xref: /linux/drivers/char/random.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  * 	void add_input_randomness(unsigned int type, unsigned int code,
129  *                                unsigned int value);
130  * 	void add_interrupt_randomness(int irq);
131  *
132  * add_input_randomness() uses the input layer interrupt timing, as well as
133  * the event type information from the hardware.
134  *
135  * add_interrupt_randomness() uses the inter-interrupt timing as random
136  * inputs to the entropy pool.  Note that not all interrupts are good
137  * sources of randomness!  For example, the timer interrupts is not a
138  * good choice, because the periodicity of the interrupts is too
139  * regular, and hence predictable to an attacker.  Disk interrupts are
140  * a better measure, since the timing of the disk interrupts are more
141  * unpredictable.
142  *
143  * All of these routines try to estimate how many bits of randomness a
144  * particular randomness source.  They do this by keeping track of the
145  * first and second order deltas of the event timings.
146  *
147  * Ensuring unpredictability at system startup
148  * ============================================
149  *
150  * When any operating system starts up, it will go through a sequence
151  * of actions that are fairly predictable by an adversary, especially
152  * if the start-up does not involve interaction with a human operator.
153  * This reduces the actual number of bits of unpredictability in the
154  * entropy pool below the value in entropy_count.  In order to
155  * counteract this effect, it helps to carry information in the
156  * entropy pool across shut-downs and start-ups.  To do this, put the
157  * following lines an appropriate script which is run during the boot
158  * sequence:
159  *
160  *	echo "Initializing random number generator..."
161  *	random_seed=/var/run/random-seed
162  *	# Carry a random seed from start-up to start-up
163  *	# Load and then save the whole entropy pool
164  *	if [ -f $random_seed ]; then
165  *		cat $random_seed >/dev/urandom
166  *	else
167  *		touch $random_seed
168  *	fi
169  *	chmod 600 $random_seed
170  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
171  *
172  * and the following lines in an appropriate script which is run as
173  * the system is shutdown:
174  *
175  *	# Carry a random seed from shut-down to start-up
176  *	# Save the whole entropy pool
177  *	echo "Saving random seed..."
178  *	random_seed=/var/run/random-seed
179  *	touch $random_seed
180  *	chmod 600 $random_seed
181  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
182  *
183  * For example, on most modern systems using the System V init
184  * scripts, such code fragments would be found in
185  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
186  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187  *
188  * Effectively, these commands cause the contents of the entropy pool
189  * to be saved at shut-down time and reloaded into the entropy pool at
190  * start-up.  (The 'dd' in the addition to the bootup script is to
191  * make sure that /etc/random-seed is different for every start-up,
192  * even if the system crashes without executing rc.0.)  Even with
193  * complete knowledge of the start-up activities, predicting the state
194  * of the entropy pool requires knowledge of the previous history of
195  * the system.
196  *
197  * Configuring the /dev/random driver under Linux
198  * ==============================================
199  *
200  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201  * the /dev/mem major number (#1).  So if your system does not have
202  * /dev/random and /dev/urandom created already, they can be created
203  * by using the commands:
204  *
205  * 	mknod /dev/random c 1 8
206  * 	mknod /dev/urandom c 1 9
207  *
208  * Acknowledgements:
209  * =================
210  *
211  * Ideas for constructing this random number generator were derived
212  * from Pretty Good Privacy's random number generator, and from private
213  * discussions with Phil Karn.  Colin Plumb provided a faster random
214  * number generator, which speed up the mixing function of the entropy
215  * pool, taken from PGPfone.  Dale Worley has also contributed many
216  * useful ideas and suggestions to improve this driver.
217  *
218  * Any flaws in the design are solely my responsibility, and should
219  * not be attributed to the Phil, Colin, or any of authors of PGP.
220  *
221  * Further background information on this topic may be obtained from
222  * RFC 1750, "Randomness Recommendations for Security", by Donald
223  * Eastlake, Steve Crocker, and Jeff Schiller.
224  */
225 
226 #include <linux/utsname.h>
227 #include <linux/module.h>
228 #include <linux/kernel.h>
229 #include <linux/major.h>
230 #include <linux/string.h>
231 #include <linux/fcntl.h>
232 #include <linux/slab.h>
233 #include <linux/random.h>
234 #include <linux/poll.h>
235 #include <linux/init.h>
236 #include <linux/fs.h>
237 #include <linux/genhd.h>
238 #include <linux/interrupt.h>
239 #include <linux/spinlock.h>
240 #include <linux/percpu.h>
241 #include <linux/cryptohash.h>
242 
243 #include <asm/processor.h>
244 #include <asm/uaccess.h>
245 #include <asm/irq.h>
246 #include <asm/io.h>
247 
248 /*
249  * Configuration information
250  */
251 #define INPUT_POOL_WORDS 128
252 #define OUTPUT_POOL_WORDS 32
253 #define SEC_XFER_SIZE 512
254 
255 /*
256  * The minimum number of bits of entropy before we wake up a read on
257  * /dev/random.  Should be enough to do a significant reseed.
258  */
259 static int random_read_wakeup_thresh = 64;
260 
261 /*
262  * If the entropy count falls under this number of bits, then we
263  * should wake up processes which are selecting or polling on write
264  * access to /dev/random.
265  */
266 static int random_write_wakeup_thresh = 128;
267 
268 /*
269  * When the input pool goes over trickle_thresh, start dropping most
270  * samples to avoid wasting CPU time and reduce lock contention.
271  */
272 
273 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
274 
275 static DEFINE_PER_CPU(int, trickle_count);
276 
277 /*
278  * A pool of size .poolwords is stirred with a primitive polynomial
279  * of degree .poolwords over GF(2).  The taps for various sizes are
280  * defined below.  They are chosen to be evenly spaced (minimum RMS
281  * distance from evenly spaced; the numbers in the comments are a
282  * scaled squared error sum) except for the last tap, which is 1 to
283  * get the twisting happening as fast as possible.
284  */
285 static struct poolinfo {
286 	int poolwords;
287 	int tap1, tap2, tap3, tap4, tap5;
288 } poolinfo_table[] = {
289 	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
290 	{ 128,	103,	76,	51,	25,	1 },
291 	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
292 	{ 32,	26,	20,	14,	7,	1 },
293 #if 0
294 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
295 	{ 2048,	1638,	1231,	819,	411,	1 },
296 
297 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
298 	{ 1024,	817,	615,	412,	204,	1 },
299 
300 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
301 	{ 1024,	819,	616,	410,	207,	2 },
302 
303 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
304 	{ 512,	411,	308,	208,	104,	1 },
305 
306 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
307 	{ 512,	409,	307,	206,	102,	2 },
308 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
309 	{ 512,	409,	309,	205,	103,	2 },
310 
311 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
312 	{ 256,	205,	155,	101,	52,	1 },
313 
314 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
315 	{ 128,	103,	78,	51,	27,	2 },
316 
317 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
318 	{ 64,	52,	39,	26,	14,	1 },
319 #endif
320 };
321 
322 #define POOLBITS	poolwords*32
323 #define POOLBYTES	poolwords*4
324 
325 /*
326  * For the purposes of better mixing, we use the CRC-32 polynomial as
327  * well to make a twisted Generalized Feedback Shift Reigster
328  *
329  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
330  * Transactions on Modeling and Computer Simulation 2(3):179-194.
331  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
332  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
333  *
334  * Thanks to Colin Plumb for suggesting this.
335  *
336  * We have not analyzed the resultant polynomial to prove it primitive;
337  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
338  * of a random large-degree polynomial over GF(2) are more than large enough
339  * that periodicity is not a concern.
340  *
341  * The input hash is much less sensitive than the output hash.  All
342  * that we want of it is that it be a good non-cryptographic hash;
343  * i.e. it not produce collisions when fed "random" data of the sort
344  * we expect to see.  As long as the pool state differs for different
345  * inputs, we have preserved the input entropy and done a good job.
346  * The fact that an intelligent attacker can construct inputs that
347  * will produce controlled alterations to the pool's state is not
348  * important because we don't consider such inputs to contribute any
349  * randomness.  The only property we need with respect to them is that
350  * the attacker can't increase his/her knowledge of the pool's state.
351  * Since all additions are reversible (knowing the final state and the
352  * input, you can reconstruct the initial state), if an attacker has
353  * any uncertainty about the initial state, he/she can only shuffle
354  * that uncertainty about, but never cause any collisions (which would
355  * decrease the uncertainty).
356  *
357  * The chosen system lets the state of the pool be (essentially) the input
358  * modulo the generator polymnomial.  Now, for random primitive polynomials,
359  * this is a universal class of hash functions, meaning that the chance
360  * of a collision is limited by the attacker's knowledge of the generator
361  * polynomail, so if it is chosen at random, an attacker can never force
362  * a collision.  Here, we use a fixed polynomial, but we *can* assume that
363  * ###--> it is unknown to the processes generating the input entropy. <-###
364  * Because of this important property, this is a good, collision-resistant
365  * hash; hash collisions will occur no more often than chance.
366  */
367 
368 /*
369  * Static global variables
370  */
371 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
372 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
373 static struct fasync_struct *fasync;
374 
375 #if 0
376 static int debug;
377 module_param(debug, bool, 0644);
378 #define DEBUG_ENT(fmt, arg...) do { \
379 	if (debug) \
380 		printk(KERN_DEBUG "random %04d %04d %04d: " \
381 		fmt,\
382 		input_pool.entropy_count,\
383 		blocking_pool.entropy_count,\
384 		nonblocking_pool.entropy_count,\
385 		## arg); } while (0)
386 #else
387 #define DEBUG_ENT(fmt, arg...) do {} while (0)
388 #endif
389 
390 /**********************************************************************
391  *
392  * OS independent entropy store.   Here are the functions which handle
393  * storing entropy in an entropy pool.
394  *
395  **********************************************************************/
396 
397 struct entropy_store;
398 struct entropy_store {
399 	/* read-only data: */
400 	struct poolinfo *poolinfo;
401 	__u32 *pool;
402 	const char *name;
403 	int limit;
404 	struct entropy_store *pull;
405 
406 	/* read-write data: */
407 	spinlock_t lock;
408 	unsigned add_ptr;
409 	int entropy_count;
410 	int input_rotate;
411 };
412 
413 static __u32 input_pool_data[INPUT_POOL_WORDS];
414 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
415 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
416 
417 static struct entropy_store input_pool = {
418 	.poolinfo = &poolinfo_table[0],
419 	.name = "input",
420 	.limit = 1,
421 	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
422 	.pool = input_pool_data
423 };
424 
425 static struct entropy_store blocking_pool = {
426 	.poolinfo = &poolinfo_table[1],
427 	.name = "blocking",
428 	.limit = 1,
429 	.pull = &input_pool,
430 	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
431 	.pool = blocking_pool_data
432 };
433 
434 static struct entropy_store nonblocking_pool = {
435 	.poolinfo = &poolinfo_table[1],
436 	.name = "nonblocking",
437 	.pull = &input_pool,
438 	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
439 	.pool = nonblocking_pool_data
440 };
441 
442 /*
443  * This function adds bytes into the entropy "pool".  It does not
444  * update the entropy estimate.  The caller should call
445  * credit_entropy_bits if this is appropriate.
446  *
447  * The pool is stirred with a primitive polynomial of the appropriate
448  * degree, and then twisted.  We twist by three bits at a time because
449  * it's cheap to do so and helps slightly in the expected case where
450  * the entropy is concentrated in the low-order bits.
451  */
452 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
453 				   int nbytes, __u8 out[64])
454 {
455 	static __u32 const twist_table[8] = {
456 		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
457 		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
458 	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
459 	int input_rotate;
460 	int wordmask = r->poolinfo->poolwords - 1;
461 	const char *bytes = in;
462 	__u32 w;
463 	unsigned long flags;
464 
465 	/* Taps are constant, so we can load them without holding r->lock.  */
466 	tap1 = r->poolinfo->tap1;
467 	tap2 = r->poolinfo->tap2;
468 	tap3 = r->poolinfo->tap3;
469 	tap4 = r->poolinfo->tap4;
470 	tap5 = r->poolinfo->tap5;
471 
472 	spin_lock_irqsave(&r->lock, flags);
473 	input_rotate = r->input_rotate;
474 	i = r->add_ptr;
475 
476 	/* mix one byte at a time to simplify size handling and churn faster */
477 	while (nbytes--) {
478 		w = rol32(*bytes++, input_rotate & 31);
479 		i = (i - 1) & wordmask;
480 
481 		/* XOR in the various taps */
482 		w ^= r->pool[i];
483 		w ^= r->pool[(i + tap1) & wordmask];
484 		w ^= r->pool[(i + tap2) & wordmask];
485 		w ^= r->pool[(i + tap3) & wordmask];
486 		w ^= r->pool[(i + tap4) & wordmask];
487 		w ^= r->pool[(i + tap5) & wordmask];
488 
489 		/* Mix the result back in with a twist */
490 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
491 
492 		/*
493 		 * Normally, we add 7 bits of rotation to the pool.
494 		 * At the beginning of the pool, add an extra 7 bits
495 		 * rotation, so that successive passes spread the
496 		 * input bits across the pool evenly.
497 		 */
498 		input_rotate += i ? 7 : 14;
499 	}
500 
501 	r->input_rotate = input_rotate;
502 	r->add_ptr = i;
503 
504 	if (out)
505 		for (j = 0; j < 16; j++)
506 			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
507 
508 	spin_unlock_irqrestore(&r->lock, flags);
509 }
510 
511 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
512 {
513        mix_pool_bytes_extract(r, in, bytes, NULL);
514 }
515 
516 /*
517  * Credit (or debit) the entropy store with n bits of entropy
518  */
519 static void credit_entropy_bits(struct entropy_store *r, int nbits)
520 {
521 	unsigned long flags;
522 
523 	if (!nbits)
524 		return;
525 
526 	spin_lock_irqsave(&r->lock, flags);
527 
528 	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
529 	r->entropy_count += nbits;
530 	if (r->entropy_count < 0) {
531 		DEBUG_ENT("negative entropy/overflow\n");
532 		r->entropy_count = 0;
533 	} else if (r->entropy_count > r->poolinfo->POOLBITS)
534 		r->entropy_count = r->poolinfo->POOLBITS;
535 
536 	/* should we wake readers? */
537 	if (r == &input_pool &&
538 	    r->entropy_count >= random_read_wakeup_thresh) {
539 		wake_up_interruptible(&random_read_wait);
540 		kill_fasync(&fasync, SIGIO, POLL_IN);
541 	}
542 
543 	spin_unlock_irqrestore(&r->lock, flags);
544 }
545 
546 /*********************************************************************
547  *
548  * Entropy input management
549  *
550  *********************************************************************/
551 
552 /* There is one of these per entropy source */
553 struct timer_rand_state {
554 	cycles_t last_time;
555 	long last_delta, last_delta2;
556 	unsigned dont_count_entropy:1;
557 };
558 
559 static struct timer_rand_state input_timer_state;
560 static struct timer_rand_state *irq_timer_state[NR_IRQS];
561 
562 /*
563  * This function adds entropy to the entropy "pool" by using timing
564  * delays.  It uses the timer_rand_state structure to make an estimate
565  * of how many bits of entropy this call has added to the pool.
566  *
567  * The number "num" is also added to the pool - it should somehow describe
568  * the type of event which just happened.  This is currently 0-255 for
569  * keyboard scan codes, and 256 upwards for interrupts.
570  *
571  */
572 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
573 {
574 	struct {
575 		cycles_t cycles;
576 		long jiffies;
577 		unsigned num;
578 	} sample;
579 	long delta, delta2, delta3;
580 
581 	preempt_disable();
582 	/* if over the trickle threshold, use only 1 in 4096 samples */
583 	if (input_pool.entropy_count > trickle_thresh &&
584 	    (__get_cpu_var(trickle_count)++ & 0xfff))
585 		goto out;
586 
587 	sample.jiffies = jiffies;
588 	sample.cycles = get_cycles();
589 	sample.num = num;
590 	mix_pool_bytes(&input_pool, &sample, sizeof(sample));
591 
592 	/*
593 	 * Calculate number of bits of randomness we probably added.
594 	 * We take into account the first, second and third-order deltas
595 	 * in order to make our estimate.
596 	 */
597 
598 	if (!state->dont_count_entropy) {
599 		delta = sample.jiffies - state->last_time;
600 		state->last_time = sample.jiffies;
601 
602 		delta2 = delta - state->last_delta;
603 		state->last_delta = delta;
604 
605 		delta3 = delta2 - state->last_delta2;
606 		state->last_delta2 = delta2;
607 
608 		if (delta < 0)
609 			delta = -delta;
610 		if (delta2 < 0)
611 			delta2 = -delta2;
612 		if (delta3 < 0)
613 			delta3 = -delta3;
614 		if (delta > delta2)
615 			delta = delta2;
616 		if (delta > delta3)
617 			delta = delta3;
618 
619 		/*
620 		 * delta is now minimum absolute delta.
621 		 * Round down by 1 bit on general principles,
622 		 * and limit entropy entimate to 12 bits.
623 		 */
624 		credit_entropy_bits(&input_pool,
625 				    min_t(int, fls(delta>>1), 11));
626 	}
627 out:
628 	preempt_enable();
629 }
630 
631 void add_input_randomness(unsigned int type, unsigned int code,
632 				 unsigned int value)
633 {
634 	static unsigned char last_value;
635 
636 	/* ignore autorepeat and the like */
637 	if (value == last_value)
638 		return;
639 
640 	DEBUG_ENT("input event\n");
641 	last_value = value;
642 	add_timer_randomness(&input_timer_state,
643 			     (type << 4) ^ code ^ (code >> 4) ^ value);
644 }
645 EXPORT_SYMBOL_GPL(add_input_randomness);
646 
647 void add_interrupt_randomness(int irq)
648 {
649 	if (irq >= NR_IRQS || irq_timer_state[irq] == NULL)
650 		return;
651 
652 	DEBUG_ENT("irq event %d\n", irq);
653 	add_timer_randomness(irq_timer_state[irq], 0x100 + irq);
654 }
655 
656 #ifdef CONFIG_BLOCK
657 void add_disk_randomness(struct gendisk *disk)
658 {
659 	if (!disk || !disk->random)
660 		return;
661 	/* first major is 1, so we get >= 0x200 here */
662 	DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor);
663 
664 	add_timer_randomness(disk->random,
665 			     0x100 + MKDEV(disk->major, disk->first_minor));
666 }
667 #endif
668 
669 #define EXTRACT_SIZE 10
670 
671 /*********************************************************************
672  *
673  * Entropy extraction routines
674  *
675  *********************************************************************/
676 
677 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
678 			       size_t nbytes, int min, int rsvd);
679 
680 /*
681  * This utility inline function is responsible for transfering entropy
682  * from the primary pool to the secondary extraction pool. We make
683  * sure we pull enough for a 'catastrophic reseed'.
684  */
685 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
686 {
687 	__u32 tmp[OUTPUT_POOL_WORDS];
688 
689 	if (r->pull && r->entropy_count < nbytes * 8 &&
690 	    r->entropy_count < r->poolinfo->POOLBITS) {
691 		/* If we're limited, always leave two wakeup worth's BITS */
692 		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
693 		int bytes = nbytes;
694 
695 		/* pull at least as many as BYTES as wakeup BITS */
696 		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
697 		/* but never more than the buffer size */
698 		bytes = min_t(int, bytes, sizeof(tmp));
699 
700 		DEBUG_ENT("going to reseed %s with %d bits "
701 			  "(%d of %d requested)\n",
702 			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
703 
704 		bytes = extract_entropy(r->pull, tmp, bytes,
705 					random_read_wakeup_thresh / 8, rsvd);
706 		mix_pool_bytes(r, tmp, bytes);
707 		credit_entropy_bits(r, bytes*8);
708 	}
709 }
710 
711 /*
712  * These functions extracts randomness from the "entropy pool", and
713  * returns it in a buffer.
714  *
715  * The min parameter specifies the minimum amount we can pull before
716  * failing to avoid races that defeat catastrophic reseeding while the
717  * reserved parameter indicates how much entropy we must leave in the
718  * pool after each pull to avoid starving other readers.
719  *
720  * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
721  */
722 
723 static size_t account(struct entropy_store *r, size_t nbytes, int min,
724 		      int reserved)
725 {
726 	unsigned long flags;
727 
728 	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
729 
730 	/* Hold lock while accounting */
731 	spin_lock_irqsave(&r->lock, flags);
732 
733 	DEBUG_ENT("trying to extract %d bits from %s\n",
734 		  nbytes * 8, r->name);
735 
736 	/* Can we pull enough? */
737 	if (r->entropy_count / 8 < min + reserved) {
738 		nbytes = 0;
739 	} else {
740 		/* If limited, never pull more than available */
741 		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
742 			nbytes = r->entropy_count/8 - reserved;
743 
744 		if (r->entropy_count / 8 >= nbytes + reserved)
745 			r->entropy_count -= nbytes*8;
746 		else
747 			r->entropy_count = reserved;
748 
749 		if (r->entropy_count < random_write_wakeup_thresh) {
750 			wake_up_interruptible(&random_write_wait);
751 			kill_fasync(&fasync, SIGIO, POLL_OUT);
752 		}
753 	}
754 
755 	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
756 		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
757 
758 	spin_unlock_irqrestore(&r->lock, flags);
759 
760 	return nbytes;
761 }
762 
763 static void extract_buf(struct entropy_store *r, __u8 *out)
764 {
765 	int i;
766 	__u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
767 	__u8 extract[64];
768 
769 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
770 	sha_init(hash);
771 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
772 		sha_transform(hash, (__u8 *)(r->pool + i), workspace);
773 
774 	/*
775 	 * We mix the hash back into the pool to prevent backtracking
776 	 * attacks (where the attacker knows the state of the pool
777 	 * plus the current outputs, and attempts to find previous
778 	 * ouputs), unless the hash function can be inverted. By
779 	 * mixing at least a SHA1 worth of hash data back, we make
780 	 * brute-forcing the feedback as hard as brute-forcing the
781 	 * hash.
782 	 */
783 	mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
784 
785 	/*
786 	 * To avoid duplicates, we atomically extract a portion of the
787 	 * pool while mixing, and hash one final time.
788 	 */
789 	sha_transform(hash, extract, workspace);
790 	memset(extract, 0, sizeof(extract));
791 	memset(workspace, 0, sizeof(workspace));
792 
793 	/*
794 	 * In case the hash function has some recognizable output
795 	 * pattern, we fold it in half. Thus, we always feed back
796 	 * twice as much data as we output.
797 	 */
798 	hash[0] ^= hash[3];
799 	hash[1] ^= hash[4];
800 	hash[2] ^= rol32(hash[2], 16);
801 	memcpy(out, hash, EXTRACT_SIZE);
802 	memset(hash, 0, sizeof(hash));
803 }
804 
805 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
806 			       size_t nbytes, int min, int reserved)
807 {
808 	ssize_t ret = 0, i;
809 	__u8 tmp[EXTRACT_SIZE];
810 
811 	xfer_secondary_pool(r, nbytes);
812 	nbytes = account(r, nbytes, min, reserved);
813 
814 	while (nbytes) {
815 		extract_buf(r, tmp);
816 		i = min_t(int, nbytes, EXTRACT_SIZE);
817 		memcpy(buf, tmp, i);
818 		nbytes -= i;
819 		buf += i;
820 		ret += i;
821 	}
822 
823 	/* Wipe data just returned from memory */
824 	memset(tmp, 0, sizeof(tmp));
825 
826 	return ret;
827 }
828 
829 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
830 				    size_t nbytes)
831 {
832 	ssize_t ret = 0, i;
833 	__u8 tmp[EXTRACT_SIZE];
834 
835 	xfer_secondary_pool(r, nbytes);
836 	nbytes = account(r, nbytes, 0, 0);
837 
838 	while (nbytes) {
839 		if (need_resched()) {
840 			if (signal_pending(current)) {
841 				if (ret == 0)
842 					ret = -ERESTARTSYS;
843 				break;
844 			}
845 			schedule();
846 		}
847 
848 		extract_buf(r, tmp);
849 		i = min_t(int, nbytes, EXTRACT_SIZE);
850 		if (copy_to_user(buf, tmp, i)) {
851 			ret = -EFAULT;
852 			break;
853 		}
854 
855 		nbytes -= i;
856 		buf += i;
857 		ret += i;
858 	}
859 
860 	/* Wipe data just returned from memory */
861 	memset(tmp, 0, sizeof(tmp));
862 
863 	return ret;
864 }
865 
866 /*
867  * This function is the exported kernel interface.  It returns some
868  * number of good random numbers, suitable for seeding TCP sequence
869  * numbers, etc.
870  */
871 void get_random_bytes(void *buf, int nbytes)
872 {
873 	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
874 }
875 EXPORT_SYMBOL(get_random_bytes);
876 
877 /*
878  * init_std_data - initialize pool with system data
879  *
880  * @r: pool to initialize
881  *
882  * This function clears the pool's entropy count and mixes some system
883  * data into the pool to prepare it for use. The pool is not cleared
884  * as that can only decrease the entropy in the pool.
885  */
886 static void init_std_data(struct entropy_store *r)
887 {
888 	ktime_t now;
889 	unsigned long flags;
890 
891 	spin_lock_irqsave(&r->lock, flags);
892 	r->entropy_count = 0;
893 	spin_unlock_irqrestore(&r->lock, flags);
894 
895 	now = ktime_get_real();
896 	mix_pool_bytes(r, &now, sizeof(now));
897 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
898 }
899 
900 static int rand_initialize(void)
901 {
902 	init_std_data(&input_pool);
903 	init_std_data(&blocking_pool);
904 	init_std_data(&nonblocking_pool);
905 	return 0;
906 }
907 module_init(rand_initialize);
908 
909 void rand_initialize_irq(int irq)
910 {
911 	struct timer_rand_state *state;
912 
913 	if (irq >= NR_IRQS || irq_timer_state[irq])
914 		return;
915 
916 	/*
917 	 * If kzalloc returns null, we just won't use that entropy
918 	 * source.
919 	 */
920 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
921 	if (state)
922 		irq_timer_state[irq] = state;
923 }
924 
925 #ifdef CONFIG_BLOCK
926 void rand_initialize_disk(struct gendisk *disk)
927 {
928 	struct timer_rand_state *state;
929 
930 	/*
931 	 * If kzalloc returns null, we just won't use that entropy
932 	 * source.
933 	 */
934 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
935 	if (state)
936 		disk->random = state;
937 }
938 #endif
939 
940 static ssize_t
941 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
942 {
943 	ssize_t n, retval = 0, count = 0;
944 
945 	if (nbytes == 0)
946 		return 0;
947 
948 	while (nbytes > 0) {
949 		n = nbytes;
950 		if (n > SEC_XFER_SIZE)
951 			n = SEC_XFER_SIZE;
952 
953 		DEBUG_ENT("reading %d bits\n", n*8);
954 
955 		n = extract_entropy_user(&blocking_pool, buf, n);
956 
957 		DEBUG_ENT("read got %d bits (%d still needed)\n",
958 			  n*8, (nbytes-n)*8);
959 
960 		if (n == 0) {
961 			if (file->f_flags & O_NONBLOCK) {
962 				retval = -EAGAIN;
963 				break;
964 			}
965 
966 			DEBUG_ENT("sleeping?\n");
967 
968 			wait_event_interruptible(random_read_wait,
969 				input_pool.entropy_count >=
970 						 random_read_wakeup_thresh);
971 
972 			DEBUG_ENT("awake\n");
973 
974 			if (signal_pending(current)) {
975 				retval = -ERESTARTSYS;
976 				break;
977 			}
978 
979 			continue;
980 		}
981 
982 		if (n < 0) {
983 			retval = n;
984 			break;
985 		}
986 		count += n;
987 		buf += n;
988 		nbytes -= n;
989 		break;		/* This break makes the device work */
990 				/* like a named pipe */
991 	}
992 
993 	/*
994 	 * If we gave the user some bytes, update the access time.
995 	 */
996 	if (count)
997 		file_accessed(file);
998 
999 	return (count ? count : retval);
1000 }
1001 
1002 static ssize_t
1003 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1004 {
1005 	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1006 }
1007 
1008 static unsigned int
1009 random_poll(struct file *file, poll_table * wait)
1010 {
1011 	unsigned int mask;
1012 
1013 	poll_wait(file, &random_read_wait, wait);
1014 	poll_wait(file, &random_write_wait, wait);
1015 	mask = 0;
1016 	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1017 		mask |= POLLIN | POLLRDNORM;
1018 	if (input_pool.entropy_count < random_write_wakeup_thresh)
1019 		mask |= POLLOUT | POLLWRNORM;
1020 	return mask;
1021 }
1022 
1023 static int
1024 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1025 {
1026 	size_t bytes;
1027 	__u32 buf[16];
1028 	const char __user *p = buffer;
1029 
1030 	while (count > 0) {
1031 		bytes = min(count, sizeof(buf));
1032 		if (copy_from_user(&buf, p, bytes))
1033 			return -EFAULT;
1034 
1035 		count -= bytes;
1036 		p += bytes;
1037 
1038 		mix_pool_bytes(r, buf, bytes);
1039 		cond_resched();
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static ssize_t random_write(struct file *file, const char __user *buffer,
1046 			    size_t count, loff_t *ppos)
1047 {
1048 	size_t ret;
1049 	struct inode *inode = file->f_path.dentry->d_inode;
1050 
1051 	ret = write_pool(&blocking_pool, buffer, count);
1052 	if (ret)
1053 		return ret;
1054 	ret = write_pool(&nonblocking_pool, buffer, count);
1055 	if (ret)
1056 		return ret;
1057 
1058 	inode->i_mtime = current_fs_time(inode->i_sb);
1059 	mark_inode_dirty(inode);
1060 	return (ssize_t)count;
1061 }
1062 
1063 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1064 {
1065 	int size, ent_count;
1066 	int __user *p = (int __user *)arg;
1067 	int retval;
1068 
1069 	switch (cmd) {
1070 	case RNDGETENTCNT:
1071 		/* inherently racy, no point locking */
1072 		if (put_user(input_pool.entropy_count, p))
1073 			return -EFAULT;
1074 		return 0;
1075 	case RNDADDTOENTCNT:
1076 		if (!capable(CAP_SYS_ADMIN))
1077 			return -EPERM;
1078 		if (get_user(ent_count, p))
1079 			return -EFAULT;
1080 		credit_entropy_bits(&input_pool, ent_count);
1081 		return 0;
1082 	case RNDADDENTROPY:
1083 		if (!capable(CAP_SYS_ADMIN))
1084 			return -EPERM;
1085 		if (get_user(ent_count, p++))
1086 			return -EFAULT;
1087 		if (ent_count < 0)
1088 			return -EINVAL;
1089 		if (get_user(size, p++))
1090 			return -EFAULT;
1091 		retval = write_pool(&input_pool, (const char __user *)p,
1092 				    size);
1093 		if (retval < 0)
1094 			return retval;
1095 		credit_entropy_bits(&input_pool, ent_count);
1096 		return 0;
1097 	case RNDZAPENTCNT:
1098 	case RNDCLEARPOOL:
1099 		/* Clear the entropy pool counters. */
1100 		if (!capable(CAP_SYS_ADMIN))
1101 			return -EPERM;
1102 		rand_initialize();
1103 		return 0;
1104 	default:
1105 		return -EINVAL;
1106 	}
1107 }
1108 
1109 static int random_fasync(int fd, struct file *filp, int on)
1110 {
1111 	return fasync_helper(fd, filp, on, &fasync);
1112 }
1113 
1114 static int random_release(struct inode *inode, struct file *filp)
1115 {
1116 	return fasync_helper(-1, filp, 0, &fasync);
1117 }
1118 
1119 const struct file_operations random_fops = {
1120 	.read  = random_read,
1121 	.write = random_write,
1122 	.poll  = random_poll,
1123 	.unlocked_ioctl = random_ioctl,
1124 	.fasync = random_fasync,
1125 	.release = random_release,
1126 };
1127 
1128 const struct file_operations urandom_fops = {
1129 	.read  = urandom_read,
1130 	.write = random_write,
1131 	.unlocked_ioctl = random_ioctl,
1132 	.fasync = random_fasync,
1133 	.release = random_release,
1134 };
1135 
1136 /***************************************************************
1137  * Random UUID interface
1138  *
1139  * Used here for a Boot ID, but can be useful for other kernel
1140  * drivers.
1141  ***************************************************************/
1142 
1143 /*
1144  * Generate random UUID
1145  */
1146 void generate_random_uuid(unsigned char uuid_out[16])
1147 {
1148 	get_random_bytes(uuid_out, 16);
1149 	/* Set UUID version to 4 --- truely random generation */
1150 	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1151 	/* Set the UUID variant to DCE */
1152 	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1153 }
1154 EXPORT_SYMBOL(generate_random_uuid);
1155 
1156 /********************************************************************
1157  *
1158  * Sysctl interface
1159  *
1160  ********************************************************************/
1161 
1162 #ifdef CONFIG_SYSCTL
1163 
1164 #include <linux/sysctl.h>
1165 
1166 static int min_read_thresh = 8, min_write_thresh;
1167 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1168 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1169 static char sysctl_bootid[16];
1170 
1171 /*
1172  * These functions is used to return both the bootid UUID, and random
1173  * UUID.  The difference is in whether table->data is NULL; if it is,
1174  * then a new UUID is generated and returned to the user.
1175  *
1176  * If the user accesses this via the proc interface, it will be returned
1177  * as an ASCII string in the standard UUID format.  If accesses via the
1178  * sysctl system call, it is returned as 16 bytes of binary data.
1179  */
1180 static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
1181 			void __user *buffer, size_t *lenp, loff_t *ppos)
1182 {
1183 	ctl_table fake_table;
1184 	unsigned char buf[64], tmp_uuid[16], *uuid;
1185 
1186 	uuid = table->data;
1187 	if (!uuid) {
1188 		uuid = tmp_uuid;
1189 		uuid[8] = 0;
1190 	}
1191 	if (uuid[8] == 0)
1192 		generate_random_uuid(uuid);
1193 
1194 	sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1195 		"%02x%02x%02x%02x%02x%02x",
1196 		uuid[0],  uuid[1],  uuid[2],  uuid[3],
1197 		uuid[4],  uuid[5],  uuid[6],  uuid[7],
1198 		uuid[8],  uuid[9],  uuid[10], uuid[11],
1199 		uuid[12], uuid[13], uuid[14], uuid[15]);
1200 	fake_table.data = buf;
1201 	fake_table.maxlen = sizeof(buf);
1202 
1203 	return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
1204 }
1205 
1206 static int uuid_strategy(ctl_table *table, int __user *name, int nlen,
1207 			 void __user *oldval, size_t __user *oldlenp,
1208 			 void __user *newval, size_t newlen)
1209 {
1210 	unsigned char tmp_uuid[16], *uuid;
1211 	unsigned int len;
1212 
1213 	if (!oldval || !oldlenp)
1214 		return 1;
1215 
1216 	uuid = table->data;
1217 	if (!uuid) {
1218 		uuid = tmp_uuid;
1219 		uuid[8] = 0;
1220 	}
1221 	if (uuid[8] == 0)
1222 		generate_random_uuid(uuid);
1223 
1224 	if (get_user(len, oldlenp))
1225 		return -EFAULT;
1226 	if (len) {
1227 		if (len > 16)
1228 			len = 16;
1229 		if (copy_to_user(oldval, uuid, len) ||
1230 		    put_user(len, oldlenp))
1231 			return -EFAULT;
1232 	}
1233 	return 1;
1234 }
1235 
1236 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1237 ctl_table random_table[] = {
1238 	{
1239 		.ctl_name 	= RANDOM_POOLSIZE,
1240 		.procname	= "poolsize",
1241 		.data		= &sysctl_poolsize,
1242 		.maxlen		= sizeof(int),
1243 		.mode		= 0444,
1244 		.proc_handler	= &proc_dointvec,
1245 	},
1246 	{
1247 		.ctl_name	= RANDOM_ENTROPY_COUNT,
1248 		.procname	= "entropy_avail",
1249 		.maxlen		= sizeof(int),
1250 		.mode		= 0444,
1251 		.proc_handler	= &proc_dointvec,
1252 		.data		= &input_pool.entropy_count,
1253 	},
1254 	{
1255 		.ctl_name	= RANDOM_READ_THRESH,
1256 		.procname	= "read_wakeup_threshold",
1257 		.data		= &random_read_wakeup_thresh,
1258 		.maxlen		= sizeof(int),
1259 		.mode		= 0644,
1260 		.proc_handler	= &proc_dointvec_minmax,
1261 		.strategy	= &sysctl_intvec,
1262 		.extra1		= &min_read_thresh,
1263 		.extra2		= &max_read_thresh,
1264 	},
1265 	{
1266 		.ctl_name	= RANDOM_WRITE_THRESH,
1267 		.procname	= "write_wakeup_threshold",
1268 		.data		= &random_write_wakeup_thresh,
1269 		.maxlen		= sizeof(int),
1270 		.mode		= 0644,
1271 		.proc_handler	= &proc_dointvec_minmax,
1272 		.strategy	= &sysctl_intvec,
1273 		.extra1		= &min_write_thresh,
1274 		.extra2		= &max_write_thresh,
1275 	},
1276 	{
1277 		.ctl_name	= RANDOM_BOOT_ID,
1278 		.procname	= "boot_id",
1279 		.data		= &sysctl_bootid,
1280 		.maxlen		= 16,
1281 		.mode		= 0444,
1282 		.proc_handler	= &proc_do_uuid,
1283 		.strategy	= &uuid_strategy,
1284 	},
1285 	{
1286 		.ctl_name	= RANDOM_UUID,
1287 		.procname	= "uuid",
1288 		.maxlen		= 16,
1289 		.mode		= 0444,
1290 		.proc_handler	= &proc_do_uuid,
1291 		.strategy	= &uuid_strategy,
1292 	},
1293 	{ .ctl_name = 0 }
1294 };
1295 #endif 	/* CONFIG_SYSCTL */
1296 
1297 /********************************************************************
1298  *
1299  * Random funtions for networking
1300  *
1301  ********************************************************************/
1302 
1303 /*
1304  * TCP initial sequence number picking.  This uses the random number
1305  * generator to pick an initial secret value.  This value is hashed
1306  * along with the TCP endpoint information to provide a unique
1307  * starting point for each pair of TCP endpoints.  This defeats
1308  * attacks which rely on guessing the initial TCP sequence number.
1309  * This algorithm was suggested by Steve Bellovin.
1310  *
1311  * Using a very strong hash was taking an appreciable amount of the total
1312  * TCP connection establishment time, so this is a weaker hash,
1313  * compensated for by changing the secret periodically.
1314  */
1315 
1316 /* F, G and H are basic MD4 functions: selection, majority, parity */
1317 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1318 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1319 #define H(x, y, z) ((x) ^ (y) ^ (z))
1320 
1321 /*
1322  * The generic round function.  The application is so specific that
1323  * we don't bother protecting all the arguments with parens, as is generally
1324  * good macro practice, in favor of extra legibility.
1325  * Rotation is separate from addition to prevent recomputation
1326  */
1327 #define ROUND(f, a, b, c, d, x, s)	\
1328 	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1329 #define K1 0
1330 #define K2 013240474631UL
1331 #define K3 015666365641UL
1332 
1333 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1334 
1335 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1336 {
1337 	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1338 
1339 	/* Round 1 */
1340 	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1341 	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1342 	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1343 	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1344 	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1345 	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1346 	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1347 	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1348 	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1349 	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1350 	ROUND(F, c, d, a, b, in[10] + K1, 11);
1351 	ROUND(F, b, c, d, a, in[11] + K1, 19);
1352 
1353 	/* Round 2 */
1354 	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1355 	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1356 	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1357 	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1358 	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1359 	ROUND(G, d, a, b, c, in[11] + K2,  5);
1360 	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1361 	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1362 	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1363 	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1364 	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1365 	ROUND(G, b, c, d, a, in[10] + K2, 13);
1366 
1367 	/* Round 3 */
1368 	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1369 	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1370 	ROUND(H, c, d, a, b, in[11] + K3, 11);
1371 	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1372 	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1373 	ROUND(H, d, a, b, c, in[10] + K3,  9);
1374 	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1375 	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1376 	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1377 	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1378 	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1379 	ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1380 
1381 	return buf[1] + b; /* "most hashed" word */
1382 	/* Alternative: return sum of all words? */
1383 }
1384 #endif
1385 
1386 #undef ROUND
1387 #undef F
1388 #undef G
1389 #undef H
1390 #undef K1
1391 #undef K2
1392 #undef K3
1393 
1394 /* This should not be decreased so low that ISNs wrap too fast. */
1395 #define REKEY_INTERVAL (300 * HZ)
1396 /*
1397  * Bit layout of the tcp sequence numbers (before adding current time):
1398  * bit 24-31: increased after every key exchange
1399  * bit 0-23: hash(source,dest)
1400  *
1401  * The implementation is similar to the algorithm described
1402  * in the Appendix of RFC 1185, except that
1403  * - it uses a 1 MHz clock instead of a 250 kHz clock
1404  * - it performs a rekey every 5 minutes, which is equivalent
1405  * 	to a (source,dest) tulple dependent forward jump of the
1406  * 	clock by 0..2^(HASH_BITS+1)
1407  *
1408  * Thus the average ISN wraparound time is 68 minutes instead of
1409  * 4.55 hours.
1410  *
1411  * SMP cleanup and lock avoidance with poor man's RCU.
1412  * 			Manfred Spraul <manfred@colorfullife.com>
1413  *
1414  */
1415 #define COUNT_BITS 8
1416 #define COUNT_MASK ((1 << COUNT_BITS) - 1)
1417 #define HASH_BITS 24
1418 #define HASH_MASK ((1 << HASH_BITS) - 1)
1419 
1420 static struct keydata {
1421 	__u32 count; /* already shifted to the final position */
1422 	__u32 secret[12];
1423 } ____cacheline_aligned ip_keydata[2];
1424 
1425 static unsigned int ip_cnt;
1426 
1427 static void rekey_seq_generator(struct work_struct *work);
1428 
1429 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1430 
1431 /*
1432  * Lock avoidance:
1433  * The ISN generation runs lockless - it's just a hash over random data.
1434  * State changes happen every 5 minutes when the random key is replaced.
1435  * Synchronization is performed by having two copies of the hash function
1436  * state and rekey_seq_generator always updates the inactive copy.
1437  * The copy is then activated by updating ip_cnt.
1438  * The implementation breaks down if someone blocks the thread
1439  * that processes SYN requests for more than 5 minutes. Should never
1440  * happen, and even if that happens only a not perfectly compliant
1441  * ISN is generated, nothing fatal.
1442  */
1443 static void rekey_seq_generator(struct work_struct *work)
1444 {
1445 	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1446 
1447 	get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1448 	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1449 	smp_wmb();
1450 	ip_cnt++;
1451 	schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
1452 }
1453 
1454 static inline struct keydata *get_keyptr(void)
1455 {
1456 	struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1457 
1458 	smp_rmb();
1459 
1460 	return keyptr;
1461 }
1462 
1463 static __init int seqgen_init(void)
1464 {
1465 	rekey_seq_generator(NULL);
1466 	return 0;
1467 }
1468 late_initcall(seqgen_init);
1469 
1470 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1471 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1472 				   __be16 sport, __be16 dport)
1473 {
1474 	__u32 seq;
1475 	__u32 hash[12];
1476 	struct keydata *keyptr = get_keyptr();
1477 
1478 	/* The procedure is the same as for IPv4, but addresses are longer.
1479 	 * Thus we must use twothirdsMD4Transform.
1480 	 */
1481 
1482 	memcpy(hash, saddr, 16);
1483 	hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1484 	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1485 
1486 	seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1487 	seq += keyptr->count;
1488 
1489 	seq += ktime_to_ns(ktime_get_real());
1490 
1491 	return seq;
1492 }
1493 EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1494 #endif
1495 
1496 /*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1497  *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1498  */
1499 __u32 secure_ip_id(__be32 daddr)
1500 {
1501 	struct keydata *keyptr;
1502 	__u32 hash[4];
1503 
1504 	keyptr = get_keyptr();
1505 
1506 	/*
1507 	 *  Pick a unique starting offset for each IP destination.
1508 	 *  The dest ip address is placed in the starting vector,
1509 	 *  which is then hashed with random data.
1510 	 */
1511 	hash[0] = (__force __u32)daddr;
1512 	hash[1] = keyptr->secret[9];
1513 	hash[2] = keyptr->secret[10];
1514 	hash[3] = keyptr->secret[11];
1515 
1516 	return half_md4_transform(hash, keyptr->secret);
1517 }
1518 
1519 #ifdef CONFIG_INET
1520 
1521 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1522 				 __be16 sport, __be16 dport)
1523 {
1524 	__u32 seq;
1525 	__u32 hash[4];
1526 	struct keydata *keyptr = get_keyptr();
1527 
1528 	/*
1529 	 *  Pick a unique starting offset for each TCP connection endpoints
1530 	 *  (saddr, daddr, sport, dport).
1531 	 *  Note that the words are placed into the starting vector, which is
1532 	 *  then mixed with a partial MD4 over random data.
1533 	 */
1534 	hash[0] = (__force u32)saddr;
1535 	hash[1] = (__force u32)daddr;
1536 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1537 	hash[3] = keyptr->secret[11];
1538 
1539 	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1540 	seq += keyptr->count;
1541 	/*
1542 	 *	As close as possible to RFC 793, which
1543 	 *	suggests using a 250 kHz clock.
1544 	 *	Further reading shows this assumes 2 Mb/s networks.
1545 	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1546 	 *	For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1547 	 *	we also need to limit the resolution so that the u32 seq
1548 	 *	overlaps less than one time per MSL (2 minutes).
1549 	 *	Choosing a clock of 64 ns period is OK. (period of 274 s)
1550 	 */
1551 	seq += ktime_to_ns(ktime_get_real()) >> 6;
1552 
1553 	return seq;
1554 }
1555 
1556 /* Generate secure starting point for ephemeral IPV4 transport port search */
1557 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1558 {
1559 	struct keydata *keyptr = get_keyptr();
1560 	u32 hash[4];
1561 
1562 	/*
1563 	 *  Pick a unique starting offset for each ephemeral port search
1564 	 *  (saddr, daddr, dport) and 48bits of random data.
1565 	 */
1566 	hash[0] = (__force u32)saddr;
1567 	hash[1] = (__force u32)daddr;
1568 	hash[2] = (__force u32)dport ^ keyptr->secret[10];
1569 	hash[3] = keyptr->secret[11];
1570 
1571 	return half_md4_transform(hash, keyptr->secret);
1572 }
1573 
1574 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1575 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1576 			       __be16 dport)
1577 {
1578 	struct keydata *keyptr = get_keyptr();
1579 	u32 hash[12];
1580 
1581 	memcpy(hash, saddr, 16);
1582 	hash[4] = (__force u32)dport;
1583 	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1584 
1585 	return twothirdsMD4Transform((const __u32 *)daddr, hash);
1586 }
1587 #endif
1588 
1589 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1590 /* Similar to secure_tcp_sequence_number but generate a 48 bit value
1591  * bit's 32-47 increase every key exchange
1592  *       0-31  hash(source, dest)
1593  */
1594 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1595 				__be16 sport, __be16 dport)
1596 {
1597 	u64 seq;
1598 	__u32 hash[4];
1599 	struct keydata *keyptr = get_keyptr();
1600 
1601 	hash[0] = (__force u32)saddr;
1602 	hash[1] = (__force u32)daddr;
1603 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1604 	hash[3] = keyptr->secret[11];
1605 
1606 	seq = half_md4_transform(hash, keyptr->secret);
1607 	seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1608 
1609 	seq += ktime_to_ns(ktime_get_real());
1610 	seq &= (1ull << 48) - 1;
1611 
1612 	return seq;
1613 }
1614 EXPORT_SYMBOL(secure_dccp_sequence_number);
1615 #endif
1616 
1617 #endif /* CONFIG_INET */
1618 
1619 
1620 /*
1621  * Get a random word for internal kernel use only. Similar to urandom but
1622  * with the goal of minimal entropy pool depletion. As a result, the random
1623  * value is not cryptographically secure but for several uses the cost of
1624  * depleting entropy is too high
1625  */
1626 unsigned int get_random_int(void)
1627 {
1628 	/*
1629 	 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
1630 	 * every second, from the entropy pool (and thus creates a limited
1631 	 * drain on it), and uses halfMD4Transform within the second. We
1632 	 * also mix it with jiffies and the PID:
1633 	 */
1634 	return secure_ip_id((__force __be32)(current->pid + jiffies));
1635 }
1636 
1637 /*
1638  * randomize_range() returns a start address such that
1639  *
1640  *    [...... <range> .....]
1641  *  start                  end
1642  *
1643  * a <range> with size "len" starting at the return value is inside in the
1644  * area defined by [start, end], but is otherwise randomized.
1645  */
1646 unsigned long
1647 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1648 {
1649 	unsigned long range = end - len - start;
1650 
1651 	if (end <= start + len)
1652 		return 0;
1653 	return PAGE_ALIGN(get_random_int() % range + start);
1654 }
1655