1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_device_randomness(const void *buf, unsigned int size); 129 * void add_input_randomness(unsigned int type, unsigned int code, 130 * unsigned int value); 131 * void add_interrupt_randomness(int irq, int irq_flags); 132 * void add_disk_randomness(struct gendisk *disk); 133 * 134 * add_device_randomness() is for adding data to the random pool that 135 * is likely to differ between two devices (or possibly even per boot). 136 * This would be things like MAC addresses or serial numbers, or the 137 * read-out of the RTC. This does *not* add any actual entropy to the 138 * pool, but it initializes the pool to different values for devices 139 * that might otherwise be identical and have very little entropy 140 * available to them (particularly common in the embedded world). 141 * 142 * add_input_randomness() uses the input layer interrupt timing, as well as 143 * the event type information from the hardware. 144 * 145 * add_interrupt_randomness() uses the interrupt timing as random 146 * inputs to the entropy pool. Using the cycle counters and the irq source 147 * as inputs, it feeds the randomness roughly once a second. 148 * 149 * add_disk_randomness() uses what amounts to the seek time of block 150 * layer request events, on a per-disk_devt basis, as input to the 151 * entropy pool. Note that high-speed solid state drives with very low 152 * seek times do not make for good sources of entropy, as their seek 153 * times are usually fairly consistent. 154 * 155 * All of these routines try to estimate how many bits of randomness a 156 * particular randomness source. They do this by keeping track of the 157 * first and second order deltas of the event timings. 158 * 159 * Ensuring unpredictability at system startup 160 * ============================================ 161 * 162 * When any operating system starts up, it will go through a sequence 163 * of actions that are fairly predictable by an adversary, especially 164 * if the start-up does not involve interaction with a human operator. 165 * This reduces the actual number of bits of unpredictability in the 166 * entropy pool below the value in entropy_count. In order to 167 * counteract this effect, it helps to carry information in the 168 * entropy pool across shut-downs and start-ups. To do this, put the 169 * following lines an appropriate script which is run during the boot 170 * sequence: 171 * 172 * echo "Initializing random number generator..." 173 * random_seed=/var/run/random-seed 174 * # Carry a random seed from start-up to start-up 175 * # Load and then save the whole entropy pool 176 * if [ -f $random_seed ]; then 177 * cat $random_seed >/dev/urandom 178 * else 179 * touch $random_seed 180 * fi 181 * chmod 600 $random_seed 182 * dd if=/dev/urandom of=$random_seed count=1 bs=512 183 * 184 * and the following lines in an appropriate script which is run as 185 * the system is shutdown: 186 * 187 * # Carry a random seed from shut-down to start-up 188 * # Save the whole entropy pool 189 * echo "Saving random seed..." 190 * random_seed=/var/run/random-seed 191 * touch $random_seed 192 * chmod 600 $random_seed 193 * dd if=/dev/urandom of=$random_seed count=1 bs=512 194 * 195 * For example, on most modern systems using the System V init 196 * scripts, such code fragments would be found in 197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 199 * 200 * Effectively, these commands cause the contents of the entropy pool 201 * to be saved at shut-down time and reloaded into the entropy pool at 202 * start-up. (The 'dd' in the addition to the bootup script is to 203 * make sure that /etc/random-seed is different for every start-up, 204 * even if the system crashes without executing rc.0.) Even with 205 * complete knowledge of the start-up activities, predicting the state 206 * of the entropy pool requires knowledge of the previous history of 207 * the system. 208 * 209 * Configuring the /dev/random driver under Linux 210 * ============================================== 211 * 212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 213 * the /dev/mem major number (#1). So if your system does not have 214 * /dev/random and /dev/urandom created already, they can be created 215 * by using the commands: 216 * 217 * mknod /dev/random c 1 8 218 * mknod /dev/urandom c 1 9 219 * 220 * Acknowledgements: 221 * ================= 222 * 223 * Ideas for constructing this random number generator were derived 224 * from Pretty Good Privacy's random number generator, and from private 225 * discussions with Phil Karn. Colin Plumb provided a faster random 226 * number generator, which speed up the mixing function of the entropy 227 * pool, taken from PGPfone. Dale Worley has also contributed many 228 * useful ideas and suggestions to improve this driver. 229 * 230 * Any flaws in the design are solely my responsibility, and should 231 * not be attributed to the Phil, Colin, or any of authors of PGP. 232 * 233 * Further background information on this topic may be obtained from 234 * RFC 1750, "Randomness Recommendations for Security", by Donald 235 * Eastlake, Steve Crocker, and Jeff Schiller. 236 */ 237 238 #include <linux/utsname.h> 239 #include <linux/module.h> 240 #include <linux/kernel.h> 241 #include <linux/major.h> 242 #include <linux/string.h> 243 #include <linux/fcntl.h> 244 #include <linux/slab.h> 245 #include <linux/random.h> 246 #include <linux/poll.h> 247 #include <linux/init.h> 248 #include <linux/fs.h> 249 #include <linux/genhd.h> 250 #include <linux/interrupt.h> 251 #include <linux/mm.h> 252 #include <linux/nodemask.h> 253 #include <linux/spinlock.h> 254 #include <linux/kthread.h> 255 #include <linux/percpu.h> 256 #include <linux/cryptohash.h> 257 #include <linux/fips.h> 258 #include <linux/ptrace.h> 259 #include <linux/kmemcheck.h> 260 #include <linux/workqueue.h> 261 #include <linux/irq.h> 262 #include <linux/syscalls.h> 263 #include <linux/completion.h> 264 #include <linux/uuid.h> 265 #include <crypto/chacha20.h> 266 267 #include <asm/processor.h> 268 #include <linux/uaccess.h> 269 #include <asm/irq.h> 270 #include <asm/irq_regs.h> 271 #include <asm/io.h> 272 273 #define CREATE_TRACE_POINTS 274 #include <trace/events/random.h> 275 276 /* #define ADD_INTERRUPT_BENCH */ 277 278 /* 279 * Configuration information 280 */ 281 #define INPUT_POOL_SHIFT 12 282 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 283 #define OUTPUT_POOL_SHIFT 10 284 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 285 #define SEC_XFER_SIZE 512 286 #define EXTRACT_SIZE 10 287 288 #define DEBUG_RANDOM_BOOT 0 289 290 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 291 292 /* 293 * To allow fractional bits to be tracked, the entropy_count field is 294 * denominated in units of 1/8th bits. 295 * 296 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in 297 * credit_entropy_bits() needs to be 64 bits wide. 298 */ 299 #define ENTROPY_SHIFT 3 300 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 301 302 /* 303 * The minimum number of bits of entropy before we wake up a read on 304 * /dev/random. Should be enough to do a significant reseed. 305 */ 306 static int random_read_wakeup_bits = 64; 307 308 /* 309 * If the entropy count falls under this number of bits, then we 310 * should wake up processes which are selecting or polling on write 311 * access to /dev/random. 312 */ 313 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; 314 315 /* 316 * Originally, we used a primitive polynomial of degree .poolwords 317 * over GF(2). The taps for various sizes are defined below. They 318 * were chosen to be evenly spaced except for the last tap, which is 1 319 * to get the twisting happening as fast as possible. 320 * 321 * For the purposes of better mixing, we use the CRC-32 polynomial as 322 * well to make a (modified) twisted Generalized Feedback Shift 323 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 324 * generators. ACM Transactions on Modeling and Computer Simulation 325 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 326 * GFSR generators II. ACM Transactions on Modeling and Computer 327 * Simulation 4:254-266) 328 * 329 * Thanks to Colin Plumb for suggesting this. 330 * 331 * The mixing operation is much less sensitive than the output hash, 332 * where we use SHA-1. All that we want of mixing operation is that 333 * it be a good non-cryptographic hash; i.e. it not produce collisions 334 * when fed "random" data of the sort we expect to see. As long as 335 * the pool state differs for different inputs, we have preserved the 336 * input entropy and done a good job. The fact that an intelligent 337 * attacker can construct inputs that will produce controlled 338 * alterations to the pool's state is not important because we don't 339 * consider such inputs to contribute any randomness. The only 340 * property we need with respect to them is that the attacker can't 341 * increase his/her knowledge of the pool's state. Since all 342 * additions are reversible (knowing the final state and the input, 343 * you can reconstruct the initial state), if an attacker has any 344 * uncertainty about the initial state, he/she can only shuffle that 345 * uncertainty about, but never cause any collisions (which would 346 * decrease the uncertainty). 347 * 348 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 349 * Videau in their paper, "The Linux Pseudorandom Number Generator 350 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 351 * paper, they point out that we are not using a true Twisted GFSR, 352 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 353 * is, with only three taps, instead of the six that we are using). 354 * As a result, the resulting polynomial is neither primitive nor 355 * irreducible, and hence does not have a maximal period over 356 * GF(2**32). They suggest a slight change to the generator 357 * polynomial which improves the resulting TGFSR polynomial to be 358 * irreducible, which we have made here. 359 */ 360 static struct poolinfo { 361 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits; 362 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5) 363 int tap1, tap2, tap3, tap4, tap5; 364 } poolinfo_table[] = { 365 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 366 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 367 { S(128), 104, 76, 51, 25, 1 }, 368 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */ 369 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */ 370 { S(32), 26, 19, 14, 7, 1 }, 371 #if 0 372 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 373 { S(2048), 1638, 1231, 819, 411, 1 }, 374 375 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 376 { S(1024), 817, 615, 412, 204, 1 }, 377 378 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 379 { S(1024), 819, 616, 410, 207, 2 }, 380 381 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 382 { S(512), 411, 308, 208, 104, 1 }, 383 384 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 385 { S(512), 409, 307, 206, 102, 2 }, 386 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 387 { S(512), 409, 309, 205, 103, 2 }, 388 389 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 390 { S(256), 205, 155, 101, 52, 1 }, 391 392 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 393 { S(128), 103, 78, 51, 27, 2 }, 394 395 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 396 { S(64), 52, 39, 26, 14, 1 }, 397 #endif 398 }; 399 400 /* 401 * Static global variables 402 */ 403 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 404 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 405 static struct fasync_struct *fasync; 406 407 static DEFINE_SPINLOCK(random_ready_list_lock); 408 static LIST_HEAD(random_ready_list); 409 410 struct crng_state { 411 __u32 state[16]; 412 unsigned long init_time; 413 spinlock_t lock; 414 }; 415 416 struct crng_state primary_crng = { 417 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock), 418 }; 419 420 /* 421 * crng_init = 0 --> Uninitialized 422 * 1 --> Initialized 423 * 2 --> Initialized from input_pool 424 * 425 * crng_init is protected by primary_crng->lock, and only increases 426 * its value (from 0->1->2). 427 */ 428 static int crng_init = 0; 429 #define crng_ready() (likely(crng_init > 0)) 430 static int crng_init_cnt = 0; 431 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE) 432 static void _extract_crng(struct crng_state *crng, 433 __u8 out[CHACHA20_BLOCK_SIZE]); 434 static void _crng_backtrack_protect(struct crng_state *crng, 435 __u8 tmp[CHACHA20_BLOCK_SIZE], int used); 436 static void process_random_ready_list(void); 437 438 /********************************************************************** 439 * 440 * OS independent entropy store. Here are the functions which handle 441 * storing entropy in an entropy pool. 442 * 443 **********************************************************************/ 444 445 struct entropy_store; 446 struct entropy_store { 447 /* read-only data: */ 448 const struct poolinfo *poolinfo; 449 __u32 *pool; 450 const char *name; 451 struct entropy_store *pull; 452 struct work_struct push_work; 453 454 /* read-write data: */ 455 unsigned long last_pulled; 456 spinlock_t lock; 457 unsigned short add_ptr; 458 unsigned short input_rotate; 459 int entropy_count; 460 int entropy_total; 461 unsigned int initialized:1; 462 unsigned int last_data_init:1; 463 __u8 last_data[EXTRACT_SIZE]; 464 }; 465 466 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 467 size_t nbytes, int min, int rsvd); 468 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 469 size_t nbytes, int fips); 470 471 static void crng_reseed(struct crng_state *crng, struct entropy_store *r); 472 static void push_to_pool(struct work_struct *work); 473 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy; 474 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy; 475 476 static struct entropy_store input_pool = { 477 .poolinfo = &poolinfo_table[0], 478 .name = "input", 479 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 480 .pool = input_pool_data 481 }; 482 483 static struct entropy_store blocking_pool = { 484 .poolinfo = &poolinfo_table[1], 485 .name = "blocking", 486 .pull = &input_pool, 487 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), 488 .pool = blocking_pool_data, 489 .push_work = __WORK_INITIALIZER(blocking_pool.push_work, 490 push_to_pool), 491 }; 492 493 static __u32 const twist_table[8] = { 494 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 495 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 496 497 /* 498 * This function adds bytes into the entropy "pool". It does not 499 * update the entropy estimate. The caller should call 500 * credit_entropy_bits if this is appropriate. 501 * 502 * The pool is stirred with a primitive polynomial of the appropriate 503 * degree, and then twisted. We twist by three bits at a time because 504 * it's cheap to do so and helps slightly in the expected case where 505 * the entropy is concentrated in the low-order bits. 506 */ 507 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 508 int nbytes) 509 { 510 unsigned long i, tap1, tap2, tap3, tap4, tap5; 511 int input_rotate; 512 int wordmask = r->poolinfo->poolwords - 1; 513 const char *bytes = in; 514 __u32 w; 515 516 tap1 = r->poolinfo->tap1; 517 tap2 = r->poolinfo->tap2; 518 tap3 = r->poolinfo->tap3; 519 tap4 = r->poolinfo->tap4; 520 tap5 = r->poolinfo->tap5; 521 522 input_rotate = r->input_rotate; 523 i = r->add_ptr; 524 525 /* mix one byte at a time to simplify size handling and churn faster */ 526 while (nbytes--) { 527 w = rol32(*bytes++, input_rotate); 528 i = (i - 1) & wordmask; 529 530 /* XOR in the various taps */ 531 w ^= r->pool[i]; 532 w ^= r->pool[(i + tap1) & wordmask]; 533 w ^= r->pool[(i + tap2) & wordmask]; 534 w ^= r->pool[(i + tap3) & wordmask]; 535 w ^= r->pool[(i + tap4) & wordmask]; 536 w ^= r->pool[(i + tap5) & wordmask]; 537 538 /* Mix the result back in with a twist */ 539 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 540 541 /* 542 * Normally, we add 7 bits of rotation to the pool. 543 * At the beginning of the pool, add an extra 7 bits 544 * rotation, so that successive passes spread the 545 * input bits across the pool evenly. 546 */ 547 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 548 } 549 550 r->input_rotate = input_rotate; 551 r->add_ptr = i; 552 } 553 554 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 555 int nbytes) 556 { 557 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 558 _mix_pool_bytes(r, in, nbytes); 559 } 560 561 static void mix_pool_bytes(struct entropy_store *r, const void *in, 562 int nbytes) 563 { 564 unsigned long flags; 565 566 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 567 spin_lock_irqsave(&r->lock, flags); 568 _mix_pool_bytes(r, in, nbytes); 569 spin_unlock_irqrestore(&r->lock, flags); 570 } 571 572 struct fast_pool { 573 __u32 pool[4]; 574 unsigned long last; 575 unsigned short reg_idx; 576 unsigned char count; 577 }; 578 579 /* 580 * This is a fast mixing routine used by the interrupt randomness 581 * collector. It's hardcoded for an 128 bit pool and assumes that any 582 * locks that might be needed are taken by the caller. 583 */ 584 static void fast_mix(struct fast_pool *f) 585 { 586 __u32 a = f->pool[0], b = f->pool[1]; 587 __u32 c = f->pool[2], d = f->pool[3]; 588 589 a += b; c += d; 590 b = rol32(b, 6); d = rol32(d, 27); 591 d ^= a; b ^= c; 592 593 a += b; c += d; 594 b = rol32(b, 16); d = rol32(d, 14); 595 d ^= a; b ^= c; 596 597 a += b; c += d; 598 b = rol32(b, 6); d = rol32(d, 27); 599 d ^= a; b ^= c; 600 601 a += b; c += d; 602 b = rol32(b, 16); d = rol32(d, 14); 603 d ^= a; b ^= c; 604 605 f->pool[0] = a; f->pool[1] = b; 606 f->pool[2] = c; f->pool[3] = d; 607 f->count++; 608 } 609 610 static void process_random_ready_list(void) 611 { 612 unsigned long flags; 613 struct random_ready_callback *rdy, *tmp; 614 615 spin_lock_irqsave(&random_ready_list_lock, flags); 616 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { 617 struct module *owner = rdy->owner; 618 619 list_del_init(&rdy->list); 620 rdy->func(rdy); 621 module_put(owner); 622 } 623 spin_unlock_irqrestore(&random_ready_list_lock, flags); 624 } 625 626 /* 627 * Credit (or debit) the entropy store with n bits of entropy. 628 * Use credit_entropy_bits_safe() if the value comes from userspace 629 * or otherwise should be checked for extreme values. 630 */ 631 static void credit_entropy_bits(struct entropy_store *r, int nbits) 632 { 633 int entropy_count, orig; 634 const int pool_size = r->poolinfo->poolfracbits; 635 int nfrac = nbits << ENTROPY_SHIFT; 636 637 if (!nbits) 638 return; 639 640 retry: 641 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 642 if (nfrac < 0) { 643 /* Debit */ 644 entropy_count += nfrac; 645 } else { 646 /* 647 * Credit: we have to account for the possibility of 648 * overwriting already present entropy. Even in the 649 * ideal case of pure Shannon entropy, new contributions 650 * approach the full value asymptotically: 651 * 652 * entropy <- entropy + (pool_size - entropy) * 653 * (1 - exp(-add_entropy/pool_size)) 654 * 655 * For add_entropy <= pool_size/2 then 656 * (1 - exp(-add_entropy/pool_size)) >= 657 * (add_entropy/pool_size)*0.7869... 658 * so we can approximate the exponential with 659 * 3/4*add_entropy/pool_size and still be on the 660 * safe side by adding at most pool_size/2 at a time. 661 * 662 * The use of pool_size-2 in the while statement is to 663 * prevent rounding artifacts from making the loop 664 * arbitrarily long; this limits the loop to log2(pool_size)*2 665 * turns no matter how large nbits is. 666 */ 667 int pnfrac = nfrac; 668 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 669 /* The +2 corresponds to the /4 in the denominator */ 670 671 do { 672 unsigned int anfrac = min(pnfrac, pool_size/2); 673 unsigned int add = 674 ((pool_size - entropy_count)*anfrac*3) >> s; 675 676 entropy_count += add; 677 pnfrac -= anfrac; 678 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 679 } 680 681 if (unlikely(entropy_count < 0)) { 682 pr_warn("random: negative entropy/overflow: pool %s count %d\n", 683 r->name, entropy_count); 684 WARN_ON(1); 685 entropy_count = 0; 686 } else if (entropy_count > pool_size) 687 entropy_count = pool_size; 688 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 689 goto retry; 690 691 r->entropy_total += nbits; 692 if (!r->initialized && r->entropy_total > 128) { 693 r->initialized = 1; 694 r->entropy_total = 0; 695 } 696 697 trace_credit_entropy_bits(r->name, nbits, 698 entropy_count >> ENTROPY_SHIFT, 699 r->entropy_total, _RET_IP_); 700 701 if (r == &input_pool) { 702 int entropy_bits = entropy_count >> ENTROPY_SHIFT; 703 704 if (crng_init < 2 && entropy_bits >= 128) { 705 crng_reseed(&primary_crng, r); 706 entropy_bits = r->entropy_count >> ENTROPY_SHIFT; 707 } 708 709 /* should we wake readers? */ 710 if (entropy_bits >= random_read_wakeup_bits) { 711 wake_up_interruptible(&random_read_wait); 712 kill_fasync(&fasync, SIGIO, POLL_IN); 713 } 714 /* If the input pool is getting full, send some 715 * entropy to the blocking pool until it is 75% full. 716 */ 717 if (entropy_bits > random_write_wakeup_bits && 718 r->initialized && 719 r->entropy_total >= 2*random_read_wakeup_bits) { 720 struct entropy_store *other = &blocking_pool; 721 722 if (other->entropy_count <= 723 3 * other->poolinfo->poolfracbits / 4) { 724 schedule_work(&other->push_work); 725 r->entropy_total = 0; 726 } 727 } 728 } 729 } 730 731 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits) 732 { 733 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1)); 734 735 if (nbits < 0) 736 return -EINVAL; 737 738 /* Cap the value to avoid overflows */ 739 nbits = min(nbits, nbits_max); 740 741 credit_entropy_bits(r, nbits); 742 return 0; 743 } 744 745 /********************************************************************* 746 * 747 * CRNG using CHACHA20 748 * 749 *********************************************************************/ 750 751 #define CRNG_RESEED_INTERVAL (300*HZ) 752 753 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 754 755 #ifdef CONFIG_NUMA 756 /* 757 * Hack to deal with crazy userspace progams when they are all trying 758 * to access /dev/urandom in parallel. The programs are almost 759 * certainly doing something terribly wrong, but we'll work around 760 * their brain damage. 761 */ 762 static struct crng_state **crng_node_pool __read_mostly; 763 #endif 764 765 static void crng_initialize(struct crng_state *crng) 766 { 767 int i; 768 unsigned long rv; 769 770 memcpy(&crng->state[0], "expand 32-byte k", 16); 771 if (crng == &primary_crng) 772 _extract_entropy(&input_pool, &crng->state[4], 773 sizeof(__u32) * 12, 0); 774 else 775 get_random_bytes(&crng->state[4], sizeof(__u32) * 12); 776 for (i = 4; i < 16; i++) { 777 if (!arch_get_random_seed_long(&rv) && 778 !arch_get_random_long(&rv)) 779 rv = random_get_entropy(); 780 crng->state[i] ^= rv; 781 } 782 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; 783 } 784 785 static int crng_fast_load(const char *cp, size_t len) 786 { 787 unsigned long flags; 788 char *p; 789 790 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 791 return 0; 792 if (crng_ready()) { 793 spin_unlock_irqrestore(&primary_crng.lock, flags); 794 return 0; 795 } 796 p = (unsigned char *) &primary_crng.state[4]; 797 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { 798 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp; 799 cp++; crng_init_cnt++; len--; 800 } 801 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { 802 crng_init = 1; 803 wake_up_interruptible(&crng_init_wait); 804 pr_notice("random: fast init done\n"); 805 } 806 spin_unlock_irqrestore(&primary_crng.lock, flags); 807 return 1; 808 } 809 810 static void crng_reseed(struct crng_state *crng, struct entropy_store *r) 811 { 812 unsigned long flags; 813 int i, num; 814 union { 815 __u8 block[CHACHA20_BLOCK_SIZE]; 816 __u32 key[8]; 817 } buf; 818 819 if (r) { 820 num = extract_entropy(r, &buf, 32, 16, 0); 821 if (num == 0) 822 return; 823 } else { 824 _extract_crng(&primary_crng, buf.block); 825 _crng_backtrack_protect(&primary_crng, buf.block, 826 CHACHA20_KEY_SIZE); 827 } 828 spin_lock_irqsave(&primary_crng.lock, flags); 829 for (i = 0; i < 8; i++) { 830 unsigned long rv; 831 if (!arch_get_random_seed_long(&rv) && 832 !arch_get_random_long(&rv)) 833 rv = random_get_entropy(); 834 crng->state[i+4] ^= buf.key[i] ^ rv; 835 } 836 memzero_explicit(&buf, sizeof(buf)); 837 crng->init_time = jiffies; 838 if (crng == &primary_crng && crng_init < 2) { 839 crng_init = 2; 840 process_random_ready_list(); 841 wake_up_interruptible(&crng_init_wait); 842 pr_notice("random: crng init done\n"); 843 } 844 spin_unlock_irqrestore(&primary_crng.lock, flags); 845 } 846 847 static inline void crng_wait_ready(void) 848 { 849 wait_event_interruptible(crng_init_wait, crng_ready()); 850 } 851 852 static void _extract_crng(struct crng_state *crng, 853 __u8 out[CHACHA20_BLOCK_SIZE]) 854 { 855 unsigned long v, flags; 856 857 if (crng_init > 1 && 858 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)) 859 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL); 860 spin_lock_irqsave(&crng->lock, flags); 861 if (arch_get_random_long(&v)) 862 crng->state[14] ^= v; 863 chacha20_block(&crng->state[0], out); 864 if (crng->state[12] == 0) 865 crng->state[13]++; 866 spin_unlock_irqrestore(&crng->lock, flags); 867 } 868 869 static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE]) 870 { 871 struct crng_state *crng = NULL; 872 873 #ifdef CONFIG_NUMA 874 if (crng_node_pool) 875 crng = crng_node_pool[numa_node_id()]; 876 if (crng == NULL) 877 #endif 878 crng = &primary_crng; 879 _extract_crng(crng, out); 880 } 881 882 /* 883 * Use the leftover bytes from the CRNG block output (if there is 884 * enough) to mutate the CRNG key to provide backtracking protection. 885 */ 886 static void _crng_backtrack_protect(struct crng_state *crng, 887 __u8 tmp[CHACHA20_BLOCK_SIZE], int used) 888 { 889 unsigned long flags; 890 __u32 *s, *d; 891 int i; 892 893 used = round_up(used, sizeof(__u32)); 894 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) { 895 extract_crng(tmp); 896 used = 0; 897 } 898 spin_lock_irqsave(&crng->lock, flags); 899 s = (__u32 *) &tmp[used]; 900 d = &crng->state[4]; 901 for (i=0; i < 8; i++) 902 *d++ ^= *s++; 903 spin_unlock_irqrestore(&crng->lock, flags); 904 } 905 906 static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used) 907 { 908 struct crng_state *crng = NULL; 909 910 #ifdef CONFIG_NUMA 911 if (crng_node_pool) 912 crng = crng_node_pool[numa_node_id()]; 913 if (crng == NULL) 914 #endif 915 crng = &primary_crng; 916 _crng_backtrack_protect(crng, tmp, used); 917 } 918 919 static ssize_t extract_crng_user(void __user *buf, size_t nbytes) 920 { 921 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE; 922 __u8 tmp[CHACHA20_BLOCK_SIZE]; 923 int large_request = (nbytes > 256); 924 925 while (nbytes) { 926 if (large_request && need_resched()) { 927 if (signal_pending(current)) { 928 if (ret == 0) 929 ret = -ERESTARTSYS; 930 break; 931 } 932 schedule(); 933 } 934 935 extract_crng(tmp); 936 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE); 937 if (copy_to_user(buf, tmp, i)) { 938 ret = -EFAULT; 939 break; 940 } 941 942 nbytes -= i; 943 buf += i; 944 ret += i; 945 } 946 crng_backtrack_protect(tmp, i); 947 948 /* Wipe data just written to memory */ 949 memzero_explicit(tmp, sizeof(tmp)); 950 951 return ret; 952 } 953 954 955 /********************************************************************* 956 * 957 * Entropy input management 958 * 959 *********************************************************************/ 960 961 /* There is one of these per entropy source */ 962 struct timer_rand_state { 963 cycles_t last_time; 964 long last_delta, last_delta2; 965 unsigned dont_count_entropy:1; 966 }; 967 968 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 969 970 /* 971 * Add device- or boot-specific data to the input pool to help 972 * initialize it. 973 * 974 * None of this adds any entropy; it is meant to avoid the problem of 975 * the entropy pool having similar initial state across largely 976 * identical devices. 977 */ 978 void add_device_randomness(const void *buf, unsigned int size) 979 { 980 unsigned long time = random_get_entropy() ^ jiffies; 981 unsigned long flags; 982 983 trace_add_device_randomness(size, _RET_IP_); 984 spin_lock_irqsave(&input_pool.lock, flags); 985 _mix_pool_bytes(&input_pool, buf, size); 986 _mix_pool_bytes(&input_pool, &time, sizeof(time)); 987 spin_unlock_irqrestore(&input_pool.lock, flags); 988 } 989 EXPORT_SYMBOL(add_device_randomness); 990 991 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 992 993 /* 994 * This function adds entropy to the entropy "pool" by using timing 995 * delays. It uses the timer_rand_state structure to make an estimate 996 * of how many bits of entropy this call has added to the pool. 997 * 998 * The number "num" is also added to the pool - it should somehow describe 999 * the type of event which just happened. This is currently 0-255 for 1000 * keyboard scan codes, and 256 upwards for interrupts. 1001 * 1002 */ 1003 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 1004 { 1005 struct entropy_store *r; 1006 struct { 1007 long jiffies; 1008 unsigned cycles; 1009 unsigned num; 1010 } sample; 1011 long delta, delta2, delta3; 1012 1013 preempt_disable(); 1014 1015 sample.jiffies = jiffies; 1016 sample.cycles = random_get_entropy(); 1017 sample.num = num; 1018 r = &input_pool; 1019 mix_pool_bytes(r, &sample, sizeof(sample)); 1020 1021 /* 1022 * Calculate number of bits of randomness we probably added. 1023 * We take into account the first, second and third-order deltas 1024 * in order to make our estimate. 1025 */ 1026 1027 if (!state->dont_count_entropy) { 1028 delta = sample.jiffies - state->last_time; 1029 state->last_time = sample.jiffies; 1030 1031 delta2 = delta - state->last_delta; 1032 state->last_delta = delta; 1033 1034 delta3 = delta2 - state->last_delta2; 1035 state->last_delta2 = delta2; 1036 1037 if (delta < 0) 1038 delta = -delta; 1039 if (delta2 < 0) 1040 delta2 = -delta2; 1041 if (delta3 < 0) 1042 delta3 = -delta3; 1043 if (delta > delta2) 1044 delta = delta2; 1045 if (delta > delta3) 1046 delta = delta3; 1047 1048 /* 1049 * delta is now minimum absolute delta. 1050 * Round down by 1 bit on general principles, 1051 * and limit entropy entimate to 12 bits. 1052 */ 1053 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 1054 } 1055 preempt_enable(); 1056 } 1057 1058 void add_input_randomness(unsigned int type, unsigned int code, 1059 unsigned int value) 1060 { 1061 static unsigned char last_value; 1062 1063 /* ignore autorepeat and the like */ 1064 if (value == last_value) 1065 return; 1066 1067 last_value = value; 1068 add_timer_randomness(&input_timer_state, 1069 (type << 4) ^ code ^ (code >> 4) ^ value); 1070 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 1071 } 1072 EXPORT_SYMBOL_GPL(add_input_randomness); 1073 1074 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 1075 1076 #ifdef ADD_INTERRUPT_BENCH 1077 static unsigned long avg_cycles, avg_deviation; 1078 1079 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */ 1080 #define FIXED_1_2 (1 << (AVG_SHIFT-1)) 1081 1082 static void add_interrupt_bench(cycles_t start) 1083 { 1084 long delta = random_get_entropy() - start; 1085 1086 /* Use a weighted moving average */ 1087 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); 1088 avg_cycles += delta; 1089 /* And average deviation */ 1090 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); 1091 avg_deviation += delta; 1092 } 1093 #else 1094 #define add_interrupt_bench(x) 1095 #endif 1096 1097 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) 1098 { 1099 __u32 *ptr = (__u32 *) regs; 1100 1101 if (regs == NULL) 1102 return 0; 1103 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32)) 1104 f->reg_idx = 0; 1105 return *(ptr + f->reg_idx++); 1106 } 1107 1108 void add_interrupt_randomness(int irq, int irq_flags) 1109 { 1110 struct entropy_store *r; 1111 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1112 struct pt_regs *regs = get_irq_regs(); 1113 unsigned long now = jiffies; 1114 cycles_t cycles = random_get_entropy(); 1115 __u32 c_high, j_high; 1116 __u64 ip; 1117 unsigned long seed; 1118 int credit = 0; 1119 1120 if (cycles == 0) 1121 cycles = get_reg(fast_pool, regs); 1122 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 1123 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 1124 fast_pool->pool[0] ^= cycles ^ j_high ^ irq; 1125 fast_pool->pool[1] ^= now ^ c_high; 1126 ip = regs ? instruction_pointer(regs) : _RET_IP_; 1127 fast_pool->pool[2] ^= ip; 1128 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : 1129 get_reg(fast_pool, regs); 1130 1131 fast_mix(fast_pool); 1132 add_interrupt_bench(cycles); 1133 1134 if (!crng_ready()) { 1135 if ((fast_pool->count >= 64) && 1136 crng_fast_load((char *) fast_pool->pool, 1137 sizeof(fast_pool->pool))) { 1138 fast_pool->count = 0; 1139 fast_pool->last = now; 1140 } 1141 return; 1142 } 1143 1144 if ((fast_pool->count < 64) && 1145 !time_after(now, fast_pool->last + HZ)) 1146 return; 1147 1148 r = &input_pool; 1149 if (!spin_trylock(&r->lock)) 1150 return; 1151 1152 fast_pool->last = now; 1153 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); 1154 1155 /* 1156 * If we have architectural seed generator, produce a seed and 1157 * add it to the pool. For the sake of paranoia don't let the 1158 * architectural seed generator dominate the input from the 1159 * interrupt noise. 1160 */ 1161 if (arch_get_random_seed_long(&seed)) { 1162 __mix_pool_bytes(r, &seed, sizeof(seed)); 1163 credit = 1; 1164 } 1165 spin_unlock(&r->lock); 1166 1167 fast_pool->count = 0; 1168 1169 /* award one bit for the contents of the fast pool */ 1170 credit_entropy_bits(r, credit + 1); 1171 } 1172 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1173 1174 #ifdef CONFIG_BLOCK 1175 void add_disk_randomness(struct gendisk *disk) 1176 { 1177 if (!disk || !disk->random) 1178 return; 1179 /* first major is 1, so we get >= 0x200 here */ 1180 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1181 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 1182 } 1183 EXPORT_SYMBOL_GPL(add_disk_randomness); 1184 #endif 1185 1186 /********************************************************************* 1187 * 1188 * Entropy extraction routines 1189 * 1190 *********************************************************************/ 1191 1192 /* 1193 * This utility inline function is responsible for transferring entropy 1194 * from the primary pool to the secondary extraction pool. We make 1195 * sure we pull enough for a 'catastrophic reseed'. 1196 */ 1197 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes); 1198 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 1199 { 1200 if (!r->pull || 1201 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) || 1202 r->entropy_count > r->poolinfo->poolfracbits) 1203 return; 1204 1205 _xfer_secondary_pool(r, nbytes); 1206 } 1207 1208 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 1209 { 1210 __u32 tmp[OUTPUT_POOL_WORDS]; 1211 1212 int bytes = nbytes; 1213 1214 /* pull at least as much as a wakeup */ 1215 bytes = max_t(int, bytes, random_read_wakeup_bits / 8); 1216 /* but never more than the buffer size */ 1217 bytes = min_t(int, bytes, sizeof(tmp)); 1218 1219 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8, 1220 ENTROPY_BITS(r), ENTROPY_BITS(r->pull)); 1221 bytes = extract_entropy(r->pull, tmp, bytes, 1222 random_read_wakeup_bits / 8, 0); 1223 mix_pool_bytes(r, tmp, bytes); 1224 credit_entropy_bits(r, bytes*8); 1225 } 1226 1227 /* 1228 * Used as a workqueue function so that when the input pool is getting 1229 * full, we can "spill over" some entropy to the output pools. That 1230 * way the output pools can store some of the excess entropy instead 1231 * of letting it go to waste. 1232 */ 1233 static void push_to_pool(struct work_struct *work) 1234 { 1235 struct entropy_store *r = container_of(work, struct entropy_store, 1236 push_work); 1237 BUG_ON(!r); 1238 _xfer_secondary_pool(r, random_read_wakeup_bits/8); 1239 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT, 1240 r->pull->entropy_count >> ENTROPY_SHIFT); 1241 } 1242 1243 /* 1244 * This function decides how many bytes to actually take from the 1245 * given pool, and also debits the entropy count accordingly. 1246 */ 1247 static size_t account(struct entropy_store *r, size_t nbytes, int min, 1248 int reserved) 1249 { 1250 int entropy_count, orig, have_bytes; 1251 size_t ibytes, nfrac; 1252 1253 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 1254 1255 /* Can we pull enough? */ 1256 retry: 1257 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 1258 ibytes = nbytes; 1259 /* never pull more than available */ 1260 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 1261 1262 if ((have_bytes -= reserved) < 0) 1263 have_bytes = 0; 1264 ibytes = min_t(size_t, ibytes, have_bytes); 1265 if (ibytes < min) 1266 ibytes = 0; 1267 1268 if (unlikely(entropy_count < 0)) { 1269 pr_warn("random: negative entropy count: pool %s count %d\n", 1270 r->name, entropy_count); 1271 WARN_ON(1); 1272 entropy_count = 0; 1273 } 1274 nfrac = ibytes << (ENTROPY_SHIFT + 3); 1275 if ((size_t) entropy_count > nfrac) 1276 entropy_count -= nfrac; 1277 else 1278 entropy_count = 0; 1279 1280 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1281 goto retry; 1282 1283 trace_debit_entropy(r->name, 8 * ibytes); 1284 if (ibytes && 1285 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) { 1286 wake_up_interruptible(&random_write_wait); 1287 kill_fasync(&fasync, SIGIO, POLL_OUT); 1288 } 1289 1290 return ibytes; 1291 } 1292 1293 /* 1294 * This function does the actual extraction for extract_entropy and 1295 * extract_entropy_user. 1296 * 1297 * Note: we assume that .poolwords is a multiple of 16 words. 1298 */ 1299 static void extract_buf(struct entropy_store *r, __u8 *out) 1300 { 1301 int i; 1302 union { 1303 __u32 w[5]; 1304 unsigned long l[LONGS(20)]; 1305 } hash; 1306 __u32 workspace[SHA_WORKSPACE_WORDS]; 1307 unsigned long flags; 1308 1309 /* 1310 * If we have an architectural hardware random number 1311 * generator, use it for SHA's initial vector 1312 */ 1313 sha_init(hash.w); 1314 for (i = 0; i < LONGS(20); i++) { 1315 unsigned long v; 1316 if (!arch_get_random_long(&v)) 1317 break; 1318 hash.l[i] = v; 1319 } 1320 1321 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 1322 spin_lock_irqsave(&r->lock, flags); 1323 for (i = 0; i < r->poolinfo->poolwords; i += 16) 1324 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 1325 1326 /* 1327 * We mix the hash back into the pool to prevent backtracking 1328 * attacks (where the attacker knows the state of the pool 1329 * plus the current outputs, and attempts to find previous 1330 * ouputs), unless the hash function can be inverted. By 1331 * mixing at least a SHA1 worth of hash data back, we make 1332 * brute-forcing the feedback as hard as brute-forcing the 1333 * hash. 1334 */ 1335 __mix_pool_bytes(r, hash.w, sizeof(hash.w)); 1336 spin_unlock_irqrestore(&r->lock, flags); 1337 1338 memzero_explicit(workspace, sizeof(workspace)); 1339 1340 /* 1341 * In case the hash function has some recognizable output 1342 * pattern, we fold it in half. Thus, we always feed back 1343 * twice as much data as we output. 1344 */ 1345 hash.w[0] ^= hash.w[3]; 1346 hash.w[1] ^= hash.w[4]; 1347 hash.w[2] ^= rol32(hash.w[2], 16); 1348 1349 memcpy(out, &hash, EXTRACT_SIZE); 1350 memzero_explicit(&hash, sizeof(hash)); 1351 } 1352 1353 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 1354 size_t nbytes, int fips) 1355 { 1356 ssize_t ret = 0, i; 1357 __u8 tmp[EXTRACT_SIZE]; 1358 unsigned long flags; 1359 1360 while (nbytes) { 1361 extract_buf(r, tmp); 1362 1363 if (fips) { 1364 spin_lock_irqsave(&r->lock, flags); 1365 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1366 panic("Hardware RNG duplicated output!\n"); 1367 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1368 spin_unlock_irqrestore(&r->lock, flags); 1369 } 1370 i = min_t(int, nbytes, EXTRACT_SIZE); 1371 memcpy(buf, tmp, i); 1372 nbytes -= i; 1373 buf += i; 1374 ret += i; 1375 } 1376 1377 /* Wipe data just returned from memory */ 1378 memzero_explicit(tmp, sizeof(tmp)); 1379 1380 return ret; 1381 } 1382 1383 /* 1384 * This function extracts randomness from the "entropy pool", and 1385 * returns it in a buffer. 1386 * 1387 * The min parameter specifies the minimum amount we can pull before 1388 * failing to avoid races that defeat catastrophic reseeding while the 1389 * reserved parameter indicates how much entropy we must leave in the 1390 * pool after each pull to avoid starving other readers. 1391 */ 1392 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1393 size_t nbytes, int min, int reserved) 1394 { 1395 __u8 tmp[EXTRACT_SIZE]; 1396 unsigned long flags; 1397 1398 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1399 if (fips_enabled) { 1400 spin_lock_irqsave(&r->lock, flags); 1401 if (!r->last_data_init) { 1402 r->last_data_init = 1; 1403 spin_unlock_irqrestore(&r->lock, flags); 1404 trace_extract_entropy(r->name, EXTRACT_SIZE, 1405 ENTROPY_BITS(r), _RET_IP_); 1406 xfer_secondary_pool(r, EXTRACT_SIZE); 1407 extract_buf(r, tmp); 1408 spin_lock_irqsave(&r->lock, flags); 1409 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1410 } 1411 spin_unlock_irqrestore(&r->lock, flags); 1412 } 1413 1414 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1415 xfer_secondary_pool(r, nbytes); 1416 nbytes = account(r, nbytes, min, reserved); 1417 1418 return _extract_entropy(r, buf, nbytes, fips_enabled); 1419 } 1420 1421 /* 1422 * This function extracts randomness from the "entropy pool", and 1423 * returns it in a userspace buffer. 1424 */ 1425 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 1426 size_t nbytes) 1427 { 1428 ssize_t ret = 0, i; 1429 __u8 tmp[EXTRACT_SIZE]; 1430 int large_request = (nbytes > 256); 1431 1432 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1433 xfer_secondary_pool(r, nbytes); 1434 nbytes = account(r, nbytes, 0, 0); 1435 1436 while (nbytes) { 1437 if (large_request && need_resched()) { 1438 if (signal_pending(current)) { 1439 if (ret == 0) 1440 ret = -ERESTARTSYS; 1441 break; 1442 } 1443 schedule(); 1444 } 1445 1446 extract_buf(r, tmp); 1447 i = min_t(int, nbytes, EXTRACT_SIZE); 1448 if (copy_to_user(buf, tmp, i)) { 1449 ret = -EFAULT; 1450 break; 1451 } 1452 1453 nbytes -= i; 1454 buf += i; 1455 ret += i; 1456 } 1457 1458 /* Wipe data just returned from memory */ 1459 memzero_explicit(tmp, sizeof(tmp)); 1460 1461 return ret; 1462 } 1463 1464 /* 1465 * This function is the exported kernel interface. It returns some 1466 * number of good random numbers, suitable for key generation, seeding 1467 * TCP sequence numbers, etc. It does not rely on the hardware random 1468 * number generator. For random bytes direct from the hardware RNG 1469 * (when available), use get_random_bytes_arch(). 1470 */ 1471 void get_random_bytes(void *buf, int nbytes) 1472 { 1473 __u8 tmp[CHACHA20_BLOCK_SIZE]; 1474 1475 #if DEBUG_RANDOM_BOOT > 0 1476 if (!crng_ready()) 1477 printk(KERN_NOTICE "random: %pF get_random_bytes called " 1478 "with crng_init = %d\n", (void *) _RET_IP_, crng_init); 1479 #endif 1480 trace_get_random_bytes(nbytes, _RET_IP_); 1481 1482 while (nbytes >= CHACHA20_BLOCK_SIZE) { 1483 extract_crng(buf); 1484 buf += CHACHA20_BLOCK_SIZE; 1485 nbytes -= CHACHA20_BLOCK_SIZE; 1486 } 1487 1488 if (nbytes > 0) { 1489 extract_crng(tmp); 1490 memcpy(buf, tmp, nbytes); 1491 crng_backtrack_protect(tmp, nbytes); 1492 } else 1493 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE); 1494 memzero_explicit(tmp, sizeof(tmp)); 1495 } 1496 EXPORT_SYMBOL(get_random_bytes); 1497 1498 /* 1499 * Add a callback function that will be invoked when the nonblocking 1500 * pool is initialised. 1501 * 1502 * returns: 0 if callback is successfully added 1503 * -EALREADY if pool is already initialised (callback not called) 1504 * -ENOENT if module for callback is not alive 1505 */ 1506 int add_random_ready_callback(struct random_ready_callback *rdy) 1507 { 1508 struct module *owner; 1509 unsigned long flags; 1510 int err = -EALREADY; 1511 1512 if (crng_ready()) 1513 return err; 1514 1515 owner = rdy->owner; 1516 if (!try_module_get(owner)) 1517 return -ENOENT; 1518 1519 spin_lock_irqsave(&random_ready_list_lock, flags); 1520 if (crng_ready()) 1521 goto out; 1522 1523 owner = NULL; 1524 1525 list_add(&rdy->list, &random_ready_list); 1526 err = 0; 1527 1528 out: 1529 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1530 1531 module_put(owner); 1532 1533 return err; 1534 } 1535 EXPORT_SYMBOL(add_random_ready_callback); 1536 1537 /* 1538 * Delete a previously registered readiness callback function. 1539 */ 1540 void del_random_ready_callback(struct random_ready_callback *rdy) 1541 { 1542 unsigned long flags; 1543 struct module *owner = NULL; 1544 1545 spin_lock_irqsave(&random_ready_list_lock, flags); 1546 if (!list_empty(&rdy->list)) { 1547 list_del_init(&rdy->list); 1548 owner = rdy->owner; 1549 } 1550 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1551 1552 module_put(owner); 1553 } 1554 EXPORT_SYMBOL(del_random_ready_callback); 1555 1556 /* 1557 * This function will use the architecture-specific hardware random 1558 * number generator if it is available. The arch-specific hw RNG will 1559 * almost certainly be faster than what we can do in software, but it 1560 * is impossible to verify that it is implemented securely (as 1561 * opposed, to, say, the AES encryption of a sequence number using a 1562 * key known by the NSA). So it's useful if we need the speed, but 1563 * only if we're willing to trust the hardware manufacturer not to 1564 * have put in a back door. 1565 */ 1566 void get_random_bytes_arch(void *buf, int nbytes) 1567 { 1568 char *p = buf; 1569 1570 trace_get_random_bytes_arch(nbytes, _RET_IP_); 1571 while (nbytes) { 1572 unsigned long v; 1573 int chunk = min(nbytes, (int)sizeof(unsigned long)); 1574 1575 if (!arch_get_random_long(&v)) 1576 break; 1577 1578 memcpy(p, &v, chunk); 1579 p += chunk; 1580 nbytes -= chunk; 1581 } 1582 1583 if (nbytes) 1584 get_random_bytes(p, nbytes); 1585 } 1586 EXPORT_SYMBOL(get_random_bytes_arch); 1587 1588 1589 /* 1590 * init_std_data - initialize pool with system data 1591 * 1592 * @r: pool to initialize 1593 * 1594 * This function clears the pool's entropy count and mixes some system 1595 * data into the pool to prepare it for use. The pool is not cleared 1596 * as that can only decrease the entropy in the pool. 1597 */ 1598 static void init_std_data(struct entropy_store *r) 1599 { 1600 int i; 1601 ktime_t now = ktime_get_real(); 1602 unsigned long rv; 1603 1604 r->last_pulled = jiffies; 1605 mix_pool_bytes(r, &now, sizeof(now)); 1606 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1607 if (!arch_get_random_seed_long(&rv) && 1608 !arch_get_random_long(&rv)) 1609 rv = random_get_entropy(); 1610 mix_pool_bytes(r, &rv, sizeof(rv)); 1611 } 1612 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 1613 } 1614 1615 /* 1616 * Note that setup_arch() may call add_device_randomness() 1617 * long before we get here. This allows seeding of the pools 1618 * with some platform dependent data very early in the boot 1619 * process. But it limits our options here. We must use 1620 * statically allocated structures that already have all 1621 * initializations complete at compile time. We should also 1622 * take care not to overwrite the precious per platform data 1623 * we were given. 1624 */ 1625 static int rand_initialize(void) 1626 { 1627 #ifdef CONFIG_NUMA 1628 int i; 1629 struct crng_state *crng; 1630 struct crng_state **pool; 1631 #endif 1632 1633 init_std_data(&input_pool); 1634 init_std_data(&blocking_pool); 1635 crng_initialize(&primary_crng); 1636 1637 #ifdef CONFIG_NUMA 1638 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL); 1639 for_each_online_node(i) { 1640 crng = kmalloc_node(sizeof(struct crng_state), 1641 GFP_KERNEL | __GFP_NOFAIL, i); 1642 spin_lock_init(&crng->lock); 1643 crng_initialize(crng); 1644 pool[i] = crng; 1645 } 1646 mb(); 1647 crng_node_pool = pool; 1648 #endif 1649 return 0; 1650 } 1651 early_initcall(rand_initialize); 1652 1653 #ifdef CONFIG_BLOCK 1654 void rand_initialize_disk(struct gendisk *disk) 1655 { 1656 struct timer_rand_state *state; 1657 1658 /* 1659 * If kzalloc returns null, we just won't use that entropy 1660 * source. 1661 */ 1662 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1663 if (state) { 1664 state->last_time = INITIAL_JIFFIES; 1665 disk->random = state; 1666 } 1667 } 1668 #endif 1669 1670 static ssize_t 1671 _random_read(int nonblock, char __user *buf, size_t nbytes) 1672 { 1673 ssize_t n; 1674 1675 if (nbytes == 0) 1676 return 0; 1677 1678 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE); 1679 while (1) { 1680 n = extract_entropy_user(&blocking_pool, buf, nbytes); 1681 if (n < 0) 1682 return n; 1683 trace_random_read(n*8, (nbytes-n)*8, 1684 ENTROPY_BITS(&blocking_pool), 1685 ENTROPY_BITS(&input_pool)); 1686 if (n > 0) 1687 return n; 1688 1689 /* Pool is (near) empty. Maybe wait and retry. */ 1690 if (nonblock) 1691 return -EAGAIN; 1692 1693 wait_event_interruptible(random_read_wait, 1694 ENTROPY_BITS(&input_pool) >= 1695 random_read_wakeup_bits); 1696 if (signal_pending(current)) 1697 return -ERESTARTSYS; 1698 } 1699 } 1700 1701 static ssize_t 1702 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1703 { 1704 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes); 1705 } 1706 1707 static ssize_t 1708 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1709 { 1710 unsigned long flags; 1711 static int maxwarn = 10; 1712 int ret; 1713 1714 if (!crng_ready() && maxwarn > 0) { 1715 maxwarn--; 1716 printk(KERN_NOTICE "random: %s: uninitialized urandom read " 1717 "(%zd bytes read)\n", 1718 current->comm, nbytes); 1719 spin_lock_irqsave(&primary_crng.lock, flags); 1720 crng_init_cnt = 0; 1721 spin_unlock_irqrestore(&primary_crng.lock, flags); 1722 } 1723 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); 1724 ret = extract_crng_user(buf, nbytes); 1725 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool)); 1726 return ret; 1727 } 1728 1729 static unsigned int 1730 random_poll(struct file *file, poll_table * wait) 1731 { 1732 unsigned int mask; 1733 1734 poll_wait(file, &random_read_wait, wait); 1735 poll_wait(file, &random_write_wait, wait); 1736 mask = 0; 1737 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits) 1738 mask |= POLLIN | POLLRDNORM; 1739 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) 1740 mask |= POLLOUT | POLLWRNORM; 1741 return mask; 1742 } 1743 1744 static int 1745 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1746 { 1747 size_t bytes; 1748 __u32 buf[16]; 1749 const char __user *p = buffer; 1750 1751 while (count > 0) { 1752 bytes = min(count, sizeof(buf)); 1753 if (copy_from_user(&buf, p, bytes)) 1754 return -EFAULT; 1755 1756 count -= bytes; 1757 p += bytes; 1758 1759 mix_pool_bytes(r, buf, bytes); 1760 cond_resched(); 1761 } 1762 1763 return 0; 1764 } 1765 1766 static ssize_t random_write(struct file *file, const char __user *buffer, 1767 size_t count, loff_t *ppos) 1768 { 1769 size_t ret; 1770 1771 ret = write_pool(&input_pool, buffer, count); 1772 if (ret) 1773 return ret; 1774 1775 return (ssize_t)count; 1776 } 1777 1778 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1779 { 1780 int size, ent_count; 1781 int __user *p = (int __user *)arg; 1782 int retval; 1783 1784 switch (cmd) { 1785 case RNDGETENTCNT: 1786 /* inherently racy, no point locking */ 1787 ent_count = ENTROPY_BITS(&input_pool); 1788 if (put_user(ent_count, p)) 1789 return -EFAULT; 1790 return 0; 1791 case RNDADDTOENTCNT: 1792 if (!capable(CAP_SYS_ADMIN)) 1793 return -EPERM; 1794 if (get_user(ent_count, p)) 1795 return -EFAULT; 1796 return credit_entropy_bits_safe(&input_pool, ent_count); 1797 case RNDADDENTROPY: 1798 if (!capable(CAP_SYS_ADMIN)) 1799 return -EPERM; 1800 if (get_user(ent_count, p++)) 1801 return -EFAULT; 1802 if (ent_count < 0) 1803 return -EINVAL; 1804 if (get_user(size, p++)) 1805 return -EFAULT; 1806 retval = write_pool(&input_pool, (const char __user *)p, 1807 size); 1808 if (retval < 0) 1809 return retval; 1810 return credit_entropy_bits_safe(&input_pool, ent_count); 1811 case RNDZAPENTCNT: 1812 case RNDCLEARPOOL: 1813 /* 1814 * Clear the entropy pool counters. We no longer clear 1815 * the entropy pool, as that's silly. 1816 */ 1817 if (!capable(CAP_SYS_ADMIN)) 1818 return -EPERM; 1819 input_pool.entropy_count = 0; 1820 blocking_pool.entropy_count = 0; 1821 return 0; 1822 default: 1823 return -EINVAL; 1824 } 1825 } 1826 1827 static int random_fasync(int fd, struct file *filp, int on) 1828 { 1829 return fasync_helper(fd, filp, on, &fasync); 1830 } 1831 1832 const struct file_operations random_fops = { 1833 .read = random_read, 1834 .write = random_write, 1835 .poll = random_poll, 1836 .unlocked_ioctl = random_ioctl, 1837 .fasync = random_fasync, 1838 .llseek = noop_llseek, 1839 }; 1840 1841 const struct file_operations urandom_fops = { 1842 .read = urandom_read, 1843 .write = random_write, 1844 .unlocked_ioctl = random_ioctl, 1845 .fasync = random_fasync, 1846 .llseek = noop_llseek, 1847 }; 1848 1849 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, 1850 unsigned int, flags) 1851 { 1852 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM)) 1853 return -EINVAL; 1854 1855 if (count > INT_MAX) 1856 count = INT_MAX; 1857 1858 if (flags & GRND_RANDOM) 1859 return _random_read(flags & GRND_NONBLOCK, buf, count); 1860 1861 if (!crng_ready()) { 1862 if (flags & GRND_NONBLOCK) 1863 return -EAGAIN; 1864 crng_wait_ready(); 1865 if (signal_pending(current)) 1866 return -ERESTARTSYS; 1867 } 1868 return urandom_read(NULL, buf, count, NULL); 1869 } 1870 1871 /******************************************************************** 1872 * 1873 * Sysctl interface 1874 * 1875 ********************************************************************/ 1876 1877 #ifdef CONFIG_SYSCTL 1878 1879 #include <linux/sysctl.h> 1880 1881 static int min_read_thresh = 8, min_write_thresh; 1882 static int max_read_thresh = OUTPUT_POOL_WORDS * 32; 1883 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1884 static int random_min_urandom_seed = 60; 1885 static char sysctl_bootid[16]; 1886 1887 /* 1888 * This function is used to return both the bootid UUID, and random 1889 * UUID. The difference is in whether table->data is NULL; if it is, 1890 * then a new UUID is generated and returned to the user. 1891 * 1892 * If the user accesses this via the proc interface, the UUID will be 1893 * returned as an ASCII string in the standard UUID format; if via the 1894 * sysctl system call, as 16 bytes of binary data. 1895 */ 1896 static int proc_do_uuid(struct ctl_table *table, int write, 1897 void __user *buffer, size_t *lenp, loff_t *ppos) 1898 { 1899 struct ctl_table fake_table; 1900 unsigned char buf[64], tmp_uuid[16], *uuid; 1901 1902 uuid = table->data; 1903 if (!uuid) { 1904 uuid = tmp_uuid; 1905 generate_random_uuid(uuid); 1906 } else { 1907 static DEFINE_SPINLOCK(bootid_spinlock); 1908 1909 spin_lock(&bootid_spinlock); 1910 if (!uuid[8]) 1911 generate_random_uuid(uuid); 1912 spin_unlock(&bootid_spinlock); 1913 } 1914 1915 sprintf(buf, "%pU", uuid); 1916 1917 fake_table.data = buf; 1918 fake_table.maxlen = sizeof(buf); 1919 1920 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 1921 } 1922 1923 /* 1924 * Return entropy available scaled to integral bits 1925 */ 1926 static int proc_do_entropy(struct ctl_table *table, int write, 1927 void __user *buffer, size_t *lenp, loff_t *ppos) 1928 { 1929 struct ctl_table fake_table; 1930 int entropy_count; 1931 1932 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 1933 1934 fake_table.data = &entropy_count; 1935 fake_table.maxlen = sizeof(entropy_count); 1936 1937 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 1938 } 1939 1940 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1941 extern struct ctl_table random_table[]; 1942 struct ctl_table random_table[] = { 1943 { 1944 .procname = "poolsize", 1945 .data = &sysctl_poolsize, 1946 .maxlen = sizeof(int), 1947 .mode = 0444, 1948 .proc_handler = proc_dointvec, 1949 }, 1950 { 1951 .procname = "entropy_avail", 1952 .maxlen = sizeof(int), 1953 .mode = 0444, 1954 .proc_handler = proc_do_entropy, 1955 .data = &input_pool.entropy_count, 1956 }, 1957 { 1958 .procname = "read_wakeup_threshold", 1959 .data = &random_read_wakeup_bits, 1960 .maxlen = sizeof(int), 1961 .mode = 0644, 1962 .proc_handler = proc_dointvec_minmax, 1963 .extra1 = &min_read_thresh, 1964 .extra2 = &max_read_thresh, 1965 }, 1966 { 1967 .procname = "write_wakeup_threshold", 1968 .data = &random_write_wakeup_bits, 1969 .maxlen = sizeof(int), 1970 .mode = 0644, 1971 .proc_handler = proc_dointvec_minmax, 1972 .extra1 = &min_write_thresh, 1973 .extra2 = &max_write_thresh, 1974 }, 1975 { 1976 .procname = "urandom_min_reseed_secs", 1977 .data = &random_min_urandom_seed, 1978 .maxlen = sizeof(int), 1979 .mode = 0644, 1980 .proc_handler = proc_dointvec, 1981 }, 1982 { 1983 .procname = "boot_id", 1984 .data = &sysctl_bootid, 1985 .maxlen = 16, 1986 .mode = 0444, 1987 .proc_handler = proc_do_uuid, 1988 }, 1989 { 1990 .procname = "uuid", 1991 .maxlen = 16, 1992 .mode = 0444, 1993 .proc_handler = proc_do_uuid, 1994 }, 1995 #ifdef ADD_INTERRUPT_BENCH 1996 { 1997 .procname = "add_interrupt_avg_cycles", 1998 .data = &avg_cycles, 1999 .maxlen = sizeof(avg_cycles), 2000 .mode = 0444, 2001 .proc_handler = proc_doulongvec_minmax, 2002 }, 2003 { 2004 .procname = "add_interrupt_avg_deviation", 2005 .data = &avg_deviation, 2006 .maxlen = sizeof(avg_deviation), 2007 .mode = 0444, 2008 .proc_handler = proc_doulongvec_minmax, 2009 }, 2010 #endif 2011 { } 2012 }; 2013 #endif /* CONFIG_SYSCTL */ 2014 2015 struct batched_entropy { 2016 union { 2017 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)]; 2018 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)]; 2019 }; 2020 unsigned int position; 2021 }; 2022 2023 /* 2024 * Get a random word for internal kernel use only. The quality of the random 2025 * number is either as good as RDRAND or as good as /dev/urandom, with the 2026 * goal of being quite fast and not depleting entropy. 2027 */ 2028 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64); 2029 u64 get_random_u64(void) 2030 { 2031 u64 ret; 2032 struct batched_entropy *batch; 2033 2034 #if BITS_PER_LONG == 64 2035 if (arch_get_random_long((unsigned long *)&ret)) 2036 return ret; 2037 #else 2038 if (arch_get_random_long((unsigned long *)&ret) && 2039 arch_get_random_long((unsigned long *)&ret + 1)) 2040 return ret; 2041 #endif 2042 2043 batch = &get_cpu_var(batched_entropy_u64); 2044 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) { 2045 extract_crng((u8 *)batch->entropy_u64); 2046 batch->position = 0; 2047 } 2048 ret = batch->entropy_u64[batch->position++]; 2049 put_cpu_var(batched_entropy_u64); 2050 return ret; 2051 } 2052 EXPORT_SYMBOL(get_random_u64); 2053 2054 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32); 2055 u32 get_random_u32(void) 2056 { 2057 u32 ret; 2058 struct batched_entropy *batch; 2059 2060 if (arch_get_random_int(&ret)) 2061 return ret; 2062 2063 batch = &get_cpu_var(batched_entropy_u32); 2064 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) { 2065 extract_crng((u8 *)batch->entropy_u32); 2066 batch->position = 0; 2067 } 2068 ret = batch->entropy_u32[batch->position++]; 2069 put_cpu_var(batched_entropy_u32); 2070 return ret; 2071 } 2072 EXPORT_SYMBOL(get_random_u32); 2073 2074 /** 2075 * randomize_page - Generate a random, page aligned address 2076 * @start: The smallest acceptable address the caller will take. 2077 * @range: The size of the area, starting at @start, within which the 2078 * random address must fall. 2079 * 2080 * If @start + @range would overflow, @range is capped. 2081 * 2082 * NOTE: Historical use of randomize_range, which this replaces, presumed that 2083 * @start was already page aligned. We now align it regardless. 2084 * 2085 * Return: A page aligned address within [start, start + range). On error, 2086 * @start is returned. 2087 */ 2088 unsigned long 2089 randomize_page(unsigned long start, unsigned long range) 2090 { 2091 if (!PAGE_ALIGNED(start)) { 2092 range -= PAGE_ALIGN(start) - start; 2093 start = PAGE_ALIGN(start); 2094 } 2095 2096 if (start > ULONG_MAX - range) 2097 range = ULONG_MAX - start; 2098 2099 range >>= PAGE_SHIFT; 2100 2101 if (range == 0) 2102 return start; 2103 2104 return start + (get_random_long() % range << PAGE_SHIFT); 2105 } 2106 2107 /* Interface for in-kernel drivers of true hardware RNGs. 2108 * Those devices may produce endless random bits and will be throttled 2109 * when our pool is full. 2110 */ 2111 void add_hwgenerator_randomness(const char *buffer, size_t count, 2112 size_t entropy) 2113 { 2114 struct entropy_store *poolp = &input_pool; 2115 2116 if (!crng_ready()) { 2117 crng_fast_load(buffer, count); 2118 return; 2119 } 2120 2121 /* Suspend writing if we're above the trickle threshold. 2122 * We'll be woken up again once below random_write_wakeup_thresh, 2123 * or when the calling thread is about to terminate. 2124 */ 2125 wait_event_interruptible(random_write_wait, kthread_should_stop() || 2126 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); 2127 mix_pool_bytes(poolp, buffer, count); 2128 credit_entropy_bits(poolp, entropy); 2129 } 2130 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 2131