1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright (C) 2018 James.Bottomley@HansenPartnership.com 5 * 6 * Cryptographic helper routines for handling TPM2 sessions for 7 * authorization HMAC and request response encryption. 8 * 9 * The idea is to ensure that every TPM command is HMAC protected by a 10 * session, meaning in-flight tampering would be detected and in 11 * addition all sensitive inputs and responses should be encrypted. 12 * 13 * The basic way this works is to use a TPM feature called salted 14 * sessions where a random secret used in session construction is 15 * encrypted to the public part of a known TPM key. The problem is we 16 * have no known keys, so initially a primary Elliptic Curve key is 17 * derived from the NULL seed (we use EC because most TPMs generate 18 * these keys much faster than RSA ones). The curve used is NIST_P256 19 * because that's now mandated to be present in 'TCG TPM v2.0 20 * Provisioning Guidance' 21 * 22 * Threat problems: the initial TPM2_CreatePrimary is not (and cannot 23 * be) session protected, so a clever Man in the Middle could return a 24 * public key they control to this command and from there intercept 25 * and decode all subsequent session based transactions. The kernel 26 * cannot mitigate this threat but, after boot, userspace can get 27 * proof this has not happened by asking the TPM to certify the NULL 28 * key. This certification would chain back to the TPM Endorsement 29 * Certificate and prove the NULL seed primary had not been tampered 30 * with and thus all sessions must have been cryptographically secure. 31 * To assist with this, the initial NULL seed public key name is made 32 * available in a sysfs file. 33 * 34 * Use of these functions: 35 * 36 * The design is all the crypto, hash and hmac gunk is confined in this 37 * file and never needs to be seen even by the kernel internal user. To 38 * the user there's an init function tpm2_sessions_init() that needs to 39 * be called once per TPM which generates the NULL seed primary key. 40 * 41 * These are the usage functions: 42 * 43 * tpm2_start_auth_session() which allocates the opaque auth structure 44 * and gets a session from the TPM. This must be called before 45 * any of the following functions. The session is protected by a 46 * session_key which is derived from a random salt value 47 * encrypted to the NULL seed. 48 * tpm2_end_auth_session() kills the session and frees the resources. 49 * Under normal operation this function is done by 50 * tpm_buf_check_hmac_response(), so this is only to be used on 51 * error legs where the latter is not executed. 52 * tpm_buf_append_name() to add a handle to the buffer. This must be 53 * used in place of the usual tpm_buf_append_u32() for adding 54 * handles because handles have to be processed specially when 55 * calculating the HMAC. In particular, for NV, volatile and 56 * permanent objects you now need to provide the name. 57 * tpm_buf_append_hmac_session() which appends the hmac session to the 58 * buf in the same way tpm_buf_append_auth does(). 59 * tpm_buf_fill_hmac_session() This calculates the correct hash and 60 * places it in the buffer. It must be called after the complete 61 * command buffer is finalized so it can fill in the correct HMAC 62 * based on the parameters. 63 * tpm_buf_check_hmac_response() which checks the session response in 64 * the buffer and calculates what it should be. If there's a 65 * mismatch it will log a warning and return an error. If 66 * tpm_buf_append_hmac_session() did not specify 67 * TPM_SA_CONTINUE_SESSION then the session will be closed (if it 68 * hasn't been consumed) and the auth structure freed. 69 */ 70 71 #include "tpm.h" 72 #include <linux/random.h> 73 #include <linux/scatterlist.h> 74 #include <linux/unaligned.h> 75 #include <crypto/kpp.h> 76 #include <crypto/ecdh.h> 77 #include <crypto/hash.h> 78 #include <crypto/hmac.h> 79 80 /* maximum number of names the TPM must remember for authorization */ 81 #define AUTH_MAX_NAMES 3 82 83 #define AES_KEY_BYTES AES_KEYSIZE_128 84 #define AES_KEY_BITS (AES_KEY_BYTES*8) 85 86 /* 87 * This is the structure that carries all the auth information (like 88 * session handle, nonces, session key and auth) from use to use it is 89 * designed to be opaque to anything outside. 90 */ 91 struct tpm2_auth { 92 u32 handle; 93 /* 94 * This has two meanings: before tpm_buf_fill_hmac_session() 95 * it marks the offset in the buffer of the start of the 96 * sessions (i.e. after all the handles). Once the buffer has 97 * been filled it markes the session number of our auth 98 * session so we can find it again in the response buffer. 99 * 100 * The two cases are distinguished because the first offset 101 * must always be greater than TPM_HEADER_SIZE and the second 102 * must be less than or equal to 5. 103 */ 104 u32 session; 105 /* 106 * the size here is variable and set by the size of our_nonce 107 * which must be between 16 and the name hash length. we set 108 * the maximum sha256 size for the greatest protection 109 */ 110 u8 our_nonce[SHA256_DIGEST_SIZE]; 111 u8 tpm_nonce[SHA256_DIGEST_SIZE]; 112 /* 113 * the salt is only used across the session command/response 114 * after that it can be used as a scratch area 115 */ 116 union { 117 u8 salt[EC_PT_SZ]; 118 /* scratch for key + IV */ 119 u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE]; 120 }; 121 /* 122 * the session key and passphrase are the same size as the 123 * name digest (sha256 again). The session key is constant 124 * for the use of the session and the passphrase can change 125 * with every invocation. 126 * 127 * Note: these fields must be adjacent and in this order 128 * because several HMAC/KDF schemes use the combination of the 129 * session_key and passphrase. 130 */ 131 u8 session_key[SHA256_DIGEST_SIZE]; 132 u8 passphrase[SHA256_DIGEST_SIZE]; 133 int passphrase_len; 134 struct crypto_aes_ctx aes_ctx; 135 /* saved session attributes: */ 136 u8 attrs; 137 __be32 ordinal; 138 139 /* 140 * memory for three authorization handles. We know them by 141 * handle, but they are part of the session by name, which 142 * we must compute and remember 143 */ 144 u32 name_h[AUTH_MAX_NAMES]; 145 u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE]; 146 }; 147 148 #ifdef CONFIG_TCG_TPM2_HMAC 149 /* 150 * Name Size based on TPM algorithm (assumes no hash bigger than 255) 151 */ 152 static u8 name_size(const u8 *name) 153 { 154 static u8 size_map[] = { 155 [TPM_ALG_SHA1] = SHA1_DIGEST_SIZE, 156 [TPM_ALG_SHA256] = SHA256_DIGEST_SIZE, 157 [TPM_ALG_SHA384] = SHA384_DIGEST_SIZE, 158 [TPM_ALG_SHA512] = SHA512_DIGEST_SIZE, 159 }; 160 u16 alg = get_unaligned_be16(name); 161 return size_map[alg] + 2; 162 } 163 164 static int tpm2_parse_read_public(char *name, struct tpm_buf *buf) 165 { 166 struct tpm_header *head = (struct tpm_header *)buf->data; 167 off_t offset = TPM_HEADER_SIZE; 168 u32 tot_len = be32_to_cpu(head->length); 169 u32 val; 170 171 /* we're starting after the header so adjust the length */ 172 tot_len -= TPM_HEADER_SIZE; 173 174 /* skip public */ 175 val = tpm_buf_read_u16(buf, &offset); 176 if (val > tot_len) 177 return -EINVAL; 178 offset += val; 179 /* name */ 180 val = tpm_buf_read_u16(buf, &offset); 181 if (val != name_size(&buf->data[offset])) 182 return -EINVAL; 183 memcpy(name, &buf->data[offset], val); 184 /* forget the rest */ 185 return 0; 186 } 187 188 static int tpm2_read_public(struct tpm_chip *chip, u32 handle, char *name) 189 { 190 struct tpm_buf buf; 191 int rc; 192 193 rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC); 194 if (rc) 195 return rc; 196 197 tpm_buf_append_u32(&buf, handle); 198 rc = tpm_transmit_cmd(chip, &buf, 0, "read public"); 199 if (rc == TPM2_RC_SUCCESS) 200 rc = tpm2_parse_read_public(name, &buf); 201 202 tpm_buf_destroy(&buf); 203 204 return rc; 205 } 206 #endif /* CONFIG_TCG_TPM2_HMAC */ 207 208 /** 209 * tpm_buf_append_name() - add a handle area to the buffer 210 * @chip: the TPM chip structure 211 * @buf: The buffer to be appended 212 * @handle: The handle to be appended 213 * @name: The name of the handle (may be NULL) 214 * 215 * In order to compute session HMACs, we need to know the names of the 216 * objects pointed to by the handles. For most objects, this is simply 217 * the actual 4 byte handle or an empty buf (in these cases @name 218 * should be NULL) but for volatile objects, permanent objects and NV 219 * areas, the name is defined as the hash (according to the name 220 * algorithm which should be set to sha256) of the public area to 221 * which the two byte algorithm id has been appended. For these 222 * objects, the @name pointer should point to this. If a name is 223 * required but @name is NULL, then TPM2_ReadPublic() will be called 224 * on the handle to obtain the name. 225 * 226 * As with most tpm_buf operations, success is assumed because failure 227 * will be caused by an incorrect programming model and indicated by a 228 * kernel message. 229 */ 230 void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf, 231 u32 handle, u8 *name) 232 { 233 #ifdef CONFIG_TCG_TPM2_HMAC 234 enum tpm2_mso_type mso = tpm2_handle_mso(handle); 235 struct tpm2_auth *auth; 236 int slot; 237 #endif 238 239 if (!tpm2_chip_auth(chip)) { 240 tpm_buf_append_u32(buf, handle); 241 /* count the number of handles in the upper bits of flags */ 242 buf->handles++; 243 return; 244 } 245 246 #ifdef CONFIG_TCG_TPM2_HMAC 247 slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE) / 4; 248 if (slot >= AUTH_MAX_NAMES) { 249 dev_err(&chip->dev, "TPM: too many handles\n"); 250 return; 251 } 252 auth = chip->auth; 253 WARN(auth->session != tpm_buf_length(buf), 254 "name added in wrong place\n"); 255 tpm_buf_append_u32(buf, handle); 256 auth->session += 4; 257 258 if (mso == TPM2_MSO_PERSISTENT || 259 mso == TPM2_MSO_VOLATILE || 260 mso == TPM2_MSO_NVRAM) { 261 if (!name) 262 tpm2_read_public(chip, handle, auth->name[slot]); 263 } else { 264 if (name) 265 dev_err(&chip->dev, "TPM: Handle does not require name but one is specified\n"); 266 } 267 268 auth->name_h[slot] = handle; 269 if (name) 270 memcpy(auth->name[slot], name, name_size(name)); 271 #endif 272 } 273 EXPORT_SYMBOL_GPL(tpm_buf_append_name); 274 275 /** 276 * tpm_buf_append_hmac_session() - Append a TPM session element 277 * @chip: the TPM chip structure 278 * @buf: The buffer to be appended 279 * @attributes: The session attributes 280 * @passphrase: The session authority (NULL if none) 281 * @passphrase_len: The length of the session authority (0 if none) 282 * 283 * This fills in a session structure in the TPM command buffer, except 284 * for the HMAC which cannot be computed until the command buffer is 285 * complete. The type of session is controlled by the @attributes, 286 * the main ones of which are TPM2_SA_CONTINUE_SESSION which means the 287 * session won't terminate after tpm_buf_check_hmac_response(), 288 * TPM2_SA_DECRYPT which means this buffers first parameter should be 289 * encrypted with a session key and TPM2_SA_ENCRYPT, which means the 290 * response buffer's first parameter needs to be decrypted (confusing, 291 * but the defines are written from the point of view of the TPM). 292 * 293 * Any session appended by this command must be finalized by calling 294 * tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect 295 * and the TPM will reject the command. 296 * 297 * As with most tpm_buf operations, success is assumed because failure 298 * will be caused by an incorrect programming model and indicated by a 299 * kernel message. 300 */ 301 void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf, 302 u8 attributes, u8 *passphrase, 303 int passphrase_len) 304 { 305 #ifdef CONFIG_TCG_TPM2_HMAC 306 u8 nonce[SHA256_DIGEST_SIZE]; 307 struct tpm2_auth *auth; 308 u32 len; 309 #endif 310 311 if (!tpm2_chip_auth(chip)) { 312 /* offset tells us where the sessions area begins */ 313 int offset = buf->handles * 4 + TPM_HEADER_SIZE; 314 u32 len = 9 + passphrase_len; 315 316 if (tpm_buf_length(buf) != offset) { 317 /* not the first session so update the existing length */ 318 len += get_unaligned_be32(&buf->data[offset]); 319 put_unaligned_be32(len, &buf->data[offset]); 320 } else { 321 tpm_buf_append_u32(buf, len); 322 } 323 /* auth handle */ 324 tpm_buf_append_u32(buf, TPM2_RS_PW); 325 /* nonce */ 326 tpm_buf_append_u16(buf, 0); 327 /* attributes */ 328 tpm_buf_append_u8(buf, 0); 329 /* passphrase */ 330 tpm_buf_append_u16(buf, passphrase_len); 331 tpm_buf_append(buf, passphrase, passphrase_len); 332 return; 333 } 334 335 #ifdef CONFIG_TCG_TPM2_HMAC 336 /* 337 * The Architecture Guide requires us to strip trailing zeros 338 * before computing the HMAC 339 */ 340 while (passphrase && passphrase_len > 0 && passphrase[passphrase_len - 1] == '\0') 341 passphrase_len--; 342 343 auth = chip->auth; 344 auth->attrs = attributes; 345 auth->passphrase_len = passphrase_len; 346 if (passphrase_len) 347 memcpy(auth->passphrase, passphrase, passphrase_len); 348 349 if (auth->session != tpm_buf_length(buf)) { 350 /* we're not the first session */ 351 len = get_unaligned_be32(&buf->data[auth->session]); 352 if (4 + len + auth->session != tpm_buf_length(buf)) { 353 WARN(1, "session length mismatch, cannot append"); 354 return; 355 } 356 357 /* add our new session */ 358 len += 9 + 2 * SHA256_DIGEST_SIZE; 359 put_unaligned_be32(len, &buf->data[auth->session]); 360 } else { 361 tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE); 362 } 363 364 /* random number for our nonce */ 365 get_random_bytes(nonce, sizeof(nonce)); 366 memcpy(auth->our_nonce, nonce, sizeof(nonce)); 367 tpm_buf_append_u32(buf, auth->handle); 368 /* our new nonce */ 369 tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE); 370 tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE); 371 tpm_buf_append_u8(buf, auth->attrs); 372 /* and put a placeholder for the hmac */ 373 tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE); 374 tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE); 375 #endif 376 } 377 EXPORT_SYMBOL_GPL(tpm_buf_append_hmac_session); 378 379 #ifdef CONFIG_TCG_TPM2_HMAC 380 381 static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy, 382 u32 *handle, u8 *name); 383 384 /* 385 * It turns out the crypto hmac(sha256) is hard for us to consume 386 * because it assumes a fixed key and the TPM seems to change the key 387 * on every operation, so we weld the hmac init and final functions in 388 * here to give it the same usage characteristics as a regular hash 389 */ 390 static void tpm2_hmac_init(struct sha256_state *sctx, u8 *key, u32 key_len) 391 { 392 u8 pad[SHA256_BLOCK_SIZE]; 393 int i; 394 395 sha256_init(sctx); 396 for (i = 0; i < sizeof(pad); i++) { 397 if (i < key_len) 398 pad[i] = key[i]; 399 else 400 pad[i] = 0; 401 pad[i] ^= HMAC_IPAD_VALUE; 402 } 403 sha256_update(sctx, pad, sizeof(pad)); 404 } 405 406 static void tpm2_hmac_final(struct sha256_state *sctx, u8 *key, u32 key_len, 407 u8 *out) 408 { 409 u8 pad[SHA256_BLOCK_SIZE]; 410 int i; 411 412 for (i = 0; i < sizeof(pad); i++) { 413 if (i < key_len) 414 pad[i] = key[i]; 415 else 416 pad[i] = 0; 417 pad[i] ^= HMAC_OPAD_VALUE; 418 } 419 420 /* collect the final hash; use out as temporary storage */ 421 sha256_final(sctx, out); 422 423 sha256_init(sctx); 424 sha256_update(sctx, pad, sizeof(pad)); 425 sha256_update(sctx, out, SHA256_DIGEST_SIZE); 426 sha256_final(sctx, out); 427 } 428 429 /* 430 * assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but 431 * otherwise standard tpm2_KDFa. Note output is in bytes not bits. 432 */ 433 static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u, 434 u8 *v, u32 bytes, u8 *out) 435 { 436 u32 counter = 1; 437 const __be32 bits = cpu_to_be32(bytes * 8); 438 439 while (bytes > 0) { 440 struct sha256_state sctx; 441 __be32 c = cpu_to_be32(counter); 442 443 tpm2_hmac_init(&sctx, key, key_len); 444 sha256_update(&sctx, (u8 *)&c, sizeof(c)); 445 sha256_update(&sctx, label, strlen(label)+1); 446 sha256_update(&sctx, u, SHA256_DIGEST_SIZE); 447 sha256_update(&sctx, v, SHA256_DIGEST_SIZE); 448 sha256_update(&sctx, (u8 *)&bits, sizeof(bits)); 449 tpm2_hmac_final(&sctx, key, key_len, out); 450 451 bytes -= SHA256_DIGEST_SIZE; 452 counter++; 453 out += SHA256_DIGEST_SIZE; 454 } 455 } 456 457 /* 458 * Somewhat of a bastardization of the real KDFe. We're assuming 459 * we're working with known point sizes for the input parameters and 460 * the hash algorithm is fixed at sha256. Because we know that the 461 * point size is 32 bytes like the hash size, there's no need to loop 462 * in this KDF. 463 */ 464 static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v, 465 u8 *out) 466 { 467 struct sha256_state sctx; 468 /* 469 * this should be an iterative counter, but because we know 470 * we're only taking 32 bytes for the point using a sha256 471 * hash which is also 32 bytes, there's only one loop 472 */ 473 __be32 c = cpu_to_be32(1); 474 475 sha256_init(&sctx); 476 /* counter (BE) */ 477 sha256_update(&sctx, (u8 *)&c, sizeof(c)); 478 /* secret value */ 479 sha256_update(&sctx, z, EC_PT_SZ); 480 /* string including trailing zero */ 481 sha256_update(&sctx, str, strlen(str)+1); 482 sha256_update(&sctx, pt_u, EC_PT_SZ); 483 sha256_update(&sctx, pt_v, EC_PT_SZ); 484 sha256_final(&sctx, out); 485 } 486 487 static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip) 488 { 489 struct crypto_kpp *kpp; 490 struct kpp_request *req; 491 struct scatterlist s[2], d[1]; 492 struct ecdh p = {0}; 493 u8 encoded_key[EC_PT_SZ], *x, *y; 494 unsigned int buf_len; 495 496 /* secret is two sized points */ 497 tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2); 498 /* 499 * we cheat here and append uninitialized data to form 500 * the points. All we care about is getting the two 501 * co-ordinate pointers, which will be used to overwrite 502 * the uninitialized data 503 */ 504 tpm_buf_append_u16(buf, EC_PT_SZ); 505 x = &buf->data[tpm_buf_length(buf)]; 506 tpm_buf_append(buf, encoded_key, EC_PT_SZ); 507 tpm_buf_append_u16(buf, EC_PT_SZ); 508 y = &buf->data[tpm_buf_length(buf)]; 509 tpm_buf_append(buf, encoded_key, EC_PT_SZ); 510 sg_init_table(s, 2); 511 sg_set_buf(&s[0], x, EC_PT_SZ); 512 sg_set_buf(&s[1], y, EC_PT_SZ); 513 514 kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0); 515 if (IS_ERR(kpp)) { 516 dev_err(&chip->dev, "crypto ecdh allocation failed\n"); 517 return; 518 } 519 520 buf_len = crypto_ecdh_key_len(&p); 521 if (sizeof(encoded_key) < buf_len) { 522 dev_err(&chip->dev, "salt buffer too small needs %d\n", 523 buf_len); 524 goto out; 525 } 526 crypto_ecdh_encode_key(encoded_key, buf_len, &p); 527 /* this generates a random private key */ 528 crypto_kpp_set_secret(kpp, encoded_key, buf_len); 529 530 /* salt is now the public point of this private key */ 531 req = kpp_request_alloc(kpp, GFP_KERNEL); 532 if (!req) 533 goto out; 534 kpp_request_set_input(req, NULL, 0); 535 kpp_request_set_output(req, s, EC_PT_SZ*2); 536 crypto_kpp_generate_public_key(req); 537 /* 538 * we're not done: now we have to compute the shared secret 539 * which is our private key multiplied by the tpm_key public 540 * point, we actually only take the x point and discard the y 541 * point and feed it through KDFe to get the final secret salt 542 */ 543 sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ); 544 sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ); 545 kpp_request_set_input(req, s, EC_PT_SZ*2); 546 sg_init_one(d, chip->auth->salt, EC_PT_SZ); 547 kpp_request_set_output(req, d, EC_PT_SZ); 548 crypto_kpp_compute_shared_secret(req); 549 kpp_request_free(req); 550 551 /* 552 * pass the shared secret through KDFe for salt. Note salt 553 * area is used both for input shared secret and output salt. 554 * This works because KDFe fully consumes the secret before it 555 * writes the salt 556 */ 557 tpm2_KDFe(chip->auth->salt, "SECRET", x, chip->null_ec_key_x, 558 chip->auth->salt); 559 560 out: 561 crypto_free_kpp(kpp); 562 } 563 564 /** 565 * tpm_buf_fill_hmac_session() - finalize the session HMAC 566 * @chip: the TPM chip structure 567 * @buf: The buffer to be appended 568 * 569 * This command must not be called until all of the parameters have 570 * been appended to @buf otherwise the computed HMAC will be 571 * incorrect. 572 * 573 * This function computes and fills in the session HMAC using the 574 * session key and, if TPM2_SA_DECRYPT was specified, computes the 575 * encryption key and encrypts the first parameter of the command 576 * buffer with it. 577 * 578 * As with most tpm_buf operations, success is assumed because failure 579 * will be caused by an incorrect programming model and indicated by a 580 * kernel message. 581 */ 582 void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf) 583 { 584 u32 cc, handles, val; 585 struct tpm2_auth *auth = chip->auth; 586 int i; 587 struct tpm_header *head = (struct tpm_header *)buf->data; 588 off_t offset_s = TPM_HEADER_SIZE, offset_p; 589 u8 *hmac = NULL; 590 u32 attrs; 591 u8 cphash[SHA256_DIGEST_SIZE]; 592 struct sha256_state sctx; 593 594 if (!auth) 595 return; 596 597 /* save the command code in BE format */ 598 auth->ordinal = head->ordinal; 599 600 cc = be32_to_cpu(head->ordinal); 601 602 i = tpm2_find_cc(chip, cc); 603 if (i < 0) { 604 dev_err(&chip->dev, "Command 0x%x not found in TPM\n", cc); 605 return; 606 } 607 attrs = chip->cc_attrs_tbl[i]; 608 609 handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0); 610 611 /* 612 * just check the names, it's easy to make mistakes. This 613 * would happen if someone added a handle via 614 * tpm_buf_append_u32() instead of tpm_buf_append_name() 615 */ 616 for (i = 0; i < handles; i++) { 617 u32 handle = tpm_buf_read_u32(buf, &offset_s); 618 619 if (auth->name_h[i] != handle) { 620 dev_err(&chip->dev, "TPM: handle %d wrong for name\n", 621 i); 622 return; 623 } 624 } 625 /* point offset_s to the start of the sessions */ 626 val = tpm_buf_read_u32(buf, &offset_s); 627 /* point offset_p to the start of the parameters */ 628 offset_p = offset_s + val; 629 for (i = 1; offset_s < offset_p; i++) { 630 u32 handle = tpm_buf_read_u32(buf, &offset_s); 631 u16 len; 632 u8 a; 633 634 /* nonce (already in auth) */ 635 len = tpm_buf_read_u16(buf, &offset_s); 636 offset_s += len; 637 638 a = tpm_buf_read_u8(buf, &offset_s); 639 640 len = tpm_buf_read_u16(buf, &offset_s); 641 if (handle == auth->handle && auth->attrs == a) { 642 hmac = &buf->data[offset_s]; 643 /* 644 * save our session number so we know which 645 * session in the response belongs to us 646 */ 647 auth->session = i; 648 } 649 650 offset_s += len; 651 } 652 if (offset_s != offset_p) { 653 dev_err(&chip->dev, "TPM session length is incorrect\n"); 654 return; 655 } 656 if (!hmac) { 657 dev_err(&chip->dev, "TPM could not find HMAC session\n"); 658 return; 659 } 660 661 /* encrypt before HMAC */ 662 if (auth->attrs & TPM2_SA_DECRYPT) { 663 u16 len; 664 665 /* need key and IV */ 666 tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE 667 + auth->passphrase_len, "CFB", auth->our_nonce, 668 auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE, 669 auth->scratch); 670 671 len = tpm_buf_read_u16(buf, &offset_p); 672 aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES); 673 aescfb_encrypt(&auth->aes_ctx, &buf->data[offset_p], 674 &buf->data[offset_p], len, 675 auth->scratch + AES_KEY_BYTES); 676 /* reset p to beginning of parameters for HMAC */ 677 offset_p -= 2; 678 } 679 680 sha256_init(&sctx); 681 /* ordinal is already BE */ 682 sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal)); 683 /* add the handle names */ 684 for (i = 0; i < handles; i++) { 685 enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]); 686 687 if (mso == TPM2_MSO_PERSISTENT || 688 mso == TPM2_MSO_VOLATILE || 689 mso == TPM2_MSO_NVRAM) { 690 sha256_update(&sctx, auth->name[i], 691 name_size(auth->name[i])); 692 } else { 693 __be32 h = cpu_to_be32(auth->name_h[i]); 694 695 sha256_update(&sctx, (u8 *)&h, 4); 696 } 697 } 698 if (offset_s != tpm_buf_length(buf)) 699 sha256_update(&sctx, &buf->data[offset_s], 700 tpm_buf_length(buf) - offset_s); 701 sha256_final(&sctx, cphash); 702 703 /* now calculate the hmac */ 704 tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key) 705 + auth->passphrase_len); 706 sha256_update(&sctx, cphash, sizeof(cphash)); 707 sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce)); 708 sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce)); 709 sha256_update(&sctx, &auth->attrs, 1); 710 tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key) 711 + auth->passphrase_len, hmac); 712 } 713 EXPORT_SYMBOL(tpm_buf_fill_hmac_session); 714 715 /** 716 * tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness 717 * @chip: the TPM chip structure 718 * @buf: the original command buffer (which now contains the response) 719 * @rc: the return code from tpm_transmit_cmd 720 * 721 * If @rc is non zero, @buf may not contain an actual return, so @rc 722 * is passed through as the return and the session cleaned up and 723 * de-allocated if required (this is required if 724 * TPM2_SA_CONTINUE_SESSION was not specified as a session flag). 725 * 726 * If @rc is zero, the response HMAC is computed against the returned 727 * @buf and matched to the TPM one in the session area. If there is a 728 * mismatch, an error is logged and -EINVAL returned. 729 * 730 * The reason for this is that the command issue and HMAC check 731 * sequence should look like: 732 * 733 * rc = tpm_transmit_cmd(...); 734 * rc = tpm_buf_check_hmac_response(&buf, auth, rc); 735 * if (rc) 736 * ... 737 * 738 * Which is easily layered into the current contrl flow. 739 * 740 * Returns: 0 on success or an error. 741 */ 742 int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf, 743 int rc) 744 { 745 struct tpm_header *head = (struct tpm_header *)buf->data; 746 struct tpm2_auth *auth = chip->auth; 747 off_t offset_s, offset_p; 748 u8 rphash[SHA256_DIGEST_SIZE]; 749 u32 attrs, cc; 750 struct sha256_state sctx; 751 u16 tag = be16_to_cpu(head->tag); 752 int parm_len, len, i, handles; 753 754 if (!auth) 755 return rc; 756 757 cc = be32_to_cpu(auth->ordinal); 758 759 if (auth->session >= TPM_HEADER_SIZE) { 760 WARN(1, "tpm session not filled correctly\n"); 761 goto out; 762 } 763 764 if (rc != 0) 765 /* pass non success rc through and close the session */ 766 goto out; 767 768 rc = -EINVAL; 769 if (tag != TPM2_ST_SESSIONS) { 770 dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n"); 771 goto out; 772 } 773 774 i = tpm2_find_cc(chip, cc); 775 if (i < 0) 776 goto out; 777 attrs = chip->cc_attrs_tbl[i]; 778 handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1; 779 780 /* point to area beyond handles */ 781 offset_s = TPM_HEADER_SIZE + handles * 4; 782 parm_len = tpm_buf_read_u32(buf, &offset_s); 783 offset_p = offset_s; 784 offset_s += parm_len; 785 /* skip over any sessions before ours */ 786 for (i = 0; i < auth->session - 1; i++) { 787 len = tpm_buf_read_u16(buf, &offset_s); 788 offset_s += len + 1; 789 len = tpm_buf_read_u16(buf, &offset_s); 790 offset_s += len; 791 } 792 /* TPM nonce */ 793 len = tpm_buf_read_u16(buf, &offset_s); 794 if (offset_s + len > tpm_buf_length(buf)) 795 goto out; 796 if (len != SHA256_DIGEST_SIZE) 797 goto out; 798 memcpy(auth->tpm_nonce, &buf->data[offset_s], len); 799 offset_s += len; 800 attrs = tpm_buf_read_u8(buf, &offset_s); 801 len = tpm_buf_read_u16(buf, &offset_s); 802 if (offset_s + len != tpm_buf_length(buf)) 803 goto out; 804 if (len != SHA256_DIGEST_SIZE) 805 goto out; 806 /* 807 * offset_s points to the HMAC. now calculate comparison, beginning 808 * with rphash 809 */ 810 sha256_init(&sctx); 811 /* yes, I know this is now zero, but it's what the standard says */ 812 sha256_update(&sctx, (u8 *)&head->return_code, 813 sizeof(head->return_code)); 814 /* ordinal is already BE */ 815 sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal)); 816 sha256_update(&sctx, &buf->data[offset_p], parm_len); 817 sha256_final(&sctx, rphash); 818 819 /* now calculate the hmac */ 820 tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key) 821 + auth->passphrase_len); 822 sha256_update(&sctx, rphash, sizeof(rphash)); 823 sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce)); 824 sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce)); 825 sha256_update(&sctx, &auth->attrs, 1); 826 /* we're done with the rphash, so put our idea of the hmac there */ 827 tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key) 828 + auth->passphrase_len, rphash); 829 if (memcmp(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE) == 0) { 830 rc = 0; 831 } else { 832 dev_err(&chip->dev, "TPM: HMAC check failed\n"); 833 goto out; 834 } 835 836 /* now do response decryption */ 837 if (auth->attrs & TPM2_SA_ENCRYPT) { 838 /* need key and IV */ 839 tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE 840 + auth->passphrase_len, "CFB", auth->tpm_nonce, 841 auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE, 842 auth->scratch); 843 844 len = tpm_buf_read_u16(buf, &offset_p); 845 aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES); 846 aescfb_decrypt(&auth->aes_ctx, &buf->data[offset_p], 847 &buf->data[offset_p], len, 848 auth->scratch + AES_KEY_BYTES); 849 } 850 851 out: 852 if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) { 853 if (rc) 854 /* manually close the session if it wasn't consumed */ 855 tpm2_flush_context(chip, auth->handle); 856 memzero_explicit(auth, sizeof(*auth)); 857 } else { 858 /* reset for next use */ 859 auth->session = TPM_HEADER_SIZE; 860 } 861 862 return rc; 863 } 864 EXPORT_SYMBOL(tpm_buf_check_hmac_response); 865 866 /** 867 * tpm2_end_auth_session() - kill the allocated auth session 868 * @chip: the TPM chip structure 869 * 870 * ends the session started by tpm2_start_auth_session and frees all 871 * the resources. Under normal conditions, 872 * tpm_buf_check_hmac_response() will correctly end the session if 873 * required, so this function is only for use in error legs that will 874 * bypass the normal invocation of tpm_buf_check_hmac_response(). 875 */ 876 void tpm2_end_auth_session(struct tpm_chip *chip) 877 { 878 struct tpm2_auth *auth = chip->auth; 879 880 if (!auth) 881 return; 882 883 tpm2_flush_context(chip, auth->handle); 884 memzero_explicit(auth, sizeof(*auth)); 885 } 886 EXPORT_SYMBOL(tpm2_end_auth_session); 887 888 static int tpm2_parse_start_auth_session(struct tpm2_auth *auth, 889 struct tpm_buf *buf) 890 { 891 struct tpm_header *head = (struct tpm_header *)buf->data; 892 u32 tot_len = be32_to_cpu(head->length); 893 off_t offset = TPM_HEADER_SIZE; 894 u32 val; 895 896 /* we're starting after the header so adjust the length */ 897 tot_len -= TPM_HEADER_SIZE; 898 899 /* should have handle plus nonce */ 900 if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce)) 901 return -EINVAL; 902 903 auth->handle = tpm_buf_read_u32(buf, &offset); 904 val = tpm_buf_read_u16(buf, &offset); 905 if (val != sizeof(auth->tpm_nonce)) 906 return -EINVAL; 907 memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce)); 908 /* now compute the session key from the nonces */ 909 tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce, 910 auth->our_nonce, sizeof(auth->session_key), 911 auth->session_key); 912 913 return 0; 914 } 915 916 static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key) 917 { 918 int rc; 919 unsigned int offset = 0; /* dummy offset for null seed context */ 920 u8 name[SHA256_DIGEST_SIZE + 2]; 921 922 rc = tpm2_load_context(chip, chip->null_key_context, &offset, 923 null_key); 924 if (rc != -EINVAL) 925 return rc; 926 927 /* an integrity failure may mean the TPM has been reset */ 928 dev_err(&chip->dev, "NULL key integrity failure!\n"); 929 /* check the null name against what we know */ 930 tpm2_create_primary(chip, TPM2_RH_NULL, NULL, name); 931 if (memcmp(name, chip->null_key_name, sizeof(name)) == 0) 932 /* name unchanged, assume transient integrity failure */ 933 return rc; 934 /* 935 * Fatal TPM failure: the NULL seed has actually changed, so 936 * the TPM must have been illegally reset. All in-kernel TPM 937 * operations will fail because the NULL primary can't be 938 * loaded to salt the sessions, but disable the TPM anyway so 939 * userspace programmes can't be compromised by it. 940 */ 941 dev_err(&chip->dev, "NULL name has changed, disabling TPM due to interference\n"); 942 chip->flags |= TPM_CHIP_FLAG_DISABLE; 943 944 return rc; 945 } 946 947 /** 948 * tpm2_start_auth_session() - create a HMAC authentication session with the TPM 949 * @chip: the TPM chip structure to create the session with 950 * 951 * This function loads the NULL seed from its saved context and starts 952 * an authentication session on the null seed, fills in the 953 * @chip->auth structure to contain all the session details necessary 954 * for performing the HMAC, encrypt and decrypt operations and 955 * returns. The NULL seed is flushed before this function returns. 956 * 957 * Return: zero on success or actual error encountered. 958 */ 959 int tpm2_start_auth_session(struct tpm_chip *chip) 960 { 961 struct tpm_buf buf; 962 struct tpm2_auth *auth = chip->auth; 963 int rc; 964 u32 null_key; 965 966 if (!auth) { 967 dev_warn_once(&chip->dev, "auth session is not active\n"); 968 return 0; 969 } 970 971 rc = tpm2_load_null(chip, &null_key); 972 if (rc) 973 goto out; 974 975 auth->session = TPM_HEADER_SIZE; 976 977 rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS); 978 if (rc) 979 goto out; 980 981 /* salt key handle */ 982 tpm_buf_append_u32(&buf, null_key); 983 /* bind key handle */ 984 tpm_buf_append_u32(&buf, TPM2_RH_NULL); 985 /* nonce caller */ 986 get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce)); 987 tpm_buf_append_u16(&buf, sizeof(auth->our_nonce)); 988 tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce)); 989 990 /* append encrypted salt and squirrel away unencrypted in auth */ 991 tpm_buf_append_salt(&buf, chip); 992 /* session type (HMAC, audit or policy) */ 993 tpm_buf_append_u8(&buf, TPM2_SE_HMAC); 994 995 /* symmetric encryption parameters */ 996 /* symmetric algorithm */ 997 tpm_buf_append_u16(&buf, TPM_ALG_AES); 998 /* bits for symmetric algorithm */ 999 tpm_buf_append_u16(&buf, AES_KEY_BITS); 1000 /* symmetric algorithm mode (must be CFB) */ 1001 tpm_buf_append_u16(&buf, TPM_ALG_CFB); 1002 /* hash algorithm for session */ 1003 tpm_buf_append_u16(&buf, TPM_ALG_SHA256); 1004 1005 rc = tpm_transmit_cmd(chip, &buf, 0, "start auth session"); 1006 tpm2_flush_context(chip, null_key); 1007 1008 if (rc == TPM2_RC_SUCCESS) 1009 rc = tpm2_parse_start_auth_session(auth, &buf); 1010 1011 tpm_buf_destroy(&buf); 1012 1013 if (rc) 1014 goto out; 1015 1016 out: 1017 return rc; 1018 } 1019 EXPORT_SYMBOL(tpm2_start_auth_session); 1020 1021 /* 1022 * A mask containing the object attributes for the kernel held null primary key 1023 * used in HMAC encryption. For more information on specific attributes look up 1024 * to "8.3 TPMA_OBJECT (Object Attributes)". 1025 */ 1026 #define TPM2_OA_NULL_KEY ( \ 1027 TPM2_OA_NO_DA | \ 1028 TPM2_OA_FIXED_TPM | \ 1029 TPM2_OA_FIXED_PARENT | \ 1030 TPM2_OA_SENSITIVE_DATA_ORIGIN | \ 1031 TPM2_OA_USER_WITH_AUTH | \ 1032 TPM2_OA_DECRYPT | \ 1033 TPM2_OA_RESTRICTED) 1034 1035 /** 1036 * tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY 1037 * 1038 * @chip: The TPM the primary was created under 1039 * @buf: The response buffer from the chip 1040 * @handle: pointer to be filled in with the return handle of the primary 1041 * @hierarchy: The hierarchy the primary was created for 1042 * @name: pointer to be filled in with the primary key name 1043 * 1044 * Return: 1045 * * 0 - OK 1046 * * -errno - A system error 1047 * * TPM_RC - A TPM error 1048 */ 1049 static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf, 1050 u32 *handle, u32 hierarchy, u8 *name) 1051 { 1052 struct tpm_header *head = (struct tpm_header *)buf->data; 1053 off_t offset_r = TPM_HEADER_SIZE, offset_t; 1054 u16 len = TPM_HEADER_SIZE; 1055 u32 total_len = be32_to_cpu(head->length); 1056 u32 val, param_len, keyhandle; 1057 1058 keyhandle = tpm_buf_read_u32(buf, &offset_r); 1059 if (handle) 1060 *handle = keyhandle; 1061 else 1062 tpm2_flush_context(chip, keyhandle); 1063 1064 param_len = tpm_buf_read_u32(buf, &offset_r); 1065 /* 1066 * param_len doesn't include the header, but all the other 1067 * lengths and offsets do, so add it to parm len to make 1068 * the comparisons easier 1069 */ 1070 param_len += TPM_HEADER_SIZE; 1071 1072 if (param_len + 8 > total_len) 1073 return -EINVAL; 1074 len = tpm_buf_read_u16(buf, &offset_r); 1075 offset_t = offset_r; 1076 if (name) { 1077 /* 1078 * now we have the public area, compute the name of 1079 * the object 1080 */ 1081 put_unaligned_be16(TPM_ALG_SHA256, name); 1082 sha256(&buf->data[offset_r], len, name + 2); 1083 } 1084 1085 /* validate the public key */ 1086 val = tpm_buf_read_u16(buf, &offset_t); 1087 1088 /* key type (must be what we asked for) */ 1089 if (val != TPM_ALG_ECC) 1090 return -EINVAL; 1091 val = tpm_buf_read_u16(buf, &offset_t); 1092 1093 /* name algorithm */ 1094 if (val != TPM_ALG_SHA256) 1095 return -EINVAL; 1096 val = tpm_buf_read_u32(buf, &offset_t); 1097 1098 /* object properties */ 1099 if (val != TPM2_OA_NULL_KEY) 1100 return -EINVAL; 1101 1102 /* auth policy (empty) */ 1103 val = tpm_buf_read_u16(buf, &offset_t); 1104 if (val != 0) 1105 return -EINVAL; 1106 1107 /* symmetric key parameters */ 1108 val = tpm_buf_read_u16(buf, &offset_t); 1109 if (val != TPM_ALG_AES) 1110 return -EINVAL; 1111 1112 /* symmetric key length */ 1113 val = tpm_buf_read_u16(buf, &offset_t); 1114 if (val != AES_KEY_BITS) 1115 return -EINVAL; 1116 1117 /* symmetric encryption scheme */ 1118 val = tpm_buf_read_u16(buf, &offset_t); 1119 if (val != TPM_ALG_CFB) 1120 return -EINVAL; 1121 1122 /* signing scheme */ 1123 val = tpm_buf_read_u16(buf, &offset_t); 1124 if (val != TPM_ALG_NULL) 1125 return -EINVAL; 1126 1127 /* ECC Curve */ 1128 val = tpm_buf_read_u16(buf, &offset_t); 1129 if (val != TPM2_ECC_NIST_P256) 1130 return -EINVAL; 1131 1132 /* KDF Scheme */ 1133 val = tpm_buf_read_u16(buf, &offset_t); 1134 if (val != TPM_ALG_NULL) 1135 return -EINVAL; 1136 1137 /* extract public key (x and y points) */ 1138 val = tpm_buf_read_u16(buf, &offset_t); 1139 if (val != EC_PT_SZ) 1140 return -EINVAL; 1141 memcpy(chip->null_ec_key_x, &buf->data[offset_t], val); 1142 offset_t += val; 1143 val = tpm_buf_read_u16(buf, &offset_t); 1144 if (val != EC_PT_SZ) 1145 return -EINVAL; 1146 memcpy(chip->null_ec_key_y, &buf->data[offset_t], val); 1147 offset_t += val; 1148 1149 /* original length of the whole TPM2B */ 1150 offset_r += len; 1151 1152 /* should have exactly consumed the TPM2B public structure */ 1153 if (offset_t != offset_r) 1154 return -EINVAL; 1155 if (offset_r > param_len) 1156 return -EINVAL; 1157 1158 /* creation data (skip) */ 1159 len = tpm_buf_read_u16(buf, &offset_r); 1160 offset_r += len; 1161 if (offset_r > param_len) 1162 return -EINVAL; 1163 1164 /* creation digest (must be sha256) */ 1165 len = tpm_buf_read_u16(buf, &offset_r); 1166 offset_r += len; 1167 if (len != SHA256_DIGEST_SIZE || offset_r > param_len) 1168 return -EINVAL; 1169 1170 /* TPMT_TK_CREATION follows */ 1171 /* tag, must be TPM_ST_CREATION (0x8021) */ 1172 val = tpm_buf_read_u16(buf, &offset_r); 1173 if (val != TPM2_ST_CREATION || offset_r > param_len) 1174 return -EINVAL; 1175 1176 /* hierarchy */ 1177 val = tpm_buf_read_u32(buf, &offset_r); 1178 if (val != hierarchy || offset_r > param_len) 1179 return -EINVAL; 1180 1181 /* the ticket digest HMAC (might not be sha256) */ 1182 len = tpm_buf_read_u16(buf, &offset_r); 1183 offset_r += len; 1184 if (offset_r > param_len) 1185 return -EINVAL; 1186 1187 /* 1188 * finally we have the name, which is a sha256 digest plus a 2 1189 * byte algorithm type 1190 */ 1191 len = tpm_buf_read_u16(buf, &offset_r); 1192 if (offset_r + len != param_len + 8) 1193 return -EINVAL; 1194 if (len != SHA256_DIGEST_SIZE + 2) 1195 return -EINVAL; 1196 1197 if (memcmp(chip->null_key_name, &buf->data[offset_r], 1198 SHA256_DIGEST_SIZE + 2) != 0) { 1199 dev_err(&chip->dev, "NULL Seed name comparison failed\n"); 1200 return -EINVAL; 1201 } 1202 1203 return 0; 1204 } 1205 1206 /** 1207 * tpm2_create_primary() - create a primary key using a fixed P-256 template 1208 * 1209 * @chip: the TPM chip to create under 1210 * @hierarchy: The hierarchy handle to create under 1211 * @handle: The returned volatile handle on success 1212 * @name: The name of the returned key 1213 * 1214 * For platforms that might not have a persistent primary, this can be 1215 * used to create one quickly on the fly (it uses Elliptic Curve not 1216 * RSA, so even slow TPMs can create one fast). The template uses the 1217 * TCG mandated H one for non-endorsement ECC primaries, i.e. P-256 1218 * elliptic curve (the only current one all TPM2s are required to 1219 * have) a sha256 name hash and no policy. 1220 * 1221 * Return: 1222 * * 0 - OK 1223 * * -errno - A system error 1224 * * TPM_RC - A TPM error 1225 */ 1226 static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy, 1227 u32 *handle, u8 *name) 1228 { 1229 int rc; 1230 struct tpm_buf buf; 1231 struct tpm_buf template; 1232 1233 rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY); 1234 if (rc) 1235 return rc; 1236 1237 rc = tpm_buf_init_sized(&template); 1238 if (rc) { 1239 tpm_buf_destroy(&buf); 1240 return rc; 1241 } 1242 1243 /* 1244 * create the template. Note: in order for userspace to 1245 * verify the security of the system, it will have to create 1246 * and certify this NULL primary, meaning all the template 1247 * parameters will have to be identical, so conform exactly to 1248 * the TCG TPM v2.0 Provisioning Guidance for the SRK ECC 1249 * key H template (H has zero size unique points) 1250 */ 1251 1252 /* key type */ 1253 tpm_buf_append_u16(&template, TPM_ALG_ECC); 1254 1255 /* name algorithm */ 1256 tpm_buf_append_u16(&template, TPM_ALG_SHA256); 1257 1258 /* object properties */ 1259 tpm_buf_append_u32(&template, TPM2_OA_NULL_KEY); 1260 1261 /* sauth policy (empty) */ 1262 tpm_buf_append_u16(&template, 0); 1263 1264 /* BEGIN parameters: key specific; for ECC*/ 1265 1266 /* symmetric algorithm */ 1267 tpm_buf_append_u16(&template, TPM_ALG_AES); 1268 1269 /* bits for symmetric algorithm */ 1270 tpm_buf_append_u16(&template, AES_KEY_BITS); 1271 1272 /* algorithm mode (must be CFB) */ 1273 tpm_buf_append_u16(&template, TPM_ALG_CFB); 1274 1275 /* scheme (NULL means any scheme) */ 1276 tpm_buf_append_u16(&template, TPM_ALG_NULL); 1277 1278 /* ECC Curve ID */ 1279 tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256); 1280 1281 /* KDF Scheme */ 1282 tpm_buf_append_u16(&template, TPM_ALG_NULL); 1283 1284 /* unique: key specific; for ECC it is two zero size points */ 1285 tpm_buf_append_u16(&template, 0); 1286 tpm_buf_append_u16(&template, 0); 1287 1288 /* END parameters */ 1289 1290 /* primary handle */ 1291 tpm_buf_append_u32(&buf, hierarchy); 1292 tpm_buf_append_empty_auth(&buf, TPM2_RS_PW); 1293 1294 /* sensitive create size is 4 for two empty buffers */ 1295 tpm_buf_append_u16(&buf, 4); 1296 1297 /* sensitive create auth data (empty) */ 1298 tpm_buf_append_u16(&buf, 0); 1299 1300 /* sensitive create sensitive data (empty) */ 1301 tpm_buf_append_u16(&buf, 0); 1302 1303 /* the public template */ 1304 tpm_buf_append(&buf, template.data, template.length); 1305 tpm_buf_destroy(&template); 1306 1307 /* outside info (empty) */ 1308 tpm_buf_append_u16(&buf, 0); 1309 1310 /* creation PCR (none) */ 1311 tpm_buf_append_u32(&buf, 0); 1312 1313 rc = tpm_transmit_cmd(chip, &buf, 0, 1314 "attempting to create NULL primary"); 1315 1316 if (rc == TPM2_RC_SUCCESS) 1317 rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy, 1318 name); 1319 1320 tpm_buf_destroy(&buf); 1321 1322 return rc; 1323 } 1324 1325 static int tpm2_create_null_primary(struct tpm_chip *chip) 1326 { 1327 u32 null_key; 1328 int rc; 1329 1330 rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key, 1331 chip->null_key_name); 1332 1333 if (rc == TPM2_RC_SUCCESS) { 1334 unsigned int offset = 0; /* dummy offset for null key context */ 1335 1336 rc = tpm2_save_context(chip, null_key, chip->null_key_context, 1337 sizeof(chip->null_key_context), &offset); 1338 tpm2_flush_context(chip, null_key); 1339 } 1340 1341 return rc; 1342 } 1343 1344 /** 1345 * tpm2_sessions_init() - start of day initialization for the sessions code 1346 * @chip: TPM chip 1347 * 1348 * Derive and context save the null primary and allocate memory in the 1349 * struct tpm_chip for the authorizations. 1350 */ 1351 int tpm2_sessions_init(struct tpm_chip *chip) 1352 { 1353 int rc; 1354 1355 rc = tpm2_create_null_primary(chip); 1356 if (rc) 1357 dev_err(&chip->dev, "TPM: security failed (NULL seed derivation): %d\n", rc); 1358 1359 chip->auth = kmalloc(sizeof(*chip->auth), GFP_KERNEL); 1360 if (!chip->auth) 1361 return -ENOMEM; 1362 1363 return rc; 1364 } 1365 EXPORT_SYMBOL(tpm2_sessions_init); 1366 #endif /* CONFIG_TCG_TPM2_HMAC */ 1367