xref: /linux/drivers/char/tpm/tpm2-sessions.c (revision 3339b99ef6fe38dac43b534cba3a8a0e29fb2eff)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright (C) 2018 James.Bottomley@HansenPartnership.com
5  *
6  * Cryptographic helper routines for handling TPM2 sessions for
7  * authorization HMAC and request response encryption.
8  *
9  * The idea is to ensure that every TPM command is HMAC protected by a
10  * session, meaning in-flight tampering would be detected and in
11  * addition all sensitive inputs and responses should be encrypted.
12  *
13  * The basic way this works is to use a TPM feature called salted
14  * sessions where a random secret used in session construction is
15  * encrypted to the public part of a known TPM key.  The problem is we
16  * have no known keys, so initially a primary Elliptic Curve key is
17  * derived from the NULL seed (we use EC because most TPMs generate
18  * these keys much faster than RSA ones).  The curve used is NIST_P256
19  * because that's now mandated to be present in 'TCG TPM v2.0
20  * Provisioning Guidance'
21  *
22  * Threat problems: the initial TPM2_CreatePrimary is not (and cannot
23  * be) session protected, so a clever Man in the Middle could return a
24  * public key they control to this command and from there intercept
25  * and decode all subsequent session based transactions.  The kernel
26  * cannot mitigate this threat but, after boot, userspace can get
27  * proof this has not happened by asking the TPM to certify the NULL
28  * key.  This certification would chain back to the TPM Endorsement
29  * Certificate and prove the NULL seed primary had not been tampered
30  * with and thus all sessions must have been cryptographically secure.
31  * To assist with this, the initial NULL seed public key name is made
32  * available in a sysfs file.
33  *
34  * Use of these functions:
35  *
36  * The design is all the crypto, hash and hmac gunk is confined in this
37  * file and never needs to be seen even by the kernel internal user.  To
38  * the user there's an init function tpm2_sessions_init() that needs to
39  * be called once per TPM which generates the NULL seed primary key.
40  *
41  * These are the usage functions:
42  *
43  * tpm2_start_auth_session() which allocates the opaque auth structure
44  *	and gets a session from the TPM.  This must be called before
45  *	any of the following functions.  The session is protected by a
46  *	session_key which is derived from a random salt value
47  *	encrypted to the NULL seed.
48  * tpm2_end_auth_session() kills the session and frees the resources.
49  *	Under normal operation this function is done by
50  *	tpm_buf_check_hmac_response(), so this is only to be used on
51  *	error legs where the latter is not executed.
52  * tpm_buf_append_name() to add a handle to the buffer.  This must be
53  *	used in place of the usual tpm_buf_append_u32() for adding
54  *	handles because handles have to be processed specially when
55  *	calculating the HMAC.  In particular, for NV, volatile and
56  *	permanent objects you now need to provide the name.
57  * tpm_buf_append_hmac_session() which appends the hmac session to the
58  *	buf in the same way tpm_buf_append_auth does().
59  * tpm_buf_fill_hmac_session() This calculates the correct hash and
60  *	places it in the buffer.  It must be called after the complete
61  *	command buffer is finalized so it can fill in the correct HMAC
62  *	based on the parameters.
63  * tpm_buf_check_hmac_response() which checks the session response in
64  *	the buffer and calculates what it should be.  If there's a
65  *	mismatch it will log a warning and return an error.  If
66  *	tpm_buf_append_hmac_session() did not specify
67  *	TPM_SA_CONTINUE_SESSION then the session will be closed (if it
68  *	hasn't been consumed) and the auth structure freed.
69  */
70 
71 #include "tpm.h"
72 #include <linux/random.h>
73 #include <linux/scatterlist.h>
74 #include <asm/unaligned.h>
75 #include <crypto/kpp.h>
76 #include <crypto/ecdh.h>
77 #include <crypto/hash.h>
78 #include <crypto/hmac.h>
79 
80 /* maximum number of names the TPM must remember for authorization */
81 #define AUTH_MAX_NAMES	3
82 
83 #define AES_KEY_BYTES	AES_KEYSIZE_128
84 #define AES_KEY_BITS	(AES_KEY_BYTES*8)
85 
86 static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
87 			       u32 *handle, u8 *name);
88 
89 /*
90  * This is the structure that carries all the auth information (like
91  * session handle, nonces, session key and auth) from use to use it is
92  * designed to be opaque to anything outside.
93  */
94 struct tpm2_auth {
95 	u32 handle;
96 	/*
97 	 * This has two meanings: before tpm_buf_fill_hmac_session()
98 	 * it marks the offset in the buffer of the start of the
99 	 * sessions (i.e. after all the handles).  Once the buffer has
100 	 * been filled it markes the session number of our auth
101 	 * session so we can find it again in the response buffer.
102 	 *
103 	 * The two cases are distinguished because the first offset
104 	 * must always be greater than TPM_HEADER_SIZE and the second
105 	 * must be less than or equal to 5.
106 	 */
107 	u32 session;
108 	/*
109 	 * the size here is variable and set by the size of our_nonce
110 	 * which must be between 16 and the name hash length. we set
111 	 * the maximum sha256 size for the greatest protection
112 	 */
113 	u8 our_nonce[SHA256_DIGEST_SIZE];
114 	u8 tpm_nonce[SHA256_DIGEST_SIZE];
115 	/*
116 	 * the salt is only used across the session command/response
117 	 * after that it can be used as a scratch area
118 	 */
119 	union {
120 		u8 salt[EC_PT_SZ];
121 		/* scratch for key + IV */
122 		u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE];
123 	};
124 	/*
125 	 * the session key and passphrase are the same size as the
126 	 * name digest (sha256 again).  The session key is constant
127 	 * for the use of the session and the passphrase can change
128 	 * with every invocation.
129 	 *
130 	 * Note: these fields must be adjacent and in this order
131 	 * because several HMAC/KDF schemes use the combination of the
132 	 * session_key and passphrase.
133 	 */
134 	u8 session_key[SHA256_DIGEST_SIZE];
135 	u8 passphrase[SHA256_DIGEST_SIZE];
136 	int passphrase_len;
137 	struct crypto_aes_ctx aes_ctx;
138 	/* saved session attributes: */
139 	u8 attrs;
140 	__be32 ordinal;
141 
142 	/*
143 	 * memory for three authorization handles.  We know them by
144 	 * handle, but they are part of the session by name, which
145 	 * we must compute and remember
146 	 */
147 	u32 name_h[AUTH_MAX_NAMES];
148 	u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE];
149 };
150 
151 /*
152  * Name Size based on TPM algorithm (assumes no hash bigger than 255)
153  */
154 static u8 name_size(const u8 *name)
155 {
156 	static u8 size_map[] = {
157 		[TPM_ALG_SHA1] = SHA1_DIGEST_SIZE,
158 		[TPM_ALG_SHA256] = SHA256_DIGEST_SIZE,
159 		[TPM_ALG_SHA384] = SHA384_DIGEST_SIZE,
160 		[TPM_ALG_SHA512] = SHA512_DIGEST_SIZE,
161 	};
162 	u16 alg = get_unaligned_be16(name);
163 	return size_map[alg] + 2;
164 }
165 
166 /*
167  * It turns out the crypto hmac(sha256) is hard for us to consume
168  * because it assumes a fixed key and the TPM seems to change the key
169  * on every operation, so we weld the hmac init and final functions in
170  * here to give it the same usage characteristics as a regular hash
171  */
172 static void tpm2_hmac_init(struct sha256_state *sctx, u8 *key, u32 key_len)
173 {
174 	u8 pad[SHA256_BLOCK_SIZE];
175 	int i;
176 
177 	sha256_init(sctx);
178 	for (i = 0; i < sizeof(pad); i++) {
179 		if (i < key_len)
180 			pad[i] = key[i];
181 		else
182 			pad[i] = 0;
183 		pad[i] ^= HMAC_IPAD_VALUE;
184 	}
185 	sha256_update(sctx, pad, sizeof(pad));
186 }
187 
188 static void tpm2_hmac_final(struct sha256_state *sctx, u8 *key, u32 key_len,
189 			    u8 *out)
190 {
191 	u8 pad[SHA256_BLOCK_SIZE];
192 	int i;
193 
194 	for (i = 0; i < sizeof(pad); i++) {
195 		if (i < key_len)
196 			pad[i] = key[i];
197 		else
198 			pad[i] = 0;
199 		pad[i] ^= HMAC_OPAD_VALUE;
200 	}
201 
202 	/* collect the final hash;  use out as temporary storage */
203 	sha256_final(sctx, out);
204 
205 	sha256_init(sctx);
206 	sha256_update(sctx, pad, sizeof(pad));
207 	sha256_update(sctx, out, SHA256_DIGEST_SIZE);
208 	sha256_final(sctx, out);
209 }
210 
211 /*
212  * assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but
213  * otherwise standard tpm2_KDFa.  Note output is in bytes not bits.
214  */
215 static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u,
216 		      u8 *v, u32 bytes, u8 *out)
217 {
218 	u32 counter = 1;
219 	const __be32 bits = cpu_to_be32(bytes * 8);
220 
221 	while (bytes > 0) {
222 		struct sha256_state sctx;
223 		__be32 c = cpu_to_be32(counter);
224 
225 		tpm2_hmac_init(&sctx, key, key_len);
226 		sha256_update(&sctx, (u8 *)&c, sizeof(c));
227 		sha256_update(&sctx, label, strlen(label)+1);
228 		sha256_update(&sctx, u, SHA256_DIGEST_SIZE);
229 		sha256_update(&sctx, v, SHA256_DIGEST_SIZE);
230 		sha256_update(&sctx, (u8 *)&bits, sizeof(bits));
231 		tpm2_hmac_final(&sctx, key, key_len, out);
232 
233 		bytes -= SHA256_DIGEST_SIZE;
234 		counter++;
235 		out += SHA256_DIGEST_SIZE;
236 	}
237 }
238 
239 /*
240  * Somewhat of a bastardization of the real KDFe.  We're assuming
241  * we're working with known point sizes for the input parameters and
242  * the hash algorithm is fixed at sha256.  Because we know that the
243  * point size is 32 bytes like the hash size, there's no need to loop
244  * in this KDF.
245  */
246 static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v,
247 		      u8 *out)
248 {
249 	struct sha256_state sctx;
250 	/*
251 	 * this should be an iterative counter, but because we know
252 	 *  we're only taking 32 bytes for the point using a sha256
253 	 *  hash which is also 32 bytes, there's only one loop
254 	 */
255 	__be32 c = cpu_to_be32(1);
256 
257 	sha256_init(&sctx);
258 	/* counter (BE) */
259 	sha256_update(&sctx, (u8 *)&c, sizeof(c));
260 	/* secret value */
261 	sha256_update(&sctx, z, EC_PT_SZ);
262 	/* string including trailing zero */
263 	sha256_update(&sctx, str, strlen(str)+1);
264 	sha256_update(&sctx, pt_u, EC_PT_SZ);
265 	sha256_update(&sctx, pt_v, EC_PT_SZ);
266 	sha256_final(&sctx, out);
267 }
268 
269 static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip)
270 {
271 	struct crypto_kpp *kpp;
272 	struct kpp_request *req;
273 	struct scatterlist s[2], d[1];
274 	struct ecdh p = {0};
275 	u8 encoded_key[EC_PT_SZ], *x, *y;
276 	unsigned int buf_len;
277 
278 	/* secret is two sized points */
279 	tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2);
280 	/*
281 	 * we cheat here and append uninitialized data to form
282 	 * the points.  All we care about is getting the two
283 	 * co-ordinate pointers, which will be used to overwrite
284 	 * the uninitialized data
285 	 */
286 	tpm_buf_append_u16(buf, EC_PT_SZ);
287 	x = &buf->data[tpm_buf_length(buf)];
288 	tpm_buf_append(buf, encoded_key, EC_PT_SZ);
289 	tpm_buf_append_u16(buf, EC_PT_SZ);
290 	y = &buf->data[tpm_buf_length(buf)];
291 	tpm_buf_append(buf, encoded_key, EC_PT_SZ);
292 	sg_init_table(s, 2);
293 	sg_set_buf(&s[0], x, EC_PT_SZ);
294 	sg_set_buf(&s[1], y, EC_PT_SZ);
295 
296 	kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0);
297 	if (IS_ERR(kpp)) {
298 		dev_err(&chip->dev, "crypto ecdh allocation failed\n");
299 		return;
300 	}
301 
302 	buf_len = crypto_ecdh_key_len(&p);
303 	if (sizeof(encoded_key) < buf_len) {
304 		dev_err(&chip->dev, "salt buffer too small needs %d\n",
305 			buf_len);
306 		goto out;
307 	}
308 	crypto_ecdh_encode_key(encoded_key, buf_len, &p);
309 	/* this generates a random private key */
310 	crypto_kpp_set_secret(kpp, encoded_key, buf_len);
311 
312 	/* salt is now the public point of this private key */
313 	req = kpp_request_alloc(kpp, GFP_KERNEL);
314 	if (!req)
315 		goto out;
316 	kpp_request_set_input(req, NULL, 0);
317 	kpp_request_set_output(req, s, EC_PT_SZ*2);
318 	crypto_kpp_generate_public_key(req);
319 	/*
320 	 * we're not done: now we have to compute the shared secret
321 	 * which is our private key multiplied by the tpm_key public
322 	 * point, we actually only take the x point and discard the y
323 	 * point and feed it through KDFe to get the final secret salt
324 	 */
325 	sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ);
326 	sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ);
327 	kpp_request_set_input(req, s, EC_PT_SZ*2);
328 	sg_init_one(d, chip->auth->salt, EC_PT_SZ);
329 	kpp_request_set_output(req, d, EC_PT_SZ);
330 	crypto_kpp_compute_shared_secret(req);
331 	kpp_request_free(req);
332 
333 	/*
334 	 * pass the shared secret through KDFe for salt. Note salt
335 	 * area is used both for input shared secret and output salt.
336 	 * This works because KDFe fully consumes the secret before it
337 	 * writes the salt
338 	 */
339 	tpm2_KDFe(chip->auth->salt, "SECRET", x, chip->null_ec_key_x,
340 		  chip->auth->salt);
341 
342  out:
343 	crypto_free_kpp(kpp);
344 }
345 
346 /**
347  * tpm_buf_append_hmac_session() - Append a TPM session element
348  * @chip: the TPM chip structure
349  * @buf: The buffer to be appended
350  * @attributes: The session attributes
351  * @passphrase: The session authority (NULL if none)
352  * @passphrase_len: The length of the session authority (0 if none)
353  *
354  * This fills in a session structure in the TPM command buffer, except
355  * for the HMAC which cannot be computed until the command buffer is
356  * complete.  The type of session is controlled by the @attributes,
357  * the main ones of which are TPM2_SA_CONTINUE_SESSION which means the
358  * session won't terminate after tpm_buf_check_hmac_response(),
359  * TPM2_SA_DECRYPT which means this buffers first parameter should be
360  * encrypted with a session key and TPM2_SA_ENCRYPT, which means the
361  * response buffer's first parameter needs to be decrypted (confusing,
362  * but the defines are written from the point of view of the TPM).
363  *
364  * Any session appended by this command must be finalized by calling
365  * tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect
366  * and the TPM will reject the command.
367  *
368  * As with most tpm_buf operations, success is assumed because failure
369  * will be caused by an incorrect programming model and indicated by a
370  * kernel message.
371  */
372 void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf,
373 				 u8 attributes, u8 *passphrase,
374 				 int passphrase_len)
375 {
376 	u8 nonce[SHA256_DIGEST_SIZE];
377 	u32 len;
378 	struct tpm2_auth *auth = chip->auth;
379 
380 	/*
381 	 * The Architecture Guide requires us to strip trailing zeros
382 	 * before computing the HMAC
383 	 */
384 	while (passphrase && passphrase_len > 0
385 	       && passphrase[passphrase_len - 1] == '\0')
386 		passphrase_len--;
387 
388 	auth->attrs = attributes;
389 	auth->passphrase_len = passphrase_len;
390 	if (passphrase_len)
391 		memcpy(auth->passphrase, passphrase, passphrase_len);
392 
393 	if (auth->session != tpm_buf_length(buf)) {
394 		/* we're not the first session */
395 		len = get_unaligned_be32(&buf->data[auth->session]);
396 		if (4 + len + auth->session != tpm_buf_length(buf)) {
397 			WARN(1, "session length mismatch, cannot append");
398 			return;
399 		}
400 
401 		/* add our new session */
402 		len += 9 + 2 * SHA256_DIGEST_SIZE;
403 		put_unaligned_be32(len, &buf->data[auth->session]);
404 	} else {
405 		tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE);
406 	}
407 
408 	/* random number for our nonce */
409 	get_random_bytes(nonce, sizeof(nonce));
410 	memcpy(auth->our_nonce, nonce, sizeof(nonce));
411 	tpm_buf_append_u32(buf, auth->handle);
412 	/* our new nonce */
413 	tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
414 	tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
415 	tpm_buf_append_u8(buf, auth->attrs);
416 	/* and put a placeholder for the hmac */
417 	tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
418 	tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
419 }
420 EXPORT_SYMBOL(tpm_buf_append_hmac_session);
421 
422 /**
423  * tpm_buf_fill_hmac_session() - finalize the session HMAC
424  * @chip: the TPM chip structure
425  * @buf: The buffer to be appended
426  *
427  * This command must not be called until all of the parameters have
428  * been appended to @buf otherwise the computed HMAC will be
429  * incorrect.
430  *
431  * This function computes and fills in the session HMAC using the
432  * session key and, if TPM2_SA_DECRYPT was specified, computes the
433  * encryption key and encrypts the first parameter of the command
434  * buffer with it.
435  *
436  * As with most tpm_buf operations, success is assumed because failure
437  * will be caused by an incorrect programming model and indicated by a
438  * kernel message.
439  */
440 void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf)
441 {
442 	u32 cc, handles, val;
443 	struct tpm2_auth *auth = chip->auth;
444 	int i;
445 	struct tpm_header *head = (struct tpm_header *)buf->data;
446 	off_t offset_s = TPM_HEADER_SIZE, offset_p;
447 	u8 *hmac = NULL;
448 	u32 attrs;
449 	u8 cphash[SHA256_DIGEST_SIZE];
450 	struct sha256_state sctx;
451 
452 	/* save the command code in BE format */
453 	auth->ordinal = head->ordinal;
454 
455 	cc = be32_to_cpu(head->ordinal);
456 
457 	i = tpm2_find_cc(chip, cc);
458 	if (i < 0) {
459 		dev_err(&chip->dev, "Command 0x%x not found in TPM\n", cc);
460 		return;
461 	}
462 	attrs = chip->cc_attrs_tbl[i];
463 
464 	handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0);
465 
466 	/*
467 	 * just check the names, it's easy to make mistakes.  This
468 	 * would happen if someone added a handle via
469 	 * tpm_buf_append_u32() instead of tpm_buf_append_name()
470 	 */
471 	for (i = 0; i < handles; i++) {
472 		u32 handle = tpm_buf_read_u32(buf, &offset_s);
473 
474 		if (auth->name_h[i] != handle) {
475 			dev_err(&chip->dev, "TPM: handle %d wrong for name\n",
476 				  i);
477 			return;
478 		}
479 	}
480 	/* point offset_s to the start of the sessions */
481 	val = tpm_buf_read_u32(buf, &offset_s);
482 	/* point offset_p to the start of the parameters */
483 	offset_p = offset_s + val;
484 	for (i = 1; offset_s < offset_p; i++) {
485 		u32 handle = tpm_buf_read_u32(buf, &offset_s);
486 		u16 len;
487 		u8 a;
488 
489 		/* nonce (already in auth) */
490 		len = tpm_buf_read_u16(buf, &offset_s);
491 		offset_s += len;
492 
493 		a = tpm_buf_read_u8(buf, &offset_s);
494 
495 		len = tpm_buf_read_u16(buf, &offset_s);
496 		if (handle == auth->handle && auth->attrs == a) {
497 			hmac = &buf->data[offset_s];
498 			/*
499 			 * save our session number so we know which
500 			 * session in the response belongs to us
501 			 */
502 			auth->session = i;
503 		}
504 
505 		offset_s += len;
506 	}
507 	if (offset_s != offset_p) {
508 		dev_err(&chip->dev, "TPM session length is incorrect\n");
509 		return;
510 	}
511 	if (!hmac) {
512 		dev_err(&chip->dev, "TPM could not find HMAC session\n");
513 		return;
514 	}
515 
516 	/* encrypt before HMAC */
517 	if (auth->attrs & TPM2_SA_DECRYPT) {
518 		u16 len;
519 
520 		/* need key and IV */
521 		tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
522 			  + auth->passphrase_len, "CFB", auth->our_nonce,
523 			  auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
524 			  auth->scratch);
525 
526 		len = tpm_buf_read_u16(buf, &offset_p);
527 		aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
528 		aescfb_encrypt(&auth->aes_ctx, &buf->data[offset_p],
529 			       &buf->data[offset_p], len,
530 			       auth->scratch + AES_KEY_BYTES);
531 		/* reset p to beginning of parameters for HMAC */
532 		offset_p -= 2;
533 	}
534 
535 	sha256_init(&sctx);
536 	/* ordinal is already BE */
537 	sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal));
538 	/* add the handle names */
539 	for (i = 0; i < handles; i++) {
540 		enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]);
541 
542 		if (mso == TPM2_MSO_PERSISTENT ||
543 		    mso == TPM2_MSO_VOLATILE ||
544 		    mso == TPM2_MSO_NVRAM) {
545 			sha256_update(&sctx, auth->name[i],
546 				      name_size(auth->name[i]));
547 		} else {
548 			__be32 h = cpu_to_be32(auth->name_h[i]);
549 
550 			sha256_update(&sctx, (u8 *)&h, 4);
551 		}
552 	}
553 	if (offset_s != tpm_buf_length(buf))
554 		sha256_update(&sctx, &buf->data[offset_s],
555 			      tpm_buf_length(buf) - offset_s);
556 	sha256_final(&sctx, cphash);
557 
558 	/* now calculate the hmac */
559 	tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
560 		       + auth->passphrase_len);
561 	sha256_update(&sctx, cphash, sizeof(cphash));
562 	sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
563 	sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
564 	sha256_update(&sctx, &auth->attrs, 1);
565 	tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
566 			+ auth->passphrase_len, hmac);
567 }
568 EXPORT_SYMBOL(tpm_buf_fill_hmac_session);
569 
570 static int tpm2_parse_read_public(char *name, struct tpm_buf *buf)
571 {
572 	struct tpm_header *head = (struct tpm_header *)buf->data;
573 	off_t offset = TPM_HEADER_SIZE;
574 	u32 tot_len = be32_to_cpu(head->length);
575 	u32 val;
576 
577 	/* we're starting after the header so adjust the length */
578 	tot_len -= TPM_HEADER_SIZE;
579 
580 	/* skip public */
581 	val = tpm_buf_read_u16(buf, &offset);
582 	if (val > tot_len)
583 		return -EINVAL;
584 	offset += val;
585 	/* name */
586 	val = tpm_buf_read_u16(buf, &offset);
587 	if (val != name_size(&buf->data[offset]))
588 		return -EINVAL;
589 	memcpy(name, &buf->data[offset], val);
590 	/* forget the rest */
591 	return 0;
592 }
593 
594 static int tpm2_read_public(struct tpm_chip *chip, u32 handle, char *name)
595 {
596 	struct tpm_buf buf;
597 	int rc;
598 
599 	rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC);
600 	if (rc)
601 		return rc;
602 
603 	tpm_buf_append_u32(&buf, handle);
604 	rc = tpm_transmit_cmd(chip, &buf, 0, "read public");
605 	if (rc == TPM2_RC_SUCCESS)
606 		rc = tpm2_parse_read_public(name, &buf);
607 
608 	tpm_buf_destroy(&buf);
609 
610 	return rc;
611 }
612 
613 /**
614  * tpm_buf_append_name() - add a handle area to the buffer
615  * @chip: the TPM chip structure
616  * @buf: The buffer to be appended
617  * @handle: The handle to be appended
618  * @name: The name of the handle (may be NULL)
619  *
620  * In order to compute session HMACs, we need to know the names of the
621  * objects pointed to by the handles.  For most objects, this is simply
622  * the actual 4 byte handle or an empty buf (in these cases @name
623  * should be NULL) but for volatile objects, permanent objects and NV
624  * areas, the name is defined as the hash (according to the name
625  * algorithm which should be set to sha256) of the public area to
626  * which the two byte algorithm id has been appended.  For these
627  * objects, the @name pointer should point to this.  If a name is
628  * required but @name is NULL, then TPM2_ReadPublic() will be called
629  * on the handle to obtain the name.
630  *
631  * As with most tpm_buf operations, success is assumed because failure
632  * will be caused by an incorrect programming model and indicated by a
633  * kernel message.
634  */
635 void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf,
636 			 u32 handle, u8 *name)
637 {
638 	enum tpm2_mso_type mso = tpm2_handle_mso(handle);
639 	struct tpm2_auth *auth = chip->auth;
640 	int slot;
641 
642 	slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE)/4;
643 	if (slot >= AUTH_MAX_NAMES) {
644 		dev_err(&chip->dev, "TPM: too many handles\n");
645 		return;
646 	}
647 	WARN(auth->session != tpm_buf_length(buf),
648 	     "name added in wrong place\n");
649 	tpm_buf_append_u32(buf, handle);
650 	auth->session += 4;
651 
652 	if (mso == TPM2_MSO_PERSISTENT ||
653 	    mso == TPM2_MSO_VOLATILE ||
654 	    mso == TPM2_MSO_NVRAM) {
655 		if (!name)
656 			tpm2_read_public(chip, handle, auth->name[slot]);
657 	} else {
658 		if (name)
659 			dev_err(&chip->dev, "TPM: Handle does not require name but one is specified\n");
660 	}
661 
662 	auth->name_h[slot] = handle;
663 	if (name)
664 		memcpy(auth->name[slot], name, name_size(name));
665 }
666 EXPORT_SYMBOL(tpm_buf_append_name);
667 
668 /**
669  * tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness
670  * @chip: the TPM chip structure
671  * @buf: the original command buffer (which now contains the response)
672  * @rc: the return code from tpm_transmit_cmd
673  *
674  * If @rc is non zero, @buf may not contain an actual return, so @rc
675  * is passed through as the return and the session cleaned up and
676  * de-allocated if required (this is required if
677  * TPM2_SA_CONTINUE_SESSION was not specified as a session flag).
678  *
679  * If @rc is zero, the response HMAC is computed against the returned
680  * @buf and matched to the TPM one in the session area.  If there is a
681  * mismatch, an error is logged and -EINVAL returned.
682  *
683  * The reason for this is that the command issue and HMAC check
684  * sequence should look like:
685  *
686  *	rc = tpm_transmit_cmd(...);
687  *	rc = tpm_buf_check_hmac_response(&buf, auth, rc);
688  *	if (rc)
689  *		...
690  *
691  * Which is easily layered into the current contrl flow.
692  *
693  * Returns: 0 on success or an error.
694  */
695 int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf,
696 				int rc)
697 {
698 	struct tpm_header *head = (struct tpm_header *)buf->data;
699 	struct tpm2_auth *auth = chip->auth;
700 	off_t offset_s, offset_p;
701 	u8 rphash[SHA256_DIGEST_SIZE];
702 	u32 attrs;
703 	struct sha256_state sctx;
704 	u16 tag = be16_to_cpu(head->tag);
705 	u32 cc = be32_to_cpu(auth->ordinal);
706 	int parm_len, len, i, handles;
707 
708 	if (auth->session >= TPM_HEADER_SIZE) {
709 		WARN(1, "tpm session not filled correctly\n");
710 		goto out;
711 	}
712 
713 	if (rc != 0)
714 		/* pass non success rc through and close the session */
715 		goto out;
716 
717 	rc = -EINVAL;
718 	if (tag != TPM2_ST_SESSIONS) {
719 		dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n");
720 		goto out;
721 	}
722 
723 	i = tpm2_find_cc(chip, cc);
724 	if (i < 0)
725 		goto out;
726 	attrs = chip->cc_attrs_tbl[i];
727 	handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1;
728 
729 	/* point to area beyond handles */
730 	offset_s = TPM_HEADER_SIZE + handles * 4;
731 	parm_len = tpm_buf_read_u32(buf, &offset_s);
732 	offset_p = offset_s;
733 	offset_s += parm_len;
734 	/* skip over any sessions before ours */
735 	for (i = 0; i < auth->session - 1; i++) {
736 		len = tpm_buf_read_u16(buf, &offset_s);
737 		offset_s += len + 1;
738 		len = tpm_buf_read_u16(buf, &offset_s);
739 		offset_s += len;
740 	}
741 	/* TPM nonce */
742 	len = tpm_buf_read_u16(buf, &offset_s);
743 	if (offset_s + len > tpm_buf_length(buf))
744 		goto out;
745 	if (len != SHA256_DIGEST_SIZE)
746 		goto out;
747 	memcpy(auth->tpm_nonce, &buf->data[offset_s], len);
748 	offset_s += len;
749 	attrs = tpm_buf_read_u8(buf, &offset_s);
750 	len = tpm_buf_read_u16(buf, &offset_s);
751 	if (offset_s + len != tpm_buf_length(buf))
752 		goto out;
753 	if (len != SHA256_DIGEST_SIZE)
754 		goto out;
755 	/*
756 	 * offset_s points to the HMAC. now calculate comparison, beginning
757 	 * with rphash
758 	 */
759 	sha256_init(&sctx);
760 	/* yes, I know this is now zero, but it's what the standard says */
761 	sha256_update(&sctx, (u8 *)&head->return_code,
762 		      sizeof(head->return_code));
763 	/* ordinal is already BE */
764 	sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal));
765 	sha256_update(&sctx, &buf->data[offset_p], parm_len);
766 	sha256_final(&sctx, rphash);
767 
768 	/* now calculate the hmac */
769 	tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
770 		       + auth->passphrase_len);
771 	sha256_update(&sctx, rphash, sizeof(rphash));
772 	sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
773 	sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
774 	sha256_update(&sctx, &auth->attrs, 1);
775 	/* we're done with the rphash, so put our idea of the hmac there */
776 	tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
777 			+ auth->passphrase_len, rphash);
778 	if (memcmp(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE) == 0) {
779 		rc = 0;
780 	} else {
781 		dev_err(&chip->dev, "TPM: HMAC check failed\n");
782 		goto out;
783 	}
784 
785 	/* now do response decryption */
786 	if (auth->attrs & TPM2_SA_ENCRYPT) {
787 		/* need key and IV */
788 		tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
789 			  + auth->passphrase_len, "CFB", auth->tpm_nonce,
790 			  auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
791 			  auth->scratch);
792 
793 		len = tpm_buf_read_u16(buf, &offset_p);
794 		aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
795 		aescfb_decrypt(&auth->aes_ctx, &buf->data[offset_p],
796 			       &buf->data[offset_p], len,
797 			       auth->scratch + AES_KEY_BYTES);
798 	}
799 
800  out:
801 	if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) {
802 		if (rc)
803 			/* manually close the session if it wasn't consumed */
804 			tpm2_flush_context(chip, auth->handle);
805 		memzero_explicit(auth, sizeof(*auth));
806 	} else {
807 		/* reset for next use  */
808 		auth->session = TPM_HEADER_SIZE;
809 	}
810 
811 	return rc;
812 }
813 EXPORT_SYMBOL(tpm_buf_check_hmac_response);
814 
815 /**
816  * tpm2_end_auth_session() - kill the allocated auth session
817  * @chip: the TPM chip structure
818  *
819  * ends the session started by tpm2_start_auth_session and frees all
820  * the resources.  Under normal conditions,
821  * tpm_buf_check_hmac_response() will correctly end the session if
822  * required, so this function is only for use in error legs that will
823  * bypass the normal invocation of tpm_buf_check_hmac_response().
824  */
825 void tpm2_end_auth_session(struct tpm_chip *chip)
826 {
827 	tpm2_flush_context(chip, chip->auth->handle);
828 	memzero_explicit(chip->auth, sizeof(*chip->auth));
829 }
830 EXPORT_SYMBOL(tpm2_end_auth_session);
831 
832 static int tpm2_parse_start_auth_session(struct tpm2_auth *auth,
833 					 struct tpm_buf *buf)
834 {
835 	struct tpm_header *head = (struct tpm_header *)buf->data;
836 	u32 tot_len = be32_to_cpu(head->length);
837 	off_t offset = TPM_HEADER_SIZE;
838 	u32 val;
839 
840 	/* we're starting after the header so adjust the length */
841 	tot_len -= TPM_HEADER_SIZE;
842 
843 	/* should have handle plus nonce */
844 	if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce))
845 		return -EINVAL;
846 
847 	auth->handle = tpm_buf_read_u32(buf, &offset);
848 	val = tpm_buf_read_u16(buf, &offset);
849 	if (val != sizeof(auth->tpm_nonce))
850 		return -EINVAL;
851 	memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce));
852 	/* now compute the session key from the nonces */
853 	tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce,
854 		  auth->our_nonce, sizeof(auth->session_key),
855 		  auth->session_key);
856 
857 	return 0;
858 }
859 
860 static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key)
861 {
862 	int rc;
863 	unsigned int offset = 0; /* dummy offset for null seed context */
864 	u8 name[SHA256_DIGEST_SIZE + 2];
865 
866 	rc = tpm2_load_context(chip, chip->null_key_context, &offset,
867 			       null_key);
868 	if (rc != -EINVAL)
869 		return rc;
870 
871 	/* an integrity failure may mean the TPM has been reset */
872 	dev_err(&chip->dev, "NULL key integrity failure!\n");
873 	/* check the null name against what we know */
874 	tpm2_create_primary(chip, TPM2_RH_NULL, NULL, name);
875 	if (memcmp(name, chip->null_key_name, sizeof(name)) == 0)
876 		/* name unchanged, assume transient integrity failure */
877 		return rc;
878 	/*
879 	 * Fatal TPM failure: the NULL seed has actually changed, so
880 	 * the TPM must have been illegally reset.  All in-kernel TPM
881 	 * operations will fail because the NULL primary can't be
882 	 * loaded to salt the sessions, but disable the TPM anyway so
883 	 * userspace programmes can't be compromised by it.
884 	 */
885 	dev_err(&chip->dev, "NULL name has changed, disabling TPM due to interference\n");
886 	chip->flags |= TPM_CHIP_FLAG_DISABLE;
887 
888 	return rc;
889 }
890 
891 /**
892  * tpm2_start_auth_session() - create a HMAC authentication session with the TPM
893  * @chip: the TPM chip structure to create the session with
894  *
895  * This function loads the NULL seed from its saved context and starts
896  * an authentication session on the null seed, fills in the
897  * @chip->auth structure to contain all the session details necessary
898  * for performing the HMAC, encrypt and decrypt operations and
899  * returns.  The NULL seed is flushed before this function returns.
900  *
901  * Return: zero on success or actual error encountered.
902  */
903 int tpm2_start_auth_session(struct tpm_chip *chip)
904 {
905 	struct tpm_buf buf;
906 	struct tpm2_auth *auth = chip->auth;
907 	int rc;
908 	u32 null_key;
909 
910 	rc = tpm2_load_null(chip, &null_key);
911 	if (rc)
912 		goto out;
913 
914 	auth->session = TPM_HEADER_SIZE;
915 
916 	rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS);
917 	if (rc)
918 		goto out;
919 
920 	/* salt key handle */
921 	tpm_buf_append_u32(&buf, null_key);
922 	/* bind key handle */
923 	tpm_buf_append_u32(&buf, TPM2_RH_NULL);
924 	/* nonce caller */
925 	get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce));
926 	tpm_buf_append_u16(&buf, sizeof(auth->our_nonce));
927 	tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce));
928 
929 	/* append encrypted salt and squirrel away unencrypted in auth */
930 	tpm_buf_append_salt(&buf, chip);
931 	/* session type (HMAC, audit or policy) */
932 	tpm_buf_append_u8(&buf, TPM2_SE_HMAC);
933 
934 	/* symmetric encryption parameters */
935 	/* symmetric algorithm */
936 	tpm_buf_append_u16(&buf, TPM_ALG_AES);
937 	/* bits for symmetric algorithm */
938 	tpm_buf_append_u16(&buf, AES_KEY_BITS);
939 	/* symmetric algorithm mode (must be CFB) */
940 	tpm_buf_append_u16(&buf, TPM_ALG_CFB);
941 	/* hash algorithm for session */
942 	tpm_buf_append_u16(&buf, TPM_ALG_SHA256);
943 
944 	rc = tpm_transmit_cmd(chip, &buf, 0, "start auth session");
945 	tpm2_flush_context(chip, null_key);
946 
947 	if (rc == TPM2_RC_SUCCESS)
948 		rc = tpm2_parse_start_auth_session(auth, &buf);
949 
950 	tpm_buf_destroy(&buf);
951 
952 	if (rc)
953 		goto out;
954 
955  out:
956 	return rc;
957 }
958 EXPORT_SYMBOL(tpm2_start_auth_session);
959 
960 /*
961  * A mask containing the object attributes for the kernel held null primary key
962  * used in HMAC encryption. For more information on specific attributes look up
963  * to "8.3 TPMA_OBJECT (Object Attributes)".
964  */
965 #define TPM2_OA_NULL_KEY ( \
966 	TPM2_OA_NO_DA | \
967 	TPM2_OA_FIXED_TPM | \
968 	TPM2_OA_FIXED_PARENT | \
969 	TPM2_OA_SENSITIVE_DATA_ORIGIN |	\
970 	TPM2_OA_USER_WITH_AUTH | \
971 	TPM2_OA_DECRYPT | \
972 	TPM2_OA_RESTRICTED)
973 
974 /**
975  * tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY
976  *
977  * @chip:	The TPM the primary was created under
978  * @buf:	The response buffer from the chip
979  * @handle:	pointer to be filled in with the return handle of the primary
980  * @hierarchy:	The hierarchy the primary was created for
981  * @name:	pointer to be filled in with the primary key name
982  *
983  * Return:
984  * * 0		- OK
985  * * -errno	- A system error
986  * * TPM_RC	- A TPM error
987  */
988 static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf,
989 				     u32 *handle, u32 hierarchy, u8 *name)
990 {
991 	struct tpm_header *head = (struct tpm_header *)buf->data;
992 	off_t offset_r = TPM_HEADER_SIZE, offset_t;
993 	u16 len = TPM_HEADER_SIZE;
994 	u32 total_len = be32_to_cpu(head->length);
995 	u32 val, param_len, keyhandle;
996 
997 	keyhandle = tpm_buf_read_u32(buf, &offset_r);
998 	if (handle)
999 		*handle = keyhandle;
1000 	else
1001 		tpm2_flush_context(chip, keyhandle);
1002 
1003 	param_len = tpm_buf_read_u32(buf, &offset_r);
1004 	/*
1005 	 * param_len doesn't include the header, but all the other
1006 	 * lengths and offsets do, so add it to parm len to make
1007 	 * the comparisons easier
1008 	 */
1009 	param_len += TPM_HEADER_SIZE;
1010 
1011 	if (param_len + 8 > total_len)
1012 		return -EINVAL;
1013 	len = tpm_buf_read_u16(buf, &offset_r);
1014 	offset_t = offset_r;
1015 	if (name) {
1016 		/*
1017 		 * now we have the public area, compute the name of
1018 		 * the object
1019 		 */
1020 		put_unaligned_be16(TPM_ALG_SHA256, name);
1021 		sha256(&buf->data[offset_r], len, name + 2);
1022 	}
1023 
1024 	/* validate the public key */
1025 	val = tpm_buf_read_u16(buf, &offset_t);
1026 
1027 	/* key type (must be what we asked for) */
1028 	if (val != TPM_ALG_ECC)
1029 		return -EINVAL;
1030 	val = tpm_buf_read_u16(buf, &offset_t);
1031 
1032 	/* name algorithm */
1033 	if (val != TPM_ALG_SHA256)
1034 		return -EINVAL;
1035 	val = tpm_buf_read_u32(buf, &offset_t);
1036 
1037 	/* object properties */
1038 	if (val != TPM2_OA_NULL_KEY)
1039 		return -EINVAL;
1040 
1041 	/* auth policy (empty) */
1042 	val = tpm_buf_read_u16(buf, &offset_t);
1043 	if (val != 0)
1044 		return -EINVAL;
1045 
1046 	/* symmetric key parameters */
1047 	val = tpm_buf_read_u16(buf, &offset_t);
1048 	if (val != TPM_ALG_AES)
1049 		return -EINVAL;
1050 
1051 	/* symmetric key length */
1052 	val = tpm_buf_read_u16(buf, &offset_t);
1053 	if (val != AES_KEY_BITS)
1054 		return -EINVAL;
1055 
1056 	/* symmetric encryption scheme */
1057 	val = tpm_buf_read_u16(buf, &offset_t);
1058 	if (val != TPM_ALG_CFB)
1059 		return -EINVAL;
1060 
1061 	/* signing scheme */
1062 	val = tpm_buf_read_u16(buf, &offset_t);
1063 	if (val != TPM_ALG_NULL)
1064 		return -EINVAL;
1065 
1066 	/* ECC Curve */
1067 	val = tpm_buf_read_u16(buf, &offset_t);
1068 	if (val != TPM2_ECC_NIST_P256)
1069 		return -EINVAL;
1070 
1071 	/* KDF Scheme */
1072 	val = tpm_buf_read_u16(buf, &offset_t);
1073 	if (val != TPM_ALG_NULL)
1074 		return -EINVAL;
1075 
1076 	/* extract public key (x and y points) */
1077 	val = tpm_buf_read_u16(buf, &offset_t);
1078 	if (val != EC_PT_SZ)
1079 		return -EINVAL;
1080 	memcpy(chip->null_ec_key_x, &buf->data[offset_t], val);
1081 	offset_t += val;
1082 	val = tpm_buf_read_u16(buf, &offset_t);
1083 	if (val != EC_PT_SZ)
1084 		return -EINVAL;
1085 	memcpy(chip->null_ec_key_y, &buf->data[offset_t], val);
1086 	offset_t += val;
1087 
1088 	/* original length of the whole TPM2B */
1089 	offset_r += len;
1090 
1091 	/* should have exactly consumed the TPM2B public structure */
1092 	if (offset_t != offset_r)
1093 		return -EINVAL;
1094 	if (offset_r > param_len)
1095 		return -EINVAL;
1096 
1097 	/* creation data (skip) */
1098 	len = tpm_buf_read_u16(buf, &offset_r);
1099 	offset_r += len;
1100 	if (offset_r > param_len)
1101 		return -EINVAL;
1102 
1103 	/* creation digest (must be sha256) */
1104 	len = tpm_buf_read_u16(buf, &offset_r);
1105 	offset_r += len;
1106 	if (len != SHA256_DIGEST_SIZE || offset_r > param_len)
1107 		return -EINVAL;
1108 
1109 	/* TPMT_TK_CREATION follows */
1110 	/* tag, must be TPM_ST_CREATION (0x8021) */
1111 	val = tpm_buf_read_u16(buf, &offset_r);
1112 	if (val != TPM2_ST_CREATION || offset_r > param_len)
1113 		return -EINVAL;
1114 
1115 	/* hierarchy */
1116 	val = tpm_buf_read_u32(buf, &offset_r);
1117 	if (val != hierarchy || offset_r > param_len)
1118 		return -EINVAL;
1119 
1120 	/* the ticket digest HMAC (might not be sha256) */
1121 	len = tpm_buf_read_u16(buf, &offset_r);
1122 	offset_r += len;
1123 	if (offset_r > param_len)
1124 		return -EINVAL;
1125 
1126 	/*
1127 	 * finally we have the name, which is a sha256 digest plus a 2
1128 	 * byte algorithm type
1129 	 */
1130 	len = tpm_buf_read_u16(buf, &offset_r);
1131 	if (offset_r + len != param_len + 8)
1132 		return -EINVAL;
1133 	if (len != SHA256_DIGEST_SIZE + 2)
1134 		return -EINVAL;
1135 
1136 	if (memcmp(chip->null_key_name, &buf->data[offset_r],
1137 		   SHA256_DIGEST_SIZE + 2) != 0) {
1138 		dev_err(&chip->dev, "NULL Seed name comparison failed\n");
1139 		return -EINVAL;
1140 	}
1141 
1142 	return 0;
1143 }
1144 
1145 /**
1146  * tpm2_create_primary() - create a primary key using a fixed P-256 template
1147  *
1148  * @chip:      the TPM chip to create under
1149  * @hierarchy: The hierarchy handle to create under
1150  * @handle:    The returned volatile handle on success
1151  * @name:      The name of the returned key
1152  *
1153  * For platforms that might not have a persistent primary, this can be
1154  * used to create one quickly on the fly (it uses Elliptic Curve not
1155  * RSA, so even slow TPMs can create one fast).  The template uses the
1156  * TCG mandated H one for non-endorsement ECC primaries, i.e. P-256
1157  * elliptic curve (the only current one all TPM2s are required to
1158  * have) a sha256 name hash and no policy.
1159  *
1160  * Return:
1161  * * 0		- OK
1162  * * -errno	- A system error
1163  * * TPM_RC	- A TPM error
1164  */
1165 static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
1166 			       u32 *handle, u8 *name)
1167 {
1168 	int rc;
1169 	struct tpm_buf buf;
1170 	struct tpm_buf template;
1171 
1172 	rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY);
1173 	if (rc)
1174 		return rc;
1175 
1176 	rc = tpm_buf_init_sized(&template);
1177 	if (rc) {
1178 		tpm_buf_destroy(&buf);
1179 		return rc;
1180 	}
1181 
1182 	/*
1183 	 * create the template.  Note: in order for userspace to
1184 	 * verify the security of the system, it will have to create
1185 	 * and certify this NULL primary, meaning all the template
1186 	 * parameters will have to be identical, so conform exactly to
1187 	 * the TCG TPM v2.0 Provisioning Guidance for the SRK ECC
1188 	 * key H template (H has zero size unique points)
1189 	 */
1190 
1191 	/* key type */
1192 	tpm_buf_append_u16(&template, TPM_ALG_ECC);
1193 
1194 	/* name algorithm */
1195 	tpm_buf_append_u16(&template, TPM_ALG_SHA256);
1196 
1197 	/* object properties */
1198 	tpm_buf_append_u32(&template, TPM2_OA_NULL_KEY);
1199 
1200 	/* sauth policy (empty) */
1201 	tpm_buf_append_u16(&template, 0);
1202 
1203 	/* BEGIN parameters: key specific; for ECC*/
1204 
1205 	/* symmetric algorithm */
1206 	tpm_buf_append_u16(&template, TPM_ALG_AES);
1207 
1208 	/* bits for symmetric algorithm */
1209 	tpm_buf_append_u16(&template, AES_KEY_BITS);
1210 
1211 	/* algorithm mode (must be CFB) */
1212 	tpm_buf_append_u16(&template, TPM_ALG_CFB);
1213 
1214 	/* scheme (NULL means any scheme) */
1215 	tpm_buf_append_u16(&template, TPM_ALG_NULL);
1216 
1217 	/* ECC Curve ID */
1218 	tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256);
1219 
1220 	/* KDF Scheme */
1221 	tpm_buf_append_u16(&template, TPM_ALG_NULL);
1222 
1223 	/* unique: key specific; for ECC it is two zero size points */
1224 	tpm_buf_append_u16(&template, 0);
1225 	tpm_buf_append_u16(&template, 0);
1226 
1227 	/* END parameters */
1228 
1229 	/* primary handle */
1230 	tpm_buf_append_u32(&buf, hierarchy);
1231 	tpm_buf_append_empty_auth(&buf, TPM2_RS_PW);
1232 
1233 	/* sensitive create size is 4 for two empty buffers */
1234 	tpm_buf_append_u16(&buf, 4);
1235 
1236 	/* sensitive create auth data (empty) */
1237 	tpm_buf_append_u16(&buf, 0);
1238 
1239 	/* sensitive create sensitive data (empty) */
1240 	tpm_buf_append_u16(&buf, 0);
1241 
1242 	/* the public template */
1243 	tpm_buf_append(&buf, template.data, template.length);
1244 	tpm_buf_destroy(&template);
1245 
1246 	/* outside info (empty) */
1247 	tpm_buf_append_u16(&buf, 0);
1248 
1249 	/* creation PCR (none) */
1250 	tpm_buf_append_u32(&buf, 0);
1251 
1252 	rc = tpm_transmit_cmd(chip, &buf, 0,
1253 			      "attempting to create NULL primary");
1254 
1255 	if (rc == TPM2_RC_SUCCESS)
1256 		rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy,
1257 					       name);
1258 
1259 	tpm_buf_destroy(&buf);
1260 
1261 	return rc;
1262 }
1263 
1264 static int tpm2_create_null_primary(struct tpm_chip *chip)
1265 {
1266 	u32 null_key;
1267 	int rc;
1268 
1269 	rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key,
1270 				 chip->null_key_name);
1271 
1272 	if (rc == TPM2_RC_SUCCESS) {
1273 		unsigned int offset = 0; /* dummy offset for null key context */
1274 
1275 		rc = tpm2_save_context(chip, null_key, chip->null_key_context,
1276 				       sizeof(chip->null_key_context), &offset);
1277 		tpm2_flush_context(chip, null_key);
1278 	}
1279 
1280 	return rc;
1281 }
1282 
1283 /**
1284  * tpm2_sessions_init() - start of day initialization for the sessions code
1285  * @chip: TPM chip
1286  *
1287  * Derive and context save the null primary and allocate memory in the
1288  * struct tpm_chip for the authorizations.
1289  */
1290 int tpm2_sessions_init(struct tpm_chip *chip)
1291 {
1292 	int rc;
1293 
1294 	rc = tpm2_create_null_primary(chip);
1295 	if (rc)
1296 		dev_err(&chip->dev, "TPM: security failed (NULL seed derivation): %d\n", rc);
1297 
1298 	chip->auth = kmalloc(sizeof(*chip->auth), GFP_KERNEL);
1299 	if (!chip->auth)
1300 		return -ENOMEM;
1301 
1302 	return rc;
1303 }
1304