xref: /linux/drivers/clk/bcm/clk-bcm2835.c (revision 856e7c4b619af622d56b3b454f7bec32a170ac99)
1 /*
2  * Copyright (C) 2010,2015 Broadcom
3  * Copyright (C) 2012 Stephen Warren
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 /**
18  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19  *
20  * The clock tree on the 2835 has several levels.  There's a root
21  * oscillator running at 19.2Mhz.  After the oscillator there are 5
22  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23  * and "HDMI displays".  Those 5 PLLs each can divide their output to
24  * produce up to 4 channels.  Finally, there is the level of clocks to
25  * be consumed by other hardware components (like "H264" or "HDMI
26  * state machine"), which divide off of some subset of the PLL
27  * channels.
28  *
29  * All of the clocks in the tree are exposed in the DT, because the DT
30  * may want to make assignments of the final layer of clocks to the
31  * PLL channels, and some components of the hardware will actually
32  * skip layers of the tree (for example, the pixel clock comes
33  * directly from the PLLH PIX channel without using a CM_*CTL clock
34  * generator).
35  */
36 
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/debugfs.h>
41 #include <linux/delay.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <dt-bindings/clock/bcm2835.h>
47 
48 #define CM_PASSWORD		0x5a000000
49 
50 #define CM_GNRICCTL		0x000
51 #define CM_GNRICDIV		0x004
52 # define CM_DIV_FRAC_BITS	12
53 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
54 
55 #define CM_VPUCTL		0x008
56 #define CM_VPUDIV		0x00c
57 #define CM_SYSCTL		0x010
58 #define CM_SYSDIV		0x014
59 #define CM_PERIACTL		0x018
60 #define CM_PERIADIV		0x01c
61 #define CM_PERIICTL		0x020
62 #define CM_PERIIDIV		0x024
63 #define CM_H264CTL		0x028
64 #define CM_H264DIV		0x02c
65 #define CM_ISPCTL		0x030
66 #define CM_ISPDIV		0x034
67 #define CM_V3DCTL		0x038
68 #define CM_V3DDIV		0x03c
69 #define CM_CAM0CTL		0x040
70 #define CM_CAM0DIV		0x044
71 #define CM_CAM1CTL		0x048
72 #define CM_CAM1DIV		0x04c
73 #define CM_CCP2CTL		0x050
74 #define CM_CCP2DIV		0x054
75 #define CM_DSI0ECTL		0x058
76 #define CM_DSI0EDIV		0x05c
77 #define CM_DSI0PCTL		0x060
78 #define CM_DSI0PDIV		0x064
79 #define CM_DPICTL		0x068
80 #define CM_DPIDIV		0x06c
81 #define CM_GP0CTL		0x070
82 #define CM_GP0DIV		0x074
83 #define CM_GP1CTL		0x078
84 #define CM_GP1DIV		0x07c
85 #define CM_GP2CTL		0x080
86 #define CM_GP2DIV		0x084
87 #define CM_HSMCTL		0x088
88 #define CM_HSMDIV		0x08c
89 #define CM_OTPCTL		0x090
90 #define CM_OTPDIV		0x094
91 #define CM_PCMCTL		0x098
92 #define CM_PCMDIV		0x09c
93 #define CM_PWMCTL		0x0a0
94 #define CM_PWMDIV		0x0a4
95 #define CM_SLIMCTL		0x0a8
96 #define CM_SLIMDIV		0x0ac
97 #define CM_SMICTL		0x0b0
98 #define CM_SMIDIV		0x0b4
99 /* no definition for 0x0b8  and 0x0bc */
100 #define CM_TCNTCTL		0x0c0
101 # define CM_TCNT_SRC1_SHIFT		12
102 #define CM_TCNTCNT		0x0c4
103 #define CM_TECCTL		0x0c8
104 #define CM_TECDIV		0x0cc
105 #define CM_TD0CTL		0x0d0
106 #define CM_TD0DIV		0x0d4
107 #define CM_TD1CTL		0x0d8
108 #define CM_TD1DIV		0x0dc
109 #define CM_TSENSCTL		0x0e0
110 #define CM_TSENSDIV		0x0e4
111 #define CM_TIMERCTL		0x0e8
112 #define CM_TIMERDIV		0x0ec
113 #define CM_UARTCTL		0x0f0
114 #define CM_UARTDIV		0x0f4
115 #define CM_VECCTL		0x0f8
116 #define CM_VECDIV		0x0fc
117 #define CM_PULSECTL		0x190
118 #define CM_PULSEDIV		0x194
119 #define CM_SDCCTL		0x1a8
120 #define CM_SDCDIV		0x1ac
121 #define CM_ARMCTL		0x1b0
122 #define CM_AVEOCTL		0x1b8
123 #define CM_AVEODIV		0x1bc
124 #define CM_EMMCCTL		0x1c0
125 #define CM_EMMCDIV		0x1c4
126 
127 /* General bits for the CM_*CTL regs */
128 # define CM_ENABLE			BIT(4)
129 # define CM_KILL			BIT(5)
130 # define CM_GATE_BIT			6
131 # define CM_GATE			BIT(CM_GATE_BIT)
132 # define CM_BUSY			BIT(7)
133 # define CM_BUSYD			BIT(8)
134 # define CM_FRAC			BIT(9)
135 # define CM_SRC_SHIFT			0
136 # define CM_SRC_BITS			4
137 # define CM_SRC_MASK			0xf
138 # define CM_SRC_GND			0
139 # define CM_SRC_OSC			1
140 # define CM_SRC_TESTDEBUG0		2
141 # define CM_SRC_TESTDEBUG1		3
142 # define CM_SRC_PLLA_CORE		4
143 # define CM_SRC_PLLA_PER		4
144 # define CM_SRC_PLLC_CORE0		5
145 # define CM_SRC_PLLC_PER		5
146 # define CM_SRC_PLLC_CORE1		8
147 # define CM_SRC_PLLD_CORE		6
148 # define CM_SRC_PLLD_PER		6
149 # define CM_SRC_PLLH_AUX		7
150 # define CM_SRC_PLLC_CORE1		8
151 # define CM_SRC_PLLC_CORE2		9
152 
153 #define CM_OSCCOUNT		0x100
154 
155 #define CM_PLLA			0x104
156 # define CM_PLL_ANARST			BIT(8)
157 # define CM_PLLA_HOLDPER		BIT(7)
158 # define CM_PLLA_LOADPER		BIT(6)
159 # define CM_PLLA_HOLDCORE		BIT(5)
160 # define CM_PLLA_LOADCORE		BIT(4)
161 # define CM_PLLA_HOLDCCP2		BIT(3)
162 # define CM_PLLA_LOADCCP2		BIT(2)
163 # define CM_PLLA_HOLDDSI0		BIT(1)
164 # define CM_PLLA_LOADDSI0		BIT(0)
165 
166 #define CM_PLLC			0x108
167 # define CM_PLLC_HOLDPER		BIT(7)
168 # define CM_PLLC_LOADPER		BIT(6)
169 # define CM_PLLC_HOLDCORE2		BIT(5)
170 # define CM_PLLC_LOADCORE2		BIT(4)
171 # define CM_PLLC_HOLDCORE1		BIT(3)
172 # define CM_PLLC_LOADCORE1		BIT(2)
173 # define CM_PLLC_HOLDCORE0		BIT(1)
174 # define CM_PLLC_LOADCORE0		BIT(0)
175 
176 #define CM_PLLD			0x10c
177 # define CM_PLLD_HOLDPER		BIT(7)
178 # define CM_PLLD_LOADPER		BIT(6)
179 # define CM_PLLD_HOLDCORE		BIT(5)
180 # define CM_PLLD_LOADCORE		BIT(4)
181 # define CM_PLLD_HOLDDSI1		BIT(3)
182 # define CM_PLLD_LOADDSI1		BIT(2)
183 # define CM_PLLD_HOLDDSI0		BIT(1)
184 # define CM_PLLD_LOADDSI0		BIT(0)
185 
186 #define CM_PLLH			0x110
187 # define CM_PLLH_LOADRCAL		BIT(2)
188 # define CM_PLLH_LOADAUX		BIT(1)
189 # define CM_PLLH_LOADPIX		BIT(0)
190 
191 #define CM_LOCK			0x114
192 # define CM_LOCK_FLOCKH			BIT(12)
193 # define CM_LOCK_FLOCKD			BIT(11)
194 # define CM_LOCK_FLOCKC			BIT(10)
195 # define CM_LOCK_FLOCKB			BIT(9)
196 # define CM_LOCK_FLOCKA			BIT(8)
197 
198 #define CM_EVENT		0x118
199 #define CM_DSI1ECTL		0x158
200 #define CM_DSI1EDIV		0x15c
201 #define CM_DSI1PCTL		0x160
202 #define CM_DSI1PDIV		0x164
203 #define CM_DFTCTL		0x168
204 #define CM_DFTDIV		0x16c
205 
206 #define CM_PLLB			0x170
207 # define CM_PLLB_HOLDARM		BIT(1)
208 # define CM_PLLB_LOADARM		BIT(0)
209 
210 #define A2W_PLLA_CTRL		0x1100
211 #define A2W_PLLC_CTRL		0x1120
212 #define A2W_PLLD_CTRL		0x1140
213 #define A2W_PLLH_CTRL		0x1160
214 #define A2W_PLLB_CTRL		0x11e0
215 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
216 # define A2W_PLL_CTRL_PWRDN		BIT(16)
217 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
218 # define A2W_PLL_CTRL_PDIV_SHIFT	12
219 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
220 # define A2W_PLL_CTRL_NDIV_SHIFT	0
221 
222 #define A2W_PLLA_ANA0		0x1010
223 #define A2W_PLLC_ANA0		0x1030
224 #define A2W_PLLD_ANA0		0x1050
225 #define A2W_PLLH_ANA0		0x1070
226 #define A2W_PLLB_ANA0		0x10f0
227 
228 #define A2W_PLL_KA_SHIFT	7
229 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
230 #define A2W_PLL_KI_SHIFT	19
231 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
232 #define A2W_PLL_KP_SHIFT	15
233 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
234 
235 #define A2W_PLLH_KA_SHIFT	19
236 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
237 #define A2W_PLLH_KI_LOW_SHIFT	22
238 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
239 #define A2W_PLLH_KI_HIGH_SHIFT	0
240 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
241 #define A2W_PLLH_KP_SHIFT	1
242 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
243 
244 #define A2W_XOSC_CTRL		0x1190
245 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
246 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
247 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
248 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
249 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
250 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
251 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
252 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
253 
254 #define A2W_PLLA_FRAC		0x1200
255 #define A2W_PLLC_FRAC		0x1220
256 #define A2W_PLLD_FRAC		0x1240
257 #define A2W_PLLH_FRAC		0x1260
258 #define A2W_PLLB_FRAC		0x12e0
259 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
260 # define A2W_PLL_FRAC_BITS		20
261 
262 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
263 #define A2W_PLL_DIV_BITS		8
264 #define A2W_PLL_DIV_SHIFT		0
265 
266 #define A2W_PLLA_DSI0		0x1300
267 #define A2W_PLLA_CORE		0x1400
268 #define A2W_PLLA_PER		0x1500
269 #define A2W_PLLA_CCP2		0x1600
270 
271 #define A2W_PLLC_CORE2		0x1320
272 #define A2W_PLLC_CORE1		0x1420
273 #define A2W_PLLC_PER		0x1520
274 #define A2W_PLLC_CORE0		0x1620
275 
276 #define A2W_PLLD_DSI0		0x1340
277 #define A2W_PLLD_CORE		0x1440
278 #define A2W_PLLD_PER		0x1540
279 #define A2W_PLLD_DSI1		0x1640
280 
281 #define A2W_PLLH_AUX		0x1360
282 #define A2W_PLLH_RCAL		0x1460
283 #define A2W_PLLH_PIX		0x1560
284 #define A2W_PLLH_STS		0x1660
285 
286 #define A2W_PLLH_CTRLR		0x1960
287 #define A2W_PLLH_FRACR		0x1a60
288 #define A2W_PLLH_AUXR		0x1b60
289 #define A2W_PLLH_RCALR		0x1c60
290 #define A2W_PLLH_PIXR		0x1d60
291 #define A2W_PLLH_STSR		0x1e60
292 
293 #define A2W_PLLB_ARM		0x13e0
294 #define A2W_PLLB_SP0		0x14e0
295 #define A2W_PLLB_SP1		0x15e0
296 #define A2W_PLLB_SP2		0x16e0
297 
298 #define LOCK_TIMEOUT_NS		100000000
299 #define BCM2835_MAX_FB_RATE	1750000000u
300 
301 /*
302  * Names of clocks used within the driver that need to be replaced
303  * with an external parent's name.  This array is in the order that
304  * the clocks node in the DT references external clocks.
305  */
306 static const char *const cprman_parent_names[] = {
307 	"xosc",
308 	"dsi0_byte",
309 	"dsi0_ddr2",
310 	"dsi0_ddr",
311 	"dsi1_byte",
312 	"dsi1_ddr2",
313 	"dsi1_ddr",
314 };
315 
316 struct bcm2835_cprman {
317 	struct device *dev;
318 	void __iomem *regs;
319 	spinlock_t regs_lock; /* spinlock for all clocks */
320 
321 	/*
322 	 * Real names of cprman clock parents looked up through
323 	 * of_clk_get_parent_name(), which will be used in the
324 	 * parent_names[] arrays for clock registration.
325 	 */
326 	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
327 
328 	/* Must be last */
329 	struct clk_hw_onecell_data onecell;
330 };
331 
332 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
333 {
334 	writel(CM_PASSWORD | val, cprman->regs + reg);
335 }
336 
337 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
338 {
339 	return readl(cprman->regs + reg);
340 }
341 
342 /* Does a cycle of measuring a clock through the TCNT clock, which may
343  * source from many other clocks in the system.
344  */
345 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
346 					      u32 tcnt_mux)
347 {
348 	u32 osccount = 19200; /* 1ms */
349 	u32 count;
350 	ktime_t timeout;
351 
352 	spin_lock(&cprman->regs_lock);
353 
354 	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
355 
356 	cprman_write(cprman, CM_TCNTCTL,
357 		     (tcnt_mux & CM_SRC_MASK) |
358 		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
359 
360 	cprman_write(cprman, CM_OSCCOUNT, osccount);
361 
362 	/* do a kind delay at the start */
363 	mdelay(1);
364 
365 	/* Finish off whatever is left of OSCCOUNT */
366 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
367 	while (cprman_read(cprman, CM_OSCCOUNT)) {
368 		if (ktime_after(ktime_get(), timeout)) {
369 			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
370 			count = 0;
371 			goto out;
372 		}
373 		cpu_relax();
374 	}
375 
376 	/* Wait for BUSY to clear. */
377 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
378 	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
379 		if (ktime_after(ktime_get(), timeout)) {
380 			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
381 			count = 0;
382 			goto out;
383 		}
384 		cpu_relax();
385 	}
386 
387 	count = cprman_read(cprman, CM_TCNTCNT);
388 
389 	cprman_write(cprman, CM_TCNTCTL, 0);
390 
391 out:
392 	spin_unlock(&cprman->regs_lock);
393 
394 	return count * 1000;
395 }
396 
397 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
398 				  struct debugfs_reg32 *regs, size_t nregs,
399 				  struct dentry *dentry)
400 {
401 	struct debugfs_regset32 *regset;
402 
403 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
404 	if (!regset)
405 		return;
406 
407 	regset->regs = regs;
408 	regset->nregs = nregs;
409 	regset->base = cprman->regs + base;
410 
411 	debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
412 }
413 
414 struct bcm2835_pll_data {
415 	const char *name;
416 	u32 cm_ctrl_reg;
417 	u32 a2w_ctrl_reg;
418 	u32 frac_reg;
419 	u32 ana_reg_base;
420 	u32 reference_enable_mask;
421 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
422 	u32 lock_mask;
423 
424 	const struct bcm2835_pll_ana_bits *ana;
425 
426 	unsigned long min_rate;
427 	unsigned long max_rate;
428 	/*
429 	 * Highest rate for the VCO before we have to use the
430 	 * pre-divide-by-2.
431 	 */
432 	unsigned long max_fb_rate;
433 };
434 
435 struct bcm2835_pll_ana_bits {
436 	u32 mask0;
437 	u32 set0;
438 	u32 mask1;
439 	u32 set1;
440 	u32 mask3;
441 	u32 set3;
442 	u32 fb_prediv_mask;
443 };
444 
445 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
446 	.mask0 = 0,
447 	.set0 = 0,
448 	.mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
449 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
450 	.mask3 = A2W_PLL_KA_MASK,
451 	.set3 = (2 << A2W_PLL_KA_SHIFT),
452 	.fb_prediv_mask = BIT(14),
453 };
454 
455 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
456 	.mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
457 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
458 	.mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
459 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
460 	.mask3 = 0,
461 	.set3 = 0,
462 	.fb_prediv_mask = BIT(11),
463 };
464 
465 struct bcm2835_pll_divider_data {
466 	const char *name;
467 	const char *source_pll;
468 
469 	u32 cm_reg;
470 	u32 a2w_reg;
471 
472 	u32 load_mask;
473 	u32 hold_mask;
474 	u32 fixed_divider;
475 	u32 flags;
476 };
477 
478 struct bcm2835_clock_data {
479 	const char *name;
480 
481 	const char *const *parents;
482 	int num_mux_parents;
483 
484 	/* Bitmap encoding which parents accept rate change propagation. */
485 	unsigned int set_rate_parent;
486 
487 	u32 ctl_reg;
488 	u32 div_reg;
489 
490 	/* Number of integer bits in the divider */
491 	u32 int_bits;
492 	/* Number of fractional bits in the divider */
493 	u32 frac_bits;
494 
495 	u32 flags;
496 
497 	bool is_vpu_clock;
498 	bool is_mash_clock;
499 	bool low_jitter;
500 
501 	u32 tcnt_mux;
502 };
503 
504 struct bcm2835_gate_data {
505 	const char *name;
506 	const char *parent;
507 
508 	u32 ctl_reg;
509 };
510 
511 struct bcm2835_pll {
512 	struct clk_hw hw;
513 	struct bcm2835_cprman *cprman;
514 	const struct bcm2835_pll_data *data;
515 };
516 
517 static int bcm2835_pll_is_on(struct clk_hw *hw)
518 {
519 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
520 	struct bcm2835_cprman *cprman = pll->cprman;
521 	const struct bcm2835_pll_data *data = pll->data;
522 
523 	return cprman_read(cprman, data->a2w_ctrl_reg) &
524 		A2W_PLL_CTRL_PRST_DISABLE;
525 }
526 
527 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
528 					     unsigned long parent_rate,
529 					     u32 *ndiv, u32 *fdiv)
530 {
531 	u64 div;
532 
533 	div = (u64)rate << A2W_PLL_FRAC_BITS;
534 	do_div(div, parent_rate);
535 
536 	*ndiv = div >> A2W_PLL_FRAC_BITS;
537 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
538 }
539 
540 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
541 					   u32 ndiv, u32 fdiv, u32 pdiv)
542 {
543 	u64 rate;
544 
545 	if (pdiv == 0)
546 		return 0;
547 
548 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
549 	do_div(rate, pdiv);
550 	return rate >> A2W_PLL_FRAC_BITS;
551 }
552 
553 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
554 				   unsigned long *parent_rate)
555 {
556 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
557 	const struct bcm2835_pll_data *data = pll->data;
558 	u32 ndiv, fdiv;
559 
560 	rate = clamp(rate, data->min_rate, data->max_rate);
561 
562 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
563 
564 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
565 }
566 
567 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
568 					  unsigned long parent_rate)
569 {
570 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
571 	struct bcm2835_cprman *cprman = pll->cprman;
572 	const struct bcm2835_pll_data *data = pll->data;
573 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
574 	u32 ndiv, pdiv, fdiv;
575 	bool using_prediv;
576 
577 	if (parent_rate == 0)
578 		return 0;
579 
580 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
581 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
582 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
583 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
584 		data->ana->fb_prediv_mask;
585 
586 	if (using_prediv) {
587 		ndiv *= 2;
588 		fdiv *= 2;
589 	}
590 
591 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
592 }
593 
594 static void bcm2835_pll_off(struct clk_hw *hw)
595 {
596 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
597 	struct bcm2835_cprman *cprman = pll->cprman;
598 	const struct bcm2835_pll_data *data = pll->data;
599 
600 	spin_lock(&cprman->regs_lock);
601 	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
602 	cprman_write(cprman, data->a2w_ctrl_reg,
603 		     cprman_read(cprman, data->a2w_ctrl_reg) |
604 		     A2W_PLL_CTRL_PWRDN);
605 	spin_unlock(&cprman->regs_lock);
606 }
607 
608 static int bcm2835_pll_on(struct clk_hw *hw)
609 {
610 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
611 	struct bcm2835_cprman *cprman = pll->cprman;
612 	const struct bcm2835_pll_data *data = pll->data;
613 	ktime_t timeout;
614 
615 	cprman_write(cprman, data->a2w_ctrl_reg,
616 		     cprman_read(cprman, data->a2w_ctrl_reg) &
617 		     ~A2W_PLL_CTRL_PWRDN);
618 
619 	/* Take the PLL out of reset. */
620 	spin_lock(&cprman->regs_lock);
621 	cprman_write(cprman, data->cm_ctrl_reg,
622 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
623 	spin_unlock(&cprman->regs_lock);
624 
625 	/* Wait for the PLL to lock. */
626 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
627 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
628 		if (ktime_after(ktime_get(), timeout)) {
629 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
630 				clk_hw_get_name(hw));
631 			return -ETIMEDOUT;
632 		}
633 
634 		cpu_relax();
635 	}
636 
637 	cprman_write(cprman, data->a2w_ctrl_reg,
638 		     cprman_read(cprman, data->a2w_ctrl_reg) |
639 		     A2W_PLL_CTRL_PRST_DISABLE);
640 
641 	return 0;
642 }
643 
644 static void
645 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
646 {
647 	int i;
648 
649 	/*
650 	 * ANA register setup is done as a series of writes to
651 	 * ANA3-ANA0, in that order.  This lets us write all 4
652 	 * registers as a single cycle of the serdes interface (taking
653 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
654 	 * 3 individually through their partial-write registers, each
655 	 * would be their own serdes cycle.
656 	 */
657 	for (i = 3; i >= 0; i--)
658 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
659 }
660 
661 static int bcm2835_pll_set_rate(struct clk_hw *hw,
662 				unsigned long rate, unsigned long parent_rate)
663 {
664 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
665 	struct bcm2835_cprman *cprman = pll->cprman;
666 	const struct bcm2835_pll_data *data = pll->data;
667 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
668 	u32 ndiv, fdiv, a2w_ctl;
669 	u32 ana[4];
670 	int i;
671 
672 	if (rate > data->max_fb_rate) {
673 		use_fb_prediv = true;
674 		rate /= 2;
675 	} else {
676 		use_fb_prediv = false;
677 	}
678 
679 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
680 
681 	for (i = 3; i >= 0; i--)
682 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
683 
684 	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
685 
686 	ana[0] &= ~data->ana->mask0;
687 	ana[0] |= data->ana->set0;
688 	ana[1] &= ~data->ana->mask1;
689 	ana[1] |= data->ana->set1;
690 	ana[3] &= ~data->ana->mask3;
691 	ana[3] |= data->ana->set3;
692 
693 	if (was_using_prediv && !use_fb_prediv) {
694 		ana[1] &= ~data->ana->fb_prediv_mask;
695 		do_ana_setup_first = true;
696 	} else if (!was_using_prediv && use_fb_prediv) {
697 		ana[1] |= data->ana->fb_prediv_mask;
698 		do_ana_setup_first = false;
699 	} else {
700 		do_ana_setup_first = true;
701 	}
702 
703 	/* Unmask the reference clock from the oscillator. */
704 	spin_lock(&cprman->regs_lock);
705 	cprman_write(cprman, A2W_XOSC_CTRL,
706 		     cprman_read(cprman, A2W_XOSC_CTRL) |
707 		     data->reference_enable_mask);
708 	spin_unlock(&cprman->regs_lock);
709 
710 	if (do_ana_setup_first)
711 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
712 
713 	/* Set the PLL multiplier from the oscillator. */
714 	cprman_write(cprman, data->frac_reg, fdiv);
715 
716 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
717 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
718 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
719 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
720 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
721 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
722 
723 	if (!do_ana_setup_first)
724 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
725 
726 	return 0;
727 }
728 
729 static void bcm2835_pll_debug_init(struct clk_hw *hw,
730 				  struct dentry *dentry)
731 {
732 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
733 	struct bcm2835_cprman *cprman = pll->cprman;
734 	const struct bcm2835_pll_data *data = pll->data;
735 	struct debugfs_reg32 *regs;
736 
737 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
738 	if (!regs)
739 		return;
740 
741 	regs[0].name = "cm_ctrl";
742 	regs[0].offset = data->cm_ctrl_reg;
743 	regs[1].name = "a2w_ctrl";
744 	regs[1].offset = data->a2w_ctrl_reg;
745 	regs[2].name = "frac";
746 	regs[2].offset = data->frac_reg;
747 	regs[3].name = "ana0";
748 	regs[3].offset = data->ana_reg_base + 0 * 4;
749 	regs[4].name = "ana1";
750 	regs[4].offset = data->ana_reg_base + 1 * 4;
751 	regs[5].name = "ana2";
752 	regs[5].offset = data->ana_reg_base + 2 * 4;
753 	regs[6].name = "ana3";
754 	regs[6].offset = data->ana_reg_base + 3 * 4;
755 
756 	bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
757 }
758 
759 static const struct clk_ops bcm2835_pll_clk_ops = {
760 	.is_prepared = bcm2835_pll_is_on,
761 	.prepare = bcm2835_pll_on,
762 	.unprepare = bcm2835_pll_off,
763 	.recalc_rate = bcm2835_pll_get_rate,
764 	.set_rate = bcm2835_pll_set_rate,
765 	.round_rate = bcm2835_pll_round_rate,
766 	.debug_init = bcm2835_pll_debug_init,
767 };
768 
769 struct bcm2835_pll_divider {
770 	struct clk_divider div;
771 	struct bcm2835_cprman *cprman;
772 	const struct bcm2835_pll_divider_data *data;
773 };
774 
775 static struct bcm2835_pll_divider *
776 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
777 {
778 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
779 }
780 
781 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
782 {
783 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
784 	struct bcm2835_cprman *cprman = divider->cprman;
785 	const struct bcm2835_pll_divider_data *data = divider->data;
786 
787 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
788 }
789 
790 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
791 					   unsigned long rate,
792 					   unsigned long *parent_rate)
793 {
794 	return clk_divider_ops.round_rate(hw, rate, parent_rate);
795 }
796 
797 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
798 						  unsigned long parent_rate)
799 {
800 	return clk_divider_ops.recalc_rate(hw, parent_rate);
801 }
802 
803 static void bcm2835_pll_divider_off(struct clk_hw *hw)
804 {
805 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
806 	struct bcm2835_cprman *cprman = divider->cprman;
807 	const struct bcm2835_pll_divider_data *data = divider->data;
808 
809 	spin_lock(&cprman->regs_lock);
810 	cprman_write(cprman, data->cm_reg,
811 		     (cprman_read(cprman, data->cm_reg) &
812 		      ~data->load_mask) | data->hold_mask);
813 	cprman_write(cprman, data->a2w_reg,
814 		     cprman_read(cprman, data->a2w_reg) |
815 		     A2W_PLL_CHANNEL_DISABLE);
816 	spin_unlock(&cprman->regs_lock);
817 }
818 
819 static int bcm2835_pll_divider_on(struct clk_hw *hw)
820 {
821 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
822 	struct bcm2835_cprman *cprman = divider->cprman;
823 	const struct bcm2835_pll_divider_data *data = divider->data;
824 
825 	spin_lock(&cprman->regs_lock);
826 	cprman_write(cprman, data->a2w_reg,
827 		     cprman_read(cprman, data->a2w_reg) &
828 		     ~A2W_PLL_CHANNEL_DISABLE);
829 
830 	cprman_write(cprman, data->cm_reg,
831 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
832 	spin_unlock(&cprman->regs_lock);
833 
834 	return 0;
835 }
836 
837 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
838 					unsigned long rate,
839 					unsigned long parent_rate)
840 {
841 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
842 	struct bcm2835_cprman *cprman = divider->cprman;
843 	const struct bcm2835_pll_divider_data *data = divider->data;
844 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
845 
846 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
847 
848 	div = min(div, max_div);
849 	if (div == max_div)
850 		div = 0;
851 
852 	cprman_write(cprman, data->a2w_reg, div);
853 	cm = cprman_read(cprman, data->cm_reg);
854 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
855 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
856 
857 	return 0;
858 }
859 
860 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
861 					   struct dentry *dentry)
862 {
863 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
864 	struct bcm2835_cprman *cprman = divider->cprman;
865 	const struct bcm2835_pll_divider_data *data = divider->data;
866 	struct debugfs_reg32 *regs;
867 
868 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
869 	if (!regs)
870 		return;
871 
872 	regs[0].name = "cm";
873 	regs[0].offset = data->cm_reg;
874 	regs[1].name = "a2w";
875 	regs[1].offset = data->a2w_reg;
876 
877 	bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
878 }
879 
880 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
881 	.is_prepared = bcm2835_pll_divider_is_on,
882 	.prepare = bcm2835_pll_divider_on,
883 	.unprepare = bcm2835_pll_divider_off,
884 	.recalc_rate = bcm2835_pll_divider_get_rate,
885 	.set_rate = bcm2835_pll_divider_set_rate,
886 	.round_rate = bcm2835_pll_divider_round_rate,
887 	.debug_init = bcm2835_pll_divider_debug_init,
888 };
889 
890 /*
891  * The CM dividers do fixed-point division, so we can't use the
892  * generic integer divider code like the PLL dividers do (and we can't
893  * fake it by having some fixed shifts preceding it in the clock tree,
894  * because we'd run out of bits in a 32-bit unsigned long).
895  */
896 struct bcm2835_clock {
897 	struct clk_hw hw;
898 	struct bcm2835_cprman *cprman;
899 	const struct bcm2835_clock_data *data;
900 };
901 
902 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
903 {
904 	return container_of(hw, struct bcm2835_clock, hw);
905 }
906 
907 static int bcm2835_clock_is_on(struct clk_hw *hw)
908 {
909 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
910 	struct bcm2835_cprman *cprman = clock->cprman;
911 	const struct bcm2835_clock_data *data = clock->data;
912 
913 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
914 }
915 
916 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
917 				    unsigned long rate,
918 				    unsigned long parent_rate,
919 				    bool round_up)
920 {
921 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
922 	const struct bcm2835_clock_data *data = clock->data;
923 	u32 unused_frac_mask =
924 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
925 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
926 	u64 rem;
927 	u32 div, mindiv, maxdiv;
928 
929 	rem = do_div(temp, rate);
930 	div = temp;
931 
932 	/* Round up and mask off the unused bits */
933 	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
934 		div += unused_frac_mask + 1;
935 	div &= ~unused_frac_mask;
936 
937 	/* different clamping limits apply for a mash clock */
938 	if (data->is_mash_clock) {
939 		/* clamp to min divider of 2 */
940 		mindiv = 2 << CM_DIV_FRAC_BITS;
941 		/* clamp to the highest possible integer divider */
942 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
943 	} else {
944 		/* clamp to min divider of 1 */
945 		mindiv = 1 << CM_DIV_FRAC_BITS;
946 		/* clamp to the highest possible fractional divider */
947 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
948 				 CM_DIV_FRAC_BITS - data->frac_bits);
949 	}
950 
951 	/* apply the clamping  limits */
952 	div = max_t(u32, div, mindiv);
953 	div = min_t(u32, div, maxdiv);
954 
955 	return div;
956 }
957 
958 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
959 					    unsigned long parent_rate,
960 					    u32 div)
961 {
962 	const struct bcm2835_clock_data *data = clock->data;
963 	u64 temp;
964 
965 	if (data->int_bits == 0 && data->frac_bits == 0)
966 		return parent_rate;
967 
968 	/*
969 	 * The divisor is a 12.12 fixed point field, but only some of
970 	 * the bits are populated in any given clock.
971 	 */
972 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
973 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
974 
975 	if (div == 0)
976 		return 0;
977 
978 	temp = (u64)parent_rate << data->frac_bits;
979 
980 	do_div(temp, div);
981 
982 	return temp;
983 }
984 
985 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
986 					    unsigned long parent_rate)
987 {
988 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
989 	struct bcm2835_cprman *cprman = clock->cprman;
990 	const struct bcm2835_clock_data *data = clock->data;
991 	u32 div;
992 
993 	if (data->int_bits == 0 && data->frac_bits == 0)
994 		return parent_rate;
995 
996 	div = cprman_read(cprman, data->div_reg);
997 
998 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
999 }
1000 
1001 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1002 {
1003 	struct bcm2835_cprman *cprman = clock->cprman;
1004 	const struct bcm2835_clock_data *data = clock->data;
1005 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1006 
1007 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1008 		if (ktime_after(ktime_get(), timeout)) {
1009 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1010 				clk_hw_get_name(&clock->hw));
1011 			return;
1012 		}
1013 		cpu_relax();
1014 	}
1015 }
1016 
1017 static void bcm2835_clock_off(struct clk_hw *hw)
1018 {
1019 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1020 	struct bcm2835_cprman *cprman = clock->cprman;
1021 	const struct bcm2835_clock_data *data = clock->data;
1022 
1023 	spin_lock(&cprman->regs_lock);
1024 	cprman_write(cprman, data->ctl_reg,
1025 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1026 	spin_unlock(&cprman->regs_lock);
1027 
1028 	/* BUSY will remain high until the divider completes its cycle. */
1029 	bcm2835_clock_wait_busy(clock);
1030 }
1031 
1032 static int bcm2835_clock_on(struct clk_hw *hw)
1033 {
1034 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1035 	struct bcm2835_cprman *cprman = clock->cprman;
1036 	const struct bcm2835_clock_data *data = clock->data;
1037 
1038 	spin_lock(&cprman->regs_lock);
1039 	cprman_write(cprman, data->ctl_reg,
1040 		     cprman_read(cprman, data->ctl_reg) |
1041 		     CM_ENABLE |
1042 		     CM_GATE);
1043 	spin_unlock(&cprman->regs_lock);
1044 
1045 	/* Debug code to measure the clock once it's turned on to see
1046 	 * if it's ticking at the rate we expect.
1047 	 */
1048 	if (data->tcnt_mux && false) {
1049 		dev_info(cprman->dev,
1050 			 "clk %s: rate %ld, measure %ld\n",
1051 			 data->name,
1052 			 clk_hw_get_rate(hw),
1053 			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1060 				  unsigned long rate, unsigned long parent_rate)
1061 {
1062 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1063 	struct bcm2835_cprman *cprman = clock->cprman;
1064 	const struct bcm2835_clock_data *data = clock->data;
1065 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1066 	u32 ctl;
1067 
1068 	spin_lock(&cprman->regs_lock);
1069 
1070 	/*
1071 	 * Setting up frac support
1072 	 *
1073 	 * In principle it is recommended to stop/start the clock first,
1074 	 * but as we set CLK_SET_RATE_GATE during registration of the
1075 	 * clock this requirement should be take care of by the
1076 	 * clk-framework.
1077 	 */
1078 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1079 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1080 	cprman_write(cprman, data->ctl_reg, ctl);
1081 
1082 	cprman_write(cprman, data->div_reg, div);
1083 
1084 	spin_unlock(&cprman->regs_lock);
1085 
1086 	return 0;
1087 }
1088 
1089 static bool
1090 bcm2835_clk_is_pllc(struct clk_hw *hw)
1091 {
1092 	if (!hw)
1093 		return false;
1094 
1095 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1096 }
1097 
1098 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1099 							int parent_idx,
1100 							unsigned long rate,
1101 							u32 *div,
1102 							unsigned long *prate,
1103 							unsigned long *avgrate)
1104 {
1105 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1106 	struct bcm2835_cprman *cprman = clock->cprman;
1107 	const struct bcm2835_clock_data *data = clock->data;
1108 	unsigned long best_rate = 0;
1109 	u32 curdiv, mindiv, maxdiv;
1110 	struct clk_hw *parent;
1111 
1112 	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1113 
1114 	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1115 		*prate = clk_hw_get_rate(parent);
1116 		*div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1117 
1118 		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1119 
1120 		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1121 			unsigned long high, low;
1122 			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1123 
1124 			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1125 							       int_div);
1126 			int_div += CM_DIV_FRAC_MASK + 1;
1127 			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1128 							      int_div);
1129 
1130 			/*
1131 			 * Return a value which is the maximum deviation
1132 			 * below the ideal rate, for use as a metric.
1133 			 */
1134 			return *avgrate - max(*avgrate - low, high - *avgrate);
1135 		}
1136 		return *avgrate;
1137 	}
1138 
1139 	if (data->frac_bits)
1140 		dev_warn(cprman->dev,
1141 			"frac bits are not used when propagating rate change");
1142 
1143 	/* clamp to min divider of 2 if we're dealing with a mash clock */
1144 	mindiv = data->is_mash_clock ? 2 : 1;
1145 	maxdiv = BIT(data->int_bits) - 1;
1146 
1147 	/* TODO: Be smart, and only test a subset of the available divisors. */
1148 	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1149 		unsigned long tmp_rate;
1150 
1151 		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1152 		tmp_rate /= curdiv;
1153 		if (curdiv == mindiv ||
1154 		    (tmp_rate > best_rate && tmp_rate <= rate))
1155 			best_rate = tmp_rate;
1156 
1157 		if (best_rate == rate)
1158 			break;
1159 	}
1160 
1161 	*div = curdiv << CM_DIV_FRAC_BITS;
1162 	*prate = curdiv * best_rate;
1163 	*avgrate = best_rate;
1164 
1165 	return best_rate;
1166 }
1167 
1168 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1169 					struct clk_rate_request *req)
1170 {
1171 	struct clk_hw *parent, *best_parent = NULL;
1172 	bool current_parent_is_pllc;
1173 	unsigned long rate, best_rate = 0;
1174 	unsigned long prate, best_prate = 0;
1175 	unsigned long avgrate, best_avgrate = 0;
1176 	size_t i;
1177 	u32 div;
1178 
1179 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1180 
1181 	/*
1182 	 * Select parent clock that results in the closest but lower rate
1183 	 */
1184 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1185 		parent = clk_hw_get_parent_by_index(hw, i);
1186 		if (!parent)
1187 			continue;
1188 
1189 		/*
1190 		 * Don't choose a PLLC-derived clock as our parent
1191 		 * unless it had been manually set that way.  PLLC's
1192 		 * frequency gets adjusted by the firmware due to
1193 		 * over-temp or under-voltage conditions, without
1194 		 * prior notification to our clock consumer.
1195 		 */
1196 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1197 			continue;
1198 
1199 		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1200 							  &div, &prate,
1201 							  &avgrate);
1202 		if (rate > best_rate && rate <= req->rate) {
1203 			best_parent = parent;
1204 			best_prate = prate;
1205 			best_rate = rate;
1206 			best_avgrate = avgrate;
1207 		}
1208 	}
1209 
1210 	if (!best_parent)
1211 		return -EINVAL;
1212 
1213 	req->best_parent_hw = best_parent;
1214 	req->best_parent_rate = best_prate;
1215 
1216 	req->rate = best_avgrate;
1217 
1218 	return 0;
1219 }
1220 
1221 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1222 {
1223 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1224 	struct bcm2835_cprman *cprman = clock->cprman;
1225 	const struct bcm2835_clock_data *data = clock->data;
1226 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1227 
1228 	cprman_write(cprman, data->ctl_reg, src);
1229 	return 0;
1230 }
1231 
1232 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1233 {
1234 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1235 	struct bcm2835_cprman *cprman = clock->cprman;
1236 	const struct bcm2835_clock_data *data = clock->data;
1237 	u32 src = cprman_read(cprman, data->ctl_reg);
1238 
1239 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1240 }
1241 
1242 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1243 	{
1244 		.name = "ctl",
1245 		.offset = 0,
1246 	},
1247 	{
1248 		.name = "div",
1249 		.offset = 4,
1250 	},
1251 };
1252 
1253 static void bcm2835_clock_debug_init(struct clk_hw *hw,
1254 				    struct dentry *dentry)
1255 {
1256 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1257 	struct bcm2835_cprman *cprman = clock->cprman;
1258 	const struct bcm2835_clock_data *data = clock->data;
1259 
1260 	bcm2835_debugfs_regset(cprman, data->ctl_reg,
1261 		bcm2835_debugfs_clock_reg32,
1262 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1263 		dentry);
1264 }
1265 
1266 static const struct clk_ops bcm2835_clock_clk_ops = {
1267 	.is_prepared = bcm2835_clock_is_on,
1268 	.prepare = bcm2835_clock_on,
1269 	.unprepare = bcm2835_clock_off,
1270 	.recalc_rate = bcm2835_clock_get_rate,
1271 	.set_rate = bcm2835_clock_set_rate,
1272 	.determine_rate = bcm2835_clock_determine_rate,
1273 	.set_parent = bcm2835_clock_set_parent,
1274 	.get_parent = bcm2835_clock_get_parent,
1275 	.debug_init = bcm2835_clock_debug_init,
1276 };
1277 
1278 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1279 {
1280 	return true;
1281 }
1282 
1283 /*
1284  * The VPU clock can never be disabled (it doesn't have an ENABLE
1285  * bit), so it gets its own set of clock ops.
1286  */
1287 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1288 	.is_prepared = bcm2835_vpu_clock_is_on,
1289 	.recalc_rate = bcm2835_clock_get_rate,
1290 	.set_rate = bcm2835_clock_set_rate,
1291 	.determine_rate = bcm2835_clock_determine_rate,
1292 	.set_parent = bcm2835_clock_set_parent,
1293 	.get_parent = bcm2835_clock_get_parent,
1294 	.debug_init = bcm2835_clock_debug_init,
1295 };
1296 
1297 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1298 					   const struct bcm2835_pll_data *data)
1299 {
1300 	struct bcm2835_pll *pll;
1301 	struct clk_init_data init;
1302 	int ret;
1303 
1304 	memset(&init, 0, sizeof(init));
1305 
1306 	/* All of the PLLs derive from the external oscillator. */
1307 	init.parent_names = &cprman->real_parent_names[0];
1308 	init.num_parents = 1;
1309 	init.name = data->name;
1310 	init.ops = &bcm2835_pll_clk_ops;
1311 	init.flags = CLK_IGNORE_UNUSED;
1312 
1313 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1314 	if (!pll)
1315 		return NULL;
1316 
1317 	pll->cprman = cprman;
1318 	pll->data = data;
1319 	pll->hw.init = &init;
1320 
1321 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1322 	if (ret)
1323 		return NULL;
1324 	return &pll->hw;
1325 }
1326 
1327 static struct clk_hw *
1328 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1329 			     const struct bcm2835_pll_divider_data *data)
1330 {
1331 	struct bcm2835_pll_divider *divider;
1332 	struct clk_init_data init;
1333 	const char *divider_name;
1334 	int ret;
1335 
1336 	if (data->fixed_divider != 1) {
1337 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1338 					      "%s_prediv", data->name);
1339 		if (!divider_name)
1340 			return NULL;
1341 	} else {
1342 		divider_name = data->name;
1343 	}
1344 
1345 	memset(&init, 0, sizeof(init));
1346 
1347 	init.parent_names = &data->source_pll;
1348 	init.num_parents = 1;
1349 	init.name = divider_name;
1350 	init.ops = &bcm2835_pll_divider_clk_ops;
1351 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1352 
1353 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1354 	if (!divider)
1355 		return NULL;
1356 
1357 	divider->div.reg = cprman->regs + data->a2w_reg;
1358 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1359 	divider->div.width = A2W_PLL_DIV_BITS;
1360 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1361 	divider->div.lock = &cprman->regs_lock;
1362 	divider->div.hw.init = &init;
1363 	divider->div.table = NULL;
1364 
1365 	divider->cprman = cprman;
1366 	divider->data = data;
1367 
1368 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1369 	if (ret)
1370 		return ERR_PTR(ret);
1371 
1372 	/*
1373 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1374 	 * is what our consumers are actually using.
1375 	 */
1376 	if (data->fixed_divider != 1) {
1377 		return clk_hw_register_fixed_factor(cprman->dev, data->name,
1378 						    divider_name,
1379 						    CLK_SET_RATE_PARENT,
1380 						    1,
1381 						    data->fixed_divider);
1382 	}
1383 
1384 	return &divider->div.hw;
1385 }
1386 
1387 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1388 					  const struct bcm2835_clock_data *data)
1389 {
1390 	struct bcm2835_clock *clock;
1391 	struct clk_init_data init;
1392 	const char *parents[1 << CM_SRC_BITS];
1393 	size_t i;
1394 	int ret;
1395 
1396 	/*
1397 	 * Replace our strings referencing parent clocks with the
1398 	 * actual clock-output-name of the parent.
1399 	 */
1400 	for (i = 0; i < data->num_mux_parents; i++) {
1401 		parents[i] = data->parents[i];
1402 
1403 		ret = match_string(cprman_parent_names,
1404 				   ARRAY_SIZE(cprman_parent_names),
1405 				   parents[i]);
1406 		if (ret >= 0)
1407 			parents[i] = cprman->real_parent_names[ret];
1408 	}
1409 
1410 	memset(&init, 0, sizeof(init));
1411 	init.parent_names = parents;
1412 	init.num_parents = data->num_mux_parents;
1413 	init.name = data->name;
1414 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1415 
1416 	/*
1417 	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1418 	 * rate changes on at least of the parents.
1419 	 */
1420 	if (data->set_rate_parent)
1421 		init.flags |= CLK_SET_RATE_PARENT;
1422 
1423 	if (data->is_vpu_clock) {
1424 		init.ops = &bcm2835_vpu_clock_clk_ops;
1425 	} else {
1426 		init.ops = &bcm2835_clock_clk_ops;
1427 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1428 
1429 		/* If the clock wasn't actually enabled at boot, it's not
1430 		 * critical.
1431 		 */
1432 		if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1433 			init.flags &= ~CLK_IS_CRITICAL;
1434 	}
1435 
1436 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1437 	if (!clock)
1438 		return NULL;
1439 
1440 	clock->cprman = cprman;
1441 	clock->data = data;
1442 	clock->hw.init = &init;
1443 
1444 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1445 	if (ret)
1446 		return ERR_PTR(ret);
1447 	return &clock->hw;
1448 }
1449 
1450 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1451 					 const struct bcm2835_gate_data *data)
1452 {
1453 	return clk_register_gate(cprman->dev, data->name, data->parent,
1454 				 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1455 				 cprman->regs + data->ctl_reg,
1456 				 CM_GATE_BIT, 0, &cprman->regs_lock);
1457 }
1458 
1459 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1460 					       const void *data);
1461 struct bcm2835_clk_desc {
1462 	bcm2835_clk_register clk_register;
1463 	const void *data;
1464 };
1465 
1466 /* assignment helper macros for different clock types */
1467 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1468 			    .data = __VA_ARGS__ }
1469 #define REGISTER_PLL(...)	_REGISTER(&bcm2835_register_pll,	\
1470 					  &(struct bcm2835_pll_data)	\
1471 					  {__VA_ARGS__})
1472 #define REGISTER_PLL_DIV(...)	_REGISTER(&bcm2835_register_pll_divider, \
1473 					  &(struct bcm2835_pll_divider_data) \
1474 					  {__VA_ARGS__})
1475 #define REGISTER_CLK(...)	_REGISTER(&bcm2835_register_clock,	\
1476 					  &(struct bcm2835_clock_data)	\
1477 					  {__VA_ARGS__})
1478 #define REGISTER_GATE(...)	_REGISTER(&bcm2835_register_gate,	\
1479 					  &(struct bcm2835_gate_data)	\
1480 					  {__VA_ARGS__})
1481 
1482 /* parent mux arrays plus helper macros */
1483 
1484 /* main oscillator parent mux */
1485 static const char *const bcm2835_clock_osc_parents[] = {
1486 	"gnd",
1487 	"xosc",
1488 	"testdebug0",
1489 	"testdebug1"
1490 };
1491 
1492 #define REGISTER_OSC_CLK(...)	REGISTER_CLK(				\
1493 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1494 	.parents = bcm2835_clock_osc_parents,				\
1495 	__VA_ARGS__)
1496 
1497 /* main peripherial parent mux */
1498 static const char *const bcm2835_clock_per_parents[] = {
1499 	"gnd",
1500 	"xosc",
1501 	"testdebug0",
1502 	"testdebug1",
1503 	"plla_per",
1504 	"pllc_per",
1505 	"plld_per",
1506 	"pllh_aux",
1507 };
1508 
1509 #define REGISTER_PER_CLK(...)	REGISTER_CLK(				\
1510 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1511 	.parents = bcm2835_clock_per_parents,				\
1512 	__VA_ARGS__)
1513 
1514 /*
1515  * Restrict clock sources for the PCM peripheral to the oscillator and
1516  * PLLD_PER because other source may have varying rates or be switched
1517  * off.
1518  *
1519  * Prevent other sources from being selected by replacing their names in
1520  * the list of potential parents with dummy entries (entry index is
1521  * significant).
1522  */
1523 static const char *const bcm2835_pcm_per_parents[] = {
1524 	"-",
1525 	"xosc",
1526 	"-",
1527 	"-",
1528 	"-",
1529 	"-",
1530 	"plld_per",
1531 	"-",
1532 };
1533 
1534 #define REGISTER_PCM_CLK(...)	REGISTER_CLK(				\
1535 	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1536 	.parents = bcm2835_pcm_per_parents,				\
1537 	__VA_ARGS__)
1538 
1539 /* main vpu parent mux */
1540 static const char *const bcm2835_clock_vpu_parents[] = {
1541 	"gnd",
1542 	"xosc",
1543 	"testdebug0",
1544 	"testdebug1",
1545 	"plla_core",
1546 	"pllc_core0",
1547 	"plld_core",
1548 	"pllh_aux",
1549 	"pllc_core1",
1550 	"pllc_core2",
1551 };
1552 
1553 #define REGISTER_VPU_CLK(...)	REGISTER_CLK(				\
1554 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1555 	.parents = bcm2835_clock_vpu_parents,				\
1556 	__VA_ARGS__)
1557 
1558 /*
1559  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1560  * analog PHY.  The _inv variants are generated internally to cprman,
1561  * but we don't use them so they aren't hooked up.
1562  */
1563 static const char *const bcm2835_clock_dsi0_parents[] = {
1564 	"gnd",
1565 	"xosc",
1566 	"testdebug0",
1567 	"testdebug1",
1568 	"dsi0_ddr",
1569 	"dsi0_ddr_inv",
1570 	"dsi0_ddr2",
1571 	"dsi0_ddr2_inv",
1572 	"dsi0_byte",
1573 	"dsi0_byte_inv",
1574 };
1575 
1576 static const char *const bcm2835_clock_dsi1_parents[] = {
1577 	"gnd",
1578 	"xosc",
1579 	"testdebug0",
1580 	"testdebug1",
1581 	"dsi1_ddr",
1582 	"dsi1_ddr_inv",
1583 	"dsi1_ddr2",
1584 	"dsi1_ddr2_inv",
1585 	"dsi1_byte",
1586 	"dsi1_byte_inv",
1587 };
1588 
1589 #define REGISTER_DSI0_CLK(...)	REGISTER_CLK(				\
1590 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1591 	.parents = bcm2835_clock_dsi0_parents,				\
1592 	__VA_ARGS__)
1593 
1594 #define REGISTER_DSI1_CLK(...)	REGISTER_CLK(				\
1595 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1596 	.parents = bcm2835_clock_dsi1_parents,				\
1597 	__VA_ARGS__)
1598 
1599 /*
1600  * the real definition of all the pll, pll_dividers and clocks
1601  * these make use of the above REGISTER_* macros
1602  */
1603 static const struct bcm2835_clk_desc clk_desc_array[] = {
1604 	/* the PLL + PLL dividers */
1605 
1606 	/*
1607 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1608 	 * (Compact Camera Port 2) transmitter clock.
1609 	 *
1610 	 * It is in the PX LDO power domain, which is on when the
1611 	 * AUDIO domain is on.
1612 	 */
1613 	[BCM2835_PLLA]		= REGISTER_PLL(
1614 		.name = "plla",
1615 		.cm_ctrl_reg = CM_PLLA,
1616 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1617 		.frac_reg = A2W_PLLA_FRAC,
1618 		.ana_reg_base = A2W_PLLA_ANA0,
1619 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1620 		.lock_mask = CM_LOCK_FLOCKA,
1621 
1622 		.ana = &bcm2835_ana_default,
1623 
1624 		.min_rate = 600000000u,
1625 		.max_rate = 2400000000u,
1626 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1627 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1628 		.name = "plla_core",
1629 		.source_pll = "plla",
1630 		.cm_reg = CM_PLLA,
1631 		.a2w_reg = A2W_PLLA_CORE,
1632 		.load_mask = CM_PLLA_LOADCORE,
1633 		.hold_mask = CM_PLLA_HOLDCORE,
1634 		.fixed_divider = 1,
1635 		.flags = CLK_SET_RATE_PARENT),
1636 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1637 		.name = "plla_per",
1638 		.source_pll = "plla",
1639 		.cm_reg = CM_PLLA,
1640 		.a2w_reg = A2W_PLLA_PER,
1641 		.load_mask = CM_PLLA_LOADPER,
1642 		.hold_mask = CM_PLLA_HOLDPER,
1643 		.fixed_divider = 1,
1644 		.flags = CLK_SET_RATE_PARENT),
1645 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1646 		.name = "plla_dsi0",
1647 		.source_pll = "plla",
1648 		.cm_reg = CM_PLLA,
1649 		.a2w_reg = A2W_PLLA_DSI0,
1650 		.load_mask = CM_PLLA_LOADDSI0,
1651 		.hold_mask = CM_PLLA_HOLDDSI0,
1652 		.fixed_divider = 1),
1653 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1654 		.name = "plla_ccp2",
1655 		.source_pll = "plla",
1656 		.cm_reg = CM_PLLA,
1657 		.a2w_reg = A2W_PLLA_CCP2,
1658 		.load_mask = CM_PLLA_LOADCCP2,
1659 		.hold_mask = CM_PLLA_HOLDCCP2,
1660 		.fixed_divider = 1,
1661 		.flags = CLK_SET_RATE_PARENT),
1662 
1663 	/* PLLB is used for the ARM's clock. */
1664 	[BCM2835_PLLB]		= REGISTER_PLL(
1665 		.name = "pllb",
1666 		.cm_ctrl_reg = CM_PLLB,
1667 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1668 		.frac_reg = A2W_PLLB_FRAC,
1669 		.ana_reg_base = A2W_PLLB_ANA0,
1670 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1671 		.lock_mask = CM_LOCK_FLOCKB,
1672 
1673 		.ana = &bcm2835_ana_default,
1674 
1675 		.min_rate = 600000000u,
1676 		.max_rate = 3000000000u,
1677 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1678 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1679 		.name = "pllb_arm",
1680 		.source_pll = "pllb",
1681 		.cm_reg = CM_PLLB,
1682 		.a2w_reg = A2W_PLLB_ARM,
1683 		.load_mask = CM_PLLB_LOADARM,
1684 		.hold_mask = CM_PLLB_HOLDARM,
1685 		.fixed_divider = 1,
1686 		.flags = CLK_SET_RATE_PARENT),
1687 
1688 	/*
1689 	 * PLLC is the core PLL, used to drive the core VPU clock.
1690 	 *
1691 	 * It is in the PX LDO power domain, which is on when the
1692 	 * AUDIO domain is on.
1693 	 */
1694 	[BCM2835_PLLC]		= REGISTER_PLL(
1695 		.name = "pllc",
1696 		.cm_ctrl_reg = CM_PLLC,
1697 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1698 		.frac_reg = A2W_PLLC_FRAC,
1699 		.ana_reg_base = A2W_PLLC_ANA0,
1700 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1701 		.lock_mask = CM_LOCK_FLOCKC,
1702 
1703 		.ana = &bcm2835_ana_default,
1704 
1705 		.min_rate = 600000000u,
1706 		.max_rate = 3000000000u,
1707 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1708 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1709 		.name = "pllc_core0",
1710 		.source_pll = "pllc",
1711 		.cm_reg = CM_PLLC,
1712 		.a2w_reg = A2W_PLLC_CORE0,
1713 		.load_mask = CM_PLLC_LOADCORE0,
1714 		.hold_mask = CM_PLLC_HOLDCORE0,
1715 		.fixed_divider = 1,
1716 		.flags = CLK_SET_RATE_PARENT),
1717 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1718 		.name = "pllc_core1",
1719 		.source_pll = "pllc",
1720 		.cm_reg = CM_PLLC,
1721 		.a2w_reg = A2W_PLLC_CORE1,
1722 		.load_mask = CM_PLLC_LOADCORE1,
1723 		.hold_mask = CM_PLLC_HOLDCORE1,
1724 		.fixed_divider = 1,
1725 		.flags = CLK_SET_RATE_PARENT),
1726 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1727 		.name = "pllc_core2",
1728 		.source_pll = "pllc",
1729 		.cm_reg = CM_PLLC,
1730 		.a2w_reg = A2W_PLLC_CORE2,
1731 		.load_mask = CM_PLLC_LOADCORE2,
1732 		.hold_mask = CM_PLLC_HOLDCORE2,
1733 		.fixed_divider = 1,
1734 		.flags = CLK_SET_RATE_PARENT),
1735 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1736 		.name = "pllc_per",
1737 		.source_pll = "pllc",
1738 		.cm_reg = CM_PLLC,
1739 		.a2w_reg = A2W_PLLC_PER,
1740 		.load_mask = CM_PLLC_LOADPER,
1741 		.hold_mask = CM_PLLC_HOLDPER,
1742 		.fixed_divider = 1,
1743 		.flags = CLK_SET_RATE_PARENT),
1744 
1745 	/*
1746 	 * PLLD is the display PLL, used to drive DSI display panels.
1747 	 *
1748 	 * It is in the PX LDO power domain, which is on when the
1749 	 * AUDIO domain is on.
1750 	 */
1751 	[BCM2835_PLLD]		= REGISTER_PLL(
1752 		.name = "plld",
1753 		.cm_ctrl_reg = CM_PLLD,
1754 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1755 		.frac_reg = A2W_PLLD_FRAC,
1756 		.ana_reg_base = A2W_PLLD_ANA0,
1757 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1758 		.lock_mask = CM_LOCK_FLOCKD,
1759 
1760 		.ana = &bcm2835_ana_default,
1761 
1762 		.min_rate = 600000000u,
1763 		.max_rate = 2400000000u,
1764 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1765 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1766 		.name = "plld_core",
1767 		.source_pll = "plld",
1768 		.cm_reg = CM_PLLD,
1769 		.a2w_reg = A2W_PLLD_CORE,
1770 		.load_mask = CM_PLLD_LOADCORE,
1771 		.hold_mask = CM_PLLD_HOLDCORE,
1772 		.fixed_divider = 1,
1773 		.flags = CLK_SET_RATE_PARENT),
1774 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1775 		.name = "plld_per",
1776 		.source_pll = "plld",
1777 		.cm_reg = CM_PLLD,
1778 		.a2w_reg = A2W_PLLD_PER,
1779 		.load_mask = CM_PLLD_LOADPER,
1780 		.hold_mask = CM_PLLD_HOLDPER,
1781 		.fixed_divider = 1,
1782 		.flags = CLK_SET_RATE_PARENT),
1783 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1784 		.name = "plld_dsi0",
1785 		.source_pll = "plld",
1786 		.cm_reg = CM_PLLD,
1787 		.a2w_reg = A2W_PLLD_DSI0,
1788 		.load_mask = CM_PLLD_LOADDSI0,
1789 		.hold_mask = CM_PLLD_HOLDDSI0,
1790 		.fixed_divider = 1),
1791 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1792 		.name = "plld_dsi1",
1793 		.source_pll = "plld",
1794 		.cm_reg = CM_PLLD,
1795 		.a2w_reg = A2W_PLLD_DSI1,
1796 		.load_mask = CM_PLLD_LOADDSI1,
1797 		.hold_mask = CM_PLLD_HOLDDSI1,
1798 		.fixed_divider = 1),
1799 
1800 	/*
1801 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1802 	 * TV encoder.
1803 	 *
1804 	 * It is in the HDMI power domain.
1805 	 */
1806 	[BCM2835_PLLH]		= REGISTER_PLL(
1807 		"pllh",
1808 		.cm_ctrl_reg = CM_PLLH,
1809 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1810 		.frac_reg = A2W_PLLH_FRAC,
1811 		.ana_reg_base = A2W_PLLH_ANA0,
1812 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1813 		.lock_mask = CM_LOCK_FLOCKH,
1814 
1815 		.ana = &bcm2835_ana_pllh,
1816 
1817 		.min_rate = 600000000u,
1818 		.max_rate = 3000000000u,
1819 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1820 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1821 		.name = "pllh_rcal",
1822 		.source_pll = "pllh",
1823 		.cm_reg = CM_PLLH,
1824 		.a2w_reg = A2W_PLLH_RCAL,
1825 		.load_mask = CM_PLLH_LOADRCAL,
1826 		.hold_mask = 0,
1827 		.fixed_divider = 10,
1828 		.flags = CLK_SET_RATE_PARENT),
1829 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1830 		.name = "pllh_aux",
1831 		.source_pll = "pllh",
1832 		.cm_reg = CM_PLLH,
1833 		.a2w_reg = A2W_PLLH_AUX,
1834 		.load_mask = CM_PLLH_LOADAUX,
1835 		.hold_mask = 0,
1836 		.fixed_divider = 1,
1837 		.flags = CLK_SET_RATE_PARENT),
1838 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1839 		.name = "pllh_pix",
1840 		.source_pll = "pllh",
1841 		.cm_reg = CM_PLLH,
1842 		.a2w_reg = A2W_PLLH_PIX,
1843 		.load_mask = CM_PLLH_LOADPIX,
1844 		.hold_mask = 0,
1845 		.fixed_divider = 10,
1846 		.flags = CLK_SET_RATE_PARENT),
1847 
1848 	/* the clocks */
1849 
1850 	/* clocks with oscillator parent mux */
1851 
1852 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1853 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1854 		.name = "otp",
1855 		.ctl_reg = CM_OTPCTL,
1856 		.div_reg = CM_OTPDIV,
1857 		.int_bits = 4,
1858 		.frac_bits = 0,
1859 		.tcnt_mux = 6),
1860 	/*
1861 	 * Used for a 1Mhz clock for the system clocksource, and also used
1862 	 * bythe watchdog timer and the camera pulse generator.
1863 	 */
1864 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1865 		.name = "timer",
1866 		.ctl_reg = CM_TIMERCTL,
1867 		.div_reg = CM_TIMERDIV,
1868 		.int_bits = 6,
1869 		.frac_bits = 12),
1870 	/*
1871 	 * Clock for the temperature sensor.
1872 	 * Generally run at 2Mhz, max 5Mhz.
1873 	 */
1874 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1875 		.name = "tsens",
1876 		.ctl_reg = CM_TSENSCTL,
1877 		.div_reg = CM_TSENSDIV,
1878 		.int_bits = 5,
1879 		.frac_bits = 0),
1880 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1881 		.name = "tec",
1882 		.ctl_reg = CM_TECCTL,
1883 		.div_reg = CM_TECDIV,
1884 		.int_bits = 6,
1885 		.frac_bits = 0),
1886 
1887 	/* clocks with vpu parent mux */
1888 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1889 		.name = "h264",
1890 		.ctl_reg = CM_H264CTL,
1891 		.div_reg = CM_H264DIV,
1892 		.int_bits = 4,
1893 		.frac_bits = 8,
1894 		.tcnt_mux = 1),
1895 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1896 		.name = "isp",
1897 		.ctl_reg = CM_ISPCTL,
1898 		.div_reg = CM_ISPDIV,
1899 		.int_bits = 4,
1900 		.frac_bits = 8,
1901 		.tcnt_mux = 2),
1902 
1903 	/*
1904 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1905 	 * in the SDRAM controller can't be used.
1906 	 */
1907 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1908 		.name = "sdram",
1909 		.ctl_reg = CM_SDCCTL,
1910 		.div_reg = CM_SDCDIV,
1911 		.int_bits = 6,
1912 		.frac_bits = 0,
1913 		.tcnt_mux = 3),
1914 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1915 		.name = "v3d",
1916 		.ctl_reg = CM_V3DCTL,
1917 		.div_reg = CM_V3DDIV,
1918 		.int_bits = 4,
1919 		.frac_bits = 8,
1920 		.tcnt_mux = 4),
1921 	/*
1922 	 * VPU clock.  This doesn't have an enable bit, since it drives
1923 	 * the bus for everything else, and is special so it doesn't need
1924 	 * to be gated for rate changes.  It is also known as "clk_audio"
1925 	 * in various hardware documentation.
1926 	 */
1927 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1928 		.name = "vpu",
1929 		.ctl_reg = CM_VPUCTL,
1930 		.div_reg = CM_VPUDIV,
1931 		.int_bits = 12,
1932 		.frac_bits = 8,
1933 		.flags = CLK_IS_CRITICAL,
1934 		.is_vpu_clock = true,
1935 		.tcnt_mux = 5),
1936 
1937 	/* clocks with per parent mux */
1938 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
1939 		.name = "aveo",
1940 		.ctl_reg = CM_AVEOCTL,
1941 		.div_reg = CM_AVEODIV,
1942 		.int_bits = 4,
1943 		.frac_bits = 0,
1944 		.tcnt_mux = 38),
1945 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
1946 		.name = "cam0",
1947 		.ctl_reg = CM_CAM0CTL,
1948 		.div_reg = CM_CAM0DIV,
1949 		.int_bits = 4,
1950 		.frac_bits = 8,
1951 		.tcnt_mux = 14),
1952 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
1953 		.name = "cam1",
1954 		.ctl_reg = CM_CAM1CTL,
1955 		.div_reg = CM_CAM1DIV,
1956 		.int_bits = 4,
1957 		.frac_bits = 8,
1958 		.tcnt_mux = 15),
1959 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
1960 		.name = "dft",
1961 		.ctl_reg = CM_DFTCTL,
1962 		.div_reg = CM_DFTDIV,
1963 		.int_bits = 5,
1964 		.frac_bits = 0),
1965 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
1966 		.name = "dpi",
1967 		.ctl_reg = CM_DPICTL,
1968 		.div_reg = CM_DPIDIV,
1969 		.int_bits = 4,
1970 		.frac_bits = 8,
1971 		.tcnt_mux = 17),
1972 
1973 	/* Arasan EMMC clock */
1974 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
1975 		.name = "emmc",
1976 		.ctl_reg = CM_EMMCCTL,
1977 		.div_reg = CM_EMMCDIV,
1978 		.int_bits = 4,
1979 		.frac_bits = 8,
1980 		.tcnt_mux = 39),
1981 
1982 	/* General purpose (GPIO) clocks */
1983 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
1984 		.name = "gp0",
1985 		.ctl_reg = CM_GP0CTL,
1986 		.div_reg = CM_GP0DIV,
1987 		.int_bits = 12,
1988 		.frac_bits = 12,
1989 		.is_mash_clock = true,
1990 		.tcnt_mux = 20),
1991 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
1992 		.name = "gp1",
1993 		.ctl_reg = CM_GP1CTL,
1994 		.div_reg = CM_GP1DIV,
1995 		.int_bits = 12,
1996 		.frac_bits = 12,
1997 		.flags = CLK_IS_CRITICAL,
1998 		.is_mash_clock = true,
1999 		.tcnt_mux = 21),
2000 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
2001 		.name = "gp2",
2002 		.ctl_reg = CM_GP2CTL,
2003 		.div_reg = CM_GP2DIV,
2004 		.int_bits = 12,
2005 		.frac_bits = 12,
2006 		.flags = CLK_IS_CRITICAL),
2007 
2008 	/* HDMI state machine */
2009 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2010 		.name = "hsm",
2011 		.ctl_reg = CM_HSMCTL,
2012 		.div_reg = CM_HSMDIV,
2013 		.int_bits = 4,
2014 		.frac_bits = 8,
2015 		.tcnt_mux = 22),
2016 	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2017 		.name = "pcm",
2018 		.ctl_reg = CM_PCMCTL,
2019 		.div_reg = CM_PCMDIV,
2020 		.int_bits = 12,
2021 		.frac_bits = 12,
2022 		.is_mash_clock = true,
2023 		.low_jitter = true,
2024 		.tcnt_mux = 23),
2025 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2026 		.name = "pwm",
2027 		.ctl_reg = CM_PWMCTL,
2028 		.div_reg = CM_PWMDIV,
2029 		.int_bits = 12,
2030 		.frac_bits = 12,
2031 		.is_mash_clock = true,
2032 		.tcnt_mux = 24),
2033 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2034 		.name = "slim",
2035 		.ctl_reg = CM_SLIMCTL,
2036 		.div_reg = CM_SLIMDIV,
2037 		.int_bits = 12,
2038 		.frac_bits = 12,
2039 		.is_mash_clock = true,
2040 		.tcnt_mux = 25),
2041 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2042 		.name = "smi",
2043 		.ctl_reg = CM_SMICTL,
2044 		.div_reg = CM_SMIDIV,
2045 		.int_bits = 4,
2046 		.frac_bits = 8,
2047 		.tcnt_mux = 27),
2048 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2049 		.name = "uart",
2050 		.ctl_reg = CM_UARTCTL,
2051 		.div_reg = CM_UARTDIV,
2052 		.int_bits = 10,
2053 		.frac_bits = 12,
2054 		.tcnt_mux = 28),
2055 
2056 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2057 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2058 		.name = "vec",
2059 		.ctl_reg = CM_VECCTL,
2060 		.div_reg = CM_VECDIV,
2061 		.int_bits = 4,
2062 		.frac_bits = 0,
2063 		/*
2064 		 * Allow rate change propagation only on PLLH_AUX which is
2065 		 * assigned index 7 in the parent array.
2066 		 */
2067 		.set_rate_parent = BIT(7),
2068 		.tcnt_mux = 29),
2069 
2070 	/* dsi clocks */
2071 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2072 		.name = "dsi0e",
2073 		.ctl_reg = CM_DSI0ECTL,
2074 		.div_reg = CM_DSI0EDIV,
2075 		.int_bits = 4,
2076 		.frac_bits = 8,
2077 		.tcnt_mux = 18),
2078 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2079 		.name = "dsi1e",
2080 		.ctl_reg = CM_DSI1ECTL,
2081 		.div_reg = CM_DSI1EDIV,
2082 		.int_bits = 4,
2083 		.frac_bits = 8,
2084 		.tcnt_mux = 19),
2085 	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2086 		.name = "dsi0p",
2087 		.ctl_reg = CM_DSI0PCTL,
2088 		.div_reg = CM_DSI0PDIV,
2089 		.int_bits = 0,
2090 		.frac_bits = 0,
2091 		.tcnt_mux = 12),
2092 	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2093 		.name = "dsi1p",
2094 		.ctl_reg = CM_DSI1PCTL,
2095 		.div_reg = CM_DSI1PDIV,
2096 		.int_bits = 0,
2097 		.frac_bits = 0,
2098 		.tcnt_mux = 13),
2099 
2100 	/* the gates */
2101 
2102 	/*
2103 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2104 	 * you have the debug bit set in the power manager, which we
2105 	 * don't bother exposing) are individual gates off of the
2106 	 * non-stop vpu clock.
2107 	 */
2108 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2109 		.name = "peri_image",
2110 		.parent = "vpu",
2111 		.ctl_reg = CM_PERIICTL),
2112 };
2113 
2114 /*
2115  * Permanently take a reference on the parent of the SDRAM clock.
2116  *
2117  * While the SDRAM is being driven by its dedicated PLL most of the
2118  * time, there is a little loop running in the firmware that
2119  * periodically switches the SDRAM to using our CM clock to do PVT
2120  * recalibration, with the assumption that the previously configured
2121  * SDRAM parent is still enabled and running.
2122  */
2123 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2124 {
2125 	struct clk *parent = clk_get_parent(sdc);
2126 
2127 	if (IS_ERR(parent))
2128 		return PTR_ERR(parent);
2129 
2130 	return clk_prepare_enable(parent);
2131 }
2132 
2133 static int bcm2835_clk_probe(struct platform_device *pdev)
2134 {
2135 	struct device *dev = &pdev->dev;
2136 	struct clk_hw **hws;
2137 	struct bcm2835_cprman *cprman;
2138 	struct resource *res;
2139 	const struct bcm2835_clk_desc *desc;
2140 	const size_t asize = ARRAY_SIZE(clk_desc_array);
2141 	size_t i;
2142 	int ret;
2143 
2144 	cprman = devm_kzalloc(dev,
2145 			      struct_size(cprman, onecell.hws, asize),
2146 			      GFP_KERNEL);
2147 	if (!cprman)
2148 		return -ENOMEM;
2149 
2150 	spin_lock_init(&cprman->regs_lock);
2151 	cprman->dev = dev;
2152 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2153 	cprman->regs = devm_ioremap_resource(dev, res);
2154 	if (IS_ERR(cprman->regs))
2155 		return PTR_ERR(cprman->regs);
2156 
2157 	memcpy(cprman->real_parent_names, cprman_parent_names,
2158 	       sizeof(cprman_parent_names));
2159 	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2160 			   ARRAY_SIZE(cprman_parent_names));
2161 
2162 	/*
2163 	 * Make sure the external oscillator has been registered.
2164 	 *
2165 	 * The other (DSI) clocks are not present on older device
2166 	 * trees, which we still need to support for backwards
2167 	 * compatibility.
2168 	 */
2169 	if (!cprman->real_parent_names[0])
2170 		return -ENODEV;
2171 
2172 	platform_set_drvdata(pdev, cprman);
2173 
2174 	cprman->onecell.num = asize;
2175 	hws = cprman->onecell.hws;
2176 
2177 	for (i = 0; i < asize; i++) {
2178 		desc = &clk_desc_array[i];
2179 		if (desc->clk_register && desc->data)
2180 			hws[i] = desc->clk_register(cprman, desc->data);
2181 	}
2182 
2183 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2184 	if (ret)
2185 		return ret;
2186 
2187 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2188 				      &cprman->onecell);
2189 }
2190 
2191 static const struct of_device_id bcm2835_clk_of_match[] = {
2192 	{ .compatible = "brcm,bcm2835-cprman", },
2193 	{}
2194 };
2195 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2196 
2197 static struct platform_driver bcm2835_clk_driver = {
2198 	.driver = {
2199 		.name = "bcm2835-clk",
2200 		.of_match_table = bcm2835_clk_of_match,
2201 	},
2202 	.probe          = bcm2835_clk_probe,
2203 };
2204 
2205 builtin_platform_driver(bcm2835_clk_driver);
2206 
2207 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2208 MODULE_DESCRIPTION("BCM2835 clock driver");
2209 MODULE_LICENSE("GPL v2");
2210