xref: /linux/drivers/clk/bcm/clk-kona-setup.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2013 Broadcom Corporation
3  * Copyright 2013 Linaro Limited
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation version 2.
8  *
9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10  * kind, whether express or implied; without even the implied warranty
11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/io.h>
16 #include <linux/of_address.h>
17 
18 #include "clk-kona.h"
19 
20 /* These are used when a selector or trigger is found to be unneeded */
21 #define selector_clear_exists(sel)	((sel)->width = 0)
22 #define trigger_clear_exists(trig)	FLAG_CLEAR(trig, TRIG, EXISTS)
23 
24 /* Validity checking */
25 
26 static bool ccu_data_offsets_valid(struct ccu_data *ccu)
27 {
28 	struct ccu_policy *ccu_policy = &ccu->policy;
29 	u32 limit;
30 
31 	limit = ccu->range - sizeof(u32);
32 	limit = round_down(limit, sizeof(u32));
33 	if (ccu_policy_exists(ccu_policy)) {
34 		if (ccu_policy->enable.offset > limit) {
35 			pr_err("%s: bad policy enable offset for %s "
36 					"(%u > %u)\n", __func__,
37 				ccu->name, ccu_policy->enable.offset, limit);
38 			return false;
39 		}
40 		if (ccu_policy->control.offset > limit) {
41 			pr_err("%s: bad policy control offset for %s "
42 					"(%u > %u)\n", __func__,
43 				ccu->name, ccu_policy->control.offset, limit);
44 			return false;
45 		}
46 	}
47 
48 	return true;
49 }
50 
51 static bool clk_requires_trigger(struct kona_clk *bcm_clk)
52 {
53 	struct peri_clk_data *peri = bcm_clk->u.peri;
54 	struct bcm_clk_sel *sel;
55 	struct bcm_clk_div *div;
56 
57 	if (bcm_clk->type != bcm_clk_peri)
58 		return false;
59 
60 	sel = &peri->sel;
61 	if (sel->parent_count && selector_exists(sel))
62 		return true;
63 
64 	div = &peri->div;
65 	if (!divider_exists(div))
66 		return false;
67 
68 	/* Fixed dividers don't need triggers */
69 	if (!divider_is_fixed(div))
70 		return true;
71 
72 	div = &peri->pre_div;
73 
74 	return divider_exists(div) && !divider_is_fixed(div);
75 }
76 
77 static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk)
78 {
79 	struct peri_clk_data *peri;
80 	struct bcm_clk_policy *policy;
81 	struct bcm_clk_gate *gate;
82 	struct bcm_clk_hyst *hyst;
83 	struct bcm_clk_div *div;
84 	struct bcm_clk_sel *sel;
85 	struct bcm_clk_trig *trig;
86 	const char *name;
87 	u32 range;
88 	u32 limit;
89 
90 	BUG_ON(bcm_clk->type != bcm_clk_peri);
91 	peri = bcm_clk->u.peri;
92 	name = bcm_clk->init_data.name;
93 	range = bcm_clk->ccu->range;
94 
95 	limit = range - sizeof(u32);
96 	limit = round_down(limit, sizeof(u32));
97 
98 	policy = &peri->policy;
99 	if (policy_exists(policy)) {
100 		if (policy->offset > limit) {
101 			pr_err("%s: bad policy offset for %s (%u > %u)\n",
102 				__func__, name, policy->offset, limit);
103 			return false;
104 		}
105 	}
106 
107 	gate = &peri->gate;
108 	hyst = &peri->hyst;
109 	if (gate_exists(gate)) {
110 		if (gate->offset > limit) {
111 			pr_err("%s: bad gate offset for %s (%u > %u)\n",
112 				__func__, name, gate->offset, limit);
113 			return false;
114 		}
115 
116 		if (hyst_exists(hyst)) {
117 			if (hyst->offset > limit) {
118 				pr_err("%s: bad hysteresis offset for %s "
119 					"(%u > %u)\n", __func__,
120 					name, hyst->offset, limit);
121 				return false;
122 			}
123 		}
124 	} else if (hyst_exists(hyst)) {
125 		pr_err("%s: hysteresis but no gate for %s\n", __func__, name);
126 		return false;
127 	}
128 
129 	div = &peri->div;
130 	if (divider_exists(div)) {
131 		if (div->u.s.offset > limit) {
132 			pr_err("%s: bad divider offset for %s (%u > %u)\n",
133 				__func__, name, div->u.s.offset, limit);
134 			return false;
135 		}
136 	}
137 
138 	div = &peri->pre_div;
139 	if (divider_exists(div)) {
140 		if (div->u.s.offset > limit) {
141 			pr_err("%s: bad pre-divider offset for %s "
142 					"(%u > %u)\n",
143 				__func__, name, div->u.s.offset, limit);
144 			return false;
145 		}
146 	}
147 
148 	sel = &peri->sel;
149 	if (selector_exists(sel)) {
150 		if (sel->offset > limit) {
151 			pr_err("%s: bad selector offset for %s (%u > %u)\n",
152 				__func__, name, sel->offset, limit);
153 			return false;
154 		}
155 	}
156 
157 	trig = &peri->trig;
158 	if (trigger_exists(trig)) {
159 		if (trig->offset > limit) {
160 			pr_err("%s: bad trigger offset for %s (%u > %u)\n",
161 				__func__, name, trig->offset, limit);
162 			return false;
163 		}
164 	}
165 
166 	trig = &peri->pre_trig;
167 	if (trigger_exists(trig)) {
168 		if (trig->offset > limit) {
169 			pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n",
170 				__func__, name, trig->offset, limit);
171 			return false;
172 		}
173 	}
174 
175 	return true;
176 }
177 
178 /* A bit position must be less than the number of bits in a 32-bit register. */
179 static bool bit_posn_valid(u32 bit_posn, const char *field_name,
180 			const char *clock_name)
181 {
182 	u32 limit = BITS_PER_BYTE * sizeof(u32) - 1;
183 
184 	if (bit_posn > limit) {
185 		pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__,
186 			field_name, clock_name, bit_posn, limit);
187 		return false;
188 	}
189 	return true;
190 }
191 
192 /*
193  * A bitfield must be at least 1 bit wide.  Both the low-order and
194  * high-order bits must lie within a 32-bit register.  We require
195  * fields to be less than 32 bits wide, mainly because we use
196  * shifting to produce field masks, and shifting a full word width
197  * is not well-defined by the C standard.
198  */
199 static bool bitfield_valid(u32 shift, u32 width, const char *field_name,
200 			const char *clock_name)
201 {
202 	u32 limit = BITS_PER_BYTE * sizeof(u32);
203 
204 	if (!width) {
205 		pr_err("%s: bad %s field width 0 for %s\n", __func__,
206 			field_name, clock_name);
207 		return false;
208 	}
209 	if (shift + width > limit) {
210 		pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__,
211 			field_name, clock_name, shift, width, limit);
212 		return false;
213 	}
214 	return true;
215 }
216 
217 static bool
218 ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name)
219 {
220 	struct bcm_lvm_en *enable = &ccu_policy->enable;
221 	struct bcm_policy_ctl *control;
222 
223 	if (!bit_posn_valid(enable->bit, "policy enable", ccu_name))
224 		return false;
225 
226 	control = &ccu_policy->control;
227 	if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name))
228 		return false;
229 
230 	if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name))
231 		return false;
232 
233 	if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name))
234 		return false;
235 
236 	return true;
237 }
238 
239 static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name)
240 {
241 	if (!bit_posn_valid(policy->bit, "policy", clock_name))
242 		return false;
243 
244 	return true;
245 }
246 
247 /*
248  * All gates, if defined, have a status bit, and for hardware-only
249  * gates, that's it.  Gates that can be software controlled also
250  * have an enable bit.  And a gate that can be hardware or software
251  * controlled will have a hardware/software select bit.
252  */
253 static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name,
254 			const char *clock_name)
255 {
256 	if (!bit_posn_valid(gate->status_bit, "gate status", clock_name))
257 		return false;
258 
259 	if (gate_is_sw_controllable(gate)) {
260 		if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name))
261 			return false;
262 
263 		if (gate_is_hw_controllable(gate)) {
264 			if (!bit_posn_valid(gate->hw_sw_sel_bit,
265 						"gate hw/sw select",
266 						clock_name))
267 				return false;
268 		}
269 	} else {
270 		BUG_ON(!gate_is_hw_controllable(gate));
271 	}
272 
273 	return true;
274 }
275 
276 static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name)
277 {
278 	if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name))
279 		return false;
280 
281 	if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name))
282 		return false;
283 
284 	return true;
285 }
286 
287 /*
288  * A selector bitfield must be valid.  Its parent_sel array must
289  * also be reasonable for the field.
290  */
291 static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name,
292 			const char *clock_name)
293 {
294 	if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name))
295 		return false;
296 
297 	if (sel->parent_count) {
298 		u32 max_sel;
299 		u32 limit;
300 
301 		/*
302 		 * Make sure the selector field can hold all the
303 		 * selector values we expect to be able to use.  A
304 		 * clock only needs to have a selector defined if it
305 		 * has more than one parent.  And in that case the
306 		 * highest selector value will be in the last entry
307 		 * in the array.
308 		 */
309 		max_sel = sel->parent_sel[sel->parent_count - 1];
310 		limit = (1 << sel->width) - 1;
311 		if (max_sel > limit) {
312 			pr_err("%s: bad selector for %s "
313 					"(%u needs > %u bits)\n",
314 				__func__, clock_name, max_sel,
315 				sel->width);
316 			return false;
317 		}
318 	} else {
319 		pr_warn("%s: ignoring selector for %s (no parents)\n",
320 			__func__, clock_name);
321 		selector_clear_exists(sel);
322 		kfree(sel->parent_sel);
323 		sel->parent_sel = NULL;
324 	}
325 
326 	return true;
327 }
328 
329 /*
330  * A fixed divider just needs to be non-zero.  A variable divider
331  * has to have a valid divider bitfield, and if it has a fraction,
332  * the width of the fraction must not be no more than the width of
333  * the divider as a whole.
334  */
335 static bool div_valid(struct bcm_clk_div *div, const char *field_name,
336 			const char *clock_name)
337 {
338 	if (divider_is_fixed(div)) {
339 		/* Any fixed divider value but 0 is OK */
340 		if (div->u.fixed == 0) {
341 			pr_err("%s: bad %s fixed value 0 for %s\n", __func__,
342 				field_name, clock_name);
343 			return false;
344 		}
345 		return true;
346 	}
347 	if (!bitfield_valid(div->u.s.shift, div->u.s.width,
348 				field_name, clock_name))
349 		return false;
350 
351 	if (divider_has_fraction(div))
352 		if (div->u.s.frac_width > div->u.s.width) {
353 			pr_warn("%s: bad %s fraction width for %s (%u > %u)\n",
354 				__func__, field_name, clock_name,
355 				div->u.s.frac_width, div->u.s.width);
356 			return false;
357 		}
358 
359 	return true;
360 }
361 
362 /*
363  * If a clock has two dividers, the combined number of fractional
364  * bits must be representable in a 32-bit unsigned value.  This
365  * is because we scale up a dividend using both dividers before
366  * dividing to improve accuracy, and we need to avoid overflow.
367  */
368 static bool kona_dividers_valid(struct kona_clk *bcm_clk)
369 {
370 	struct peri_clk_data *peri = bcm_clk->u.peri;
371 	struct bcm_clk_div *div;
372 	struct bcm_clk_div *pre_div;
373 	u32 limit;
374 
375 	BUG_ON(bcm_clk->type != bcm_clk_peri);
376 
377 	if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div))
378 		return true;
379 
380 	div = &peri->div;
381 	pre_div = &peri->pre_div;
382 	if (divider_is_fixed(div) || divider_is_fixed(pre_div))
383 		return true;
384 
385 	limit = BITS_PER_BYTE * sizeof(u32);
386 
387 	return div->u.s.frac_width + pre_div->u.s.frac_width <= limit;
388 }
389 
390 
391 /* A trigger just needs to represent a valid bit position */
392 static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name,
393 			const char *clock_name)
394 {
395 	return bit_posn_valid(trig->bit, field_name, clock_name);
396 }
397 
398 /* Determine whether the set of peripheral clock registers are valid. */
399 static bool
400 peri_clk_data_valid(struct kona_clk *bcm_clk)
401 {
402 	struct peri_clk_data *peri;
403 	struct bcm_clk_policy *policy;
404 	struct bcm_clk_gate *gate;
405 	struct bcm_clk_hyst *hyst;
406 	struct bcm_clk_sel *sel;
407 	struct bcm_clk_div *div;
408 	struct bcm_clk_div *pre_div;
409 	struct bcm_clk_trig *trig;
410 	const char *name;
411 
412 	BUG_ON(bcm_clk->type != bcm_clk_peri);
413 
414 	/*
415 	 * First validate register offsets.  This is the only place
416 	 * where we need something from the ccu, so we do these
417 	 * together.
418 	 */
419 	if (!peri_clk_data_offsets_valid(bcm_clk))
420 		return false;
421 
422 	peri = bcm_clk->u.peri;
423 	name = bcm_clk->init_data.name;
424 
425 	policy = &peri->policy;
426 	if (policy_exists(policy) && !policy_valid(policy, name))
427 		return false;
428 
429 	gate = &peri->gate;
430 	if (gate_exists(gate) && !gate_valid(gate, "gate", name))
431 		return false;
432 
433 	hyst = &peri->hyst;
434 	if (hyst_exists(hyst) && !hyst_valid(hyst, name))
435 		return false;
436 
437 	sel = &peri->sel;
438 	if (selector_exists(sel)) {
439 		if (!sel_valid(sel, "selector", name))
440 			return false;
441 
442 	} else if (sel->parent_count > 1) {
443 		pr_err("%s: multiple parents but no selector for %s\n",
444 			__func__, name);
445 
446 		return false;
447 	}
448 
449 	div = &peri->div;
450 	pre_div = &peri->pre_div;
451 	if (divider_exists(div)) {
452 		if (!div_valid(div, "divider", name))
453 			return false;
454 
455 		if (divider_exists(pre_div))
456 			if (!div_valid(pre_div, "pre-divider", name))
457 				return false;
458 	} else if (divider_exists(pre_div)) {
459 		pr_err("%s: pre-divider but no divider for %s\n", __func__,
460 			name);
461 		return false;
462 	}
463 
464 	trig = &peri->trig;
465 	if (trigger_exists(trig)) {
466 		if (!trig_valid(trig, "trigger", name))
467 			return false;
468 
469 		if (trigger_exists(&peri->pre_trig)) {
470 			if (!trig_valid(trig, "pre-trigger", name)) {
471 				return false;
472 			}
473 		}
474 		if (!clk_requires_trigger(bcm_clk)) {
475 			pr_warn("%s: ignoring trigger for %s (not needed)\n",
476 				__func__, name);
477 			trigger_clear_exists(trig);
478 		}
479 	} else if (trigger_exists(&peri->pre_trig)) {
480 		pr_err("%s: pre-trigger but no trigger for %s\n", __func__,
481 			name);
482 		return false;
483 	} else if (clk_requires_trigger(bcm_clk)) {
484 		pr_err("%s: required trigger missing for %s\n", __func__,
485 			name);
486 		return false;
487 	}
488 
489 	return kona_dividers_valid(bcm_clk);
490 }
491 
492 static bool kona_clk_valid(struct kona_clk *bcm_clk)
493 {
494 	switch (bcm_clk->type) {
495 	case bcm_clk_peri:
496 		if (!peri_clk_data_valid(bcm_clk))
497 			return false;
498 		break;
499 	default:
500 		pr_err("%s: unrecognized clock type (%d)\n", __func__,
501 			(int)bcm_clk->type);
502 		return false;
503 	}
504 	return true;
505 }
506 
507 /*
508  * Scan an array of parent clock names to determine whether there
509  * are any entries containing BAD_CLK_NAME.  Such entries are
510  * placeholders for non-supported clocks.  Keep track of the
511  * position of each clock name in the original array.
512  *
513  * Allocates an array of pointers to to hold the names of all
514  * non-null entries in the original array, and returns a pointer to
515  * that array in *names.  This will be used for registering the
516  * clock with the common clock code.  On successful return,
517  * *count indicates how many entries are in that names array.
518  *
519  * If there is more than one entry in the resulting names array,
520  * another array is allocated to record the parent selector value
521  * for each (defined) parent clock.  This is the value that
522  * represents this parent clock in the clock's source selector
523  * register.  The position of the clock in the original parent array
524  * defines that selector value.  The number of entries in this array
525  * is the same as the number of entries in the parent names array.
526  *
527  * The array of selector values is returned.  If the clock has no
528  * parents, no selector is required and a null pointer is returned.
529  *
530  * Returns a null pointer if the clock names array supplied was
531  * null.  (This is not an error.)
532  *
533  * Returns a pointer-coded error if an error occurs.
534  */
535 static u32 *parent_process(const char *clocks[],
536 			u32 *count, const char ***names)
537 {
538 	static const char **parent_names;
539 	static u32 *parent_sel;
540 	const char **clock;
541 	u32 parent_count;
542 	u32 bad_count = 0;
543 	u32 orig_count;
544 	u32 i;
545 	u32 j;
546 
547 	*count = 0;	/* In case of early return */
548 	*names = NULL;
549 	if (!clocks)
550 		return NULL;
551 
552 	/*
553 	 * Count the number of names in the null-terminated array,
554 	 * and find out how many of those are actually clock names.
555 	 */
556 	for (clock = clocks; *clock; clock++)
557 		if (*clock == BAD_CLK_NAME)
558 			bad_count++;
559 	orig_count = (u32)(clock - clocks);
560 	parent_count = orig_count - bad_count;
561 
562 	/* If all clocks are unsupported, we treat it as no clock */
563 	if (!parent_count)
564 		return NULL;
565 
566 	/* Avoid exceeding our parent clock limit */
567 	if (parent_count > PARENT_COUNT_MAX) {
568 		pr_err("%s: too many parents (%u > %u)\n", __func__,
569 			parent_count, PARENT_COUNT_MAX);
570 		return ERR_PTR(-EINVAL);
571 	}
572 
573 	/*
574 	 * There is one parent name for each defined parent clock.
575 	 * We also maintain an array containing the selector value
576 	 * for each defined clock.  If there's only one clock, the
577 	 * selector is not required, but we allocate space for the
578 	 * array anyway to keep things simple.
579 	 */
580 	parent_names = kmalloc_array(parent_count, sizeof(*parent_names),
581 			       GFP_KERNEL);
582 	if (!parent_names) {
583 		pr_err("%s: error allocating %u parent names\n", __func__,
584 				parent_count);
585 		return ERR_PTR(-ENOMEM);
586 	}
587 
588 	/* There is at least one parent, so allocate a selector array */
589 
590 	parent_sel = kmalloc(parent_count * sizeof(*parent_sel), GFP_KERNEL);
591 	if (!parent_sel) {
592 		pr_err("%s: error allocating %u parent selectors\n", __func__,
593 				parent_count);
594 		kfree(parent_names);
595 
596 		return ERR_PTR(-ENOMEM);
597 	}
598 
599 	/* Now fill in the parent names and selector arrays */
600 	for (i = 0, j = 0; i < orig_count; i++) {
601 		if (clocks[i] != BAD_CLK_NAME) {
602 			parent_names[j] = clocks[i];
603 			parent_sel[j] = i;
604 			j++;
605 		}
606 	}
607 	*names = parent_names;
608 	*count = parent_count;
609 
610 	return parent_sel;
611 }
612 
613 static int
614 clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel,
615 		struct clk_init_data *init_data)
616 {
617 	const char **parent_names = NULL;
618 	u32 parent_count = 0;
619 	u32 *parent_sel;
620 
621 	/*
622 	 * If a peripheral clock has multiple parents, the value
623 	 * used by the hardware to select that parent is represented
624 	 * by the parent clock's position in the "clocks" list.  Some
625 	 * values don't have defined or supported clocks; these will
626 	 * have BAD_CLK_NAME entries in the parents[] array.  The
627 	 * list is terminated by a NULL entry.
628 	 *
629 	 * We need to supply (only) the names of defined parent
630 	 * clocks when registering a clock though, so we use an
631 	 * array of parent selector values to map between the
632 	 * indexes the common clock code uses and the selector
633 	 * values we need.
634 	 */
635 	parent_sel = parent_process(clocks, &parent_count, &parent_names);
636 	if (IS_ERR(parent_sel)) {
637 		int ret = PTR_ERR(parent_sel);
638 
639 		pr_err("%s: error processing parent clocks for %s (%d)\n",
640 			__func__, init_data->name, ret);
641 
642 		return ret;
643 	}
644 
645 	init_data->parent_names = parent_names;
646 	init_data->num_parents = parent_count;
647 
648 	sel->parent_count = parent_count;
649 	sel->parent_sel = parent_sel;
650 
651 	return 0;
652 }
653 
654 static void clk_sel_teardown(struct bcm_clk_sel *sel,
655 		struct clk_init_data *init_data)
656 {
657 	kfree(sel->parent_sel);
658 	sel->parent_sel = NULL;
659 	sel->parent_count = 0;
660 
661 	init_data->num_parents = 0;
662 	kfree(init_data->parent_names);
663 	init_data->parent_names = NULL;
664 }
665 
666 static void peri_clk_teardown(struct peri_clk_data *data,
667 				struct clk_init_data *init_data)
668 {
669 	clk_sel_teardown(&data->sel, init_data);
670 }
671 
672 /*
673  * Caller is responsible for freeing the parent_names[] and
674  * parent_sel[] arrays in the peripheral clock's "data" structure
675  * that can be assigned if the clock has one or more parent clocks
676  * associated with it.
677  */
678 static int
679 peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data)
680 {
681 	init_data->flags = CLK_IGNORE_UNUSED;
682 
683 	return clk_sel_setup(data->clocks, &data->sel, init_data);
684 }
685 
686 static void bcm_clk_teardown(struct kona_clk *bcm_clk)
687 {
688 	switch (bcm_clk->type) {
689 	case bcm_clk_peri:
690 		peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data);
691 		break;
692 	default:
693 		break;
694 	}
695 	bcm_clk->u.data = NULL;
696 	bcm_clk->type = bcm_clk_none;
697 }
698 
699 static void kona_clk_teardown(struct clk *clk)
700 {
701 	struct clk_hw *hw;
702 	struct kona_clk *bcm_clk;
703 
704 	if (!clk)
705 		return;
706 
707 	hw = __clk_get_hw(clk);
708 	if (!hw) {
709 		pr_err("%s: clk %p has null hw pointer\n", __func__, clk);
710 		return;
711 	}
712 	clk_unregister(clk);
713 
714 	bcm_clk = to_kona_clk(hw);
715 	bcm_clk_teardown(bcm_clk);
716 }
717 
718 struct clk *kona_clk_setup(struct kona_clk *bcm_clk)
719 {
720 	struct clk_init_data *init_data = &bcm_clk->init_data;
721 	struct clk *clk = NULL;
722 
723 	switch (bcm_clk->type) {
724 	case bcm_clk_peri:
725 		if (peri_clk_setup(bcm_clk->u.data, init_data))
726 			return NULL;
727 		break;
728 	default:
729 		pr_err("%s: clock type %d invalid for %s\n", __func__,
730 			(int)bcm_clk->type, init_data->name);
731 		return NULL;
732 	}
733 
734 	/* Make sure everything makes sense before we set it up */
735 	if (!kona_clk_valid(bcm_clk)) {
736 		pr_err("%s: clock data invalid for %s\n", __func__,
737 			init_data->name);
738 		goto out_teardown;
739 	}
740 
741 	bcm_clk->hw.init = init_data;
742 	clk = clk_register(NULL, &bcm_clk->hw);
743 	if (IS_ERR(clk)) {
744 		pr_err("%s: error registering clock %s (%ld)\n", __func__,
745 			init_data->name, PTR_ERR(clk));
746 		goto out_teardown;
747 	}
748 	BUG_ON(!clk);
749 
750 	return clk;
751 out_teardown:
752 	bcm_clk_teardown(bcm_clk);
753 
754 	return NULL;
755 }
756 
757 static void ccu_clks_teardown(struct ccu_data *ccu)
758 {
759 	u32 i;
760 
761 	for (i = 0; i < ccu->clk_data.clk_num; i++)
762 		kona_clk_teardown(ccu->clk_data.clks[i]);
763 	kfree(ccu->clk_data.clks);
764 }
765 
766 static void kona_ccu_teardown(struct ccu_data *ccu)
767 {
768 	kfree(ccu->clk_data.clks);
769 	ccu->clk_data.clks = NULL;
770 	if (!ccu->base)
771 		return;
772 
773 	of_clk_del_provider(ccu->node);	/* safe if never added */
774 	ccu_clks_teardown(ccu);
775 	of_node_put(ccu->node);
776 	ccu->node = NULL;
777 	iounmap(ccu->base);
778 	ccu->base = NULL;
779 }
780 
781 static bool ccu_data_valid(struct ccu_data *ccu)
782 {
783 	struct ccu_policy *ccu_policy;
784 
785 	if (!ccu_data_offsets_valid(ccu))
786 		return false;
787 
788 	ccu_policy = &ccu->policy;
789 	if (ccu_policy_exists(ccu_policy))
790 		if (!ccu_policy_valid(ccu_policy, ccu->name))
791 			return false;
792 
793 	return true;
794 }
795 
796 /*
797  * Set up a CCU.  Call the provided ccu_clks_setup callback to
798  * initialize the array of clocks provided by the CCU.
799  */
800 void __init kona_dt_ccu_setup(struct ccu_data *ccu,
801 			struct device_node *node)
802 {
803 	struct resource res = { 0 };
804 	resource_size_t range;
805 	unsigned int i;
806 	int ret;
807 
808 	if (ccu->clk_data.clk_num) {
809 		size_t size;
810 
811 		size = ccu->clk_data.clk_num * sizeof(*ccu->clk_data.clks);
812 		ccu->clk_data.clks = kzalloc(size, GFP_KERNEL);
813 		if (!ccu->clk_data.clks) {
814 			pr_err("%s: unable to allocate %u clocks for %s\n",
815 				__func__, ccu->clk_data.clk_num, node->name);
816 			return;
817 		}
818 	}
819 
820 	ret = of_address_to_resource(node, 0, &res);
821 	if (ret) {
822 		pr_err("%s: no valid CCU registers found for %s\n", __func__,
823 			node->name);
824 		goto out_err;
825 	}
826 
827 	range = resource_size(&res);
828 	if (range > (resource_size_t)U32_MAX) {
829 		pr_err("%s: address range too large for %s\n", __func__,
830 			node->name);
831 		goto out_err;
832 	}
833 
834 	ccu->range = (u32)range;
835 
836 	if (!ccu_data_valid(ccu)) {
837 		pr_err("%s: ccu data not valid for %s\n", __func__, node->name);
838 		goto out_err;
839 	}
840 
841 	ccu->base = ioremap(res.start, ccu->range);
842 	if (!ccu->base) {
843 		pr_err("%s: unable to map CCU registers for %s\n", __func__,
844 			node->name);
845 		goto out_err;
846 	}
847 	ccu->node = of_node_get(node);
848 
849 	/*
850 	 * Set up each defined kona clock and save the result in
851 	 * the clock framework clock array (in ccu->data).  Then
852 	 * register as a provider for these clocks.
853 	 */
854 	for (i = 0; i < ccu->clk_data.clk_num; i++) {
855 		if (!ccu->kona_clks[i].ccu)
856 			continue;
857 		ccu->clk_data.clks[i] = kona_clk_setup(&ccu->kona_clks[i]);
858 	}
859 
860 	ret = of_clk_add_provider(node, of_clk_src_onecell_get, &ccu->clk_data);
861 	if (ret) {
862 		pr_err("%s: error adding ccu %s as provider (%d)\n", __func__,
863 				node->name, ret);
864 		goto out_err;
865 	}
866 
867 	if (!kona_ccu_init(ccu))
868 		pr_err("Broadcom %s initialization had errors\n", node->name);
869 
870 	return;
871 out_err:
872 	kona_ccu_teardown(ccu);
873 	pr_err("Broadcom %s setup aborted\n", node->name);
874 }
875