1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright (C) 2018 James.Bottomley@HansenPartnership.com 5 * 6 * Cryptographic helper routines for handling TPM2 sessions for 7 * authorization HMAC and request response encryption. 8 * 9 * The idea is to ensure that every TPM command is HMAC protected by a 10 * session, meaning in-flight tampering would be detected and in 11 * addition all sensitive inputs and responses should be encrypted. 12 * 13 * The basic way this works is to use a TPM feature called salted 14 * sessions where a random secret used in session construction is 15 * encrypted to the public part of a known TPM key. The problem is we 16 * have no known keys, so initially a primary Elliptic Curve key is 17 * derived from the NULL seed (we use EC because most TPMs generate 18 * these keys much faster than RSA ones). The curve used is NIST_P256 19 * because that's now mandated to be present in 'TCG TPM v2.0 20 * Provisioning Guidance' 21 * 22 * Threat problems: the initial TPM2_CreatePrimary is not (and cannot 23 * be) session protected, so a clever Man in the Middle could return a 24 * public key they control to this command and from there intercept 25 * and decode all subsequent session based transactions. The kernel 26 * cannot mitigate this threat but, after boot, userspace can get 27 * proof this has not happened by asking the TPM to certify the NULL 28 * key. This certification would chain back to the TPM Endorsement 29 * Certificate and prove the NULL seed primary had not been tampered 30 * with and thus all sessions must have been cryptographically secure. 31 * To assist with this, the initial NULL seed public key name is made 32 * available in a sysfs file. 33 * 34 * Use of these functions: 35 * 36 * The design is all the crypto, hash and hmac gunk is confined in this 37 * file and never needs to be seen even by the kernel internal user. To 38 * the user there's an init function tpm2_sessions_init() that needs to 39 * be called once per TPM which generates the NULL seed primary key. 40 * 41 * These are the usage functions: 42 * 43 * tpm2_start_auth_session() which allocates the opaque auth structure 44 * and gets a session from the TPM. This must be called before 45 * any of the following functions. The session is protected by a 46 * session_key which is derived from a random salt value 47 * encrypted to the NULL seed. 48 * tpm2_end_auth_session() kills the session and frees the resources. 49 * Under normal operation this function is done by 50 * tpm_buf_check_hmac_response(), so this is only to be used on 51 * error legs where the latter is not executed. 52 * tpm_buf_append_name() to add a handle to the buffer. This must be 53 * used in place of the usual tpm_buf_append_u32() for adding 54 * handles because handles have to be processed specially when 55 * calculating the HMAC. In particular, for NV, volatile and 56 * permanent objects you now need to provide the name. 57 * tpm_buf_append_hmac_session() which appends the hmac session to the 58 * buf in the same way tpm_buf_append_auth does(). 59 * tpm_buf_fill_hmac_session() This calculates the correct hash and 60 * places it in the buffer. It must be called after the complete 61 * command buffer is finalized so it can fill in the correct HMAC 62 * based on the parameters. 63 * tpm_buf_check_hmac_response() which checks the session response in 64 * the buffer and calculates what it should be. If there's a 65 * mismatch it will log a warning and return an error. If 66 * tpm_buf_append_hmac_session() did not specify 67 * TPM_SA_CONTINUE_SESSION then the session will be closed (if it 68 * hasn't been consumed) and the auth structure freed. 69 */ 70 71 #include "tpm.h" 72 #include <linux/random.h> 73 #include <linux/scatterlist.h> 74 #include <asm/unaligned.h> 75 #include <crypto/kpp.h> 76 #include <crypto/ecdh.h> 77 #include <crypto/hash.h> 78 #include <crypto/hmac.h> 79 80 /* maximum number of names the TPM must remember for authorization */ 81 #define AUTH_MAX_NAMES 3 82 83 #define AES_KEY_BYTES AES_KEYSIZE_128 84 #define AES_KEY_BITS (AES_KEY_BYTES*8) 85 86 static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy, 87 u32 *handle, u8 *name); 88 89 /* 90 * This is the structure that carries all the auth information (like 91 * session handle, nonces, session key and auth) from use to use it is 92 * designed to be opaque to anything outside. 93 */ 94 struct tpm2_auth { 95 u32 handle; 96 /* 97 * This has two meanings: before tpm_buf_fill_hmac_session() 98 * it marks the offset in the buffer of the start of the 99 * sessions (i.e. after all the handles). Once the buffer has 100 * been filled it markes the session number of our auth 101 * session so we can find it again in the response buffer. 102 * 103 * The two cases are distinguished because the first offset 104 * must always be greater than TPM_HEADER_SIZE and the second 105 * must be less than or equal to 5. 106 */ 107 u32 session; 108 /* 109 * the size here is variable and set by the size of our_nonce 110 * which must be between 16 and the name hash length. we set 111 * the maximum sha256 size for the greatest protection 112 */ 113 u8 our_nonce[SHA256_DIGEST_SIZE]; 114 u8 tpm_nonce[SHA256_DIGEST_SIZE]; 115 /* 116 * the salt is only used across the session command/response 117 * after that it can be used as a scratch area 118 */ 119 union { 120 u8 salt[EC_PT_SZ]; 121 /* scratch for key + IV */ 122 u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE]; 123 }; 124 /* 125 * the session key and passphrase are the same size as the 126 * name digest (sha256 again). The session key is constant 127 * for the use of the session and the passphrase can change 128 * with every invocation. 129 * 130 * Note: these fields must be adjacent and in this order 131 * because several HMAC/KDF schemes use the combination of the 132 * session_key and passphrase. 133 */ 134 u8 session_key[SHA256_DIGEST_SIZE]; 135 u8 passphrase[SHA256_DIGEST_SIZE]; 136 int passphrase_len; 137 struct crypto_aes_ctx aes_ctx; 138 /* saved session attributes: */ 139 u8 attrs; 140 __be32 ordinal; 141 142 /* 143 * memory for three authorization handles. We know them by 144 * handle, but they are part of the session by name, which 145 * we must compute and remember 146 */ 147 u32 name_h[AUTH_MAX_NAMES]; 148 u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE]; 149 }; 150 151 /* 152 * Name Size based on TPM algorithm (assumes no hash bigger than 255) 153 */ 154 static u8 name_size(const u8 *name) 155 { 156 static u8 size_map[] = { 157 [TPM_ALG_SHA1] = SHA1_DIGEST_SIZE, 158 [TPM_ALG_SHA256] = SHA256_DIGEST_SIZE, 159 [TPM_ALG_SHA384] = SHA384_DIGEST_SIZE, 160 [TPM_ALG_SHA512] = SHA512_DIGEST_SIZE, 161 }; 162 u16 alg = get_unaligned_be16(name); 163 return size_map[alg] + 2; 164 } 165 166 /* 167 * It turns out the crypto hmac(sha256) is hard for us to consume 168 * because it assumes a fixed key and the TPM seems to change the key 169 * on every operation, so we weld the hmac init and final functions in 170 * here to give it the same usage characteristics as a regular hash 171 */ 172 static void tpm2_hmac_init(struct sha256_state *sctx, u8 *key, u32 key_len) 173 { 174 u8 pad[SHA256_BLOCK_SIZE]; 175 int i; 176 177 sha256_init(sctx); 178 for (i = 0; i < sizeof(pad); i++) { 179 if (i < key_len) 180 pad[i] = key[i]; 181 else 182 pad[i] = 0; 183 pad[i] ^= HMAC_IPAD_VALUE; 184 } 185 sha256_update(sctx, pad, sizeof(pad)); 186 } 187 188 static void tpm2_hmac_final(struct sha256_state *sctx, u8 *key, u32 key_len, 189 u8 *out) 190 { 191 u8 pad[SHA256_BLOCK_SIZE]; 192 int i; 193 194 for (i = 0; i < sizeof(pad); i++) { 195 if (i < key_len) 196 pad[i] = key[i]; 197 else 198 pad[i] = 0; 199 pad[i] ^= HMAC_OPAD_VALUE; 200 } 201 202 /* collect the final hash; use out as temporary storage */ 203 sha256_final(sctx, out); 204 205 sha256_init(sctx); 206 sha256_update(sctx, pad, sizeof(pad)); 207 sha256_update(sctx, out, SHA256_DIGEST_SIZE); 208 sha256_final(sctx, out); 209 } 210 211 /* 212 * assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but 213 * otherwise standard tpm2_KDFa. Note output is in bytes not bits. 214 */ 215 static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u, 216 u8 *v, u32 bytes, u8 *out) 217 { 218 u32 counter = 1; 219 const __be32 bits = cpu_to_be32(bytes * 8); 220 221 while (bytes > 0) { 222 struct sha256_state sctx; 223 __be32 c = cpu_to_be32(counter); 224 225 tpm2_hmac_init(&sctx, key, key_len); 226 sha256_update(&sctx, (u8 *)&c, sizeof(c)); 227 sha256_update(&sctx, label, strlen(label)+1); 228 sha256_update(&sctx, u, SHA256_DIGEST_SIZE); 229 sha256_update(&sctx, v, SHA256_DIGEST_SIZE); 230 sha256_update(&sctx, (u8 *)&bits, sizeof(bits)); 231 tpm2_hmac_final(&sctx, key, key_len, out); 232 233 bytes -= SHA256_DIGEST_SIZE; 234 counter++; 235 out += SHA256_DIGEST_SIZE; 236 } 237 } 238 239 /* 240 * Somewhat of a bastardization of the real KDFe. We're assuming 241 * we're working with known point sizes for the input parameters and 242 * the hash algorithm is fixed at sha256. Because we know that the 243 * point size is 32 bytes like the hash size, there's no need to loop 244 * in this KDF. 245 */ 246 static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v, 247 u8 *out) 248 { 249 struct sha256_state sctx; 250 /* 251 * this should be an iterative counter, but because we know 252 * we're only taking 32 bytes for the point using a sha256 253 * hash which is also 32 bytes, there's only one loop 254 */ 255 __be32 c = cpu_to_be32(1); 256 257 sha256_init(&sctx); 258 /* counter (BE) */ 259 sha256_update(&sctx, (u8 *)&c, sizeof(c)); 260 /* secret value */ 261 sha256_update(&sctx, z, EC_PT_SZ); 262 /* string including trailing zero */ 263 sha256_update(&sctx, str, strlen(str)+1); 264 sha256_update(&sctx, pt_u, EC_PT_SZ); 265 sha256_update(&sctx, pt_v, EC_PT_SZ); 266 sha256_final(&sctx, out); 267 } 268 269 static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip) 270 { 271 struct crypto_kpp *kpp; 272 struct kpp_request *req; 273 struct scatterlist s[2], d[1]; 274 struct ecdh p = {0}; 275 u8 encoded_key[EC_PT_SZ], *x, *y; 276 unsigned int buf_len; 277 278 /* secret is two sized points */ 279 tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2); 280 /* 281 * we cheat here and append uninitialized data to form 282 * the points. All we care about is getting the two 283 * co-ordinate pointers, which will be used to overwrite 284 * the uninitialized data 285 */ 286 tpm_buf_append_u16(buf, EC_PT_SZ); 287 x = &buf->data[tpm_buf_length(buf)]; 288 tpm_buf_append(buf, encoded_key, EC_PT_SZ); 289 tpm_buf_append_u16(buf, EC_PT_SZ); 290 y = &buf->data[tpm_buf_length(buf)]; 291 tpm_buf_append(buf, encoded_key, EC_PT_SZ); 292 sg_init_table(s, 2); 293 sg_set_buf(&s[0], x, EC_PT_SZ); 294 sg_set_buf(&s[1], y, EC_PT_SZ); 295 296 kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0); 297 if (IS_ERR(kpp)) { 298 dev_err(&chip->dev, "crypto ecdh allocation failed\n"); 299 return; 300 } 301 302 buf_len = crypto_ecdh_key_len(&p); 303 if (sizeof(encoded_key) < buf_len) { 304 dev_err(&chip->dev, "salt buffer too small needs %d\n", 305 buf_len); 306 goto out; 307 } 308 crypto_ecdh_encode_key(encoded_key, buf_len, &p); 309 /* this generates a random private key */ 310 crypto_kpp_set_secret(kpp, encoded_key, buf_len); 311 312 /* salt is now the public point of this private key */ 313 req = kpp_request_alloc(kpp, GFP_KERNEL); 314 if (!req) 315 goto out; 316 kpp_request_set_input(req, NULL, 0); 317 kpp_request_set_output(req, s, EC_PT_SZ*2); 318 crypto_kpp_generate_public_key(req); 319 /* 320 * we're not done: now we have to compute the shared secret 321 * which is our private key multiplied by the tpm_key public 322 * point, we actually only take the x point and discard the y 323 * point and feed it through KDFe to get the final secret salt 324 */ 325 sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ); 326 sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ); 327 kpp_request_set_input(req, s, EC_PT_SZ*2); 328 sg_init_one(d, chip->auth->salt, EC_PT_SZ); 329 kpp_request_set_output(req, d, EC_PT_SZ); 330 crypto_kpp_compute_shared_secret(req); 331 kpp_request_free(req); 332 333 /* 334 * pass the shared secret through KDFe for salt. Note salt 335 * area is used both for input shared secret and output salt. 336 * This works because KDFe fully consumes the secret before it 337 * writes the salt 338 */ 339 tpm2_KDFe(chip->auth->salt, "SECRET", x, chip->null_ec_key_x, 340 chip->auth->salt); 341 342 out: 343 crypto_free_kpp(kpp); 344 } 345 346 /** 347 * tpm_buf_append_hmac_session() - Append a TPM session element 348 * @chip: the TPM chip structure 349 * @buf: The buffer to be appended 350 * @attributes: The session attributes 351 * @passphrase: The session authority (NULL if none) 352 * @passphrase_len: The length of the session authority (0 if none) 353 * 354 * This fills in a session structure in the TPM command buffer, except 355 * for the HMAC which cannot be computed until the command buffer is 356 * complete. The type of session is controlled by the @attributes, 357 * the main ones of which are TPM2_SA_CONTINUE_SESSION which means the 358 * session won't terminate after tpm_buf_check_hmac_response(), 359 * TPM2_SA_DECRYPT which means this buffers first parameter should be 360 * encrypted with a session key and TPM2_SA_ENCRYPT, which means the 361 * response buffer's first parameter needs to be decrypted (confusing, 362 * but the defines are written from the point of view of the TPM). 363 * 364 * Any session appended by this command must be finalized by calling 365 * tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect 366 * and the TPM will reject the command. 367 * 368 * As with most tpm_buf operations, success is assumed because failure 369 * will be caused by an incorrect programming model and indicated by a 370 * kernel message. 371 */ 372 void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf, 373 u8 attributes, u8 *passphrase, 374 int passphrase_len) 375 { 376 u8 nonce[SHA256_DIGEST_SIZE]; 377 u32 len; 378 struct tpm2_auth *auth = chip->auth; 379 380 /* 381 * The Architecture Guide requires us to strip trailing zeros 382 * before computing the HMAC 383 */ 384 while (passphrase && passphrase_len > 0 385 && passphrase[passphrase_len - 1] == '\0') 386 passphrase_len--; 387 388 auth->attrs = attributes; 389 auth->passphrase_len = passphrase_len; 390 if (passphrase_len) 391 memcpy(auth->passphrase, passphrase, passphrase_len); 392 393 if (auth->session != tpm_buf_length(buf)) { 394 /* we're not the first session */ 395 len = get_unaligned_be32(&buf->data[auth->session]); 396 if (4 + len + auth->session != tpm_buf_length(buf)) { 397 WARN(1, "session length mismatch, cannot append"); 398 return; 399 } 400 401 /* add our new session */ 402 len += 9 + 2 * SHA256_DIGEST_SIZE; 403 put_unaligned_be32(len, &buf->data[auth->session]); 404 } else { 405 tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE); 406 } 407 408 /* random number for our nonce */ 409 get_random_bytes(nonce, sizeof(nonce)); 410 memcpy(auth->our_nonce, nonce, sizeof(nonce)); 411 tpm_buf_append_u32(buf, auth->handle); 412 /* our new nonce */ 413 tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE); 414 tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE); 415 tpm_buf_append_u8(buf, auth->attrs); 416 /* and put a placeholder for the hmac */ 417 tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE); 418 tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE); 419 } 420 EXPORT_SYMBOL(tpm_buf_append_hmac_session); 421 422 /** 423 * tpm_buf_fill_hmac_session() - finalize the session HMAC 424 * @chip: the TPM chip structure 425 * @buf: The buffer to be appended 426 * 427 * This command must not be called until all of the parameters have 428 * been appended to @buf otherwise the computed HMAC will be 429 * incorrect. 430 * 431 * This function computes and fills in the session HMAC using the 432 * session key and, if TPM2_SA_DECRYPT was specified, computes the 433 * encryption key and encrypts the first parameter of the command 434 * buffer with it. 435 * 436 * As with most tpm_buf operations, success is assumed because failure 437 * will be caused by an incorrect programming model and indicated by a 438 * kernel message. 439 */ 440 void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf) 441 { 442 u32 cc, handles, val; 443 struct tpm2_auth *auth = chip->auth; 444 int i; 445 struct tpm_header *head = (struct tpm_header *)buf->data; 446 off_t offset_s = TPM_HEADER_SIZE, offset_p; 447 u8 *hmac = NULL; 448 u32 attrs; 449 u8 cphash[SHA256_DIGEST_SIZE]; 450 struct sha256_state sctx; 451 452 /* save the command code in BE format */ 453 auth->ordinal = head->ordinal; 454 455 cc = be32_to_cpu(head->ordinal); 456 457 i = tpm2_find_cc(chip, cc); 458 if (i < 0) { 459 dev_err(&chip->dev, "Command 0x%x not found in TPM\n", cc); 460 return; 461 } 462 attrs = chip->cc_attrs_tbl[i]; 463 464 handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0); 465 466 /* 467 * just check the names, it's easy to make mistakes. This 468 * would happen if someone added a handle via 469 * tpm_buf_append_u32() instead of tpm_buf_append_name() 470 */ 471 for (i = 0; i < handles; i++) { 472 u32 handle = tpm_buf_read_u32(buf, &offset_s); 473 474 if (auth->name_h[i] != handle) { 475 dev_err(&chip->dev, "TPM: handle %d wrong for name\n", 476 i); 477 return; 478 } 479 } 480 /* point offset_s to the start of the sessions */ 481 val = tpm_buf_read_u32(buf, &offset_s); 482 /* point offset_p to the start of the parameters */ 483 offset_p = offset_s + val; 484 for (i = 1; offset_s < offset_p; i++) { 485 u32 handle = tpm_buf_read_u32(buf, &offset_s); 486 u16 len; 487 u8 a; 488 489 /* nonce (already in auth) */ 490 len = tpm_buf_read_u16(buf, &offset_s); 491 offset_s += len; 492 493 a = tpm_buf_read_u8(buf, &offset_s); 494 495 len = tpm_buf_read_u16(buf, &offset_s); 496 if (handle == auth->handle && auth->attrs == a) { 497 hmac = &buf->data[offset_s]; 498 /* 499 * save our session number so we know which 500 * session in the response belongs to us 501 */ 502 auth->session = i; 503 } 504 505 offset_s += len; 506 } 507 if (offset_s != offset_p) { 508 dev_err(&chip->dev, "TPM session length is incorrect\n"); 509 return; 510 } 511 if (!hmac) { 512 dev_err(&chip->dev, "TPM could not find HMAC session\n"); 513 return; 514 } 515 516 /* encrypt before HMAC */ 517 if (auth->attrs & TPM2_SA_DECRYPT) { 518 u16 len; 519 520 /* need key and IV */ 521 tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE 522 + auth->passphrase_len, "CFB", auth->our_nonce, 523 auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE, 524 auth->scratch); 525 526 len = tpm_buf_read_u16(buf, &offset_p); 527 aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES); 528 aescfb_encrypt(&auth->aes_ctx, &buf->data[offset_p], 529 &buf->data[offset_p], len, 530 auth->scratch + AES_KEY_BYTES); 531 /* reset p to beginning of parameters for HMAC */ 532 offset_p -= 2; 533 } 534 535 sha256_init(&sctx); 536 /* ordinal is already BE */ 537 sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal)); 538 /* add the handle names */ 539 for (i = 0; i < handles; i++) { 540 enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]); 541 542 if (mso == TPM2_MSO_PERSISTENT || 543 mso == TPM2_MSO_VOLATILE || 544 mso == TPM2_MSO_NVRAM) { 545 sha256_update(&sctx, auth->name[i], 546 name_size(auth->name[i])); 547 } else { 548 __be32 h = cpu_to_be32(auth->name_h[i]); 549 550 sha256_update(&sctx, (u8 *)&h, 4); 551 } 552 } 553 if (offset_s != tpm_buf_length(buf)) 554 sha256_update(&sctx, &buf->data[offset_s], 555 tpm_buf_length(buf) - offset_s); 556 sha256_final(&sctx, cphash); 557 558 /* now calculate the hmac */ 559 tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key) 560 + auth->passphrase_len); 561 sha256_update(&sctx, cphash, sizeof(cphash)); 562 sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce)); 563 sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce)); 564 sha256_update(&sctx, &auth->attrs, 1); 565 tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key) 566 + auth->passphrase_len, hmac); 567 } 568 EXPORT_SYMBOL(tpm_buf_fill_hmac_session); 569 570 static int tpm2_parse_read_public(char *name, struct tpm_buf *buf) 571 { 572 struct tpm_header *head = (struct tpm_header *)buf->data; 573 off_t offset = TPM_HEADER_SIZE; 574 u32 tot_len = be32_to_cpu(head->length); 575 u32 val; 576 577 /* we're starting after the header so adjust the length */ 578 tot_len -= TPM_HEADER_SIZE; 579 580 /* skip public */ 581 val = tpm_buf_read_u16(buf, &offset); 582 if (val > tot_len) 583 return -EINVAL; 584 offset += val; 585 /* name */ 586 val = tpm_buf_read_u16(buf, &offset); 587 if (val != name_size(&buf->data[offset])) 588 return -EINVAL; 589 memcpy(name, &buf->data[offset], val); 590 /* forget the rest */ 591 return 0; 592 } 593 594 static int tpm2_read_public(struct tpm_chip *chip, u32 handle, char *name) 595 { 596 struct tpm_buf buf; 597 int rc; 598 599 rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC); 600 if (rc) 601 return rc; 602 603 tpm_buf_append_u32(&buf, handle); 604 rc = tpm_transmit_cmd(chip, &buf, 0, "read public"); 605 if (rc == TPM2_RC_SUCCESS) 606 rc = tpm2_parse_read_public(name, &buf); 607 608 tpm_buf_destroy(&buf); 609 610 return rc; 611 } 612 613 /** 614 * tpm_buf_append_name() - add a handle area to the buffer 615 * @chip: the TPM chip structure 616 * @buf: The buffer to be appended 617 * @handle: The handle to be appended 618 * @name: The name of the handle (may be NULL) 619 * 620 * In order to compute session HMACs, we need to know the names of the 621 * objects pointed to by the handles. For most objects, this is simply 622 * the actual 4 byte handle or an empty buf (in these cases @name 623 * should be NULL) but for volatile objects, permanent objects and NV 624 * areas, the name is defined as the hash (according to the name 625 * algorithm which should be set to sha256) of the public area to 626 * which the two byte algorithm id has been appended. For these 627 * objects, the @name pointer should point to this. If a name is 628 * required but @name is NULL, then TPM2_ReadPublic() will be called 629 * on the handle to obtain the name. 630 * 631 * As with most tpm_buf operations, success is assumed because failure 632 * will be caused by an incorrect programming model and indicated by a 633 * kernel message. 634 */ 635 void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf, 636 u32 handle, u8 *name) 637 { 638 enum tpm2_mso_type mso = tpm2_handle_mso(handle); 639 struct tpm2_auth *auth = chip->auth; 640 int slot; 641 642 slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE)/4; 643 if (slot >= AUTH_MAX_NAMES) { 644 dev_err(&chip->dev, "TPM: too many handles\n"); 645 return; 646 } 647 WARN(auth->session != tpm_buf_length(buf), 648 "name added in wrong place\n"); 649 tpm_buf_append_u32(buf, handle); 650 auth->session += 4; 651 652 if (mso == TPM2_MSO_PERSISTENT || 653 mso == TPM2_MSO_VOLATILE || 654 mso == TPM2_MSO_NVRAM) { 655 if (!name) 656 tpm2_read_public(chip, handle, auth->name[slot]); 657 } else { 658 if (name) 659 dev_err(&chip->dev, "TPM: Handle does not require name but one is specified\n"); 660 } 661 662 auth->name_h[slot] = handle; 663 if (name) 664 memcpy(auth->name[slot], name, name_size(name)); 665 } 666 EXPORT_SYMBOL(tpm_buf_append_name); 667 668 /** 669 * tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness 670 * @chip: the TPM chip structure 671 * @buf: the original command buffer (which now contains the response) 672 * @rc: the return code from tpm_transmit_cmd 673 * 674 * If @rc is non zero, @buf may not contain an actual return, so @rc 675 * is passed through as the return and the session cleaned up and 676 * de-allocated if required (this is required if 677 * TPM2_SA_CONTINUE_SESSION was not specified as a session flag). 678 * 679 * If @rc is zero, the response HMAC is computed against the returned 680 * @buf and matched to the TPM one in the session area. If there is a 681 * mismatch, an error is logged and -EINVAL returned. 682 * 683 * The reason for this is that the command issue and HMAC check 684 * sequence should look like: 685 * 686 * rc = tpm_transmit_cmd(...); 687 * rc = tpm_buf_check_hmac_response(&buf, auth, rc); 688 * if (rc) 689 * ... 690 * 691 * Which is easily layered into the current contrl flow. 692 * 693 * Returns: 0 on success or an error. 694 */ 695 int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf, 696 int rc) 697 { 698 struct tpm_header *head = (struct tpm_header *)buf->data; 699 struct tpm2_auth *auth = chip->auth; 700 off_t offset_s, offset_p; 701 u8 rphash[SHA256_DIGEST_SIZE]; 702 u32 attrs; 703 struct sha256_state sctx; 704 u16 tag = be16_to_cpu(head->tag); 705 u32 cc = be32_to_cpu(auth->ordinal); 706 int parm_len, len, i, handles; 707 708 if (auth->session >= TPM_HEADER_SIZE) { 709 WARN(1, "tpm session not filled correctly\n"); 710 goto out; 711 } 712 713 if (rc != 0) 714 /* pass non success rc through and close the session */ 715 goto out; 716 717 rc = -EINVAL; 718 if (tag != TPM2_ST_SESSIONS) { 719 dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n"); 720 goto out; 721 } 722 723 i = tpm2_find_cc(chip, cc); 724 if (i < 0) 725 goto out; 726 attrs = chip->cc_attrs_tbl[i]; 727 handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1; 728 729 /* point to area beyond handles */ 730 offset_s = TPM_HEADER_SIZE + handles * 4; 731 parm_len = tpm_buf_read_u32(buf, &offset_s); 732 offset_p = offset_s; 733 offset_s += parm_len; 734 /* skip over any sessions before ours */ 735 for (i = 0; i < auth->session - 1; i++) { 736 len = tpm_buf_read_u16(buf, &offset_s); 737 offset_s += len + 1; 738 len = tpm_buf_read_u16(buf, &offset_s); 739 offset_s += len; 740 } 741 /* TPM nonce */ 742 len = tpm_buf_read_u16(buf, &offset_s); 743 if (offset_s + len > tpm_buf_length(buf)) 744 goto out; 745 if (len != SHA256_DIGEST_SIZE) 746 goto out; 747 memcpy(auth->tpm_nonce, &buf->data[offset_s], len); 748 offset_s += len; 749 attrs = tpm_buf_read_u8(buf, &offset_s); 750 len = tpm_buf_read_u16(buf, &offset_s); 751 if (offset_s + len != tpm_buf_length(buf)) 752 goto out; 753 if (len != SHA256_DIGEST_SIZE) 754 goto out; 755 /* 756 * offset_s points to the HMAC. now calculate comparison, beginning 757 * with rphash 758 */ 759 sha256_init(&sctx); 760 /* yes, I know this is now zero, but it's what the standard says */ 761 sha256_update(&sctx, (u8 *)&head->return_code, 762 sizeof(head->return_code)); 763 /* ordinal is already BE */ 764 sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal)); 765 sha256_update(&sctx, &buf->data[offset_p], parm_len); 766 sha256_final(&sctx, rphash); 767 768 /* now calculate the hmac */ 769 tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key) 770 + auth->passphrase_len); 771 sha256_update(&sctx, rphash, sizeof(rphash)); 772 sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce)); 773 sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce)); 774 sha256_update(&sctx, &auth->attrs, 1); 775 /* we're done with the rphash, so put our idea of the hmac there */ 776 tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key) 777 + auth->passphrase_len, rphash); 778 if (memcmp(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE) == 0) { 779 rc = 0; 780 } else { 781 dev_err(&chip->dev, "TPM: HMAC check failed\n"); 782 goto out; 783 } 784 785 /* now do response decryption */ 786 if (auth->attrs & TPM2_SA_ENCRYPT) { 787 /* need key and IV */ 788 tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE 789 + auth->passphrase_len, "CFB", auth->tpm_nonce, 790 auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE, 791 auth->scratch); 792 793 len = tpm_buf_read_u16(buf, &offset_p); 794 aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES); 795 aescfb_decrypt(&auth->aes_ctx, &buf->data[offset_p], 796 &buf->data[offset_p], len, 797 auth->scratch + AES_KEY_BYTES); 798 } 799 800 out: 801 if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) { 802 if (rc) 803 /* manually close the session if it wasn't consumed */ 804 tpm2_flush_context(chip, auth->handle); 805 memzero_explicit(auth, sizeof(*auth)); 806 } else { 807 /* reset for next use */ 808 auth->session = TPM_HEADER_SIZE; 809 } 810 811 return rc; 812 } 813 EXPORT_SYMBOL(tpm_buf_check_hmac_response); 814 815 /** 816 * tpm2_end_auth_session() - kill the allocated auth session 817 * @chip: the TPM chip structure 818 * 819 * ends the session started by tpm2_start_auth_session and frees all 820 * the resources. Under normal conditions, 821 * tpm_buf_check_hmac_response() will correctly end the session if 822 * required, so this function is only for use in error legs that will 823 * bypass the normal invocation of tpm_buf_check_hmac_response(). 824 */ 825 void tpm2_end_auth_session(struct tpm_chip *chip) 826 { 827 tpm2_flush_context(chip, chip->auth->handle); 828 memzero_explicit(chip->auth, sizeof(*chip->auth)); 829 } 830 EXPORT_SYMBOL(tpm2_end_auth_session); 831 832 static int tpm2_parse_start_auth_session(struct tpm2_auth *auth, 833 struct tpm_buf *buf) 834 { 835 struct tpm_header *head = (struct tpm_header *)buf->data; 836 u32 tot_len = be32_to_cpu(head->length); 837 off_t offset = TPM_HEADER_SIZE; 838 u32 val; 839 840 /* we're starting after the header so adjust the length */ 841 tot_len -= TPM_HEADER_SIZE; 842 843 /* should have handle plus nonce */ 844 if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce)) 845 return -EINVAL; 846 847 auth->handle = tpm_buf_read_u32(buf, &offset); 848 val = tpm_buf_read_u16(buf, &offset); 849 if (val != sizeof(auth->tpm_nonce)) 850 return -EINVAL; 851 memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce)); 852 /* now compute the session key from the nonces */ 853 tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce, 854 auth->our_nonce, sizeof(auth->session_key), 855 auth->session_key); 856 857 return 0; 858 } 859 860 static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key) 861 { 862 int rc; 863 unsigned int offset = 0; /* dummy offset for null seed context */ 864 u8 name[SHA256_DIGEST_SIZE + 2]; 865 866 rc = tpm2_load_context(chip, chip->null_key_context, &offset, 867 null_key); 868 if (rc != -EINVAL) 869 return rc; 870 871 /* an integrity failure may mean the TPM has been reset */ 872 dev_err(&chip->dev, "NULL key integrity failure!\n"); 873 /* check the null name against what we know */ 874 tpm2_create_primary(chip, TPM2_RH_NULL, NULL, name); 875 if (memcmp(name, chip->null_key_name, sizeof(name)) == 0) 876 /* name unchanged, assume transient integrity failure */ 877 return rc; 878 /* 879 * Fatal TPM failure: the NULL seed has actually changed, so 880 * the TPM must have been illegally reset. All in-kernel TPM 881 * operations will fail because the NULL primary can't be 882 * loaded to salt the sessions, but disable the TPM anyway so 883 * userspace programmes can't be compromised by it. 884 */ 885 dev_err(&chip->dev, "NULL name has changed, disabling TPM due to interference\n"); 886 chip->flags |= TPM_CHIP_FLAG_DISABLE; 887 888 return rc; 889 } 890 891 /** 892 * tpm2_start_auth_session() - create a HMAC authentication session with the TPM 893 * @chip: the TPM chip structure to create the session with 894 * 895 * This function loads the NULL seed from its saved context and starts 896 * an authentication session on the null seed, fills in the 897 * @chip->auth structure to contain all the session details necessary 898 * for performing the HMAC, encrypt and decrypt operations and 899 * returns. The NULL seed is flushed before this function returns. 900 * 901 * Return: zero on success or actual error encountered. 902 */ 903 int tpm2_start_auth_session(struct tpm_chip *chip) 904 { 905 struct tpm_buf buf; 906 struct tpm2_auth *auth = chip->auth; 907 int rc; 908 u32 null_key; 909 910 rc = tpm2_load_null(chip, &null_key); 911 if (rc) 912 goto out; 913 914 auth->session = TPM_HEADER_SIZE; 915 916 rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS); 917 if (rc) 918 goto out; 919 920 /* salt key handle */ 921 tpm_buf_append_u32(&buf, null_key); 922 /* bind key handle */ 923 tpm_buf_append_u32(&buf, TPM2_RH_NULL); 924 /* nonce caller */ 925 get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce)); 926 tpm_buf_append_u16(&buf, sizeof(auth->our_nonce)); 927 tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce)); 928 929 /* append encrypted salt and squirrel away unencrypted in auth */ 930 tpm_buf_append_salt(&buf, chip); 931 /* session type (HMAC, audit or policy) */ 932 tpm_buf_append_u8(&buf, TPM2_SE_HMAC); 933 934 /* symmetric encryption parameters */ 935 /* symmetric algorithm */ 936 tpm_buf_append_u16(&buf, TPM_ALG_AES); 937 /* bits for symmetric algorithm */ 938 tpm_buf_append_u16(&buf, AES_KEY_BITS); 939 /* symmetric algorithm mode (must be CFB) */ 940 tpm_buf_append_u16(&buf, TPM_ALG_CFB); 941 /* hash algorithm for session */ 942 tpm_buf_append_u16(&buf, TPM_ALG_SHA256); 943 944 rc = tpm_transmit_cmd(chip, &buf, 0, "start auth session"); 945 tpm2_flush_context(chip, null_key); 946 947 if (rc == TPM2_RC_SUCCESS) 948 rc = tpm2_parse_start_auth_session(auth, &buf); 949 950 tpm_buf_destroy(&buf); 951 952 if (rc) 953 goto out; 954 955 out: 956 return rc; 957 } 958 EXPORT_SYMBOL(tpm2_start_auth_session); 959 960 /* 961 * A mask containing the object attributes for the kernel held null primary key 962 * used in HMAC encryption. For more information on specific attributes look up 963 * to "8.3 TPMA_OBJECT (Object Attributes)". 964 */ 965 #define TPM2_OA_NULL_KEY ( \ 966 TPM2_OA_NO_DA | \ 967 TPM2_OA_FIXED_TPM | \ 968 TPM2_OA_FIXED_PARENT | \ 969 TPM2_OA_SENSITIVE_DATA_ORIGIN | \ 970 TPM2_OA_USER_WITH_AUTH | \ 971 TPM2_OA_DECRYPT | \ 972 TPM2_OA_RESTRICTED) 973 974 /** 975 * tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY 976 * 977 * @chip: The TPM the primary was created under 978 * @buf: The response buffer from the chip 979 * @handle: pointer to be filled in with the return handle of the primary 980 * @hierarchy: The hierarchy the primary was created for 981 * @name: pointer to be filled in with the primary key name 982 * 983 * Return: 984 * * 0 - OK 985 * * -errno - A system error 986 * * TPM_RC - A TPM error 987 */ 988 static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf, 989 u32 *handle, u32 hierarchy, u8 *name) 990 { 991 struct tpm_header *head = (struct tpm_header *)buf->data; 992 off_t offset_r = TPM_HEADER_SIZE, offset_t; 993 u16 len = TPM_HEADER_SIZE; 994 u32 total_len = be32_to_cpu(head->length); 995 u32 val, param_len, keyhandle; 996 997 keyhandle = tpm_buf_read_u32(buf, &offset_r); 998 if (handle) 999 *handle = keyhandle; 1000 else 1001 tpm2_flush_context(chip, keyhandle); 1002 1003 param_len = tpm_buf_read_u32(buf, &offset_r); 1004 /* 1005 * param_len doesn't include the header, but all the other 1006 * lengths and offsets do, so add it to parm len to make 1007 * the comparisons easier 1008 */ 1009 param_len += TPM_HEADER_SIZE; 1010 1011 if (param_len + 8 > total_len) 1012 return -EINVAL; 1013 len = tpm_buf_read_u16(buf, &offset_r); 1014 offset_t = offset_r; 1015 if (name) { 1016 /* 1017 * now we have the public area, compute the name of 1018 * the object 1019 */ 1020 put_unaligned_be16(TPM_ALG_SHA256, name); 1021 sha256(&buf->data[offset_r], len, name + 2); 1022 } 1023 1024 /* validate the public key */ 1025 val = tpm_buf_read_u16(buf, &offset_t); 1026 1027 /* key type (must be what we asked for) */ 1028 if (val != TPM_ALG_ECC) 1029 return -EINVAL; 1030 val = tpm_buf_read_u16(buf, &offset_t); 1031 1032 /* name algorithm */ 1033 if (val != TPM_ALG_SHA256) 1034 return -EINVAL; 1035 val = tpm_buf_read_u32(buf, &offset_t); 1036 1037 /* object properties */ 1038 if (val != TPM2_OA_NULL_KEY) 1039 return -EINVAL; 1040 1041 /* auth policy (empty) */ 1042 val = tpm_buf_read_u16(buf, &offset_t); 1043 if (val != 0) 1044 return -EINVAL; 1045 1046 /* symmetric key parameters */ 1047 val = tpm_buf_read_u16(buf, &offset_t); 1048 if (val != TPM_ALG_AES) 1049 return -EINVAL; 1050 1051 /* symmetric key length */ 1052 val = tpm_buf_read_u16(buf, &offset_t); 1053 if (val != AES_KEY_BITS) 1054 return -EINVAL; 1055 1056 /* symmetric encryption scheme */ 1057 val = tpm_buf_read_u16(buf, &offset_t); 1058 if (val != TPM_ALG_CFB) 1059 return -EINVAL; 1060 1061 /* signing scheme */ 1062 val = tpm_buf_read_u16(buf, &offset_t); 1063 if (val != TPM_ALG_NULL) 1064 return -EINVAL; 1065 1066 /* ECC Curve */ 1067 val = tpm_buf_read_u16(buf, &offset_t); 1068 if (val != TPM2_ECC_NIST_P256) 1069 return -EINVAL; 1070 1071 /* KDF Scheme */ 1072 val = tpm_buf_read_u16(buf, &offset_t); 1073 if (val != TPM_ALG_NULL) 1074 return -EINVAL; 1075 1076 /* extract public key (x and y points) */ 1077 val = tpm_buf_read_u16(buf, &offset_t); 1078 if (val != EC_PT_SZ) 1079 return -EINVAL; 1080 memcpy(chip->null_ec_key_x, &buf->data[offset_t], val); 1081 offset_t += val; 1082 val = tpm_buf_read_u16(buf, &offset_t); 1083 if (val != EC_PT_SZ) 1084 return -EINVAL; 1085 memcpy(chip->null_ec_key_y, &buf->data[offset_t], val); 1086 offset_t += val; 1087 1088 /* original length of the whole TPM2B */ 1089 offset_r += len; 1090 1091 /* should have exactly consumed the TPM2B public structure */ 1092 if (offset_t != offset_r) 1093 return -EINVAL; 1094 if (offset_r > param_len) 1095 return -EINVAL; 1096 1097 /* creation data (skip) */ 1098 len = tpm_buf_read_u16(buf, &offset_r); 1099 offset_r += len; 1100 if (offset_r > param_len) 1101 return -EINVAL; 1102 1103 /* creation digest (must be sha256) */ 1104 len = tpm_buf_read_u16(buf, &offset_r); 1105 offset_r += len; 1106 if (len != SHA256_DIGEST_SIZE || offset_r > param_len) 1107 return -EINVAL; 1108 1109 /* TPMT_TK_CREATION follows */ 1110 /* tag, must be TPM_ST_CREATION (0x8021) */ 1111 val = tpm_buf_read_u16(buf, &offset_r); 1112 if (val != TPM2_ST_CREATION || offset_r > param_len) 1113 return -EINVAL; 1114 1115 /* hierarchy */ 1116 val = tpm_buf_read_u32(buf, &offset_r); 1117 if (val != hierarchy || offset_r > param_len) 1118 return -EINVAL; 1119 1120 /* the ticket digest HMAC (might not be sha256) */ 1121 len = tpm_buf_read_u16(buf, &offset_r); 1122 offset_r += len; 1123 if (offset_r > param_len) 1124 return -EINVAL; 1125 1126 /* 1127 * finally we have the name, which is a sha256 digest plus a 2 1128 * byte algorithm type 1129 */ 1130 len = tpm_buf_read_u16(buf, &offset_r); 1131 if (offset_r + len != param_len + 8) 1132 return -EINVAL; 1133 if (len != SHA256_DIGEST_SIZE + 2) 1134 return -EINVAL; 1135 1136 if (memcmp(chip->null_key_name, &buf->data[offset_r], 1137 SHA256_DIGEST_SIZE + 2) != 0) { 1138 dev_err(&chip->dev, "NULL Seed name comparison failed\n"); 1139 return -EINVAL; 1140 } 1141 1142 return 0; 1143 } 1144 1145 /** 1146 * tpm2_create_primary() - create a primary key using a fixed P-256 template 1147 * 1148 * @chip: the TPM chip to create under 1149 * @hierarchy: The hierarchy handle to create under 1150 * @handle: The returned volatile handle on success 1151 * @name: The name of the returned key 1152 * 1153 * For platforms that might not have a persistent primary, this can be 1154 * used to create one quickly on the fly (it uses Elliptic Curve not 1155 * RSA, so even slow TPMs can create one fast). The template uses the 1156 * TCG mandated H one for non-endorsement ECC primaries, i.e. P-256 1157 * elliptic curve (the only current one all TPM2s are required to 1158 * have) a sha256 name hash and no policy. 1159 * 1160 * Return: 1161 * * 0 - OK 1162 * * -errno - A system error 1163 * * TPM_RC - A TPM error 1164 */ 1165 static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy, 1166 u32 *handle, u8 *name) 1167 { 1168 int rc; 1169 struct tpm_buf buf; 1170 struct tpm_buf template; 1171 1172 rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY); 1173 if (rc) 1174 return rc; 1175 1176 rc = tpm_buf_init_sized(&template); 1177 if (rc) { 1178 tpm_buf_destroy(&buf); 1179 return rc; 1180 } 1181 1182 /* 1183 * create the template. Note: in order for userspace to 1184 * verify the security of the system, it will have to create 1185 * and certify this NULL primary, meaning all the template 1186 * parameters will have to be identical, so conform exactly to 1187 * the TCG TPM v2.0 Provisioning Guidance for the SRK ECC 1188 * key H template (H has zero size unique points) 1189 */ 1190 1191 /* key type */ 1192 tpm_buf_append_u16(&template, TPM_ALG_ECC); 1193 1194 /* name algorithm */ 1195 tpm_buf_append_u16(&template, TPM_ALG_SHA256); 1196 1197 /* object properties */ 1198 tpm_buf_append_u32(&template, TPM2_OA_NULL_KEY); 1199 1200 /* sauth policy (empty) */ 1201 tpm_buf_append_u16(&template, 0); 1202 1203 /* BEGIN parameters: key specific; for ECC*/ 1204 1205 /* symmetric algorithm */ 1206 tpm_buf_append_u16(&template, TPM_ALG_AES); 1207 1208 /* bits for symmetric algorithm */ 1209 tpm_buf_append_u16(&template, AES_KEY_BITS); 1210 1211 /* algorithm mode (must be CFB) */ 1212 tpm_buf_append_u16(&template, TPM_ALG_CFB); 1213 1214 /* scheme (NULL means any scheme) */ 1215 tpm_buf_append_u16(&template, TPM_ALG_NULL); 1216 1217 /* ECC Curve ID */ 1218 tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256); 1219 1220 /* KDF Scheme */ 1221 tpm_buf_append_u16(&template, TPM_ALG_NULL); 1222 1223 /* unique: key specific; for ECC it is two zero size points */ 1224 tpm_buf_append_u16(&template, 0); 1225 tpm_buf_append_u16(&template, 0); 1226 1227 /* END parameters */ 1228 1229 /* primary handle */ 1230 tpm_buf_append_u32(&buf, hierarchy); 1231 tpm_buf_append_empty_auth(&buf, TPM2_RS_PW); 1232 1233 /* sensitive create size is 4 for two empty buffers */ 1234 tpm_buf_append_u16(&buf, 4); 1235 1236 /* sensitive create auth data (empty) */ 1237 tpm_buf_append_u16(&buf, 0); 1238 1239 /* sensitive create sensitive data (empty) */ 1240 tpm_buf_append_u16(&buf, 0); 1241 1242 /* the public template */ 1243 tpm_buf_append(&buf, template.data, template.length); 1244 tpm_buf_destroy(&template); 1245 1246 /* outside info (empty) */ 1247 tpm_buf_append_u16(&buf, 0); 1248 1249 /* creation PCR (none) */ 1250 tpm_buf_append_u32(&buf, 0); 1251 1252 rc = tpm_transmit_cmd(chip, &buf, 0, 1253 "attempting to create NULL primary"); 1254 1255 if (rc == TPM2_RC_SUCCESS) 1256 rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy, 1257 name); 1258 1259 tpm_buf_destroy(&buf); 1260 1261 return rc; 1262 } 1263 1264 static int tpm2_create_null_primary(struct tpm_chip *chip) 1265 { 1266 u32 null_key; 1267 int rc; 1268 1269 rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key, 1270 chip->null_key_name); 1271 1272 if (rc == TPM2_RC_SUCCESS) { 1273 unsigned int offset = 0; /* dummy offset for null key context */ 1274 1275 rc = tpm2_save_context(chip, null_key, chip->null_key_context, 1276 sizeof(chip->null_key_context), &offset); 1277 tpm2_flush_context(chip, null_key); 1278 } 1279 1280 return rc; 1281 } 1282 1283 /** 1284 * tpm2_sessions_init() - start of day initialization for the sessions code 1285 * @chip: TPM chip 1286 * 1287 * Derive and context save the null primary and allocate memory in the 1288 * struct tpm_chip for the authorizations. 1289 */ 1290 int tpm2_sessions_init(struct tpm_chip *chip) 1291 { 1292 int rc; 1293 1294 rc = tpm2_create_null_primary(chip); 1295 if (rc) 1296 dev_err(&chip->dev, "TPM: security failed (NULL seed derivation): %d\n", rc); 1297 1298 chip->auth = kmalloc(sizeof(*chip->auth), GFP_KERNEL); 1299 if (!chip->auth) 1300 return -ENOMEM; 1301 1302 return rc; 1303 } 1304