xref: /linux/drivers/clk/bcm/clk-bcm2835.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2010,2015 Broadcom
4  * Copyright (C) 2012 Stephen Warren
5  */
6 
7 /**
8  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9  *
10  * The clock tree on the 2835 has several levels.  There's a root
11  * oscillator running at 19.2Mhz.  After the oscillator there are 5
12  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13  * and "HDMI displays".  Those 5 PLLs each can divide their output to
14  * produce up to 4 channels.  Finally, there is the level of clocks to
15  * be consumed by other hardware components (like "H264" or "HDMI
16  * state machine"), which divide off of some subset of the PLL
17  * channels.
18  *
19  * All of the clocks in the tree are exposed in the DT, because the DT
20  * may want to make assignments of the final layer of clocks to the
21  * PLL channels, and some components of the hardware will actually
22  * skip layers of the tree (for example, the pixel clock comes
23  * directly from the PLLH PIX channel without using a CM_*CTL clock
24  * generator).
25  */
26 
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
32 #include <linux/io.h>
33 #include <linux/module.h>
34 #include <linux/of_device.h>
35 #include <linux/platform_device.h>
36 #include <linux/slab.h>
37 #include <dt-bindings/clock/bcm2835.h>
38 
39 #define CM_PASSWORD		0x5a000000
40 
41 #define CM_GNRICCTL		0x000
42 #define CM_GNRICDIV		0x004
43 # define CM_DIV_FRAC_BITS	12
44 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
45 
46 #define CM_VPUCTL		0x008
47 #define CM_VPUDIV		0x00c
48 #define CM_SYSCTL		0x010
49 #define CM_SYSDIV		0x014
50 #define CM_PERIACTL		0x018
51 #define CM_PERIADIV		0x01c
52 #define CM_PERIICTL		0x020
53 #define CM_PERIIDIV		0x024
54 #define CM_H264CTL		0x028
55 #define CM_H264DIV		0x02c
56 #define CM_ISPCTL		0x030
57 #define CM_ISPDIV		0x034
58 #define CM_V3DCTL		0x038
59 #define CM_V3DDIV		0x03c
60 #define CM_CAM0CTL		0x040
61 #define CM_CAM0DIV		0x044
62 #define CM_CAM1CTL		0x048
63 #define CM_CAM1DIV		0x04c
64 #define CM_CCP2CTL		0x050
65 #define CM_CCP2DIV		0x054
66 #define CM_DSI0ECTL		0x058
67 #define CM_DSI0EDIV		0x05c
68 #define CM_DSI0PCTL		0x060
69 #define CM_DSI0PDIV		0x064
70 #define CM_DPICTL		0x068
71 #define CM_DPIDIV		0x06c
72 #define CM_GP0CTL		0x070
73 #define CM_GP0DIV		0x074
74 #define CM_GP1CTL		0x078
75 #define CM_GP1DIV		0x07c
76 #define CM_GP2CTL		0x080
77 #define CM_GP2DIV		0x084
78 #define CM_HSMCTL		0x088
79 #define CM_HSMDIV		0x08c
80 #define CM_OTPCTL		0x090
81 #define CM_OTPDIV		0x094
82 #define CM_PCMCTL		0x098
83 #define CM_PCMDIV		0x09c
84 #define CM_PWMCTL		0x0a0
85 #define CM_PWMDIV		0x0a4
86 #define CM_SLIMCTL		0x0a8
87 #define CM_SLIMDIV		0x0ac
88 #define CM_SMICTL		0x0b0
89 #define CM_SMIDIV		0x0b4
90 /* no definition for 0x0b8  and 0x0bc */
91 #define CM_TCNTCTL		0x0c0
92 # define CM_TCNT_SRC1_SHIFT		12
93 #define CM_TCNTCNT		0x0c4
94 #define CM_TECCTL		0x0c8
95 #define CM_TECDIV		0x0cc
96 #define CM_TD0CTL		0x0d0
97 #define CM_TD0DIV		0x0d4
98 #define CM_TD1CTL		0x0d8
99 #define CM_TD1DIV		0x0dc
100 #define CM_TSENSCTL		0x0e0
101 #define CM_TSENSDIV		0x0e4
102 #define CM_TIMERCTL		0x0e8
103 #define CM_TIMERDIV		0x0ec
104 #define CM_UARTCTL		0x0f0
105 #define CM_UARTDIV		0x0f4
106 #define CM_VECCTL		0x0f8
107 #define CM_VECDIV		0x0fc
108 #define CM_PULSECTL		0x190
109 #define CM_PULSEDIV		0x194
110 #define CM_SDCCTL		0x1a8
111 #define CM_SDCDIV		0x1ac
112 #define CM_ARMCTL		0x1b0
113 #define CM_AVEOCTL		0x1b8
114 #define CM_AVEODIV		0x1bc
115 #define CM_EMMCCTL		0x1c0
116 #define CM_EMMCDIV		0x1c4
117 #define CM_EMMC2CTL		0x1d0
118 #define CM_EMMC2DIV		0x1d4
119 
120 /* General bits for the CM_*CTL regs */
121 # define CM_ENABLE			BIT(4)
122 # define CM_KILL			BIT(5)
123 # define CM_GATE_BIT			6
124 # define CM_GATE			BIT(CM_GATE_BIT)
125 # define CM_BUSY			BIT(7)
126 # define CM_BUSYD			BIT(8)
127 # define CM_FRAC			BIT(9)
128 # define CM_SRC_SHIFT			0
129 # define CM_SRC_BITS			4
130 # define CM_SRC_MASK			0xf
131 # define CM_SRC_GND			0
132 # define CM_SRC_OSC			1
133 # define CM_SRC_TESTDEBUG0		2
134 # define CM_SRC_TESTDEBUG1		3
135 # define CM_SRC_PLLA_CORE		4
136 # define CM_SRC_PLLA_PER		4
137 # define CM_SRC_PLLC_CORE0		5
138 # define CM_SRC_PLLC_PER		5
139 # define CM_SRC_PLLC_CORE1		8
140 # define CM_SRC_PLLD_CORE		6
141 # define CM_SRC_PLLD_PER		6
142 # define CM_SRC_PLLH_AUX		7
143 # define CM_SRC_PLLC_CORE1		8
144 # define CM_SRC_PLLC_CORE2		9
145 
146 #define CM_OSCCOUNT		0x100
147 
148 #define CM_PLLA			0x104
149 # define CM_PLL_ANARST			BIT(8)
150 # define CM_PLLA_HOLDPER		BIT(7)
151 # define CM_PLLA_LOADPER		BIT(6)
152 # define CM_PLLA_HOLDCORE		BIT(5)
153 # define CM_PLLA_LOADCORE		BIT(4)
154 # define CM_PLLA_HOLDCCP2		BIT(3)
155 # define CM_PLLA_LOADCCP2		BIT(2)
156 # define CM_PLLA_HOLDDSI0		BIT(1)
157 # define CM_PLLA_LOADDSI0		BIT(0)
158 
159 #define CM_PLLC			0x108
160 # define CM_PLLC_HOLDPER		BIT(7)
161 # define CM_PLLC_LOADPER		BIT(6)
162 # define CM_PLLC_HOLDCORE2		BIT(5)
163 # define CM_PLLC_LOADCORE2		BIT(4)
164 # define CM_PLLC_HOLDCORE1		BIT(3)
165 # define CM_PLLC_LOADCORE1		BIT(2)
166 # define CM_PLLC_HOLDCORE0		BIT(1)
167 # define CM_PLLC_LOADCORE0		BIT(0)
168 
169 #define CM_PLLD			0x10c
170 # define CM_PLLD_HOLDPER		BIT(7)
171 # define CM_PLLD_LOADPER		BIT(6)
172 # define CM_PLLD_HOLDCORE		BIT(5)
173 # define CM_PLLD_LOADCORE		BIT(4)
174 # define CM_PLLD_HOLDDSI1		BIT(3)
175 # define CM_PLLD_LOADDSI1		BIT(2)
176 # define CM_PLLD_HOLDDSI0		BIT(1)
177 # define CM_PLLD_LOADDSI0		BIT(0)
178 
179 #define CM_PLLH			0x110
180 # define CM_PLLH_LOADRCAL		BIT(2)
181 # define CM_PLLH_LOADAUX		BIT(1)
182 # define CM_PLLH_LOADPIX		BIT(0)
183 
184 #define CM_LOCK			0x114
185 # define CM_LOCK_FLOCKH			BIT(12)
186 # define CM_LOCK_FLOCKD			BIT(11)
187 # define CM_LOCK_FLOCKC			BIT(10)
188 # define CM_LOCK_FLOCKB			BIT(9)
189 # define CM_LOCK_FLOCKA			BIT(8)
190 
191 #define CM_EVENT		0x118
192 #define CM_DSI1ECTL		0x158
193 #define CM_DSI1EDIV		0x15c
194 #define CM_DSI1PCTL		0x160
195 #define CM_DSI1PDIV		0x164
196 #define CM_DFTCTL		0x168
197 #define CM_DFTDIV		0x16c
198 
199 #define CM_PLLB			0x170
200 # define CM_PLLB_HOLDARM		BIT(1)
201 # define CM_PLLB_LOADARM		BIT(0)
202 
203 #define A2W_PLLA_CTRL		0x1100
204 #define A2W_PLLC_CTRL		0x1120
205 #define A2W_PLLD_CTRL		0x1140
206 #define A2W_PLLH_CTRL		0x1160
207 #define A2W_PLLB_CTRL		0x11e0
208 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
209 # define A2W_PLL_CTRL_PWRDN		BIT(16)
210 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
211 # define A2W_PLL_CTRL_PDIV_SHIFT	12
212 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
213 # define A2W_PLL_CTRL_NDIV_SHIFT	0
214 
215 #define A2W_PLLA_ANA0		0x1010
216 #define A2W_PLLC_ANA0		0x1030
217 #define A2W_PLLD_ANA0		0x1050
218 #define A2W_PLLH_ANA0		0x1070
219 #define A2W_PLLB_ANA0		0x10f0
220 
221 #define A2W_PLL_KA_SHIFT	7
222 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
223 #define A2W_PLL_KI_SHIFT	19
224 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
225 #define A2W_PLL_KP_SHIFT	15
226 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
227 
228 #define A2W_PLLH_KA_SHIFT	19
229 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
230 #define A2W_PLLH_KI_LOW_SHIFT	22
231 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
232 #define A2W_PLLH_KI_HIGH_SHIFT	0
233 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
234 #define A2W_PLLH_KP_SHIFT	1
235 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
236 
237 #define A2W_XOSC_CTRL		0x1190
238 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
239 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
240 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
241 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
242 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
243 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
244 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
245 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
246 
247 #define A2W_PLLA_FRAC		0x1200
248 #define A2W_PLLC_FRAC		0x1220
249 #define A2W_PLLD_FRAC		0x1240
250 #define A2W_PLLH_FRAC		0x1260
251 #define A2W_PLLB_FRAC		0x12e0
252 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
253 # define A2W_PLL_FRAC_BITS		20
254 
255 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
256 #define A2W_PLL_DIV_BITS		8
257 #define A2W_PLL_DIV_SHIFT		0
258 
259 #define A2W_PLLA_DSI0		0x1300
260 #define A2W_PLLA_CORE		0x1400
261 #define A2W_PLLA_PER		0x1500
262 #define A2W_PLLA_CCP2		0x1600
263 
264 #define A2W_PLLC_CORE2		0x1320
265 #define A2W_PLLC_CORE1		0x1420
266 #define A2W_PLLC_PER		0x1520
267 #define A2W_PLLC_CORE0		0x1620
268 
269 #define A2W_PLLD_DSI0		0x1340
270 #define A2W_PLLD_CORE		0x1440
271 #define A2W_PLLD_PER		0x1540
272 #define A2W_PLLD_DSI1		0x1640
273 
274 #define A2W_PLLH_AUX		0x1360
275 #define A2W_PLLH_RCAL		0x1460
276 #define A2W_PLLH_PIX		0x1560
277 #define A2W_PLLH_STS		0x1660
278 
279 #define A2W_PLLH_CTRLR		0x1960
280 #define A2W_PLLH_FRACR		0x1a60
281 #define A2W_PLLH_AUXR		0x1b60
282 #define A2W_PLLH_RCALR		0x1c60
283 #define A2W_PLLH_PIXR		0x1d60
284 #define A2W_PLLH_STSR		0x1e60
285 
286 #define A2W_PLLB_ARM		0x13e0
287 #define A2W_PLLB_SP0		0x14e0
288 #define A2W_PLLB_SP1		0x15e0
289 #define A2W_PLLB_SP2		0x16e0
290 
291 #define LOCK_TIMEOUT_NS		100000000
292 #define BCM2835_MAX_FB_RATE	1750000000u
293 
294 #define SOC_BCM2835		BIT(0)
295 #define SOC_BCM2711		BIT(1)
296 #define SOC_ALL			(SOC_BCM2835 | SOC_BCM2711)
297 
298 /*
299  * Names of clocks used within the driver that need to be replaced
300  * with an external parent's name.  This array is in the order that
301  * the clocks node in the DT references external clocks.
302  */
303 static const char *const cprman_parent_names[] = {
304 	"xosc",
305 	"dsi0_byte",
306 	"dsi0_ddr2",
307 	"dsi0_ddr",
308 	"dsi1_byte",
309 	"dsi1_ddr2",
310 	"dsi1_ddr",
311 };
312 
313 struct bcm2835_cprman {
314 	struct device *dev;
315 	void __iomem *regs;
316 	spinlock_t regs_lock; /* spinlock for all clocks */
317 
318 	/*
319 	 * Real names of cprman clock parents looked up through
320 	 * of_clk_get_parent_name(), which will be used in the
321 	 * parent_names[] arrays for clock registration.
322 	 */
323 	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
324 
325 	/* Must be last */
326 	struct clk_hw_onecell_data onecell;
327 };
328 
329 struct cprman_plat_data {
330 	unsigned int soc;
331 };
332 
333 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
334 {
335 	writel(CM_PASSWORD | val, cprman->regs + reg);
336 }
337 
338 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
339 {
340 	return readl(cprman->regs + reg);
341 }
342 
343 /* Does a cycle of measuring a clock through the TCNT clock, which may
344  * source from many other clocks in the system.
345  */
346 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
347 					      u32 tcnt_mux)
348 {
349 	u32 osccount = 19200; /* 1ms */
350 	u32 count;
351 	ktime_t timeout;
352 
353 	spin_lock(&cprman->regs_lock);
354 
355 	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
356 
357 	cprman_write(cprman, CM_TCNTCTL,
358 		     (tcnt_mux & CM_SRC_MASK) |
359 		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
360 
361 	cprman_write(cprman, CM_OSCCOUNT, osccount);
362 
363 	/* do a kind delay at the start */
364 	mdelay(1);
365 
366 	/* Finish off whatever is left of OSCCOUNT */
367 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
368 	while (cprman_read(cprman, CM_OSCCOUNT)) {
369 		if (ktime_after(ktime_get(), timeout)) {
370 			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
371 			count = 0;
372 			goto out;
373 		}
374 		cpu_relax();
375 	}
376 
377 	/* Wait for BUSY to clear. */
378 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
379 	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
380 		if (ktime_after(ktime_get(), timeout)) {
381 			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
382 			count = 0;
383 			goto out;
384 		}
385 		cpu_relax();
386 	}
387 
388 	count = cprman_read(cprman, CM_TCNTCNT);
389 
390 	cprman_write(cprman, CM_TCNTCTL, 0);
391 
392 out:
393 	spin_unlock(&cprman->regs_lock);
394 
395 	return count * 1000;
396 }
397 
398 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
399 				  struct debugfs_reg32 *regs, size_t nregs,
400 				  struct dentry *dentry)
401 {
402 	struct debugfs_regset32 *regset;
403 
404 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
405 	if (!regset)
406 		return;
407 
408 	regset->regs = regs;
409 	regset->nregs = nregs;
410 	regset->base = cprman->regs + base;
411 
412 	debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
413 }
414 
415 struct bcm2835_pll_data {
416 	const char *name;
417 	u32 cm_ctrl_reg;
418 	u32 a2w_ctrl_reg;
419 	u32 frac_reg;
420 	u32 ana_reg_base;
421 	u32 reference_enable_mask;
422 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
423 	u32 lock_mask;
424 
425 	const struct bcm2835_pll_ana_bits *ana;
426 
427 	unsigned long min_rate;
428 	unsigned long max_rate;
429 	/*
430 	 * Highest rate for the VCO before we have to use the
431 	 * pre-divide-by-2.
432 	 */
433 	unsigned long max_fb_rate;
434 };
435 
436 struct bcm2835_pll_ana_bits {
437 	u32 mask0;
438 	u32 set0;
439 	u32 mask1;
440 	u32 set1;
441 	u32 mask3;
442 	u32 set3;
443 	u32 fb_prediv_mask;
444 };
445 
446 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
447 	.mask0 = 0,
448 	.set0 = 0,
449 	.mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
450 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
451 	.mask3 = A2W_PLL_KA_MASK,
452 	.set3 = (2 << A2W_PLL_KA_SHIFT),
453 	.fb_prediv_mask = BIT(14),
454 };
455 
456 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
457 	.mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
458 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
459 	.mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
460 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
461 	.mask3 = 0,
462 	.set3 = 0,
463 	.fb_prediv_mask = BIT(11),
464 };
465 
466 struct bcm2835_pll_divider_data {
467 	const char *name;
468 	const char *source_pll;
469 
470 	u32 cm_reg;
471 	u32 a2w_reg;
472 
473 	u32 load_mask;
474 	u32 hold_mask;
475 	u32 fixed_divider;
476 	u32 flags;
477 };
478 
479 struct bcm2835_clock_data {
480 	const char *name;
481 
482 	const char *const *parents;
483 	int num_mux_parents;
484 
485 	/* Bitmap encoding which parents accept rate change propagation. */
486 	unsigned int set_rate_parent;
487 
488 	u32 ctl_reg;
489 	u32 div_reg;
490 
491 	/* Number of integer bits in the divider */
492 	u32 int_bits;
493 	/* Number of fractional bits in the divider */
494 	u32 frac_bits;
495 
496 	u32 flags;
497 
498 	bool is_vpu_clock;
499 	bool is_mash_clock;
500 	bool low_jitter;
501 
502 	u32 tcnt_mux;
503 };
504 
505 struct bcm2835_gate_data {
506 	const char *name;
507 	const char *parent;
508 
509 	u32 ctl_reg;
510 };
511 
512 struct bcm2835_pll {
513 	struct clk_hw hw;
514 	struct bcm2835_cprman *cprman;
515 	const struct bcm2835_pll_data *data;
516 };
517 
518 static int bcm2835_pll_is_on(struct clk_hw *hw)
519 {
520 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
521 	struct bcm2835_cprman *cprman = pll->cprman;
522 	const struct bcm2835_pll_data *data = pll->data;
523 
524 	return cprman_read(cprman, data->a2w_ctrl_reg) &
525 		A2W_PLL_CTRL_PRST_DISABLE;
526 }
527 
528 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
529 					     unsigned long parent_rate,
530 					     u32 *ndiv, u32 *fdiv)
531 {
532 	u64 div;
533 
534 	div = (u64)rate << A2W_PLL_FRAC_BITS;
535 	do_div(div, parent_rate);
536 
537 	*ndiv = div >> A2W_PLL_FRAC_BITS;
538 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
539 }
540 
541 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
542 					   u32 ndiv, u32 fdiv, u32 pdiv)
543 {
544 	u64 rate;
545 
546 	if (pdiv == 0)
547 		return 0;
548 
549 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
550 	do_div(rate, pdiv);
551 	return rate >> A2W_PLL_FRAC_BITS;
552 }
553 
554 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
555 				   unsigned long *parent_rate)
556 {
557 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
558 	const struct bcm2835_pll_data *data = pll->data;
559 	u32 ndiv, fdiv;
560 
561 	rate = clamp(rate, data->min_rate, data->max_rate);
562 
563 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
564 
565 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
566 }
567 
568 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
569 					  unsigned long parent_rate)
570 {
571 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
572 	struct bcm2835_cprman *cprman = pll->cprman;
573 	const struct bcm2835_pll_data *data = pll->data;
574 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
575 	u32 ndiv, pdiv, fdiv;
576 	bool using_prediv;
577 
578 	if (parent_rate == 0)
579 		return 0;
580 
581 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
582 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
583 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
584 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
585 		data->ana->fb_prediv_mask;
586 
587 	if (using_prediv) {
588 		ndiv *= 2;
589 		fdiv *= 2;
590 	}
591 
592 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
593 }
594 
595 static void bcm2835_pll_off(struct clk_hw *hw)
596 {
597 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
598 	struct bcm2835_cprman *cprman = pll->cprman;
599 	const struct bcm2835_pll_data *data = pll->data;
600 
601 	spin_lock(&cprman->regs_lock);
602 	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
603 	cprman_write(cprman, data->a2w_ctrl_reg,
604 		     cprman_read(cprman, data->a2w_ctrl_reg) |
605 		     A2W_PLL_CTRL_PWRDN);
606 	spin_unlock(&cprman->regs_lock);
607 }
608 
609 static int bcm2835_pll_on(struct clk_hw *hw)
610 {
611 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
612 	struct bcm2835_cprman *cprman = pll->cprman;
613 	const struct bcm2835_pll_data *data = pll->data;
614 	ktime_t timeout;
615 
616 	cprman_write(cprman, data->a2w_ctrl_reg,
617 		     cprman_read(cprman, data->a2w_ctrl_reg) &
618 		     ~A2W_PLL_CTRL_PWRDN);
619 
620 	/* Take the PLL out of reset. */
621 	spin_lock(&cprman->regs_lock);
622 	cprman_write(cprman, data->cm_ctrl_reg,
623 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
624 	spin_unlock(&cprman->regs_lock);
625 
626 	/* Wait for the PLL to lock. */
627 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
628 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
629 		if (ktime_after(ktime_get(), timeout)) {
630 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
631 				clk_hw_get_name(hw));
632 			return -ETIMEDOUT;
633 		}
634 
635 		cpu_relax();
636 	}
637 
638 	cprman_write(cprman, data->a2w_ctrl_reg,
639 		     cprman_read(cprman, data->a2w_ctrl_reg) |
640 		     A2W_PLL_CTRL_PRST_DISABLE);
641 
642 	return 0;
643 }
644 
645 static void
646 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
647 {
648 	int i;
649 
650 	/*
651 	 * ANA register setup is done as a series of writes to
652 	 * ANA3-ANA0, in that order.  This lets us write all 4
653 	 * registers as a single cycle of the serdes interface (taking
654 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
655 	 * 3 individually through their partial-write registers, each
656 	 * would be their own serdes cycle.
657 	 */
658 	for (i = 3; i >= 0; i--)
659 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
660 }
661 
662 static int bcm2835_pll_set_rate(struct clk_hw *hw,
663 				unsigned long rate, unsigned long parent_rate)
664 {
665 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
666 	struct bcm2835_cprman *cprman = pll->cprman;
667 	const struct bcm2835_pll_data *data = pll->data;
668 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
669 	u32 ndiv, fdiv, a2w_ctl;
670 	u32 ana[4];
671 	int i;
672 
673 	if (rate > data->max_fb_rate) {
674 		use_fb_prediv = true;
675 		rate /= 2;
676 	} else {
677 		use_fb_prediv = false;
678 	}
679 
680 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
681 
682 	for (i = 3; i >= 0; i--)
683 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
684 
685 	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
686 
687 	ana[0] &= ~data->ana->mask0;
688 	ana[0] |= data->ana->set0;
689 	ana[1] &= ~data->ana->mask1;
690 	ana[1] |= data->ana->set1;
691 	ana[3] &= ~data->ana->mask3;
692 	ana[3] |= data->ana->set3;
693 
694 	if (was_using_prediv && !use_fb_prediv) {
695 		ana[1] &= ~data->ana->fb_prediv_mask;
696 		do_ana_setup_first = true;
697 	} else if (!was_using_prediv && use_fb_prediv) {
698 		ana[1] |= data->ana->fb_prediv_mask;
699 		do_ana_setup_first = false;
700 	} else {
701 		do_ana_setup_first = true;
702 	}
703 
704 	/* Unmask the reference clock from the oscillator. */
705 	spin_lock(&cprman->regs_lock);
706 	cprman_write(cprman, A2W_XOSC_CTRL,
707 		     cprman_read(cprman, A2W_XOSC_CTRL) |
708 		     data->reference_enable_mask);
709 	spin_unlock(&cprman->regs_lock);
710 
711 	if (do_ana_setup_first)
712 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
713 
714 	/* Set the PLL multiplier from the oscillator. */
715 	cprman_write(cprman, data->frac_reg, fdiv);
716 
717 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
718 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
719 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
720 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
721 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
722 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
723 
724 	if (!do_ana_setup_first)
725 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
726 
727 	return 0;
728 }
729 
730 static void bcm2835_pll_debug_init(struct clk_hw *hw,
731 				  struct dentry *dentry)
732 {
733 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
734 	struct bcm2835_cprman *cprman = pll->cprman;
735 	const struct bcm2835_pll_data *data = pll->data;
736 	struct debugfs_reg32 *regs;
737 
738 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
739 	if (!regs)
740 		return;
741 
742 	regs[0].name = "cm_ctrl";
743 	regs[0].offset = data->cm_ctrl_reg;
744 	regs[1].name = "a2w_ctrl";
745 	regs[1].offset = data->a2w_ctrl_reg;
746 	regs[2].name = "frac";
747 	regs[2].offset = data->frac_reg;
748 	regs[3].name = "ana0";
749 	regs[3].offset = data->ana_reg_base + 0 * 4;
750 	regs[4].name = "ana1";
751 	regs[4].offset = data->ana_reg_base + 1 * 4;
752 	regs[5].name = "ana2";
753 	regs[5].offset = data->ana_reg_base + 2 * 4;
754 	regs[6].name = "ana3";
755 	regs[6].offset = data->ana_reg_base + 3 * 4;
756 
757 	bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
758 }
759 
760 static const struct clk_ops bcm2835_pll_clk_ops = {
761 	.is_prepared = bcm2835_pll_is_on,
762 	.prepare = bcm2835_pll_on,
763 	.unprepare = bcm2835_pll_off,
764 	.recalc_rate = bcm2835_pll_get_rate,
765 	.set_rate = bcm2835_pll_set_rate,
766 	.round_rate = bcm2835_pll_round_rate,
767 	.debug_init = bcm2835_pll_debug_init,
768 };
769 
770 struct bcm2835_pll_divider {
771 	struct clk_divider div;
772 	struct bcm2835_cprman *cprman;
773 	const struct bcm2835_pll_divider_data *data;
774 };
775 
776 static struct bcm2835_pll_divider *
777 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
778 {
779 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
780 }
781 
782 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
783 {
784 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
785 	struct bcm2835_cprman *cprman = divider->cprman;
786 	const struct bcm2835_pll_divider_data *data = divider->data;
787 
788 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
789 }
790 
791 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
792 					   unsigned long rate,
793 					   unsigned long *parent_rate)
794 {
795 	return clk_divider_ops.round_rate(hw, rate, parent_rate);
796 }
797 
798 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
799 						  unsigned long parent_rate)
800 {
801 	return clk_divider_ops.recalc_rate(hw, parent_rate);
802 }
803 
804 static void bcm2835_pll_divider_off(struct clk_hw *hw)
805 {
806 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
807 	struct bcm2835_cprman *cprman = divider->cprman;
808 	const struct bcm2835_pll_divider_data *data = divider->data;
809 
810 	spin_lock(&cprman->regs_lock);
811 	cprman_write(cprman, data->cm_reg,
812 		     (cprman_read(cprman, data->cm_reg) &
813 		      ~data->load_mask) | data->hold_mask);
814 	cprman_write(cprman, data->a2w_reg,
815 		     cprman_read(cprman, data->a2w_reg) |
816 		     A2W_PLL_CHANNEL_DISABLE);
817 	spin_unlock(&cprman->regs_lock);
818 }
819 
820 static int bcm2835_pll_divider_on(struct clk_hw *hw)
821 {
822 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
823 	struct bcm2835_cprman *cprman = divider->cprman;
824 	const struct bcm2835_pll_divider_data *data = divider->data;
825 
826 	spin_lock(&cprman->regs_lock);
827 	cprman_write(cprman, data->a2w_reg,
828 		     cprman_read(cprman, data->a2w_reg) &
829 		     ~A2W_PLL_CHANNEL_DISABLE);
830 
831 	cprman_write(cprman, data->cm_reg,
832 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
833 	spin_unlock(&cprman->regs_lock);
834 
835 	return 0;
836 }
837 
838 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
839 					unsigned long rate,
840 					unsigned long parent_rate)
841 {
842 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
843 	struct bcm2835_cprman *cprman = divider->cprman;
844 	const struct bcm2835_pll_divider_data *data = divider->data;
845 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
846 
847 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
848 
849 	div = min(div, max_div);
850 	if (div == max_div)
851 		div = 0;
852 
853 	cprman_write(cprman, data->a2w_reg, div);
854 	cm = cprman_read(cprman, data->cm_reg);
855 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
856 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
857 
858 	return 0;
859 }
860 
861 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
862 					   struct dentry *dentry)
863 {
864 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
865 	struct bcm2835_cprman *cprman = divider->cprman;
866 	const struct bcm2835_pll_divider_data *data = divider->data;
867 	struct debugfs_reg32 *regs;
868 
869 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
870 	if (!regs)
871 		return;
872 
873 	regs[0].name = "cm";
874 	regs[0].offset = data->cm_reg;
875 	regs[1].name = "a2w";
876 	regs[1].offset = data->a2w_reg;
877 
878 	bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
879 }
880 
881 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
882 	.is_prepared = bcm2835_pll_divider_is_on,
883 	.prepare = bcm2835_pll_divider_on,
884 	.unprepare = bcm2835_pll_divider_off,
885 	.recalc_rate = bcm2835_pll_divider_get_rate,
886 	.set_rate = bcm2835_pll_divider_set_rate,
887 	.round_rate = bcm2835_pll_divider_round_rate,
888 	.debug_init = bcm2835_pll_divider_debug_init,
889 };
890 
891 /*
892  * The CM dividers do fixed-point division, so we can't use the
893  * generic integer divider code like the PLL dividers do (and we can't
894  * fake it by having some fixed shifts preceding it in the clock tree,
895  * because we'd run out of bits in a 32-bit unsigned long).
896  */
897 struct bcm2835_clock {
898 	struct clk_hw hw;
899 	struct bcm2835_cprman *cprman;
900 	const struct bcm2835_clock_data *data;
901 };
902 
903 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
904 {
905 	return container_of(hw, struct bcm2835_clock, hw);
906 }
907 
908 static int bcm2835_clock_is_on(struct clk_hw *hw)
909 {
910 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
911 	struct bcm2835_cprman *cprman = clock->cprman;
912 	const struct bcm2835_clock_data *data = clock->data;
913 
914 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
915 }
916 
917 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
918 				    unsigned long rate,
919 				    unsigned long parent_rate,
920 				    bool round_up)
921 {
922 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
923 	const struct bcm2835_clock_data *data = clock->data;
924 	u32 unused_frac_mask =
925 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
926 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
927 	u64 rem;
928 	u32 div, mindiv, maxdiv;
929 
930 	rem = do_div(temp, rate);
931 	div = temp;
932 
933 	/* Round up and mask off the unused bits */
934 	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
935 		div += unused_frac_mask + 1;
936 	div &= ~unused_frac_mask;
937 
938 	/* different clamping limits apply for a mash clock */
939 	if (data->is_mash_clock) {
940 		/* clamp to min divider of 2 */
941 		mindiv = 2 << CM_DIV_FRAC_BITS;
942 		/* clamp to the highest possible integer divider */
943 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
944 	} else {
945 		/* clamp to min divider of 1 */
946 		mindiv = 1 << CM_DIV_FRAC_BITS;
947 		/* clamp to the highest possible fractional divider */
948 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
949 				 CM_DIV_FRAC_BITS - data->frac_bits);
950 	}
951 
952 	/* apply the clamping  limits */
953 	div = max_t(u32, div, mindiv);
954 	div = min_t(u32, div, maxdiv);
955 
956 	return div;
957 }
958 
959 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
960 					    unsigned long parent_rate,
961 					    u32 div)
962 {
963 	const struct bcm2835_clock_data *data = clock->data;
964 	u64 temp;
965 
966 	if (data->int_bits == 0 && data->frac_bits == 0)
967 		return parent_rate;
968 
969 	/*
970 	 * The divisor is a 12.12 fixed point field, but only some of
971 	 * the bits are populated in any given clock.
972 	 */
973 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
974 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
975 
976 	if (div == 0)
977 		return 0;
978 
979 	temp = (u64)parent_rate << data->frac_bits;
980 
981 	do_div(temp, div);
982 
983 	return temp;
984 }
985 
986 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
987 					    unsigned long parent_rate)
988 {
989 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
990 	struct bcm2835_cprman *cprman = clock->cprman;
991 	const struct bcm2835_clock_data *data = clock->data;
992 	u32 div;
993 
994 	if (data->int_bits == 0 && data->frac_bits == 0)
995 		return parent_rate;
996 
997 	div = cprman_read(cprman, data->div_reg);
998 
999 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1000 }
1001 
1002 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1003 {
1004 	struct bcm2835_cprman *cprman = clock->cprman;
1005 	const struct bcm2835_clock_data *data = clock->data;
1006 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1007 
1008 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1009 		if (ktime_after(ktime_get(), timeout)) {
1010 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1011 				clk_hw_get_name(&clock->hw));
1012 			return;
1013 		}
1014 		cpu_relax();
1015 	}
1016 }
1017 
1018 static void bcm2835_clock_off(struct clk_hw *hw)
1019 {
1020 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1021 	struct bcm2835_cprman *cprman = clock->cprman;
1022 	const struct bcm2835_clock_data *data = clock->data;
1023 
1024 	spin_lock(&cprman->regs_lock);
1025 	cprman_write(cprman, data->ctl_reg,
1026 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1027 	spin_unlock(&cprman->regs_lock);
1028 
1029 	/* BUSY will remain high until the divider completes its cycle. */
1030 	bcm2835_clock_wait_busy(clock);
1031 }
1032 
1033 static int bcm2835_clock_on(struct clk_hw *hw)
1034 {
1035 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1036 	struct bcm2835_cprman *cprman = clock->cprman;
1037 	const struct bcm2835_clock_data *data = clock->data;
1038 
1039 	spin_lock(&cprman->regs_lock);
1040 	cprman_write(cprman, data->ctl_reg,
1041 		     cprman_read(cprman, data->ctl_reg) |
1042 		     CM_ENABLE |
1043 		     CM_GATE);
1044 	spin_unlock(&cprman->regs_lock);
1045 
1046 	/* Debug code to measure the clock once it's turned on to see
1047 	 * if it's ticking at the rate we expect.
1048 	 */
1049 	if (data->tcnt_mux && false) {
1050 		dev_info(cprman->dev,
1051 			 "clk %s: rate %ld, measure %ld\n",
1052 			 data->name,
1053 			 clk_hw_get_rate(hw),
1054 			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1061 				  unsigned long rate, unsigned long parent_rate)
1062 {
1063 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1064 	struct bcm2835_cprman *cprman = clock->cprman;
1065 	const struct bcm2835_clock_data *data = clock->data;
1066 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1067 	u32 ctl;
1068 
1069 	spin_lock(&cprman->regs_lock);
1070 
1071 	/*
1072 	 * Setting up frac support
1073 	 *
1074 	 * In principle it is recommended to stop/start the clock first,
1075 	 * but as we set CLK_SET_RATE_GATE during registration of the
1076 	 * clock this requirement should be take care of by the
1077 	 * clk-framework.
1078 	 */
1079 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1080 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1081 	cprman_write(cprman, data->ctl_reg, ctl);
1082 
1083 	cprman_write(cprman, data->div_reg, div);
1084 
1085 	spin_unlock(&cprman->regs_lock);
1086 
1087 	return 0;
1088 }
1089 
1090 static bool
1091 bcm2835_clk_is_pllc(struct clk_hw *hw)
1092 {
1093 	if (!hw)
1094 		return false;
1095 
1096 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1097 }
1098 
1099 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1100 							int parent_idx,
1101 							unsigned long rate,
1102 							u32 *div,
1103 							unsigned long *prate,
1104 							unsigned long *avgrate)
1105 {
1106 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1107 	struct bcm2835_cprman *cprman = clock->cprman;
1108 	const struct bcm2835_clock_data *data = clock->data;
1109 	unsigned long best_rate = 0;
1110 	u32 curdiv, mindiv, maxdiv;
1111 	struct clk_hw *parent;
1112 
1113 	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1114 
1115 	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1116 		*prate = clk_hw_get_rate(parent);
1117 		*div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1118 
1119 		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1120 
1121 		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1122 			unsigned long high, low;
1123 			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1124 
1125 			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1126 							       int_div);
1127 			int_div += CM_DIV_FRAC_MASK + 1;
1128 			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1129 							      int_div);
1130 
1131 			/*
1132 			 * Return a value which is the maximum deviation
1133 			 * below the ideal rate, for use as a metric.
1134 			 */
1135 			return *avgrate - max(*avgrate - low, high - *avgrate);
1136 		}
1137 		return *avgrate;
1138 	}
1139 
1140 	if (data->frac_bits)
1141 		dev_warn(cprman->dev,
1142 			"frac bits are not used when propagating rate change");
1143 
1144 	/* clamp to min divider of 2 if we're dealing with a mash clock */
1145 	mindiv = data->is_mash_clock ? 2 : 1;
1146 	maxdiv = BIT(data->int_bits) - 1;
1147 
1148 	/* TODO: Be smart, and only test a subset of the available divisors. */
1149 	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1150 		unsigned long tmp_rate;
1151 
1152 		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1153 		tmp_rate /= curdiv;
1154 		if (curdiv == mindiv ||
1155 		    (tmp_rate > best_rate && tmp_rate <= rate))
1156 			best_rate = tmp_rate;
1157 
1158 		if (best_rate == rate)
1159 			break;
1160 	}
1161 
1162 	*div = curdiv << CM_DIV_FRAC_BITS;
1163 	*prate = curdiv * best_rate;
1164 	*avgrate = best_rate;
1165 
1166 	return best_rate;
1167 }
1168 
1169 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1170 					struct clk_rate_request *req)
1171 {
1172 	struct clk_hw *parent, *best_parent = NULL;
1173 	bool current_parent_is_pllc;
1174 	unsigned long rate, best_rate = 0;
1175 	unsigned long prate, best_prate = 0;
1176 	unsigned long avgrate, best_avgrate = 0;
1177 	size_t i;
1178 	u32 div;
1179 
1180 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1181 
1182 	/*
1183 	 * Select parent clock that results in the closest but lower rate
1184 	 */
1185 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1186 		parent = clk_hw_get_parent_by_index(hw, i);
1187 		if (!parent)
1188 			continue;
1189 
1190 		/*
1191 		 * Don't choose a PLLC-derived clock as our parent
1192 		 * unless it had been manually set that way.  PLLC's
1193 		 * frequency gets adjusted by the firmware due to
1194 		 * over-temp or under-voltage conditions, without
1195 		 * prior notification to our clock consumer.
1196 		 */
1197 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1198 			continue;
1199 
1200 		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1201 							  &div, &prate,
1202 							  &avgrate);
1203 		if (rate > best_rate && rate <= req->rate) {
1204 			best_parent = parent;
1205 			best_prate = prate;
1206 			best_rate = rate;
1207 			best_avgrate = avgrate;
1208 		}
1209 	}
1210 
1211 	if (!best_parent)
1212 		return -EINVAL;
1213 
1214 	req->best_parent_hw = best_parent;
1215 	req->best_parent_rate = best_prate;
1216 
1217 	req->rate = best_avgrate;
1218 
1219 	return 0;
1220 }
1221 
1222 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1223 {
1224 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1225 	struct bcm2835_cprman *cprman = clock->cprman;
1226 	const struct bcm2835_clock_data *data = clock->data;
1227 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1228 
1229 	cprman_write(cprman, data->ctl_reg, src);
1230 	return 0;
1231 }
1232 
1233 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1234 {
1235 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1236 	struct bcm2835_cprman *cprman = clock->cprman;
1237 	const struct bcm2835_clock_data *data = clock->data;
1238 	u32 src = cprman_read(cprman, data->ctl_reg);
1239 
1240 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1241 }
1242 
1243 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1244 	{
1245 		.name = "ctl",
1246 		.offset = 0,
1247 	},
1248 	{
1249 		.name = "div",
1250 		.offset = 4,
1251 	},
1252 };
1253 
1254 static void bcm2835_clock_debug_init(struct clk_hw *hw,
1255 				    struct dentry *dentry)
1256 {
1257 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1258 	struct bcm2835_cprman *cprman = clock->cprman;
1259 	const struct bcm2835_clock_data *data = clock->data;
1260 
1261 	bcm2835_debugfs_regset(cprman, data->ctl_reg,
1262 		bcm2835_debugfs_clock_reg32,
1263 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1264 		dentry);
1265 }
1266 
1267 static const struct clk_ops bcm2835_clock_clk_ops = {
1268 	.is_prepared = bcm2835_clock_is_on,
1269 	.prepare = bcm2835_clock_on,
1270 	.unprepare = bcm2835_clock_off,
1271 	.recalc_rate = bcm2835_clock_get_rate,
1272 	.set_rate = bcm2835_clock_set_rate,
1273 	.determine_rate = bcm2835_clock_determine_rate,
1274 	.set_parent = bcm2835_clock_set_parent,
1275 	.get_parent = bcm2835_clock_get_parent,
1276 	.debug_init = bcm2835_clock_debug_init,
1277 };
1278 
1279 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1280 {
1281 	return true;
1282 }
1283 
1284 /*
1285  * The VPU clock can never be disabled (it doesn't have an ENABLE
1286  * bit), so it gets its own set of clock ops.
1287  */
1288 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1289 	.is_prepared = bcm2835_vpu_clock_is_on,
1290 	.recalc_rate = bcm2835_clock_get_rate,
1291 	.set_rate = bcm2835_clock_set_rate,
1292 	.determine_rate = bcm2835_clock_determine_rate,
1293 	.set_parent = bcm2835_clock_set_parent,
1294 	.get_parent = bcm2835_clock_get_parent,
1295 	.debug_init = bcm2835_clock_debug_init,
1296 };
1297 
1298 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1299 					   const struct bcm2835_pll_data *data)
1300 {
1301 	struct bcm2835_pll *pll;
1302 	struct clk_init_data init;
1303 	int ret;
1304 
1305 	memset(&init, 0, sizeof(init));
1306 
1307 	/* All of the PLLs derive from the external oscillator. */
1308 	init.parent_names = &cprman->real_parent_names[0];
1309 	init.num_parents = 1;
1310 	init.name = data->name;
1311 	init.ops = &bcm2835_pll_clk_ops;
1312 	init.flags = CLK_IGNORE_UNUSED;
1313 
1314 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1315 	if (!pll)
1316 		return NULL;
1317 
1318 	pll->cprman = cprman;
1319 	pll->data = data;
1320 	pll->hw.init = &init;
1321 
1322 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1323 	if (ret)
1324 		return NULL;
1325 	return &pll->hw;
1326 }
1327 
1328 static struct clk_hw *
1329 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1330 			     const struct bcm2835_pll_divider_data *data)
1331 {
1332 	struct bcm2835_pll_divider *divider;
1333 	struct clk_init_data init;
1334 	const char *divider_name;
1335 	int ret;
1336 
1337 	if (data->fixed_divider != 1) {
1338 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1339 					      "%s_prediv", data->name);
1340 		if (!divider_name)
1341 			return NULL;
1342 	} else {
1343 		divider_name = data->name;
1344 	}
1345 
1346 	memset(&init, 0, sizeof(init));
1347 
1348 	init.parent_names = &data->source_pll;
1349 	init.num_parents = 1;
1350 	init.name = divider_name;
1351 	init.ops = &bcm2835_pll_divider_clk_ops;
1352 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1353 
1354 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1355 	if (!divider)
1356 		return NULL;
1357 
1358 	divider->div.reg = cprman->regs + data->a2w_reg;
1359 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1360 	divider->div.width = A2W_PLL_DIV_BITS;
1361 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1362 	divider->div.lock = &cprman->regs_lock;
1363 	divider->div.hw.init = &init;
1364 	divider->div.table = NULL;
1365 
1366 	divider->cprman = cprman;
1367 	divider->data = data;
1368 
1369 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1370 	if (ret)
1371 		return ERR_PTR(ret);
1372 
1373 	/*
1374 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1375 	 * is what our consumers are actually using.
1376 	 */
1377 	if (data->fixed_divider != 1) {
1378 		return clk_hw_register_fixed_factor(cprman->dev, data->name,
1379 						    divider_name,
1380 						    CLK_SET_RATE_PARENT,
1381 						    1,
1382 						    data->fixed_divider);
1383 	}
1384 
1385 	return &divider->div.hw;
1386 }
1387 
1388 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1389 					  const struct bcm2835_clock_data *data)
1390 {
1391 	struct bcm2835_clock *clock;
1392 	struct clk_init_data init;
1393 	const char *parents[1 << CM_SRC_BITS];
1394 	size_t i;
1395 	int ret;
1396 
1397 	/*
1398 	 * Replace our strings referencing parent clocks with the
1399 	 * actual clock-output-name of the parent.
1400 	 */
1401 	for (i = 0; i < data->num_mux_parents; i++) {
1402 		parents[i] = data->parents[i];
1403 
1404 		ret = match_string(cprman_parent_names,
1405 				   ARRAY_SIZE(cprman_parent_names),
1406 				   parents[i]);
1407 		if (ret >= 0)
1408 			parents[i] = cprman->real_parent_names[ret];
1409 	}
1410 
1411 	memset(&init, 0, sizeof(init));
1412 	init.parent_names = parents;
1413 	init.num_parents = data->num_mux_parents;
1414 	init.name = data->name;
1415 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1416 
1417 	/*
1418 	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1419 	 * rate changes on at least of the parents.
1420 	 */
1421 	if (data->set_rate_parent)
1422 		init.flags |= CLK_SET_RATE_PARENT;
1423 
1424 	if (data->is_vpu_clock) {
1425 		init.ops = &bcm2835_vpu_clock_clk_ops;
1426 	} else {
1427 		init.ops = &bcm2835_clock_clk_ops;
1428 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1429 
1430 		/* If the clock wasn't actually enabled at boot, it's not
1431 		 * critical.
1432 		 */
1433 		if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1434 			init.flags &= ~CLK_IS_CRITICAL;
1435 	}
1436 
1437 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1438 	if (!clock)
1439 		return NULL;
1440 
1441 	clock->cprman = cprman;
1442 	clock->data = data;
1443 	clock->hw.init = &init;
1444 
1445 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1446 	if (ret)
1447 		return ERR_PTR(ret);
1448 	return &clock->hw;
1449 }
1450 
1451 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1452 					 const struct bcm2835_gate_data *data)
1453 {
1454 	return clk_register_gate(cprman->dev, data->name, data->parent,
1455 				 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1456 				 cprman->regs + data->ctl_reg,
1457 				 CM_GATE_BIT, 0, &cprman->regs_lock);
1458 }
1459 
1460 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1461 					       const void *data);
1462 struct bcm2835_clk_desc {
1463 	bcm2835_clk_register clk_register;
1464 	unsigned int supported;
1465 	const void *data;
1466 };
1467 
1468 /* assignment helper macros for different clock types */
1469 #define _REGISTER(f, s, ...) { .clk_register = (bcm2835_clk_register)f, \
1470 			       .supported = s,				\
1471 			       .data = __VA_ARGS__ }
1472 #define REGISTER_PLL(s, ...)	_REGISTER(&bcm2835_register_pll,	\
1473 					  s,				\
1474 					  &(struct bcm2835_pll_data)	\
1475 					  {__VA_ARGS__})
1476 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1477 					   s,				  \
1478 					   &(struct bcm2835_pll_divider_data) \
1479 					   {__VA_ARGS__})
1480 #define REGISTER_CLK(s, ...)	_REGISTER(&bcm2835_register_clock,	\
1481 					  s,				\
1482 					  &(struct bcm2835_clock_data)	\
1483 					  {__VA_ARGS__})
1484 #define REGISTER_GATE(s, ...)	_REGISTER(&bcm2835_register_gate,	\
1485 					  s,				\
1486 					  &(struct bcm2835_gate_data)	\
1487 					  {__VA_ARGS__})
1488 
1489 /* parent mux arrays plus helper macros */
1490 
1491 /* main oscillator parent mux */
1492 static const char *const bcm2835_clock_osc_parents[] = {
1493 	"gnd",
1494 	"xosc",
1495 	"testdebug0",
1496 	"testdebug1"
1497 };
1498 
1499 #define REGISTER_OSC_CLK(s, ...)	REGISTER_CLK(			\
1500 	s,								\
1501 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1502 	.parents = bcm2835_clock_osc_parents,				\
1503 	__VA_ARGS__)
1504 
1505 /* main peripherial parent mux */
1506 static const char *const bcm2835_clock_per_parents[] = {
1507 	"gnd",
1508 	"xosc",
1509 	"testdebug0",
1510 	"testdebug1",
1511 	"plla_per",
1512 	"pllc_per",
1513 	"plld_per",
1514 	"pllh_aux",
1515 };
1516 
1517 #define REGISTER_PER_CLK(s, ...)	REGISTER_CLK(			\
1518 	s,								\
1519 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1520 	.parents = bcm2835_clock_per_parents,				\
1521 	__VA_ARGS__)
1522 
1523 /*
1524  * Restrict clock sources for the PCM peripheral to the oscillator and
1525  * PLLD_PER because other source may have varying rates or be switched
1526  * off.
1527  *
1528  * Prevent other sources from being selected by replacing their names in
1529  * the list of potential parents with dummy entries (entry index is
1530  * significant).
1531  */
1532 static const char *const bcm2835_pcm_per_parents[] = {
1533 	"-",
1534 	"xosc",
1535 	"-",
1536 	"-",
1537 	"-",
1538 	"-",
1539 	"plld_per",
1540 	"-",
1541 };
1542 
1543 #define REGISTER_PCM_CLK(s, ...)	REGISTER_CLK(			\
1544 	s,								\
1545 	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1546 	.parents = bcm2835_pcm_per_parents,				\
1547 	__VA_ARGS__)
1548 
1549 /* main vpu parent mux */
1550 static const char *const bcm2835_clock_vpu_parents[] = {
1551 	"gnd",
1552 	"xosc",
1553 	"testdebug0",
1554 	"testdebug1",
1555 	"plla_core",
1556 	"pllc_core0",
1557 	"plld_core",
1558 	"pllh_aux",
1559 	"pllc_core1",
1560 	"pllc_core2",
1561 };
1562 
1563 #define REGISTER_VPU_CLK(s, ...)	REGISTER_CLK(			\
1564 	s,								\
1565 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1566 	.parents = bcm2835_clock_vpu_parents,				\
1567 	__VA_ARGS__)
1568 
1569 /*
1570  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1571  * analog PHY.  The _inv variants are generated internally to cprman,
1572  * but we don't use them so they aren't hooked up.
1573  */
1574 static const char *const bcm2835_clock_dsi0_parents[] = {
1575 	"gnd",
1576 	"xosc",
1577 	"testdebug0",
1578 	"testdebug1",
1579 	"dsi0_ddr",
1580 	"dsi0_ddr_inv",
1581 	"dsi0_ddr2",
1582 	"dsi0_ddr2_inv",
1583 	"dsi0_byte",
1584 	"dsi0_byte_inv",
1585 };
1586 
1587 static const char *const bcm2835_clock_dsi1_parents[] = {
1588 	"gnd",
1589 	"xosc",
1590 	"testdebug0",
1591 	"testdebug1",
1592 	"dsi1_ddr",
1593 	"dsi1_ddr_inv",
1594 	"dsi1_ddr2",
1595 	"dsi1_ddr2_inv",
1596 	"dsi1_byte",
1597 	"dsi1_byte_inv",
1598 };
1599 
1600 #define REGISTER_DSI0_CLK(s, ...)	REGISTER_CLK(			\
1601 	s,								\
1602 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1603 	.parents = bcm2835_clock_dsi0_parents,				\
1604 	__VA_ARGS__)
1605 
1606 #define REGISTER_DSI1_CLK(s, ...)	REGISTER_CLK(			\
1607 	s,								\
1608 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1609 	.parents = bcm2835_clock_dsi1_parents,				\
1610 	__VA_ARGS__)
1611 
1612 /*
1613  * the real definition of all the pll, pll_dividers and clocks
1614  * these make use of the above REGISTER_* macros
1615  */
1616 static const struct bcm2835_clk_desc clk_desc_array[] = {
1617 	/* the PLL + PLL dividers */
1618 
1619 	/*
1620 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1621 	 * (Compact Camera Port 2) transmitter clock.
1622 	 *
1623 	 * It is in the PX LDO power domain, which is on when the
1624 	 * AUDIO domain is on.
1625 	 */
1626 	[BCM2835_PLLA]		= REGISTER_PLL(
1627 		SOC_ALL,
1628 		.name = "plla",
1629 		.cm_ctrl_reg = CM_PLLA,
1630 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1631 		.frac_reg = A2W_PLLA_FRAC,
1632 		.ana_reg_base = A2W_PLLA_ANA0,
1633 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1634 		.lock_mask = CM_LOCK_FLOCKA,
1635 
1636 		.ana = &bcm2835_ana_default,
1637 
1638 		.min_rate = 600000000u,
1639 		.max_rate = 2400000000u,
1640 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1641 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1642 		SOC_ALL,
1643 		.name = "plla_core",
1644 		.source_pll = "plla",
1645 		.cm_reg = CM_PLLA,
1646 		.a2w_reg = A2W_PLLA_CORE,
1647 		.load_mask = CM_PLLA_LOADCORE,
1648 		.hold_mask = CM_PLLA_HOLDCORE,
1649 		.fixed_divider = 1,
1650 		.flags = CLK_SET_RATE_PARENT),
1651 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1652 		SOC_ALL,
1653 		.name = "plla_per",
1654 		.source_pll = "plla",
1655 		.cm_reg = CM_PLLA,
1656 		.a2w_reg = A2W_PLLA_PER,
1657 		.load_mask = CM_PLLA_LOADPER,
1658 		.hold_mask = CM_PLLA_HOLDPER,
1659 		.fixed_divider = 1,
1660 		.flags = CLK_SET_RATE_PARENT),
1661 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1662 		SOC_ALL,
1663 		.name = "plla_dsi0",
1664 		.source_pll = "plla",
1665 		.cm_reg = CM_PLLA,
1666 		.a2w_reg = A2W_PLLA_DSI0,
1667 		.load_mask = CM_PLLA_LOADDSI0,
1668 		.hold_mask = CM_PLLA_HOLDDSI0,
1669 		.fixed_divider = 1),
1670 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1671 		SOC_ALL,
1672 		.name = "plla_ccp2",
1673 		.source_pll = "plla",
1674 		.cm_reg = CM_PLLA,
1675 		.a2w_reg = A2W_PLLA_CCP2,
1676 		.load_mask = CM_PLLA_LOADCCP2,
1677 		.hold_mask = CM_PLLA_HOLDCCP2,
1678 		.fixed_divider = 1,
1679 		.flags = CLK_SET_RATE_PARENT),
1680 
1681 	/*
1682 	 * PLLB is used for the ARM's clock. Controlled by firmware, see
1683 	 * clk-raspberrypi.c.
1684 	 */
1685 
1686 	/*
1687 	 * PLLC is the core PLL, used to drive the core VPU clock.
1688 	 *
1689 	 * It is in the PX LDO power domain, which is on when the
1690 	 * AUDIO domain is on.
1691 	 */
1692 	[BCM2835_PLLC]		= REGISTER_PLL(
1693 		SOC_ALL,
1694 		.name = "pllc",
1695 		.cm_ctrl_reg = CM_PLLC,
1696 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1697 		.frac_reg = A2W_PLLC_FRAC,
1698 		.ana_reg_base = A2W_PLLC_ANA0,
1699 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1700 		.lock_mask = CM_LOCK_FLOCKC,
1701 
1702 		.ana = &bcm2835_ana_default,
1703 
1704 		.min_rate = 600000000u,
1705 		.max_rate = 3000000000u,
1706 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1707 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1708 		SOC_ALL,
1709 		.name = "pllc_core0",
1710 		.source_pll = "pllc",
1711 		.cm_reg = CM_PLLC,
1712 		.a2w_reg = A2W_PLLC_CORE0,
1713 		.load_mask = CM_PLLC_LOADCORE0,
1714 		.hold_mask = CM_PLLC_HOLDCORE0,
1715 		.fixed_divider = 1,
1716 		.flags = CLK_SET_RATE_PARENT),
1717 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1718 		SOC_ALL,
1719 		.name = "pllc_core1",
1720 		.source_pll = "pllc",
1721 		.cm_reg = CM_PLLC,
1722 		.a2w_reg = A2W_PLLC_CORE1,
1723 		.load_mask = CM_PLLC_LOADCORE1,
1724 		.hold_mask = CM_PLLC_HOLDCORE1,
1725 		.fixed_divider = 1,
1726 		.flags = CLK_SET_RATE_PARENT),
1727 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1728 		SOC_ALL,
1729 		.name = "pllc_core2",
1730 		.source_pll = "pllc",
1731 		.cm_reg = CM_PLLC,
1732 		.a2w_reg = A2W_PLLC_CORE2,
1733 		.load_mask = CM_PLLC_LOADCORE2,
1734 		.hold_mask = CM_PLLC_HOLDCORE2,
1735 		.fixed_divider = 1,
1736 		.flags = CLK_SET_RATE_PARENT),
1737 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1738 		SOC_ALL,
1739 		.name = "pllc_per",
1740 		.source_pll = "pllc",
1741 		.cm_reg = CM_PLLC,
1742 		.a2w_reg = A2W_PLLC_PER,
1743 		.load_mask = CM_PLLC_LOADPER,
1744 		.hold_mask = CM_PLLC_HOLDPER,
1745 		.fixed_divider = 1,
1746 		.flags = CLK_SET_RATE_PARENT),
1747 
1748 	/*
1749 	 * PLLD is the display PLL, used to drive DSI display panels.
1750 	 *
1751 	 * It is in the PX LDO power domain, which is on when the
1752 	 * AUDIO domain is on.
1753 	 */
1754 	[BCM2835_PLLD]		= REGISTER_PLL(
1755 		SOC_ALL,
1756 		.name = "plld",
1757 		.cm_ctrl_reg = CM_PLLD,
1758 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1759 		.frac_reg = A2W_PLLD_FRAC,
1760 		.ana_reg_base = A2W_PLLD_ANA0,
1761 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1762 		.lock_mask = CM_LOCK_FLOCKD,
1763 
1764 		.ana = &bcm2835_ana_default,
1765 
1766 		.min_rate = 600000000u,
1767 		.max_rate = 2400000000u,
1768 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1769 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1770 		SOC_ALL,
1771 		.name = "plld_core",
1772 		.source_pll = "plld",
1773 		.cm_reg = CM_PLLD,
1774 		.a2w_reg = A2W_PLLD_CORE,
1775 		.load_mask = CM_PLLD_LOADCORE,
1776 		.hold_mask = CM_PLLD_HOLDCORE,
1777 		.fixed_divider = 1,
1778 		.flags = CLK_SET_RATE_PARENT),
1779 	/*
1780 	 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1781 	 * Otherwise this could cause firmware lookups. That's why we mark
1782 	 * it as critical.
1783 	 */
1784 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1785 		SOC_ALL,
1786 		.name = "plld_per",
1787 		.source_pll = "plld",
1788 		.cm_reg = CM_PLLD,
1789 		.a2w_reg = A2W_PLLD_PER,
1790 		.load_mask = CM_PLLD_LOADPER,
1791 		.hold_mask = CM_PLLD_HOLDPER,
1792 		.fixed_divider = 1,
1793 		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1794 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1795 		SOC_ALL,
1796 		.name = "plld_dsi0",
1797 		.source_pll = "plld",
1798 		.cm_reg = CM_PLLD,
1799 		.a2w_reg = A2W_PLLD_DSI0,
1800 		.load_mask = CM_PLLD_LOADDSI0,
1801 		.hold_mask = CM_PLLD_HOLDDSI0,
1802 		.fixed_divider = 1),
1803 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1804 		SOC_ALL,
1805 		.name = "plld_dsi1",
1806 		.source_pll = "plld",
1807 		.cm_reg = CM_PLLD,
1808 		.a2w_reg = A2W_PLLD_DSI1,
1809 		.load_mask = CM_PLLD_LOADDSI1,
1810 		.hold_mask = CM_PLLD_HOLDDSI1,
1811 		.fixed_divider = 1),
1812 
1813 	/*
1814 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1815 	 * TV encoder.
1816 	 *
1817 	 * It is in the HDMI power domain.
1818 	 */
1819 	[BCM2835_PLLH]		= REGISTER_PLL(
1820 		SOC_BCM2835,
1821 		"pllh",
1822 		.cm_ctrl_reg = CM_PLLH,
1823 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1824 		.frac_reg = A2W_PLLH_FRAC,
1825 		.ana_reg_base = A2W_PLLH_ANA0,
1826 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1827 		.lock_mask = CM_LOCK_FLOCKH,
1828 
1829 		.ana = &bcm2835_ana_pllh,
1830 
1831 		.min_rate = 600000000u,
1832 		.max_rate = 3000000000u,
1833 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1834 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1835 		SOC_BCM2835,
1836 		.name = "pllh_rcal",
1837 		.source_pll = "pllh",
1838 		.cm_reg = CM_PLLH,
1839 		.a2w_reg = A2W_PLLH_RCAL,
1840 		.load_mask = CM_PLLH_LOADRCAL,
1841 		.hold_mask = 0,
1842 		.fixed_divider = 10,
1843 		.flags = CLK_SET_RATE_PARENT),
1844 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1845 		SOC_BCM2835,
1846 		.name = "pllh_aux",
1847 		.source_pll = "pllh",
1848 		.cm_reg = CM_PLLH,
1849 		.a2w_reg = A2W_PLLH_AUX,
1850 		.load_mask = CM_PLLH_LOADAUX,
1851 		.hold_mask = 0,
1852 		.fixed_divider = 1,
1853 		.flags = CLK_SET_RATE_PARENT),
1854 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1855 		SOC_BCM2835,
1856 		.name = "pllh_pix",
1857 		.source_pll = "pllh",
1858 		.cm_reg = CM_PLLH,
1859 		.a2w_reg = A2W_PLLH_PIX,
1860 		.load_mask = CM_PLLH_LOADPIX,
1861 		.hold_mask = 0,
1862 		.fixed_divider = 10,
1863 		.flags = CLK_SET_RATE_PARENT),
1864 
1865 	/* the clocks */
1866 
1867 	/* clocks with oscillator parent mux */
1868 
1869 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1870 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1871 		SOC_ALL,
1872 		.name = "otp",
1873 		.ctl_reg = CM_OTPCTL,
1874 		.div_reg = CM_OTPDIV,
1875 		.int_bits = 4,
1876 		.frac_bits = 0,
1877 		.tcnt_mux = 6),
1878 	/*
1879 	 * Used for a 1Mhz clock for the system clocksource, and also used
1880 	 * bythe watchdog timer and the camera pulse generator.
1881 	 */
1882 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1883 		SOC_ALL,
1884 		.name = "timer",
1885 		.ctl_reg = CM_TIMERCTL,
1886 		.div_reg = CM_TIMERDIV,
1887 		.int_bits = 6,
1888 		.frac_bits = 12),
1889 	/*
1890 	 * Clock for the temperature sensor.
1891 	 * Generally run at 2Mhz, max 5Mhz.
1892 	 */
1893 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1894 		SOC_ALL,
1895 		.name = "tsens",
1896 		.ctl_reg = CM_TSENSCTL,
1897 		.div_reg = CM_TSENSDIV,
1898 		.int_bits = 5,
1899 		.frac_bits = 0),
1900 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1901 		SOC_ALL,
1902 		.name = "tec",
1903 		.ctl_reg = CM_TECCTL,
1904 		.div_reg = CM_TECDIV,
1905 		.int_bits = 6,
1906 		.frac_bits = 0),
1907 
1908 	/* clocks with vpu parent mux */
1909 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1910 		SOC_ALL,
1911 		.name = "h264",
1912 		.ctl_reg = CM_H264CTL,
1913 		.div_reg = CM_H264DIV,
1914 		.int_bits = 4,
1915 		.frac_bits = 8,
1916 		.tcnt_mux = 1),
1917 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1918 		SOC_ALL,
1919 		.name = "isp",
1920 		.ctl_reg = CM_ISPCTL,
1921 		.div_reg = CM_ISPDIV,
1922 		.int_bits = 4,
1923 		.frac_bits = 8,
1924 		.tcnt_mux = 2),
1925 
1926 	/*
1927 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1928 	 * in the SDRAM controller can't be used.
1929 	 */
1930 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1931 		SOC_ALL,
1932 		.name = "sdram",
1933 		.ctl_reg = CM_SDCCTL,
1934 		.div_reg = CM_SDCDIV,
1935 		.int_bits = 6,
1936 		.frac_bits = 0,
1937 		.tcnt_mux = 3),
1938 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1939 		SOC_ALL,
1940 		.name = "v3d",
1941 		.ctl_reg = CM_V3DCTL,
1942 		.div_reg = CM_V3DDIV,
1943 		.int_bits = 4,
1944 		.frac_bits = 8,
1945 		.tcnt_mux = 4),
1946 	/*
1947 	 * VPU clock.  This doesn't have an enable bit, since it drives
1948 	 * the bus for everything else, and is special so it doesn't need
1949 	 * to be gated for rate changes.  It is also known as "clk_audio"
1950 	 * in various hardware documentation.
1951 	 */
1952 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1953 		SOC_ALL,
1954 		.name = "vpu",
1955 		.ctl_reg = CM_VPUCTL,
1956 		.div_reg = CM_VPUDIV,
1957 		.int_bits = 12,
1958 		.frac_bits = 8,
1959 		.flags = CLK_IS_CRITICAL,
1960 		.is_vpu_clock = true,
1961 		.tcnt_mux = 5),
1962 
1963 	/* clocks with per parent mux */
1964 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
1965 		SOC_ALL,
1966 		.name = "aveo",
1967 		.ctl_reg = CM_AVEOCTL,
1968 		.div_reg = CM_AVEODIV,
1969 		.int_bits = 4,
1970 		.frac_bits = 0,
1971 		.tcnt_mux = 38),
1972 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
1973 		SOC_ALL,
1974 		.name = "cam0",
1975 		.ctl_reg = CM_CAM0CTL,
1976 		.div_reg = CM_CAM0DIV,
1977 		.int_bits = 4,
1978 		.frac_bits = 8,
1979 		.tcnt_mux = 14),
1980 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
1981 		SOC_ALL,
1982 		.name = "cam1",
1983 		.ctl_reg = CM_CAM1CTL,
1984 		.div_reg = CM_CAM1DIV,
1985 		.int_bits = 4,
1986 		.frac_bits = 8,
1987 		.tcnt_mux = 15),
1988 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
1989 		SOC_ALL,
1990 		.name = "dft",
1991 		.ctl_reg = CM_DFTCTL,
1992 		.div_reg = CM_DFTDIV,
1993 		.int_bits = 5,
1994 		.frac_bits = 0),
1995 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
1996 		SOC_ALL,
1997 		.name = "dpi",
1998 		.ctl_reg = CM_DPICTL,
1999 		.div_reg = CM_DPIDIV,
2000 		.int_bits = 4,
2001 		.frac_bits = 8,
2002 		.tcnt_mux = 17),
2003 
2004 	/* Arasan EMMC clock */
2005 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
2006 		SOC_ALL,
2007 		.name = "emmc",
2008 		.ctl_reg = CM_EMMCCTL,
2009 		.div_reg = CM_EMMCDIV,
2010 		.int_bits = 4,
2011 		.frac_bits = 8,
2012 		.tcnt_mux = 39),
2013 
2014 	/* EMMC2 clock (only available for BCM2711) */
2015 	[BCM2711_CLOCK_EMMC2]	= REGISTER_PER_CLK(
2016 		SOC_BCM2711,
2017 		.name = "emmc2",
2018 		.ctl_reg = CM_EMMC2CTL,
2019 		.div_reg = CM_EMMC2DIV,
2020 		.int_bits = 4,
2021 		.frac_bits = 8,
2022 		.tcnt_mux = 42),
2023 
2024 	/* General purpose (GPIO) clocks */
2025 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
2026 		SOC_ALL,
2027 		.name = "gp0",
2028 		.ctl_reg = CM_GP0CTL,
2029 		.div_reg = CM_GP0DIV,
2030 		.int_bits = 12,
2031 		.frac_bits = 12,
2032 		.is_mash_clock = true,
2033 		.tcnt_mux = 20),
2034 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
2035 		SOC_ALL,
2036 		.name = "gp1",
2037 		.ctl_reg = CM_GP1CTL,
2038 		.div_reg = CM_GP1DIV,
2039 		.int_bits = 12,
2040 		.frac_bits = 12,
2041 		.flags = CLK_IS_CRITICAL,
2042 		.is_mash_clock = true,
2043 		.tcnt_mux = 21),
2044 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
2045 		SOC_ALL,
2046 		.name = "gp2",
2047 		.ctl_reg = CM_GP2CTL,
2048 		.div_reg = CM_GP2DIV,
2049 		.int_bits = 12,
2050 		.frac_bits = 12,
2051 		.flags = CLK_IS_CRITICAL),
2052 
2053 	/* HDMI state machine */
2054 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2055 		SOC_ALL,
2056 		.name = "hsm",
2057 		.ctl_reg = CM_HSMCTL,
2058 		.div_reg = CM_HSMDIV,
2059 		.int_bits = 4,
2060 		.frac_bits = 8,
2061 		.tcnt_mux = 22),
2062 	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2063 		SOC_ALL,
2064 		.name = "pcm",
2065 		.ctl_reg = CM_PCMCTL,
2066 		.div_reg = CM_PCMDIV,
2067 		.int_bits = 12,
2068 		.frac_bits = 12,
2069 		.is_mash_clock = true,
2070 		.low_jitter = true,
2071 		.tcnt_mux = 23),
2072 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2073 		SOC_ALL,
2074 		.name = "pwm",
2075 		.ctl_reg = CM_PWMCTL,
2076 		.div_reg = CM_PWMDIV,
2077 		.int_bits = 12,
2078 		.frac_bits = 12,
2079 		.is_mash_clock = true,
2080 		.tcnt_mux = 24),
2081 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2082 		SOC_ALL,
2083 		.name = "slim",
2084 		.ctl_reg = CM_SLIMCTL,
2085 		.div_reg = CM_SLIMDIV,
2086 		.int_bits = 12,
2087 		.frac_bits = 12,
2088 		.is_mash_clock = true,
2089 		.tcnt_mux = 25),
2090 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2091 		SOC_ALL,
2092 		.name = "smi",
2093 		.ctl_reg = CM_SMICTL,
2094 		.div_reg = CM_SMIDIV,
2095 		.int_bits = 4,
2096 		.frac_bits = 8,
2097 		.tcnt_mux = 27),
2098 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2099 		SOC_ALL,
2100 		.name = "uart",
2101 		.ctl_reg = CM_UARTCTL,
2102 		.div_reg = CM_UARTDIV,
2103 		.int_bits = 10,
2104 		.frac_bits = 12,
2105 		.tcnt_mux = 28),
2106 
2107 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2108 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2109 		SOC_ALL,
2110 		.name = "vec",
2111 		.ctl_reg = CM_VECCTL,
2112 		.div_reg = CM_VECDIV,
2113 		.int_bits = 4,
2114 		.frac_bits = 0,
2115 		/*
2116 		 * Allow rate change propagation only on PLLH_AUX which is
2117 		 * assigned index 7 in the parent array.
2118 		 */
2119 		.set_rate_parent = BIT(7),
2120 		.tcnt_mux = 29),
2121 
2122 	/* dsi clocks */
2123 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2124 		SOC_ALL,
2125 		.name = "dsi0e",
2126 		.ctl_reg = CM_DSI0ECTL,
2127 		.div_reg = CM_DSI0EDIV,
2128 		.int_bits = 4,
2129 		.frac_bits = 8,
2130 		.tcnt_mux = 18),
2131 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2132 		SOC_ALL,
2133 		.name = "dsi1e",
2134 		.ctl_reg = CM_DSI1ECTL,
2135 		.div_reg = CM_DSI1EDIV,
2136 		.int_bits = 4,
2137 		.frac_bits = 8,
2138 		.tcnt_mux = 19),
2139 	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2140 		SOC_ALL,
2141 		.name = "dsi0p",
2142 		.ctl_reg = CM_DSI0PCTL,
2143 		.div_reg = CM_DSI0PDIV,
2144 		.int_bits = 0,
2145 		.frac_bits = 0,
2146 		.tcnt_mux = 12),
2147 	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2148 		SOC_ALL,
2149 		.name = "dsi1p",
2150 		.ctl_reg = CM_DSI1PCTL,
2151 		.div_reg = CM_DSI1PDIV,
2152 		.int_bits = 0,
2153 		.frac_bits = 0,
2154 		.tcnt_mux = 13),
2155 
2156 	/* the gates */
2157 
2158 	/*
2159 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2160 	 * you have the debug bit set in the power manager, which we
2161 	 * don't bother exposing) are individual gates off of the
2162 	 * non-stop vpu clock.
2163 	 */
2164 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2165 		SOC_ALL,
2166 		.name = "peri_image",
2167 		.parent = "vpu",
2168 		.ctl_reg = CM_PERIICTL),
2169 };
2170 
2171 /*
2172  * Permanently take a reference on the parent of the SDRAM clock.
2173  *
2174  * While the SDRAM is being driven by its dedicated PLL most of the
2175  * time, there is a little loop running in the firmware that
2176  * periodically switches the SDRAM to using our CM clock to do PVT
2177  * recalibration, with the assumption that the previously configured
2178  * SDRAM parent is still enabled and running.
2179  */
2180 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2181 {
2182 	struct clk *parent = clk_get_parent(sdc);
2183 
2184 	if (IS_ERR(parent))
2185 		return PTR_ERR(parent);
2186 
2187 	return clk_prepare_enable(parent);
2188 }
2189 
2190 static int bcm2835_clk_probe(struct platform_device *pdev)
2191 {
2192 	struct device *dev = &pdev->dev;
2193 	struct clk_hw **hws;
2194 	struct bcm2835_cprman *cprman;
2195 	const struct bcm2835_clk_desc *desc;
2196 	const size_t asize = ARRAY_SIZE(clk_desc_array);
2197 	const struct cprman_plat_data *pdata;
2198 	size_t i;
2199 	int ret;
2200 
2201 	pdata = of_device_get_match_data(&pdev->dev);
2202 	if (!pdata)
2203 		return -ENODEV;
2204 
2205 	cprman = devm_kzalloc(dev,
2206 			      struct_size(cprman, onecell.hws, asize),
2207 			      GFP_KERNEL);
2208 	if (!cprman)
2209 		return -ENOMEM;
2210 
2211 	spin_lock_init(&cprman->regs_lock);
2212 	cprman->dev = dev;
2213 	cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2214 	if (IS_ERR(cprman->regs))
2215 		return PTR_ERR(cprman->regs);
2216 
2217 	memcpy(cprman->real_parent_names, cprman_parent_names,
2218 	       sizeof(cprman_parent_names));
2219 	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2220 			   ARRAY_SIZE(cprman_parent_names));
2221 
2222 	/*
2223 	 * Make sure the external oscillator has been registered.
2224 	 *
2225 	 * The other (DSI) clocks are not present on older device
2226 	 * trees, which we still need to support for backwards
2227 	 * compatibility.
2228 	 */
2229 	if (!cprman->real_parent_names[0])
2230 		return -ENODEV;
2231 
2232 	platform_set_drvdata(pdev, cprman);
2233 
2234 	cprman->onecell.num = asize;
2235 	hws = cprman->onecell.hws;
2236 
2237 	for (i = 0; i < asize; i++) {
2238 		desc = &clk_desc_array[i];
2239 		if (desc->clk_register && desc->data &&
2240 		    (desc->supported & pdata->soc)) {
2241 			hws[i] = desc->clk_register(cprman, desc->data);
2242 		}
2243 	}
2244 
2245 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2246 	if (ret)
2247 		return ret;
2248 
2249 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2250 				      &cprman->onecell);
2251 }
2252 
2253 static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2254 	.soc = SOC_BCM2835,
2255 };
2256 
2257 static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2258 	.soc = SOC_BCM2711,
2259 };
2260 
2261 static const struct of_device_id bcm2835_clk_of_match[] = {
2262 	{ .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2263 	{ .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2264 	{}
2265 };
2266 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2267 
2268 static struct platform_driver bcm2835_clk_driver = {
2269 	.driver = {
2270 		.name = "bcm2835-clk",
2271 		.of_match_table = bcm2835_clk_of_match,
2272 	},
2273 	.probe          = bcm2835_clk_probe,
2274 };
2275 
2276 builtin_platform_driver(bcm2835_clk_driver);
2277 
2278 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2279 MODULE_DESCRIPTION("BCM2835 clock driver");
2280 MODULE_LICENSE("GPL");
2281