = ccu->range - sizeof(u32); 32 limit = round_down(limit, sizeof(u32)); 33 if (ccu_policy_exists(ccu_policy)) { 34 if (ccu_policy->enable.offset > limit) { 35 pr_err("%s: bad policy enable offset for %s " 36 "(%u > %u)\n", __func__, 37 ccu->name, ccu_policy->enable.offset, limit); 38 return false; 39 } 40 if (ccu_policy->control.offset > limit) { 41 pr_err("%s: bad policy control offset for %s " 42 "(%u > %u)\n", __func__, 43 ccu->name, ccu_policy->control.offset, limit); 44 return false; 45 } 46 } 47 48 return true; 49 } 50 51 static bool clk_requires_trigger(struct kona_clk *bcm_clk) 52 { 53 struct peri_clk_data *peri = bcm_clk->u.peri; 54 struct bcm_clk_sel *sel; 55 struct bcm_clk_div *div; 56 57 if (bcm_clk->type != bcm_clk_peri) 58 return false; 59 60 sel = &peri->sel; 61 if (sel->parent_count && selector_exists(sel)) 62 return true; 63 64 div = &peri->div; 65 if (!divider_exists(div)) 66 return false; 67 68 /* Fixed dividers don't need triggers */ 69 if (!divider_is_fixed(div)) 70 return true; 71 72 div = &peri->pre_div; 73 74 return divider_exists(div) && !divider_is_fixed(div); 75 } 76 77 static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk) 78 { 79 struct peri_clk_data *peri; 80 struct bcm_clk_policy *policy; 81 struct bcm_clk_gate *gate; 82 struct bcm_clk_hyst *hyst; 83 struct bcm_clk_div *div; 84 struct bcm_clk_sel *sel; 85 struct bcm_clk_trig *trig; 86 const char *name; 87 u32 range; 88 u32 limit; 89 90 BUG_ON(bcm_clk->type != bcm_clk_peri); 91 peri = bcm_clk->u.peri; 92 name = bcm_clk->init_data.name; 93 range = bcm_clk->ccu->range; 94 95 limit = range - sizeof(u32); 96 limit = round_down(limit, sizeof(u32)); 97 98 policy = &peri->policy; 99 if (policy_exists(policy)) { 100 if (policy->offset > limit) { 101 pr_err("%s: bad policy offset for %s (%u > %u)\n", 102 __func__, name, policy->offset, limit); 103 return false; 104 } 105 } 106 107 gate = &peri->gate; 108 hyst = &peri->hyst; 109 if (gate_exists(gate)) { 110 if (gate->offset > limit) { 111 pr_err("%s: bad gate offset for %s (%u > %u)\n", 112 __func__, name, gate->offset, limit); 113 return false; 114 } 115 116 if (hyst_exists(hyst)) { 117 if (hyst->offset > limit) { 118 pr_err("%s: bad hysteresis offset for %s " 119 "(%u > %u)\n", __func__, 120 name, hyst->offset, limit); 121 return false; 122 } 123 } 124 } else if (hyst_exists(hyst)) { 125 pr_err("%s: hysteresis but no gate for %s\n", __func__, name); 126 return false; 127 } 128 129 div = &peri->div; 130 if (divider_exists(div)) { 131 if (div->u.s.offset > limit) { 132 pr_err("%s: bad divider offset for %s (%u > %u)\n", 133 __func__, name, div->u.s.offset, limit); 134 return false; 135 } 136 } 137 138 div = &peri->pre_div; 139 if (divider_exists(div)) { 140 if (div->u.s.offset > limit) { 141 pr_err("%s: bad pre-divider offset for %s " 142 "(%u > %u)\n", 143 __func__, name, div->u.s.offset, limit); 144 return false; 145 } 146 } 147 148 sel = &peri->sel; 149 if (selector_exists(sel)) { 150 if (sel->offset > limit) { 151 pr_err("%s: bad selector offset for %s (%u > %u)\n", 152 __func__, name, sel->offset, limit); 153 return false; 154 } 155 } 156 157 trig = &peri->trig; 158 if (trigger_exists(trig)) { 159 if (trig->offset > limit) { 160 pr_err("%s: bad trigger offset for %s (%u > %u)\n", 161 __func__, name, trig->offset, limit); 162 return false; 163 } 164 } 165 166 trig = &peri->pre_trig; 167 if (trigger_exists(trig)) { 168 if (trig->offset > limit) { 169 pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n", 170 __func__, name, trig->offset, limit); 171 return false; 172 } 173 } 174 175 return true; 176 } 177 178 /* A bit position must be less than the number of bits in a 32-bit register. */ 179 static bool bit_posn_valid(u32 bit_posn, const char *field_name, 180 const char *clock_name) 181 { 182 u32 limit = BITS_PER_BYTE * sizeof(u32) - 1; 183 184 if (bit_posn > limit) { 185 pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__, 186 field_name, clock_name, bit_posn, limit); 187 return false; 188 } 189 return true; 190 } 191 192 /* 193 * A bitfield must be at least 1 bit wide. Both the low-order and 194 * high-order bits must lie within a 32-bit register. We require 195 * fields to be less than 32 bits wide, mainly because we use 196 * shifting to produce field masks, and shifting a full word width 197 * is not well-defined by the C standard. 198 */ 199 static bool bitfield_valid(u32 shift, u32 width, const char *field_name, 200 const char *clock_name) 201 { 202 u32 limit = BITS_PER_BYTE * sizeof(u32); 203 204 if (!width) { 205 pr_err("%s: bad %s field width 0 for %s\n", __func__, 206 field_name, clock_name); 207 return false; 208 } 209 if (shift + width > limit) { 210 pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__, 211 field_name, clock_name, shift, width, limit); 212 return false; 213 } 214 return true; 215 } 216 217 static bool 218 ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name) 219 { 220 struct bcm_lvm_en *enable = &ccu_policy->enable; 221 struct bcm_policy_ctl *control; 222 223 if (!bit_posn_valid(enable->bit, "policy enable", ccu_name)) 224 return false; 225 226 control = &ccu_policy->control; 227 if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name)) 228 return false; 229 230 if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name)) 231 return false; 232 233 if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name)) 234 return false; 235 236 return true; 237 } 238 239 static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name) 240 { 241 if (!bit_posn_valid(policy->bit, "policy", clock_name)) 242 return false; 243 244 return true; 245 } 246 247 /* 248 * All gates, if defined, have a status bit, and for hardware-only 249 * gates, that's it. Gates that can be software controlled also 250 * have an enable bit. And a gate that can be hardware or software 251 * controlled will have a hardware/software select bit. 252 */ 253 static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name, 254 const char *clock_name) 255 { 256 if (!bit_posn_valid(gate->status_bit, "gate status", clock_name)) 257 return false; 258 259 if (gate_is_sw_controllable(gate)) { 260 if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name)) 261 return false; 262 263 if (gate_is_hw_controllable(gate)) { 264 if (!bit_posn_valid(gate->hw_sw_sel_bit, 265 "gate hw/sw select", 266 clock_name)) 267 return false; 268 } 269 } else { 270 BUG_ON(!gate_is_hw_controllable(gate)); 271 } 272 273 return true; 274 } 275 276 static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name) 277 { 278 if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name)) 279 return false; 280 281 if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name)) 282 return false; 283 284 return true; 285 } 286 287 /* 288 * A selector bitfield must be valid. Its parent_sel array must 289 * also be reasonable for the field. 290 */ 291 static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name, 292 const char *clock_name) 293 { 294 if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name)) 295 return false; 296 297 if (sel->parent_count) { 298 u32 max_sel; 299 u32 limit; 300 301 /* 302 * Make sure the selector field can hold all the 303 * selector values we expect to be able to use. A 304 * clock only needs to have a selector defined if it 305 * has more than one parent. And in that case the 306 * highest selector value will be in the last entry 307 * in the array. 308 */ 309 max_sel = sel->parent_sel[sel->parent_count - 1]; 310 limit = (1 << sel->width) - 1; 311 if (max_sel > limit) { 312 pr_err("%s: bad selector for %s " 313 "(%u needs > %u bits)\n", 314 __func__, clock_name, max_sel, 315 sel->width); 316 return false; 317 } 318 } else { 319 pr_warn("%s: ignoring selector for %s (no parents)\n", 320 __func__, clock_name); 321 selector_clear_exists(sel); 322 kfree(sel->parent_sel); 323 sel->parent_sel = NULL; 324 } 325 326 return true; 327 } 328 329 /* 330 * A fixed divider just needs to be non-zero. A variable divider 331 * has to have a valid divider bitfield, and if it has a fraction, 332 * the width of the fraction must not be no more than the width of 333 * the divider as a whole. 334 */ 335 static bool div_valid(struct bcm_clk_div *div, const char *field_name, 336 const char *clock_name) 337 { 338 if (divider_is_fixed(div)) { 339 /* Any fixed divider value but 0 is OK */ 340 if (div->u.fixed == 0) { 341 pr_err("%s: bad %s fixed value 0 for %s\n", __func__, 342 field_name, clock_name); 343 return false; 344 } 345 return true; 346 } 347 if (!bitfield_valid(div->u.s.shift, div->u.s.width, 348 field_name, clock_name)) 349 return false; 350 351 if (divider_has_fraction(div)) 352 if (div->u.s.frac_width > div->u.s.width) { 353 pr_warn("%s: bad %s fraction width for %s (%u > %u)\n", 354 __func__, field_name, clock_name, 355 div->u.s.frac_width, div->u.s.width); 356 return false; 357 } 358 359 return true; 360 } 361 362 /* 363 * If a clock has two dividers, the combined number of fractional 364 * bits must be representable in a 32-bit unsigned value. This 365 * is because we scale up a dividend using both dividers before 366 * dividing to improve accuracy, and we need to avoid overflow. 367 */ 368 static bool kona_dividers_valid(struct kona_clk *bcm_clk) 369 { 370 struct peri_clk_data *peri = bcm_clk->u.peri; 371 struct bcm_clk_div *div; 372 struct bcm_clk_div *pre_div; 373 u32 limit; 374 375 BUG_ON(bcm_clk->type != bcm_clk_peri); 376 377 if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div)) 378 return true; 379 380 div = &peri->div; 381 pre_div = &peri->pre_div; 382 if (divider_is_fixed(div) || divider_is_fixed(pre_div)) 383 return true; 384 385 limit = BITS_PER_BYTE * sizeof(u32); 386 387 return div->u.s.frac_width + pre_div->u.s.frac_width <= limit; 388 } 389 390 391 /* A trigger just needs to represent a valid bit position */ 392 static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name, 393 const char *clock_name) 394 { 395 return bit_posn_valid(trig->bit, field_name, clock_name); 396 } 397 398 /* Determine whether the set of peripheral clock registers are valid. */ 399 static bool 400 peri_clk_data_valid(struct kona_clk *bcm_clk) 401 { 402 struct peri_clk_data *peri; 403 struct bcm_clk_policy *policy; 404 struct bcm_clk_gate *gate; 405 struct bcm_clk_hyst *hyst; 406 struct bcm_clk_sel *sel; 407 struct bcm_clk_div *div; 408 struct bcm_clk_div *pre_div; 409 struct bcm_clk_trig *trig; 410 const char *name; 411 412 BUG_ON(bcm_clk->type != bcm_clk_peri); 413 414 /* 415 * First validate register offsets. This is the only place 416 * where we need something from the ccu, so we do these 417 * together. 418 */ 419 if (!peri_clk_data_offsets_valid(bcm_clk)) 420 return false; 421 422 peri = bcm_clk->u.peri; 423 name = bcm_clk->init_data.name; 424 425 policy = &peri->policy; 426 if (policy_exists(policy) && !policy_valid(policy, name)) 427 return false; 428 429 gate = &peri->gate; 430 if (gate_exists(gate) && !gate_valid(gate, "gate", name)) 431 return false; 432 433 hyst = &peri->hyst; 434 if (hyst_exists(hyst) && !hyst_valid(hyst, name)) 435 return false; 436 437 sel = &peri->sel; 438 if (selector_exists(sel)) { 439 if (!sel_valid(sel, "selector", name)) 440 return false; 441 442 } else if (sel->parent_count > 1) { 443 pr_err("%s: multiple parents but no selector for %s\n", 444 __func__, name); 445 446 return false; 447 } 448 449 div = &peri->div; 450 pre_div = &peri->pre_div; 451 if (divider_exists(div)) { 452 if (!div_valid(div, "divider", name)) 453 return false; 454 455 if (divider_exists(pre_div)) 456 if (!div_valid(pre_div, "pre-divider", name)) 457 return false; 458 } else if (divider_exists(pre_div)) { 459 pr_err("%s: pre-divider but no divider for %s\n", __func__, 460 name); 461 return false; 462 } 463 464 trig = &peri->trig; 465 if (trigger_exists(trig)) { 466 if (!trig_valid(trig, "trigger", name)) 467 return false; 468 469 if (trigger_exists(&peri->pre_trig)) { 470 if (!trig_valid(trig, "pre-trigger", name)) { 471 return false; 472 } 473 } 474 if (!clk_requires_trigger(bcm_clk)) { 475 pr_warn("%s: ignoring trigger for %s (not needed)\n", 476 __func__, name); 477 trigger_clear_exists(trig); 478 } 479 } else if (trigger_exists(&peri->pre_trig)) { 480 pr_err("%s: pre-trigger but no trigger for %s\n", __func__, 481 name); 482 return false; 483 } else if (clk_requires_trigger(bcm_clk)) { 484 pr_err("%s: required trigger missing for %s\n", __func__, 485 name); 486 return false; 487 } 488 489 return kona_dividers_valid(bcm_clk); 490 } 491 492 static bool kona_clk_valid(struct kona_clk *bcm_clk) 493 { 494 switch (bcm_clk->type) { 495 case bcm_clk_peri: 496 if (!peri_clk_data_valid(bcm_clk)) 497 return false; 498 break; 499 default: 500 pr_err("%s: unrecognized clock type (%d)\n", __func__, 501 (int)bcm_clk->type); 502 return false; 503 } 504 return true; 505 } 506 507 /* 508 * Scan an array of parent clock names to determine whether there 509 * are any entries containing BAD_CLK_NAME. Such entries are 510 * placeholders for non-supported clocks. Keep track of the 511 * position of each clock name in the original array. 512 * 513 * Allocates an array of pointers to to hold the names of all 514 * non-null entries in the original array, and returns a pointer to 515 * that array in *names. This will be used for registering the 516 * clock with the common clock code. On successful return, 517 * *count indicates how many entries are in that names array. 518 * 519 * If there is more than one entry in the resulting names array, 520 * another array is allocated to record the parent selector value 521 * for each (defined) parent clock. This is the value that 522 * represents this parent clock in the clock's source selector 523 * register. The position of the clock in the original parent array 524 * defines that selector value. The number of entries in this array 525 * is the same as the number of entries in the parent names array. 526 * 527 * The array of selector values is returned. If the clock has no 528 * parents, no selector is required and a null pointer is returned. 529 * 530 * Returns a null pointer if the clock names array supplied was 531 * null. (This is not an error.) 532 * 533 * Returns a pointer-coded error if an error occurs. 534 */ 535 static u32 *parent_process(const char *clocks[], 536 u32 *count, const char ***names) 537 { 538 static const char **parent_names; 539 static u32 *parent_sel; 540 const char **clock; 541 u32 parent_count; 542 u32 bad_count = 0; 543 u32 orig_count; 544 u32 i; 545 u32 j; 546 547 *count = 0; /* In case of early return */ 548 *names = NULL; 549 if (!clocks) 550 return NULL; 551 552 /* 553 * Count the number of names in the null-terminated array, 554 * and find out how many of those are actually clock names. 555 */ 556 for (clock = clocks; *clock; clock++) 557 if (*clock == BAD_CLK_NAME) 558 bad_count++; 559 orig_count = (u32)(clock - clocks); 560 parent_count = orig_count - bad_count; 561 562 /* If all clocks are unsupported, we treat it as no clock */ 563 if (!parent_count) 564 return NULL; 565 566 /* Avoid exceeding our parent clock limit */ 567 if (parent_count > PARENT_COUNT_MAX) { 568 pr_err("%s: too many parents (%u > %u)\n", __func__, 569 parent_count, PARENT_COUNT_MAX); 570 return ERR_PTR(-EINVAL); 571 } 572 573 /* 574 * There is one parent name for each defined parent clock. 575 * We also maintain an array containing the selector value 576 * for each defined clock. If there's only one clock, the 577 * selector is not required, but we allocate space for the 578 * array anyway to keep things simple. 579 */ 580 parent_names = kmalloc(parent_count * sizeof(parent_names), GFP_KERNEL); 581 if (!parent_names) { 582 pr_err("%s: error allocating %u parent names\n", __func__, 583 parent_count); 584 return ERR_PTR(-ENOMEM); 585 } 586 587 /* There is at least one parent, so allocate a selector array */ 588 589 parent_sel = kmalloc(parent_count * sizeof(*parent_sel), GFP_KERNEL); 590 if (!parent_sel) { 591 pr_err("%s: error allocating %u parent selectors\n", __func__, 592 parent_count); 593 kfree(parent_names); 594 595 return ERR_PTR(-ENOMEM); 596 } 597 598 /* Now fill in the parent names and selector arrays */ 599 for (i = 0, j = 0; i < orig_count; i++) { 600 if (clocks[i] != BAD_CLK_NAME) { 601 parent_names[j] = clocks[i]; 602 parent_sel[j] = i; 603 j++; 604 } 605 } 606 *names = parent_names; 607 *count = parent_count; 608 609 return parent_sel; 610 } 611 612 static int 613 clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel, 614 struct clk_init_data *init_data) 615 { 616 const char **parent_names = NULL; 617 u32 parent_count = 0; 618 u32 *parent_sel; 619 620 /* 621 * If a peripheral clock has multiple parents, the value 622 * used by the hardware to select that parent is represented 623 * by the parent clock's position in the "clocks" list. Some 624 * values don't have defined or supported clocks; these will 625 * have BAD_CLK_NAME entries in the parents[] array. The 626 * list is terminated by a NULL entry. 627 * 628 * We need to supply (only) the names of defined parent 629 * clocks when registering a clock though, so we use an 630 * array of parent selector values to map between the 631 * indexes the common clock code uses and the selector 632 * values we need. 633 */ 634 parent_sel = parent_process(clocks, &parent_count, &parent_names); 635 if (IS_ERR(parent_sel)) { 636 int ret = PTR_ERR(parent_sel); 637 638 pr_err("%s: error processing parent clocks for %s (%d)\n", 639 __func__, init_data->name, ret); 640 641 return ret; 642 } 643 644 init_data->parent_names = parent_names; 645 init_data->num_parents = parent_count; 646 647 sel->parent_count = parent_count; 648 sel->parent_sel = parent_sel; 649 650 return 0; 651 } 652 653 static void clk_sel_teardown(struct bcm_clk_sel *sel, 654 struct clk_init_data *init_data) 655 { 656 kfree(sel->parent_sel); 657 sel->parent_sel = NULL; 658 sel->parent_count = 0; 659 660 init_data->num_parents = 0; 661 kfree(init_data->parent_names); 662 init_data->parent_names = NULL; 663 } 664 665 static void peri_clk_teardown(struct peri_clk_data *data, 666 struct clk_init_data *init_data) 667 { 668 clk_sel_teardown(&data->sel, init_data); 669 } 670 671 /* 672 * Caller is responsible for freeing the parent_names[] and 673 * parent_sel[] arrays in the peripheral clock's "data" structure 674 * that can be assigned if the clock has one or more parent clocks 675 * associated with it. 676 */ 677 static int 678 peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data) 679 { 680 init_data->flags = CLK_IGNORE_UNUSED; 681 682 return clk_sel_setup(data->clocks, &data->sel, init_data); 683 } 684 685 static void bcm_clk_teardown(struct kona_clk *bcm_clk) 686 { 687 switch (bcm_clk->type) { 688 case bcm_clk_peri: 689 peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data); 690 break; 691 default: 692 break; 693 } 694 bcm_clk->u.data = NULL; 695 bcm_clk->type = bcm_clk_none; 696 } 697 698 static void kona_clk_teardown(struct clk *clk) 699 { 700 struct clk_hw *hw; 701 struct kona_clk *bcm_clk; 702 703 if (!clk) 704 return; 705 706 hw = __clk_get_hw(clk); 707 if (!hw) { 708 pr_err("%s: clk %p has null hw pointer\n", __func__, clk); 709 return; 710 } 711 clk_unregister(clk); 712 713 bcm_clk = to_kona_clk(hw); 714 bcm_clk_teardown(bcm_clk); 715 } 716 717 struct clk *kona_clk_setup(struct kona_clk *bcm_clk) 718 { 719 struct clk_init_data *init_data = &bcm_clk->init_data; 720 struct clk *clk = NULL; 721 722 switch (bcm_clk->type) { 723 case bcm_clk_peri: 724 if (peri_clk_setup(bcm_clk->u.data, init_data)) 725 return NULL; 726 break; 727 default: 728 pr_err("%s: clock type %d invalid for %s\n", __func__, 729 (int)bcm_clk->type, init_data->name); 730 return NULL; 731 } 732 733 /* Make sure everything makes sense before we set it up */ 734 if (!kona_clk_valid(bcm_clk)) { 735 pr_err("%s: clock data invalid for %s\n", __func__, 736 init_data->name); 737 goto out_teardown; 738 } 739 740 bcm_clk->hw.init = init_data; 741 clk = clk_register(NULL, &bcm_clk->hw); 742 if (IS_ERR(clk)) { 743 pr_err("%s: error registering clock %s (%ld)\n", __func__, 744 init_data->name, PTR_ERR(clk)); 745 goto out_teardown; 746 } 747 BUG_ON(!clk); 748 749 return clk; 750 out_teardown: 751 bcm_clk_teardown(bcm_clk); 752 753 return NULL; 754 } 755 756 static void ccu_clks_teardown(struct ccu_data *ccu) 757 { 758 u32 i; 759 760 for (i = 0; i < ccu->clk_data.clk_num; i++) 761 kona_clk_teardown(ccu->clk_data.clks[i]); 762 kfree(ccu->clk_data.clks); 763 } 764 765 static void kona_ccu_teardown(struct ccu_data *ccu) 766 { 767 kfree(ccu->clk_data.clks); 768 ccu->clk_data.clks = NULL; 769 if (!ccu->base) 770 return; 771 772 of_clk_del_provider(ccu->node); /* safe if never added */ 773 ccu_clks_teardown(ccu); 774 of_node_put(ccu->node); 775 ccu->node = NULL; 776 iounmap(ccu->base); 777 ccu->base = NULL; 778 } 779 780 static bool ccu_data_valid(struct ccu_data *ccu) 781 { 782 struct ccu_policy *ccu_policy; 783 784 if (!ccu_data_offsets_valid(ccu)) 785 return false; 786 787 ccu_policy = &ccu->policy; 788 if (ccu_policy_exists(ccu_policy)) 789 if (!ccu_policy_valid(ccu_policy, ccu->name)) 790 return false; 791 792 return true; 793 } 794 795 /* 796 * Set up a CCU. Call the provided ccu_clks_setup callback to 797 * initialize the array of clocks provided by the CCU. 798 */ 799 void __init kona_dt_ccu_setup(struct ccu_data *ccu, 800 struct device_node *node) 801 { 802 struct resource res = { 0 }; 803 resource_size_t range; 804 unsigned int i; 805 int ret; 806 807 if (ccu->clk_data.clk_num) { 808 size_t size; 809 810 size = ccu->clk_data.clk_num * sizeof(*ccu->clk_data.clks); 811 ccu->clk_data.clks = kzalloc(size, GFP_KERNEL); 812 if (!ccu->clk_data.clks) { 813 pr_err("%s: unable to allocate %u clocks for %s\n", 814 __func__, ccu->clk_data.clk_num, node->name); 815 return; 816 } 817 } 818 819 ret = of_address_to_resource(node, 0, &res); 820 if (ret) { 821 pr_err("%s: no valid CCU registers found for %s\n", __func__, 822 node->name); 823 goto out_err; 824 } 825 826 range = resource_size(&res); 827 if (range > (resource_size_t)U32_MAX) { 828 pr_err("%s: address range too large for %s\n", __func__, 829 node->name); 830 goto out_err; 831 } 832 833 ccu->range = (u32)range; 834 835 if (!ccu_data_valid(ccu)) { 836 pr_err("%s: ccu data not valid for %s\n", __func__, node->name); 837 goto out_err; 838 } 839 840 ccu->base = ioremap(res.start, ccu->range); 841 if (!ccu->base) { 842 pr_err("%s: unable to map CCU registers for %s\n", __func__, 843 node->name); 844 goto out_err; 845 } 846 ccu->node = of_node_get(node); 847 848 /* 849 * Set up each defined kona clock and save the result in 850 * the clock framework clock array (in ccu->data). Then 851 * register as a provider for these clocks. 852 */ 853 for (i = 0; i < ccu->clk_data.clk_num; i++) { 854 if (!ccu->kona_clks[i].ccu) 855 continue; 856 ccu->clk_data.clks[i] = kona_clk_setup(&ccu->kona_clks[i]); 857 } 858 859 ret = of_clk_add_provider(node, of_clk_src_onecell_get, &ccu->clk_data); 860 if (ret) { 861 pr_err("%s: error adding ccu %s as provider (%d)\n", __func__, 862 node->name, ret); 863 goto out_err; 864 } 865 866 if (!kona_ccu_init(ccu)) 867 pr_err("Broadcom %s initialization had errors\n", node->name); 868 869 return; 870 out_err: 871 kona_ccu_teardown(ccu); 872 pr_err("Broadcom %s setup aborted\n", node->name); 873 } 874