xref: /linux/drivers/char/random.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5  * Rights Reserved.
6  *
7  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8  *
9  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
10  * rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  */
44 
45 /*
46  * (now, with legal B.S. out of the way.....)
47  *
48  * This routine gathers environmental noise from device drivers, etc.,
49  * and returns good random numbers, suitable for cryptographic use.
50  * Besides the obvious cryptographic uses, these numbers are also good
51  * for seeding TCP sequence numbers, and other places where it is
52  * desirable to have numbers which are not only random, but hard to
53  * predict by an attacker.
54  *
55  * Theory of operation
56  * ===================
57  *
58  * Computers are very predictable devices.  Hence it is extremely hard
59  * to produce truly random numbers on a computer --- as opposed to
60  * pseudo-random numbers, which can easily generated by using a
61  * algorithm.  Unfortunately, it is very easy for attackers to guess
62  * the sequence of pseudo-random number generators, and for some
63  * applications this is not acceptable.  So instead, we must try to
64  * gather "environmental noise" from the computer's environment, which
65  * must be hard for outside attackers to observe, and use that to
66  * generate random numbers.  In a Unix environment, this is best done
67  * from inside the kernel.
68  *
69  * Sources of randomness from the environment include inter-keyboard
70  * timings, inter-interrupt timings from some interrupts, and other
71  * events which are both (a) non-deterministic and (b) hard for an
72  * outside observer to measure.  Randomness from these sources are
73  * added to an "entropy pool", which is mixed using a CRC-like function.
74  * This is not cryptographically strong, but it is adequate assuming
75  * the randomness is not chosen maliciously, and it is fast enough that
76  * the overhead of doing it on every interrupt is very reasonable.
77  * As random bytes are mixed into the entropy pool, the routines keep
78  * an *estimate* of how many bits of randomness have been stored into
79  * the random number generator's internal state.
80  *
81  * When random bytes are desired, they are obtained by taking the SHA
82  * hash of the contents of the "entropy pool".  The SHA hash avoids
83  * exposing the internal state of the entropy pool.  It is believed to
84  * be computationally infeasible to derive any useful information
85  * about the input of SHA from its output.  Even if it is possible to
86  * analyze SHA in some clever way, as long as the amount of data
87  * returned from the generator is less than the inherent entropy in
88  * the pool, the output data is totally unpredictable.  For this
89  * reason, the routine decreases its internal estimate of how many
90  * bits of "true randomness" are contained in the entropy pool as it
91  * outputs random numbers.
92  *
93  * If this estimate goes to zero, the routine can still generate
94  * random numbers; however, an attacker may (at least in theory) be
95  * able to infer the future output of the generator from prior
96  * outputs.  This requires successful cryptanalysis of SHA, which is
97  * not believed to be feasible, but there is a remote possibility.
98  * Nonetheless, these numbers should be useful for the vast majority
99  * of purposes.
100  *
101  * Exported interfaces ---- output
102  * ===============================
103  *
104  * There are three exported interfaces; the first is one designed to
105  * be used from within the kernel:
106  *
107  * 	void get_random_bytes(void *buf, int nbytes);
108  *
109  * This interface will return the requested number of random bytes,
110  * and place it in the requested buffer.
111  *
112  * The two other interfaces are two character devices /dev/random and
113  * /dev/urandom.  /dev/random is suitable for use when very high
114  * quality randomness is desired (for example, for key generation or
115  * one-time pads), as it will only return a maximum of the number of
116  * bits of randomness (as estimated by the random number generator)
117  * contained in the entropy pool.
118  *
119  * The /dev/urandom device does not have this limit, and will return
120  * as many bytes as are requested.  As more and more random bytes are
121  * requested without giving time for the entropy pool to recharge,
122  * this will result in random numbers that are merely cryptographically
123  * strong.  For many applications, however, this is acceptable.
124  *
125  * Exported interfaces ---- input
126  * ==============================
127  *
128  * The current exported interfaces for gathering environmental noise
129  * from the devices are:
130  *
131  *	void add_device_randomness(const void *buf, unsigned int size);
132  * 	void add_input_randomness(unsigned int type, unsigned int code,
133  *                                unsigned int value);
134  *	void add_interrupt_randomness(int irq, int irq_flags);
135  * 	void add_disk_randomness(struct gendisk *disk);
136  *
137  * add_device_randomness() is for adding data to the random pool that
138  * is likely to differ between two devices (or possibly even per boot).
139  * This would be things like MAC addresses or serial numbers, or the
140  * read-out of the RTC. This does *not* add any actual entropy to the
141  * pool, but it initializes the pool to different values for devices
142  * that might otherwise be identical and have very little entropy
143  * available to them (particularly common in the embedded world).
144  *
145  * add_input_randomness() uses the input layer interrupt timing, as well as
146  * the event type information from the hardware.
147  *
148  * add_interrupt_randomness() uses the interrupt timing as random
149  * inputs to the entropy pool. Using the cycle counters and the irq source
150  * as inputs, it feeds the randomness roughly once a second.
151  *
152  * add_disk_randomness() uses what amounts to the seek time of block
153  * layer request events, on a per-disk_devt basis, as input to the
154  * entropy pool. Note that high-speed solid state drives with very low
155  * seek times do not make for good sources of entropy, as their seek
156  * times are usually fairly consistent.
157  *
158  * All of these routines try to estimate how many bits of randomness a
159  * particular randomness source.  They do this by keeping track of the
160  * first and second order deltas of the event timings.
161  *
162  * Ensuring unpredictability at system startup
163  * ============================================
164  *
165  * When any operating system starts up, it will go through a sequence
166  * of actions that are fairly predictable by an adversary, especially
167  * if the start-up does not involve interaction with a human operator.
168  * This reduces the actual number of bits of unpredictability in the
169  * entropy pool below the value in entropy_count.  In order to
170  * counteract this effect, it helps to carry information in the
171  * entropy pool across shut-downs and start-ups.  To do this, put the
172  * following lines an appropriate script which is run during the boot
173  * sequence:
174  *
175  *	echo "Initializing random number generator..."
176  *	random_seed=/var/run/random-seed
177  *	# Carry a random seed from start-up to start-up
178  *	# Load and then save the whole entropy pool
179  *	if [ -f $random_seed ]; then
180  *		cat $random_seed >/dev/urandom
181  *	else
182  *		touch $random_seed
183  *	fi
184  *	chmod 600 $random_seed
185  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
186  *
187  * and the following lines in an appropriate script which is run as
188  * the system is shutdown:
189  *
190  *	# Carry a random seed from shut-down to start-up
191  *	# Save the whole entropy pool
192  *	echo "Saving random seed..."
193  *	random_seed=/var/run/random-seed
194  *	touch $random_seed
195  *	chmod 600 $random_seed
196  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
197  *
198  * For example, on most modern systems using the System V init
199  * scripts, such code fragments would be found in
200  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
201  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202  *
203  * Effectively, these commands cause the contents of the entropy pool
204  * to be saved at shut-down time and reloaded into the entropy pool at
205  * start-up.  (The 'dd' in the addition to the bootup script is to
206  * make sure that /etc/random-seed is different for every start-up,
207  * even if the system crashes without executing rc.0.)  Even with
208  * complete knowledge of the start-up activities, predicting the state
209  * of the entropy pool requires knowledge of the previous history of
210  * the system.
211  *
212  * Configuring the /dev/random driver under Linux
213  * ==============================================
214  *
215  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216  * the /dev/mem major number (#1).  So if your system does not have
217  * /dev/random and /dev/urandom created already, they can be created
218  * by using the commands:
219  *
220  * 	mknod /dev/random c 1 8
221  * 	mknod /dev/urandom c 1 9
222  *
223  * Acknowledgements:
224  * =================
225  *
226  * Ideas for constructing this random number generator were derived
227  * from Pretty Good Privacy's random number generator, and from private
228  * discussions with Phil Karn.  Colin Plumb provided a faster random
229  * number generator, which speed up the mixing function of the entropy
230  * pool, taken from PGPfone.  Dale Worley has also contributed many
231  * useful ideas and suggestions to improve this driver.
232  *
233  * Any flaws in the design are solely my responsibility, and should
234  * not be attributed to the Phil, Colin, or any of authors of PGP.
235  *
236  * Further background information on this topic may be obtained from
237  * RFC 1750, "Randomness Recommendations for Security", by Donald
238  * Eastlake, Steve Crocker, and Jeff Schiller.
239  */
240 
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/workqueue.h>
263 #include <linux/irq.h>
264 #include <linux/ratelimit.h>
265 #include <linux/syscalls.h>
266 #include <linux/completion.h>
267 #include <linux/uuid.h>
268 #include <crypto/chacha20.h>
269 
270 #include <asm/processor.h>
271 #include <linux/uaccess.h>
272 #include <asm/irq.h>
273 #include <asm/irq_regs.h>
274 #include <asm/io.h>
275 
276 #define CREATE_TRACE_POINTS
277 #include <trace/events/random.h>
278 
279 /* #define ADD_INTERRUPT_BENCH */
280 
281 /*
282  * Configuration information
283  */
284 #define INPUT_POOL_SHIFT	12
285 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
286 #define OUTPUT_POOL_SHIFT	10
287 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
288 #define SEC_XFER_SIZE		512
289 #define EXTRACT_SIZE		10
290 
291 
292 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293 
294 /*
295  * To allow fractional bits to be tracked, the entropy_count field is
296  * denominated in units of 1/8th bits.
297  *
298  * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299  * credit_entropy_bits() needs to be 64 bits wide.
300  */
301 #define ENTROPY_SHIFT 3
302 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303 
304 /*
305  * The minimum number of bits of entropy before we wake up a read on
306  * /dev/random.  Should be enough to do a significant reseed.
307  */
308 static int random_read_wakeup_bits = 64;
309 
310 /*
311  * If the entropy count falls under this number of bits, then we
312  * should wake up processes which are selecting or polling on write
313  * access to /dev/random.
314  */
315 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
316 
317 /*
318  * Originally, we used a primitive polynomial of degree .poolwords
319  * over GF(2).  The taps for various sizes are defined below.  They
320  * were chosen to be evenly spaced except for the last tap, which is 1
321  * to get the twisting happening as fast as possible.
322  *
323  * For the purposes of better mixing, we use the CRC-32 polynomial as
324  * well to make a (modified) twisted Generalized Feedback Shift
325  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
326  * generators.  ACM Transactions on Modeling and Computer Simulation
327  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
328  * GFSR generators II.  ACM Transactions on Modeling and Computer
329  * Simulation 4:254-266)
330  *
331  * Thanks to Colin Plumb for suggesting this.
332  *
333  * The mixing operation is much less sensitive than the output hash,
334  * where we use SHA-1.  All that we want of mixing operation is that
335  * it be a good non-cryptographic hash; i.e. it not produce collisions
336  * when fed "random" data of the sort we expect to see.  As long as
337  * the pool state differs for different inputs, we have preserved the
338  * input entropy and done a good job.  The fact that an intelligent
339  * attacker can construct inputs that will produce controlled
340  * alterations to the pool's state is not important because we don't
341  * consider such inputs to contribute any randomness.  The only
342  * property we need with respect to them is that the attacker can't
343  * increase his/her knowledge of the pool's state.  Since all
344  * additions are reversible (knowing the final state and the input,
345  * you can reconstruct the initial state), if an attacker has any
346  * uncertainty about the initial state, he/she can only shuffle that
347  * uncertainty about, but never cause any collisions (which would
348  * decrease the uncertainty).
349  *
350  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351  * Videau in their paper, "The Linux Pseudorandom Number Generator
352  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
353  * paper, they point out that we are not using a true Twisted GFSR,
354  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355  * is, with only three taps, instead of the six that we are using).
356  * As a result, the resulting polynomial is neither primitive nor
357  * irreducible, and hence does not have a maximal period over
358  * GF(2**32).  They suggest a slight change to the generator
359  * polynomial which improves the resulting TGFSR polynomial to be
360  * irreducible, which we have made here.
361  */
362 static struct poolinfo {
363 	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 	int tap1, tap2, tap3, tap4, tap5;
366 } poolinfo_table[] = {
367 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 	{ S(128),	104,	76,	51,	25,	1 },
370 	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 	{ S(32),	26,	19,	14,	7,	1 },
373 #if 0
374 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
375 	{ S(2048),	1638,	1231,	819,	411,	1 },
376 
377 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 	{ S(1024),	817,	615,	412,	204,	1 },
379 
380 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 	{ S(1024),	819,	616,	410,	207,	2 },
382 
383 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 	{ S(512),	411,	308,	208,	104,	1 },
385 
386 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 	{ S(512),	409,	307,	206,	102,	2 },
388 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 	{ S(512),	409,	309,	205,	103,	2 },
390 
391 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 	{ S(256),	205,	155,	101,	52,	1 },
393 
394 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 	{ S(128),	103,	78,	51,	27,	2 },
396 
397 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 	{ S(64),	52,	39,	26,	14,	1 },
399 #endif
400 };
401 
402 /*
403  * Static global variables
404  */
405 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
407 static struct fasync_struct *fasync;
408 
409 static DEFINE_SPINLOCK(random_ready_list_lock);
410 static LIST_HEAD(random_ready_list);
411 
412 struct crng_state {
413 	__u32		state[16];
414 	unsigned long	init_time;
415 	spinlock_t	lock;
416 };
417 
418 struct crng_state primary_crng = {
419 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
420 };
421 
422 /*
423  * crng_init =  0 --> Uninitialized
424  *		1 --> Initialized
425  *		2 --> Initialized from input_pool
426  *
427  * crng_init is protected by primary_crng->lock, and only increases
428  * its value (from 0->1->2).
429  */
430 static int crng_init = 0;
431 #define crng_ready() (likely(crng_init > 1))
432 static int crng_init_cnt = 0;
433 static unsigned long crng_global_init_time = 0;
434 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
435 static void _extract_crng(struct crng_state *crng,
436 			  __u32 out[CHACHA20_BLOCK_WORDS]);
437 static void _crng_backtrack_protect(struct crng_state *crng,
438 				    __u32 tmp[CHACHA20_BLOCK_WORDS], int used);
439 static void process_random_ready_list(void);
440 static void _get_random_bytes(void *buf, int nbytes);
441 
442 static struct ratelimit_state unseeded_warning =
443 	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
444 static struct ratelimit_state urandom_warning =
445 	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
446 
447 static int ratelimit_disable __read_mostly;
448 
449 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
450 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
451 
452 /**********************************************************************
453  *
454  * OS independent entropy store.   Here are the functions which handle
455  * storing entropy in an entropy pool.
456  *
457  **********************************************************************/
458 
459 struct entropy_store;
460 struct entropy_store {
461 	/* read-only data: */
462 	const struct poolinfo *poolinfo;
463 	__u32 *pool;
464 	const char *name;
465 	struct entropy_store *pull;
466 	struct work_struct push_work;
467 
468 	/* read-write data: */
469 	unsigned long last_pulled;
470 	spinlock_t lock;
471 	unsigned short add_ptr;
472 	unsigned short input_rotate;
473 	int entropy_count;
474 	int entropy_total;
475 	unsigned int initialized:1;
476 	unsigned int last_data_init:1;
477 	__u8 last_data[EXTRACT_SIZE];
478 };
479 
480 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
481 			       size_t nbytes, int min, int rsvd);
482 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
483 				size_t nbytes, int fips);
484 
485 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
486 static void push_to_pool(struct work_struct *work);
487 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
488 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
489 
490 static struct entropy_store input_pool = {
491 	.poolinfo = &poolinfo_table[0],
492 	.name = "input",
493 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
494 	.pool = input_pool_data
495 };
496 
497 static struct entropy_store blocking_pool = {
498 	.poolinfo = &poolinfo_table[1],
499 	.name = "blocking",
500 	.pull = &input_pool,
501 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
502 	.pool = blocking_pool_data,
503 	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
504 					push_to_pool),
505 };
506 
507 static __u32 const twist_table[8] = {
508 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
509 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
510 
511 /*
512  * This function adds bytes into the entropy "pool".  It does not
513  * update the entropy estimate.  The caller should call
514  * credit_entropy_bits if this is appropriate.
515  *
516  * The pool is stirred with a primitive polynomial of the appropriate
517  * degree, and then twisted.  We twist by three bits at a time because
518  * it's cheap to do so and helps slightly in the expected case where
519  * the entropy is concentrated in the low-order bits.
520  */
521 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
522 			    int nbytes)
523 {
524 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
525 	int input_rotate;
526 	int wordmask = r->poolinfo->poolwords - 1;
527 	const char *bytes = in;
528 	__u32 w;
529 
530 	tap1 = r->poolinfo->tap1;
531 	tap2 = r->poolinfo->tap2;
532 	tap3 = r->poolinfo->tap3;
533 	tap4 = r->poolinfo->tap4;
534 	tap5 = r->poolinfo->tap5;
535 
536 	input_rotate = r->input_rotate;
537 	i = r->add_ptr;
538 
539 	/* mix one byte at a time to simplify size handling and churn faster */
540 	while (nbytes--) {
541 		w = rol32(*bytes++, input_rotate);
542 		i = (i - 1) & wordmask;
543 
544 		/* XOR in the various taps */
545 		w ^= r->pool[i];
546 		w ^= r->pool[(i + tap1) & wordmask];
547 		w ^= r->pool[(i + tap2) & wordmask];
548 		w ^= r->pool[(i + tap3) & wordmask];
549 		w ^= r->pool[(i + tap4) & wordmask];
550 		w ^= r->pool[(i + tap5) & wordmask];
551 
552 		/* Mix the result back in with a twist */
553 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
554 
555 		/*
556 		 * Normally, we add 7 bits of rotation to the pool.
557 		 * At the beginning of the pool, add an extra 7 bits
558 		 * rotation, so that successive passes spread the
559 		 * input bits across the pool evenly.
560 		 */
561 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
562 	}
563 
564 	r->input_rotate = input_rotate;
565 	r->add_ptr = i;
566 }
567 
568 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
569 			     int nbytes)
570 {
571 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
572 	_mix_pool_bytes(r, in, nbytes);
573 }
574 
575 static void mix_pool_bytes(struct entropy_store *r, const void *in,
576 			   int nbytes)
577 {
578 	unsigned long flags;
579 
580 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
581 	spin_lock_irqsave(&r->lock, flags);
582 	_mix_pool_bytes(r, in, nbytes);
583 	spin_unlock_irqrestore(&r->lock, flags);
584 }
585 
586 struct fast_pool {
587 	__u32		pool[4];
588 	unsigned long	last;
589 	unsigned short	reg_idx;
590 	unsigned char	count;
591 };
592 
593 /*
594  * This is a fast mixing routine used by the interrupt randomness
595  * collector.  It's hardcoded for an 128 bit pool and assumes that any
596  * locks that might be needed are taken by the caller.
597  */
598 static void fast_mix(struct fast_pool *f)
599 {
600 	__u32 a = f->pool[0],	b = f->pool[1];
601 	__u32 c = f->pool[2],	d = f->pool[3];
602 
603 	a += b;			c += d;
604 	b = rol32(b, 6);	d = rol32(d, 27);
605 	d ^= a;			b ^= c;
606 
607 	a += b;			c += d;
608 	b = rol32(b, 16);	d = rol32(d, 14);
609 	d ^= a;			b ^= c;
610 
611 	a += b;			c += d;
612 	b = rol32(b, 6);	d = rol32(d, 27);
613 	d ^= a;			b ^= c;
614 
615 	a += b;			c += d;
616 	b = rol32(b, 16);	d = rol32(d, 14);
617 	d ^= a;			b ^= c;
618 
619 	f->pool[0] = a;  f->pool[1] = b;
620 	f->pool[2] = c;  f->pool[3] = d;
621 	f->count++;
622 }
623 
624 static void process_random_ready_list(void)
625 {
626 	unsigned long flags;
627 	struct random_ready_callback *rdy, *tmp;
628 
629 	spin_lock_irqsave(&random_ready_list_lock, flags);
630 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
631 		struct module *owner = rdy->owner;
632 
633 		list_del_init(&rdy->list);
634 		rdy->func(rdy);
635 		module_put(owner);
636 	}
637 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
638 }
639 
640 /*
641  * Credit (or debit) the entropy store with n bits of entropy.
642  * Use credit_entropy_bits_safe() if the value comes from userspace
643  * or otherwise should be checked for extreme values.
644  */
645 static void credit_entropy_bits(struct entropy_store *r, int nbits)
646 {
647 	int entropy_count, orig;
648 	const int pool_size = r->poolinfo->poolfracbits;
649 	int nfrac = nbits << ENTROPY_SHIFT;
650 
651 	if (!nbits)
652 		return;
653 
654 retry:
655 	entropy_count = orig = READ_ONCE(r->entropy_count);
656 	if (nfrac < 0) {
657 		/* Debit */
658 		entropy_count += nfrac;
659 	} else {
660 		/*
661 		 * Credit: we have to account for the possibility of
662 		 * overwriting already present entropy.	 Even in the
663 		 * ideal case of pure Shannon entropy, new contributions
664 		 * approach the full value asymptotically:
665 		 *
666 		 * entropy <- entropy + (pool_size - entropy) *
667 		 *	(1 - exp(-add_entropy/pool_size))
668 		 *
669 		 * For add_entropy <= pool_size/2 then
670 		 * (1 - exp(-add_entropy/pool_size)) >=
671 		 *    (add_entropy/pool_size)*0.7869...
672 		 * so we can approximate the exponential with
673 		 * 3/4*add_entropy/pool_size and still be on the
674 		 * safe side by adding at most pool_size/2 at a time.
675 		 *
676 		 * The use of pool_size-2 in the while statement is to
677 		 * prevent rounding artifacts from making the loop
678 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
679 		 * turns no matter how large nbits is.
680 		 */
681 		int pnfrac = nfrac;
682 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
683 		/* The +2 corresponds to the /4 in the denominator */
684 
685 		do {
686 			unsigned int anfrac = min(pnfrac, pool_size/2);
687 			unsigned int add =
688 				((pool_size - entropy_count)*anfrac*3) >> s;
689 
690 			entropy_count += add;
691 			pnfrac -= anfrac;
692 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
693 	}
694 
695 	if (unlikely(entropy_count < 0)) {
696 		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
697 			r->name, entropy_count);
698 		WARN_ON(1);
699 		entropy_count = 0;
700 	} else if (entropy_count > pool_size)
701 		entropy_count = pool_size;
702 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
703 		goto retry;
704 
705 	r->entropy_total += nbits;
706 	if (!r->initialized && r->entropy_total > 128) {
707 		r->initialized = 1;
708 		r->entropy_total = 0;
709 	}
710 
711 	trace_credit_entropy_bits(r->name, nbits,
712 				  entropy_count >> ENTROPY_SHIFT,
713 				  r->entropy_total, _RET_IP_);
714 
715 	if (r == &input_pool) {
716 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
717 
718 		if (crng_init < 2 && entropy_bits >= 128) {
719 			crng_reseed(&primary_crng, r);
720 			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
721 		}
722 
723 		/* should we wake readers? */
724 		if (entropy_bits >= random_read_wakeup_bits &&
725 		    wq_has_sleeper(&random_read_wait)) {
726 			wake_up_interruptible(&random_read_wait);
727 			kill_fasync(&fasync, SIGIO, POLL_IN);
728 		}
729 		/* If the input pool is getting full, send some
730 		 * entropy to the blocking pool until it is 75% full.
731 		 */
732 		if (entropy_bits > random_write_wakeup_bits &&
733 		    r->initialized &&
734 		    r->entropy_total >= 2*random_read_wakeup_bits) {
735 			struct entropy_store *other = &blocking_pool;
736 
737 			if (other->entropy_count <=
738 			    3 * other->poolinfo->poolfracbits / 4) {
739 				schedule_work(&other->push_work);
740 				r->entropy_total = 0;
741 			}
742 		}
743 	}
744 }
745 
746 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
747 {
748 	const int nbits_max = r->poolinfo->poolwords * 32;
749 
750 	if (nbits < 0)
751 		return -EINVAL;
752 
753 	/* Cap the value to avoid overflows */
754 	nbits = min(nbits,  nbits_max);
755 
756 	credit_entropy_bits(r, nbits);
757 	return 0;
758 }
759 
760 /*********************************************************************
761  *
762  * CRNG using CHACHA20
763  *
764  *********************************************************************/
765 
766 #define CRNG_RESEED_INTERVAL (300*HZ)
767 
768 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
769 
770 #ifdef CONFIG_NUMA
771 /*
772  * Hack to deal with crazy userspace progams when they are all trying
773  * to access /dev/urandom in parallel.  The programs are almost
774  * certainly doing something terribly wrong, but we'll work around
775  * their brain damage.
776  */
777 static struct crng_state **crng_node_pool __read_mostly;
778 #endif
779 
780 static void invalidate_batched_entropy(void);
781 
782 static void crng_initialize(struct crng_state *crng)
783 {
784 	int		i;
785 	int		arch_init = 1;
786 	unsigned long	rv;
787 
788 	memcpy(&crng->state[0], "expand 32-byte k", 16);
789 	if (crng == &primary_crng)
790 		_extract_entropy(&input_pool, &crng->state[4],
791 				 sizeof(__u32) * 12, 0);
792 	else
793 		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
794 	for (i = 4; i < 16; i++) {
795 		if (!arch_get_random_seed_long(&rv) &&
796 		    !arch_get_random_long(&rv)) {
797 			rv = random_get_entropy();
798 			arch_init = 0;
799 		}
800 		crng->state[i] ^= rv;
801 	}
802 #ifdef CONFIG_RANDOM_TRUST_CPU
803 	if (arch_init) {
804 		crng_init = 2;
805 		pr_notice("random: crng done (trusting CPU's manufacturer)\n");
806 	}
807 #endif
808 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
809 }
810 
811 #ifdef CONFIG_NUMA
812 static void do_numa_crng_init(struct work_struct *work)
813 {
814 	int i;
815 	struct crng_state *crng;
816 	struct crng_state **pool;
817 
818 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
819 	for_each_online_node(i) {
820 		crng = kmalloc_node(sizeof(struct crng_state),
821 				    GFP_KERNEL | __GFP_NOFAIL, i);
822 		spin_lock_init(&crng->lock);
823 		crng_initialize(crng);
824 		pool[i] = crng;
825 	}
826 	mb();
827 	if (cmpxchg(&crng_node_pool, NULL, pool)) {
828 		for_each_node(i)
829 			kfree(pool[i]);
830 		kfree(pool);
831 	}
832 }
833 
834 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
835 
836 static void numa_crng_init(void)
837 {
838 	schedule_work(&numa_crng_init_work);
839 }
840 #else
841 static void numa_crng_init(void) {}
842 #endif
843 
844 /*
845  * crng_fast_load() can be called by code in the interrupt service
846  * path.  So we can't afford to dilly-dally.
847  */
848 static int crng_fast_load(const char *cp, size_t len)
849 {
850 	unsigned long flags;
851 	char *p;
852 
853 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
854 		return 0;
855 	if (crng_init != 0) {
856 		spin_unlock_irqrestore(&primary_crng.lock, flags);
857 		return 0;
858 	}
859 	p = (unsigned char *) &primary_crng.state[4];
860 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
861 		p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
862 		cp++; crng_init_cnt++; len--;
863 	}
864 	spin_unlock_irqrestore(&primary_crng.lock, flags);
865 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
866 		invalidate_batched_entropy();
867 		crng_init = 1;
868 		wake_up_interruptible(&crng_init_wait);
869 		pr_notice("random: fast init done\n");
870 	}
871 	return 1;
872 }
873 
874 /*
875  * crng_slow_load() is called by add_device_randomness, which has two
876  * attributes.  (1) We can't trust the buffer passed to it is
877  * guaranteed to be unpredictable (so it might not have any entropy at
878  * all), and (2) it doesn't have the performance constraints of
879  * crng_fast_load().
880  *
881  * So we do something more comprehensive which is guaranteed to touch
882  * all of the primary_crng's state, and which uses a LFSR with a
883  * period of 255 as part of the mixing algorithm.  Finally, we do
884  * *not* advance crng_init_cnt since buffer we may get may be something
885  * like a fixed DMI table (for example), which might very well be
886  * unique to the machine, but is otherwise unvarying.
887  */
888 static int crng_slow_load(const char *cp, size_t len)
889 {
890 	unsigned long		flags;
891 	static unsigned char	lfsr = 1;
892 	unsigned char		tmp;
893 	unsigned		i, max = CHACHA20_KEY_SIZE;
894 	const char *		src_buf = cp;
895 	char *			dest_buf = (char *) &primary_crng.state[4];
896 
897 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
898 		return 0;
899 	if (crng_init != 0) {
900 		spin_unlock_irqrestore(&primary_crng.lock, flags);
901 		return 0;
902 	}
903 	if (len > max)
904 		max = len;
905 
906 	for (i = 0; i < max ; i++) {
907 		tmp = lfsr;
908 		lfsr >>= 1;
909 		if (tmp & 1)
910 			lfsr ^= 0xE1;
911 		tmp = dest_buf[i % CHACHA20_KEY_SIZE];
912 		dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
913 		lfsr += (tmp << 3) | (tmp >> 5);
914 	}
915 	spin_unlock_irqrestore(&primary_crng.lock, flags);
916 	return 1;
917 }
918 
919 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
920 {
921 	unsigned long	flags;
922 	int		i, num;
923 	union {
924 		__u32	block[CHACHA20_BLOCK_WORDS];
925 		__u32	key[8];
926 	} buf;
927 
928 	if (r) {
929 		num = extract_entropy(r, &buf, 32, 16, 0);
930 		if (num == 0)
931 			return;
932 	} else {
933 		_extract_crng(&primary_crng, buf.block);
934 		_crng_backtrack_protect(&primary_crng, buf.block,
935 					CHACHA20_KEY_SIZE);
936 	}
937 	spin_lock_irqsave(&crng->lock, flags);
938 	for (i = 0; i < 8; i++) {
939 		unsigned long	rv;
940 		if (!arch_get_random_seed_long(&rv) &&
941 		    !arch_get_random_long(&rv))
942 			rv = random_get_entropy();
943 		crng->state[i+4] ^= buf.key[i] ^ rv;
944 	}
945 	memzero_explicit(&buf, sizeof(buf));
946 	crng->init_time = jiffies;
947 	spin_unlock_irqrestore(&crng->lock, flags);
948 	if (crng == &primary_crng && crng_init < 2) {
949 		invalidate_batched_entropy();
950 		numa_crng_init();
951 		crng_init = 2;
952 		process_random_ready_list();
953 		wake_up_interruptible(&crng_init_wait);
954 		pr_notice("random: crng init done\n");
955 		if (unseeded_warning.missed) {
956 			pr_notice("random: %d get_random_xx warning(s) missed "
957 				  "due to ratelimiting\n",
958 				  unseeded_warning.missed);
959 			unseeded_warning.missed = 0;
960 		}
961 		if (urandom_warning.missed) {
962 			pr_notice("random: %d urandom warning(s) missed "
963 				  "due to ratelimiting\n",
964 				  urandom_warning.missed);
965 			urandom_warning.missed = 0;
966 		}
967 	}
968 }
969 
970 static void _extract_crng(struct crng_state *crng,
971 			  __u32 out[CHACHA20_BLOCK_WORDS])
972 {
973 	unsigned long v, flags;
974 
975 	if (crng_ready() &&
976 	    (time_after(crng_global_init_time, crng->init_time) ||
977 	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
978 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
979 	spin_lock_irqsave(&crng->lock, flags);
980 	if (arch_get_random_long(&v))
981 		crng->state[14] ^= v;
982 	chacha20_block(&crng->state[0], out);
983 	if (crng->state[12] == 0)
984 		crng->state[13]++;
985 	spin_unlock_irqrestore(&crng->lock, flags);
986 }
987 
988 static void extract_crng(__u32 out[CHACHA20_BLOCK_WORDS])
989 {
990 	struct crng_state *crng = NULL;
991 
992 #ifdef CONFIG_NUMA
993 	if (crng_node_pool)
994 		crng = crng_node_pool[numa_node_id()];
995 	if (crng == NULL)
996 #endif
997 		crng = &primary_crng;
998 	_extract_crng(crng, out);
999 }
1000 
1001 /*
1002  * Use the leftover bytes from the CRNG block output (if there is
1003  * enough) to mutate the CRNG key to provide backtracking protection.
1004  */
1005 static void _crng_backtrack_protect(struct crng_state *crng,
1006 				    __u32 tmp[CHACHA20_BLOCK_WORDS], int used)
1007 {
1008 	unsigned long	flags;
1009 	__u32		*s, *d;
1010 	int		i;
1011 
1012 	used = round_up(used, sizeof(__u32));
1013 	if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
1014 		extract_crng(tmp);
1015 		used = 0;
1016 	}
1017 	spin_lock_irqsave(&crng->lock, flags);
1018 	s = &tmp[used / sizeof(__u32)];
1019 	d = &crng->state[4];
1020 	for (i=0; i < 8; i++)
1021 		*d++ ^= *s++;
1022 	spin_unlock_irqrestore(&crng->lock, flags);
1023 }
1024 
1025 static void crng_backtrack_protect(__u32 tmp[CHACHA20_BLOCK_WORDS], int used)
1026 {
1027 	struct crng_state *crng = NULL;
1028 
1029 #ifdef CONFIG_NUMA
1030 	if (crng_node_pool)
1031 		crng = crng_node_pool[numa_node_id()];
1032 	if (crng == NULL)
1033 #endif
1034 		crng = &primary_crng;
1035 	_crng_backtrack_protect(crng, tmp, used);
1036 }
1037 
1038 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1039 {
1040 	ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
1041 	__u32 tmp[CHACHA20_BLOCK_WORDS];
1042 	int large_request = (nbytes > 256);
1043 
1044 	while (nbytes) {
1045 		if (large_request && need_resched()) {
1046 			if (signal_pending(current)) {
1047 				if (ret == 0)
1048 					ret = -ERESTARTSYS;
1049 				break;
1050 			}
1051 			schedule();
1052 		}
1053 
1054 		extract_crng(tmp);
1055 		i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
1056 		if (copy_to_user(buf, tmp, i)) {
1057 			ret = -EFAULT;
1058 			break;
1059 		}
1060 
1061 		nbytes -= i;
1062 		buf += i;
1063 		ret += i;
1064 	}
1065 	crng_backtrack_protect(tmp, i);
1066 
1067 	/* Wipe data just written to memory */
1068 	memzero_explicit(tmp, sizeof(tmp));
1069 
1070 	return ret;
1071 }
1072 
1073 
1074 /*********************************************************************
1075  *
1076  * Entropy input management
1077  *
1078  *********************************************************************/
1079 
1080 /* There is one of these per entropy source */
1081 struct timer_rand_state {
1082 	cycles_t last_time;
1083 	long last_delta, last_delta2;
1084 };
1085 
1086 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1087 
1088 /*
1089  * Add device- or boot-specific data to the input pool to help
1090  * initialize it.
1091  *
1092  * None of this adds any entropy; it is meant to avoid the problem of
1093  * the entropy pool having similar initial state across largely
1094  * identical devices.
1095  */
1096 void add_device_randomness(const void *buf, unsigned int size)
1097 {
1098 	unsigned long time = random_get_entropy() ^ jiffies;
1099 	unsigned long flags;
1100 
1101 	if (!crng_ready() && size)
1102 		crng_slow_load(buf, size);
1103 
1104 	trace_add_device_randomness(size, _RET_IP_);
1105 	spin_lock_irqsave(&input_pool.lock, flags);
1106 	_mix_pool_bytes(&input_pool, buf, size);
1107 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1108 	spin_unlock_irqrestore(&input_pool.lock, flags);
1109 }
1110 EXPORT_SYMBOL(add_device_randomness);
1111 
1112 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1113 
1114 /*
1115  * This function adds entropy to the entropy "pool" by using timing
1116  * delays.  It uses the timer_rand_state structure to make an estimate
1117  * of how many bits of entropy this call has added to the pool.
1118  *
1119  * The number "num" is also added to the pool - it should somehow describe
1120  * the type of event which just happened.  This is currently 0-255 for
1121  * keyboard scan codes, and 256 upwards for interrupts.
1122  *
1123  */
1124 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1125 {
1126 	struct entropy_store	*r;
1127 	struct {
1128 		long jiffies;
1129 		unsigned cycles;
1130 		unsigned num;
1131 	} sample;
1132 	long delta, delta2, delta3;
1133 
1134 	sample.jiffies = jiffies;
1135 	sample.cycles = random_get_entropy();
1136 	sample.num = num;
1137 	r = &input_pool;
1138 	mix_pool_bytes(r, &sample, sizeof(sample));
1139 
1140 	/*
1141 	 * Calculate number of bits of randomness we probably added.
1142 	 * We take into account the first, second and third-order deltas
1143 	 * in order to make our estimate.
1144 	 */
1145 	delta = sample.jiffies - state->last_time;
1146 	state->last_time = sample.jiffies;
1147 
1148 	delta2 = delta - state->last_delta;
1149 	state->last_delta = delta;
1150 
1151 	delta3 = delta2 - state->last_delta2;
1152 	state->last_delta2 = delta2;
1153 
1154 	if (delta < 0)
1155 		delta = -delta;
1156 	if (delta2 < 0)
1157 		delta2 = -delta2;
1158 	if (delta3 < 0)
1159 		delta3 = -delta3;
1160 	if (delta > delta2)
1161 		delta = delta2;
1162 	if (delta > delta3)
1163 		delta = delta3;
1164 
1165 	/*
1166 	 * delta is now minimum absolute delta.
1167 	 * Round down by 1 bit on general principles,
1168 	 * and limit entropy entimate to 12 bits.
1169 	 */
1170 	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1171 }
1172 
1173 void add_input_randomness(unsigned int type, unsigned int code,
1174 				 unsigned int value)
1175 {
1176 	static unsigned char last_value;
1177 
1178 	/* ignore autorepeat and the like */
1179 	if (value == last_value)
1180 		return;
1181 
1182 	last_value = value;
1183 	add_timer_randomness(&input_timer_state,
1184 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1185 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1186 }
1187 EXPORT_SYMBOL_GPL(add_input_randomness);
1188 
1189 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1190 
1191 #ifdef ADD_INTERRUPT_BENCH
1192 static unsigned long avg_cycles, avg_deviation;
1193 
1194 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1195 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1196 
1197 static void add_interrupt_bench(cycles_t start)
1198 {
1199         long delta = random_get_entropy() - start;
1200 
1201         /* Use a weighted moving average */
1202         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1203         avg_cycles += delta;
1204         /* And average deviation */
1205         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1206         avg_deviation += delta;
1207 }
1208 #else
1209 #define add_interrupt_bench(x)
1210 #endif
1211 
1212 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1213 {
1214 	__u32 *ptr = (__u32 *) regs;
1215 	unsigned int idx;
1216 
1217 	if (regs == NULL)
1218 		return 0;
1219 	idx = READ_ONCE(f->reg_idx);
1220 	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1221 		idx = 0;
1222 	ptr += idx++;
1223 	WRITE_ONCE(f->reg_idx, idx);
1224 	return *ptr;
1225 }
1226 
1227 void add_interrupt_randomness(int irq, int irq_flags)
1228 {
1229 	struct entropy_store	*r;
1230 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1231 	struct pt_regs		*regs = get_irq_regs();
1232 	unsigned long		now = jiffies;
1233 	cycles_t		cycles = random_get_entropy();
1234 	__u32			c_high, j_high;
1235 	__u64			ip;
1236 	unsigned long		seed;
1237 	int			credit = 0;
1238 
1239 	if (cycles == 0)
1240 		cycles = get_reg(fast_pool, regs);
1241 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1242 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1243 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1244 	fast_pool->pool[1] ^= now ^ c_high;
1245 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1246 	fast_pool->pool[2] ^= ip;
1247 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1248 		get_reg(fast_pool, regs);
1249 
1250 	fast_mix(fast_pool);
1251 	add_interrupt_bench(cycles);
1252 
1253 	if (unlikely(crng_init == 0)) {
1254 		if ((fast_pool->count >= 64) &&
1255 		    crng_fast_load((char *) fast_pool->pool,
1256 				   sizeof(fast_pool->pool))) {
1257 			fast_pool->count = 0;
1258 			fast_pool->last = now;
1259 		}
1260 		return;
1261 	}
1262 
1263 	if ((fast_pool->count < 64) &&
1264 	    !time_after(now, fast_pool->last + HZ))
1265 		return;
1266 
1267 	r = &input_pool;
1268 	if (!spin_trylock(&r->lock))
1269 		return;
1270 
1271 	fast_pool->last = now;
1272 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1273 
1274 	/*
1275 	 * If we have architectural seed generator, produce a seed and
1276 	 * add it to the pool.  For the sake of paranoia don't let the
1277 	 * architectural seed generator dominate the input from the
1278 	 * interrupt noise.
1279 	 */
1280 	if (arch_get_random_seed_long(&seed)) {
1281 		__mix_pool_bytes(r, &seed, sizeof(seed));
1282 		credit = 1;
1283 	}
1284 	spin_unlock(&r->lock);
1285 
1286 	fast_pool->count = 0;
1287 
1288 	/* award one bit for the contents of the fast pool */
1289 	credit_entropy_bits(r, credit + 1);
1290 }
1291 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1292 
1293 #ifdef CONFIG_BLOCK
1294 void add_disk_randomness(struct gendisk *disk)
1295 {
1296 	if (!disk || !disk->random)
1297 		return;
1298 	/* first major is 1, so we get >= 0x200 here */
1299 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1300 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1301 }
1302 EXPORT_SYMBOL_GPL(add_disk_randomness);
1303 #endif
1304 
1305 /*********************************************************************
1306  *
1307  * Entropy extraction routines
1308  *
1309  *********************************************************************/
1310 
1311 /*
1312  * This utility inline function is responsible for transferring entropy
1313  * from the primary pool to the secondary extraction pool. We make
1314  * sure we pull enough for a 'catastrophic reseed'.
1315  */
1316 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1317 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1318 {
1319 	if (!r->pull ||
1320 	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1321 	    r->entropy_count > r->poolinfo->poolfracbits)
1322 		return;
1323 
1324 	_xfer_secondary_pool(r, nbytes);
1325 }
1326 
1327 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1328 {
1329 	__u32	tmp[OUTPUT_POOL_WORDS];
1330 
1331 	int bytes = nbytes;
1332 
1333 	/* pull at least as much as a wakeup */
1334 	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1335 	/* but never more than the buffer size */
1336 	bytes = min_t(int, bytes, sizeof(tmp));
1337 
1338 	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1339 				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1340 	bytes = extract_entropy(r->pull, tmp, bytes,
1341 				random_read_wakeup_bits / 8, 0);
1342 	mix_pool_bytes(r, tmp, bytes);
1343 	credit_entropy_bits(r, bytes*8);
1344 }
1345 
1346 /*
1347  * Used as a workqueue function so that when the input pool is getting
1348  * full, we can "spill over" some entropy to the output pools.  That
1349  * way the output pools can store some of the excess entropy instead
1350  * of letting it go to waste.
1351  */
1352 static void push_to_pool(struct work_struct *work)
1353 {
1354 	struct entropy_store *r = container_of(work, struct entropy_store,
1355 					      push_work);
1356 	BUG_ON(!r);
1357 	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1358 	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1359 			   r->pull->entropy_count >> ENTROPY_SHIFT);
1360 }
1361 
1362 /*
1363  * This function decides how many bytes to actually take from the
1364  * given pool, and also debits the entropy count accordingly.
1365  */
1366 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1367 		      int reserved)
1368 {
1369 	int entropy_count, orig, have_bytes;
1370 	size_t ibytes, nfrac;
1371 
1372 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1373 
1374 	/* Can we pull enough? */
1375 retry:
1376 	entropy_count = orig = READ_ONCE(r->entropy_count);
1377 	ibytes = nbytes;
1378 	/* never pull more than available */
1379 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1380 
1381 	if ((have_bytes -= reserved) < 0)
1382 		have_bytes = 0;
1383 	ibytes = min_t(size_t, ibytes, have_bytes);
1384 	if (ibytes < min)
1385 		ibytes = 0;
1386 
1387 	if (unlikely(entropy_count < 0)) {
1388 		pr_warn("random: negative entropy count: pool %s count %d\n",
1389 			r->name, entropy_count);
1390 		WARN_ON(1);
1391 		entropy_count = 0;
1392 	}
1393 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1394 	if ((size_t) entropy_count > nfrac)
1395 		entropy_count -= nfrac;
1396 	else
1397 		entropy_count = 0;
1398 
1399 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1400 		goto retry;
1401 
1402 	trace_debit_entropy(r->name, 8 * ibytes);
1403 	if (ibytes &&
1404 	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1405 		wake_up_interruptible(&random_write_wait);
1406 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1407 	}
1408 
1409 	return ibytes;
1410 }
1411 
1412 /*
1413  * This function does the actual extraction for extract_entropy and
1414  * extract_entropy_user.
1415  *
1416  * Note: we assume that .poolwords is a multiple of 16 words.
1417  */
1418 static void extract_buf(struct entropy_store *r, __u8 *out)
1419 {
1420 	int i;
1421 	union {
1422 		__u32 w[5];
1423 		unsigned long l[LONGS(20)];
1424 	} hash;
1425 	__u32 workspace[SHA_WORKSPACE_WORDS];
1426 	unsigned long flags;
1427 
1428 	/*
1429 	 * If we have an architectural hardware random number
1430 	 * generator, use it for SHA's initial vector
1431 	 */
1432 	sha_init(hash.w);
1433 	for (i = 0; i < LONGS(20); i++) {
1434 		unsigned long v;
1435 		if (!arch_get_random_long(&v))
1436 			break;
1437 		hash.l[i] = v;
1438 	}
1439 
1440 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1441 	spin_lock_irqsave(&r->lock, flags);
1442 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1443 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1444 
1445 	/*
1446 	 * We mix the hash back into the pool to prevent backtracking
1447 	 * attacks (where the attacker knows the state of the pool
1448 	 * plus the current outputs, and attempts to find previous
1449 	 * ouputs), unless the hash function can be inverted. By
1450 	 * mixing at least a SHA1 worth of hash data back, we make
1451 	 * brute-forcing the feedback as hard as brute-forcing the
1452 	 * hash.
1453 	 */
1454 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1455 	spin_unlock_irqrestore(&r->lock, flags);
1456 
1457 	memzero_explicit(workspace, sizeof(workspace));
1458 
1459 	/*
1460 	 * In case the hash function has some recognizable output
1461 	 * pattern, we fold it in half. Thus, we always feed back
1462 	 * twice as much data as we output.
1463 	 */
1464 	hash.w[0] ^= hash.w[3];
1465 	hash.w[1] ^= hash.w[4];
1466 	hash.w[2] ^= rol32(hash.w[2], 16);
1467 
1468 	memcpy(out, &hash, EXTRACT_SIZE);
1469 	memzero_explicit(&hash, sizeof(hash));
1470 }
1471 
1472 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1473 				size_t nbytes, int fips)
1474 {
1475 	ssize_t ret = 0, i;
1476 	__u8 tmp[EXTRACT_SIZE];
1477 	unsigned long flags;
1478 
1479 	while (nbytes) {
1480 		extract_buf(r, tmp);
1481 
1482 		if (fips) {
1483 			spin_lock_irqsave(&r->lock, flags);
1484 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1485 				panic("Hardware RNG duplicated output!\n");
1486 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1487 			spin_unlock_irqrestore(&r->lock, flags);
1488 		}
1489 		i = min_t(int, nbytes, EXTRACT_SIZE);
1490 		memcpy(buf, tmp, i);
1491 		nbytes -= i;
1492 		buf += i;
1493 		ret += i;
1494 	}
1495 
1496 	/* Wipe data just returned from memory */
1497 	memzero_explicit(tmp, sizeof(tmp));
1498 
1499 	return ret;
1500 }
1501 
1502 /*
1503  * This function extracts randomness from the "entropy pool", and
1504  * returns it in a buffer.
1505  *
1506  * The min parameter specifies the minimum amount we can pull before
1507  * failing to avoid races that defeat catastrophic reseeding while the
1508  * reserved parameter indicates how much entropy we must leave in the
1509  * pool after each pull to avoid starving other readers.
1510  */
1511 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1512 				 size_t nbytes, int min, int reserved)
1513 {
1514 	__u8 tmp[EXTRACT_SIZE];
1515 	unsigned long flags;
1516 
1517 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1518 	if (fips_enabled) {
1519 		spin_lock_irqsave(&r->lock, flags);
1520 		if (!r->last_data_init) {
1521 			r->last_data_init = 1;
1522 			spin_unlock_irqrestore(&r->lock, flags);
1523 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1524 					      ENTROPY_BITS(r), _RET_IP_);
1525 			xfer_secondary_pool(r, EXTRACT_SIZE);
1526 			extract_buf(r, tmp);
1527 			spin_lock_irqsave(&r->lock, flags);
1528 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1529 		}
1530 		spin_unlock_irqrestore(&r->lock, flags);
1531 	}
1532 
1533 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1534 	xfer_secondary_pool(r, nbytes);
1535 	nbytes = account(r, nbytes, min, reserved);
1536 
1537 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1538 }
1539 
1540 /*
1541  * This function extracts randomness from the "entropy pool", and
1542  * returns it in a userspace buffer.
1543  */
1544 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1545 				    size_t nbytes)
1546 {
1547 	ssize_t ret = 0, i;
1548 	__u8 tmp[EXTRACT_SIZE];
1549 	int large_request = (nbytes > 256);
1550 
1551 	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1552 	xfer_secondary_pool(r, nbytes);
1553 	nbytes = account(r, nbytes, 0, 0);
1554 
1555 	while (nbytes) {
1556 		if (large_request && need_resched()) {
1557 			if (signal_pending(current)) {
1558 				if (ret == 0)
1559 					ret = -ERESTARTSYS;
1560 				break;
1561 			}
1562 			schedule();
1563 		}
1564 
1565 		extract_buf(r, tmp);
1566 		i = min_t(int, nbytes, EXTRACT_SIZE);
1567 		if (copy_to_user(buf, tmp, i)) {
1568 			ret = -EFAULT;
1569 			break;
1570 		}
1571 
1572 		nbytes -= i;
1573 		buf += i;
1574 		ret += i;
1575 	}
1576 
1577 	/* Wipe data just returned from memory */
1578 	memzero_explicit(tmp, sizeof(tmp));
1579 
1580 	return ret;
1581 }
1582 
1583 #define warn_unseeded_randomness(previous) \
1584 	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1585 
1586 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1587 				      void **previous)
1588 {
1589 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1590 	const bool print_once = false;
1591 #else
1592 	static bool print_once __read_mostly;
1593 #endif
1594 
1595 	if (print_once ||
1596 	    crng_ready() ||
1597 	    (previous && (caller == READ_ONCE(*previous))))
1598 		return;
1599 	WRITE_ONCE(*previous, caller);
1600 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1601 	print_once = true;
1602 #endif
1603 	if (__ratelimit(&unseeded_warning))
1604 		pr_notice("random: %s called from %pS with crng_init=%d\n",
1605 			  func_name, caller, crng_init);
1606 }
1607 
1608 /*
1609  * This function is the exported kernel interface.  It returns some
1610  * number of good random numbers, suitable for key generation, seeding
1611  * TCP sequence numbers, etc.  It does not rely on the hardware random
1612  * number generator.  For random bytes direct from the hardware RNG
1613  * (when available), use get_random_bytes_arch(). In order to ensure
1614  * that the randomness provided by this function is okay, the function
1615  * wait_for_random_bytes() should be called and return 0 at least once
1616  * at any point prior.
1617  */
1618 static void _get_random_bytes(void *buf, int nbytes)
1619 {
1620 	__u32 tmp[CHACHA20_BLOCK_WORDS];
1621 
1622 	trace_get_random_bytes(nbytes, _RET_IP_);
1623 
1624 	while (nbytes >= CHACHA20_BLOCK_SIZE) {
1625 		extract_crng(buf);
1626 		buf += CHACHA20_BLOCK_SIZE;
1627 		nbytes -= CHACHA20_BLOCK_SIZE;
1628 	}
1629 
1630 	if (nbytes > 0) {
1631 		extract_crng(tmp);
1632 		memcpy(buf, tmp, nbytes);
1633 		crng_backtrack_protect(tmp, nbytes);
1634 	} else
1635 		crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1636 	memzero_explicit(tmp, sizeof(tmp));
1637 }
1638 
1639 void get_random_bytes(void *buf, int nbytes)
1640 {
1641 	static void *previous;
1642 
1643 	warn_unseeded_randomness(&previous);
1644 	_get_random_bytes(buf, nbytes);
1645 }
1646 EXPORT_SYMBOL(get_random_bytes);
1647 
1648 /*
1649  * Wait for the urandom pool to be seeded and thus guaranteed to supply
1650  * cryptographically secure random numbers. This applies to: the /dev/urandom
1651  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1652  * family of functions. Using any of these functions without first calling
1653  * this function forfeits the guarantee of security.
1654  *
1655  * Returns: 0 if the urandom pool has been seeded.
1656  *          -ERESTARTSYS if the function was interrupted by a signal.
1657  */
1658 int wait_for_random_bytes(void)
1659 {
1660 	if (likely(crng_ready()))
1661 		return 0;
1662 	return wait_event_interruptible(crng_init_wait, crng_ready());
1663 }
1664 EXPORT_SYMBOL(wait_for_random_bytes);
1665 
1666 /*
1667  * Returns whether or not the urandom pool has been seeded and thus guaranteed
1668  * to supply cryptographically secure random numbers. This applies to: the
1669  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1670  * ,u64,int,long} family of functions.
1671  *
1672  * Returns: true if the urandom pool has been seeded.
1673  *          false if the urandom pool has not been seeded.
1674  */
1675 bool rng_is_initialized(void)
1676 {
1677 	return crng_ready();
1678 }
1679 EXPORT_SYMBOL(rng_is_initialized);
1680 
1681 /*
1682  * Add a callback function that will be invoked when the nonblocking
1683  * pool is initialised.
1684  *
1685  * returns: 0 if callback is successfully added
1686  *	    -EALREADY if pool is already initialised (callback not called)
1687  *	    -ENOENT if module for callback is not alive
1688  */
1689 int add_random_ready_callback(struct random_ready_callback *rdy)
1690 {
1691 	struct module *owner;
1692 	unsigned long flags;
1693 	int err = -EALREADY;
1694 
1695 	if (crng_ready())
1696 		return err;
1697 
1698 	owner = rdy->owner;
1699 	if (!try_module_get(owner))
1700 		return -ENOENT;
1701 
1702 	spin_lock_irqsave(&random_ready_list_lock, flags);
1703 	if (crng_ready())
1704 		goto out;
1705 
1706 	owner = NULL;
1707 
1708 	list_add(&rdy->list, &random_ready_list);
1709 	err = 0;
1710 
1711 out:
1712 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1713 
1714 	module_put(owner);
1715 
1716 	return err;
1717 }
1718 EXPORT_SYMBOL(add_random_ready_callback);
1719 
1720 /*
1721  * Delete a previously registered readiness callback function.
1722  */
1723 void del_random_ready_callback(struct random_ready_callback *rdy)
1724 {
1725 	unsigned long flags;
1726 	struct module *owner = NULL;
1727 
1728 	spin_lock_irqsave(&random_ready_list_lock, flags);
1729 	if (!list_empty(&rdy->list)) {
1730 		list_del_init(&rdy->list);
1731 		owner = rdy->owner;
1732 	}
1733 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1734 
1735 	module_put(owner);
1736 }
1737 EXPORT_SYMBOL(del_random_ready_callback);
1738 
1739 /*
1740  * This function will use the architecture-specific hardware random
1741  * number generator if it is available.  The arch-specific hw RNG will
1742  * almost certainly be faster than what we can do in software, but it
1743  * is impossible to verify that it is implemented securely (as
1744  * opposed, to, say, the AES encryption of a sequence number using a
1745  * key known by the NSA).  So it's useful if we need the speed, but
1746  * only if we're willing to trust the hardware manufacturer not to
1747  * have put in a back door.
1748  *
1749  * Return number of bytes filled in.
1750  */
1751 int __must_check get_random_bytes_arch(void *buf, int nbytes)
1752 {
1753 	int left = nbytes;
1754 	char *p = buf;
1755 
1756 	trace_get_random_bytes_arch(left, _RET_IP_);
1757 	while (left) {
1758 		unsigned long v;
1759 		int chunk = min_t(int, left, sizeof(unsigned long));
1760 
1761 		if (!arch_get_random_long(&v))
1762 			break;
1763 
1764 		memcpy(p, &v, chunk);
1765 		p += chunk;
1766 		left -= chunk;
1767 	}
1768 
1769 	return nbytes - left;
1770 }
1771 EXPORT_SYMBOL(get_random_bytes_arch);
1772 
1773 /*
1774  * init_std_data - initialize pool with system data
1775  *
1776  * @r: pool to initialize
1777  *
1778  * This function clears the pool's entropy count and mixes some system
1779  * data into the pool to prepare it for use. The pool is not cleared
1780  * as that can only decrease the entropy in the pool.
1781  */
1782 static void init_std_data(struct entropy_store *r)
1783 {
1784 	int i;
1785 	ktime_t now = ktime_get_real();
1786 	unsigned long rv;
1787 
1788 	r->last_pulled = jiffies;
1789 	mix_pool_bytes(r, &now, sizeof(now));
1790 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1791 		if (!arch_get_random_seed_long(&rv) &&
1792 		    !arch_get_random_long(&rv))
1793 			rv = random_get_entropy();
1794 		mix_pool_bytes(r, &rv, sizeof(rv));
1795 	}
1796 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1797 }
1798 
1799 /*
1800  * Note that setup_arch() may call add_device_randomness()
1801  * long before we get here. This allows seeding of the pools
1802  * with some platform dependent data very early in the boot
1803  * process. But it limits our options here. We must use
1804  * statically allocated structures that already have all
1805  * initializations complete at compile time. We should also
1806  * take care not to overwrite the precious per platform data
1807  * we were given.
1808  */
1809 static int rand_initialize(void)
1810 {
1811 	init_std_data(&input_pool);
1812 	init_std_data(&blocking_pool);
1813 	crng_initialize(&primary_crng);
1814 	crng_global_init_time = jiffies;
1815 	if (ratelimit_disable) {
1816 		urandom_warning.interval = 0;
1817 		unseeded_warning.interval = 0;
1818 	}
1819 	return 0;
1820 }
1821 early_initcall(rand_initialize);
1822 
1823 #ifdef CONFIG_BLOCK
1824 void rand_initialize_disk(struct gendisk *disk)
1825 {
1826 	struct timer_rand_state *state;
1827 
1828 	/*
1829 	 * If kzalloc returns null, we just won't use that entropy
1830 	 * source.
1831 	 */
1832 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1833 	if (state) {
1834 		state->last_time = INITIAL_JIFFIES;
1835 		disk->random = state;
1836 	}
1837 }
1838 #endif
1839 
1840 static ssize_t
1841 _random_read(int nonblock, char __user *buf, size_t nbytes)
1842 {
1843 	ssize_t n;
1844 
1845 	if (nbytes == 0)
1846 		return 0;
1847 
1848 	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1849 	while (1) {
1850 		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1851 		if (n < 0)
1852 			return n;
1853 		trace_random_read(n*8, (nbytes-n)*8,
1854 				  ENTROPY_BITS(&blocking_pool),
1855 				  ENTROPY_BITS(&input_pool));
1856 		if (n > 0)
1857 			return n;
1858 
1859 		/* Pool is (near) empty.  Maybe wait and retry. */
1860 		if (nonblock)
1861 			return -EAGAIN;
1862 
1863 		wait_event_interruptible(random_read_wait,
1864 			ENTROPY_BITS(&input_pool) >=
1865 			random_read_wakeup_bits);
1866 		if (signal_pending(current))
1867 			return -ERESTARTSYS;
1868 	}
1869 }
1870 
1871 static ssize_t
1872 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1873 {
1874 	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1875 }
1876 
1877 static ssize_t
1878 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1879 {
1880 	unsigned long flags;
1881 	static int maxwarn = 10;
1882 	int ret;
1883 
1884 	if (!crng_ready() && maxwarn > 0) {
1885 		maxwarn--;
1886 		if (__ratelimit(&urandom_warning))
1887 			printk(KERN_NOTICE "random: %s: uninitialized "
1888 			       "urandom read (%zd bytes read)\n",
1889 			       current->comm, nbytes);
1890 		spin_lock_irqsave(&primary_crng.lock, flags);
1891 		crng_init_cnt = 0;
1892 		spin_unlock_irqrestore(&primary_crng.lock, flags);
1893 	}
1894 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1895 	ret = extract_crng_user(buf, nbytes);
1896 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1897 	return ret;
1898 }
1899 
1900 static __poll_t
1901 random_poll(struct file *file, poll_table * wait)
1902 {
1903 	__poll_t mask;
1904 
1905 	poll_wait(file, &random_read_wait, wait);
1906 	poll_wait(file, &random_write_wait, wait);
1907 	mask = 0;
1908 	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1909 		mask |= EPOLLIN | EPOLLRDNORM;
1910 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1911 		mask |= EPOLLOUT | EPOLLWRNORM;
1912 	return mask;
1913 }
1914 
1915 static int
1916 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1917 {
1918 	size_t bytes;
1919 	__u32 t, buf[16];
1920 	const char __user *p = buffer;
1921 
1922 	while (count > 0) {
1923 		int b, i = 0;
1924 
1925 		bytes = min(count, sizeof(buf));
1926 		if (copy_from_user(&buf, p, bytes))
1927 			return -EFAULT;
1928 
1929 		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1930 			if (!arch_get_random_int(&t))
1931 				break;
1932 			buf[i] ^= t;
1933 		}
1934 
1935 		count -= bytes;
1936 		p += bytes;
1937 
1938 		mix_pool_bytes(r, buf, bytes);
1939 		cond_resched();
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 static ssize_t random_write(struct file *file, const char __user *buffer,
1946 			    size_t count, loff_t *ppos)
1947 {
1948 	size_t ret;
1949 
1950 	ret = write_pool(&input_pool, buffer, count);
1951 	if (ret)
1952 		return ret;
1953 
1954 	return (ssize_t)count;
1955 }
1956 
1957 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1958 {
1959 	int size, ent_count;
1960 	int __user *p = (int __user *)arg;
1961 	int retval;
1962 
1963 	switch (cmd) {
1964 	case RNDGETENTCNT:
1965 		/* inherently racy, no point locking */
1966 		ent_count = ENTROPY_BITS(&input_pool);
1967 		if (put_user(ent_count, p))
1968 			return -EFAULT;
1969 		return 0;
1970 	case RNDADDTOENTCNT:
1971 		if (!capable(CAP_SYS_ADMIN))
1972 			return -EPERM;
1973 		if (get_user(ent_count, p))
1974 			return -EFAULT;
1975 		return credit_entropy_bits_safe(&input_pool, ent_count);
1976 	case RNDADDENTROPY:
1977 		if (!capable(CAP_SYS_ADMIN))
1978 			return -EPERM;
1979 		if (get_user(ent_count, p++))
1980 			return -EFAULT;
1981 		if (ent_count < 0)
1982 			return -EINVAL;
1983 		if (get_user(size, p++))
1984 			return -EFAULT;
1985 		retval = write_pool(&input_pool, (const char __user *)p,
1986 				    size);
1987 		if (retval < 0)
1988 			return retval;
1989 		return credit_entropy_bits_safe(&input_pool, ent_count);
1990 	case RNDZAPENTCNT:
1991 	case RNDCLEARPOOL:
1992 		/*
1993 		 * Clear the entropy pool counters. We no longer clear
1994 		 * the entropy pool, as that's silly.
1995 		 */
1996 		if (!capable(CAP_SYS_ADMIN))
1997 			return -EPERM;
1998 		input_pool.entropy_count = 0;
1999 		blocking_pool.entropy_count = 0;
2000 		return 0;
2001 	case RNDRESEEDCRNG:
2002 		if (!capable(CAP_SYS_ADMIN))
2003 			return -EPERM;
2004 		if (crng_init < 2)
2005 			return -ENODATA;
2006 		crng_reseed(&primary_crng, NULL);
2007 		crng_global_init_time = jiffies - 1;
2008 		return 0;
2009 	default:
2010 		return -EINVAL;
2011 	}
2012 }
2013 
2014 static int random_fasync(int fd, struct file *filp, int on)
2015 {
2016 	return fasync_helper(fd, filp, on, &fasync);
2017 }
2018 
2019 const struct file_operations random_fops = {
2020 	.read  = random_read,
2021 	.write = random_write,
2022 	.poll  = random_poll,
2023 	.unlocked_ioctl = random_ioctl,
2024 	.fasync = random_fasync,
2025 	.llseek = noop_llseek,
2026 };
2027 
2028 const struct file_operations urandom_fops = {
2029 	.read  = urandom_read,
2030 	.write = random_write,
2031 	.unlocked_ioctl = random_ioctl,
2032 	.fasync = random_fasync,
2033 	.llseek = noop_llseek,
2034 };
2035 
2036 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2037 		unsigned int, flags)
2038 {
2039 	int ret;
2040 
2041 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2042 		return -EINVAL;
2043 
2044 	if (count > INT_MAX)
2045 		count = INT_MAX;
2046 
2047 	if (flags & GRND_RANDOM)
2048 		return _random_read(flags & GRND_NONBLOCK, buf, count);
2049 
2050 	if (!crng_ready()) {
2051 		if (flags & GRND_NONBLOCK)
2052 			return -EAGAIN;
2053 		ret = wait_for_random_bytes();
2054 		if (unlikely(ret))
2055 			return ret;
2056 	}
2057 	return urandom_read(NULL, buf, count, NULL);
2058 }
2059 
2060 /********************************************************************
2061  *
2062  * Sysctl interface
2063  *
2064  ********************************************************************/
2065 
2066 #ifdef CONFIG_SYSCTL
2067 
2068 #include <linux/sysctl.h>
2069 
2070 static int min_read_thresh = 8, min_write_thresh;
2071 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2072 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2073 static int random_min_urandom_seed = 60;
2074 static char sysctl_bootid[16];
2075 
2076 /*
2077  * This function is used to return both the bootid UUID, and random
2078  * UUID.  The difference is in whether table->data is NULL; if it is,
2079  * then a new UUID is generated and returned to the user.
2080  *
2081  * If the user accesses this via the proc interface, the UUID will be
2082  * returned as an ASCII string in the standard UUID format; if via the
2083  * sysctl system call, as 16 bytes of binary data.
2084  */
2085 static int proc_do_uuid(struct ctl_table *table, int write,
2086 			void __user *buffer, size_t *lenp, loff_t *ppos)
2087 {
2088 	struct ctl_table fake_table;
2089 	unsigned char buf[64], tmp_uuid[16], *uuid;
2090 
2091 	uuid = table->data;
2092 	if (!uuid) {
2093 		uuid = tmp_uuid;
2094 		generate_random_uuid(uuid);
2095 	} else {
2096 		static DEFINE_SPINLOCK(bootid_spinlock);
2097 
2098 		spin_lock(&bootid_spinlock);
2099 		if (!uuid[8])
2100 			generate_random_uuid(uuid);
2101 		spin_unlock(&bootid_spinlock);
2102 	}
2103 
2104 	sprintf(buf, "%pU", uuid);
2105 
2106 	fake_table.data = buf;
2107 	fake_table.maxlen = sizeof(buf);
2108 
2109 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2110 }
2111 
2112 /*
2113  * Return entropy available scaled to integral bits
2114  */
2115 static int proc_do_entropy(struct ctl_table *table, int write,
2116 			   void __user *buffer, size_t *lenp, loff_t *ppos)
2117 {
2118 	struct ctl_table fake_table;
2119 	int entropy_count;
2120 
2121 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2122 
2123 	fake_table.data = &entropy_count;
2124 	fake_table.maxlen = sizeof(entropy_count);
2125 
2126 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2127 }
2128 
2129 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2130 extern struct ctl_table random_table[];
2131 struct ctl_table random_table[] = {
2132 	{
2133 		.procname	= "poolsize",
2134 		.data		= &sysctl_poolsize,
2135 		.maxlen		= sizeof(int),
2136 		.mode		= 0444,
2137 		.proc_handler	= proc_dointvec,
2138 	},
2139 	{
2140 		.procname	= "entropy_avail",
2141 		.maxlen		= sizeof(int),
2142 		.mode		= 0444,
2143 		.proc_handler	= proc_do_entropy,
2144 		.data		= &input_pool.entropy_count,
2145 	},
2146 	{
2147 		.procname	= "read_wakeup_threshold",
2148 		.data		= &random_read_wakeup_bits,
2149 		.maxlen		= sizeof(int),
2150 		.mode		= 0644,
2151 		.proc_handler	= proc_dointvec_minmax,
2152 		.extra1		= &min_read_thresh,
2153 		.extra2		= &max_read_thresh,
2154 	},
2155 	{
2156 		.procname	= "write_wakeup_threshold",
2157 		.data		= &random_write_wakeup_bits,
2158 		.maxlen		= sizeof(int),
2159 		.mode		= 0644,
2160 		.proc_handler	= proc_dointvec_minmax,
2161 		.extra1		= &min_write_thresh,
2162 		.extra2		= &max_write_thresh,
2163 	},
2164 	{
2165 		.procname	= "urandom_min_reseed_secs",
2166 		.data		= &random_min_urandom_seed,
2167 		.maxlen		= sizeof(int),
2168 		.mode		= 0644,
2169 		.proc_handler	= proc_dointvec,
2170 	},
2171 	{
2172 		.procname	= "boot_id",
2173 		.data		= &sysctl_bootid,
2174 		.maxlen		= 16,
2175 		.mode		= 0444,
2176 		.proc_handler	= proc_do_uuid,
2177 	},
2178 	{
2179 		.procname	= "uuid",
2180 		.maxlen		= 16,
2181 		.mode		= 0444,
2182 		.proc_handler	= proc_do_uuid,
2183 	},
2184 #ifdef ADD_INTERRUPT_BENCH
2185 	{
2186 		.procname	= "add_interrupt_avg_cycles",
2187 		.data		= &avg_cycles,
2188 		.maxlen		= sizeof(avg_cycles),
2189 		.mode		= 0444,
2190 		.proc_handler	= proc_doulongvec_minmax,
2191 	},
2192 	{
2193 		.procname	= "add_interrupt_avg_deviation",
2194 		.data		= &avg_deviation,
2195 		.maxlen		= sizeof(avg_deviation),
2196 		.mode		= 0444,
2197 		.proc_handler	= proc_doulongvec_minmax,
2198 	},
2199 #endif
2200 	{ }
2201 };
2202 #endif 	/* CONFIG_SYSCTL */
2203 
2204 struct batched_entropy {
2205 	union {
2206 		u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2207 		u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2208 	};
2209 	unsigned int position;
2210 };
2211 static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
2212 
2213 /*
2214  * Get a random word for internal kernel use only. The quality of the random
2215  * number is either as good as RDRAND or as good as /dev/urandom, with the
2216  * goal of being quite fast and not depleting entropy. In order to ensure
2217  * that the randomness provided by this function is okay, the function
2218  * wait_for_random_bytes() should be called and return 0 at least once
2219  * at any point prior.
2220  */
2221 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2222 u64 get_random_u64(void)
2223 {
2224 	u64 ret;
2225 	bool use_lock;
2226 	unsigned long flags = 0;
2227 	struct batched_entropy *batch;
2228 	static void *previous;
2229 
2230 #if BITS_PER_LONG == 64
2231 	if (arch_get_random_long((unsigned long *)&ret))
2232 		return ret;
2233 #else
2234 	if (arch_get_random_long((unsigned long *)&ret) &&
2235 	    arch_get_random_long((unsigned long *)&ret + 1))
2236 	    return ret;
2237 #endif
2238 
2239 	warn_unseeded_randomness(&previous);
2240 
2241 	use_lock = READ_ONCE(crng_init) < 2;
2242 	batch = &get_cpu_var(batched_entropy_u64);
2243 	if (use_lock)
2244 		read_lock_irqsave(&batched_entropy_reset_lock, flags);
2245 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2246 		extract_crng((__u32 *)batch->entropy_u64);
2247 		batch->position = 0;
2248 	}
2249 	ret = batch->entropy_u64[batch->position++];
2250 	if (use_lock)
2251 		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2252 	put_cpu_var(batched_entropy_u64);
2253 	return ret;
2254 }
2255 EXPORT_SYMBOL(get_random_u64);
2256 
2257 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2258 u32 get_random_u32(void)
2259 {
2260 	u32 ret;
2261 	bool use_lock;
2262 	unsigned long flags = 0;
2263 	struct batched_entropy *batch;
2264 	static void *previous;
2265 
2266 	if (arch_get_random_int(&ret))
2267 		return ret;
2268 
2269 	warn_unseeded_randomness(&previous);
2270 
2271 	use_lock = READ_ONCE(crng_init) < 2;
2272 	batch = &get_cpu_var(batched_entropy_u32);
2273 	if (use_lock)
2274 		read_lock_irqsave(&batched_entropy_reset_lock, flags);
2275 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2276 		extract_crng(batch->entropy_u32);
2277 		batch->position = 0;
2278 	}
2279 	ret = batch->entropy_u32[batch->position++];
2280 	if (use_lock)
2281 		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2282 	put_cpu_var(batched_entropy_u32);
2283 	return ret;
2284 }
2285 EXPORT_SYMBOL(get_random_u32);
2286 
2287 /* It's important to invalidate all potential batched entropy that might
2288  * be stored before the crng is initialized, which we can do lazily by
2289  * simply resetting the counter to zero so that it's re-extracted on the
2290  * next usage. */
2291 static void invalidate_batched_entropy(void)
2292 {
2293 	int cpu;
2294 	unsigned long flags;
2295 
2296 	write_lock_irqsave(&batched_entropy_reset_lock, flags);
2297 	for_each_possible_cpu (cpu) {
2298 		per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2299 		per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2300 	}
2301 	write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2302 }
2303 
2304 /**
2305  * randomize_page - Generate a random, page aligned address
2306  * @start:	The smallest acceptable address the caller will take.
2307  * @range:	The size of the area, starting at @start, within which the
2308  *		random address must fall.
2309  *
2310  * If @start + @range would overflow, @range is capped.
2311  *
2312  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2313  * @start was already page aligned.  We now align it regardless.
2314  *
2315  * Return: A page aligned address within [start, start + range).  On error,
2316  * @start is returned.
2317  */
2318 unsigned long
2319 randomize_page(unsigned long start, unsigned long range)
2320 {
2321 	if (!PAGE_ALIGNED(start)) {
2322 		range -= PAGE_ALIGN(start) - start;
2323 		start = PAGE_ALIGN(start);
2324 	}
2325 
2326 	if (start > ULONG_MAX - range)
2327 		range = ULONG_MAX - start;
2328 
2329 	range >>= PAGE_SHIFT;
2330 
2331 	if (range == 0)
2332 		return start;
2333 
2334 	return start + (get_random_long() % range << PAGE_SHIFT);
2335 }
2336 
2337 /* Interface for in-kernel drivers of true hardware RNGs.
2338  * Those devices may produce endless random bits and will be throttled
2339  * when our pool is full.
2340  */
2341 void add_hwgenerator_randomness(const char *buffer, size_t count,
2342 				size_t entropy)
2343 {
2344 	struct entropy_store *poolp = &input_pool;
2345 
2346 	if (unlikely(crng_init == 0)) {
2347 		crng_fast_load(buffer, count);
2348 		return;
2349 	}
2350 
2351 	/* Suspend writing if we're above the trickle threshold.
2352 	 * We'll be woken up again once below random_write_wakeup_thresh,
2353 	 * or when the calling thread is about to terminate.
2354 	 */
2355 	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2356 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2357 	mix_pool_bytes(poolp, buffer, count);
2358 	credit_entropy_bits(poolp, entropy);
2359 }
2360 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2361