xref: /linux/drivers/clk/bcm/clk-bcm2835.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2010,2015 Broadcom
4  * Copyright (C) 2012 Stephen Warren
5  */
6 
7 /**
8  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9  *
10  * The clock tree on the 2835 has several levels.  There's a root
11  * oscillator running at 19.2Mhz.  After the oscillator there are 5
12  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13  * and "HDMI displays".  Those 5 PLLs each can divide their output to
14  * produce up to 4 channels.  Finally, there is the level of clocks to
15  * be consumed by other hardware components (like "H264" or "HDMI
16  * state machine"), which divide off of some subset of the PLL
17  * channels.
18  *
19  * All of the clocks in the tree are exposed in the DT, because the DT
20  * may want to make assignments of the final layer of clocks to the
21  * PLL channels, and some components of the hardware will actually
22  * skip layers of the tree (for example, the pixel clock comes
23  * directly from the PLLH PIX channel without using a CM_*CTL clock
24  * generator).
25  */
26 
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
32 #include <linux/io.h>
33 #include <linux/module.h>
34 #include <linux/of_device.h>
35 #include <linux/platform_device.h>
36 #include <linux/slab.h>
37 #include <dt-bindings/clock/bcm2835.h>
38 
39 #define CM_PASSWORD		0x5a000000
40 
41 #define CM_GNRICCTL		0x000
42 #define CM_GNRICDIV		0x004
43 # define CM_DIV_FRAC_BITS	12
44 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
45 
46 #define CM_VPUCTL		0x008
47 #define CM_VPUDIV		0x00c
48 #define CM_SYSCTL		0x010
49 #define CM_SYSDIV		0x014
50 #define CM_PERIACTL		0x018
51 #define CM_PERIADIV		0x01c
52 #define CM_PERIICTL		0x020
53 #define CM_PERIIDIV		0x024
54 #define CM_H264CTL		0x028
55 #define CM_H264DIV		0x02c
56 #define CM_ISPCTL		0x030
57 #define CM_ISPDIV		0x034
58 #define CM_V3DCTL		0x038
59 #define CM_V3DDIV		0x03c
60 #define CM_CAM0CTL		0x040
61 #define CM_CAM0DIV		0x044
62 #define CM_CAM1CTL		0x048
63 #define CM_CAM1DIV		0x04c
64 #define CM_CCP2CTL		0x050
65 #define CM_CCP2DIV		0x054
66 #define CM_DSI0ECTL		0x058
67 #define CM_DSI0EDIV		0x05c
68 #define CM_DSI0PCTL		0x060
69 #define CM_DSI0PDIV		0x064
70 #define CM_DPICTL		0x068
71 #define CM_DPIDIV		0x06c
72 #define CM_GP0CTL		0x070
73 #define CM_GP0DIV		0x074
74 #define CM_GP1CTL		0x078
75 #define CM_GP1DIV		0x07c
76 #define CM_GP2CTL		0x080
77 #define CM_GP2DIV		0x084
78 #define CM_HSMCTL		0x088
79 #define CM_HSMDIV		0x08c
80 #define CM_OTPCTL		0x090
81 #define CM_OTPDIV		0x094
82 #define CM_PCMCTL		0x098
83 #define CM_PCMDIV		0x09c
84 #define CM_PWMCTL		0x0a0
85 #define CM_PWMDIV		0x0a4
86 #define CM_SLIMCTL		0x0a8
87 #define CM_SLIMDIV		0x0ac
88 #define CM_SMICTL		0x0b0
89 #define CM_SMIDIV		0x0b4
90 /* no definition for 0x0b8  and 0x0bc */
91 #define CM_TCNTCTL		0x0c0
92 # define CM_TCNT_SRC1_SHIFT		12
93 #define CM_TCNTCNT		0x0c4
94 #define CM_TECCTL		0x0c8
95 #define CM_TECDIV		0x0cc
96 #define CM_TD0CTL		0x0d0
97 #define CM_TD0DIV		0x0d4
98 #define CM_TD1CTL		0x0d8
99 #define CM_TD1DIV		0x0dc
100 #define CM_TSENSCTL		0x0e0
101 #define CM_TSENSDIV		0x0e4
102 #define CM_TIMERCTL		0x0e8
103 #define CM_TIMERDIV		0x0ec
104 #define CM_UARTCTL		0x0f0
105 #define CM_UARTDIV		0x0f4
106 #define CM_VECCTL		0x0f8
107 #define CM_VECDIV		0x0fc
108 #define CM_PULSECTL		0x190
109 #define CM_PULSEDIV		0x194
110 #define CM_SDCCTL		0x1a8
111 #define CM_SDCDIV		0x1ac
112 #define CM_ARMCTL		0x1b0
113 #define CM_AVEOCTL		0x1b8
114 #define CM_AVEODIV		0x1bc
115 #define CM_EMMCCTL		0x1c0
116 #define CM_EMMCDIV		0x1c4
117 #define CM_EMMC2CTL		0x1d0
118 #define CM_EMMC2DIV		0x1d4
119 
120 /* General bits for the CM_*CTL regs */
121 # define CM_ENABLE			BIT(4)
122 # define CM_KILL			BIT(5)
123 # define CM_GATE_BIT			6
124 # define CM_GATE			BIT(CM_GATE_BIT)
125 # define CM_BUSY			BIT(7)
126 # define CM_BUSYD			BIT(8)
127 # define CM_FRAC			BIT(9)
128 # define CM_SRC_SHIFT			0
129 # define CM_SRC_BITS			4
130 # define CM_SRC_MASK			0xf
131 # define CM_SRC_GND			0
132 # define CM_SRC_OSC			1
133 # define CM_SRC_TESTDEBUG0		2
134 # define CM_SRC_TESTDEBUG1		3
135 # define CM_SRC_PLLA_CORE		4
136 # define CM_SRC_PLLA_PER		4
137 # define CM_SRC_PLLC_CORE0		5
138 # define CM_SRC_PLLC_PER		5
139 # define CM_SRC_PLLC_CORE1		8
140 # define CM_SRC_PLLD_CORE		6
141 # define CM_SRC_PLLD_PER		6
142 # define CM_SRC_PLLH_AUX		7
143 # define CM_SRC_PLLC_CORE1		8
144 # define CM_SRC_PLLC_CORE2		9
145 
146 #define CM_OSCCOUNT		0x100
147 
148 #define CM_PLLA			0x104
149 # define CM_PLL_ANARST			BIT(8)
150 # define CM_PLLA_HOLDPER		BIT(7)
151 # define CM_PLLA_LOADPER		BIT(6)
152 # define CM_PLLA_HOLDCORE		BIT(5)
153 # define CM_PLLA_LOADCORE		BIT(4)
154 # define CM_PLLA_HOLDCCP2		BIT(3)
155 # define CM_PLLA_LOADCCP2		BIT(2)
156 # define CM_PLLA_HOLDDSI0		BIT(1)
157 # define CM_PLLA_LOADDSI0		BIT(0)
158 
159 #define CM_PLLC			0x108
160 # define CM_PLLC_HOLDPER		BIT(7)
161 # define CM_PLLC_LOADPER		BIT(6)
162 # define CM_PLLC_HOLDCORE2		BIT(5)
163 # define CM_PLLC_LOADCORE2		BIT(4)
164 # define CM_PLLC_HOLDCORE1		BIT(3)
165 # define CM_PLLC_LOADCORE1		BIT(2)
166 # define CM_PLLC_HOLDCORE0		BIT(1)
167 # define CM_PLLC_LOADCORE0		BIT(0)
168 
169 #define CM_PLLD			0x10c
170 # define CM_PLLD_HOLDPER		BIT(7)
171 # define CM_PLLD_LOADPER		BIT(6)
172 # define CM_PLLD_HOLDCORE		BIT(5)
173 # define CM_PLLD_LOADCORE		BIT(4)
174 # define CM_PLLD_HOLDDSI1		BIT(3)
175 # define CM_PLLD_LOADDSI1		BIT(2)
176 # define CM_PLLD_HOLDDSI0		BIT(1)
177 # define CM_PLLD_LOADDSI0		BIT(0)
178 
179 #define CM_PLLH			0x110
180 # define CM_PLLH_LOADRCAL		BIT(2)
181 # define CM_PLLH_LOADAUX		BIT(1)
182 # define CM_PLLH_LOADPIX		BIT(0)
183 
184 #define CM_LOCK			0x114
185 # define CM_LOCK_FLOCKH			BIT(12)
186 # define CM_LOCK_FLOCKD			BIT(11)
187 # define CM_LOCK_FLOCKC			BIT(10)
188 # define CM_LOCK_FLOCKB			BIT(9)
189 # define CM_LOCK_FLOCKA			BIT(8)
190 
191 #define CM_EVENT		0x118
192 #define CM_DSI1ECTL		0x158
193 #define CM_DSI1EDIV		0x15c
194 #define CM_DSI1PCTL		0x160
195 #define CM_DSI1PDIV		0x164
196 #define CM_DFTCTL		0x168
197 #define CM_DFTDIV		0x16c
198 
199 #define CM_PLLB			0x170
200 # define CM_PLLB_HOLDARM		BIT(1)
201 # define CM_PLLB_LOADARM		BIT(0)
202 
203 #define A2W_PLLA_CTRL		0x1100
204 #define A2W_PLLC_CTRL		0x1120
205 #define A2W_PLLD_CTRL		0x1140
206 #define A2W_PLLH_CTRL		0x1160
207 #define A2W_PLLB_CTRL		0x11e0
208 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
209 # define A2W_PLL_CTRL_PWRDN		BIT(16)
210 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
211 # define A2W_PLL_CTRL_PDIV_SHIFT	12
212 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
213 # define A2W_PLL_CTRL_NDIV_SHIFT	0
214 
215 #define A2W_PLLA_ANA0		0x1010
216 #define A2W_PLLC_ANA0		0x1030
217 #define A2W_PLLD_ANA0		0x1050
218 #define A2W_PLLH_ANA0		0x1070
219 #define A2W_PLLB_ANA0		0x10f0
220 
221 #define A2W_PLL_KA_SHIFT	7
222 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
223 #define A2W_PLL_KI_SHIFT	19
224 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
225 #define A2W_PLL_KP_SHIFT	15
226 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
227 
228 #define A2W_PLLH_KA_SHIFT	19
229 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
230 #define A2W_PLLH_KI_LOW_SHIFT	22
231 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
232 #define A2W_PLLH_KI_HIGH_SHIFT	0
233 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
234 #define A2W_PLLH_KP_SHIFT	1
235 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
236 
237 #define A2W_XOSC_CTRL		0x1190
238 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
239 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
240 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
241 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
242 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
243 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
244 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
245 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
246 
247 #define A2W_PLLA_FRAC		0x1200
248 #define A2W_PLLC_FRAC		0x1220
249 #define A2W_PLLD_FRAC		0x1240
250 #define A2W_PLLH_FRAC		0x1260
251 #define A2W_PLLB_FRAC		0x12e0
252 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
253 # define A2W_PLL_FRAC_BITS		20
254 
255 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
256 #define A2W_PLL_DIV_BITS		8
257 #define A2W_PLL_DIV_SHIFT		0
258 
259 #define A2W_PLLA_DSI0		0x1300
260 #define A2W_PLLA_CORE		0x1400
261 #define A2W_PLLA_PER		0x1500
262 #define A2W_PLLA_CCP2		0x1600
263 
264 #define A2W_PLLC_CORE2		0x1320
265 #define A2W_PLLC_CORE1		0x1420
266 #define A2W_PLLC_PER		0x1520
267 #define A2W_PLLC_CORE0		0x1620
268 
269 #define A2W_PLLD_DSI0		0x1340
270 #define A2W_PLLD_CORE		0x1440
271 #define A2W_PLLD_PER		0x1540
272 #define A2W_PLLD_DSI1		0x1640
273 
274 #define A2W_PLLH_AUX		0x1360
275 #define A2W_PLLH_RCAL		0x1460
276 #define A2W_PLLH_PIX		0x1560
277 #define A2W_PLLH_STS		0x1660
278 
279 #define A2W_PLLH_CTRLR		0x1960
280 #define A2W_PLLH_FRACR		0x1a60
281 #define A2W_PLLH_AUXR		0x1b60
282 #define A2W_PLLH_RCALR		0x1c60
283 #define A2W_PLLH_PIXR		0x1d60
284 #define A2W_PLLH_STSR		0x1e60
285 
286 #define A2W_PLLB_ARM		0x13e0
287 #define A2W_PLLB_SP0		0x14e0
288 #define A2W_PLLB_SP1		0x15e0
289 #define A2W_PLLB_SP2		0x16e0
290 
291 #define LOCK_TIMEOUT_NS		100000000
292 #define BCM2835_MAX_FB_RATE	1750000000u
293 
294 #define SOC_BCM2835		BIT(0)
295 #define SOC_BCM2711		BIT(1)
296 #define SOC_ALL			(SOC_BCM2835 | SOC_BCM2711)
297 
298 /*
299  * Names of clocks used within the driver that need to be replaced
300  * with an external parent's name.  This array is in the order that
301  * the clocks node in the DT references external clocks.
302  */
303 static const char *const cprman_parent_names[] = {
304 	"xosc",
305 	"dsi0_byte",
306 	"dsi0_ddr2",
307 	"dsi0_ddr",
308 	"dsi1_byte",
309 	"dsi1_ddr2",
310 	"dsi1_ddr",
311 };
312 
313 struct bcm2835_cprman {
314 	struct device *dev;
315 	void __iomem *regs;
316 	spinlock_t regs_lock; /* spinlock for all clocks */
317 	unsigned int soc;
318 
319 	/*
320 	 * Real names of cprman clock parents looked up through
321 	 * of_clk_get_parent_name(), which will be used in the
322 	 * parent_names[] arrays for clock registration.
323 	 */
324 	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
325 
326 	/* Must be last */
327 	struct clk_hw_onecell_data onecell;
328 };
329 
330 struct cprman_plat_data {
331 	unsigned int soc;
332 };
333 
334 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
335 {
336 	writel(CM_PASSWORD | val, cprman->regs + reg);
337 }
338 
339 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
340 {
341 	return readl(cprman->regs + reg);
342 }
343 
344 /* Does a cycle of measuring a clock through the TCNT clock, which may
345  * source from many other clocks in the system.
346  */
347 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
348 					      u32 tcnt_mux)
349 {
350 	u32 osccount = 19200; /* 1ms */
351 	u32 count;
352 	ktime_t timeout;
353 
354 	spin_lock(&cprman->regs_lock);
355 
356 	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
357 
358 	cprman_write(cprman, CM_TCNTCTL,
359 		     (tcnt_mux & CM_SRC_MASK) |
360 		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
361 
362 	cprman_write(cprman, CM_OSCCOUNT, osccount);
363 
364 	/* do a kind delay at the start */
365 	mdelay(1);
366 
367 	/* Finish off whatever is left of OSCCOUNT */
368 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
369 	while (cprman_read(cprman, CM_OSCCOUNT)) {
370 		if (ktime_after(ktime_get(), timeout)) {
371 			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
372 			count = 0;
373 			goto out;
374 		}
375 		cpu_relax();
376 	}
377 
378 	/* Wait for BUSY to clear. */
379 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
380 	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
381 		if (ktime_after(ktime_get(), timeout)) {
382 			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
383 			count = 0;
384 			goto out;
385 		}
386 		cpu_relax();
387 	}
388 
389 	count = cprman_read(cprman, CM_TCNTCNT);
390 
391 	cprman_write(cprman, CM_TCNTCTL, 0);
392 
393 out:
394 	spin_unlock(&cprman->regs_lock);
395 
396 	return count * 1000;
397 }
398 
399 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
400 				   const struct debugfs_reg32 *regs,
401 				   size_t nregs, struct dentry *dentry)
402 {
403 	struct debugfs_regset32 *regset;
404 
405 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
406 	if (!regset)
407 		return;
408 
409 	regset->regs = regs;
410 	regset->nregs = nregs;
411 	regset->base = cprman->regs + base;
412 
413 	debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
414 }
415 
416 struct bcm2835_pll_data {
417 	const char *name;
418 	u32 cm_ctrl_reg;
419 	u32 a2w_ctrl_reg;
420 	u32 frac_reg;
421 	u32 ana_reg_base;
422 	u32 reference_enable_mask;
423 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
424 	u32 lock_mask;
425 	u32 flags;
426 
427 	const struct bcm2835_pll_ana_bits *ana;
428 
429 	unsigned long min_rate;
430 	unsigned long max_rate;
431 	/*
432 	 * Highest rate for the VCO before we have to use the
433 	 * pre-divide-by-2.
434 	 */
435 	unsigned long max_fb_rate;
436 };
437 
438 struct bcm2835_pll_ana_bits {
439 	u32 mask0;
440 	u32 set0;
441 	u32 mask1;
442 	u32 set1;
443 	u32 mask3;
444 	u32 set3;
445 	u32 fb_prediv_mask;
446 };
447 
448 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
449 	.mask0 = 0,
450 	.set0 = 0,
451 	.mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
452 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
453 	.mask3 = A2W_PLL_KA_MASK,
454 	.set3 = (2 << A2W_PLL_KA_SHIFT),
455 	.fb_prediv_mask = BIT(14),
456 };
457 
458 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
459 	.mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
460 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
461 	.mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
462 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
463 	.mask3 = 0,
464 	.set3 = 0,
465 	.fb_prediv_mask = BIT(11),
466 };
467 
468 struct bcm2835_pll_divider_data {
469 	const char *name;
470 	const char *source_pll;
471 
472 	u32 cm_reg;
473 	u32 a2w_reg;
474 
475 	u32 load_mask;
476 	u32 hold_mask;
477 	u32 fixed_divider;
478 	u32 flags;
479 };
480 
481 struct bcm2835_clock_data {
482 	const char *name;
483 
484 	const char *const *parents;
485 	int num_mux_parents;
486 
487 	/* Bitmap encoding which parents accept rate change propagation. */
488 	unsigned int set_rate_parent;
489 
490 	u32 ctl_reg;
491 	u32 div_reg;
492 
493 	/* Number of integer bits in the divider */
494 	u32 int_bits;
495 	/* Number of fractional bits in the divider */
496 	u32 frac_bits;
497 
498 	u32 flags;
499 
500 	bool is_vpu_clock;
501 	bool is_mash_clock;
502 	bool low_jitter;
503 
504 	u32 tcnt_mux;
505 };
506 
507 struct bcm2835_gate_data {
508 	const char *name;
509 	const char *parent;
510 
511 	u32 ctl_reg;
512 };
513 
514 struct bcm2835_pll {
515 	struct clk_hw hw;
516 	struct bcm2835_cprman *cprman;
517 	const struct bcm2835_pll_data *data;
518 };
519 
520 static int bcm2835_pll_is_on(struct clk_hw *hw)
521 {
522 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
523 	struct bcm2835_cprman *cprman = pll->cprman;
524 	const struct bcm2835_pll_data *data = pll->data;
525 
526 	return cprman_read(cprman, data->a2w_ctrl_reg) &
527 		A2W_PLL_CTRL_PRST_DISABLE;
528 }
529 
530 static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman,
531 				       const struct bcm2835_pll_data *data)
532 {
533 	/*
534 	 * On BCM2711 there isn't a pre-divisor available in the PLL feedback
535 	 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
536 	 * for to for VCO RANGE bits.
537 	 */
538 	if (cprman->soc & SOC_BCM2711)
539 		return 0;
540 
541 	return data->ana->fb_prediv_mask;
542 }
543 
544 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
545 					     unsigned long parent_rate,
546 					     u32 *ndiv, u32 *fdiv)
547 {
548 	u64 div;
549 
550 	div = (u64)rate << A2W_PLL_FRAC_BITS;
551 	do_div(div, parent_rate);
552 
553 	*ndiv = div >> A2W_PLL_FRAC_BITS;
554 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
555 }
556 
557 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
558 					   u32 ndiv, u32 fdiv, u32 pdiv)
559 {
560 	u64 rate;
561 
562 	if (pdiv == 0)
563 		return 0;
564 
565 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
566 	do_div(rate, pdiv);
567 	return rate >> A2W_PLL_FRAC_BITS;
568 }
569 
570 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
571 				   unsigned long *parent_rate)
572 {
573 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
574 	const struct bcm2835_pll_data *data = pll->data;
575 	u32 ndiv, fdiv;
576 
577 	rate = clamp(rate, data->min_rate, data->max_rate);
578 
579 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
580 
581 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
582 }
583 
584 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
585 					  unsigned long parent_rate)
586 {
587 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
588 	struct bcm2835_cprman *cprman = pll->cprman;
589 	const struct bcm2835_pll_data *data = pll->data;
590 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
591 	u32 ndiv, pdiv, fdiv;
592 	bool using_prediv;
593 
594 	if (parent_rate == 0)
595 		return 0;
596 
597 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
598 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
599 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
600 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
601 		       bcm2835_pll_get_prediv_mask(cprman, data);
602 
603 	if (using_prediv) {
604 		ndiv *= 2;
605 		fdiv *= 2;
606 	}
607 
608 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
609 }
610 
611 static void bcm2835_pll_off(struct clk_hw *hw)
612 {
613 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
614 	struct bcm2835_cprman *cprman = pll->cprman;
615 	const struct bcm2835_pll_data *data = pll->data;
616 
617 	spin_lock(&cprman->regs_lock);
618 	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
619 	cprman_write(cprman, data->a2w_ctrl_reg,
620 		     cprman_read(cprman, data->a2w_ctrl_reg) |
621 		     A2W_PLL_CTRL_PWRDN);
622 	spin_unlock(&cprman->regs_lock);
623 }
624 
625 static int bcm2835_pll_on(struct clk_hw *hw)
626 {
627 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
628 	struct bcm2835_cprman *cprman = pll->cprman;
629 	const struct bcm2835_pll_data *data = pll->data;
630 	ktime_t timeout;
631 
632 	cprman_write(cprman, data->a2w_ctrl_reg,
633 		     cprman_read(cprman, data->a2w_ctrl_reg) &
634 		     ~A2W_PLL_CTRL_PWRDN);
635 
636 	/* Take the PLL out of reset. */
637 	spin_lock(&cprman->regs_lock);
638 	cprman_write(cprman, data->cm_ctrl_reg,
639 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
640 	spin_unlock(&cprman->regs_lock);
641 
642 	/* Wait for the PLL to lock. */
643 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
644 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
645 		if (ktime_after(ktime_get(), timeout)) {
646 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
647 				clk_hw_get_name(hw));
648 			return -ETIMEDOUT;
649 		}
650 
651 		cpu_relax();
652 	}
653 
654 	cprman_write(cprman, data->a2w_ctrl_reg,
655 		     cprman_read(cprman, data->a2w_ctrl_reg) |
656 		     A2W_PLL_CTRL_PRST_DISABLE);
657 
658 	return 0;
659 }
660 
661 static void
662 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
663 {
664 	int i;
665 
666 	/*
667 	 * ANA register setup is done as a series of writes to
668 	 * ANA3-ANA0, in that order.  This lets us write all 4
669 	 * registers as a single cycle of the serdes interface (taking
670 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
671 	 * 3 individually through their partial-write registers, each
672 	 * would be their own serdes cycle.
673 	 */
674 	for (i = 3; i >= 0; i--)
675 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
676 }
677 
678 static int bcm2835_pll_set_rate(struct clk_hw *hw,
679 				unsigned long rate, unsigned long parent_rate)
680 {
681 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
682 	struct bcm2835_cprman *cprman = pll->cprman;
683 	const struct bcm2835_pll_data *data = pll->data;
684 	u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data);
685 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
686 	u32 ndiv, fdiv, a2w_ctl;
687 	u32 ana[4];
688 	int i;
689 
690 	if (rate > data->max_fb_rate) {
691 		use_fb_prediv = true;
692 		rate /= 2;
693 	} else {
694 		use_fb_prediv = false;
695 	}
696 
697 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
698 
699 	for (i = 3; i >= 0; i--)
700 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
701 
702 	was_using_prediv = ana[1] & prediv_mask;
703 
704 	ana[0] &= ~data->ana->mask0;
705 	ana[0] |= data->ana->set0;
706 	ana[1] &= ~data->ana->mask1;
707 	ana[1] |= data->ana->set1;
708 	ana[3] &= ~data->ana->mask3;
709 	ana[3] |= data->ana->set3;
710 
711 	if (was_using_prediv && !use_fb_prediv) {
712 		ana[1] &= ~prediv_mask;
713 		do_ana_setup_first = true;
714 	} else if (!was_using_prediv && use_fb_prediv) {
715 		ana[1] |= prediv_mask;
716 		do_ana_setup_first = false;
717 	} else {
718 		do_ana_setup_first = true;
719 	}
720 
721 	/* Unmask the reference clock from the oscillator. */
722 	spin_lock(&cprman->regs_lock);
723 	cprman_write(cprman, A2W_XOSC_CTRL,
724 		     cprman_read(cprman, A2W_XOSC_CTRL) |
725 		     data->reference_enable_mask);
726 	spin_unlock(&cprman->regs_lock);
727 
728 	if (do_ana_setup_first)
729 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
730 
731 	/* Set the PLL multiplier from the oscillator. */
732 	cprman_write(cprman, data->frac_reg, fdiv);
733 
734 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
735 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
736 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
737 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
738 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
739 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
740 
741 	if (!do_ana_setup_first)
742 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
743 
744 	return 0;
745 }
746 
747 static void bcm2835_pll_debug_init(struct clk_hw *hw,
748 				  struct dentry *dentry)
749 {
750 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
751 	struct bcm2835_cprman *cprman = pll->cprman;
752 	const struct bcm2835_pll_data *data = pll->data;
753 	struct debugfs_reg32 *regs;
754 
755 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
756 	if (!regs)
757 		return;
758 
759 	regs[0].name = "cm_ctrl";
760 	regs[0].offset = data->cm_ctrl_reg;
761 	regs[1].name = "a2w_ctrl";
762 	regs[1].offset = data->a2w_ctrl_reg;
763 	regs[2].name = "frac";
764 	regs[2].offset = data->frac_reg;
765 	regs[3].name = "ana0";
766 	regs[3].offset = data->ana_reg_base + 0 * 4;
767 	regs[4].name = "ana1";
768 	regs[4].offset = data->ana_reg_base + 1 * 4;
769 	regs[5].name = "ana2";
770 	regs[5].offset = data->ana_reg_base + 2 * 4;
771 	regs[6].name = "ana3";
772 	regs[6].offset = data->ana_reg_base + 3 * 4;
773 
774 	bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
775 }
776 
777 static const struct clk_ops bcm2835_pll_clk_ops = {
778 	.is_prepared = bcm2835_pll_is_on,
779 	.prepare = bcm2835_pll_on,
780 	.unprepare = bcm2835_pll_off,
781 	.recalc_rate = bcm2835_pll_get_rate,
782 	.set_rate = bcm2835_pll_set_rate,
783 	.round_rate = bcm2835_pll_round_rate,
784 	.debug_init = bcm2835_pll_debug_init,
785 };
786 
787 struct bcm2835_pll_divider {
788 	struct clk_divider div;
789 	struct bcm2835_cprman *cprman;
790 	const struct bcm2835_pll_divider_data *data;
791 };
792 
793 static struct bcm2835_pll_divider *
794 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
795 {
796 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
797 }
798 
799 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
800 {
801 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
802 	struct bcm2835_cprman *cprman = divider->cprman;
803 	const struct bcm2835_pll_divider_data *data = divider->data;
804 
805 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
806 }
807 
808 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
809 					   unsigned long rate,
810 					   unsigned long *parent_rate)
811 {
812 	return clk_divider_ops.round_rate(hw, rate, parent_rate);
813 }
814 
815 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
816 						  unsigned long parent_rate)
817 {
818 	return clk_divider_ops.recalc_rate(hw, parent_rate);
819 }
820 
821 static void bcm2835_pll_divider_off(struct clk_hw *hw)
822 {
823 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
824 	struct bcm2835_cprman *cprman = divider->cprman;
825 	const struct bcm2835_pll_divider_data *data = divider->data;
826 
827 	spin_lock(&cprman->regs_lock);
828 	cprman_write(cprman, data->cm_reg,
829 		     (cprman_read(cprman, data->cm_reg) &
830 		      ~data->load_mask) | data->hold_mask);
831 	cprman_write(cprman, data->a2w_reg,
832 		     cprman_read(cprman, data->a2w_reg) |
833 		     A2W_PLL_CHANNEL_DISABLE);
834 	spin_unlock(&cprman->regs_lock);
835 }
836 
837 static int bcm2835_pll_divider_on(struct clk_hw *hw)
838 {
839 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
840 	struct bcm2835_cprman *cprman = divider->cprman;
841 	const struct bcm2835_pll_divider_data *data = divider->data;
842 
843 	spin_lock(&cprman->regs_lock);
844 	cprman_write(cprman, data->a2w_reg,
845 		     cprman_read(cprman, data->a2w_reg) &
846 		     ~A2W_PLL_CHANNEL_DISABLE);
847 
848 	cprman_write(cprman, data->cm_reg,
849 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
850 	spin_unlock(&cprman->regs_lock);
851 
852 	return 0;
853 }
854 
855 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
856 					unsigned long rate,
857 					unsigned long parent_rate)
858 {
859 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
860 	struct bcm2835_cprman *cprman = divider->cprman;
861 	const struct bcm2835_pll_divider_data *data = divider->data;
862 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
863 
864 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
865 
866 	div = min(div, max_div);
867 	if (div == max_div)
868 		div = 0;
869 
870 	cprman_write(cprman, data->a2w_reg, div);
871 	cm = cprman_read(cprman, data->cm_reg);
872 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
873 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
874 
875 	return 0;
876 }
877 
878 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
879 					   struct dentry *dentry)
880 {
881 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
882 	struct bcm2835_cprman *cprman = divider->cprman;
883 	const struct bcm2835_pll_divider_data *data = divider->data;
884 	struct debugfs_reg32 *regs;
885 
886 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
887 	if (!regs)
888 		return;
889 
890 	regs[0].name = "cm";
891 	regs[0].offset = data->cm_reg;
892 	regs[1].name = "a2w";
893 	regs[1].offset = data->a2w_reg;
894 
895 	bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
896 }
897 
898 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
899 	.is_prepared = bcm2835_pll_divider_is_on,
900 	.prepare = bcm2835_pll_divider_on,
901 	.unprepare = bcm2835_pll_divider_off,
902 	.recalc_rate = bcm2835_pll_divider_get_rate,
903 	.set_rate = bcm2835_pll_divider_set_rate,
904 	.round_rate = bcm2835_pll_divider_round_rate,
905 	.debug_init = bcm2835_pll_divider_debug_init,
906 };
907 
908 /*
909  * The CM dividers do fixed-point division, so we can't use the
910  * generic integer divider code like the PLL dividers do (and we can't
911  * fake it by having some fixed shifts preceding it in the clock tree,
912  * because we'd run out of bits in a 32-bit unsigned long).
913  */
914 struct bcm2835_clock {
915 	struct clk_hw hw;
916 	struct bcm2835_cprman *cprman;
917 	const struct bcm2835_clock_data *data;
918 };
919 
920 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
921 {
922 	return container_of(hw, struct bcm2835_clock, hw);
923 }
924 
925 static int bcm2835_clock_is_on(struct clk_hw *hw)
926 {
927 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
928 	struct bcm2835_cprman *cprman = clock->cprman;
929 	const struct bcm2835_clock_data *data = clock->data;
930 
931 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
932 }
933 
934 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
935 				    unsigned long rate,
936 				    unsigned long parent_rate,
937 				    bool round_up)
938 {
939 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
940 	const struct bcm2835_clock_data *data = clock->data;
941 	u32 unused_frac_mask =
942 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
943 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
944 	u64 rem;
945 	u32 div, mindiv, maxdiv;
946 
947 	rem = do_div(temp, rate);
948 	div = temp;
949 
950 	/* Round up and mask off the unused bits */
951 	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
952 		div += unused_frac_mask + 1;
953 	div &= ~unused_frac_mask;
954 
955 	/* different clamping limits apply for a mash clock */
956 	if (data->is_mash_clock) {
957 		/* clamp to min divider of 2 */
958 		mindiv = 2 << CM_DIV_FRAC_BITS;
959 		/* clamp to the highest possible integer divider */
960 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
961 	} else {
962 		/* clamp to min divider of 1 */
963 		mindiv = 1 << CM_DIV_FRAC_BITS;
964 		/* clamp to the highest possible fractional divider */
965 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
966 				 CM_DIV_FRAC_BITS - data->frac_bits);
967 	}
968 
969 	/* apply the clamping  limits */
970 	div = max_t(u32, div, mindiv);
971 	div = min_t(u32, div, maxdiv);
972 
973 	return div;
974 }
975 
976 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
977 					    unsigned long parent_rate,
978 					    u32 div)
979 {
980 	const struct bcm2835_clock_data *data = clock->data;
981 	u64 temp;
982 
983 	if (data->int_bits == 0 && data->frac_bits == 0)
984 		return parent_rate;
985 
986 	/*
987 	 * The divisor is a 12.12 fixed point field, but only some of
988 	 * the bits are populated in any given clock.
989 	 */
990 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
991 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
992 
993 	if (div == 0)
994 		return 0;
995 
996 	temp = (u64)parent_rate << data->frac_bits;
997 
998 	do_div(temp, div);
999 
1000 	return temp;
1001 }
1002 
1003 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1004 					    unsigned long parent_rate)
1005 {
1006 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1007 	struct bcm2835_cprman *cprman = clock->cprman;
1008 	const struct bcm2835_clock_data *data = clock->data;
1009 	u32 div;
1010 
1011 	if (data->int_bits == 0 && data->frac_bits == 0)
1012 		return parent_rate;
1013 
1014 	div = cprman_read(cprman, data->div_reg);
1015 
1016 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1017 }
1018 
1019 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1020 {
1021 	struct bcm2835_cprman *cprman = clock->cprman;
1022 	const struct bcm2835_clock_data *data = clock->data;
1023 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1024 
1025 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1026 		if (ktime_after(ktime_get(), timeout)) {
1027 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1028 				clk_hw_get_name(&clock->hw));
1029 			return;
1030 		}
1031 		cpu_relax();
1032 	}
1033 }
1034 
1035 static void bcm2835_clock_off(struct clk_hw *hw)
1036 {
1037 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1038 	struct bcm2835_cprman *cprman = clock->cprman;
1039 	const struct bcm2835_clock_data *data = clock->data;
1040 
1041 	spin_lock(&cprman->regs_lock);
1042 	cprman_write(cprman, data->ctl_reg,
1043 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1044 	spin_unlock(&cprman->regs_lock);
1045 
1046 	/* BUSY will remain high until the divider completes its cycle. */
1047 	bcm2835_clock_wait_busy(clock);
1048 }
1049 
1050 static int bcm2835_clock_on(struct clk_hw *hw)
1051 {
1052 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1053 	struct bcm2835_cprman *cprman = clock->cprman;
1054 	const struct bcm2835_clock_data *data = clock->data;
1055 
1056 	spin_lock(&cprman->regs_lock);
1057 	cprman_write(cprman, data->ctl_reg,
1058 		     cprman_read(cprman, data->ctl_reg) |
1059 		     CM_ENABLE |
1060 		     CM_GATE);
1061 	spin_unlock(&cprman->regs_lock);
1062 
1063 	/* Debug code to measure the clock once it's turned on to see
1064 	 * if it's ticking at the rate we expect.
1065 	 */
1066 	if (data->tcnt_mux && false) {
1067 		dev_info(cprman->dev,
1068 			 "clk %s: rate %ld, measure %ld\n",
1069 			 data->name,
1070 			 clk_hw_get_rate(hw),
1071 			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1078 				  unsigned long rate, unsigned long parent_rate)
1079 {
1080 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1081 	struct bcm2835_cprman *cprman = clock->cprman;
1082 	const struct bcm2835_clock_data *data = clock->data;
1083 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1084 	u32 ctl;
1085 
1086 	spin_lock(&cprman->regs_lock);
1087 
1088 	/*
1089 	 * Setting up frac support
1090 	 *
1091 	 * In principle it is recommended to stop/start the clock first,
1092 	 * but as we set CLK_SET_RATE_GATE during registration of the
1093 	 * clock this requirement should be take care of by the
1094 	 * clk-framework.
1095 	 */
1096 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1097 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1098 	cprman_write(cprman, data->ctl_reg, ctl);
1099 
1100 	cprman_write(cprman, data->div_reg, div);
1101 
1102 	spin_unlock(&cprman->regs_lock);
1103 
1104 	return 0;
1105 }
1106 
1107 static bool
1108 bcm2835_clk_is_pllc(struct clk_hw *hw)
1109 {
1110 	if (!hw)
1111 		return false;
1112 
1113 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1114 }
1115 
1116 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1117 							int parent_idx,
1118 							unsigned long rate,
1119 							u32 *div,
1120 							unsigned long *prate,
1121 							unsigned long *avgrate)
1122 {
1123 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1124 	struct bcm2835_cprman *cprman = clock->cprman;
1125 	const struct bcm2835_clock_data *data = clock->data;
1126 	unsigned long best_rate = 0;
1127 	u32 curdiv, mindiv, maxdiv;
1128 	struct clk_hw *parent;
1129 
1130 	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1131 
1132 	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1133 		*prate = clk_hw_get_rate(parent);
1134 		*div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1135 
1136 		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1137 
1138 		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1139 			unsigned long high, low;
1140 			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1141 
1142 			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1143 							       int_div);
1144 			int_div += CM_DIV_FRAC_MASK + 1;
1145 			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1146 							      int_div);
1147 
1148 			/*
1149 			 * Return a value which is the maximum deviation
1150 			 * below the ideal rate, for use as a metric.
1151 			 */
1152 			return *avgrate - max(*avgrate - low, high - *avgrate);
1153 		}
1154 		return *avgrate;
1155 	}
1156 
1157 	if (data->frac_bits)
1158 		dev_warn(cprman->dev,
1159 			"frac bits are not used when propagating rate change");
1160 
1161 	/* clamp to min divider of 2 if we're dealing with a mash clock */
1162 	mindiv = data->is_mash_clock ? 2 : 1;
1163 	maxdiv = BIT(data->int_bits) - 1;
1164 
1165 	/* TODO: Be smart, and only test a subset of the available divisors. */
1166 	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1167 		unsigned long tmp_rate;
1168 
1169 		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1170 		tmp_rate /= curdiv;
1171 		if (curdiv == mindiv ||
1172 		    (tmp_rate > best_rate && tmp_rate <= rate))
1173 			best_rate = tmp_rate;
1174 
1175 		if (best_rate == rate)
1176 			break;
1177 	}
1178 
1179 	*div = curdiv << CM_DIV_FRAC_BITS;
1180 	*prate = curdiv * best_rate;
1181 	*avgrate = best_rate;
1182 
1183 	return best_rate;
1184 }
1185 
1186 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1187 					struct clk_rate_request *req)
1188 {
1189 	struct clk_hw *parent, *best_parent = NULL;
1190 	bool current_parent_is_pllc;
1191 	unsigned long rate, best_rate = 0;
1192 	unsigned long prate, best_prate = 0;
1193 	unsigned long avgrate, best_avgrate = 0;
1194 	size_t i;
1195 	u32 div;
1196 
1197 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1198 
1199 	/*
1200 	 * Select parent clock that results in the closest but lower rate
1201 	 */
1202 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1203 		parent = clk_hw_get_parent_by_index(hw, i);
1204 		if (!parent)
1205 			continue;
1206 
1207 		/*
1208 		 * Don't choose a PLLC-derived clock as our parent
1209 		 * unless it had been manually set that way.  PLLC's
1210 		 * frequency gets adjusted by the firmware due to
1211 		 * over-temp or under-voltage conditions, without
1212 		 * prior notification to our clock consumer.
1213 		 */
1214 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1215 			continue;
1216 
1217 		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1218 							  &div, &prate,
1219 							  &avgrate);
1220 		if (rate > best_rate && rate <= req->rate) {
1221 			best_parent = parent;
1222 			best_prate = prate;
1223 			best_rate = rate;
1224 			best_avgrate = avgrate;
1225 		}
1226 	}
1227 
1228 	if (!best_parent)
1229 		return -EINVAL;
1230 
1231 	req->best_parent_hw = best_parent;
1232 	req->best_parent_rate = best_prate;
1233 
1234 	req->rate = best_avgrate;
1235 
1236 	return 0;
1237 }
1238 
1239 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1240 {
1241 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1242 	struct bcm2835_cprman *cprman = clock->cprman;
1243 	const struct bcm2835_clock_data *data = clock->data;
1244 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1245 
1246 	cprman_write(cprman, data->ctl_reg, src);
1247 	return 0;
1248 }
1249 
1250 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1251 {
1252 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1253 	struct bcm2835_cprman *cprman = clock->cprman;
1254 	const struct bcm2835_clock_data *data = clock->data;
1255 	u32 src = cprman_read(cprman, data->ctl_reg);
1256 
1257 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1258 }
1259 
1260 static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1261 	{
1262 		.name = "ctl",
1263 		.offset = 0,
1264 	},
1265 	{
1266 		.name = "div",
1267 		.offset = 4,
1268 	},
1269 };
1270 
1271 static void bcm2835_clock_debug_init(struct clk_hw *hw,
1272 				    struct dentry *dentry)
1273 {
1274 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1275 	struct bcm2835_cprman *cprman = clock->cprman;
1276 	const struct bcm2835_clock_data *data = clock->data;
1277 
1278 	bcm2835_debugfs_regset(cprman, data->ctl_reg,
1279 		bcm2835_debugfs_clock_reg32,
1280 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1281 		dentry);
1282 }
1283 
1284 static const struct clk_ops bcm2835_clock_clk_ops = {
1285 	.is_prepared = bcm2835_clock_is_on,
1286 	.prepare = bcm2835_clock_on,
1287 	.unprepare = bcm2835_clock_off,
1288 	.recalc_rate = bcm2835_clock_get_rate,
1289 	.set_rate = bcm2835_clock_set_rate,
1290 	.determine_rate = bcm2835_clock_determine_rate,
1291 	.set_parent = bcm2835_clock_set_parent,
1292 	.get_parent = bcm2835_clock_get_parent,
1293 	.debug_init = bcm2835_clock_debug_init,
1294 };
1295 
1296 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1297 {
1298 	return true;
1299 }
1300 
1301 /*
1302  * The VPU clock can never be disabled (it doesn't have an ENABLE
1303  * bit), so it gets its own set of clock ops.
1304  */
1305 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1306 	.is_prepared = bcm2835_vpu_clock_is_on,
1307 	.recalc_rate = bcm2835_clock_get_rate,
1308 	.set_rate = bcm2835_clock_set_rate,
1309 	.determine_rate = bcm2835_clock_determine_rate,
1310 	.set_parent = bcm2835_clock_set_parent,
1311 	.get_parent = bcm2835_clock_get_parent,
1312 	.debug_init = bcm2835_clock_debug_init,
1313 };
1314 
1315 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1316 					   const void *data)
1317 {
1318 	const struct bcm2835_pll_data *pll_data = data;
1319 	struct bcm2835_pll *pll;
1320 	struct clk_init_data init;
1321 	int ret;
1322 
1323 	memset(&init, 0, sizeof(init));
1324 
1325 	/* All of the PLLs derive from the external oscillator. */
1326 	init.parent_names = &cprman->real_parent_names[0];
1327 	init.num_parents = 1;
1328 	init.name = pll_data->name;
1329 	init.ops = &bcm2835_pll_clk_ops;
1330 	init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
1331 
1332 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1333 	if (!pll)
1334 		return NULL;
1335 
1336 	pll->cprman = cprman;
1337 	pll->data = pll_data;
1338 	pll->hw.init = &init;
1339 
1340 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1341 	if (ret) {
1342 		kfree(pll);
1343 		return NULL;
1344 	}
1345 	return &pll->hw;
1346 }
1347 
1348 static struct clk_hw *
1349 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1350 			     const void *data)
1351 {
1352 	const struct bcm2835_pll_divider_data *divider_data = data;
1353 	struct bcm2835_pll_divider *divider;
1354 	struct clk_init_data init;
1355 	const char *divider_name;
1356 	int ret;
1357 
1358 	if (divider_data->fixed_divider != 1) {
1359 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1360 					      "%s_prediv", divider_data->name);
1361 		if (!divider_name)
1362 			return NULL;
1363 	} else {
1364 		divider_name = divider_data->name;
1365 	}
1366 
1367 	memset(&init, 0, sizeof(init));
1368 
1369 	init.parent_names = &divider_data->source_pll;
1370 	init.num_parents = 1;
1371 	init.name = divider_name;
1372 	init.ops = &bcm2835_pll_divider_clk_ops;
1373 	init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
1374 
1375 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1376 	if (!divider)
1377 		return NULL;
1378 
1379 	divider->div.reg = cprman->regs + divider_data->a2w_reg;
1380 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1381 	divider->div.width = A2W_PLL_DIV_BITS;
1382 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1383 	divider->div.lock = &cprman->regs_lock;
1384 	divider->div.hw.init = &init;
1385 	divider->div.table = NULL;
1386 
1387 	divider->cprman = cprman;
1388 	divider->data = divider_data;
1389 
1390 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1391 	if (ret)
1392 		return ERR_PTR(ret);
1393 
1394 	/*
1395 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1396 	 * is what our consumers are actually using.
1397 	 */
1398 	if (divider_data->fixed_divider != 1) {
1399 		return clk_hw_register_fixed_factor(cprman->dev,
1400 						    divider_data->name,
1401 						    divider_name,
1402 						    CLK_SET_RATE_PARENT,
1403 						    1,
1404 						    divider_data->fixed_divider);
1405 	}
1406 
1407 	return &divider->div.hw;
1408 }
1409 
1410 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1411 					     const void *data)
1412 {
1413 	const struct bcm2835_clock_data *clock_data = data;
1414 	struct bcm2835_clock *clock;
1415 	struct clk_init_data init;
1416 	const char *parents[1 << CM_SRC_BITS];
1417 	size_t i;
1418 	int ret;
1419 
1420 	/*
1421 	 * Replace our strings referencing parent clocks with the
1422 	 * actual clock-output-name of the parent.
1423 	 */
1424 	for (i = 0; i < clock_data->num_mux_parents; i++) {
1425 		parents[i] = clock_data->parents[i];
1426 
1427 		ret = match_string(cprman_parent_names,
1428 				   ARRAY_SIZE(cprman_parent_names),
1429 				   parents[i]);
1430 		if (ret >= 0)
1431 			parents[i] = cprman->real_parent_names[ret];
1432 	}
1433 
1434 	memset(&init, 0, sizeof(init));
1435 	init.parent_names = parents;
1436 	init.num_parents = clock_data->num_mux_parents;
1437 	init.name = clock_data->name;
1438 	init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
1439 
1440 	/*
1441 	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1442 	 * rate changes on at least of the parents.
1443 	 */
1444 	if (clock_data->set_rate_parent)
1445 		init.flags |= CLK_SET_RATE_PARENT;
1446 
1447 	if (clock_data->is_vpu_clock) {
1448 		init.ops = &bcm2835_vpu_clock_clk_ops;
1449 	} else {
1450 		init.ops = &bcm2835_clock_clk_ops;
1451 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1452 
1453 		/* If the clock wasn't actually enabled at boot, it's not
1454 		 * critical.
1455 		 */
1456 		if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE))
1457 			init.flags &= ~CLK_IS_CRITICAL;
1458 	}
1459 
1460 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1461 	if (!clock)
1462 		return NULL;
1463 
1464 	clock->cprman = cprman;
1465 	clock->data = clock_data;
1466 	clock->hw.init = &init;
1467 
1468 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1469 	if (ret)
1470 		return ERR_PTR(ret);
1471 	return &clock->hw;
1472 }
1473 
1474 static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1475 					    const void *data)
1476 {
1477 	const struct bcm2835_gate_data *gate_data = data;
1478 
1479 	return clk_hw_register_gate(cprman->dev, gate_data->name,
1480 				    gate_data->parent,
1481 				    CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1482 				    cprman->regs + gate_data->ctl_reg,
1483 				    CM_GATE_BIT, 0, &cprman->regs_lock);
1484 }
1485 
1486 struct bcm2835_clk_desc {
1487 	struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1488 				       const void *data);
1489 	unsigned int supported;
1490 	const void *data;
1491 };
1492 
1493 /* assignment helper macros for different clock types */
1494 #define _REGISTER(f, s, ...) { .clk_register = f, \
1495 			       .supported = s,				\
1496 			       .data = __VA_ARGS__ }
1497 #define REGISTER_PLL(s, ...)	_REGISTER(&bcm2835_register_pll,	\
1498 					  s,				\
1499 					  &(struct bcm2835_pll_data)	\
1500 					  {__VA_ARGS__})
1501 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1502 					   s,				  \
1503 					   &(struct bcm2835_pll_divider_data) \
1504 					   {__VA_ARGS__})
1505 #define REGISTER_CLK(s, ...)	_REGISTER(&bcm2835_register_clock,	\
1506 					  s,				\
1507 					  &(struct bcm2835_clock_data)	\
1508 					  {__VA_ARGS__})
1509 #define REGISTER_GATE(s, ...)	_REGISTER(&bcm2835_register_gate,	\
1510 					  s,				\
1511 					  &(struct bcm2835_gate_data)	\
1512 					  {__VA_ARGS__})
1513 
1514 /* parent mux arrays plus helper macros */
1515 
1516 /* main oscillator parent mux */
1517 static const char *const bcm2835_clock_osc_parents[] = {
1518 	"gnd",
1519 	"xosc",
1520 	"testdebug0",
1521 	"testdebug1"
1522 };
1523 
1524 #define REGISTER_OSC_CLK(s, ...)	REGISTER_CLK(			\
1525 	s,								\
1526 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1527 	.parents = bcm2835_clock_osc_parents,				\
1528 	__VA_ARGS__)
1529 
1530 /* main peripherial parent mux */
1531 static const char *const bcm2835_clock_per_parents[] = {
1532 	"gnd",
1533 	"xosc",
1534 	"testdebug0",
1535 	"testdebug1",
1536 	"plla_per",
1537 	"pllc_per",
1538 	"plld_per",
1539 	"pllh_aux",
1540 };
1541 
1542 #define REGISTER_PER_CLK(s, ...)	REGISTER_CLK(			\
1543 	s,								\
1544 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1545 	.parents = bcm2835_clock_per_parents,				\
1546 	__VA_ARGS__)
1547 
1548 /*
1549  * Restrict clock sources for the PCM peripheral to the oscillator and
1550  * PLLD_PER because other source may have varying rates or be switched
1551  * off.
1552  *
1553  * Prevent other sources from being selected by replacing their names in
1554  * the list of potential parents with dummy entries (entry index is
1555  * significant).
1556  */
1557 static const char *const bcm2835_pcm_per_parents[] = {
1558 	"-",
1559 	"xosc",
1560 	"-",
1561 	"-",
1562 	"-",
1563 	"-",
1564 	"plld_per",
1565 	"-",
1566 };
1567 
1568 #define REGISTER_PCM_CLK(s, ...)	REGISTER_CLK(			\
1569 	s,								\
1570 	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1571 	.parents = bcm2835_pcm_per_parents,				\
1572 	__VA_ARGS__)
1573 
1574 /* main vpu parent mux */
1575 static const char *const bcm2835_clock_vpu_parents[] = {
1576 	"gnd",
1577 	"xosc",
1578 	"testdebug0",
1579 	"testdebug1",
1580 	"plla_core",
1581 	"pllc_core0",
1582 	"plld_core",
1583 	"pllh_aux",
1584 	"pllc_core1",
1585 	"pllc_core2",
1586 };
1587 
1588 #define REGISTER_VPU_CLK(s, ...)	REGISTER_CLK(			\
1589 	s,								\
1590 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1591 	.parents = bcm2835_clock_vpu_parents,				\
1592 	__VA_ARGS__)
1593 
1594 /*
1595  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1596  * analog PHY.  The _inv variants are generated internally to cprman,
1597  * but we don't use them so they aren't hooked up.
1598  */
1599 static const char *const bcm2835_clock_dsi0_parents[] = {
1600 	"gnd",
1601 	"xosc",
1602 	"testdebug0",
1603 	"testdebug1",
1604 	"dsi0_ddr",
1605 	"dsi0_ddr_inv",
1606 	"dsi0_ddr2",
1607 	"dsi0_ddr2_inv",
1608 	"dsi0_byte",
1609 	"dsi0_byte_inv",
1610 };
1611 
1612 static const char *const bcm2835_clock_dsi1_parents[] = {
1613 	"gnd",
1614 	"xosc",
1615 	"testdebug0",
1616 	"testdebug1",
1617 	"dsi1_ddr",
1618 	"dsi1_ddr_inv",
1619 	"dsi1_ddr2",
1620 	"dsi1_ddr2_inv",
1621 	"dsi1_byte",
1622 	"dsi1_byte_inv",
1623 };
1624 
1625 #define REGISTER_DSI0_CLK(s, ...)	REGISTER_CLK(			\
1626 	s,								\
1627 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1628 	.parents = bcm2835_clock_dsi0_parents,				\
1629 	__VA_ARGS__)
1630 
1631 #define REGISTER_DSI1_CLK(s, ...)	REGISTER_CLK(			\
1632 	s,								\
1633 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1634 	.parents = bcm2835_clock_dsi1_parents,				\
1635 	__VA_ARGS__)
1636 
1637 /*
1638  * the real definition of all the pll, pll_dividers and clocks
1639  * these make use of the above REGISTER_* macros
1640  */
1641 static const struct bcm2835_clk_desc clk_desc_array[] = {
1642 	/* the PLL + PLL dividers */
1643 
1644 	/*
1645 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1646 	 * (Compact Camera Port 2) transmitter clock.
1647 	 *
1648 	 * It is in the PX LDO power domain, which is on when the
1649 	 * AUDIO domain is on.
1650 	 */
1651 	[BCM2835_PLLA]		= REGISTER_PLL(
1652 		SOC_ALL,
1653 		.name = "plla",
1654 		.cm_ctrl_reg = CM_PLLA,
1655 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1656 		.frac_reg = A2W_PLLA_FRAC,
1657 		.ana_reg_base = A2W_PLLA_ANA0,
1658 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1659 		.lock_mask = CM_LOCK_FLOCKA,
1660 
1661 		.ana = &bcm2835_ana_default,
1662 
1663 		.min_rate = 600000000u,
1664 		.max_rate = 2400000000u,
1665 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1666 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1667 		SOC_ALL,
1668 		.name = "plla_core",
1669 		.source_pll = "plla",
1670 		.cm_reg = CM_PLLA,
1671 		.a2w_reg = A2W_PLLA_CORE,
1672 		.load_mask = CM_PLLA_LOADCORE,
1673 		.hold_mask = CM_PLLA_HOLDCORE,
1674 		.fixed_divider = 1,
1675 		.flags = CLK_SET_RATE_PARENT),
1676 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1677 		SOC_ALL,
1678 		.name = "plla_per",
1679 		.source_pll = "plla",
1680 		.cm_reg = CM_PLLA,
1681 		.a2w_reg = A2W_PLLA_PER,
1682 		.load_mask = CM_PLLA_LOADPER,
1683 		.hold_mask = CM_PLLA_HOLDPER,
1684 		.fixed_divider = 1,
1685 		.flags = CLK_SET_RATE_PARENT),
1686 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1687 		SOC_ALL,
1688 		.name = "plla_dsi0",
1689 		.source_pll = "plla",
1690 		.cm_reg = CM_PLLA,
1691 		.a2w_reg = A2W_PLLA_DSI0,
1692 		.load_mask = CM_PLLA_LOADDSI0,
1693 		.hold_mask = CM_PLLA_HOLDDSI0,
1694 		.fixed_divider = 1),
1695 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1696 		SOC_ALL,
1697 		.name = "plla_ccp2",
1698 		.source_pll = "plla",
1699 		.cm_reg = CM_PLLA,
1700 		.a2w_reg = A2W_PLLA_CCP2,
1701 		.load_mask = CM_PLLA_LOADCCP2,
1702 		.hold_mask = CM_PLLA_HOLDCCP2,
1703 		.fixed_divider = 1,
1704 		.flags = CLK_SET_RATE_PARENT),
1705 
1706 	/* PLLB is used for the ARM's clock. */
1707 	[BCM2835_PLLB]		= REGISTER_PLL(
1708 		SOC_ALL,
1709 		.name = "pllb",
1710 		.cm_ctrl_reg = CM_PLLB,
1711 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1712 		.frac_reg = A2W_PLLB_FRAC,
1713 		.ana_reg_base = A2W_PLLB_ANA0,
1714 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1715 		.lock_mask = CM_LOCK_FLOCKB,
1716 
1717 		.ana = &bcm2835_ana_default,
1718 
1719 		.min_rate = 600000000u,
1720 		.max_rate = 3000000000u,
1721 		.max_fb_rate = BCM2835_MAX_FB_RATE,
1722 		.flags = CLK_GET_RATE_NOCACHE),
1723 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1724 		SOC_ALL,
1725 		.name = "pllb_arm",
1726 		.source_pll = "pllb",
1727 		.cm_reg = CM_PLLB,
1728 		.a2w_reg = A2W_PLLB_ARM,
1729 		.load_mask = CM_PLLB_LOADARM,
1730 		.hold_mask = CM_PLLB_HOLDARM,
1731 		.fixed_divider = 1,
1732 		.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
1733 
1734 	/*
1735 	 * PLLC is the core PLL, used to drive the core VPU clock.
1736 	 *
1737 	 * It is in the PX LDO power domain, which is on when the
1738 	 * AUDIO domain is on.
1739 	 */
1740 	[BCM2835_PLLC]		= REGISTER_PLL(
1741 		SOC_ALL,
1742 		.name = "pllc",
1743 		.cm_ctrl_reg = CM_PLLC,
1744 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1745 		.frac_reg = A2W_PLLC_FRAC,
1746 		.ana_reg_base = A2W_PLLC_ANA0,
1747 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1748 		.lock_mask = CM_LOCK_FLOCKC,
1749 
1750 		.ana = &bcm2835_ana_default,
1751 
1752 		.min_rate = 600000000u,
1753 		.max_rate = 3000000000u,
1754 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1755 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1756 		SOC_ALL,
1757 		.name = "pllc_core0",
1758 		.source_pll = "pllc",
1759 		.cm_reg = CM_PLLC,
1760 		.a2w_reg = A2W_PLLC_CORE0,
1761 		.load_mask = CM_PLLC_LOADCORE0,
1762 		.hold_mask = CM_PLLC_HOLDCORE0,
1763 		.fixed_divider = 1,
1764 		.flags = CLK_SET_RATE_PARENT),
1765 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1766 		SOC_ALL,
1767 		.name = "pllc_core1",
1768 		.source_pll = "pllc",
1769 		.cm_reg = CM_PLLC,
1770 		.a2w_reg = A2W_PLLC_CORE1,
1771 		.load_mask = CM_PLLC_LOADCORE1,
1772 		.hold_mask = CM_PLLC_HOLDCORE1,
1773 		.fixed_divider = 1,
1774 		.flags = CLK_SET_RATE_PARENT),
1775 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1776 		SOC_ALL,
1777 		.name = "pllc_core2",
1778 		.source_pll = "pllc",
1779 		.cm_reg = CM_PLLC,
1780 		.a2w_reg = A2W_PLLC_CORE2,
1781 		.load_mask = CM_PLLC_LOADCORE2,
1782 		.hold_mask = CM_PLLC_HOLDCORE2,
1783 		.fixed_divider = 1,
1784 		.flags = CLK_SET_RATE_PARENT),
1785 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1786 		SOC_ALL,
1787 		.name = "pllc_per",
1788 		.source_pll = "pllc",
1789 		.cm_reg = CM_PLLC,
1790 		.a2w_reg = A2W_PLLC_PER,
1791 		.load_mask = CM_PLLC_LOADPER,
1792 		.hold_mask = CM_PLLC_HOLDPER,
1793 		.fixed_divider = 1,
1794 		.flags = CLK_SET_RATE_PARENT),
1795 
1796 	/*
1797 	 * PLLD is the display PLL, used to drive DSI display panels.
1798 	 *
1799 	 * It is in the PX LDO power domain, which is on when the
1800 	 * AUDIO domain is on.
1801 	 */
1802 	[BCM2835_PLLD]		= REGISTER_PLL(
1803 		SOC_ALL,
1804 		.name = "plld",
1805 		.cm_ctrl_reg = CM_PLLD,
1806 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1807 		.frac_reg = A2W_PLLD_FRAC,
1808 		.ana_reg_base = A2W_PLLD_ANA0,
1809 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1810 		.lock_mask = CM_LOCK_FLOCKD,
1811 
1812 		.ana = &bcm2835_ana_default,
1813 
1814 		.min_rate = 600000000u,
1815 		.max_rate = 2400000000u,
1816 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1817 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1818 		SOC_ALL,
1819 		.name = "plld_core",
1820 		.source_pll = "plld",
1821 		.cm_reg = CM_PLLD,
1822 		.a2w_reg = A2W_PLLD_CORE,
1823 		.load_mask = CM_PLLD_LOADCORE,
1824 		.hold_mask = CM_PLLD_HOLDCORE,
1825 		.fixed_divider = 1,
1826 		.flags = CLK_SET_RATE_PARENT),
1827 	/*
1828 	 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1829 	 * Otherwise this could cause firmware lookups. That's why we mark
1830 	 * it as critical.
1831 	 */
1832 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1833 		SOC_ALL,
1834 		.name = "plld_per",
1835 		.source_pll = "plld",
1836 		.cm_reg = CM_PLLD,
1837 		.a2w_reg = A2W_PLLD_PER,
1838 		.load_mask = CM_PLLD_LOADPER,
1839 		.hold_mask = CM_PLLD_HOLDPER,
1840 		.fixed_divider = 1,
1841 		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1842 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1843 		SOC_ALL,
1844 		.name = "plld_dsi0",
1845 		.source_pll = "plld",
1846 		.cm_reg = CM_PLLD,
1847 		.a2w_reg = A2W_PLLD_DSI0,
1848 		.load_mask = CM_PLLD_LOADDSI0,
1849 		.hold_mask = CM_PLLD_HOLDDSI0,
1850 		.fixed_divider = 1),
1851 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1852 		SOC_ALL,
1853 		.name = "plld_dsi1",
1854 		.source_pll = "plld",
1855 		.cm_reg = CM_PLLD,
1856 		.a2w_reg = A2W_PLLD_DSI1,
1857 		.load_mask = CM_PLLD_LOADDSI1,
1858 		.hold_mask = CM_PLLD_HOLDDSI1,
1859 		.fixed_divider = 1),
1860 
1861 	/*
1862 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1863 	 * TV encoder.
1864 	 *
1865 	 * It is in the HDMI power domain.
1866 	 */
1867 	[BCM2835_PLLH]		= REGISTER_PLL(
1868 		SOC_BCM2835,
1869 		"pllh",
1870 		.cm_ctrl_reg = CM_PLLH,
1871 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1872 		.frac_reg = A2W_PLLH_FRAC,
1873 		.ana_reg_base = A2W_PLLH_ANA0,
1874 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1875 		.lock_mask = CM_LOCK_FLOCKH,
1876 
1877 		.ana = &bcm2835_ana_pllh,
1878 
1879 		.min_rate = 600000000u,
1880 		.max_rate = 3000000000u,
1881 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1882 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1883 		SOC_BCM2835,
1884 		.name = "pllh_rcal",
1885 		.source_pll = "pllh",
1886 		.cm_reg = CM_PLLH,
1887 		.a2w_reg = A2W_PLLH_RCAL,
1888 		.load_mask = CM_PLLH_LOADRCAL,
1889 		.hold_mask = 0,
1890 		.fixed_divider = 10,
1891 		.flags = CLK_SET_RATE_PARENT),
1892 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1893 		SOC_BCM2835,
1894 		.name = "pllh_aux",
1895 		.source_pll = "pllh",
1896 		.cm_reg = CM_PLLH,
1897 		.a2w_reg = A2W_PLLH_AUX,
1898 		.load_mask = CM_PLLH_LOADAUX,
1899 		.hold_mask = 0,
1900 		.fixed_divider = 1,
1901 		.flags = CLK_SET_RATE_PARENT),
1902 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1903 		SOC_BCM2835,
1904 		.name = "pllh_pix",
1905 		.source_pll = "pllh",
1906 		.cm_reg = CM_PLLH,
1907 		.a2w_reg = A2W_PLLH_PIX,
1908 		.load_mask = CM_PLLH_LOADPIX,
1909 		.hold_mask = 0,
1910 		.fixed_divider = 10,
1911 		.flags = CLK_SET_RATE_PARENT),
1912 
1913 	/* the clocks */
1914 
1915 	/* clocks with oscillator parent mux */
1916 
1917 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1918 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1919 		SOC_ALL,
1920 		.name = "otp",
1921 		.ctl_reg = CM_OTPCTL,
1922 		.div_reg = CM_OTPDIV,
1923 		.int_bits = 4,
1924 		.frac_bits = 0,
1925 		.tcnt_mux = 6),
1926 	/*
1927 	 * Used for a 1Mhz clock for the system clocksource, and also used
1928 	 * bythe watchdog timer and the camera pulse generator.
1929 	 */
1930 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1931 		SOC_ALL,
1932 		.name = "timer",
1933 		.ctl_reg = CM_TIMERCTL,
1934 		.div_reg = CM_TIMERDIV,
1935 		.int_bits = 6,
1936 		.frac_bits = 12),
1937 	/*
1938 	 * Clock for the temperature sensor.
1939 	 * Generally run at 2Mhz, max 5Mhz.
1940 	 */
1941 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1942 		SOC_ALL,
1943 		.name = "tsens",
1944 		.ctl_reg = CM_TSENSCTL,
1945 		.div_reg = CM_TSENSDIV,
1946 		.int_bits = 5,
1947 		.frac_bits = 0),
1948 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1949 		SOC_ALL,
1950 		.name = "tec",
1951 		.ctl_reg = CM_TECCTL,
1952 		.div_reg = CM_TECDIV,
1953 		.int_bits = 6,
1954 		.frac_bits = 0),
1955 
1956 	/* clocks with vpu parent mux */
1957 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1958 		SOC_ALL,
1959 		.name = "h264",
1960 		.ctl_reg = CM_H264CTL,
1961 		.div_reg = CM_H264DIV,
1962 		.int_bits = 4,
1963 		.frac_bits = 8,
1964 		.tcnt_mux = 1),
1965 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1966 		SOC_ALL,
1967 		.name = "isp",
1968 		.ctl_reg = CM_ISPCTL,
1969 		.div_reg = CM_ISPDIV,
1970 		.int_bits = 4,
1971 		.frac_bits = 8,
1972 		.tcnt_mux = 2),
1973 
1974 	/*
1975 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1976 	 * in the SDRAM controller can't be used.
1977 	 */
1978 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1979 		SOC_ALL,
1980 		.name = "sdram",
1981 		.ctl_reg = CM_SDCCTL,
1982 		.div_reg = CM_SDCDIV,
1983 		.int_bits = 6,
1984 		.frac_bits = 0,
1985 		.tcnt_mux = 3),
1986 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1987 		SOC_ALL,
1988 		.name = "v3d",
1989 		.ctl_reg = CM_V3DCTL,
1990 		.div_reg = CM_V3DDIV,
1991 		.int_bits = 4,
1992 		.frac_bits = 8,
1993 		.tcnt_mux = 4),
1994 	/*
1995 	 * VPU clock.  This doesn't have an enable bit, since it drives
1996 	 * the bus for everything else, and is special so it doesn't need
1997 	 * to be gated for rate changes.  It is also known as "clk_audio"
1998 	 * in various hardware documentation.
1999 	 */
2000 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
2001 		SOC_ALL,
2002 		.name = "vpu",
2003 		.ctl_reg = CM_VPUCTL,
2004 		.div_reg = CM_VPUDIV,
2005 		.int_bits = 12,
2006 		.frac_bits = 8,
2007 		.flags = CLK_IS_CRITICAL,
2008 		.is_vpu_clock = true,
2009 		.tcnt_mux = 5),
2010 
2011 	/* clocks with per parent mux */
2012 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
2013 		SOC_ALL,
2014 		.name = "aveo",
2015 		.ctl_reg = CM_AVEOCTL,
2016 		.div_reg = CM_AVEODIV,
2017 		.int_bits = 4,
2018 		.frac_bits = 0,
2019 		.tcnt_mux = 38),
2020 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
2021 		SOC_ALL,
2022 		.name = "cam0",
2023 		.ctl_reg = CM_CAM0CTL,
2024 		.div_reg = CM_CAM0DIV,
2025 		.int_bits = 4,
2026 		.frac_bits = 8,
2027 		.tcnt_mux = 14),
2028 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
2029 		SOC_ALL,
2030 		.name = "cam1",
2031 		.ctl_reg = CM_CAM1CTL,
2032 		.div_reg = CM_CAM1DIV,
2033 		.int_bits = 4,
2034 		.frac_bits = 8,
2035 		.tcnt_mux = 15),
2036 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
2037 		SOC_ALL,
2038 		.name = "dft",
2039 		.ctl_reg = CM_DFTCTL,
2040 		.div_reg = CM_DFTDIV,
2041 		.int_bits = 5,
2042 		.frac_bits = 0),
2043 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
2044 		SOC_ALL,
2045 		.name = "dpi",
2046 		.ctl_reg = CM_DPICTL,
2047 		.div_reg = CM_DPIDIV,
2048 		.int_bits = 4,
2049 		.frac_bits = 8,
2050 		.tcnt_mux = 17),
2051 
2052 	/* Arasan EMMC clock */
2053 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
2054 		SOC_ALL,
2055 		.name = "emmc",
2056 		.ctl_reg = CM_EMMCCTL,
2057 		.div_reg = CM_EMMCDIV,
2058 		.int_bits = 4,
2059 		.frac_bits = 8,
2060 		.tcnt_mux = 39),
2061 
2062 	/* EMMC2 clock (only available for BCM2711) */
2063 	[BCM2711_CLOCK_EMMC2]	= REGISTER_PER_CLK(
2064 		SOC_BCM2711,
2065 		.name = "emmc2",
2066 		.ctl_reg = CM_EMMC2CTL,
2067 		.div_reg = CM_EMMC2DIV,
2068 		.int_bits = 4,
2069 		.frac_bits = 8,
2070 		.tcnt_mux = 42),
2071 
2072 	/* General purpose (GPIO) clocks */
2073 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
2074 		SOC_ALL,
2075 		.name = "gp0",
2076 		.ctl_reg = CM_GP0CTL,
2077 		.div_reg = CM_GP0DIV,
2078 		.int_bits = 12,
2079 		.frac_bits = 12,
2080 		.is_mash_clock = true,
2081 		.tcnt_mux = 20),
2082 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
2083 		SOC_ALL,
2084 		.name = "gp1",
2085 		.ctl_reg = CM_GP1CTL,
2086 		.div_reg = CM_GP1DIV,
2087 		.int_bits = 12,
2088 		.frac_bits = 12,
2089 		.flags = CLK_IS_CRITICAL,
2090 		.is_mash_clock = true,
2091 		.tcnt_mux = 21),
2092 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
2093 		SOC_ALL,
2094 		.name = "gp2",
2095 		.ctl_reg = CM_GP2CTL,
2096 		.div_reg = CM_GP2DIV,
2097 		.int_bits = 12,
2098 		.frac_bits = 12,
2099 		.flags = CLK_IS_CRITICAL),
2100 
2101 	/* HDMI state machine */
2102 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2103 		SOC_ALL,
2104 		.name = "hsm",
2105 		.ctl_reg = CM_HSMCTL,
2106 		.div_reg = CM_HSMDIV,
2107 		.int_bits = 4,
2108 		.frac_bits = 8,
2109 		.tcnt_mux = 22),
2110 	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2111 		SOC_ALL,
2112 		.name = "pcm",
2113 		.ctl_reg = CM_PCMCTL,
2114 		.div_reg = CM_PCMDIV,
2115 		.int_bits = 12,
2116 		.frac_bits = 12,
2117 		.is_mash_clock = true,
2118 		.low_jitter = true,
2119 		.tcnt_mux = 23),
2120 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2121 		SOC_ALL,
2122 		.name = "pwm",
2123 		.ctl_reg = CM_PWMCTL,
2124 		.div_reg = CM_PWMDIV,
2125 		.int_bits = 12,
2126 		.frac_bits = 12,
2127 		.is_mash_clock = true,
2128 		.tcnt_mux = 24),
2129 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2130 		SOC_ALL,
2131 		.name = "slim",
2132 		.ctl_reg = CM_SLIMCTL,
2133 		.div_reg = CM_SLIMDIV,
2134 		.int_bits = 12,
2135 		.frac_bits = 12,
2136 		.is_mash_clock = true,
2137 		.tcnt_mux = 25),
2138 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2139 		SOC_ALL,
2140 		.name = "smi",
2141 		.ctl_reg = CM_SMICTL,
2142 		.div_reg = CM_SMIDIV,
2143 		.int_bits = 4,
2144 		.frac_bits = 8,
2145 		.tcnt_mux = 27),
2146 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2147 		SOC_ALL,
2148 		.name = "uart",
2149 		.ctl_reg = CM_UARTCTL,
2150 		.div_reg = CM_UARTDIV,
2151 		.int_bits = 10,
2152 		.frac_bits = 12,
2153 		.tcnt_mux = 28),
2154 
2155 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2156 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2157 		SOC_ALL,
2158 		.name = "vec",
2159 		.ctl_reg = CM_VECCTL,
2160 		.div_reg = CM_VECDIV,
2161 		.int_bits = 4,
2162 		.frac_bits = 0,
2163 		/*
2164 		 * Allow rate change propagation only on PLLH_AUX which is
2165 		 * assigned index 7 in the parent array.
2166 		 */
2167 		.set_rate_parent = BIT(7),
2168 		.tcnt_mux = 29),
2169 
2170 	/* dsi clocks */
2171 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2172 		SOC_ALL,
2173 		.name = "dsi0e",
2174 		.ctl_reg = CM_DSI0ECTL,
2175 		.div_reg = CM_DSI0EDIV,
2176 		.int_bits = 4,
2177 		.frac_bits = 8,
2178 		.tcnt_mux = 18),
2179 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2180 		SOC_ALL,
2181 		.name = "dsi1e",
2182 		.ctl_reg = CM_DSI1ECTL,
2183 		.div_reg = CM_DSI1EDIV,
2184 		.int_bits = 4,
2185 		.frac_bits = 8,
2186 		.tcnt_mux = 19),
2187 	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2188 		SOC_ALL,
2189 		.name = "dsi0p",
2190 		.ctl_reg = CM_DSI0PCTL,
2191 		.div_reg = CM_DSI0PDIV,
2192 		.int_bits = 0,
2193 		.frac_bits = 0,
2194 		.tcnt_mux = 12),
2195 	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2196 		SOC_ALL,
2197 		.name = "dsi1p",
2198 		.ctl_reg = CM_DSI1PCTL,
2199 		.div_reg = CM_DSI1PDIV,
2200 		.int_bits = 0,
2201 		.frac_bits = 0,
2202 		.tcnt_mux = 13),
2203 
2204 	/* the gates */
2205 
2206 	/*
2207 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2208 	 * you have the debug bit set in the power manager, which we
2209 	 * don't bother exposing) are individual gates off of the
2210 	 * non-stop vpu clock.
2211 	 */
2212 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2213 		SOC_ALL,
2214 		.name = "peri_image",
2215 		.parent = "vpu",
2216 		.ctl_reg = CM_PERIICTL),
2217 };
2218 
2219 /*
2220  * Permanently take a reference on the parent of the SDRAM clock.
2221  *
2222  * While the SDRAM is being driven by its dedicated PLL most of the
2223  * time, there is a little loop running in the firmware that
2224  * periodically switches the SDRAM to using our CM clock to do PVT
2225  * recalibration, with the assumption that the previously configured
2226  * SDRAM parent is still enabled and running.
2227  */
2228 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2229 {
2230 	struct clk *parent = clk_get_parent(sdc);
2231 
2232 	if (IS_ERR(parent))
2233 		return PTR_ERR(parent);
2234 
2235 	return clk_prepare_enable(parent);
2236 }
2237 
2238 static int bcm2835_clk_probe(struct platform_device *pdev)
2239 {
2240 	struct device *dev = &pdev->dev;
2241 	struct clk_hw **hws;
2242 	struct bcm2835_cprman *cprman;
2243 	const struct bcm2835_clk_desc *desc;
2244 	const size_t asize = ARRAY_SIZE(clk_desc_array);
2245 	const struct cprman_plat_data *pdata;
2246 	size_t i;
2247 	int ret;
2248 
2249 	pdata = of_device_get_match_data(&pdev->dev);
2250 	if (!pdata)
2251 		return -ENODEV;
2252 
2253 	cprman = devm_kzalloc(dev,
2254 			      struct_size(cprman, onecell.hws, asize),
2255 			      GFP_KERNEL);
2256 	if (!cprman)
2257 		return -ENOMEM;
2258 
2259 	spin_lock_init(&cprman->regs_lock);
2260 	cprman->dev = dev;
2261 	cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2262 	if (IS_ERR(cprman->regs))
2263 		return PTR_ERR(cprman->regs);
2264 
2265 	memcpy(cprman->real_parent_names, cprman_parent_names,
2266 	       sizeof(cprman_parent_names));
2267 	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2268 			   ARRAY_SIZE(cprman_parent_names));
2269 
2270 	/*
2271 	 * Make sure the external oscillator has been registered.
2272 	 *
2273 	 * The other (DSI) clocks are not present on older device
2274 	 * trees, which we still need to support for backwards
2275 	 * compatibility.
2276 	 */
2277 	if (!cprman->real_parent_names[0])
2278 		return -ENODEV;
2279 
2280 	platform_set_drvdata(pdev, cprman);
2281 
2282 	cprman->onecell.num = asize;
2283 	cprman->soc = pdata->soc;
2284 	hws = cprman->onecell.hws;
2285 
2286 	for (i = 0; i < asize; i++) {
2287 		desc = &clk_desc_array[i];
2288 		if (desc->clk_register && desc->data &&
2289 		    (desc->supported & pdata->soc)) {
2290 			hws[i] = desc->clk_register(cprman, desc->data);
2291 		}
2292 	}
2293 
2294 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2295 	if (ret)
2296 		return ret;
2297 
2298 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2299 				      &cprman->onecell);
2300 }
2301 
2302 static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2303 	.soc = SOC_BCM2835,
2304 };
2305 
2306 static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2307 	.soc = SOC_BCM2711,
2308 };
2309 
2310 static const struct of_device_id bcm2835_clk_of_match[] = {
2311 	{ .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2312 	{ .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2313 	{}
2314 };
2315 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2316 
2317 static struct platform_driver bcm2835_clk_driver = {
2318 	.driver = {
2319 		.name = "bcm2835-clk",
2320 		.of_match_table = bcm2835_clk_of_match,
2321 	},
2322 	.probe          = bcm2835_clk_probe,
2323 };
2324 
2325 builtin_platform_driver(bcm2835_clk_driver);
2326 
2327 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2328 MODULE_DESCRIPTION("BCM2835 clock driver");
2329 MODULE_LICENSE("GPL");
2330