1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_input_randomness(unsigned int type, unsigned int code, 129 * unsigned int value); 130 * void add_interrupt_randomness(int irq); 131 * 132 * add_input_randomness() uses the input layer interrupt timing, as well as 133 * the event type information from the hardware. 134 * 135 * add_interrupt_randomness() uses the inter-interrupt timing as random 136 * inputs to the entropy pool. Note that not all interrupts are good 137 * sources of randomness! For example, the timer interrupts is not a 138 * good choice, because the periodicity of the interrupts is too 139 * regular, and hence predictable to an attacker. Disk interrupts are 140 * a better measure, since the timing of the disk interrupts are more 141 * unpredictable. 142 * 143 * All of these routines try to estimate how many bits of randomness a 144 * particular randomness source. They do this by keeping track of the 145 * first and second order deltas of the event timings. 146 * 147 * Ensuring unpredictability at system startup 148 * ============================================ 149 * 150 * When any operating system starts up, it will go through a sequence 151 * of actions that are fairly predictable by an adversary, especially 152 * if the start-up does not involve interaction with a human operator. 153 * This reduces the actual number of bits of unpredictability in the 154 * entropy pool below the value in entropy_count. In order to 155 * counteract this effect, it helps to carry information in the 156 * entropy pool across shut-downs and start-ups. To do this, put the 157 * following lines an appropriate script which is run during the boot 158 * sequence: 159 * 160 * echo "Initializing random number generator..." 161 * random_seed=/var/run/random-seed 162 * # Carry a random seed from start-up to start-up 163 * # Load and then save the whole entropy pool 164 * if [ -f $random_seed ]; then 165 * cat $random_seed >/dev/urandom 166 * else 167 * touch $random_seed 168 * fi 169 * chmod 600 $random_seed 170 * dd if=/dev/urandom of=$random_seed count=1 bs=512 171 * 172 * and the following lines in an appropriate script which is run as 173 * the system is shutdown: 174 * 175 * # Carry a random seed from shut-down to start-up 176 * # Save the whole entropy pool 177 * echo "Saving random seed..." 178 * random_seed=/var/run/random-seed 179 * touch $random_seed 180 * chmod 600 $random_seed 181 * dd if=/dev/urandom of=$random_seed count=1 bs=512 182 * 183 * For example, on most modern systems using the System V init 184 * scripts, such code fragments would be found in 185 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 187 * 188 * Effectively, these commands cause the contents of the entropy pool 189 * to be saved at shut-down time and reloaded into the entropy pool at 190 * start-up. (The 'dd' in the addition to the bootup script is to 191 * make sure that /etc/random-seed is different for every start-up, 192 * even if the system crashes without executing rc.0.) Even with 193 * complete knowledge of the start-up activities, predicting the state 194 * of the entropy pool requires knowledge of the previous history of 195 * the system. 196 * 197 * Configuring the /dev/random driver under Linux 198 * ============================================== 199 * 200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 201 * the /dev/mem major number (#1). So if your system does not have 202 * /dev/random and /dev/urandom created already, they can be created 203 * by using the commands: 204 * 205 * mknod /dev/random c 1 8 206 * mknod /dev/urandom c 1 9 207 * 208 * Acknowledgements: 209 * ================= 210 * 211 * Ideas for constructing this random number generator were derived 212 * from Pretty Good Privacy's random number generator, and from private 213 * discussions with Phil Karn. Colin Plumb provided a faster random 214 * number generator, which speed up the mixing function of the entropy 215 * pool, taken from PGPfone. Dale Worley has also contributed many 216 * useful ideas and suggestions to improve this driver. 217 * 218 * Any flaws in the design are solely my responsibility, and should 219 * not be attributed to the Phil, Colin, or any of authors of PGP. 220 * 221 * Further background information on this topic may be obtained from 222 * RFC 1750, "Randomness Recommendations for Security", by Donald 223 * Eastlake, Steve Crocker, and Jeff Schiller. 224 */ 225 226 #include <linux/utsname.h> 227 #include <linux/module.h> 228 #include <linux/kernel.h> 229 #include <linux/major.h> 230 #include <linux/string.h> 231 #include <linux/fcntl.h> 232 #include <linux/slab.h> 233 #include <linux/random.h> 234 #include <linux/poll.h> 235 #include <linux/init.h> 236 #include <linux/fs.h> 237 #include <linux/genhd.h> 238 #include <linux/interrupt.h> 239 #include <linux/spinlock.h> 240 #include <linux/percpu.h> 241 #include <linux/cryptohash.h> 242 243 #include <asm/processor.h> 244 #include <asm/uaccess.h> 245 #include <asm/irq.h> 246 #include <asm/io.h> 247 248 /* 249 * Configuration information 250 */ 251 #define INPUT_POOL_WORDS 128 252 #define OUTPUT_POOL_WORDS 32 253 #define SEC_XFER_SIZE 512 254 255 /* 256 * The minimum number of bits of entropy before we wake up a read on 257 * /dev/random. Should be enough to do a significant reseed. 258 */ 259 static int random_read_wakeup_thresh = 64; 260 261 /* 262 * If the entropy count falls under this number of bits, then we 263 * should wake up processes which are selecting or polling on write 264 * access to /dev/random. 265 */ 266 static int random_write_wakeup_thresh = 128; 267 268 /* 269 * When the input pool goes over trickle_thresh, start dropping most 270 * samples to avoid wasting CPU time and reduce lock contention. 271 */ 272 273 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28; 274 275 static DEFINE_PER_CPU(int, trickle_count); 276 277 /* 278 * A pool of size .poolwords is stirred with a primitive polynomial 279 * of degree .poolwords over GF(2). The taps for various sizes are 280 * defined below. They are chosen to be evenly spaced (minimum RMS 281 * distance from evenly spaced; the numbers in the comments are a 282 * scaled squared error sum) except for the last tap, which is 1 to 283 * get the twisting happening as fast as possible. 284 */ 285 static struct poolinfo { 286 int poolwords; 287 int tap1, tap2, tap3, tap4, tap5; 288 } poolinfo_table[] = { 289 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ 290 { 128, 103, 76, 51, 25, 1 }, 291 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ 292 { 32, 26, 20, 14, 7, 1 }, 293 #if 0 294 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 295 { 2048, 1638, 1231, 819, 411, 1 }, 296 297 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 298 { 1024, 817, 615, 412, 204, 1 }, 299 300 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 301 { 1024, 819, 616, 410, 207, 2 }, 302 303 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 304 { 512, 411, 308, 208, 104, 1 }, 305 306 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 307 { 512, 409, 307, 206, 102, 2 }, 308 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 309 { 512, 409, 309, 205, 103, 2 }, 310 311 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 312 { 256, 205, 155, 101, 52, 1 }, 313 314 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 315 { 128, 103, 78, 51, 27, 2 }, 316 317 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 318 { 64, 52, 39, 26, 14, 1 }, 319 #endif 320 }; 321 322 #define POOLBITS poolwords*32 323 #define POOLBYTES poolwords*4 324 325 /* 326 * For the purposes of better mixing, we use the CRC-32 polynomial as 327 * well to make a twisted Generalized Feedback Shift Reigster 328 * 329 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 330 * Transactions on Modeling and Computer Simulation 2(3):179-194. 331 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 332 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266) 333 * 334 * Thanks to Colin Plumb for suggesting this. 335 * 336 * We have not analyzed the resultant polynomial to prove it primitive; 337 * in fact it almost certainly isn't. Nonetheless, the irreducible factors 338 * of a random large-degree polynomial over GF(2) are more than large enough 339 * that periodicity is not a concern. 340 * 341 * The input hash is much less sensitive than the output hash. All 342 * that we want of it is that it be a good non-cryptographic hash; 343 * i.e. it not produce collisions when fed "random" data of the sort 344 * we expect to see. As long as the pool state differs for different 345 * inputs, we have preserved the input entropy and done a good job. 346 * The fact that an intelligent attacker can construct inputs that 347 * will produce controlled alterations to the pool's state is not 348 * important because we don't consider such inputs to contribute any 349 * randomness. The only property we need with respect to them is that 350 * the attacker can't increase his/her knowledge of the pool's state. 351 * Since all additions are reversible (knowing the final state and the 352 * input, you can reconstruct the initial state), if an attacker has 353 * any uncertainty about the initial state, he/she can only shuffle 354 * that uncertainty about, but never cause any collisions (which would 355 * decrease the uncertainty). 356 * 357 * The chosen system lets the state of the pool be (essentially) the input 358 * modulo the generator polymnomial. Now, for random primitive polynomials, 359 * this is a universal class of hash functions, meaning that the chance 360 * of a collision is limited by the attacker's knowledge of the generator 361 * polynomail, so if it is chosen at random, an attacker can never force 362 * a collision. Here, we use a fixed polynomial, but we *can* assume that 363 * ###--> it is unknown to the processes generating the input entropy. <-### 364 * Because of this important property, this is a good, collision-resistant 365 * hash; hash collisions will occur no more often than chance. 366 */ 367 368 /* 369 * Static global variables 370 */ 371 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 372 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 373 static struct fasync_struct *fasync; 374 375 #if 0 376 static int debug; 377 module_param(debug, bool, 0644); 378 #define DEBUG_ENT(fmt, arg...) do { \ 379 if (debug) \ 380 printk(KERN_DEBUG "random %04d %04d %04d: " \ 381 fmt,\ 382 input_pool.entropy_count,\ 383 blocking_pool.entropy_count,\ 384 nonblocking_pool.entropy_count,\ 385 ## arg); } while (0) 386 #else 387 #define DEBUG_ENT(fmt, arg...) do {} while (0) 388 #endif 389 390 /********************************************************************** 391 * 392 * OS independent entropy store. Here are the functions which handle 393 * storing entropy in an entropy pool. 394 * 395 **********************************************************************/ 396 397 struct entropy_store; 398 struct entropy_store { 399 /* read-only data: */ 400 struct poolinfo *poolinfo; 401 __u32 *pool; 402 const char *name; 403 int limit; 404 struct entropy_store *pull; 405 406 /* read-write data: */ 407 spinlock_t lock; 408 unsigned add_ptr; 409 int entropy_count; 410 int input_rotate; 411 }; 412 413 static __u32 input_pool_data[INPUT_POOL_WORDS]; 414 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 415 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 416 417 static struct entropy_store input_pool = { 418 .poolinfo = &poolinfo_table[0], 419 .name = "input", 420 .limit = 1, 421 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock), 422 .pool = input_pool_data 423 }; 424 425 static struct entropy_store blocking_pool = { 426 .poolinfo = &poolinfo_table[1], 427 .name = "blocking", 428 .limit = 1, 429 .pull = &input_pool, 430 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock), 431 .pool = blocking_pool_data 432 }; 433 434 static struct entropy_store nonblocking_pool = { 435 .poolinfo = &poolinfo_table[1], 436 .name = "nonblocking", 437 .pull = &input_pool, 438 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock), 439 .pool = nonblocking_pool_data 440 }; 441 442 /* 443 * This function adds bytes into the entropy "pool". It does not 444 * update the entropy estimate. The caller should call 445 * credit_entropy_bits if this is appropriate. 446 * 447 * The pool is stirred with a primitive polynomial of the appropriate 448 * degree, and then twisted. We twist by three bits at a time because 449 * it's cheap to do so and helps slightly in the expected case where 450 * the entropy is concentrated in the low-order bits. 451 */ 452 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in, 453 int nbytes, __u8 out[64]) 454 { 455 static __u32 const twist_table[8] = { 456 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 457 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 458 unsigned long i, j, tap1, tap2, tap3, tap4, tap5; 459 int input_rotate; 460 int wordmask = r->poolinfo->poolwords - 1; 461 const char *bytes = in; 462 __u32 w; 463 unsigned long flags; 464 465 /* Taps are constant, so we can load them without holding r->lock. */ 466 tap1 = r->poolinfo->tap1; 467 tap2 = r->poolinfo->tap2; 468 tap3 = r->poolinfo->tap3; 469 tap4 = r->poolinfo->tap4; 470 tap5 = r->poolinfo->tap5; 471 472 spin_lock_irqsave(&r->lock, flags); 473 input_rotate = r->input_rotate; 474 i = r->add_ptr; 475 476 /* mix one byte at a time to simplify size handling and churn faster */ 477 while (nbytes--) { 478 w = rol32(*bytes++, input_rotate & 31); 479 i = (i - 1) & wordmask; 480 481 /* XOR in the various taps */ 482 w ^= r->pool[i]; 483 w ^= r->pool[(i + tap1) & wordmask]; 484 w ^= r->pool[(i + tap2) & wordmask]; 485 w ^= r->pool[(i + tap3) & wordmask]; 486 w ^= r->pool[(i + tap4) & wordmask]; 487 w ^= r->pool[(i + tap5) & wordmask]; 488 489 /* Mix the result back in with a twist */ 490 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 491 492 /* 493 * Normally, we add 7 bits of rotation to the pool. 494 * At the beginning of the pool, add an extra 7 bits 495 * rotation, so that successive passes spread the 496 * input bits across the pool evenly. 497 */ 498 input_rotate += i ? 7 : 14; 499 } 500 501 r->input_rotate = input_rotate; 502 r->add_ptr = i; 503 504 if (out) 505 for (j = 0; j < 16; j++) 506 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask]; 507 508 spin_unlock_irqrestore(&r->lock, flags); 509 } 510 511 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes) 512 { 513 mix_pool_bytes_extract(r, in, bytes, NULL); 514 } 515 516 /* 517 * Credit (or debit) the entropy store with n bits of entropy 518 */ 519 static void credit_entropy_bits(struct entropy_store *r, int nbits) 520 { 521 unsigned long flags; 522 523 if (!nbits) 524 return; 525 526 spin_lock_irqsave(&r->lock, flags); 527 528 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name); 529 r->entropy_count += nbits; 530 if (r->entropy_count < 0) { 531 DEBUG_ENT("negative entropy/overflow\n"); 532 r->entropy_count = 0; 533 } else if (r->entropy_count > r->poolinfo->POOLBITS) 534 r->entropy_count = r->poolinfo->POOLBITS; 535 536 /* should we wake readers? */ 537 if (r == &input_pool && 538 r->entropy_count >= random_read_wakeup_thresh) { 539 wake_up_interruptible(&random_read_wait); 540 kill_fasync(&fasync, SIGIO, POLL_IN); 541 } 542 543 spin_unlock_irqrestore(&r->lock, flags); 544 } 545 546 /********************************************************************* 547 * 548 * Entropy input management 549 * 550 *********************************************************************/ 551 552 /* There is one of these per entropy source */ 553 struct timer_rand_state { 554 cycles_t last_time; 555 long last_delta, last_delta2; 556 unsigned dont_count_entropy:1; 557 }; 558 559 static struct timer_rand_state input_timer_state; 560 static struct timer_rand_state *irq_timer_state[NR_IRQS]; 561 562 /* 563 * This function adds entropy to the entropy "pool" by using timing 564 * delays. It uses the timer_rand_state structure to make an estimate 565 * of how many bits of entropy this call has added to the pool. 566 * 567 * The number "num" is also added to the pool - it should somehow describe 568 * the type of event which just happened. This is currently 0-255 for 569 * keyboard scan codes, and 256 upwards for interrupts. 570 * 571 */ 572 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 573 { 574 struct { 575 cycles_t cycles; 576 long jiffies; 577 unsigned num; 578 } sample; 579 long delta, delta2, delta3; 580 581 preempt_disable(); 582 /* if over the trickle threshold, use only 1 in 4096 samples */ 583 if (input_pool.entropy_count > trickle_thresh && 584 (__get_cpu_var(trickle_count)++ & 0xfff)) 585 goto out; 586 587 sample.jiffies = jiffies; 588 sample.cycles = get_cycles(); 589 sample.num = num; 590 mix_pool_bytes(&input_pool, &sample, sizeof(sample)); 591 592 /* 593 * Calculate number of bits of randomness we probably added. 594 * We take into account the first, second and third-order deltas 595 * in order to make our estimate. 596 */ 597 598 if (!state->dont_count_entropy) { 599 delta = sample.jiffies - state->last_time; 600 state->last_time = sample.jiffies; 601 602 delta2 = delta - state->last_delta; 603 state->last_delta = delta; 604 605 delta3 = delta2 - state->last_delta2; 606 state->last_delta2 = delta2; 607 608 if (delta < 0) 609 delta = -delta; 610 if (delta2 < 0) 611 delta2 = -delta2; 612 if (delta3 < 0) 613 delta3 = -delta3; 614 if (delta > delta2) 615 delta = delta2; 616 if (delta > delta3) 617 delta = delta3; 618 619 /* 620 * delta is now minimum absolute delta. 621 * Round down by 1 bit on general principles, 622 * and limit entropy entimate to 12 bits. 623 */ 624 credit_entropy_bits(&input_pool, 625 min_t(int, fls(delta>>1), 11)); 626 } 627 out: 628 preempt_enable(); 629 } 630 631 void add_input_randomness(unsigned int type, unsigned int code, 632 unsigned int value) 633 { 634 static unsigned char last_value; 635 636 /* ignore autorepeat and the like */ 637 if (value == last_value) 638 return; 639 640 DEBUG_ENT("input event\n"); 641 last_value = value; 642 add_timer_randomness(&input_timer_state, 643 (type << 4) ^ code ^ (code >> 4) ^ value); 644 } 645 EXPORT_SYMBOL_GPL(add_input_randomness); 646 647 void add_interrupt_randomness(int irq) 648 { 649 if (irq >= NR_IRQS || irq_timer_state[irq] == NULL) 650 return; 651 652 DEBUG_ENT("irq event %d\n", irq); 653 add_timer_randomness(irq_timer_state[irq], 0x100 + irq); 654 } 655 656 #ifdef CONFIG_BLOCK 657 void add_disk_randomness(struct gendisk *disk) 658 { 659 if (!disk || !disk->random) 660 return; 661 /* first major is 1, so we get >= 0x200 here */ 662 DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor); 663 664 add_timer_randomness(disk->random, 665 0x100 + MKDEV(disk->major, disk->first_minor)); 666 } 667 #endif 668 669 #define EXTRACT_SIZE 10 670 671 /********************************************************************* 672 * 673 * Entropy extraction routines 674 * 675 *********************************************************************/ 676 677 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 678 size_t nbytes, int min, int rsvd); 679 680 /* 681 * This utility inline function is responsible for transfering entropy 682 * from the primary pool to the secondary extraction pool. We make 683 * sure we pull enough for a 'catastrophic reseed'. 684 */ 685 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 686 { 687 __u32 tmp[OUTPUT_POOL_WORDS]; 688 689 if (r->pull && r->entropy_count < nbytes * 8 && 690 r->entropy_count < r->poolinfo->POOLBITS) { 691 /* If we're limited, always leave two wakeup worth's BITS */ 692 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; 693 int bytes = nbytes; 694 695 /* pull at least as many as BYTES as wakeup BITS */ 696 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8); 697 /* but never more than the buffer size */ 698 bytes = min_t(int, bytes, sizeof(tmp)); 699 700 DEBUG_ENT("going to reseed %s with %d bits " 701 "(%d of %d requested)\n", 702 r->name, bytes * 8, nbytes * 8, r->entropy_count); 703 704 bytes = extract_entropy(r->pull, tmp, bytes, 705 random_read_wakeup_thresh / 8, rsvd); 706 mix_pool_bytes(r, tmp, bytes); 707 credit_entropy_bits(r, bytes*8); 708 } 709 } 710 711 /* 712 * These functions extracts randomness from the "entropy pool", and 713 * returns it in a buffer. 714 * 715 * The min parameter specifies the minimum amount we can pull before 716 * failing to avoid races that defeat catastrophic reseeding while the 717 * reserved parameter indicates how much entropy we must leave in the 718 * pool after each pull to avoid starving other readers. 719 * 720 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. 721 */ 722 723 static size_t account(struct entropy_store *r, size_t nbytes, int min, 724 int reserved) 725 { 726 unsigned long flags; 727 728 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); 729 730 /* Hold lock while accounting */ 731 spin_lock_irqsave(&r->lock, flags); 732 733 DEBUG_ENT("trying to extract %d bits from %s\n", 734 nbytes * 8, r->name); 735 736 /* Can we pull enough? */ 737 if (r->entropy_count / 8 < min + reserved) { 738 nbytes = 0; 739 } else { 740 /* If limited, never pull more than available */ 741 if (r->limit && nbytes + reserved >= r->entropy_count / 8) 742 nbytes = r->entropy_count/8 - reserved; 743 744 if (r->entropy_count / 8 >= nbytes + reserved) 745 r->entropy_count -= nbytes*8; 746 else 747 r->entropy_count = reserved; 748 749 if (r->entropy_count < random_write_wakeup_thresh) { 750 wake_up_interruptible(&random_write_wait); 751 kill_fasync(&fasync, SIGIO, POLL_OUT); 752 } 753 } 754 755 DEBUG_ENT("debiting %d entropy credits from %s%s\n", 756 nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); 757 758 spin_unlock_irqrestore(&r->lock, flags); 759 760 return nbytes; 761 } 762 763 static void extract_buf(struct entropy_store *r, __u8 *out) 764 { 765 int i; 766 __u32 hash[5], workspace[SHA_WORKSPACE_WORDS]; 767 __u8 extract[64]; 768 769 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 770 sha_init(hash); 771 for (i = 0; i < r->poolinfo->poolwords; i += 16) 772 sha_transform(hash, (__u8 *)(r->pool + i), workspace); 773 774 /* 775 * We mix the hash back into the pool to prevent backtracking 776 * attacks (where the attacker knows the state of the pool 777 * plus the current outputs, and attempts to find previous 778 * ouputs), unless the hash function can be inverted. By 779 * mixing at least a SHA1 worth of hash data back, we make 780 * brute-forcing the feedback as hard as brute-forcing the 781 * hash. 782 */ 783 mix_pool_bytes_extract(r, hash, sizeof(hash), extract); 784 785 /* 786 * To avoid duplicates, we atomically extract a portion of the 787 * pool while mixing, and hash one final time. 788 */ 789 sha_transform(hash, extract, workspace); 790 memset(extract, 0, sizeof(extract)); 791 memset(workspace, 0, sizeof(workspace)); 792 793 /* 794 * In case the hash function has some recognizable output 795 * pattern, we fold it in half. Thus, we always feed back 796 * twice as much data as we output. 797 */ 798 hash[0] ^= hash[3]; 799 hash[1] ^= hash[4]; 800 hash[2] ^= rol32(hash[2], 16); 801 memcpy(out, hash, EXTRACT_SIZE); 802 memset(hash, 0, sizeof(hash)); 803 } 804 805 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 806 size_t nbytes, int min, int reserved) 807 { 808 ssize_t ret = 0, i; 809 __u8 tmp[EXTRACT_SIZE]; 810 811 xfer_secondary_pool(r, nbytes); 812 nbytes = account(r, nbytes, min, reserved); 813 814 while (nbytes) { 815 extract_buf(r, tmp); 816 i = min_t(int, nbytes, EXTRACT_SIZE); 817 memcpy(buf, tmp, i); 818 nbytes -= i; 819 buf += i; 820 ret += i; 821 } 822 823 /* Wipe data just returned from memory */ 824 memset(tmp, 0, sizeof(tmp)); 825 826 return ret; 827 } 828 829 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 830 size_t nbytes) 831 { 832 ssize_t ret = 0, i; 833 __u8 tmp[EXTRACT_SIZE]; 834 835 xfer_secondary_pool(r, nbytes); 836 nbytes = account(r, nbytes, 0, 0); 837 838 while (nbytes) { 839 if (need_resched()) { 840 if (signal_pending(current)) { 841 if (ret == 0) 842 ret = -ERESTARTSYS; 843 break; 844 } 845 schedule(); 846 } 847 848 extract_buf(r, tmp); 849 i = min_t(int, nbytes, EXTRACT_SIZE); 850 if (copy_to_user(buf, tmp, i)) { 851 ret = -EFAULT; 852 break; 853 } 854 855 nbytes -= i; 856 buf += i; 857 ret += i; 858 } 859 860 /* Wipe data just returned from memory */ 861 memset(tmp, 0, sizeof(tmp)); 862 863 return ret; 864 } 865 866 /* 867 * This function is the exported kernel interface. It returns some 868 * number of good random numbers, suitable for seeding TCP sequence 869 * numbers, etc. 870 */ 871 void get_random_bytes(void *buf, int nbytes) 872 { 873 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 874 } 875 EXPORT_SYMBOL(get_random_bytes); 876 877 /* 878 * init_std_data - initialize pool with system data 879 * 880 * @r: pool to initialize 881 * 882 * This function clears the pool's entropy count and mixes some system 883 * data into the pool to prepare it for use. The pool is not cleared 884 * as that can only decrease the entropy in the pool. 885 */ 886 static void init_std_data(struct entropy_store *r) 887 { 888 ktime_t now; 889 unsigned long flags; 890 891 spin_lock_irqsave(&r->lock, flags); 892 r->entropy_count = 0; 893 spin_unlock_irqrestore(&r->lock, flags); 894 895 now = ktime_get_real(); 896 mix_pool_bytes(r, &now, sizeof(now)); 897 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 898 } 899 900 static int rand_initialize(void) 901 { 902 init_std_data(&input_pool); 903 init_std_data(&blocking_pool); 904 init_std_data(&nonblocking_pool); 905 return 0; 906 } 907 module_init(rand_initialize); 908 909 void rand_initialize_irq(int irq) 910 { 911 struct timer_rand_state *state; 912 913 if (irq >= NR_IRQS || irq_timer_state[irq]) 914 return; 915 916 /* 917 * If kzalloc returns null, we just won't use that entropy 918 * source. 919 */ 920 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 921 if (state) 922 irq_timer_state[irq] = state; 923 } 924 925 #ifdef CONFIG_BLOCK 926 void rand_initialize_disk(struct gendisk *disk) 927 { 928 struct timer_rand_state *state; 929 930 /* 931 * If kzalloc returns null, we just won't use that entropy 932 * source. 933 */ 934 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 935 if (state) 936 disk->random = state; 937 } 938 #endif 939 940 static ssize_t 941 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 942 { 943 ssize_t n, retval = 0, count = 0; 944 945 if (nbytes == 0) 946 return 0; 947 948 while (nbytes > 0) { 949 n = nbytes; 950 if (n > SEC_XFER_SIZE) 951 n = SEC_XFER_SIZE; 952 953 DEBUG_ENT("reading %d bits\n", n*8); 954 955 n = extract_entropy_user(&blocking_pool, buf, n); 956 957 DEBUG_ENT("read got %d bits (%d still needed)\n", 958 n*8, (nbytes-n)*8); 959 960 if (n == 0) { 961 if (file->f_flags & O_NONBLOCK) { 962 retval = -EAGAIN; 963 break; 964 } 965 966 DEBUG_ENT("sleeping?\n"); 967 968 wait_event_interruptible(random_read_wait, 969 input_pool.entropy_count >= 970 random_read_wakeup_thresh); 971 972 DEBUG_ENT("awake\n"); 973 974 if (signal_pending(current)) { 975 retval = -ERESTARTSYS; 976 break; 977 } 978 979 continue; 980 } 981 982 if (n < 0) { 983 retval = n; 984 break; 985 } 986 count += n; 987 buf += n; 988 nbytes -= n; 989 break; /* This break makes the device work */ 990 /* like a named pipe */ 991 } 992 993 /* 994 * If we gave the user some bytes, update the access time. 995 */ 996 if (count) 997 file_accessed(file); 998 999 return (count ? count : retval); 1000 } 1001 1002 static ssize_t 1003 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1004 { 1005 return extract_entropy_user(&nonblocking_pool, buf, nbytes); 1006 } 1007 1008 static unsigned int 1009 random_poll(struct file *file, poll_table * wait) 1010 { 1011 unsigned int mask; 1012 1013 poll_wait(file, &random_read_wait, wait); 1014 poll_wait(file, &random_write_wait, wait); 1015 mask = 0; 1016 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1017 mask |= POLLIN | POLLRDNORM; 1018 if (input_pool.entropy_count < random_write_wakeup_thresh) 1019 mask |= POLLOUT | POLLWRNORM; 1020 return mask; 1021 } 1022 1023 static int 1024 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1025 { 1026 size_t bytes; 1027 __u32 buf[16]; 1028 const char __user *p = buffer; 1029 1030 while (count > 0) { 1031 bytes = min(count, sizeof(buf)); 1032 if (copy_from_user(&buf, p, bytes)) 1033 return -EFAULT; 1034 1035 count -= bytes; 1036 p += bytes; 1037 1038 mix_pool_bytes(r, buf, bytes); 1039 cond_resched(); 1040 } 1041 1042 return 0; 1043 } 1044 1045 static ssize_t random_write(struct file *file, const char __user *buffer, 1046 size_t count, loff_t *ppos) 1047 { 1048 size_t ret; 1049 struct inode *inode = file->f_path.dentry->d_inode; 1050 1051 ret = write_pool(&blocking_pool, buffer, count); 1052 if (ret) 1053 return ret; 1054 ret = write_pool(&nonblocking_pool, buffer, count); 1055 if (ret) 1056 return ret; 1057 1058 inode->i_mtime = current_fs_time(inode->i_sb); 1059 mark_inode_dirty(inode); 1060 return (ssize_t)count; 1061 } 1062 1063 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1064 { 1065 int size, ent_count; 1066 int __user *p = (int __user *)arg; 1067 int retval; 1068 1069 switch (cmd) { 1070 case RNDGETENTCNT: 1071 /* inherently racy, no point locking */ 1072 if (put_user(input_pool.entropy_count, p)) 1073 return -EFAULT; 1074 return 0; 1075 case RNDADDTOENTCNT: 1076 if (!capable(CAP_SYS_ADMIN)) 1077 return -EPERM; 1078 if (get_user(ent_count, p)) 1079 return -EFAULT; 1080 credit_entropy_bits(&input_pool, ent_count); 1081 return 0; 1082 case RNDADDENTROPY: 1083 if (!capable(CAP_SYS_ADMIN)) 1084 return -EPERM; 1085 if (get_user(ent_count, p++)) 1086 return -EFAULT; 1087 if (ent_count < 0) 1088 return -EINVAL; 1089 if (get_user(size, p++)) 1090 return -EFAULT; 1091 retval = write_pool(&input_pool, (const char __user *)p, 1092 size); 1093 if (retval < 0) 1094 return retval; 1095 credit_entropy_bits(&input_pool, ent_count); 1096 return 0; 1097 case RNDZAPENTCNT: 1098 case RNDCLEARPOOL: 1099 /* Clear the entropy pool counters. */ 1100 if (!capable(CAP_SYS_ADMIN)) 1101 return -EPERM; 1102 rand_initialize(); 1103 return 0; 1104 default: 1105 return -EINVAL; 1106 } 1107 } 1108 1109 static int random_fasync(int fd, struct file *filp, int on) 1110 { 1111 return fasync_helper(fd, filp, on, &fasync); 1112 } 1113 1114 static int random_release(struct inode *inode, struct file *filp) 1115 { 1116 return fasync_helper(-1, filp, 0, &fasync); 1117 } 1118 1119 const struct file_operations random_fops = { 1120 .read = random_read, 1121 .write = random_write, 1122 .poll = random_poll, 1123 .unlocked_ioctl = random_ioctl, 1124 .fasync = random_fasync, 1125 .release = random_release, 1126 }; 1127 1128 const struct file_operations urandom_fops = { 1129 .read = urandom_read, 1130 .write = random_write, 1131 .unlocked_ioctl = random_ioctl, 1132 .fasync = random_fasync, 1133 .release = random_release, 1134 }; 1135 1136 /*************************************************************** 1137 * Random UUID interface 1138 * 1139 * Used here for a Boot ID, but can be useful for other kernel 1140 * drivers. 1141 ***************************************************************/ 1142 1143 /* 1144 * Generate random UUID 1145 */ 1146 void generate_random_uuid(unsigned char uuid_out[16]) 1147 { 1148 get_random_bytes(uuid_out, 16); 1149 /* Set UUID version to 4 --- truely random generation */ 1150 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1151 /* Set the UUID variant to DCE */ 1152 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1153 } 1154 EXPORT_SYMBOL(generate_random_uuid); 1155 1156 /******************************************************************** 1157 * 1158 * Sysctl interface 1159 * 1160 ********************************************************************/ 1161 1162 #ifdef CONFIG_SYSCTL 1163 1164 #include <linux/sysctl.h> 1165 1166 static int min_read_thresh = 8, min_write_thresh; 1167 static int max_read_thresh = INPUT_POOL_WORDS * 32; 1168 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1169 static char sysctl_bootid[16]; 1170 1171 /* 1172 * These functions is used to return both the bootid UUID, and random 1173 * UUID. The difference is in whether table->data is NULL; if it is, 1174 * then a new UUID is generated and returned to the user. 1175 * 1176 * If the user accesses this via the proc interface, it will be returned 1177 * as an ASCII string in the standard UUID format. If accesses via the 1178 * sysctl system call, it is returned as 16 bytes of binary data. 1179 */ 1180 static int proc_do_uuid(ctl_table *table, int write, struct file *filp, 1181 void __user *buffer, size_t *lenp, loff_t *ppos) 1182 { 1183 ctl_table fake_table; 1184 unsigned char buf[64], tmp_uuid[16], *uuid; 1185 1186 uuid = table->data; 1187 if (!uuid) { 1188 uuid = tmp_uuid; 1189 uuid[8] = 0; 1190 } 1191 if (uuid[8] == 0) 1192 generate_random_uuid(uuid); 1193 1194 sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-" 1195 "%02x%02x%02x%02x%02x%02x", 1196 uuid[0], uuid[1], uuid[2], uuid[3], 1197 uuid[4], uuid[5], uuid[6], uuid[7], 1198 uuid[8], uuid[9], uuid[10], uuid[11], 1199 uuid[12], uuid[13], uuid[14], uuid[15]); 1200 fake_table.data = buf; 1201 fake_table.maxlen = sizeof(buf); 1202 1203 return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos); 1204 } 1205 1206 static int uuid_strategy(ctl_table *table, int __user *name, int nlen, 1207 void __user *oldval, size_t __user *oldlenp, 1208 void __user *newval, size_t newlen) 1209 { 1210 unsigned char tmp_uuid[16], *uuid; 1211 unsigned int len; 1212 1213 if (!oldval || !oldlenp) 1214 return 1; 1215 1216 uuid = table->data; 1217 if (!uuid) { 1218 uuid = tmp_uuid; 1219 uuid[8] = 0; 1220 } 1221 if (uuid[8] == 0) 1222 generate_random_uuid(uuid); 1223 1224 if (get_user(len, oldlenp)) 1225 return -EFAULT; 1226 if (len) { 1227 if (len > 16) 1228 len = 16; 1229 if (copy_to_user(oldval, uuid, len) || 1230 put_user(len, oldlenp)) 1231 return -EFAULT; 1232 } 1233 return 1; 1234 } 1235 1236 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1237 ctl_table random_table[] = { 1238 { 1239 .ctl_name = RANDOM_POOLSIZE, 1240 .procname = "poolsize", 1241 .data = &sysctl_poolsize, 1242 .maxlen = sizeof(int), 1243 .mode = 0444, 1244 .proc_handler = &proc_dointvec, 1245 }, 1246 { 1247 .ctl_name = RANDOM_ENTROPY_COUNT, 1248 .procname = "entropy_avail", 1249 .maxlen = sizeof(int), 1250 .mode = 0444, 1251 .proc_handler = &proc_dointvec, 1252 .data = &input_pool.entropy_count, 1253 }, 1254 { 1255 .ctl_name = RANDOM_READ_THRESH, 1256 .procname = "read_wakeup_threshold", 1257 .data = &random_read_wakeup_thresh, 1258 .maxlen = sizeof(int), 1259 .mode = 0644, 1260 .proc_handler = &proc_dointvec_minmax, 1261 .strategy = &sysctl_intvec, 1262 .extra1 = &min_read_thresh, 1263 .extra2 = &max_read_thresh, 1264 }, 1265 { 1266 .ctl_name = RANDOM_WRITE_THRESH, 1267 .procname = "write_wakeup_threshold", 1268 .data = &random_write_wakeup_thresh, 1269 .maxlen = sizeof(int), 1270 .mode = 0644, 1271 .proc_handler = &proc_dointvec_minmax, 1272 .strategy = &sysctl_intvec, 1273 .extra1 = &min_write_thresh, 1274 .extra2 = &max_write_thresh, 1275 }, 1276 { 1277 .ctl_name = RANDOM_BOOT_ID, 1278 .procname = "boot_id", 1279 .data = &sysctl_bootid, 1280 .maxlen = 16, 1281 .mode = 0444, 1282 .proc_handler = &proc_do_uuid, 1283 .strategy = &uuid_strategy, 1284 }, 1285 { 1286 .ctl_name = RANDOM_UUID, 1287 .procname = "uuid", 1288 .maxlen = 16, 1289 .mode = 0444, 1290 .proc_handler = &proc_do_uuid, 1291 .strategy = &uuid_strategy, 1292 }, 1293 { .ctl_name = 0 } 1294 }; 1295 #endif /* CONFIG_SYSCTL */ 1296 1297 /******************************************************************** 1298 * 1299 * Random funtions for networking 1300 * 1301 ********************************************************************/ 1302 1303 /* 1304 * TCP initial sequence number picking. This uses the random number 1305 * generator to pick an initial secret value. This value is hashed 1306 * along with the TCP endpoint information to provide a unique 1307 * starting point for each pair of TCP endpoints. This defeats 1308 * attacks which rely on guessing the initial TCP sequence number. 1309 * This algorithm was suggested by Steve Bellovin. 1310 * 1311 * Using a very strong hash was taking an appreciable amount of the total 1312 * TCP connection establishment time, so this is a weaker hash, 1313 * compensated for by changing the secret periodically. 1314 */ 1315 1316 /* F, G and H are basic MD4 functions: selection, majority, parity */ 1317 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 1318 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z))) 1319 #define H(x, y, z) ((x) ^ (y) ^ (z)) 1320 1321 /* 1322 * The generic round function. The application is so specific that 1323 * we don't bother protecting all the arguments with parens, as is generally 1324 * good macro practice, in favor of extra legibility. 1325 * Rotation is separate from addition to prevent recomputation 1326 */ 1327 #define ROUND(f, a, b, c, d, x, s) \ 1328 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s))) 1329 #define K1 0 1330 #define K2 013240474631UL 1331 #define K3 015666365641UL 1332 1333 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1334 1335 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12]) 1336 { 1337 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3]; 1338 1339 /* Round 1 */ 1340 ROUND(F, a, b, c, d, in[ 0] + K1, 3); 1341 ROUND(F, d, a, b, c, in[ 1] + K1, 7); 1342 ROUND(F, c, d, a, b, in[ 2] + K1, 11); 1343 ROUND(F, b, c, d, a, in[ 3] + K1, 19); 1344 ROUND(F, a, b, c, d, in[ 4] + K1, 3); 1345 ROUND(F, d, a, b, c, in[ 5] + K1, 7); 1346 ROUND(F, c, d, a, b, in[ 6] + K1, 11); 1347 ROUND(F, b, c, d, a, in[ 7] + K1, 19); 1348 ROUND(F, a, b, c, d, in[ 8] + K1, 3); 1349 ROUND(F, d, a, b, c, in[ 9] + K1, 7); 1350 ROUND(F, c, d, a, b, in[10] + K1, 11); 1351 ROUND(F, b, c, d, a, in[11] + K1, 19); 1352 1353 /* Round 2 */ 1354 ROUND(G, a, b, c, d, in[ 1] + K2, 3); 1355 ROUND(G, d, a, b, c, in[ 3] + K2, 5); 1356 ROUND(G, c, d, a, b, in[ 5] + K2, 9); 1357 ROUND(G, b, c, d, a, in[ 7] + K2, 13); 1358 ROUND(G, a, b, c, d, in[ 9] + K2, 3); 1359 ROUND(G, d, a, b, c, in[11] + K2, 5); 1360 ROUND(G, c, d, a, b, in[ 0] + K2, 9); 1361 ROUND(G, b, c, d, a, in[ 2] + K2, 13); 1362 ROUND(G, a, b, c, d, in[ 4] + K2, 3); 1363 ROUND(G, d, a, b, c, in[ 6] + K2, 5); 1364 ROUND(G, c, d, a, b, in[ 8] + K2, 9); 1365 ROUND(G, b, c, d, a, in[10] + K2, 13); 1366 1367 /* Round 3 */ 1368 ROUND(H, a, b, c, d, in[ 3] + K3, 3); 1369 ROUND(H, d, a, b, c, in[ 7] + K3, 9); 1370 ROUND(H, c, d, a, b, in[11] + K3, 11); 1371 ROUND(H, b, c, d, a, in[ 2] + K3, 15); 1372 ROUND(H, a, b, c, d, in[ 6] + K3, 3); 1373 ROUND(H, d, a, b, c, in[10] + K3, 9); 1374 ROUND(H, c, d, a, b, in[ 1] + K3, 11); 1375 ROUND(H, b, c, d, a, in[ 5] + K3, 15); 1376 ROUND(H, a, b, c, d, in[ 9] + K3, 3); 1377 ROUND(H, d, a, b, c, in[ 0] + K3, 9); 1378 ROUND(H, c, d, a, b, in[ 4] + K3, 11); 1379 ROUND(H, b, c, d, a, in[ 8] + K3, 15); 1380 1381 return buf[1] + b; /* "most hashed" word */ 1382 /* Alternative: return sum of all words? */ 1383 } 1384 #endif 1385 1386 #undef ROUND 1387 #undef F 1388 #undef G 1389 #undef H 1390 #undef K1 1391 #undef K2 1392 #undef K3 1393 1394 /* This should not be decreased so low that ISNs wrap too fast. */ 1395 #define REKEY_INTERVAL (300 * HZ) 1396 /* 1397 * Bit layout of the tcp sequence numbers (before adding current time): 1398 * bit 24-31: increased after every key exchange 1399 * bit 0-23: hash(source,dest) 1400 * 1401 * The implementation is similar to the algorithm described 1402 * in the Appendix of RFC 1185, except that 1403 * - it uses a 1 MHz clock instead of a 250 kHz clock 1404 * - it performs a rekey every 5 minutes, which is equivalent 1405 * to a (source,dest) tulple dependent forward jump of the 1406 * clock by 0..2^(HASH_BITS+1) 1407 * 1408 * Thus the average ISN wraparound time is 68 minutes instead of 1409 * 4.55 hours. 1410 * 1411 * SMP cleanup and lock avoidance with poor man's RCU. 1412 * Manfred Spraul <manfred@colorfullife.com> 1413 * 1414 */ 1415 #define COUNT_BITS 8 1416 #define COUNT_MASK ((1 << COUNT_BITS) - 1) 1417 #define HASH_BITS 24 1418 #define HASH_MASK ((1 << HASH_BITS) - 1) 1419 1420 static struct keydata { 1421 __u32 count; /* already shifted to the final position */ 1422 __u32 secret[12]; 1423 } ____cacheline_aligned ip_keydata[2]; 1424 1425 static unsigned int ip_cnt; 1426 1427 static void rekey_seq_generator(struct work_struct *work); 1428 1429 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator); 1430 1431 /* 1432 * Lock avoidance: 1433 * The ISN generation runs lockless - it's just a hash over random data. 1434 * State changes happen every 5 minutes when the random key is replaced. 1435 * Synchronization is performed by having two copies of the hash function 1436 * state and rekey_seq_generator always updates the inactive copy. 1437 * The copy is then activated by updating ip_cnt. 1438 * The implementation breaks down if someone blocks the thread 1439 * that processes SYN requests for more than 5 minutes. Should never 1440 * happen, and even if that happens only a not perfectly compliant 1441 * ISN is generated, nothing fatal. 1442 */ 1443 static void rekey_seq_generator(struct work_struct *work) 1444 { 1445 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)]; 1446 1447 get_random_bytes(keyptr->secret, sizeof(keyptr->secret)); 1448 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS; 1449 smp_wmb(); 1450 ip_cnt++; 1451 schedule_delayed_work(&rekey_work, REKEY_INTERVAL); 1452 } 1453 1454 static inline struct keydata *get_keyptr(void) 1455 { 1456 struct keydata *keyptr = &ip_keydata[ip_cnt & 1]; 1457 1458 smp_rmb(); 1459 1460 return keyptr; 1461 } 1462 1463 static __init int seqgen_init(void) 1464 { 1465 rekey_seq_generator(NULL); 1466 return 0; 1467 } 1468 late_initcall(seqgen_init); 1469 1470 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1471 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr, 1472 __be16 sport, __be16 dport) 1473 { 1474 __u32 seq; 1475 __u32 hash[12]; 1476 struct keydata *keyptr = get_keyptr(); 1477 1478 /* The procedure is the same as for IPv4, but addresses are longer. 1479 * Thus we must use twothirdsMD4Transform. 1480 */ 1481 1482 memcpy(hash, saddr, 16); 1483 hash[4] = ((__force u16)sport << 16) + (__force u16)dport; 1484 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); 1485 1486 seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK; 1487 seq += keyptr->count; 1488 1489 seq += ktime_to_ns(ktime_get_real()); 1490 1491 return seq; 1492 } 1493 EXPORT_SYMBOL(secure_tcpv6_sequence_number); 1494 #endif 1495 1496 /* The code below is shamelessly stolen from secure_tcp_sequence_number(). 1497 * All blames to Andrey V. Savochkin <saw@msu.ru>. 1498 */ 1499 __u32 secure_ip_id(__be32 daddr) 1500 { 1501 struct keydata *keyptr; 1502 __u32 hash[4]; 1503 1504 keyptr = get_keyptr(); 1505 1506 /* 1507 * Pick a unique starting offset for each IP destination. 1508 * The dest ip address is placed in the starting vector, 1509 * which is then hashed with random data. 1510 */ 1511 hash[0] = (__force __u32)daddr; 1512 hash[1] = keyptr->secret[9]; 1513 hash[2] = keyptr->secret[10]; 1514 hash[3] = keyptr->secret[11]; 1515 1516 return half_md4_transform(hash, keyptr->secret); 1517 } 1518 1519 #ifdef CONFIG_INET 1520 1521 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr, 1522 __be16 sport, __be16 dport) 1523 { 1524 __u32 seq; 1525 __u32 hash[4]; 1526 struct keydata *keyptr = get_keyptr(); 1527 1528 /* 1529 * Pick a unique starting offset for each TCP connection endpoints 1530 * (saddr, daddr, sport, dport). 1531 * Note that the words are placed into the starting vector, which is 1532 * then mixed with a partial MD4 over random data. 1533 */ 1534 hash[0] = (__force u32)saddr; 1535 hash[1] = (__force u32)daddr; 1536 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1537 hash[3] = keyptr->secret[11]; 1538 1539 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK; 1540 seq += keyptr->count; 1541 /* 1542 * As close as possible to RFC 793, which 1543 * suggests using a 250 kHz clock. 1544 * Further reading shows this assumes 2 Mb/s networks. 1545 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate. 1546 * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but 1547 * we also need to limit the resolution so that the u32 seq 1548 * overlaps less than one time per MSL (2 minutes). 1549 * Choosing a clock of 64 ns period is OK. (period of 274 s) 1550 */ 1551 seq += ktime_to_ns(ktime_get_real()) >> 6; 1552 1553 return seq; 1554 } 1555 1556 /* Generate secure starting point for ephemeral IPV4 transport port search */ 1557 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport) 1558 { 1559 struct keydata *keyptr = get_keyptr(); 1560 u32 hash[4]; 1561 1562 /* 1563 * Pick a unique starting offset for each ephemeral port search 1564 * (saddr, daddr, dport) and 48bits of random data. 1565 */ 1566 hash[0] = (__force u32)saddr; 1567 hash[1] = (__force u32)daddr; 1568 hash[2] = (__force u32)dport ^ keyptr->secret[10]; 1569 hash[3] = keyptr->secret[11]; 1570 1571 return half_md4_transform(hash, keyptr->secret); 1572 } 1573 1574 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1575 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, 1576 __be16 dport) 1577 { 1578 struct keydata *keyptr = get_keyptr(); 1579 u32 hash[12]; 1580 1581 memcpy(hash, saddr, 16); 1582 hash[4] = (__force u32)dport; 1583 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); 1584 1585 return twothirdsMD4Transform((const __u32 *)daddr, hash); 1586 } 1587 #endif 1588 1589 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE) 1590 /* Similar to secure_tcp_sequence_number but generate a 48 bit value 1591 * bit's 32-47 increase every key exchange 1592 * 0-31 hash(source, dest) 1593 */ 1594 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr, 1595 __be16 sport, __be16 dport) 1596 { 1597 u64 seq; 1598 __u32 hash[4]; 1599 struct keydata *keyptr = get_keyptr(); 1600 1601 hash[0] = (__force u32)saddr; 1602 hash[1] = (__force u32)daddr; 1603 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1604 hash[3] = keyptr->secret[11]; 1605 1606 seq = half_md4_transform(hash, keyptr->secret); 1607 seq |= ((u64)keyptr->count) << (32 - HASH_BITS); 1608 1609 seq += ktime_to_ns(ktime_get_real()); 1610 seq &= (1ull << 48) - 1; 1611 1612 return seq; 1613 } 1614 EXPORT_SYMBOL(secure_dccp_sequence_number); 1615 #endif 1616 1617 #endif /* CONFIG_INET */ 1618 1619 1620 /* 1621 * Get a random word for internal kernel use only. Similar to urandom but 1622 * with the goal of minimal entropy pool depletion. As a result, the random 1623 * value is not cryptographically secure but for several uses the cost of 1624 * depleting entropy is too high 1625 */ 1626 unsigned int get_random_int(void) 1627 { 1628 /* 1629 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself 1630 * every second, from the entropy pool (and thus creates a limited 1631 * drain on it), and uses halfMD4Transform within the second. We 1632 * also mix it with jiffies and the PID: 1633 */ 1634 return secure_ip_id((__force __be32)(current->pid + jiffies)); 1635 } 1636 1637 /* 1638 * randomize_range() returns a start address such that 1639 * 1640 * [...... <range> .....] 1641 * start end 1642 * 1643 * a <range> with size "len" starting at the return value is inside in the 1644 * area defined by [start, end], but is otherwise randomized. 1645 */ 1646 unsigned long 1647 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1648 { 1649 unsigned long range = end - len - start; 1650 1651 if (end <= start + len) 1652 return 0; 1653 return PAGE_ALIGN(get_random_int() % range + start); 1654 } 1655