xref: /linux/drivers/char/xillybus/xillybus_core.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/drivers/misc/xillybus_core.c
4  *
5  * Copyright 2011 Xillybus Ltd, http://xillybus.com
6  *
7  * Driver for the Xillybus FPGA/host framework.
8  *
9  * This driver interfaces with a special IP core in an FPGA, setting up
10  * a pipe between a hardware FIFO in the programmable logic and a device
11  * file in the host. The number of such pipes and their attributes are
12  * set up on the logic. This driver detects these automatically and
13  * creates the device files accordingly.
14  */
15 
16 #include <linux/list.h>
17 #include <linux/device.h>
18 #include <linux/module.h>
19 #include <linux/io.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/cdev.h>
25 #include <linux/spinlock.h>
26 #include <linux/mutex.h>
27 #include <linux/crc32.h>
28 #include <linux/poll.h>
29 #include <linux/delay.h>
30 #include <linux/slab.h>
31 #include <linux/workqueue.h>
32 #include "xillybus.h"
33 
34 MODULE_DESCRIPTION("Xillybus core functions");
35 MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
36 MODULE_VERSION("1.07");
37 MODULE_ALIAS("xillybus_core");
38 MODULE_LICENSE("GPL v2");
39 
40 /* General timeout is 100 ms, rx timeout is 10 ms */
41 #define XILLY_RX_TIMEOUT (10*HZ/1000)
42 #define XILLY_TIMEOUT (100*HZ/1000)
43 
44 #define fpga_msg_ctrl_reg              0x0008
45 #define fpga_dma_control_reg           0x0020
46 #define fpga_dma_bufno_reg             0x0024
47 #define fpga_dma_bufaddr_lowaddr_reg   0x0028
48 #define fpga_dma_bufaddr_highaddr_reg  0x002c
49 #define fpga_buf_ctrl_reg              0x0030
50 #define fpga_buf_offset_reg            0x0034
51 #define fpga_endian_reg                0x0040
52 
53 #define XILLYMSG_OPCODE_RELEASEBUF 1
54 #define XILLYMSG_OPCODE_QUIESCEACK 2
55 #define XILLYMSG_OPCODE_FIFOEOF 3
56 #define XILLYMSG_OPCODE_FATAL_ERROR 4
57 #define XILLYMSG_OPCODE_NONEMPTY 5
58 
59 static const char xillyname[] = "xillybus";
60 
61 static struct class *xillybus_class;
62 
63 /*
64  * ep_list_lock is the last lock to be taken; No other lock requests are
65  * allowed while holding it. It merely protects list_of_endpoints, and not
66  * the endpoints listed in it.
67  */
68 
69 static LIST_HEAD(list_of_endpoints);
70 static struct mutex ep_list_lock;
71 static struct workqueue_struct *xillybus_wq;
72 
73 /*
74  * Locking scheme: Mutexes protect invocations of character device methods.
75  * If both locks are taken, wr_mutex is taken first, rd_mutex second.
76  *
77  * wr_spinlock protects wr_*_buf_idx, wr_empty, wr_sleepy, wr_ready and the
78  * buffers' end_offset fields against changes made by IRQ handler (and in
79  * theory, other file request handlers, but the mutex handles that). Nothing
80  * else.
81  * They are held for short direct memory manipulations. Needless to say,
82  * no mutex locking is allowed when a spinlock is held.
83  *
84  * rd_spinlock does the same with rd_*_buf_idx, rd_empty and end_offset.
85  *
86  * register_mutex is endpoint-specific, and is held when non-atomic
87  * register operations are performed. wr_mutex and rd_mutex may be
88  * held when register_mutex is taken, but none of the spinlocks. Note that
89  * register_mutex doesn't protect against sporadic buf_ctrl_reg writes
90  * which are unrelated to buf_offset_reg, since they are harmless.
91  *
92  * Blocking on the wait queues is allowed with mutexes held, but not with
93  * spinlocks.
94  *
95  * Only interruptible blocking is allowed on mutexes and wait queues.
96  *
97  * All in all, the locking order goes (with skips allowed, of course):
98  * wr_mutex -> rd_mutex -> register_mutex -> wr_spinlock -> rd_spinlock
99  */
100 
101 static void malformed_message(struct xilly_endpoint *endpoint, u32 *buf)
102 {
103 	int opcode;
104 	int msg_channel, msg_bufno, msg_data, msg_dir;
105 
106 	opcode = (buf[0] >> 24) & 0xff;
107 	msg_dir = buf[0] & 1;
108 	msg_channel = (buf[0] >> 1) & 0x7ff;
109 	msg_bufno = (buf[0] >> 12) & 0x3ff;
110 	msg_data = buf[1] & 0xfffffff;
111 
112 	dev_warn(endpoint->dev,
113 		 "Malformed message (skipping): opcode=%d, channel=%03x, dir=%d, bufno=%03x, data=%07x\n",
114 		 opcode, msg_channel, msg_dir, msg_bufno, msg_data);
115 }
116 
117 /*
118  * xillybus_isr assumes the interrupt is allocated exclusively to it,
119  * which is the natural case MSI and several other hardware-oriented
120  * interrupts. Sharing is not allowed.
121  */
122 
123 irqreturn_t xillybus_isr(int irq, void *data)
124 {
125 	struct xilly_endpoint *ep = data;
126 	u32 *buf;
127 	unsigned int buf_size;
128 	int i;
129 	int opcode;
130 	unsigned int msg_channel, msg_bufno, msg_data, msg_dir;
131 	struct xilly_channel *channel;
132 
133 	buf = ep->msgbuf_addr;
134 	buf_size = ep->msg_buf_size/sizeof(u32);
135 
136 	ep->ephw->hw_sync_sgl_for_cpu(ep,
137 				      ep->msgbuf_dma_addr,
138 				      ep->msg_buf_size,
139 				      DMA_FROM_DEVICE);
140 
141 	for (i = 0; i < buf_size; i += 2) {
142 		if (((buf[i+1] >> 28) & 0xf) != ep->msg_counter) {
143 			malformed_message(ep, &buf[i]);
144 			dev_warn(ep->dev,
145 				 "Sending a NACK on counter %x (instead of %x) on entry %d\n",
146 				 ((buf[i+1] >> 28) & 0xf),
147 				 ep->msg_counter,
148 				 i/2);
149 
150 			if (++ep->failed_messages > 10) {
151 				dev_err(ep->dev,
152 					"Lost sync with interrupt messages. Stopping.\n");
153 			} else {
154 				ep->ephw->hw_sync_sgl_for_device(
155 					ep,
156 					ep->msgbuf_dma_addr,
157 					ep->msg_buf_size,
158 					DMA_FROM_DEVICE);
159 
160 				iowrite32(0x01,  /* Message NACK */
161 					  ep->registers + fpga_msg_ctrl_reg);
162 			}
163 			return IRQ_HANDLED;
164 		} else if (buf[i] & (1 << 22)) /* Last message */
165 			break;
166 	}
167 
168 	if (i >= buf_size) {
169 		dev_err(ep->dev, "Bad interrupt message. Stopping.\n");
170 		return IRQ_HANDLED;
171 	}
172 
173 	buf_size = i + 2;
174 
175 	for (i = 0; i < buf_size; i += 2) { /* Scan through messages */
176 		opcode = (buf[i] >> 24) & 0xff;
177 
178 		msg_dir = buf[i] & 1;
179 		msg_channel = (buf[i] >> 1) & 0x7ff;
180 		msg_bufno = (buf[i] >> 12) & 0x3ff;
181 		msg_data = buf[i+1] & 0xfffffff;
182 
183 		switch (opcode) {
184 		case XILLYMSG_OPCODE_RELEASEBUF:
185 			if ((msg_channel > ep->num_channels) ||
186 			    (msg_channel == 0)) {
187 				malformed_message(ep, &buf[i]);
188 				break;
189 			}
190 
191 			channel = ep->channels[msg_channel];
192 
193 			if (msg_dir) { /* Write channel */
194 				if (msg_bufno >= channel->num_wr_buffers) {
195 					malformed_message(ep, &buf[i]);
196 					break;
197 				}
198 				spin_lock(&channel->wr_spinlock);
199 				channel->wr_buffers[msg_bufno]->end_offset =
200 					msg_data;
201 				channel->wr_fpga_buf_idx = msg_bufno;
202 				channel->wr_empty = 0;
203 				channel->wr_sleepy = 0;
204 				spin_unlock(&channel->wr_spinlock);
205 
206 				wake_up_interruptible(&channel->wr_wait);
207 
208 			} else {
209 				/* Read channel */
210 
211 				if (msg_bufno >= channel->num_rd_buffers) {
212 					malformed_message(ep, &buf[i]);
213 					break;
214 				}
215 
216 				spin_lock(&channel->rd_spinlock);
217 				channel->rd_fpga_buf_idx = msg_bufno;
218 				channel->rd_full = 0;
219 				spin_unlock(&channel->rd_spinlock);
220 
221 				wake_up_interruptible(&channel->rd_wait);
222 				if (!channel->rd_synchronous)
223 					queue_delayed_work(
224 						xillybus_wq,
225 						&channel->rd_workitem,
226 						XILLY_RX_TIMEOUT);
227 			}
228 
229 			break;
230 		case XILLYMSG_OPCODE_NONEMPTY:
231 			if ((msg_channel > ep->num_channels) ||
232 			    (msg_channel == 0) || (!msg_dir) ||
233 			    !ep->channels[msg_channel]->wr_supports_nonempty) {
234 				malformed_message(ep, &buf[i]);
235 				break;
236 			}
237 
238 			channel = ep->channels[msg_channel];
239 
240 			if (msg_bufno >= channel->num_wr_buffers) {
241 				malformed_message(ep, &buf[i]);
242 				break;
243 			}
244 			spin_lock(&channel->wr_spinlock);
245 			if (msg_bufno == channel->wr_host_buf_idx)
246 				channel->wr_ready = 1;
247 			spin_unlock(&channel->wr_spinlock);
248 
249 			wake_up_interruptible(&channel->wr_ready_wait);
250 
251 			break;
252 		case XILLYMSG_OPCODE_QUIESCEACK:
253 			ep->idtlen = msg_data;
254 			wake_up_interruptible(&ep->ep_wait);
255 
256 			break;
257 		case XILLYMSG_OPCODE_FIFOEOF:
258 			if ((msg_channel > ep->num_channels) ||
259 			    (msg_channel == 0) || (!msg_dir) ||
260 			    !ep->channels[msg_channel]->num_wr_buffers) {
261 				malformed_message(ep, &buf[i]);
262 				break;
263 			}
264 			channel = ep->channels[msg_channel];
265 			spin_lock(&channel->wr_spinlock);
266 			channel->wr_eof = msg_bufno;
267 			channel->wr_sleepy = 0;
268 
269 			channel->wr_hangup = channel->wr_empty &&
270 				(channel->wr_host_buf_idx == msg_bufno);
271 
272 			spin_unlock(&channel->wr_spinlock);
273 
274 			wake_up_interruptible(&channel->wr_wait);
275 
276 			break;
277 		case XILLYMSG_OPCODE_FATAL_ERROR:
278 			ep->fatal_error = 1;
279 			wake_up_interruptible(&ep->ep_wait); /* For select() */
280 			dev_err(ep->dev,
281 				"FPGA reported a fatal error. This means that the low-level communication with the device has failed. This hardware problem is most likely unrelated to Xillybus (neither kernel module nor FPGA core), but reports are still welcome. All I/O is aborted.\n");
282 			break;
283 		default:
284 			malformed_message(ep, &buf[i]);
285 			break;
286 		}
287 	}
288 
289 	ep->ephw->hw_sync_sgl_for_device(ep,
290 					 ep->msgbuf_dma_addr,
291 					 ep->msg_buf_size,
292 					 DMA_FROM_DEVICE);
293 
294 	ep->msg_counter = (ep->msg_counter + 1) & 0xf;
295 	ep->failed_messages = 0;
296 	iowrite32(0x03, ep->registers + fpga_msg_ctrl_reg); /* Message ACK */
297 
298 	return IRQ_HANDLED;
299 }
300 EXPORT_SYMBOL(xillybus_isr);
301 
302 /*
303  * A few trivial memory management functions.
304  * NOTE: These functions are used only on probe and remove, and therefore
305  * no locks are applied!
306  */
307 
308 static void xillybus_autoflush(struct work_struct *work);
309 
310 struct xilly_alloc_state {
311 	void *salami;
312 	int left_of_salami;
313 	int nbuffer;
314 	enum dma_data_direction direction;
315 	u32 regdirection;
316 };
317 
318 static int xilly_get_dma_buffers(struct xilly_endpoint *ep,
319 				 struct xilly_alloc_state *s,
320 				 struct xilly_buffer **buffers,
321 				 int bufnum, int bytebufsize)
322 {
323 	int i, rc;
324 	dma_addr_t dma_addr;
325 	struct device *dev = ep->dev;
326 	struct xilly_buffer *this_buffer = NULL; /* Init to silence warning */
327 
328 	if (buffers) { /* Not the message buffer */
329 		this_buffer = devm_kcalloc(dev, bufnum,
330 					   sizeof(struct xilly_buffer),
331 					   GFP_KERNEL);
332 		if (!this_buffer)
333 			return -ENOMEM;
334 	}
335 
336 	for (i = 0; i < bufnum; i++) {
337 		/*
338 		 * Buffers are expected in descending size order, so there
339 		 * is either enough space for this buffer or none at all.
340 		 */
341 
342 		if ((s->left_of_salami < bytebufsize) &&
343 		    (s->left_of_salami > 0)) {
344 			dev_err(ep->dev,
345 				"Corrupt buffer allocation in IDT. Aborting.\n");
346 			return -ENODEV;
347 		}
348 
349 		if (s->left_of_salami == 0) {
350 			int allocorder, allocsize;
351 
352 			allocsize = PAGE_SIZE;
353 			allocorder = 0;
354 			while (bytebufsize > allocsize) {
355 				allocsize *= 2;
356 				allocorder++;
357 			}
358 
359 			s->salami = (void *) devm_get_free_pages(
360 				dev,
361 				GFP_KERNEL | __GFP_DMA32 | __GFP_ZERO,
362 				allocorder);
363 			if (!s->salami)
364 				return -ENOMEM;
365 
366 			s->left_of_salami = allocsize;
367 		}
368 
369 		rc = ep->ephw->map_single(ep, s->salami,
370 					  bytebufsize, s->direction,
371 					  &dma_addr);
372 		if (rc)
373 			return rc;
374 
375 		iowrite32((u32) (dma_addr & 0xffffffff),
376 			  ep->registers + fpga_dma_bufaddr_lowaddr_reg);
377 		iowrite32(((u32) ((((u64) dma_addr) >> 32) & 0xffffffff)),
378 			  ep->registers + fpga_dma_bufaddr_highaddr_reg);
379 
380 		if (buffers) { /* Not the message buffer */
381 			this_buffer->addr = s->salami;
382 			this_buffer->dma_addr = dma_addr;
383 			buffers[i] = this_buffer++;
384 
385 			iowrite32(s->regdirection | s->nbuffer++,
386 				  ep->registers + fpga_dma_bufno_reg);
387 		} else {
388 			ep->msgbuf_addr = s->salami;
389 			ep->msgbuf_dma_addr = dma_addr;
390 			ep->msg_buf_size = bytebufsize;
391 
392 			iowrite32(s->regdirection,
393 				  ep->registers + fpga_dma_bufno_reg);
394 		}
395 
396 		s->left_of_salami -= bytebufsize;
397 		s->salami += bytebufsize;
398 	}
399 	return 0;
400 }
401 
402 static int xilly_setupchannels(struct xilly_endpoint *ep,
403 			       unsigned char *chandesc,
404 			       int entries)
405 {
406 	struct device *dev = ep->dev;
407 	int i, entry, rc;
408 	struct xilly_channel *channel;
409 	int channelnum, bufnum, bufsize, format, is_writebuf;
410 	int bytebufsize;
411 	int synchronous, allowpartial, exclusive_open, seekable;
412 	int supports_nonempty;
413 	int msg_buf_done = 0;
414 
415 	struct xilly_alloc_state rd_alloc = {
416 		.salami = NULL,
417 		.left_of_salami = 0,
418 		.nbuffer = 1,
419 		.direction = DMA_TO_DEVICE,
420 		.regdirection = 0,
421 	};
422 
423 	struct xilly_alloc_state wr_alloc = {
424 		.salami = NULL,
425 		.left_of_salami = 0,
426 		.nbuffer = 1,
427 		.direction = DMA_FROM_DEVICE,
428 		.regdirection = 0x80000000,
429 	};
430 
431 	channel = devm_kcalloc(dev, ep->num_channels,
432 			       sizeof(struct xilly_channel), GFP_KERNEL);
433 	if (!channel)
434 		return -ENOMEM;
435 
436 	ep->channels = devm_kcalloc(dev, ep->num_channels + 1,
437 				    sizeof(struct xilly_channel *),
438 				    GFP_KERNEL);
439 	if (!ep->channels)
440 		return -ENOMEM;
441 
442 	ep->channels[0] = NULL; /* Channel 0 is message buf. */
443 
444 	/* Initialize all channels with defaults */
445 
446 	for (i = 1; i <= ep->num_channels; i++) {
447 		channel->wr_buffers = NULL;
448 		channel->rd_buffers = NULL;
449 		channel->num_wr_buffers = 0;
450 		channel->num_rd_buffers = 0;
451 		channel->wr_fpga_buf_idx = -1;
452 		channel->wr_host_buf_idx = 0;
453 		channel->wr_host_buf_pos = 0;
454 		channel->wr_empty = 1;
455 		channel->wr_ready = 0;
456 		channel->wr_sleepy = 1;
457 		channel->rd_fpga_buf_idx = 0;
458 		channel->rd_host_buf_idx = 0;
459 		channel->rd_host_buf_pos = 0;
460 		channel->rd_full = 0;
461 		channel->wr_ref_count = 0;
462 		channel->rd_ref_count = 0;
463 
464 		spin_lock_init(&channel->wr_spinlock);
465 		spin_lock_init(&channel->rd_spinlock);
466 		mutex_init(&channel->wr_mutex);
467 		mutex_init(&channel->rd_mutex);
468 		init_waitqueue_head(&channel->rd_wait);
469 		init_waitqueue_head(&channel->wr_wait);
470 		init_waitqueue_head(&channel->wr_ready_wait);
471 
472 		INIT_DELAYED_WORK(&channel->rd_workitem, xillybus_autoflush);
473 
474 		channel->endpoint = ep;
475 		channel->chan_num = i;
476 
477 		channel->log2_element_size = 0;
478 
479 		ep->channels[i] = channel++;
480 	}
481 
482 	for (entry = 0; entry < entries; entry++, chandesc += 4) {
483 		struct xilly_buffer **buffers = NULL;
484 
485 		is_writebuf = chandesc[0] & 0x01;
486 		channelnum = (chandesc[0] >> 1) | ((chandesc[1] & 0x0f) << 7);
487 		format = (chandesc[1] >> 4) & 0x03;
488 		allowpartial = (chandesc[1] >> 6) & 0x01;
489 		synchronous = (chandesc[1] >> 7) & 0x01;
490 		bufsize = 1 << (chandesc[2] & 0x1f);
491 		bufnum = 1 << (chandesc[3] & 0x0f);
492 		exclusive_open = (chandesc[2] >> 7) & 0x01;
493 		seekable = (chandesc[2] >> 6) & 0x01;
494 		supports_nonempty = (chandesc[2] >> 5) & 0x01;
495 
496 		if ((channelnum > ep->num_channels) ||
497 		    ((channelnum == 0) && !is_writebuf)) {
498 			dev_err(ep->dev,
499 				"IDT requests channel out of range. Aborting.\n");
500 			return -ENODEV;
501 		}
502 
503 		channel = ep->channels[channelnum]; /* NULL for msg channel */
504 
505 		if (!is_writebuf || channelnum > 0) {
506 			channel->log2_element_size = ((format > 2) ?
507 						      2 : format);
508 
509 			bytebufsize = bufsize *
510 				(1 << channel->log2_element_size);
511 
512 			buffers = devm_kcalloc(dev, bufnum,
513 					       sizeof(struct xilly_buffer *),
514 					       GFP_KERNEL);
515 			if (!buffers)
516 				return -ENOMEM;
517 		} else {
518 			bytebufsize = bufsize << 2;
519 		}
520 
521 		if (!is_writebuf) {
522 			channel->num_rd_buffers = bufnum;
523 			channel->rd_buf_size = bytebufsize;
524 			channel->rd_allow_partial = allowpartial;
525 			channel->rd_synchronous = synchronous;
526 			channel->rd_exclusive_open = exclusive_open;
527 			channel->seekable = seekable;
528 
529 			channel->rd_buffers = buffers;
530 			rc = xilly_get_dma_buffers(ep, &rd_alloc, buffers,
531 						   bufnum, bytebufsize);
532 		} else if (channelnum > 0) {
533 			channel->num_wr_buffers = bufnum;
534 			channel->wr_buf_size = bytebufsize;
535 
536 			channel->seekable = seekable;
537 			channel->wr_supports_nonempty = supports_nonempty;
538 
539 			channel->wr_allow_partial = allowpartial;
540 			channel->wr_synchronous = synchronous;
541 			channel->wr_exclusive_open = exclusive_open;
542 
543 			channel->wr_buffers = buffers;
544 			rc = xilly_get_dma_buffers(ep, &wr_alloc, buffers,
545 						   bufnum, bytebufsize);
546 		} else {
547 			rc = xilly_get_dma_buffers(ep, &wr_alloc, NULL,
548 						   bufnum, bytebufsize);
549 			msg_buf_done++;
550 		}
551 
552 		if (rc)
553 			return -ENOMEM;
554 	}
555 
556 	if (!msg_buf_done) {
557 		dev_err(ep->dev,
558 			"Corrupt IDT: No message buffer. Aborting.\n");
559 		return -ENODEV;
560 	}
561 	return 0;
562 }
563 
564 static int xilly_scan_idt(struct xilly_endpoint *endpoint,
565 			  struct xilly_idt_handle *idt_handle)
566 {
567 	int count = 0;
568 	unsigned char *idt = endpoint->channels[1]->wr_buffers[0]->addr;
569 	unsigned char *end_of_idt = idt + endpoint->idtlen - 4;
570 	unsigned char *scan;
571 	int len;
572 
573 	scan = idt;
574 	idt_handle->idt = idt;
575 
576 	scan++; /* Skip version number */
577 
578 	while ((scan <= end_of_idt) && *scan) {
579 		while ((scan <= end_of_idt) && *scan++)
580 			/* Do nothing, just scan thru string */;
581 		count++;
582 	}
583 
584 	scan++;
585 
586 	if (scan > end_of_idt) {
587 		dev_err(endpoint->dev,
588 			"IDT device name list overflow. Aborting.\n");
589 		return -ENODEV;
590 	}
591 	idt_handle->chandesc = scan;
592 
593 	len = endpoint->idtlen - (3 + ((int) (scan - idt)));
594 
595 	if (len & 0x03) {
596 		dev_err(endpoint->dev,
597 			"Corrupt IDT device name list. Aborting.\n");
598 		return -ENODEV;
599 	}
600 
601 	idt_handle->entries = len >> 2;
602 	endpoint->num_channels = count;
603 
604 	return 0;
605 }
606 
607 static int xilly_obtain_idt(struct xilly_endpoint *endpoint)
608 {
609 	struct xilly_channel *channel;
610 	unsigned char *version;
611 	long t;
612 
613 	channel = endpoint->channels[1]; /* This should be generated ad-hoc */
614 
615 	channel->wr_sleepy = 1;
616 
617 	iowrite32(1 |
618 		  (3 << 24), /* Opcode 3 for channel 0 = Send IDT */
619 		  endpoint->registers + fpga_buf_ctrl_reg);
620 
621 	t = wait_event_interruptible_timeout(channel->wr_wait,
622 					     (!channel->wr_sleepy),
623 					     XILLY_TIMEOUT);
624 
625 	if (t <= 0) {
626 		dev_err(endpoint->dev, "Failed to obtain IDT. Aborting.\n");
627 
628 		if (endpoint->fatal_error)
629 			return -EIO;
630 
631 		return -ENODEV;
632 	}
633 
634 	endpoint->ephw->hw_sync_sgl_for_cpu(
635 		channel->endpoint,
636 		channel->wr_buffers[0]->dma_addr,
637 		channel->wr_buf_size,
638 		DMA_FROM_DEVICE);
639 
640 	if (channel->wr_buffers[0]->end_offset != endpoint->idtlen) {
641 		dev_err(endpoint->dev,
642 			"IDT length mismatch (%d != %d). Aborting.\n",
643 			channel->wr_buffers[0]->end_offset, endpoint->idtlen);
644 		return -ENODEV;
645 	}
646 
647 	if (crc32_le(~0, channel->wr_buffers[0]->addr,
648 		     endpoint->idtlen+1) != 0) {
649 		dev_err(endpoint->dev, "IDT failed CRC check. Aborting.\n");
650 		return -ENODEV;
651 	}
652 
653 	version = channel->wr_buffers[0]->addr;
654 
655 	/* Check version number. Reject anything above 0x82. */
656 	if (*version > 0x82) {
657 		dev_err(endpoint->dev,
658 			"No support for IDT version 0x%02x. Maybe the xillybus driver needs an upgrade. Aborting.\n",
659 			*version);
660 		return -ENODEV;
661 	}
662 
663 	return 0;
664 }
665 
666 static ssize_t xillybus_read(struct file *filp, char __user *userbuf,
667 			     size_t count, loff_t *f_pos)
668 {
669 	ssize_t rc;
670 	unsigned long flags;
671 	int bytes_done = 0;
672 	int no_time_left = 0;
673 	long deadline, left_to_sleep;
674 	struct xilly_channel *channel = filp->private_data;
675 
676 	int empty, reached_eof, exhausted, ready;
677 	/* Initializations are there only to silence warnings */
678 
679 	int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
680 	int waiting_bufidx;
681 
682 	if (channel->endpoint->fatal_error)
683 		return -EIO;
684 
685 	deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
686 
687 	rc = mutex_lock_interruptible(&channel->wr_mutex);
688 	if (rc)
689 		return rc;
690 
691 	while (1) { /* Note that we may drop mutex within this loop */
692 		int bytes_to_do = count - bytes_done;
693 
694 		spin_lock_irqsave(&channel->wr_spinlock, flags);
695 
696 		empty = channel->wr_empty;
697 		ready = !empty || channel->wr_ready;
698 
699 		if (!empty) {
700 			bufidx = channel->wr_host_buf_idx;
701 			bufpos = channel->wr_host_buf_pos;
702 			howmany = ((channel->wr_buffers[bufidx]->end_offset
703 				    + 1) << channel->log2_element_size)
704 				- bufpos;
705 
706 			/* Update wr_host_* to its post-operation state */
707 			if (howmany > bytes_to_do) {
708 				bufferdone = 0;
709 
710 				howmany = bytes_to_do;
711 				channel->wr_host_buf_pos += howmany;
712 			} else {
713 				bufferdone = 1;
714 
715 				channel->wr_host_buf_pos = 0;
716 
717 				if (bufidx == channel->wr_fpga_buf_idx) {
718 					channel->wr_empty = 1;
719 					channel->wr_sleepy = 1;
720 					channel->wr_ready = 0;
721 				}
722 
723 				if (bufidx >= (channel->num_wr_buffers - 1))
724 					channel->wr_host_buf_idx = 0;
725 				else
726 					channel->wr_host_buf_idx++;
727 			}
728 		}
729 
730 		/*
731 		 * Marking our situation after the possible changes above,
732 		 * for use after releasing the spinlock.
733 		 *
734 		 * empty = empty before change
735 		 * exhasted = empty after possible change
736 		 */
737 
738 		reached_eof = channel->wr_empty &&
739 			(channel->wr_host_buf_idx == channel->wr_eof);
740 		channel->wr_hangup = reached_eof;
741 		exhausted = channel->wr_empty;
742 		waiting_bufidx = channel->wr_host_buf_idx;
743 
744 		spin_unlock_irqrestore(&channel->wr_spinlock, flags);
745 
746 		if (!empty) { /* Go on, now without the spinlock */
747 
748 			if (bufpos == 0) /* Position zero means it's virgin */
749 				channel->endpoint->ephw->hw_sync_sgl_for_cpu(
750 					channel->endpoint,
751 					channel->wr_buffers[bufidx]->dma_addr,
752 					channel->wr_buf_size,
753 					DMA_FROM_DEVICE);
754 
755 			if (copy_to_user(
756 				    userbuf,
757 				    channel->wr_buffers[bufidx]->addr
758 				    + bufpos, howmany))
759 				rc = -EFAULT;
760 
761 			userbuf += howmany;
762 			bytes_done += howmany;
763 
764 			if (bufferdone) {
765 				channel->endpoint->ephw->hw_sync_sgl_for_device(
766 					channel->endpoint,
767 					channel->wr_buffers[bufidx]->dma_addr,
768 					channel->wr_buf_size,
769 					DMA_FROM_DEVICE);
770 
771 				/*
772 				 * Tell FPGA the buffer is done with. It's an
773 				 * atomic operation to the FPGA, so what
774 				 * happens with other channels doesn't matter,
775 				 * and the certain channel is protected with
776 				 * the channel-specific mutex.
777 				 */
778 
779 				iowrite32(1 | (channel->chan_num << 1) |
780 					  (bufidx << 12),
781 					  channel->endpoint->registers +
782 					  fpga_buf_ctrl_reg);
783 			}
784 
785 			if (rc) {
786 				mutex_unlock(&channel->wr_mutex);
787 				return rc;
788 			}
789 		}
790 
791 		/* This includes a zero-count return = EOF */
792 		if ((bytes_done >= count) || reached_eof)
793 			break;
794 
795 		if (!exhausted)
796 			continue; /* More in RAM buffer(s)? Just go on. */
797 
798 		if ((bytes_done > 0) &&
799 		    (no_time_left ||
800 		     (channel->wr_synchronous && channel->wr_allow_partial)))
801 			break;
802 
803 		/*
804 		 * Nonblocking read: The "ready" flag tells us that the FPGA
805 		 * has data to send. In non-blocking mode, if it isn't on,
806 		 * just return. But if there is, we jump directly to the point
807 		 * where we ask for the FPGA to send all it has, and wait
808 		 * until that data arrives. So in a sense, we *do* block in
809 		 * nonblocking mode, but only for a very short time.
810 		 */
811 
812 		if (!no_time_left && (filp->f_flags & O_NONBLOCK)) {
813 			if (bytes_done > 0)
814 				break;
815 
816 			if (ready)
817 				goto desperate;
818 
819 			rc = -EAGAIN;
820 			break;
821 		}
822 
823 		if (!no_time_left || (bytes_done > 0)) {
824 			/*
825 			 * Note that in case of an element-misaligned read
826 			 * request, offsetlimit will include the last element,
827 			 * which will be partially read from.
828 			 */
829 			int offsetlimit = ((count - bytes_done) - 1) >>
830 				channel->log2_element_size;
831 			int buf_elements = channel->wr_buf_size >>
832 				channel->log2_element_size;
833 
834 			/*
835 			 * In synchronous mode, always send an offset limit.
836 			 * Just don't send a value too big.
837 			 */
838 
839 			if (channel->wr_synchronous) {
840 				/* Don't request more than one buffer */
841 				if (channel->wr_allow_partial &&
842 				    (offsetlimit >= buf_elements))
843 					offsetlimit = buf_elements - 1;
844 
845 				/* Don't request more than all buffers */
846 				if (!channel->wr_allow_partial &&
847 				    (offsetlimit >=
848 				     (buf_elements * channel->num_wr_buffers)))
849 					offsetlimit = buf_elements *
850 						channel->num_wr_buffers - 1;
851 			}
852 
853 			/*
854 			 * In asynchronous mode, force early flush of a buffer
855 			 * only if that will allow returning a full count. The
856 			 * "offsetlimit < ( ... )" rather than "<=" excludes
857 			 * requesting a full buffer, which would obviously
858 			 * cause a buffer transmission anyhow
859 			 */
860 
861 			if (channel->wr_synchronous ||
862 			    (offsetlimit < (buf_elements - 1))) {
863 				mutex_lock(&channel->endpoint->register_mutex);
864 
865 				iowrite32(offsetlimit,
866 					  channel->endpoint->registers +
867 					  fpga_buf_offset_reg);
868 
869 				iowrite32(1 | (channel->chan_num << 1) |
870 					  (2 << 24) |  /* 2 = offset limit */
871 					  (waiting_bufidx << 12),
872 					  channel->endpoint->registers +
873 					  fpga_buf_ctrl_reg);
874 
875 				mutex_unlock(&channel->endpoint->
876 					     register_mutex);
877 			}
878 		}
879 
880 		/*
881 		 * If partial completion is disallowed, there is no point in
882 		 * timeout sleeping. Neither if no_time_left is set and
883 		 * there's no data.
884 		 */
885 
886 		if (!channel->wr_allow_partial ||
887 		    (no_time_left && (bytes_done == 0))) {
888 			/*
889 			 * This do-loop will run more than once if another
890 			 * thread reasserted wr_sleepy before we got the mutex
891 			 * back, so we try again.
892 			 */
893 
894 			do {
895 				mutex_unlock(&channel->wr_mutex);
896 
897 				if (wait_event_interruptible(
898 					    channel->wr_wait,
899 					    (!channel->wr_sleepy)))
900 					goto interrupted;
901 
902 				if (mutex_lock_interruptible(
903 					    &channel->wr_mutex))
904 					goto interrupted;
905 			} while (channel->wr_sleepy);
906 
907 			continue;
908 
909 interrupted: /* Mutex is not held if got here */
910 			if (channel->endpoint->fatal_error)
911 				return -EIO;
912 			if (bytes_done)
913 				return bytes_done;
914 			if (filp->f_flags & O_NONBLOCK)
915 				return -EAGAIN; /* Don't admit snoozing */
916 			return -EINTR;
917 		}
918 
919 		left_to_sleep = deadline - ((long) jiffies);
920 
921 		/*
922 		 * If our time is out, skip the waiting. We may miss wr_sleepy
923 		 * being deasserted but hey, almost missing the train is like
924 		 * missing it.
925 		 */
926 
927 		if (left_to_sleep > 0) {
928 			left_to_sleep =
929 				wait_event_interruptible_timeout(
930 					channel->wr_wait,
931 					(!channel->wr_sleepy),
932 					left_to_sleep);
933 
934 			if (left_to_sleep > 0) /* wr_sleepy deasserted */
935 				continue;
936 
937 			if (left_to_sleep < 0) { /* Interrupt */
938 				mutex_unlock(&channel->wr_mutex);
939 				if (channel->endpoint->fatal_error)
940 					return -EIO;
941 				if (bytes_done)
942 					return bytes_done;
943 				return -EINTR;
944 			}
945 		}
946 
947 desperate:
948 		no_time_left = 1; /* We're out of sleeping time. Desperate! */
949 
950 		if (bytes_done == 0) {
951 			/*
952 			 * Reaching here means that we allow partial return,
953 			 * that we've run out of time, and that we have
954 			 * nothing to return.
955 			 * So tell the FPGA to send anything it has or gets.
956 			 */
957 
958 			iowrite32(1 | (channel->chan_num << 1) |
959 				  (3 << 24) |  /* Opcode 3, flush it all! */
960 				  (waiting_bufidx << 12),
961 				  channel->endpoint->registers +
962 				  fpga_buf_ctrl_reg);
963 		}
964 
965 		/*
966 		 * Reaching here means that we *do* have data in the buffer,
967 		 * but the "partial" flag disallows returning less than
968 		 * required. And we don't have as much. So loop again,
969 		 * which is likely to end up blocking indefinitely until
970 		 * enough data has arrived.
971 		 */
972 	}
973 
974 	mutex_unlock(&channel->wr_mutex);
975 
976 	if (channel->endpoint->fatal_error)
977 		return -EIO;
978 
979 	if (rc)
980 		return rc;
981 
982 	return bytes_done;
983 }
984 
985 /*
986  * The timeout argument takes values as follows:
987  *  >0 : Flush with timeout
988  * ==0 : Flush, and wait idefinitely for the flush to complete
989  *  <0 : Autoflush: Flush only if there's a single buffer occupied
990  */
991 
992 static int xillybus_myflush(struct xilly_channel *channel, long timeout)
993 {
994 	int rc;
995 	unsigned long flags;
996 
997 	int end_offset_plus1;
998 	int bufidx, bufidx_minus1;
999 	int i;
1000 	int empty;
1001 	int new_rd_host_buf_pos;
1002 
1003 	if (channel->endpoint->fatal_error)
1004 		return -EIO;
1005 	rc = mutex_lock_interruptible(&channel->rd_mutex);
1006 	if (rc)
1007 		return rc;
1008 
1009 	/*
1010 	 * Don't flush a closed channel. This can happen when the work queued
1011 	 * autoflush thread fires off after the file has closed. This is not
1012 	 * an error, just something to dismiss.
1013 	 */
1014 
1015 	if (!channel->rd_ref_count)
1016 		goto done;
1017 
1018 	bufidx = channel->rd_host_buf_idx;
1019 
1020 	bufidx_minus1 = (bufidx == 0) ?
1021 		channel->num_rd_buffers - 1 :
1022 		bufidx - 1;
1023 
1024 	end_offset_plus1 = channel->rd_host_buf_pos >>
1025 		channel->log2_element_size;
1026 
1027 	new_rd_host_buf_pos = channel->rd_host_buf_pos -
1028 		(end_offset_plus1 << channel->log2_element_size);
1029 
1030 	/* Submit the current buffer if it's nonempty */
1031 	if (end_offset_plus1) {
1032 		unsigned char *tail = channel->rd_buffers[bufidx]->addr +
1033 			(end_offset_plus1 << channel->log2_element_size);
1034 
1035 		/* Copy  unflushed data, so we can put it in next buffer */
1036 		for (i = 0; i < new_rd_host_buf_pos; i++)
1037 			channel->rd_leftovers[i] = *tail++;
1038 
1039 		spin_lock_irqsave(&channel->rd_spinlock, flags);
1040 
1041 		/* Autoflush only if a single buffer is occupied */
1042 
1043 		if ((timeout < 0) &&
1044 		    (channel->rd_full ||
1045 		     (bufidx_minus1 != channel->rd_fpga_buf_idx))) {
1046 			spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1047 			/*
1048 			 * A new work item may be queued by the ISR exactly
1049 			 * now, since the execution of a work item allows the
1050 			 * queuing of a new one while it's running.
1051 			 */
1052 			goto done;
1053 		}
1054 
1055 		/* The 4th element is never needed for data, so it's a flag */
1056 		channel->rd_leftovers[3] = (new_rd_host_buf_pos != 0);
1057 
1058 		/* Set up rd_full to reflect a certain moment's state */
1059 
1060 		if (bufidx == channel->rd_fpga_buf_idx)
1061 			channel->rd_full = 1;
1062 		spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1063 
1064 		if (bufidx >= (channel->num_rd_buffers - 1))
1065 			channel->rd_host_buf_idx = 0;
1066 		else
1067 			channel->rd_host_buf_idx++;
1068 
1069 		channel->endpoint->ephw->hw_sync_sgl_for_device(
1070 			channel->endpoint,
1071 			channel->rd_buffers[bufidx]->dma_addr,
1072 			channel->rd_buf_size,
1073 			DMA_TO_DEVICE);
1074 
1075 		mutex_lock(&channel->endpoint->register_mutex);
1076 
1077 		iowrite32(end_offset_plus1 - 1,
1078 			  channel->endpoint->registers + fpga_buf_offset_reg);
1079 
1080 		iowrite32((channel->chan_num << 1) | /* Channel ID */
1081 			  (2 << 24) |  /* Opcode 2, submit buffer */
1082 			  (bufidx << 12),
1083 			  channel->endpoint->registers + fpga_buf_ctrl_reg);
1084 
1085 		mutex_unlock(&channel->endpoint->register_mutex);
1086 	} else if (bufidx == 0) {
1087 		bufidx = channel->num_rd_buffers - 1;
1088 	} else {
1089 		bufidx--;
1090 	}
1091 
1092 	channel->rd_host_buf_pos = new_rd_host_buf_pos;
1093 
1094 	if (timeout < 0)
1095 		goto done; /* Autoflush */
1096 
1097 	/*
1098 	 * bufidx is now the last buffer written to (or equal to
1099 	 * rd_fpga_buf_idx if buffer was never written to), and
1100 	 * channel->rd_host_buf_idx the one after it.
1101 	 *
1102 	 * If bufidx == channel->rd_fpga_buf_idx we're either empty or full.
1103 	 */
1104 
1105 	while (1) { /* Loop waiting for draining of buffers */
1106 		spin_lock_irqsave(&channel->rd_spinlock, flags);
1107 
1108 		if (bufidx != channel->rd_fpga_buf_idx)
1109 			channel->rd_full = 1; /*
1110 					       * Not really full,
1111 					       * but needs waiting.
1112 					       */
1113 
1114 		empty = !channel->rd_full;
1115 
1116 		spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1117 
1118 		if (empty)
1119 			break;
1120 
1121 		/*
1122 		 * Indefinite sleep with mutex taken. With data waiting for
1123 		 * flushing user should not be surprised if open() for write
1124 		 * sleeps.
1125 		 */
1126 		if (timeout == 0)
1127 			wait_event_interruptible(channel->rd_wait,
1128 						 (!channel->rd_full));
1129 
1130 		else if (wait_event_interruptible_timeout(
1131 				 channel->rd_wait,
1132 				 (!channel->rd_full),
1133 				 timeout) == 0) {
1134 			dev_warn(channel->endpoint->dev,
1135 				 "Timed out while flushing. Output data may be lost.\n");
1136 
1137 			rc = -ETIMEDOUT;
1138 			break;
1139 		}
1140 
1141 		if (channel->rd_full) {
1142 			rc = -EINTR;
1143 			break;
1144 		}
1145 	}
1146 
1147 done:
1148 	mutex_unlock(&channel->rd_mutex);
1149 
1150 	if (channel->endpoint->fatal_error)
1151 		return -EIO;
1152 
1153 	return rc;
1154 }
1155 
1156 static int xillybus_flush(struct file *filp, fl_owner_t id)
1157 {
1158 	if (!(filp->f_mode & FMODE_WRITE))
1159 		return 0;
1160 
1161 	return xillybus_myflush(filp->private_data, HZ); /* 1 second timeout */
1162 }
1163 
1164 static void xillybus_autoflush(struct work_struct *work)
1165 {
1166 	struct delayed_work *workitem = container_of(
1167 		work, struct delayed_work, work);
1168 	struct xilly_channel *channel = container_of(
1169 		workitem, struct xilly_channel, rd_workitem);
1170 	int rc;
1171 
1172 	rc = xillybus_myflush(channel, -1);
1173 	if (rc == -EINTR)
1174 		dev_warn(channel->endpoint->dev,
1175 			 "Autoflush failed because work queue thread got a signal.\n");
1176 	else if (rc)
1177 		dev_err(channel->endpoint->dev,
1178 			"Autoflush failed under weird circumstances.\n");
1179 }
1180 
1181 static ssize_t xillybus_write(struct file *filp, const char __user *userbuf,
1182 			      size_t count, loff_t *f_pos)
1183 {
1184 	ssize_t rc;
1185 	unsigned long flags;
1186 	int bytes_done = 0;
1187 	struct xilly_channel *channel = filp->private_data;
1188 
1189 	int full, exhausted;
1190 	/* Initializations are there only to silence warnings */
1191 
1192 	int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
1193 	int end_offset_plus1 = 0;
1194 
1195 	if (channel->endpoint->fatal_error)
1196 		return -EIO;
1197 
1198 	rc = mutex_lock_interruptible(&channel->rd_mutex);
1199 	if (rc)
1200 		return rc;
1201 
1202 	while (1) {
1203 		int bytes_to_do = count - bytes_done;
1204 
1205 		spin_lock_irqsave(&channel->rd_spinlock, flags);
1206 
1207 		full = channel->rd_full;
1208 
1209 		if (!full) {
1210 			bufidx = channel->rd_host_buf_idx;
1211 			bufpos = channel->rd_host_buf_pos;
1212 			howmany = channel->rd_buf_size - bufpos;
1213 
1214 			/*
1215 			 * Update rd_host_* to its state after this operation.
1216 			 * count=0 means committing the buffer immediately,
1217 			 * which is like flushing, but not necessarily block.
1218 			 */
1219 
1220 			if ((howmany > bytes_to_do) &&
1221 			    (count ||
1222 			     ((bufpos >> channel->log2_element_size) == 0))) {
1223 				bufferdone = 0;
1224 
1225 				howmany = bytes_to_do;
1226 				channel->rd_host_buf_pos += howmany;
1227 			} else {
1228 				bufferdone = 1;
1229 
1230 				if (count) {
1231 					end_offset_plus1 =
1232 						channel->rd_buf_size >>
1233 						channel->log2_element_size;
1234 					channel->rd_host_buf_pos = 0;
1235 				} else {
1236 					unsigned char *tail;
1237 					int i;
1238 
1239 					howmany = 0;
1240 
1241 					end_offset_plus1 = bufpos >>
1242 						channel->log2_element_size;
1243 
1244 					channel->rd_host_buf_pos -=
1245 						end_offset_plus1 <<
1246 						channel->log2_element_size;
1247 
1248 					tail = channel->
1249 						rd_buffers[bufidx]->addr +
1250 						(end_offset_plus1 <<
1251 						 channel->log2_element_size);
1252 
1253 					for (i = 0;
1254 					     i < channel->rd_host_buf_pos;
1255 					     i++)
1256 						channel->rd_leftovers[i] =
1257 							*tail++;
1258 				}
1259 
1260 				if (bufidx == channel->rd_fpga_buf_idx)
1261 					channel->rd_full = 1;
1262 
1263 				if (bufidx >= (channel->num_rd_buffers - 1))
1264 					channel->rd_host_buf_idx = 0;
1265 				else
1266 					channel->rd_host_buf_idx++;
1267 			}
1268 		}
1269 
1270 		/*
1271 		 * Marking our situation after the possible changes above,
1272 		 * for use  after releasing the spinlock.
1273 		 *
1274 		 * full = full before change
1275 		 * exhasted = full after possible change
1276 		 */
1277 
1278 		exhausted = channel->rd_full;
1279 
1280 		spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1281 
1282 		if (!full) { /* Go on, now without the spinlock */
1283 			unsigned char *head =
1284 				channel->rd_buffers[bufidx]->addr;
1285 			int i;
1286 
1287 			if ((bufpos == 0) || /* Zero means it's virgin */
1288 			    (channel->rd_leftovers[3] != 0)) {
1289 				channel->endpoint->ephw->hw_sync_sgl_for_cpu(
1290 					channel->endpoint,
1291 					channel->rd_buffers[bufidx]->dma_addr,
1292 					channel->rd_buf_size,
1293 					DMA_TO_DEVICE);
1294 
1295 				/* Virgin, but leftovers are due */
1296 				for (i = 0; i < bufpos; i++)
1297 					*head++ = channel->rd_leftovers[i];
1298 
1299 				channel->rd_leftovers[3] = 0; /* Clear flag */
1300 			}
1301 
1302 			if (copy_from_user(
1303 				    channel->rd_buffers[bufidx]->addr + bufpos,
1304 				    userbuf, howmany))
1305 				rc = -EFAULT;
1306 
1307 			userbuf += howmany;
1308 			bytes_done += howmany;
1309 
1310 			if (bufferdone) {
1311 				channel->endpoint->ephw->hw_sync_sgl_for_device(
1312 					channel->endpoint,
1313 					channel->rd_buffers[bufidx]->dma_addr,
1314 					channel->rd_buf_size,
1315 					DMA_TO_DEVICE);
1316 
1317 				mutex_lock(&channel->endpoint->register_mutex);
1318 
1319 				iowrite32(end_offset_plus1 - 1,
1320 					  channel->endpoint->registers +
1321 					  fpga_buf_offset_reg);
1322 
1323 				iowrite32((channel->chan_num << 1) |
1324 					  (2 << 24) |  /* 2 = submit buffer */
1325 					  (bufidx << 12),
1326 					  channel->endpoint->registers +
1327 					  fpga_buf_ctrl_reg);
1328 
1329 				mutex_unlock(&channel->endpoint->
1330 					     register_mutex);
1331 
1332 				channel->rd_leftovers[3] =
1333 					(channel->rd_host_buf_pos != 0);
1334 			}
1335 
1336 			if (rc) {
1337 				mutex_unlock(&channel->rd_mutex);
1338 
1339 				if (channel->endpoint->fatal_error)
1340 					return -EIO;
1341 
1342 				if (!channel->rd_synchronous)
1343 					queue_delayed_work(
1344 						xillybus_wq,
1345 						&channel->rd_workitem,
1346 						XILLY_RX_TIMEOUT);
1347 
1348 				return rc;
1349 			}
1350 		}
1351 
1352 		if (bytes_done >= count)
1353 			break;
1354 
1355 		if (!exhausted)
1356 			continue; /* If there's more space, just go on */
1357 
1358 		if ((bytes_done > 0) && channel->rd_allow_partial)
1359 			break;
1360 
1361 		/*
1362 		 * Indefinite sleep with mutex taken. With data waiting for
1363 		 * flushing, user should not be surprised if open() for write
1364 		 * sleeps.
1365 		 */
1366 
1367 		if (filp->f_flags & O_NONBLOCK) {
1368 			rc = -EAGAIN;
1369 			break;
1370 		}
1371 
1372 		if (wait_event_interruptible(channel->rd_wait,
1373 					     (!channel->rd_full))) {
1374 			mutex_unlock(&channel->rd_mutex);
1375 
1376 			if (channel->endpoint->fatal_error)
1377 				return -EIO;
1378 
1379 			if (bytes_done)
1380 				return bytes_done;
1381 			return -EINTR;
1382 		}
1383 	}
1384 
1385 	mutex_unlock(&channel->rd_mutex);
1386 
1387 	if (!channel->rd_synchronous)
1388 		queue_delayed_work(xillybus_wq,
1389 				   &channel->rd_workitem,
1390 				   XILLY_RX_TIMEOUT);
1391 
1392 	if (channel->endpoint->fatal_error)
1393 		return -EIO;
1394 
1395 	if (rc)
1396 		return rc;
1397 
1398 	if ((channel->rd_synchronous) && (bytes_done > 0)) {
1399 		rc = xillybus_myflush(filp->private_data, 0); /* No timeout */
1400 
1401 		if (rc && (rc != -EINTR))
1402 			return rc;
1403 	}
1404 
1405 	return bytes_done;
1406 }
1407 
1408 static int xillybus_open(struct inode *inode, struct file *filp)
1409 {
1410 	int rc = 0;
1411 	unsigned long flags;
1412 	int minor = iminor(inode);
1413 	int major = imajor(inode);
1414 	struct xilly_endpoint *ep_iter, *endpoint = NULL;
1415 	struct xilly_channel *channel;
1416 
1417 	mutex_lock(&ep_list_lock);
1418 
1419 	list_for_each_entry(ep_iter, &list_of_endpoints, ep_list) {
1420 		if ((ep_iter->major == major) &&
1421 		    (minor >= ep_iter->lowest_minor) &&
1422 		    (minor < (ep_iter->lowest_minor +
1423 			      ep_iter->num_channels))) {
1424 			endpoint = ep_iter;
1425 			break;
1426 		}
1427 	}
1428 	mutex_unlock(&ep_list_lock);
1429 
1430 	if (!endpoint) {
1431 		pr_err("xillybus: open() failed to find a device for major=%d and minor=%d\n",
1432 		       major, minor);
1433 		return -ENODEV;
1434 	}
1435 
1436 	if (endpoint->fatal_error)
1437 		return -EIO;
1438 
1439 	channel = endpoint->channels[1 + minor - endpoint->lowest_minor];
1440 	filp->private_data = channel;
1441 
1442 	/*
1443 	 * It gets complicated because:
1444 	 * 1. We don't want to take a mutex we don't have to
1445 	 * 2. We don't want to open one direction if the other will fail.
1446 	 */
1447 
1448 	if ((filp->f_mode & FMODE_READ) && (!channel->num_wr_buffers))
1449 		return -ENODEV;
1450 
1451 	if ((filp->f_mode & FMODE_WRITE) && (!channel->num_rd_buffers))
1452 		return -ENODEV;
1453 
1454 	if ((filp->f_mode & FMODE_READ) && (filp->f_flags & O_NONBLOCK) &&
1455 	    (channel->wr_synchronous || !channel->wr_allow_partial ||
1456 	     !channel->wr_supports_nonempty)) {
1457 		dev_err(endpoint->dev,
1458 			"open() failed: O_NONBLOCK not allowed for read on this device\n");
1459 		return -ENODEV;
1460 	}
1461 
1462 	if ((filp->f_mode & FMODE_WRITE) && (filp->f_flags & O_NONBLOCK) &&
1463 	    (channel->rd_synchronous || !channel->rd_allow_partial)) {
1464 		dev_err(endpoint->dev,
1465 			"open() failed: O_NONBLOCK not allowed for write on this device\n");
1466 		return -ENODEV;
1467 	}
1468 
1469 	/*
1470 	 * Note: open() may block on getting mutexes despite O_NONBLOCK.
1471 	 * This shouldn't occur normally, since multiple open of the same
1472 	 * file descriptor is almost always prohibited anyhow
1473 	 * (*_exclusive_open is normally set in real-life systems).
1474 	 */
1475 
1476 	if (filp->f_mode & FMODE_READ) {
1477 		rc = mutex_lock_interruptible(&channel->wr_mutex);
1478 		if (rc)
1479 			return rc;
1480 	}
1481 
1482 	if (filp->f_mode & FMODE_WRITE) {
1483 		rc = mutex_lock_interruptible(&channel->rd_mutex);
1484 		if (rc)
1485 			goto unlock_wr;
1486 	}
1487 
1488 	if ((filp->f_mode & FMODE_READ) &&
1489 	    (channel->wr_ref_count != 0) &&
1490 	    (channel->wr_exclusive_open)) {
1491 		rc = -EBUSY;
1492 		goto unlock;
1493 	}
1494 
1495 	if ((filp->f_mode & FMODE_WRITE) &&
1496 	    (channel->rd_ref_count != 0) &&
1497 	    (channel->rd_exclusive_open)) {
1498 		rc = -EBUSY;
1499 		goto unlock;
1500 	}
1501 
1502 	if (filp->f_mode & FMODE_READ) {
1503 		if (channel->wr_ref_count == 0) { /* First open of file */
1504 			/* Move the host to first buffer */
1505 			spin_lock_irqsave(&channel->wr_spinlock, flags);
1506 			channel->wr_host_buf_idx = 0;
1507 			channel->wr_host_buf_pos = 0;
1508 			channel->wr_fpga_buf_idx = -1;
1509 			channel->wr_empty = 1;
1510 			channel->wr_ready = 0;
1511 			channel->wr_sleepy = 1;
1512 			channel->wr_eof = -1;
1513 			channel->wr_hangup = 0;
1514 
1515 			spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1516 
1517 			iowrite32(1 | (channel->chan_num << 1) |
1518 				  (4 << 24) |  /* Opcode 4, open channel */
1519 				  ((channel->wr_synchronous & 1) << 23),
1520 				  channel->endpoint->registers +
1521 				  fpga_buf_ctrl_reg);
1522 		}
1523 
1524 		channel->wr_ref_count++;
1525 	}
1526 
1527 	if (filp->f_mode & FMODE_WRITE) {
1528 		if (channel->rd_ref_count == 0) { /* First open of file */
1529 			/* Move the host to first buffer */
1530 			spin_lock_irqsave(&channel->rd_spinlock, flags);
1531 			channel->rd_host_buf_idx = 0;
1532 			channel->rd_host_buf_pos = 0;
1533 			channel->rd_leftovers[3] = 0; /* No leftovers. */
1534 			channel->rd_fpga_buf_idx = channel->num_rd_buffers - 1;
1535 			channel->rd_full = 0;
1536 
1537 			spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1538 
1539 			iowrite32((channel->chan_num << 1) |
1540 				  (4 << 24),   /* Opcode 4, open channel */
1541 				  channel->endpoint->registers +
1542 				  fpga_buf_ctrl_reg);
1543 		}
1544 
1545 		channel->rd_ref_count++;
1546 	}
1547 
1548 unlock:
1549 	if (filp->f_mode & FMODE_WRITE)
1550 		mutex_unlock(&channel->rd_mutex);
1551 unlock_wr:
1552 	if (filp->f_mode & FMODE_READ)
1553 		mutex_unlock(&channel->wr_mutex);
1554 
1555 	if (!rc && (!channel->seekable))
1556 		return nonseekable_open(inode, filp);
1557 
1558 	return rc;
1559 }
1560 
1561 static int xillybus_release(struct inode *inode, struct file *filp)
1562 {
1563 	unsigned long flags;
1564 	struct xilly_channel *channel = filp->private_data;
1565 
1566 	int buf_idx;
1567 	int eof;
1568 
1569 	if (channel->endpoint->fatal_error)
1570 		return -EIO;
1571 
1572 	if (filp->f_mode & FMODE_WRITE) {
1573 		mutex_lock(&channel->rd_mutex);
1574 
1575 		channel->rd_ref_count--;
1576 
1577 		if (channel->rd_ref_count == 0) {
1578 			/*
1579 			 * We rely on the kernel calling flush()
1580 			 * before we get here.
1581 			 */
1582 
1583 			iowrite32((channel->chan_num << 1) | /* Channel ID */
1584 				  (5 << 24),  /* Opcode 5, close channel */
1585 				  channel->endpoint->registers +
1586 				  fpga_buf_ctrl_reg);
1587 		}
1588 		mutex_unlock(&channel->rd_mutex);
1589 	}
1590 
1591 	if (filp->f_mode & FMODE_READ) {
1592 		mutex_lock(&channel->wr_mutex);
1593 
1594 		channel->wr_ref_count--;
1595 
1596 		if (channel->wr_ref_count == 0) {
1597 			iowrite32(1 | (channel->chan_num << 1) |
1598 				  (5 << 24),  /* Opcode 5, close channel */
1599 				  channel->endpoint->registers +
1600 				  fpga_buf_ctrl_reg);
1601 
1602 			/*
1603 			 * This is crazily cautious: We make sure that not
1604 			 * only that we got an EOF (be it because we closed
1605 			 * the channel or because of a user's EOF), but verify
1606 			 * that it's one beyond the last buffer arrived, so
1607 			 * we have no leftover buffers pending before wrapping
1608 			 * up (which can only happen in asynchronous channels,
1609 			 * BTW)
1610 			 */
1611 
1612 			while (1) {
1613 				spin_lock_irqsave(&channel->wr_spinlock,
1614 						  flags);
1615 				buf_idx = channel->wr_fpga_buf_idx;
1616 				eof = channel->wr_eof;
1617 				channel->wr_sleepy = 1;
1618 				spin_unlock_irqrestore(&channel->wr_spinlock,
1619 						       flags);
1620 
1621 				/*
1622 				 * Check if eof points at the buffer after
1623 				 * the last one the FPGA submitted. Note that
1624 				 * no EOF is marked by negative eof.
1625 				 */
1626 
1627 				buf_idx++;
1628 				if (buf_idx == channel->num_wr_buffers)
1629 					buf_idx = 0;
1630 
1631 				if (buf_idx == eof)
1632 					break;
1633 
1634 				/*
1635 				 * Steal extra 100 ms if awaken by interrupt.
1636 				 * This is a simple workaround for an
1637 				 * interrupt pending when entering, which would
1638 				 * otherwise result in declaring the hardware
1639 				 * non-responsive.
1640 				 */
1641 
1642 				if (wait_event_interruptible(
1643 					    channel->wr_wait,
1644 					    (!channel->wr_sleepy)))
1645 					msleep(100);
1646 
1647 				if (channel->wr_sleepy) {
1648 					mutex_unlock(&channel->wr_mutex);
1649 					dev_warn(channel->endpoint->dev,
1650 						 "Hardware failed to respond to close command, therefore left in messy state.\n");
1651 					return -EINTR;
1652 				}
1653 			}
1654 		}
1655 
1656 		mutex_unlock(&channel->wr_mutex);
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 static loff_t xillybus_llseek(struct file *filp, loff_t offset, int whence)
1663 {
1664 	struct xilly_channel *channel = filp->private_data;
1665 	loff_t pos = filp->f_pos;
1666 	int rc = 0;
1667 
1668 	/*
1669 	 * Take both mutexes not allowing interrupts, since it seems like
1670 	 * common applications don't expect an -EINTR here. Besides, multiple
1671 	 * access to a single file descriptor on seekable devices is a mess
1672 	 * anyhow.
1673 	 */
1674 
1675 	if (channel->endpoint->fatal_error)
1676 		return -EIO;
1677 
1678 	mutex_lock(&channel->wr_mutex);
1679 	mutex_lock(&channel->rd_mutex);
1680 
1681 	switch (whence) {
1682 	case SEEK_SET:
1683 		pos = offset;
1684 		break;
1685 	case SEEK_CUR:
1686 		pos += offset;
1687 		break;
1688 	case SEEK_END:
1689 		pos = offset; /* Going to the end => to the beginning */
1690 		break;
1691 	default:
1692 		rc = -EINVAL;
1693 		goto end;
1694 	}
1695 
1696 	/* In any case, we must finish on an element boundary */
1697 	if (pos & ((1 << channel->log2_element_size) - 1)) {
1698 		rc = -EINVAL;
1699 		goto end;
1700 	}
1701 
1702 	mutex_lock(&channel->endpoint->register_mutex);
1703 
1704 	iowrite32(pos >> channel->log2_element_size,
1705 		  channel->endpoint->registers + fpga_buf_offset_reg);
1706 
1707 	iowrite32((channel->chan_num << 1) |
1708 		  (6 << 24),  /* Opcode 6, set address */
1709 		  channel->endpoint->registers + fpga_buf_ctrl_reg);
1710 
1711 	mutex_unlock(&channel->endpoint->register_mutex);
1712 
1713 end:
1714 	mutex_unlock(&channel->rd_mutex);
1715 	mutex_unlock(&channel->wr_mutex);
1716 
1717 	if (rc) /* Return error after releasing mutexes */
1718 		return rc;
1719 
1720 	filp->f_pos = pos;
1721 
1722 	/*
1723 	 * Since seekable devices are allowed only when the channel is
1724 	 * synchronous, we assume that there is no data pending in either
1725 	 * direction (which holds true as long as no concurrent access on the
1726 	 * file descriptor takes place).
1727 	 * The only thing we may need to throw away is leftovers from partial
1728 	 * write() flush.
1729 	 */
1730 
1731 	channel->rd_leftovers[3] = 0;
1732 
1733 	return pos;
1734 }
1735 
1736 static __poll_t xillybus_poll(struct file *filp, poll_table *wait)
1737 {
1738 	struct xilly_channel *channel = filp->private_data;
1739 	__poll_t mask = 0;
1740 	unsigned long flags;
1741 
1742 	poll_wait(filp, &channel->endpoint->ep_wait, wait);
1743 
1744 	/*
1745 	 * poll() won't play ball regarding read() channels which
1746 	 * aren't asynchronous and support the nonempty message. Allowing
1747 	 * that will create situations where data has been delivered at
1748 	 * the FPGA, and users expecting select() to wake up, which it may
1749 	 * not.
1750 	 */
1751 
1752 	if (!channel->wr_synchronous && channel->wr_supports_nonempty) {
1753 		poll_wait(filp, &channel->wr_wait, wait);
1754 		poll_wait(filp, &channel->wr_ready_wait, wait);
1755 
1756 		spin_lock_irqsave(&channel->wr_spinlock, flags);
1757 		if (!channel->wr_empty || channel->wr_ready)
1758 			mask |= EPOLLIN | EPOLLRDNORM;
1759 
1760 		if (channel->wr_hangup)
1761 			/*
1762 			 * Not EPOLLHUP, because its behavior is in the
1763 			 * mist, and EPOLLIN does what we want: Wake up
1764 			 * the read file descriptor so it sees EOF.
1765 			 */
1766 			mask |=  EPOLLIN | EPOLLRDNORM;
1767 		spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1768 	}
1769 
1770 	/*
1771 	 * If partial data write is disallowed on a write() channel,
1772 	 * it's pointless to ever signal OK to write, because is could
1773 	 * block despite some space being available.
1774 	 */
1775 
1776 	if (channel->rd_allow_partial) {
1777 		poll_wait(filp, &channel->rd_wait, wait);
1778 
1779 		spin_lock_irqsave(&channel->rd_spinlock, flags);
1780 		if (!channel->rd_full)
1781 			mask |= EPOLLOUT | EPOLLWRNORM;
1782 		spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1783 	}
1784 
1785 	if (channel->endpoint->fatal_error)
1786 		mask |= EPOLLERR;
1787 
1788 	return mask;
1789 }
1790 
1791 static const struct file_operations xillybus_fops = {
1792 	.owner      = THIS_MODULE,
1793 	.read       = xillybus_read,
1794 	.write      = xillybus_write,
1795 	.open       = xillybus_open,
1796 	.flush      = xillybus_flush,
1797 	.release    = xillybus_release,
1798 	.llseek     = xillybus_llseek,
1799 	.poll       = xillybus_poll,
1800 };
1801 
1802 static int xillybus_init_chrdev(struct xilly_endpoint *endpoint,
1803 				const unsigned char *idt)
1804 {
1805 	int rc;
1806 	dev_t dev;
1807 	int devnum, i, minor, major;
1808 	char devname[48];
1809 	struct device *device;
1810 
1811 	rc = alloc_chrdev_region(&dev, 0, /* minor start */
1812 				 endpoint->num_channels,
1813 				 xillyname);
1814 	if (rc) {
1815 		dev_warn(endpoint->dev, "Failed to obtain major/minors");
1816 		return rc;
1817 	}
1818 
1819 	endpoint->major = major = MAJOR(dev);
1820 	endpoint->lowest_minor = minor = MINOR(dev);
1821 
1822 	cdev_init(&endpoint->cdev, &xillybus_fops);
1823 	endpoint->cdev.owner = endpoint->ephw->owner;
1824 	rc = cdev_add(&endpoint->cdev, MKDEV(major, minor),
1825 		      endpoint->num_channels);
1826 	if (rc) {
1827 		dev_warn(endpoint->dev, "Failed to add cdev. Aborting.\n");
1828 		goto unregister_chrdev;
1829 	}
1830 
1831 	idt++;
1832 
1833 	for (i = minor, devnum = 0;
1834 	     devnum < endpoint->num_channels;
1835 	     devnum++, i++) {
1836 		snprintf(devname, sizeof(devname)-1, "xillybus_%s", idt);
1837 
1838 		devname[sizeof(devname)-1] = 0; /* Should never matter */
1839 
1840 		while (*idt++)
1841 			/* Skip to next */;
1842 
1843 		device = device_create(xillybus_class,
1844 				       NULL,
1845 				       MKDEV(major, i),
1846 				       NULL,
1847 				       "%s", devname);
1848 
1849 		if (IS_ERR(device)) {
1850 			dev_warn(endpoint->dev,
1851 				 "Failed to create %s device. Aborting.\n",
1852 				 devname);
1853 			rc = -ENODEV;
1854 			goto unroll_device_create;
1855 		}
1856 	}
1857 
1858 	dev_info(endpoint->dev, "Created %d device files.\n",
1859 		 endpoint->num_channels);
1860 	return 0; /* succeed */
1861 
1862 unroll_device_create:
1863 	devnum--; i--;
1864 	for (; devnum >= 0; devnum--, i--)
1865 		device_destroy(xillybus_class, MKDEV(major, i));
1866 
1867 	cdev_del(&endpoint->cdev);
1868 unregister_chrdev:
1869 	unregister_chrdev_region(MKDEV(major, minor), endpoint->num_channels);
1870 
1871 	return rc;
1872 }
1873 
1874 static void xillybus_cleanup_chrdev(struct xilly_endpoint *endpoint)
1875 {
1876 	int minor;
1877 
1878 	for (minor = endpoint->lowest_minor;
1879 	     minor < (endpoint->lowest_minor + endpoint->num_channels);
1880 	     minor++)
1881 		device_destroy(xillybus_class, MKDEV(endpoint->major, minor));
1882 	cdev_del(&endpoint->cdev);
1883 	unregister_chrdev_region(MKDEV(endpoint->major,
1884 				       endpoint->lowest_minor),
1885 				 endpoint->num_channels);
1886 
1887 	dev_info(endpoint->dev, "Removed %d device files.\n",
1888 		 endpoint->num_channels);
1889 }
1890 
1891 struct xilly_endpoint *xillybus_init_endpoint(struct pci_dev *pdev,
1892 					      struct device *dev,
1893 					      struct xilly_endpoint_hardware
1894 					      *ephw)
1895 {
1896 	struct xilly_endpoint *endpoint;
1897 
1898 	endpoint = devm_kzalloc(dev, sizeof(*endpoint), GFP_KERNEL);
1899 	if (!endpoint)
1900 		return NULL;
1901 
1902 	endpoint->pdev = pdev;
1903 	endpoint->dev = dev;
1904 	endpoint->ephw = ephw;
1905 	endpoint->msg_counter = 0x0b;
1906 	endpoint->failed_messages = 0;
1907 	endpoint->fatal_error = 0;
1908 
1909 	init_waitqueue_head(&endpoint->ep_wait);
1910 	mutex_init(&endpoint->register_mutex);
1911 
1912 	return endpoint;
1913 }
1914 EXPORT_SYMBOL(xillybus_init_endpoint);
1915 
1916 static int xilly_quiesce(struct xilly_endpoint *endpoint)
1917 {
1918 	long t;
1919 
1920 	endpoint->idtlen = -1;
1921 
1922 	iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
1923 		  endpoint->registers + fpga_dma_control_reg);
1924 
1925 	t = wait_event_interruptible_timeout(endpoint->ep_wait,
1926 					     (endpoint->idtlen >= 0),
1927 					     XILLY_TIMEOUT);
1928 	if (t <= 0) {
1929 		dev_err(endpoint->dev,
1930 			"Failed to quiesce the device on exit.\n");
1931 		return -ENODEV;
1932 	}
1933 	return 0;
1934 }
1935 
1936 int xillybus_endpoint_discovery(struct xilly_endpoint *endpoint)
1937 {
1938 	int rc;
1939 	long t;
1940 
1941 	void *bootstrap_resources;
1942 	int idtbuffersize = (1 << PAGE_SHIFT);
1943 	struct device *dev = endpoint->dev;
1944 
1945 	/*
1946 	 * The bogus IDT is used during bootstrap for allocating the initial
1947 	 * message buffer, and then the message buffer and space for the IDT
1948 	 * itself. The initial message buffer is of a single page's size, but
1949 	 * it's soon replaced with a more modest one (and memory is freed).
1950 	 */
1951 
1952 	unsigned char bogus_idt[8] = { 1, 224, (PAGE_SHIFT)-2, 0,
1953 				       3, 192, PAGE_SHIFT, 0 };
1954 	struct xilly_idt_handle idt_handle;
1955 
1956 	/*
1957 	 * Writing the value 0x00000001 to Endianness register signals which
1958 	 * endianness this processor is using, so the FPGA can swap words as
1959 	 * necessary.
1960 	 */
1961 
1962 	iowrite32(1, endpoint->registers + fpga_endian_reg);
1963 
1964 	/* Bootstrap phase I: Allocate temporary message buffer */
1965 
1966 	bootstrap_resources = devres_open_group(dev, NULL, GFP_KERNEL);
1967 	if (!bootstrap_resources)
1968 		return -ENOMEM;
1969 
1970 	endpoint->num_channels = 0;
1971 
1972 	rc = xilly_setupchannels(endpoint, bogus_idt, 1);
1973 	if (rc)
1974 		return rc;
1975 
1976 	/* Clear the message subsystem (and counter in particular) */
1977 	iowrite32(0x04, endpoint->registers + fpga_msg_ctrl_reg);
1978 
1979 	endpoint->idtlen = -1;
1980 
1981 	/*
1982 	 * Set DMA 32/64 bit mode, quiesce the device (?!) and get IDT
1983 	 * buffer size.
1984 	 */
1985 	iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
1986 		  endpoint->registers + fpga_dma_control_reg);
1987 
1988 	t = wait_event_interruptible_timeout(endpoint->ep_wait,
1989 					     (endpoint->idtlen >= 0),
1990 					     XILLY_TIMEOUT);
1991 	if (t <= 0) {
1992 		dev_err(endpoint->dev, "No response from FPGA. Aborting.\n");
1993 		return -ENODEV;
1994 	}
1995 
1996 	/* Enable DMA */
1997 	iowrite32((u32) (0x0002 | (endpoint->dma_using_dac & 0x0001)),
1998 		  endpoint->registers + fpga_dma_control_reg);
1999 
2000 	/* Bootstrap phase II: Allocate buffer for IDT and obtain it */
2001 	while (endpoint->idtlen >= idtbuffersize) {
2002 		idtbuffersize *= 2;
2003 		bogus_idt[6]++;
2004 	}
2005 
2006 	endpoint->num_channels = 1;
2007 
2008 	rc = xilly_setupchannels(endpoint, bogus_idt, 2);
2009 	if (rc)
2010 		goto failed_idt;
2011 
2012 	rc = xilly_obtain_idt(endpoint);
2013 	if (rc)
2014 		goto failed_idt;
2015 
2016 	rc = xilly_scan_idt(endpoint, &idt_handle);
2017 	if (rc)
2018 		goto failed_idt;
2019 
2020 	devres_close_group(dev, bootstrap_resources);
2021 
2022 	/* Bootstrap phase III: Allocate buffers according to IDT */
2023 
2024 	rc = xilly_setupchannels(endpoint,
2025 				 idt_handle.chandesc,
2026 				 idt_handle.entries);
2027 	if (rc)
2028 		goto failed_idt;
2029 
2030 	/*
2031 	 * endpoint is now completely configured. We put it on the list
2032 	 * available to open() before registering the char device(s)
2033 	 */
2034 
2035 	mutex_lock(&ep_list_lock);
2036 	list_add_tail(&endpoint->ep_list, &list_of_endpoints);
2037 	mutex_unlock(&ep_list_lock);
2038 
2039 	rc = xillybus_init_chrdev(endpoint, idt_handle.idt);
2040 	if (rc)
2041 		goto failed_chrdevs;
2042 
2043 	devres_release_group(dev, bootstrap_resources);
2044 
2045 	return 0;
2046 
2047 failed_chrdevs:
2048 	mutex_lock(&ep_list_lock);
2049 	list_del(&endpoint->ep_list);
2050 	mutex_unlock(&ep_list_lock);
2051 
2052 failed_idt:
2053 	xilly_quiesce(endpoint);
2054 	flush_workqueue(xillybus_wq);
2055 
2056 	return rc;
2057 }
2058 EXPORT_SYMBOL(xillybus_endpoint_discovery);
2059 
2060 void xillybus_endpoint_remove(struct xilly_endpoint *endpoint)
2061 {
2062 	xillybus_cleanup_chrdev(endpoint);
2063 
2064 	mutex_lock(&ep_list_lock);
2065 	list_del(&endpoint->ep_list);
2066 	mutex_unlock(&ep_list_lock);
2067 
2068 	xilly_quiesce(endpoint);
2069 
2070 	/*
2071 	 * Flushing is done upon endpoint release to prevent access to memory
2072 	 * just about to be released. This makes the quiesce complete.
2073 	 */
2074 	flush_workqueue(xillybus_wq);
2075 }
2076 EXPORT_SYMBOL(xillybus_endpoint_remove);
2077 
2078 static int __init xillybus_init(void)
2079 {
2080 	mutex_init(&ep_list_lock);
2081 
2082 	xillybus_class = class_create(THIS_MODULE, xillyname);
2083 	if (IS_ERR(xillybus_class))
2084 		return PTR_ERR(xillybus_class);
2085 
2086 	xillybus_wq = alloc_workqueue(xillyname, 0, 0);
2087 	if (!xillybus_wq) {
2088 		class_destroy(xillybus_class);
2089 		return -ENOMEM;
2090 	}
2091 
2092 	return 0;
2093 }
2094 
2095 static void __exit xillybus_exit(void)
2096 {
2097 	/* flush_workqueue() was called for each endpoint released */
2098 	destroy_workqueue(xillybus_wq);
2099 
2100 	class_destroy(xillybus_class);
2101 }
2102 
2103 module_init(xillybus_init);
2104 module_exit(xillybus_exit);
2105