xref: /linux/drivers/char/tpm/tpm2-sessions.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright (C) 2018 James.Bottomley@HansenPartnership.com
5  *
6  * Cryptographic helper routines for handling TPM2 sessions for
7  * authorization HMAC and request response encryption.
8  *
9  * The idea is to ensure that every TPM command is HMAC protected by a
10  * session, meaning in-flight tampering would be detected and in
11  * addition all sensitive inputs and responses should be encrypted.
12  *
13  * The basic way this works is to use a TPM feature called salted
14  * sessions where a random secret used in session construction is
15  * encrypted to the public part of a known TPM key.  The problem is we
16  * have no known keys, so initially a primary Elliptic Curve key is
17  * derived from the NULL seed (we use EC because most TPMs generate
18  * these keys much faster than RSA ones).  The curve used is NIST_P256
19  * because that's now mandated to be present in 'TCG TPM v2.0
20  * Provisioning Guidance'
21  *
22  * Threat problems: the initial TPM2_CreatePrimary is not (and cannot
23  * be) session protected, so a clever Man in the Middle could return a
24  * public key they control to this command and from there intercept
25  * and decode all subsequent session based transactions.  The kernel
26  * cannot mitigate this threat but, after boot, userspace can get
27  * proof this has not happened by asking the TPM to certify the NULL
28  * key.  This certification would chain back to the TPM Endorsement
29  * Certificate and prove the NULL seed primary had not been tampered
30  * with and thus all sessions must have been cryptographically secure.
31  * To assist with this, the initial NULL seed public key name is made
32  * available in a sysfs file.
33  *
34  * Use of these functions:
35  *
36  * The design is all the crypto, hash and hmac gunk is confined in this
37  * file and never needs to be seen even by the kernel internal user.  To
38  * the user there's an init function tpm2_sessions_init() that needs to
39  * be called once per TPM which generates the NULL seed primary key.
40  *
41  * These are the usage functions:
42  *
43  * tpm2_start_auth_session() which allocates the opaque auth structure
44  *	and gets a session from the TPM.  This must be called before
45  *	any of the following functions.  The session is protected by a
46  *	session_key which is derived from a random salt value
47  *	encrypted to the NULL seed.
48  * tpm2_end_auth_session() kills the session and frees the resources.
49  *	Under normal operation this function is done by
50  *	tpm_buf_check_hmac_response(), so this is only to be used on
51  *	error legs where the latter is not executed.
52  * tpm_buf_append_name() to add a handle to the buffer.  This must be
53  *	used in place of the usual tpm_buf_append_u32() for adding
54  *	handles because handles have to be processed specially when
55  *	calculating the HMAC.  In particular, for NV, volatile and
56  *	permanent objects you now need to provide the name.
57  * tpm_buf_append_hmac_session() which appends the hmac session to the
58  *	buf in the same way tpm_buf_append_auth does().
59  * tpm_buf_fill_hmac_session() This calculates the correct hash and
60  *	places it in the buffer.  It must be called after the complete
61  *	command buffer is finalized so it can fill in the correct HMAC
62  *	based on the parameters.
63  * tpm_buf_check_hmac_response() which checks the session response in
64  *	the buffer and calculates what it should be.  If there's a
65  *	mismatch it will log a warning and return an error.  If
66  *	tpm_buf_append_hmac_session() did not specify
67  *	TPM_SA_CONTINUE_SESSION then the session will be closed (if it
68  *	hasn't been consumed) and the auth structure freed.
69  */
70 
71 #include "tpm.h"
72 #include <linux/random.h>
73 #include <linux/scatterlist.h>
74 #include <linux/unaligned.h>
75 #include <crypto/kpp.h>
76 #include <crypto/ecdh.h>
77 #include <crypto/hash.h>
78 #include <crypto/hmac.h>
79 
80 /* maximum number of names the TPM must remember for authorization */
81 #define AUTH_MAX_NAMES	3
82 
83 #define AES_KEY_BYTES	AES_KEYSIZE_128
84 #define AES_KEY_BITS	(AES_KEY_BYTES*8)
85 
86 /*
87  * This is the structure that carries all the auth information (like
88  * session handle, nonces, session key and auth) from use to use it is
89  * designed to be opaque to anything outside.
90  */
91 struct tpm2_auth {
92 	u32 handle;
93 	/*
94 	 * This has two meanings: before tpm_buf_fill_hmac_session()
95 	 * it marks the offset in the buffer of the start of the
96 	 * sessions (i.e. after all the handles).  Once the buffer has
97 	 * been filled it markes the session number of our auth
98 	 * session so we can find it again in the response buffer.
99 	 *
100 	 * The two cases are distinguished because the first offset
101 	 * must always be greater than TPM_HEADER_SIZE and the second
102 	 * must be less than or equal to 5.
103 	 */
104 	u32 session;
105 	/*
106 	 * the size here is variable and set by the size of our_nonce
107 	 * which must be between 16 and the name hash length. we set
108 	 * the maximum sha256 size for the greatest protection
109 	 */
110 	u8 our_nonce[SHA256_DIGEST_SIZE];
111 	u8 tpm_nonce[SHA256_DIGEST_SIZE];
112 	/*
113 	 * the salt is only used across the session command/response
114 	 * after that it can be used as a scratch area
115 	 */
116 	union {
117 		u8 salt[EC_PT_SZ];
118 		/* scratch for key + IV */
119 		u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE];
120 	};
121 	/*
122 	 * the session key and passphrase are the same size as the
123 	 * name digest (sha256 again).  The session key is constant
124 	 * for the use of the session and the passphrase can change
125 	 * with every invocation.
126 	 *
127 	 * Note: these fields must be adjacent and in this order
128 	 * because several HMAC/KDF schemes use the combination of the
129 	 * session_key and passphrase.
130 	 */
131 	u8 session_key[SHA256_DIGEST_SIZE];
132 	u8 passphrase[SHA256_DIGEST_SIZE];
133 	int passphrase_len;
134 	struct crypto_aes_ctx aes_ctx;
135 	/* saved session attributes: */
136 	u8 attrs;
137 	__be32 ordinal;
138 
139 	/*
140 	 * memory for three authorization handles.  We know them by
141 	 * handle, but they are part of the session by name, which
142 	 * we must compute and remember
143 	 */
144 	u32 name_h[AUTH_MAX_NAMES];
145 	u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE];
146 };
147 
148 #ifdef CONFIG_TCG_TPM2_HMAC
149 /*
150  * Name Size based on TPM algorithm (assumes no hash bigger than 255)
151  */
152 static u8 name_size(const u8 *name)
153 {
154 	static u8 size_map[] = {
155 		[TPM_ALG_SHA1] = SHA1_DIGEST_SIZE,
156 		[TPM_ALG_SHA256] = SHA256_DIGEST_SIZE,
157 		[TPM_ALG_SHA384] = SHA384_DIGEST_SIZE,
158 		[TPM_ALG_SHA512] = SHA512_DIGEST_SIZE,
159 	};
160 	u16 alg = get_unaligned_be16(name);
161 	return size_map[alg] + 2;
162 }
163 
164 static int tpm2_parse_read_public(char *name, struct tpm_buf *buf)
165 {
166 	struct tpm_header *head = (struct tpm_header *)buf->data;
167 	off_t offset = TPM_HEADER_SIZE;
168 	u32 tot_len = be32_to_cpu(head->length);
169 	u32 val;
170 
171 	/* we're starting after the header so adjust the length */
172 	tot_len -= TPM_HEADER_SIZE;
173 
174 	/* skip public */
175 	val = tpm_buf_read_u16(buf, &offset);
176 	if (val > tot_len)
177 		return -EINVAL;
178 	offset += val;
179 	/* name */
180 	val = tpm_buf_read_u16(buf, &offset);
181 	if (val != name_size(&buf->data[offset]))
182 		return -EINVAL;
183 	memcpy(name, &buf->data[offset], val);
184 	/* forget the rest */
185 	return 0;
186 }
187 
188 static int tpm2_read_public(struct tpm_chip *chip, u32 handle, char *name)
189 {
190 	struct tpm_buf buf;
191 	int rc;
192 
193 	rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC);
194 	if (rc)
195 		return rc;
196 
197 	tpm_buf_append_u32(&buf, handle);
198 	rc = tpm_transmit_cmd(chip, &buf, 0, "read public");
199 	if (rc == TPM2_RC_SUCCESS)
200 		rc = tpm2_parse_read_public(name, &buf);
201 
202 	tpm_buf_destroy(&buf);
203 
204 	return rc;
205 }
206 #endif /* CONFIG_TCG_TPM2_HMAC */
207 
208 /**
209  * tpm_buf_append_name() - add a handle area to the buffer
210  * @chip: the TPM chip structure
211  * @buf: The buffer to be appended
212  * @handle: The handle to be appended
213  * @name: The name of the handle (may be NULL)
214  *
215  * In order to compute session HMACs, we need to know the names of the
216  * objects pointed to by the handles.  For most objects, this is simply
217  * the actual 4 byte handle or an empty buf (in these cases @name
218  * should be NULL) but for volatile objects, permanent objects and NV
219  * areas, the name is defined as the hash (according to the name
220  * algorithm which should be set to sha256) of the public area to
221  * which the two byte algorithm id has been appended.  For these
222  * objects, the @name pointer should point to this.  If a name is
223  * required but @name is NULL, then TPM2_ReadPublic() will be called
224  * on the handle to obtain the name.
225  *
226  * As with most tpm_buf operations, success is assumed because failure
227  * will be caused by an incorrect programming model and indicated by a
228  * kernel message.
229  */
230 void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf,
231 			 u32 handle, u8 *name)
232 {
233 #ifdef CONFIG_TCG_TPM2_HMAC
234 	enum tpm2_mso_type mso = tpm2_handle_mso(handle);
235 	struct tpm2_auth *auth;
236 	int slot;
237 #endif
238 
239 	if (!tpm2_chip_auth(chip)) {
240 		tpm_buf_append_handle(chip, buf, handle);
241 		return;
242 	}
243 
244 #ifdef CONFIG_TCG_TPM2_HMAC
245 	slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE) / 4;
246 	if (slot >= AUTH_MAX_NAMES) {
247 		dev_err(&chip->dev, "TPM: too many handles\n");
248 		return;
249 	}
250 	auth = chip->auth;
251 	WARN(auth->session != tpm_buf_length(buf),
252 	     "name added in wrong place\n");
253 	tpm_buf_append_u32(buf, handle);
254 	auth->session += 4;
255 
256 	if (mso == TPM2_MSO_PERSISTENT ||
257 	    mso == TPM2_MSO_VOLATILE ||
258 	    mso == TPM2_MSO_NVRAM) {
259 		if (!name)
260 			tpm2_read_public(chip, handle, auth->name[slot]);
261 	} else {
262 		if (name)
263 			dev_err(&chip->dev, "TPM: Handle does not require name but one is specified\n");
264 	}
265 
266 	auth->name_h[slot] = handle;
267 	if (name)
268 		memcpy(auth->name[slot], name, name_size(name));
269 #endif
270 }
271 EXPORT_SYMBOL_GPL(tpm_buf_append_name);
272 
273 void tpm_buf_append_auth(struct tpm_chip *chip, struct tpm_buf *buf,
274 			 u8 attributes, u8 *passphrase, int passphrase_len)
275 {
276 	/* offset tells us where the sessions area begins */
277 	int offset = buf->handles * 4 + TPM_HEADER_SIZE;
278 	u32 len = 9 + passphrase_len;
279 
280 	if (tpm_buf_length(buf) != offset) {
281 		/* not the first session so update the existing length */
282 		len += get_unaligned_be32(&buf->data[offset]);
283 		put_unaligned_be32(len, &buf->data[offset]);
284 	} else {
285 		tpm_buf_append_u32(buf, len);
286 	}
287 	/* auth handle */
288 	tpm_buf_append_u32(buf, TPM2_RS_PW);
289 	/* nonce */
290 	tpm_buf_append_u16(buf, 0);
291 	/* attributes */
292 	tpm_buf_append_u8(buf, 0);
293 	/* passphrase */
294 	tpm_buf_append_u16(buf, passphrase_len);
295 	tpm_buf_append(buf, passphrase, passphrase_len);
296 }
297 
298 /**
299  * tpm_buf_append_hmac_session() - Append a TPM session element
300  * @chip: the TPM chip structure
301  * @buf: The buffer to be appended
302  * @attributes: The session attributes
303  * @passphrase: The session authority (NULL if none)
304  * @passphrase_len: The length of the session authority (0 if none)
305  *
306  * This fills in a session structure in the TPM command buffer, except
307  * for the HMAC which cannot be computed until the command buffer is
308  * complete.  The type of session is controlled by the @attributes,
309  * the main ones of which are TPM2_SA_CONTINUE_SESSION which means the
310  * session won't terminate after tpm_buf_check_hmac_response(),
311  * TPM2_SA_DECRYPT which means this buffers first parameter should be
312  * encrypted with a session key and TPM2_SA_ENCRYPT, which means the
313  * response buffer's first parameter needs to be decrypted (confusing,
314  * but the defines are written from the point of view of the TPM).
315  *
316  * Any session appended by this command must be finalized by calling
317  * tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect
318  * and the TPM will reject the command.
319  *
320  * As with most tpm_buf operations, success is assumed because failure
321  * will be caused by an incorrect programming model and indicated by a
322  * kernel message.
323  */
324 void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf,
325 				 u8 attributes, u8 *passphrase,
326 				 int passphrase_len)
327 {
328 #ifdef CONFIG_TCG_TPM2_HMAC
329 	u8 nonce[SHA256_DIGEST_SIZE];
330 	struct tpm2_auth *auth;
331 	u32 len;
332 #endif
333 
334 	if (!tpm2_chip_auth(chip)) {
335 		tpm_buf_append_auth(chip, buf, attributes, passphrase,
336 				    passphrase_len);
337 		return;
338 	}
339 
340 #ifdef CONFIG_TCG_TPM2_HMAC
341 	/* The first write to /dev/tpm{rm0} will flush the session. */
342 	attributes |= TPM2_SA_CONTINUE_SESSION;
343 
344 	/*
345 	 * The Architecture Guide requires us to strip trailing zeros
346 	 * before computing the HMAC
347 	 */
348 	while (passphrase && passphrase_len > 0 && passphrase[passphrase_len - 1] == '\0')
349 		passphrase_len--;
350 
351 	auth = chip->auth;
352 	auth->attrs = attributes;
353 	auth->passphrase_len = passphrase_len;
354 	if (passphrase_len)
355 		memcpy(auth->passphrase, passphrase, passphrase_len);
356 
357 	if (auth->session != tpm_buf_length(buf)) {
358 		/* we're not the first session */
359 		len = get_unaligned_be32(&buf->data[auth->session]);
360 		if (4 + len + auth->session != tpm_buf_length(buf)) {
361 			WARN(1, "session length mismatch, cannot append");
362 			return;
363 		}
364 
365 		/* add our new session */
366 		len += 9 + 2 * SHA256_DIGEST_SIZE;
367 		put_unaligned_be32(len, &buf->data[auth->session]);
368 	} else {
369 		tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE);
370 	}
371 
372 	/* random number for our nonce */
373 	get_random_bytes(nonce, sizeof(nonce));
374 	memcpy(auth->our_nonce, nonce, sizeof(nonce));
375 	tpm_buf_append_u32(buf, auth->handle);
376 	/* our new nonce */
377 	tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
378 	tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
379 	tpm_buf_append_u8(buf, auth->attrs);
380 	/* and put a placeholder for the hmac */
381 	tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
382 	tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
383 #endif
384 }
385 EXPORT_SYMBOL_GPL(tpm_buf_append_hmac_session);
386 
387 #ifdef CONFIG_TCG_TPM2_HMAC
388 
389 static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
390 			       u32 *handle, u8 *name);
391 
392 /*
393  * It turns out the crypto hmac(sha256) is hard for us to consume
394  * because it assumes a fixed key and the TPM seems to change the key
395  * on every operation, so we weld the hmac init and final functions in
396  * here to give it the same usage characteristics as a regular hash
397  */
398 static void tpm2_hmac_init(struct sha256_state *sctx, u8 *key, u32 key_len)
399 {
400 	u8 pad[SHA256_BLOCK_SIZE];
401 	int i;
402 
403 	sha256_init(sctx);
404 	for (i = 0; i < sizeof(pad); i++) {
405 		if (i < key_len)
406 			pad[i] = key[i];
407 		else
408 			pad[i] = 0;
409 		pad[i] ^= HMAC_IPAD_VALUE;
410 	}
411 	sha256_update(sctx, pad, sizeof(pad));
412 }
413 
414 static void tpm2_hmac_final(struct sha256_state *sctx, u8 *key, u32 key_len,
415 			    u8 *out)
416 {
417 	u8 pad[SHA256_BLOCK_SIZE];
418 	int i;
419 
420 	for (i = 0; i < sizeof(pad); i++) {
421 		if (i < key_len)
422 			pad[i] = key[i];
423 		else
424 			pad[i] = 0;
425 		pad[i] ^= HMAC_OPAD_VALUE;
426 	}
427 
428 	/* collect the final hash;  use out as temporary storage */
429 	sha256_final(sctx, out);
430 
431 	sha256_init(sctx);
432 	sha256_update(sctx, pad, sizeof(pad));
433 	sha256_update(sctx, out, SHA256_DIGEST_SIZE);
434 	sha256_final(sctx, out);
435 }
436 
437 /*
438  * assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but
439  * otherwise standard tpm2_KDFa.  Note output is in bytes not bits.
440  */
441 static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u,
442 		      u8 *v, u32 bytes, u8 *out)
443 {
444 	u32 counter = 1;
445 	const __be32 bits = cpu_to_be32(bytes * 8);
446 
447 	while (bytes > 0) {
448 		struct sha256_state sctx;
449 		__be32 c = cpu_to_be32(counter);
450 
451 		tpm2_hmac_init(&sctx, key, key_len);
452 		sha256_update(&sctx, (u8 *)&c, sizeof(c));
453 		sha256_update(&sctx, label, strlen(label)+1);
454 		sha256_update(&sctx, u, SHA256_DIGEST_SIZE);
455 		sha256_update(&sctx, v, SHA256_DIGEST_SIZE);
456 		sha256_update(&sctx, (u8 *)&bits, sizeof(bits));
457 		tpm2_hmac_final(&sctx, key, key_len, out);
458 
459 		bytes -= SHA256_DIGEST_SIZE;
460 		counter++;
461 		out += SHA256_DIGEST_SIZE;
462 	}
463 }
464 
465 /*
466  * Somewhat of a bastardization of the real KDFe.  We're assuming
467  * we're working with known point sizes for the input parameters and
468  * the hash algorithm is fixed at sha256.  Because we know that the
469  * point size is 32 bytes like the hash size, there's no need to loop
470  * in this KDF.
471  */
472 static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v,
473 		      u8 *out)
474 {
475 	struct sha256_state sctx;
476 	/*
477 	 * this should be an iterative counter, but because we know
478 	 *  we're only taking 32 bytes for the point using a sha256
479 	 *  hash which is also 32 bytes, there's only one loop
480 	 */
481 	__be32 c = cpu_to_be32(1);
482 
483 	sha256_init(&sctx);
484 	/* counter (BE) */
485 	sha256_update(&sctx, (u8 *)&c, sizeof(c));
486 	/* secret value */
487 	sha256_update(&sctx, z, EC_PT_SZ);
488 	/* string including trailing zero */
489 	sha256_update(&sctx, str, strlen(str)+1);
490 	sha256_update(&sctx, pt_u, EC_PT_SZ);
491 	sha256_update(&sctx, pt_v, EC_PT_SZ);
492 	sha256_final(&sctx, out);
493 }
494 
495 static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip,
496 				struct tpm2_auth *auth)
497 {
498 	struct crypto_kpp *kpp;
499 	struct kpp_request *req;
500 	struct scatterlist s[2], d[1];
501 	struct ecdh p = {0};
502 	u8 encoded_key[EC_PT_SZ], *x, *y;
503 	unsigned int buf_len;
504 
505 	/* secret is two sized points */
506 	tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2);
507 	/*
508 	 * we cheat here and append uninitialized data to form
509 	 * the points.  All we care about is getting the two
510 	 * co-ordinate pointers, which will be used to overwrite
511 	 * the uninitialized data
512 	 */
513 	tpm_buf_append_u16(buf, EC_PT_SZ);
514 	x = &buf->data[tpm_buf_length(buf)];
515 	tpm_buf_append(buf, encoded_key, EC_PT_SZ);
516 	tpm_buf_append_u16(buf, EC_PT_SZ);
517 	y = &buf->data[tpm_buf_length(buf)];
518 	tpm_buf_append(buf, encoded_key, EC_PT_SZ);
519 	sg_init_table(s, 2);
520 	sg_set_buf(&s[0], x, EC_PT_SZ);
521 	sg_set_buf(&s[1], y, EC_PT_SZ);
522 
523 	kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0);
524 	if (IS_ERR(kpp)) {
525 		dev_err(&chip->dev, "crypto ecdh allocation failed\n");
526 		return;
527 	}
528 
529 	buf_len = crypto_ecdh_key_len(&p);
530 	if (sizeof(encoded_key) < buf_len) {
531 		dev_err(&chip->dev, "salt buffer too small needs %d\n",
532 			buf_len);
533 		goto out;
534 	}
535 	crypto_ecdh_encode_key(encoded_key, buf_len, &p);
536 	/* this generates a random private key */
537 	crypto_kpp_set_secret(kpp, encoded_key, buf_len);
538 
539 	/* salt is now the public point of this private key */
540 	req = kpp_request_alloc(kpp, GFP_KERNEL);
541 	if (!req)
542 		goto out;
543 	kpp_request_set_input(req, NULL, 0);
544 	kpp_request_set_output(req, s, EC_PT_SZ*2);
545 	crypto_kpp_generate_public_key(req);
546 	/*
547 	 * we're not done: now we have to compute the shared secret
548 	 * which is our private key multiplied by the tpm_key public
549 	 * point, we actually only take the x point and discard the y
550 	 * point and feed it through KDFe to get the final secret salt
551 	 */
552 	sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ);
553 	sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ);
554 	kpp_request_set_input(req, s, EC_PT_SZ*2);
555 	sg_init_one(d, auth->salt, EC_PT_SZ);
556 	kpp_request_set_output(req, d, EC_PT_SZ);
557 	crypto_kpp_compute_shared_secret(req);
558 	kpp_request_free(req);
559 
560 	/*
561 	 * pass the shared secret through KDFe for salt. Note salt
562 	 * area is used both for input shared secret and output salt.
563 	 * This works because KDFe fully consumes the secret before it
564 	 * writes the salt
565 	 */
566 	tpm2_KDFe(auth->salt, "SECRET", x, chip->null_ec_key_x, auth->salt);
567 
568  out:
569 	crypto_free_kpp(kpp);
570 }
571 
572 /**
573  * tpm_buf_fill_hmac_session() - finalize the session HMAC
574  * @chip: the TPM chip structure
575  * @buf: The buffer to be appended
576  *
577  * This command must not be called until all of the parameters have
578  * been appended to @buf otherwise the computed HMAC will be
579  * incorrect.
580  *
581  * This function computes and fills in the session HMAC using the
582  * session key and, if TPM2_SA_DECRYPT was specified, computes the
583  * encryption key and encrypts the first parameter of the command
584  * buffer with it.
585  *
586  * As with most tpm_buf operations, success is assumed because failure
587  * will be caused by an incorrect programming model and indicated by a
588  * kernel message.
589  */
590 void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf)
591 {
592 	u32 cc, handles, val;
593 	struct tpm2_auth *auth = chip->auth;
594 	int i;
595 	struct tpm_header *head = (struct tpm_header *)buf->data;
596 	off_t offset_s = TPM_HEADER_SIZE, offset_p;
597 	u8 *hmac = NULL;
598 	u32 attrs;
599 	u8 cphash[SHA256_DIGEST_SIZE];
600 	struct sha256_state sctx;
601 
602 	if (!auth)
603 		return;
604 
605 	/* save the command code in BE format */
606 	auth->ordinal = head->ordinal;
607 
608 	cc = be32_to_cpu(head->ordinal);
609 
610 	i = tpm2_find_cc(chip, cc);
611 	if (i < 0) {
612 		dev_err(&chip->dev, "Command 0x%x not found in TPM\n", cc);
613 		return;
614 	}
615 	attrs = chip->cc_attrs_tbl[i];
616 
617 	handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0);
618 
619 	/*
620 	 * just check the names, it's easy to make mistakes.  This
621 	 * would happen if someone added a handle via
622 	 * tpm_buf_append_u32() instead of tpm_buf_append_name()
623 	 */
624 	for (i = 0; i < handles; i++) {
625 		u32 handle = tpm_buf_read_u32(buf, &offset_s);
626 
627 		if (auth->name_h[i] != handle) {
628 			dev_err(&chip->dev, "TPM: handle %d wrong for name\n",
629 				  i);
630 			return;
631 		}
632 	}
633 	/* point offset_s to the start of the sessions */
634 	val = tpm_buf_read_u32(buf, &offset_s);
635 	/* point offset_p to the start of the parameters */
636 	offset_p = offset_s + val;
637 	for (i = 1; offset_s < offset_p; i++) {
638 		u32 handle = tpm_buf_read_u32(buf, &offset_s);
639 		u16 len;
640 		u8 a;
641 
642 		/* nonce (already in auth) */
643 		len = tpm_buf_read_u16(buf, &offset_s);
644 		offset_s += len;
645 
646 		a = tpm_buf_read_u8(buf, &offset_s);
647 
648 		len = tpm_buf_read_u16(buf, &offset_s);
649 		if (handle == auth->handle && auth->attrs == a) {
650 			hmac = &buf->data[offset_s];
651 			/*
652 			 * save our session number so we know which
653 			 * session in the response belongs to us
654 			 */
655 			auth->session = i;
656 		}
657 
658 		offset_s += len;
659 	}
660 	if (offset_s != offset_p) {
661 		dev_err(&chip->dev, "TPM session length is incorrect\n");
662 		return;
663 	}
664 	if (!hmac) {
665 		dev_err(&chip->dev, "TPM could not find HMAC session\n");
666 		return;
667 	}
668 
669 	/* encrypt before HMAC */
670 	if (auth->attrs & TPM2_SA_DECRYPT) {
671 		u16 len;
672 
673 		/* need key and IV */
674 		tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
675 			  + auth->passphrase_len, "CFB", auth->our_nonce,
676 			  auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
677 			  auth->scratch);
678 
679 		len = tpm_buf_read_u16(buf, &offset_p);
680 		aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
681 		aescfb_encrypt(&auth->aes_ctx, &buf->data[offset_p],
682 			       &buf->data[offset_p], len,
683 			       auth->scratch + AES_KEY_BYTES);
684 		/* reset p to beginning of parameters for HMAC */
685 		offset_p -= 2;
686 	}
687 
688 	sha256_init(&sctx);
689 	/* ordinal is already BE */
690 	sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal));
691 	/* add the handle names */
692 	for (i = 0; i < handles; i++) {
693 		enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]);
694 
695 		if (mso == TPM2_MSO_PERSISTENT ||
696 		    mso == TPM2_MSO_VOLATILE ||
697 		    mso == TPM2_MSO_NVRAM) {
698 			sha256_update(&sctx, auth->name[i],
699 				      name_size(auth->name[i]));
700 		} else {
701 			__be32 h = cpu_to_be32(auth->name_h[i]);
702 
703 			sha256_update(&sctx, (u8 *)&h, 4);
704 		}
705 	}
706 	if (offset_s != tpm_buf_length(buf))
707 		sha256_update(&sctx, &buf->data[offset_s],
708 			      tpm_buf_length(buf) - offset_s);
709 	sha256_final(&sctx, cphash);
710 
711 	/* now calculate the hmac */
712 	tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
713 		       + auth->passphrase_len);
714 	sha256_update(&sctx, cphash, sizeof(cphash));
715 	sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
716 	sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
717 	sha256_update(&sctx, &auth->attrs, 1);
718 	tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
719 			+ auth->passphrase_len, hmac);
720 }
721 EXPORT_SYMBOL(tpm_buf_fill_hmac_session);
722 
723 /**
724  * tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness
725  * @chip: the TPM chip structure
726  * @buf: the original command buffer (which now contains the response)
727  * @rc: the return code from tpm_transmit_cmd
728  *
729  * If @rc is non zero, @buf may not contain an actual return, so @rc
730  * is passed through as the return and the session cleaned up and
731  * de-allocated if required (this is required if
732  * TPM2_SA_CONTINUE_SESSION was not specified as a session flag).
733  *
734  * If @rc is zero, the response HMAC is computed against the returned
735  * @buf and matched to the TPM one in the session area.  If there is a
736  * mismatch, an error is logged and -EINVAL returned.
737  *
738  * The reason for this is that the command issue and HMAC check
739  * sequence should look like:
740  *
741  *	rc = tpm_transmit_cmd(...);
742  *	rc = tpm_buf_check_hmac_response(&buf, auth, rc);
743  *	if (rc)
744  *		...
745  *
746  * Which is easily layered into the current contrl flow.
747  *
748  * Returns: 0 on success or an error.
749  */
750 int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf,
751 				int rc)
752 {
753 	struct tpm_header *head = (struct tpm_header *)buf->data;
754 	struct tpm2_auth *auth = chip->auth;
755 	off_t offset_s, offset_p;
756 	u8 rphash[SHA256_DIGEST_SIZE];
757 	u32 attrs, cc;
758 	struct sha256_state sctx;
759 	u16 tag = be16_to_cpu(head->tag);
760 	int parm_len, len, i, handles;
761 
762 	if (!auth)
763 		return rc;
764 
765 	cc = be32_to_cpu(auth->ordinal);
766 
767 	if (auth->session >= TPM_HEADER_SIZE) {
768 		WARN(1, "tpm session not filled correctly\n");
769 		goto out;
770 	}
771 
772 	if (rc != 0)
773 		/* pass non success rc through and close the session */
774 		goto out;
775 
776 	rc = -EINVAL;
777 	if (tag != TPM2_ST_SESSIONS) {
778 		dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n");
779 		goto out;
780 	}
781 
782 	i = tpm2_find_cc(chip, cc);
783 	if (i < 0)
784 		goto out;
785 	attrs = chip->cc_attrs_tbl[i];
786 	handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1;
787 
788 	/* point to area beyond handles */
789 	offset_s = TPM_HEADER_SIZE + handles * 4;
790 	parm_len = tpm_buf_read_u32(buf, &offset_s);
791 	offset_p = offset_s;
792 	offset_s += parm_len;
793 	/* skip over any sessions before ours */
794 	for (i = 0; i < auth->session - 1; i++) {
795 		len = tpm_buf_read_u16(buf, &offset_s);
796 		offset_s += len + 1;
797 		len = tpm_buf_read_u16(buf, &offset_s);
798 		offset_s += len;
799 	}
800 	/* TPM nonce */
801 	len = tpm_buf_read_u16(buf, &offset_s);
802 	if (offset_s + len > tpm_buf_length(buf))
803 		goto out;
804 	if (len != SHA256_DIGEST_SIZE)
805 		goto out;
806 	memcpy(auth->tpm_nonce, &buf->data[offset_s], len);
807 	offset_s += len;
808 	attrs = tpm_buf_read_u8(buf, &offset_s);
809 	len = tpm_buf_read_u16(buf, &offset_s);
810 	if (offset_s + len != tpm_buf_length(buf))
811 		goto out;
812 	if (len != SHA256_DIGEST_SIZE)
813 		goto out;
814 	/*
815 	 * offset_s points to the HMAC. now calculate comparison, beginning
816 	 * with rphash
817 	 */
818 	sha256_init(&sctx);
819 	/* yes, I know this is now zero, but it's what the standard says */
820 	sha256_update(&sctx, (u8 *)&head->return_code,
821 		      sizeof(head->return_code));
822 	/* ordinal is already BE */
823 	sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal));
824 	sha256_update(&sctx, &buf->data[offset_p], parm_len);
825 	sha256_final(&sctx, rphash);
826 
827 	/* now calculate the hmac */
828 	tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
829 		       + auth->passphrase_len);
830 	sha256_update(&sctx, rphash, sizeof(rphash));
831 	sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
832 	sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
833 	sha256_update(&sctx, &auth->attrs, 1);
834 	/* we're done with the rphash, so put our idea of the hmac there */
835 	tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
836 			+ auth->passphrase_len, rphash);
837 	if (memcmp(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE) == 0) {
838 		rc = 0;
839 	} else {
840 		dev_err(&chip->dev, "TPM: HMAC check failed\n");
841 		goto out;
842 	}
843 
844 	/* now do response decryption */
845 	if (auth->attrs & TPM2_SA_ENCRYPT) {
846 		/* need key and IV */
847 		tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
848 			  + auth->passphrase_len, "CFB", auth->tpm_nonce,
849 			  auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
850 			  auth->scratch);
851 
852 		len = tpm_buf_read_u16(buf, &offset_p);
853 		aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
854 		aescfb_decrypt(&auth->aes_ctx, &buf->data[offset_p],
855 			       &buf->data[offset_p], len,
856 			       auth->scratch + AES_KEY_BYTES);
857 	}
858 
859  out:
860 	if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) {
861 		if (rc)
862 			/* manually close the session if it wasn't consumed */
863 			tpm2_flush_context(chip, auth->handle);
864 
865 		kfree_sensitive(auth);
866 		chip->auth = NULL;
867 	} else {
868 		/* reset for next use  */
869 		auth->session = TPM_HEADER_SIZE;
870 	}
871 
872 	return rc;
873 }
874 EXPORT_SYMBOL(tpm_buf_check_hmac_response);
875 
876 /**
877  * tpm2_end_auth_session() - kill the allocated auth session
878  * @chip: the TPM chip structure
879  *
880  * ends the session started by tpm2_start_auth_session and frees all
881  * the resources.  Under normal conditions,
882  * tpm_buf_check_hmac_response() will correctly end the session if
883  * required, so this function is only for use in error legs that will
884  * bypass the normal invocation of tpm_buf_check_hmac_response().
885  */
886 void tpm2_end_auth_session(struct tpm_chip *chip)
887 {
888 	struct tpm2_auth *auth = chip->auth;
889 
890 	if (!auth)
891 		return;
892 
893 	tpm2_flush_context(chip, auth->handle);
894 	kfree_sensitive(auth);
895 	chip->auth = NULL;
896 }
897 EXPORT_SYMBOL(tpm2_end_auth_session);
898 
899 static int tpm2_parse_start_auth_session(struct tpm2_auth *auth,
900 					 struct tpm_buf *buf)
901 {
902 	struct tpm_header *head = (struct tpm_header *)buf->data;
903 	u32 tot_len = be32_to_cpu(head->length);
904 	off_t offset = TPM_HEADER_SIZE;
905 	u32 val;
906 
907 	/* we're starting after the header so adjust the length */
908 	tot_len -= TPM_HEADER_SIZE;
909 
910 	/* should have handle plus nonce */
911 	if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce))
912 		return -EINVAL;
913 
914 	auth->handle = tpm_buf_read_u32(buf, &offset);
915 	val = tpm_buf_read_u16(buf, &offset);
916 	if (val != sizeof(auth->tpm_nonce))
917 		return -EINVAL;
918 	memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce));
919 	/* now compute the session key from the nonces */
920 	tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce,
921 		  auth->our_nonce, sizeof(auth->session_key),
922 		  auth->session_key);
923 
924 	return 0;
925 }
926 
927 static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key)
928 {
929 	unsigned int offset = 0; /* dummy offset for null seed context */
930 	u8 name[SHA256_DIGEST_SIZE + 2];
931 	u32 tmp_null_key;
932 	int rc;
933 
934 	rc = tpm2_load_context(chip, chip->null_key_context, &offset,
935 			       &tmp_null_key);
936 	if (rc != -EINVAL) {
937 		if (!rc)
938 			*null_key = tmp_null_key;
939 		goto err;
940 	}
941 
942 	/* Try to re-create null key, given the integrity failure: */
943 	rc = tpm2_create_primary(chip, TPM2_RH_NULL, &tmp_null_key, name);
944 	if (rc)
945 		goto err;
946 
947 	/* Return null key if the name has not been changed: */
948 	if (!memcmp(name, chip->null_key_name, sizeof(name))) {
949 		*null_key = tmp_null_key;
950 		return 0;
951 	}
952 
953 	/* Deduce from the name change TPM interference: */
954 	dev_err(&chip->dev, "null key integrity check failed\n");
955 	tpm2_flush_context(chip, tmp_null_key);
956 
957 err:
958 	if (rc) {
959 		chip->flags |= TPM_CHIP_FLAG_DISABLE;
960 		rc = -ENODEV;
961 	}
962 	return rc;
963 }
964 
965 /**
966  * tpm2_start_auth_session() - create a HMAC authentication session with the TPM
967  * @chip: the TPM chip structure to create the session with
968  *
969  * This function loads the NULL seed from its saved context and starts
970  * an authentication session on the null seed, fills in the
971  * @chip->auth structure to contain all the session details necessary
972  * for performing the HMAC, encrypt and decrypt operations and
973  * returns.  The NULL seed is flushed before this function returns.
974  *
975  * Return: zero on success or actual error encountered.
976  */
977 int tpm2_start_auth_session(struct tpm_chip *chip)
978 {
979 	struct tpm2_auth *auth;
980 	struct tpm_buf buf;
981 	u32 null_key;
982 	int rc;
983 
984 	if (chip->auth) {
985 		dev_warn_once(&chip->dev, "auth session is active\n");
986 		return 0;
987 	}
988 
989 	auth = kzalloc(sizeof(*auth), GFP_KERNEL);
990 	if (!auth)
991 		return -ENOMEM;
992 
993 	rc = tpm2_load_null(chip, &null_key);
994 	if (rc)
995 		goto out;
996 
997 	auth->session = TPM_HEADER_SIZE;
998 
999 	rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS);
1000 	if (rc)
1001 		goto out;
1002 
1003 	/* salt key handle */
1004 	tpm_buf_append_u32(&buf, null_key);
1005 	/* bind key handle */
1006 	tpm_buf_append_u32(&buf, TPM2_RH_NULL);
1007 	/* nonce caller */
1008 	get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce));
1009 	tpm_buf_append_u16(&buf, sizeof(auth->our_nonce));
1010 	tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce));
1011 
1012 	/* append encrypted salt and squirrel away unencrypted in auth */
1013 	tpm_buf_append_salt(&buf, chip, auth);
1014 	/* session type (HMAC, audit or policy) */
1015 	tpm_buf_append_u8(&buf, TPM2_SE_HMAC);
1016 
1017 	/* symmetric encryption parameters */
1018 	/* symmetric algorithm */
1019 	tpm_buf_append_u16(&buf, TPM_ALG_AES);
1020 	/* bits for symmetric algorithm */
1021 	tpm_buf_append_u16(&buf, AES_KEY_BITS);
1022 	/* symmetric algorithm mode (must be CFB) */
1023 	tpm_buf_append_u16(&buf, TPM_ALG_CFB);
1024 	/* hash algorithm for session */
1025 	tpm_buf_append_u16(&buf, TPM_ALG_SHA256);
1026 
1027 	rc = tpm_transmit_cmd(chip, &buf, 0, "start auth session");
1028 	tpm2_flush_context(chip, null_key);
1029 
1030 	if (rc == TPM2_RC_SUCCESS)
1031 		rc = tpm2_parse_start_auth_session(auth, &buf);
1032 
1033 	tpm_buf_destroy(&buf);
1034 
1035 	if (rc == TPM2_RC_SUCCESS) {
1036 		chip->auth = auth;
1037 		return 0;
1038 	}
1039 
1040 out:
1041 	kfree_sensitive(auth);
1042 	return rc;
1043 }
1044 EXPORT_SYMBOL(tpm2_start_auth_session);
1045 
1046 /*
1047  * A mask containing the object attributes for the kernel held null primary key
1048  * used in HMAC encryption. For more information on specific attributes look up
1049  * to "8.3 TPMA_OBJECT (Object Attributes)".
1050  */
1051 #define TPM2_OA_NULL_KEY ( \
1052 	TPM2_OA_NO_DA | \
1053 	TPM2_OA_FIXED_TPM | \
1054 	TPM2_OA_FIXED_PARENT | \
1055 	TPM2_OA_SENSITIVE_DATA_ORIGIN |	\
1056 	TPM2_OA_USER_WITH_AUTH | \
1057 	TPM2_OA_DECRYPT | \
1058 	TPM2_OA_RESTRICTED)
1059 
1060 /**
1061  * tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY
1062  *
1063  * @chip:	The TPM the primary was created under
1064  * @buf:	The response buffer from the chip
1065  * @handle:	pointer to be filled in with the return handle of the primary
1066  * @hierarchy:	The hierarchy the primary was created for
1067  * @name:	pointer to be filled in with the primary key name
1068  *
1069  * Return:
1070  * * 0		- OK
1071  * * -errno	- A system error
1072  * * TPM_RC	- A TPM error
1073  */
1074 static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf,
1075 				     u32 *handle, u32 hierarchy, u8 *name)
1076 {
1077 	struct tpm_header *head = (struct tpm_header *)buf->data;
1078 	off_t offset_r = TPM_HEADER_SIZE, offset_t;
1079 	u16 len = TPM_HEADER_SIZE;
1080 	u32 total_len = be32_to_cpu(head->length);
1081 	u32 val, param_len, keyhandle;
1082 
1083 	keyhandle = tpm_buf_read_u32(buf, &offset_r);
1084 	if (handle)
1085 		*handle = keyhandle;
1086 	else
1087 		tpm2_flush_context(chip, keyhandle);
1088 
1089 	param_len = tpm_buf_read_u32(buf, &offset_r);
1090 	/*
1091 	 * param_len doesn't include the header, but all the other
1092 	 * lengths and offsets do, so add it to parm len to make
1093 	 * the comparisons easier
1094 	 */
1095 	param_len += TPM_HEADER_SIZE;
1096 
1097 	if (param_len + 8 > total_len)
1098 		return -EINVAL;
1099 	len = tpm_buf_read_u16(buf, &offset_r);
1100 	offset_t = offset_r;
1101 	if (name) {
1102 		/*
1103 		 * now we have the public area, compute the name of
1104 		 * the object
1105 		 */
1106 		put_unaligned_be16(TPM_ALG_SHA256, name);
1107 		sha256(&buf->data[offset_r], len, name + 2);
1108 	}
1109 
1110 	/* validate the public key */
1111 	val = tpm_buf_read_u16(buf, &offset_t);
1112 
1113 	/* key type (must be what we asked for) */
1114 	if (val != TPM_ALG_ECC)
1115 		return -EINVAL;
1116 	val = tpm_buf_read_u16(buf, &offset_t);
1117 
1118 	/* name algorithm */
1119 	if (val != TPM_ALG_SHA256)
1120 		return -EINVAL;
1121 	val = tpm_buf_read_u32(buf, &offset_t);
1122 
1123 	/* object properties */
1124 	if (val != TPM2_OA_NULL_KEY)
1125 		return -EINVAL;
1126 
1127 	/* auth policy (empty) */
1128 	val = tpm_buf_read_u16(buf, &offset_t);
1129 	if (val != 0)
1130 		return -EINVAL;
1131 
1132 	/* symmetric key parameters */
1133 	val = tpm_buf_read_u16(buf, &offset_t);
1134 	if (val != TPM_ALG_AES)
1135 		return -EINVAL;
1136 
1137 	/* symmetric key length */
1138 	val = tpm_buf_read_u16(buf, &offset_t);
1139 	if (val != AES_KEY_BITS)
1140 		return -EINVAL;
1141 
1142 	/* symmetric encryption scheme */
1143 	val = tpm_buf_read_u16(buf, &offset_t);
1144 	if (val != TPM_ALG_CFB)
1145 		return -EINVAL;
1146 
1147 	/* signing scheme */
1148 	val = tpm_buf_read_u16(buf, &offset_t);
1149 	if (val != TPM_ALG_NULL)
1150 		return -EINVAL;
1151 
1152 	/* ECC Curve */
1153 	val = tpm_buf_read_u16(buf, &offset_t);
1154 	if (val != TPM2_ECC_NIST_P256)
1155 		return -EINVAL;
1156 
1157 	/* KDF Scheme */
1158 	val = tpm_buf_read_u16(buf, &offset_t);
1159 	if (val != TPM_ALG_NULL)
1160 		return -EINVAL;
1161 
1162 	/* extract public key (x and y points) */
1163 	val = tpm_buf_read_u16(buf, &offset_t);
1164 	if (val != EC_PT_SZ)
1165 		return -EINVAL;
1166 	memcpy(chip->null_ec_key_x, &buf->data[offset_t], val);
1167 	offset_t += val;
1168 	val = tpm_buf_read_u16(buf, &offset_t);
1169 	if (val != EC_PT_SZ)
1170 		return -EINVAL;
1171 	memcpy(chip->null_ec_key_y, &buf->data[offset_t], val);
1172 	offset_t += val;
1173 
1174 	/* original length of the whole TPM2B */
1175 	offset_r += len;
1176 
1177 	/* should have exactly consumed the TPM2B public structure */
1178 	if (offset_t != offset_r)
1179 		return -EINVAL;
1180 	if (offset_r > param_len)
1181 		return -EINVAL;
1182 
1183 	/* creation data (skip) */
1184 	len = tpm_buf_read_u16(buf, &offset_r);
1185 	offset_r += len;
1186 	if (offset_r > param_len)
1187 		return -EINVAL;
1188 
1189 	/* creation digest (must be sha256) */
1190 	len = tpm_buf_read_u16(buf, &offset_r);
1191 	offset_r += len;
1192 	if (len != SHA256_DIGEST_SIZE || offset_r > param_len)
1193 		return -EINVAL;
1194 
1195 	/* TPMT_TK_CREATION follows */
1196 	/* tag, must be TPM_ST_CREATION (0x8021) */
1197 	val = tpm_buf_read_u16(buf, &offset_r);
1198 	if (val != TPM2_ST_CREATION || offset_r > param_len)
1199 		return -EINVAL;
1200 
1201 	/* hierarchy */
1202 	val = tpm_buf_read_u32(buf, &offset_r);
1203 	if (val != hierarchy || offset_r > param_len)
1204 		return -EINVAL;
1205 
1206 	/* the ticket digest HMAC (might not be sha256) */
1207 	len = tpm_buf_read_u16(buf, &offset_r);
1208 	offset_r += len;
1209 	if (offset_r > param_len)
1210 		return -EINVAL;
1211 
1212 	/*
1213 	 * finally we have the name, which is a sha256 digest plus a 2
1214 	 * byte algorithm type
1215 	 */
1216 	len = tpm_buf_read_u16(buf, &offset_r);
1217 	if (offset_r + len != param_len + 8)
1218 		return -EINVAL;
1219 	if (len != SHA256_DIGEST_SIZE + 2)
1220 		return -EINVAL;
1221 
1222 	if (memcmp(chip->null_key_name, &buf->data[offset_r],
1223 		   SHA256_DIGEST_SIZE + 2) != 0) {
1224 		dev_err(&chip->dev, "NULL Seed name comparison failed\n");
1225 		return -EINVAL;
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 /**
1232  * tpm2_create_primary() - create a primary key using a fixed P-256 template
1233  *
1234  * @chip:      the TPM chip to create under
1235  * @hierarchy: The hierarchy handle to create under
1236  * @handle:    The returned volatile handle on success
1237  * @name:      The name of the returned key
1238  *
1239  * For platforms that might not have a persistent primary, this can be
1240  * used to create one quickly on the fly (it uses Elliptic Curve not
1241  * RSA, so even slow TPMs can create one fast).  The template uses the
1242  * TCG mandated H one for non-endorsement ECC primaries, i.e. P-256
1243  * elliptic curve (the only current one all TPM2s are required to
1244  * have) a sha256 name hash and no policy.
1245  *
1246  * Return:
1247  * * 0		- OK
1248  * * -errno	- A system error
1249  * * TPM_RC	- A TPM error
1250  */
1251 static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
1252 			       u32 *handle, u8 *name)
1253 {
1254 	int rc;
1255 	struct tpm_buf buf;
1256 	struct tpm_buf template;
1257 
1258 	rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY);
1259 	if (rc)
1260 		return rc;
1261 
1262 	rc = tpm_buf_init_sized(&template);
1263 	if (rc) {
1264 		tpm_buf_destroy(&buf);
1265 		return rc;
1266 	}
1267 
1268 	/*
1269 	 * create the template.  Note: in order for userspace to
1270 	 * verify the security of the system, it will have to create
1271 	 * and certify this NULL primary, meaning all the template
1272 	 * parameters will have to be identical, so conform exactly to
1273 	 * the TCG TPM v2.0 Provisioning Guidance for the SRK ECC
1274 	 * key H template (H has zero size unique points)
1275 	 */
1276 
1277 	/* key type */
1278 	tpm_buf_append_u16(&template, TPM_ALG_ECC);
1279 
1280 	/* name algorithm */
1281 	tpm_buf_append_u16(&template, TPM_ALG_SHA256);
1282 
1283 	/* object properties */
1284 	tpm_buf_append_u32(&template, TPM2_OA_NULL_KEY);
1285 
1286 	/* sauth policy (empty) */
1287 	tpm_buf_append_u16(&template, 0);
1288 
1289 	/* BEGIN parameters: key specific; for ECC*/
1290 
1291 	/* symmetric algorithm */
1292 	tpm_buf_append_u16(&template, TPM_ALG_AES);
1293 
1294 	/* bits for symmetric algorithm */
1295 	tpm_buf_append_u16(&template, AES_KEY_BITS);
1296 
1297 	/* algorithm mode (must be CFB) */
1298 	tpm_buf_append_u16(&template, TPM_ALG_CFB);
1299 
1300 	/* scheme (NULL means any scheme) */
1301 	tpm_buf_append_u16(&template, TPM_ALG_NULL);
1302 
1303 	/* ECC Curve ID */
1304 	tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256);
1305 
1306 	/* KDF Scheme */
1307 	tpm_buf_append_u16(&template, TPM_ALG_NULL);
1308 
1309 	/* unique: key specific; for ECC it is two zero size points */
1310 	tpm_buf_append_u16(&template, 0);
1311 	tpm_buf_append_u16(&template, 0);
1312 
1313 	/* END parameters */
1314 
1315 	/* primary handle */
1316 	tpm_buf_append_u32(&buf, hierarchy);
1317 	tpm_buf_append_empty_auth(&buf, TPM2_RS_PW);
1318 
1319 	/* sensitive create size is 4 for two empty buffers */
1320 	tpm_buf_append_u16(&buf, 4);
1321 
1322 	/* sensitive create auth data (empty) */
1323 	tpm_buf_append_u16(&buf, 0);
1324 
1325 	/* sensitive create sensitive data (empty) */
1326 	tpm_buf_append_u16(&buf, 0);
1327 
1328 	/* the public template */
1329 	tpm_buf_append(&buf, template.data, template.length);
1330 	tpm_buf_destroy(&template);
1331 
1332 	/* outside info (empty) */
1333 	tpm_buf_append_u16(&buf, 0);
1334 
1335 	/* creation PCR (none) */
1336 	tpm_buf_append_u32(&buf, 0);
1337 
1338 	rc = tpm_transmit_cmd(chip, &buf, 0,
1339 			      "attempting to create NULL primary");
1340 
1341 	if (rc == TPM2_RC_SUCCESS)
1342 		rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy,
1343 					       name);
1344 
1345 	tpm_buf_destroy(&buf);
1346 
1347 	return rc;
1348 }
1349 
1350 static int tpm2_create_null_primary(struct tpm_chip *chip)
1351 {
1352 	u32 null_key;
1353 	int rc;
1354 
1355 	rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key,
1356 				 chip->null_key_name);
1357 
1358 	if (rc == TPM2_RC_SUCCESS) {
1359 		unsigned int offset = 0; /* dummy offset for null key context */
1360 
1361 		rc = tpm2_save_context(chip, null_key, chip->null_key_context,
1362 				       sizeof(chip->null_key_context), &offset);
1363 		tpm2_flush_context(chip, null_key);
1364 	}
1365 
1366 	return rc;
1367 }
1368 
1369 /**
1370  * tpm2_sessions_init() - start of day initialization for the sessions code
1371  * @chip: TPM chip
1372  *
1373  * Derive and context save the null primary and allocate memory in the
1374  * struct tpm_chip for the authorizations.
1375  *
1376  * Return:
1377  * * 0		- OK
1378  * * -errno	- A system error
1379  * * TPM_RC	- A TPM error
1380  */
1381 int tpm2_sessions_init(struct tpm_chip *chip)
1382 {
1383 	int rc;
1384 
1385 	rc = tpm2_create_null_primary(chip);
1386 	if (rc) {
1387 		dev_err(&chip->dev, "null key creation failed with %d\n", rc);
1388 		return rc;
1389 	}
1390 
1391 	return rc;
1392 }
1393 #endif /* CONFIG_TCG_TPM2_HMAC */
1394