1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright (C) 2018 James.Bottomley@HansenPartnership.com 5 * 6 * Cryptographic helper routines for handling TPM2 sessions for 7 * authorization HMAC and request response encryption. 8 * 9 * The idea is to ensure that every TPM command is HMAC protected by a 10 * session, meaning in-flight tampering would be detected and in 11 * addition all sensitive inputs and responses should be encrypted. 12 * 13 * The basic way this works is to use a TPM feature called salted 14 * sessions where a random secret used in session construction is 15 * encrypted to the public part of a known TPM key. The problem is we 16 * have no known keys, so initially a primary Elliptic Curve key is 17 * derived from the NULL seed (we use EC because most TPMs generate 18 * these keys much faster than RSA ones). The curve used is NIST_P256 19 * because that's now mandated to be present in 'TCG TPM v2.0 20 * Provisioning Guidance' 21 * 22 * Threat problems: the initial TPM2_CreatePrimary is not (and cannot 23 * be) session protected, so a clever Man in the Middle could return a 24 * public key they control to this command and from there intercept 25 * and decode all subsequent session based transactions. The kernel 26 * cannot mitigate this threat but, after boot, userspace can get 27 * proof this has not happened by asking the TPM to certify the NULL 28 * key. This certification would chain back to the TPM Endorsement 29 * Certificate and prove the NULL seed primary had not been tampered 30 * with and thus all sessions must have been cryptographically secure. 31 * To assist with this, the initial NULL seed public key name is made 32 * available in a sysfs file. 33 * 34 * Use of these functions: 35 * 36 * The design is all the crypto, hash and hmac gunk is confined in this 37 * file and never needs to be seen even by the kernel internal user. To 38 * the user there's an init function tpm2_sessions_init() that needs to 39 * be called once per TPM which generates the NULL seed primary key. 40 * 41 * These are the usage functions: 42 * 43 * tpm2_start_auth_session() which allocates the opaque auth structure 44 * and gets a session from the TPM. This must be called before 45 * any of the following functions. The session is protected by a 46 * session_key which is derived from a random salt value 47 * encrypted to the NULL seed. 48 * tpm2_end_auth_session() kills the session and frees the resources. 49 * Under normal operation this function is done by 50 * tpm_buf_check_hmac_response(), so this is only to be used on 51 * error legs where the latter is not executed. 52 * tpm_buf_append_name() to add a handle to the buffer. This must be 53 * used in place of the usual tpm_buf_append_u32() for adding 54 * handles because handles have to be processed specially when 55 * calculating the HMAC. In particular, for NV, volatile and 56 * permanent objects you now need to provide the name. 57 * tpm_buf_append_hmac_session() which appends the hmac session to the 58 * buf in the same way tpm_buf_append_auth does(). 59 * tpm_buf_fill_hmac_session() This calculates the correct hash and 60 * places it in the buffer. It must be called after the complete 61 * command buffer is finalized so it can fill in the correct HMAC 62 * based on the parameters. 63 * tpm_buf_check_hmac_response() which checks the session response in 64 * the buffer and calculates what it should be. If there's a 65 * mismatch it will log a warning and return an error. If 66 * tpm_buf_append_hmac_session() did not specify 67 * TPM_SA_CONTINUE_SESSION then the session will be closed (if it 68 * hasn't been consumed) and the auth structure freed. 69 */ 70 71 #include "tpm.h" 72 #include <linux/random.h> 73 #include <linux/scatterlist.h> 74 #include <linux/unaligned.h> 75 #include <crypto/kpp.h> 76 #include <crypto/ecdh.h> 77 #include <crypto/hash.h> 78 #include <crypto/hmac.h> 79 80 /* maximum number of names the TPM must remember for authorization */ 81 #define AUTH_MAX_NAMES 3 82 83 #define AES_KEY_BYTES AES_KEYSIZE_128 84 #define AES_KEY_BITS (AES_KEY_BYTES*8) 85 86 /* 87 * This is the structure that carries all the auth information (like 88 * session handle, nonces, session key and auth) from use to use it is 89 * designed to be opaque to anything outside. 90 */ 91 struct tpm2_auth { 92 u32 handle; 93 /* 94 * This has two meanings: before tpm_buf_fill_hmac_session() 95 * it marks the offset in the buffer of the start of the 96 * sessions (i.e. after all the handles). Once the buffer has 97 * been filled it markes the session number of our auth 98 * session so we can find it again in the response buffer. 99 * 100 * The two cases are distinguished because the first offset 101 * must always be greater than TPM_HEADER_SIZE and the second 102 * must be less than or equal to 5. 103 */ 104 u32 session; 105 /* 106 * the size here is variable and set by the size of our_nonce 107 * which must be between 16 and the name hash length. we set 108 * the maximum sha256 size for the greatest protection 109 */ 110 u8 our_nonce[SHA256_DIGEST_SIZE]; 111 u8 tpm_nonce[SHA256_DIGEST_SIZE]; 112 /* 113 * the salt is only used across the session command/response 114 * after that it can be used as a scratch area 115 */ 116 union { 117 u8 salt[EC_PT_SZ]; 118 /* scratch for key + IV */ 119 u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE]; 120 }; 121 /* 122 * the session key and passphrase are the same size as the 123 * name digest (sha256 again). The session key is constant 124 * for the use of the session and the passphrase can change 125 * with every invocation. 126 * 127 * Note: these fields must be adjacent and in this order 128 * because several HMAC/KDF schemes use the combination of the 129 * session_key and passphrase. 130 */ 131 u8 session_key[SHA256_DIGEST_SIZE]; 132 u8 passphrase[SHA256_DIGEST_SIZE]; 133 int passphrase_len; 134 struct crypto_aes_ctx aes_ctx; 135 /* saved session attributes: */ 136 u8 attrs; 137 __be32 ordinal; 138 139 /* 140 * memory for three authorization handles. We know them by 141 * handle, but they are part of the session by name, which 142 * we must compute and remember 143 */ 144 u32 name_h[AUTH_MAX_NAMES]; 145 u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE]; 146 }; 147 148 #ifdef CONFIG_TCG_TPM2_HMAC 149 /* 150 * Name Size based on TPM algorithm (assumes no hash bigger than 255) 151 */ 152 static u8 name_size(const u8 *name) 153 { 154 static u8 size_map[] = { 155 [TPM_ALG_SHA1] = SHA1_DIGEST_SIZE, 156 [TPM_ALG_SHA256] = SHA256_DIGEST_SIZE, 157 [TPM_ALG_SHA384] = SHA384_DIGEST_SIZE, 158 [TPM_ALG_SHA512] = SHA512_DIGEST_SIZE, 159 }; 160 u16 alg = get_unaligned_be16(name); 161 return size_map[alg] + 2; 162 } 163 164 static int tpm2_parse_read_public(char *name, struct tpm_buf *buf) 165 { 166 struct tpm_header *head = (struct tpm_header *)buf->data; 167 off_t offset = TPM_HEADER_SIZE; 168 u32 tot_len = be32_to_cpu(head->length); 169 u32 val; 170 171 /* we're starting after the header so adjust the length */ 172 tot_len -= TPM_HEADER_SIZE; 173 174 /* skip public */ 175 val = tpm_buf_read_u16(buf, &offset); 176 if (val > tot_len) 177 return -EINVAL; 178 offset += val; 179 /* name */ 180 val = tpm_buf_read_u16(buf, &offset); 181 if (val != name_size(&buf->data[offset])) 182 return -EINVAL; 183 memcpy(name, &buf->data[offset], val); 184 /* forget the rest */ 185 return 0; 186 } 187 188 static int tpm2_read_public(struct tpm_chip *chip, u32 handle, char *name) 189 { 190 struct tpm_buf buf; 191 int rc; 192 193 rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC); 194 if (rc) 195 return rc; 196 197 tpm_buf_append_u32(&buf, handle); 198 rc = tpm_transmit_cmd(chip, &buf, 0, "read public"); 199 if (rc == TPM2_RC_SUCCESS) 200 rc = tpm2_parse_read_public(name, &buf); 201 202 tpm_buf_destroy(&buf); 203 204 return rc; 205 } 206 #endif /* CONFIG_TCG_TPM2_HMAC */ 207 208 /** 209 * tpm_buf_append_name() - add a handle area to the buffer 210 * @chip: the TPM chip structure 211 * @buf: The buffer to be appended 212 * @handle: The handle to be appended 213 * @name: The name of the handle (may be NULL) 214 * 215 * In order to compute session HMACs, we need to know the names of the 216 * objects pointed to by the handles. For most objects, this is simply 217 * the actual 4 byte handle or an empty buf (in these cases @name 218 * should be NULL) but for volatile objects, permanent objects and NV 219 * areas, the name is defined as the hash (according to the name 220 * algorithm which should be set to sha256) of the public area to 221 * which the two byte algorithm id has been appended. For these 222 * objects, the @name pointer should point to this. If a name is 223 * required but @name is NULL, then TPM2_ReadPublic() will be called 224 * on the handle to obtain the name. 225 * 226 * As with most tpm_buf operations, success is assumed because failure 227 * will be caused by an incorrect programming model and indicated by a 228 * kernel message. 229 */ 230 void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf, 231 u32 handle, u8 *name) 232 { 233 #ifdef CONFIG_TCG_TPM2_HMAC 234 enum tpm2_mso_type mso = tpm2_handle_mso(handle); 235 struct tpm2_auth *auth; 236 int slot; 237 #endif 238 239 if (!tpm2_chip_auth(chip)) { 240 tpm_buf_append_u32(buf, handle); 241 /* count the number of handles in the upper bits of flags */ 242 buf->handles++; 243 return; 244 } 245 246 #ifdef CONFIG_TCG_TPM2_HMAC 247 slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE) / 4; 248 if (slot >= AUTH_MAX_NAMES) { 249 dev_err(&chip->dev, "TPM: too many handles\n"); 250 return; 251 } 252 auth = chip->auth; 253 WARN(auth->session != tpm_buf_length(buf), 254 "name added in wrong place\n"); 255 tpm_buf_append_u32(buf, handle); 256 auth->session += 4; 257 258 if (mso == TPM2_MSO_PERSISTENT || 259 mso == TPM2_MSO_VOLATILE || 260 mso == TPM2_MSO_NVRAM) { 261 if (!name) 262 tpm2_read_public(chip, handle, auth->name[slot]); 263 } else { 264 if (name) 265 dev_err(&chip->dev, "TPM: Handle does not require name but one is specified\n"); 266 } 267 268 auth->name_h[slot] = handle; 269 if (name) 270 memcpy(auth->name[slot], name, name_size(name)); 271 #endif 272 } 273 EXPORT_SYMBOL_GPL(tpm_buf_append_name); 274 275 /** 276 * tpm_buf_append_hmac_session() - Append a TPM session element 277 * @chip: the TPM chip structure 278 * @buf: The buffer to be appended 279 * @attributes: The session attributes 280 * @passphrase: The session authority (NULL if none) 281 * @passphrase_len: The length of the session authority (0 if none) 282 * 283 * This fills in a session structure in the TPM command buffer, except 284 * for the HMAC which cannot be computed until the command buffer is 285 * complete. The type of session is controlled by the @attributes, 286 * the main ones of which are TPM2_SA_CONTINUE_SESSION which means the 287 * session won't terminate after tpm_buf_check_hmac_response(), 288 * TPM2_SA_DECRYPT which means this buffers first parameter should be 289 * encrypted with a session key and TPM2_SA_ENCRYPT, which means the 290 * response buffer's first parameter needs to be decrypted (confusing, 291 * but the defines are written from the point of view of the TPM). 292 * 293 * Any session appended by this command must be finalized by calling 294 * tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect 295 * and the TPM will reject the command. 296 * 297 * As with most tpm_buf operations, success is assumed because failure 298 * will be caused by an incorrect programming model and indicated by a 299 * kernel message. 300 */ 301 void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf, 302 u8 attributes, u8 *passphrase, 303 int passphrase_len) 304 { 305 #ifdef CONFIG_TCG_TPM2_HMAC 306 u8 nonce[SHA256_DIGEST_SIZE]; 307 struct tpm2_auth *auth; 308 u32 len; 309 #endif 310 311 if (!tpm2_chip_auth(chip)) { 312 /* offset tells us where the sessions area begins */ 313 int offset = buf->handles * 4 + TPM_HEADER_SIZE; 314 u32 len = 9 + passphrase_len; 315 316 if (tpm_buf_length(buf) != offset) { 317 /* not the first session so update the existing length */ 318 len += get_unaligned_be32(&buf->data[offset]); 319 put_unaligned_be32(len, &buf->data[offset]); 320 } else { 321 tpm_buf_append_u32(buf, len); 322 } 323 /* auth handle */ 324 tpm_buf_append_u32(buf, TPM2_RS_PW); 325 /* nonce */ 326 tpm_buf_append_u16(buf, 0); 327 /* attributes */ 328 tpm_buf_append_u8(buf, 0); 329 /* passphrase */ 330 tpm_buf_append_u16(buf, passphrase_len); 331 tpm_buf_append(buf, passphrase, passphrase_len); 332 return; 333 } 334 335 #ifdef CONFIG_TCG_TPM2_HMAC 336 /* The first write to /dev/tpm{rm0} will flush the session. */ 337 attributes |= TPM2_SA_CONTINUE_SESSION; 338 339 /* 340 * The Architecture Guide requires us to strip trailing zeros 341 * before computing the HMAC 342 */ 343 while (passphrase && passphrase_len > 0 && passphrase[passphrase_len - 1] == '\0') 344 passphrase_len--; 345 346 auth = chip->auth; 347 auth->attrs = attributes; 348 auth->passphrase_len = passphrase_len; 349 if (passphrase_len) 350 memcpy(auth->passphrase, passphrase, passphrase_len); 351 352 if (auth->session != tpm_buf_length(buf)) { 353 /* we're not the first session */ 354 len = get_unaligned_be32(&buf->data[auth->session]); 355 if (4 + len + auth->session != tpm_buf_length(buf)) { 356 WARN(1, "session length mismatch, cannot append"); 357 return; 358 } 359 360 /* add our new session */ 361 len += 9 + 2 * SHA256_DIGEST_SIZE; 362 put_unaligned_be32(len, &buf->data[auth->session]); 363 } else { 364 tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE); 365 } 366 367 /* random number for our nonce */ 368 get_random_bytes(nonce, sizeof(nonce)); 369 memcpy(auth->our_nonce, nonce, sizeof(nonce)); 370 tpm_buf_append_u32(buf, auth->handle); 371 /* our new nonce */ 372 tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE); 373 tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE); 374 tpm_buf_append_u8(buf, auth->attrs); 375 /* and put a placeholder for the hmac */ 376 tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE); 377 tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE); 378 #endif 379 } 380 EXPORT_SYMBOL_GPL(tpm_buf_append_hmac_session); 381 382 #ifdef CONFIG_TCG_TPM2_HMAC 383 384 static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy, 385 u32 *handle, u8 *name); 386 387 /* 388 * It turns out the crypto hmac(sha256) is hard for us to consume 389 * because it assumes a fixed key and the TPM seems to change the key 390 * on every operation, so we weld the hmac init and final functions in 391 * here to give it the same usage characteristics as a regular hash 392 */ 393 static void tpm2_hmac_init(struct sha256_state *sctx, u8 *key, u32 key_len) 394 { 395 u8 pad[SHA256_BLOCK_SIZE]; 396 int i; 397 398 sha256_init(sctx); 399 for (i = 0; i < sizeof(pad); i++) { 400 if (i < key_len) 401 pad[i] = key[i]; 402 else 403 pad[i] = 0; 404 pad[i] ^= HMAC_IPAD_VALUE; 405 } 406 sha256_update(sctx, pad, sizeof(pad)); 407 } 408 409 static void tpm2_hmac_final(struct sha256_state *sctx, u8 *key, u32 key_len, 410 u8 *out) 411 { 412 u8 pad[SHA256_BLOCK_SIZE]; 413 int i; 414 415 for (i = 0; i < sizeof(pad); i++) { 416 if (i < key_len) 417 pad[i] = key[i]; 418 else 419 pad[i] = 0; 420 pad[i] ^= HMAC_OPAD_VALUE; 421 } 422 423 /* collect the final hash; use out as temporary storage */ 424 sha256_final(sctx, out); 425 426 sha256_init(sctx); 427 sha256_update(sctx, pad, sizeof(pad)); 428 sha256_update(sctx, out, SHA256_DIGEST_SIZE); 429 sha256_final(sctx, out); 430 } 431 432 /* 433 * assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but 434 * otherwise standard tpm2_KDFa. Note output is in bytes not bits. 435 */ 436 static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u, 437 u8 *v, u32 bytes, u8 *out) 438 { 439 u32 counter = 1; 440 const __be32 bits = cpu_to_be32(bytes * 8); 441 442 while (bytes > 0) { 443 struct sha256_state sctx; 444 __be32 c = cpu_to_be32(counter); 445 446 tpm2_hmac_init(&sctx, key, key_len); 447 sha256_update(&sctx, (u8 *)&c, sizeof(c)); 448 sha256_update(&sctx, label, strlen(label)+1); 449 sha256_update(&sctx, u, SHA256_DIGEST_SIZE); 450 sha256_update(&sctx, v, SHA256_DIGEST_SIZE); 451 sha256_update(&sctx, (u8 *)&bits, sizeof(bits)); 452 tpm2_hmac_final(&sctx, key, key_len, out); 453 454 bytes -= SHA256_DIGEST_SIZE; 455 counter++; 456 out += SHA256_DIGEST_SIZE; 457 } 458 } 459 460 /* 461 * Somewhat of a bastardization of the real KDFe. We're assuming 462 * we're working with known point sizes for the input parameters and 463 * the hash algorithm is fixed at sha256. Because we know that the 464 * point size is 32 bytes like the hash size, there's no need to loop 465 * in this KDF. 466 */ 467 static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v, 468 u8 *out) 469 { 470 struct sha256_state sctx; 471 /* 472 * this should be an iterative counter, but because we know 473 * we're only taking 32 bytes for the point using a sha256 474 * hash which is also 32 bytes, there's only one loop 475 */ 476 __be32 c = cpu_to_be32(1); 477 478 sha256_init(&sctx); 479 /* counter (BE) */ 480 sha256_update(&sctx, (u8 *)&c, sizeof(c)); 481 /* secret value */ 482 sha256_update(&sctx, z, EC_PT_SZ); 483 /* string including trailing zero */ 484 sha256_update(&sctx, str, strlen(str)+1); 485 sha256_update(&sctx, pt_u, EC_PT_SZ); 486 sha256_update(&sctx, pt_v, EC_PT_SZ); 487 sha256_final(&sctx, out); 488 } 489 490 static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip, 491 struct tpm2_auth *auth) 492 { 493 struct crypto_kpp *kpp; 494 struct kpp_request *req; 495 struct scatterlist s[2], d[1]; 496 struct ecdh p = {0}; 497 u8 encoded_key[EC_PT_SZ], *x, *y; 498 unsigned int buf_len; 499 500 /* secret is two sized points */ 501 tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2); 502 /* 503 * we cheat here and append uninitialized data to form 504 * the points. All we care about is getting the two 505 * co-ordinate pointers, which will be used to overwrite 506 * the uninitialized data 507 */ 508 tpm_buf_append_u16(buf, EC_PT_SZ); 509 x = &buf->data[tpm_buf_length(buf)]; 510 tpm_buf_append(buf, encoded_key, EC_PT_SZ); 511 tpm_buf_append_u16(buf, EC_PT_SZ); 512 y = &buf->data[tpm_buf_length(buf)]; 513 tpm_buf_append(buf, encoded_key, EC_PT_SZ); 514 sg_init_table(s, 2); 515 sg_set_buf(&s[0], x, EC_PT_SZ); 516 sg_set_buf(&s[1], y, EC_PT_SZ); 517 518 kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0); 519 if (IS_ERR(kpp)) { 520 dev_err(&chip->dev, "crypto ecdh allocation failed\n"); 521 return; 522 } 523 524 buf_len = crypto_ecdh_key_len(&p); 525 if (sizeof(encoded_key) < buf_len) { 526 dev_err(&chip->dev, "salt buffer too small needs %d\n", 527 buf_len); 528 goto out; 529 } 530 crypto_ecdh_encode_key(encoded_key, buf_len, &p); 531 /* this generates a random private key */ 532 crypto_kpp_set_secret(kpp, encoded_key, buf_len); 533 534 /* salt is now the public point of this private key */ 535 req = kpp_request_alloc(kpp, GFP_KERNEL); 536 if (!req) 537 goto out; 538 kpp_request_set_input(req, NULL, 0); 539 kpp_request_set_output(req, s, EC_PT_SZ*2); 540 crypto_kpp_generate_public_key(req); 541 /* 542 * we're not done: now we have to compute the shared secret 543 * which is our private key multiplied by the tpm_key public 544 * point, we actually only take the x point and discard the y 545 * point and feed it through KDFe to get the final secret salt 546 */ 547 sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ); 548 sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ); 549 kpp_request_set_input(req, s, EC_PT_SZ*2); 550 sg_init_one(d, auth->salt, EC_PT_SZ); 551 kpp_request_set_output(req, d, EC_PT_SZ); 552 crypto_kpp_compute_shared_secret(req); 553 kpp_request_free(req); 554 555 /* 556 * pass the shared secret through KDFe for salt. Note salt 557 * area is used both for input shared secret and output salt. 558 * This works because KDFe fully consumes the secret before it 559 * writes the salt 560 */ 561 tpm2_KDFe(auth->salt, "SECRET", x, chip->null_ec_key_x, auth->salt); 562 563 out: 564 crypto_free_kpp(kpp); 565 } 566 567 /** 568 * tpm_buf_fill_hmac_session() - finalize the session HMAC 569 * @chip: the TPM chip structure 570 * @buf: The buffer to be appended 571 * 572 * This command must not be called until all of the parameters have 573 * been appended to @buf otherwise the computed HMAC will be 574 * incorrect. 575 * 576 * This function computes and fills in the session HMAC using the 577 * session key and, if TPM2_SA_DECRYPT was specified, computes the 578 * encryption key and encrypts the first parameter of the command 579 * buffer with it. 580 * 581 * As with most tpm_buf operations, success is assumed because failure 582 * will be caused by an incorrect programming model and indicated by a 583 * kernel message. 584 */ 585 void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf) 586 { 587 u32 cc, handles, val; 588 struct tpm2_auth *auth = chip->auth; 589 int i; 590 struct tpm_header *head = (struct tpm_header *)buf->data; 591 off_t offset_s = TPM_HEADER_SIZE, offset_p; 592 u8 *hmac = NULL; 593 u32 attrs; 594 u8 cphash[SHA256_DIGEST_SIZE]; 595 struct sha256_state sctx; 596 597 if (!auth) 598 return; 599 600 /* save the command code in BE format */ 601 auth->ordinal = head->ordinal; 602 603 cc = be32_to_cpu(head->ordinal); 604 605 i = tpm2_find_cc(chip, cc); 606 if (i < 0) { 607 dev_err(&chip->dev, "Command 0x%x not found in TPM\n", cc); 608 return; 609 } 610 attrs = chip->cc_attrs_tbl[i]; 611 612 handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0); 613 614 /* 615 * just check the names, it's easy to make mistakes. This 616 * would happen if someone added a handle via 617 * tpm_buf_append_u32() instead of tpm_buf_append_name() 618 */ 619 for (i = 0; i < handles; i++) { 620 u32 handle = tpm_buf_read_u32(buf, &offset_s); 621 622 if (auth->name_h[i] != handle) { 623 dev_err(&chip->dev, "TPM: handle %d wrong for name\n", 624 i); 625 return; 626 } 627 } 628 /* point offset_s to the start of the sessions */ 629 val = tpm_buf_read_u32(buf, &offset_s); 630 /* point offset_p to the start of the parameters */ 631 offset_p = offset_s + val; 632 for (i = 1; offset_s < offset_p; i++) { 633 u32 handle = tpm_buf_read_u32(buf, &offset_s); 634 u16 len; 635 u8 a; 636 637 /* nonce (already in auth) */ 638 len = tpm_buf_read_u16(buf, &offset_s); 639 offset_s += len; 640 641 a = tpm_buf_read_u8(buf, &offset_s); 642 643 len = tpm_buf_read_u16(buf, &offset_s); 644 if (handle == auth->handle && auth->attrs == a) { 645 hmac = &buf->data[offset_s]; 646 /* 647 * save our session number so we know which 648 * session in the response belongs to us 649 */ 650 auth->session = i; 651 } 652 653 offset_s += len; 654 } 655 if (offset_s != offset_p) { 656 dev_err(&chip->dev, "TPM session length is incorrect\n"); 657 return; 658 } 659 if (!hmac) { 660 dev_err(&chip->dev, "TPM could not find HMAC session\n"); 661 return; 662 } 663 664 /* encrypt before HMAC */ 665 if (auth->attrs & TPM2_SA_DECRYPT) { 666 u16 len; 667 668 /* need key and IV */ 669 tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE 670 + auth->passphrase_len, "CFB", auth->our_nonce, 671 auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE, 672 auth->scratch); 673 674 len = tpm_buf_read_u16(buf, &offset_p); 675 aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES); 676 aescfb_encrypt(&auth->aes_ctx, &buf->data[offset_p], 677 &buf->data[offset_p], len, 678 auth->scratch + AES_KEY_BYTES); 679 /* reset p to beginning of parameters for HMAC */ 680 offset_p -= 2; 681 } 682 683 sha256_init(&sctx); 684 /* ordinal is already BE */ 685 sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal)); 686 /* add the handle names */ 687 for (i = 0; i < handles; i++) { 688 enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]); 689 690 if (mso == TPM2_MSO_PERSISTENT || 691 mso == TPM2_MSO_VOLATILE || 692 mso == TPM2_MSO_NVRAM) { 693 sha256_update(&sctx, auth->name[i], 694 name_size(auth->name[i])); 695 } else { 696 __be32 h = cpu_to_be32(auth->name_h[i]); 697 698 sha256_update(&sctx, (u8 *)&h, 4); 699 } 700 } 701 if (offset_s != tpm_buf_length(buf)) 702 sha256_update(&sctx, &buf->data[offset_s], 703 tpm_buf_length(buf) - offset_s); 704 sha256_final(&sctx, cphash); 705 706 /* now calculate the hmac */ 707 tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key) 708 + auth->passphrase_len); 709 sha256_update(&sctx, cphash, sizeof(cphash)); 710 sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce)); 711 sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce)); 712 sha256_update(&sctx, &auth->attrs, 1); 713 tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key) 714 + auth->passphrase_len, hmac); 715 } 716 EXPORT_SYMBOL(tpm_buf_fill_hmac_session); 717 718 /** 719 * tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness 720 * @chip: the TPM chip structure 721 * @buf: the original command buffer (which now contains the response) 722 * @rc: the return code from tpm_transmit_cmd 723 * 724 * If @rc is non zero, @buf may not contain an actual return, so @rc 725 * is passed through as the return and the session cleaned up and 726 * de-allocated if required (this is required if 727 * TPM2_SA_CONTINUE_SESSION was not specified as a session flag). 728 * 729 * If @rc is zero, the response HMAC is computed against the returned 730 * @buf and matched to the TPM one in the session area. If there is a 731 * mismatch, an error is logged and -EINVAL returned. 732 * 733 * The reason for this is that the command issue and HMAC check 734 * sequence should look like: 735 * 736 * rc = tpm_transmit_cmd(...); 737 * rc = tpm_buf_check_hmac_response(&buf, auth, rc); 738 * if (rc) 739 * ... 740 * 741 * Which is easily layered into the current contrl flow. 742 * 743 * Returns: 0 on success or an error. 744 */ 745 int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf, 746 int rc) 747 { 748 struct tpm_header *head = (struct tpm_header *)buf->data; 749 struct tpm2_auth *auth = chip->auth; 750 off_t offset_s, offset_p; 751 u8 rphash[SHA256_DIGEST_SIZE]; 752 u32 attrs, cc; 753 struct sha256_state sctx; 754 u16 tag = be16_to_cpu(head->tag); 755 int parm_len, len, i, handles; 756 757 if (!auth) 758 return rc; 759 760 cc = be32_to_cpu(auth->ordinal); 761 762 if (auth->session >= TPM_HEADER_SIZE) { 763 WARN(1, "tpm session not filled correctly\n"); 764 goto out; 765 } 766 767 if (rc != 0) 768 /* pass non success rc through and close the session */ 769 goto out; 770 771 rc = -EINVAL; 772 if (tag != TPM2_ST_SESSIONS) { 773 dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n"); 774 goto out; 775 } 776 777 i = tpm2_find_cc(chip, cc); 778 if (i < 0) 779 goto out; 780 attrs = chip->cc_attrs_tbl[i]; 781 handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1; 782 783 /* point to area beyond handles */ 784 offset_s = TPM_HEADER_SIZE + handles * 4; 785 parm_len = tpm_buf_read_u32(buf, &offset_s); 786 offset_p = offset_s; 787 offset_s += parm_len; 788 /* skip over any sessions before ours */ 789 for (i = 0; i < auth->session - 1; i++) { 790 len = tpm_buf_read_u16(buf, &offset_s); 791 offset_s += len + 1; 792 len = tpm_buf_read_u16(buf, &offset_s); 793 offset_s += len; 794 } 795 /* TPM nonce */ 796 len = tpm_buf_read_u16(buf, &offset_s); 797 if (offset_s + len > tpm_buf_length(buf)) 798 goto out; 799 if (len != SHA256_DIGEST_SIZE) 800 goto out; 801 memcpy(auth->tpm_nonce, &buf->data[offset_s], len); 802 offset_s += len; 803 attrs = tpm_buf_read_u8(buf, &offset_s); 804 len = tpm_buf_read_u16(buf, &offset_s); 805 if (offset_s + len != tpm_buf_length(buf)) 806 goto out; 807 if (len != SHA256_DIGEST_SIZE) 808 goto out; 809 /* 810 * offset_s points to the HMAC. now calculate comparison, beginning 811 * with rphash 812 */ 813 sha256_init(&sctx); 814 /* yes, I know this is now zero, but it's what the standard says */ 815 sha256_update(&sctx, (u8 *)&head->return_code, 816 sizeof(head->return_code)); 817 /* ordinal is already BE */ 818 sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal)); 819 sha256_update(&sctx, &buf->data[offset_p], parm_len); 820 sha256_final(&sctx, rphash); 821 822 /* now calculate the hmac */ 823 tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key) 824 + auth->passphrase_len); 825 sha256_update(&sctx, rphash, sizeof(rphash)); 826 sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce)); 827 sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce)); 828 sha256_update(&sctx, &auth->attrs, 1); 829 /* we're done with the rphash, so put our idea of the hmac there */ 830 tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key) 831 + auth->passphrase_len, rphash); 832 if (memcmp(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE) == 0) { 833 rc = 0; 834 } else { 835 dev_err(&chip->dev, "TPM: HMAC check failed\n"); 836 goto out; 837 } 838 839 /* now do response decryption */ 840 if (auth->attrs & TPM2_SA_ENCRYPT) { 841 /* need key and IV */ 842 tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE 843 + auth->passphrase_len, "CFB", auth->tpm_nonce, 844 auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE, 845 auth->scratch); 846 847 len = tpm_buf_read_u16(buf, &offset_p); 848 aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES); 849 aescfb_decrypt(&auth->aes_ctx, &buf->data[offset_p], 850 &buf->data[offset_p], len, 851 auth->scratch + AES_KEY_BYTES); 852 } 853 854 out: 855 if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) { 856 if (rc) 857 /* manually close the session if it wasn't consumed */ 858 tpm2_flush_context(chip, auth->handle); 859 860 kfree_sensitive(auth); 861 chip->auth = NULL; 862 } else { 863 /* reset for next use */ 864 auth->session = TPM_HEADER_SIZE; 865 } 866 867 return rc; 868 } 869 EXPORT_SYMBOL(tpm_buf_check_hmac_response); 870 871 /** 872 * tpm2_end_auth_session() - kill the allocated auth session 873 * @chip: the TPM chip structure 874 * 875 * ends the session started by tpm2_start_auth_session and frees all 876 * the resources. Under normal conditions, 877 * tpm_buf_check_hmac_response() will correctly end the session if 878 * required, so this function is only for use in error legs that will 879 * bypass the normal invocation of tpm_buf_check_hmac_response(). 880 */ 881 void tpm2_end_auth_session(struct tpm_chip *chip) 882 { 883 struct tpm2_auth *auth = chip->auth; 884 885 if (!auth) 886 return; 887 888 tpm2_flush_context(chip, auth->handle); 889 kfree_sensitive(auth); 890 chip->auth = NULL; 891 } 892 EXPORT_SYMBOL(tpm2_end_auth_session); 893 894 static int tpm2_parse_start_auth_session(struct tpm2_auth *auth, 895 struct tpm_buf *buf) 896 { 897 struct tpm_header *head = (struct tpm_header *)buf->data; 898 u32 tot_len = be32_to_cpu(head->length); 899 off_t offset = TPM_HEADER_SIZE; 900 u32 val; 901 902 /* we're starting after the header so adjust the length */ 903 tot_len -= TPM_HEADER_SIZE; 904 905 /* should have handle plus nonce */ 906 if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce)) 907 return -EINVAL; 908 909 auth->handle = tpm_buf_read_u32(buf, &offset); 910 val = tpm_buf_read_u16(buf, &offset); 911 if (val != sizeof(auth->tpm_nonce)) 912 return -EINVAL; 913 memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce)); 914 /* now compute the session key from the nonces */ 915 tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce, 916 auth->our_nonce, sizeof(auth->session_key), 917 auth->session_key); 918 919 return 0; 920 } 921 922 static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key) 923 { 924 unsigned int offset = 0; /* dummy offset for null seed context */ 925 u8 name[SHA256_DIGEST_SIZE + 2]; 926 u32 tmp_null_key; 927 int rc; 928 929 rc = tpm2_load_context(chip, chip->null_key_context, &offset, 930 &tmp_null_key); 931 if (rc != -EINVAL) { 932 if (!rc) 933 *null_key = tmp_null_key; 934 goto err; 935 } 936 937 /* Try to re-create null key, given the integrity failure: */ 938 rc = tpm2_create_primary(chip, TPM2_RH_NULL, &tmp_null_key, name); 939 if (rc) 940 goto err; 941 942 /* Return null key if the name has not been changed: */ 943 if (!memcmp(name, chip->null_key_name, sizeof(name))) { 944 *null_key = tmp_null_key; 945 return 0; 946 } 947 948 /* Deduce from the name change TPM interference: */ 949 dev_err(&chip->dev, "null key integrity check failed\n"); 950 tpm2_flush_context(chip, tmp_null_key); 951 chip->flags |= TPM_CHIP_FLAG_DISABLE; 952 953 err: 954 return rc ? -ENODEV : 0; 955 } 956 957 /** 958 * tpm2_start_auth_session() - create a HMAC authentication session with the TPM 959 * @chip: the TPM chip structure to create the session with 960 * 961 * This function loads the NULL seed from its saved context and starts 962 * an authentication session on the null seed, fills in the 963 * @chip->auth structure to contain all the session details necessary 964 * for performing the HMAC, encrypt and decrypt operations and 965 * returns. The NULL seed is flushed before this function returns. 966 * 967 * Return: zero on success or actual error encountered. 968 */ 969 int tpm2_start_auth_session(struct tpm_chip *chip) 970 { 971 struct tpm2_auth *auth; 972 struct tpm_buf buf; 973 u32 null_key; 974 int rc; 975 976 if (chip->auth) { 977 dev_warn_once(&chip->dev, "auth session is active\n"); 978 return 0; 979 } 980 981 auth = kzalloc(sizeof(*auth), GFP_KERNEL); 982 if (!auth) 983 return -ENOMEM; 984 985 rc = tpm2_load_null(chip, &null_key); 986 if (rc) 987 goto out; 988 989 auth->session = TPM_HEADER_SIZE; 990 991 rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS); 992 if (rc) 993 goto out; 994 995 /* salt key handle */ 996 tpm_buf_append_u32(&buf, null_key); 997 /* bind key handle */ 998 tpm_buf_append_u32(&buf, TPM2_RH_NULL); 999 /* nonce caller */ 1000 get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce)); 1001 tpm_buf_append_u16(&buf, sizeof(auth->our_nonce)); 1002 tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce)); 1003 1004 /* append encrypted salt and squirrel away unencrypted in auth */ 1005 tpm_buf_append_salt(&buf, chip, auth); 1006 /* session type (HMAC, audit or policy) */ 1007 tpm_buf_append_u8(&buf, TPM2_SE_HMAC); 1008 1009 /* symmetric encryption parameters */ 1010 /* symmetric algorithm */ 1011 tpm_buf_append_u16(&buf, TPM_ALG_AES); 1012 /* bits for symmetric algorithm */ 1013 tpm_buf_append_u16(&buf, AES_KEY_BITS); 1014 /* symmetric algorithm mode (must be CFB) */ 1015 tpm_buf_append_u16(&buf, TPM_ALG_CFB); 1016 /* hash algorithm for session */ 1017 tpm_buf_append_u16(&buf, TPM_ALG_SHA256); 1018 1019 rc = tpm_transmit_cmd(chip, &buf, 0, "start auth session"); 1020 tpm2_flush_context(chip, null_key); 1021 1022 if (rc == TPM2_RC_SUCCESS) 1023 rc = tpm2_parse_start_auth_session(auth, &buf); 1024 1025 tpm_buf_destroy(&buf); 1026 1027 if (rc == TPM2_RC_SUCCESS) { 1028 chip->auth = auth; 1029 return 0; 1030 } 1031 1032 out: 1033 kfree_sensitive(auth); 1034 return rc; 1035 } 1036 EXPORT_SYMBOL(tpm2_start_auth_session); 1037 1038 /* 1039 * A mask containing the object attributes for the kernel held null primary key 1040 * used in HMAC encryption. For more information on specific attributes look up 1041 * to "8.3 TPMA_OBJECT (Object Attributes)". 1042 */ 1043 #define TPM2_OA_NULL_KEY ( \ 1044 TPM2_OA_NO_DA | \ 1045 TPM2_OA_FIXED_TPM | \ 1046 TPM2_OA_FIXED_PARENT | \ 1047 TPM2_OA_SENSITIVE_DATA_ORIGIN | \ 1048 TPM2_OA_USER_WITH_AUTH | \ 1049 TPM2_OA_DECRYPT | \ 1050 TPM2_OA_RESTRICTED) 1051 1052 /** 1053 * tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY 1054 * 1055 * @chip: The TPM the primary was created under 1056 * @buf: The response buffer from the chip 1057 * @handle: pointer to be filled in with the return handle of the primary 1058 * @hierarchy: The hierarchy the primary was created for 1059 * @name: pointer to be filled in with the primary key name 1060 * 1061 * Return: 1062 * * 0 - OK 1063 * * -errno - A system error 1064 * * TPM_RC - A TPM error 1065 */ 1066 static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf, 1067 u32 *handle, u32 hierarchy, u8 *name) 1068 { 1069 struct tpm_header *head = (struct tpm_header *)buf->data; 1070 off_t offset_r = TPM_HEADER_SIZE, offset_t; 1071 u16 len = TPM_HEADER_SIZE; 1072 u32 total_len = be32_to_cpu(head->length); 1073 u32 val, param_len, keyhandle; 1074 1075 keyhandle = tpm_buf_read_u32(buf, &offset_r); 1076 if (handle) 1077 *handle = keyhandle; 1078 else 1079 tpm2_flush_context(chip, keyhandle); 1080 1081 param_len = tpm_buf_read_u32(buf, &offset_r); 1082 /* 1083 * param_len doesn't include the header, but all the other 1084 * lengths and offsets do, so add it to parm len to make 1085 * the comparisons easier 1086 */ 1087 param_len += TPM_HEADER_SIZE; 1088 1089 if (param_len + 8 > total_len) 1090 return -EINVAL; 1091 len = tpm_buf_read_u16(buf, &offset_r); 1092 offset_t = offset_r; 1093 if (name) { 1094 /* 1095 * now we have the public area, compute the name of 1096 * the object 1097 */ 1098 put_unaligned_be16(TPM_ALG_SHA256, name); 1099 sha256(&buf->data[offset_r], len, name + 2); 1100 } 1101 1102 /* validate the public key */ 1103 val = tpm_buf_read_u16(buf, &offset_t); 1104 1105 /* key type (must be what we asked for) */ 1106 if (val != TPM_ALG_ECC) 1107 return -EINVAL; 1108 val = tpm_buf_read_u16(buf, &offset_t); 1109 1110 /* name algorithm */ 1111 if (val != TPM_ALG_SHA256) 1112 return -EINVAL; 1113 val = tpm_buf_read_u32(buf, &offset_t); 1114 1115 /* object properties */ 1116 if (val != TPM2_OA_NULL_KEY) 1117 return -EINVAL; 1118 1119 /* auth policy (empty) */ 1120 val = tpm_buf_read_u16(buf, &offset_t); 1121 if (val != 0) 1122 return -EINVAL; 1123 1124 /* symmetric key parameters */ 1125 val = tpm_buf_read_u16(buf, &offset_t); 1126 if (val != TPM_ALG_AES) 1127 return -EINVAL; 1128 1129 /* symmetric key length */ 1130 val = tpm_buf_read_u16(buf, &offset_t); 1131 if (val != AES_KEY_BITS) 1132 return -EINVAL; 1133 1134 /* symmetric encryption scheme */ 1135 val = tpm_buf_read_u16(buf, &offset_t); 1136 if (val != TPM_ALG_CFB) 1137 return -EINVAL; 1138 1139 /* signing scheme */ 1140 val = tpm_buf_read_u16(buf, &offset_t); 1141 if (val != TPM_ALG_NULL) 1142 return -EINVAL; 1143 1144 /* ECC Curve */ 1145 val = tpm_buf_read_u16(buf, &offset_t); 1146 if (val != TPM2_ECC_NIST_P256) 1147 return -EINVAL; 1148 1149 /* KDF Scheme */ 1150 val = tpm_buf_read_u16(buf, &offset_t); 1151 if (val != TPM_ALG_NULL) 1152 return -EINVAL; 1153 1154 /* extract public key (x and y points) */ 1155 val = tpm_buf_read_u16(buf, &offset_t); 1156 if (val != EC_PT_SZ) 1157 return -EINVAL; 1158 memcpy(chip->null_ec_key_x, &buf->data[offset_t], val); 1159 offset_t += val; 1160 val = tpm_buf_read_u16(buf, &offset_t); 1161 if (val != EC_PT_SZ) 1162 return -EINVAL; 1163 memcpy(chip->null_ec_key_y, &buf->data[offset_t], val); 1164 offset_t += val; 1165 1166 /* original length of the whole TPM2B */ 1167 offset_r += len; 1168 1169 /* should have exactly consumed the TPM2B public structure */ 1170 if (offset_t != offset_r) 1171 return -EINVAL; 1172 if (offset_r > param_len) 1173 return -EINVAL; 1174 1175 /* creation data (skip) */ 1176 len = tpm_buf_read_u16(buf, &offset_r); 1177 offset_r += len; 1178 if (offset_r > param_len) 1179 return -EINVAL; 1180 1181 /* creation digest (must be sha256) */ 1182 len = tpm_buf_read_u16(buf, &offset_r); 1183 offset_r += len; 1184 if (len != SHA256_DIGEST_SIZE || offset_r > param_len) 1185 return -EINVAL; 1186 1187 /* TPMT_TK_CREATION follows */ 1188 /* tag, must be TPM_ST_CREATION (0x8021) */ 1189 val = tpm_buf_read_u16(buf, &offset_r); 1190 if (val != TPM2_ST_CREATION || offset_r > param_len) 1191 return -EINVAL; 1192 1193 /* hierarchy */ 1194 val = tpm_buf_read_u32(buf, &offset_r); 1195 if (val != hierarchy || offset_r > param_len) 1196 return -EINVAL; 1197 1198 /* the ticket digest HMAC (might not be sha256) */ 1199 len = tpm_buf_read_u16(buf, &offset_r); 1200 offset_r += len; 1201 if (offset_r > param_len) 1202 return -EINVAL; 1203 1204 /* 1205 * finally we have the name, which is a sha256 digest plus a 2 1206 * byte algorithm type 1207 */ 1208 len = tpm_buf_read_u16(buf, &offset_r); 1209 if (offset_r + len != param_len + 8) 1210 return -EINVAL; 1211 if (len != SHA256_DIGEST_SIZE + 2) 1212 return -EINVAL; 1213 1214 if (memcmp(chip->null_key_name, &buf->data[offset_r], 1215 SHA256_DIGEST_SIZE + 2) != 0) { 1216 dev_err(&chip->dev, "NULL Seed name comparison failed\n"); 1217 return -EINVAL; 1218 } 1219 1220 return 0; 1221 } 1222 1223 /** 1224 * tpm2_create_primary() - create a primary key using a fixed P-256 template 1225 * 1226 * @chip: the TPM chip to create under 1227 * @hierarchy: The hierarchy handle to create under 1228 * @handle: The returned volatile handle on success 1229 * @name: The name of the returned key 1230 * 1231 * For platforms that might not have a persistent primary, this can be 1232 * used to create one quickly on the fly (it uses Elliptic Curve not 1233 * RSA, so even slow TPMs can create one fast). The template uses the 1234 * TCG mandated H one for non-endorsement ECC primaries, i.e. P-256 1235 * elliptic curve (the only current one all TPM2s are required to 1236 * have) a sha256 name hash and no policy. 1237 * 1238 * Return: 1239 * * 0 - OK 1240 * * -errno - A system error 1241 * * TPM_RC - A TPM error 1242 */ 1243 static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy, 1244 u32 *handle, u8 *name) 1245 { 1246 int rc; 1247 struct tpm_buf buf; 1248 struct tpm_buf template; 1249 1250 rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY); 1251 if (rc) 1252 return rc; 1253 1254 rc = tpm_buf_init_sized(&template); 1255 if (rc) { 1256 tpm_buf_destroy(&buf); 1257 return rc; 1258 } 1259 1260 /* 1261 * create the template. Note: in order for userspace to 1262 * verify the security of the system, it will have to create 1263 * and certify this NULL primary, meaning all the template 1264 * parameters will have to be identical, so conform exactly to 1265 * the TCG TPM v2.0 Provisioning Guidance for the SRK ECC 1266 * key H template (H has zero size unique points) 1267 */ 1268 1269 /* key type */ 1270 tpm_buf_append_u16(&template, TPM_ALG_ECC); 1271 1272 /* name algorithm */ 1273 tpm_buf_append_u16(&template, TPM_ALG_SHA256); 1274 1275 /* object properties */ 1276 tpm_buf_append_u32(&template, TPM2_OA_NULL_KEY); 1277 1278 /* sauth policy (empty) */ 1279 tpm_buf_append_u16(&template, 0); 1280 1281 /* BEGIN parameters: key specific; for ECC*/ 1282 1283 /* symmetric algorithm */ 1284 tpm_buf_append_u16(&template, TPM_ALG_AES); 1285 1286 /* bits for symmetric algorithm */ 1287 tpm_buf_append_u16(&template, AES_KEY_BITS); 1288 1289 /* algorithm mode (must be CFB) */ 1290 tpm_buf_append_u16(&template, TPM_ALG_CFB); 1291 1292 /* scheme (NULL means any scheme) */ 1293 tpm_buf_append_u16(&template, TPM_ALG_NULL); 1294 1295 /* ECC Curve ID */ 1296 tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256); 1297 1298 /* KDF Scheme */ 1299 tpm_buf_append_u16(&template, TPM_ALG_NULL); 1300 1301 /* unique: key specific; for ECC it is two zero size points */ 1302 tpm_buf_append_u16(&template, 0); 1303 tpm_buf_append_u16(&template, 0); 1304 1305 /* END parameters */ 1306 1307 /* primary handle */ 1308 tpm_buf_append_u32(&buf, hierarchy); 1309 tpm_buf_append_empty_auth(&buf, TPM2_RS_PW); 1310 1311 /* sensitive create size is 4 for two empty buffers */ 1312 tpm_buf_append_u16(&buf, 4); 1313 1314 /* sensitive create auth data (empty) */ 1315 tpm_buf_append_u16(&buf, 0); 1316 1317 /* sensitive create sensitive data (empty) */ 1318 tpm_buf_append_u16(&buf, 0); 1319 1320 /* the public template */ 1321 tpm_buf_append(&buf, template.data, template.length); 1322 tpm_buf_destroy(&template); 1323 1324 /* outside info (empty) */ 1325 tpm_buf_append_u16(&buf, 0); 1326 1327 /* creation PCR (none) */ 1328 tpm_buf_append_u32(&buf, 0); 1329 1330 rc = tpm_transmit_cmd(chip, &buf, 0, 1331 "attempting to create NULL primary"); 1332 1333 if (rc == TPM2_RC_SUCCESS) 1334 rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy, 1335 name); 1336 1337 tpm_buf_destroy(&buf); 1338 1339 return rc; 1340 } 1341 1342 static int tpm2_create_null_primary(struct tpm_chip *chip) 1343 { 1344 u32 null_key; 1345 int rc; 1346 1347 rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key, 1348 chip->null_key_name); 1349 1350 if (rc == TPM2_RC_SUCCESS) { 1351 unsigned int offset = 0; /* dummy offset for null key context */ 1352 1353 rc = tpm2_save_context(chip, null_key, chip->null_key_context, 1354 sizeof(chip->null_key_context), &offset); 1355 tpm2_flush_context(chip, null_key); 1356 } 1357 1358 return rc; 1359 } 1360 1361 /** 1362 * tpm2_sessions_init() - start of day initialization for the sessions code 1363 * @chip: TPM chip 1364 * 1365 * Derive and context save the null primary and allocate memory in the 1366 * struct tpm_chip for the authorizations. 1367 * 1368 * Return: 1369 * * 0 - OK 1370 * * -errno - A system error 1371 * * TPM_RC - A TPM error 1372 */ 1373 int tpm2_sessions_init(struct tpm_chip *chip) 1374 { 1375 int rc; 1376 1377 rc = tpm2_create_null_primary(chip); 1378 if (rc) { 1379 dev_err(&chip->dev, "null key creation failed with %d\n", rc); 1380 return rc; 1381 } 1382 1383 return rc; 1384 } 1385 EXPORT_SYMBOL(tpm2_sessions_init); 1386 #endif /* CONFIG_TCG_TPM2_HMAC */ 1387